1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/opaquenode.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/superword.hpp"
  42 #include "opto/vectornode.hpp"
  43 
  44 //------------------------------is_loop_exit-----------------------------------
  45 // Given an IfNode, return the loop-exiting projection or NULL if both
  46 // arms remain in the loop.
  47 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  48   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  49   PhaseIdealLoop *phase = _phase;
  50   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  51   // we need loop unswitching instead of peeling.
  52   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
  53     return iff->raw_out(0);
  54   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
  55     return iff->raw_out(1);
  56   return NULL;
  57 }
  58 
  59 
  60 //=============================================================================
  61 
  62 
  63 //------------------------------record_for_igvn----------------------------
  64 // Put loop body on igvn work list
  65 void IdealLoopTree::record_for_igvn() {
  66   for( uint i = 0; i < _body.size(); i++ ) {
  67     Node *n = _body.at(i);
  68     _phase->_igvn._worklist.push(n);
  69   }
  70 }
  71 
  72 //------------------------------compute_exact_trip_count-----------------------
  73 // Compute loop exact trip count if possible. Do not recalculate trip count for
  74 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
  75 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
  76   if (!_head->as_Loop()->is_valid_counted_loop()) {
  77     return;
  78   }
  79   CountedLoopNode* cl = _head->as_CountedLoop();
  80   // Trip count may become nonexact for iteration split loops since
  81   // RCE modifies limits. Note, _trip_count value is not reset since
  82   // it is used to limit unrolling of main loop.
  83   cl->set_nonexact_trip_count();
  84 
  85   // Loop's test should be part of loop.
  86   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  87     return; // Infinite loop
  88 
  89 #ifdef ASSERT
  90   BoolTest::mask bt = cl->loopexit()->test_trip();
  91   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
  92          bt == BoolTest::ne, "canonical test is expected");
  93 #endif
  94 
  95   Node* init_n = cl->init_trip();
  96   Node* limit_n = cl->limit();
  97   if (init_n  != NULL &&  init_n->is_Con() &&
  98       limit_n != NULL && limit_n->is_Con()) {
  99     // Use longs to avoid integer overflow.
 100     int stride_con  = cl->stride_con();
 101     jlong init_con   = cl->init_trip()->get_int();
 102     jlong limit_con  = cl->limit()->get_int();
 103     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
 104     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 105     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
 106       // Set exact trip count.
 107       cl->set_exact_trip_count((uint)trip_count);
 108     }
 109   }
 110 }
 111 
 112 //------------------------------compute_profile_trip_cnt----------------------------
 113 // Compute loop trip count from profile data as
 114 //    (backedge_count + loop_exit_count) / loop_exit_count
 115 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
 116   if (!_head->is_CountedLoop()) {
 117     return;
 118   }
 119   CountedLoopNode* head = _head->as_CountedLoop();
 120   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
 121     return; // Already computed
 122   }
 123   float trip_cnt = (float)max_jint; // default is big
 124 
 125   Node* back = head->in(LoopNode::LoopBackControl);
 126   while (back != head) {
 127     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 128         back->in(0) &&
 129         back->in(0)->is_If() &&
 130         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
 131         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
 132       break;
 133     }
 134     back = phase->idom(back);
 135   }
 136   if (back != head) {
 137     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 138            back->in(0), "if-projection exists");
 139     IfNode* back_if = back->in(0)->as_If();
 140     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
 141 
 142     // Now compute a loop exit count
 143     float loop_exit_cnt = 0.0f;
 144     for( uint i = 0; i < _body.size(); i++ ) {
 145       Node *n = _body[i];
 146       if( n->is_If() ) {
 147         IfNode *iff = n->as_If();
 148         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
 149           Node *exit = is_loop_exit(iff);
 150           if( exit ) {
 151             float exit_prob = iff->_prob;
 152             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
 153             if (exit_prob > PROB_MIN) {
 154               float exit_cnt = iff->_fcnt * exit_prob;
 155               loop_exit_cnt += exit_cnt;
 156             }
 157           }
 158         }
 159       }
 160     }
 161     if (loop_exit_cnt > 0.0f) {
 162       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
 163     } else {
 164       // No exit count so use
 165       trip_cnt = loop_back_cnt;
 166     }
 167   }
 168 #ifndef PRODUCT
 169   if (TraceProfileTripCount) {
 170     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
 171   }
 172 #endif
 173   head->set_profile_trip_cnt(trip_cnt);
 174 }
 175 
 176 //---------------------is_invariant_addition-----------------------------
 177 // Return nonzero index of invariant operand for an Add or Sub
 178 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
 179 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
 180   int op = n->Opcode();
 181   if (op == Op_AddI || op == Op_SubI) {
 182     bool in1_invar = this->is_invariant(n->in(1));
 183     bool in2_invar = this->is_invariant(n->in(2));
 184     if (in1_invar && !in2_invar) return 1;
 185     if (!in1_invar && in2_invar) return 2;
 186   }
 187   return 0;
 188 }
 189 
 190 //---------------------reassociate_add_sub-----------------------------
 191 // Reassociate invariant add and subtract expressions:
 192 //
 193 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
 194 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
 195 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
 196 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
 197 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
 198 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
 199 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
 200 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
 201 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
 202 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
 203 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
 204 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
 205 //
 206 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
 207   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
 208   if (is_invariant(n1)) return NULL;
 209   int inv1_idx = is_invariant_addition(n1, phase);
 210   if (!inv1_idx) return NULL;
 211   // Don't mess with add of constant (igvn moves them to expression tree root.)
 212   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
 213   Node* inv1 = n1->in(inv1_idx);
 214   Node* n2 = n1->in(3 - inv1_idx);
 215   int inv2_idx = is_invariant_addition(n2, phase);
 216   if (!inv2_idx) return NULL;
 217   Node* x    = n2->in(3 - inv2_idx);
 218   Node* inv2 = n2->in(inv2_idx);
 219 
 220   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 221   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 222   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 223   if (n1->is_Sub() && inv1_idx == 1) {
 224     neg_x    = !neg_x;
 225     neg_inv2 = !neg_inv2;
 226   }
 227   Node* inv1_c = phase->get_ctrl(inv1);
 228   Node* inv2_c = phase->get_ctrl(inv2);
 229   Node* n_inv1;
 230   if (neg_inv1) {
 231     Node *zero = phase->_igvn.intcon(0);
 232     phase->set_ctrl(zero, phase->C->root());
 233     n_inv1 = new SubINode(zero, inv1);
 234     phase->register_new_node(n_inv1, inv1_c);
 235   } else {
 236     n_inv1 = inv1;
 237   }
 238   Node* inv;
 239   if (neg_inv2) {
 240     inv = new SubINode(n_inv1, inv2);
 241   } else {
 242     inv = new AddINode(n_inv1, inv2);
 243   }
 244   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 245 
 246   Node* addx;
 247   if (neg_x) {
 248     addx = new SubINode(inv, x);
 249   } else {
 250     addx = new AddINode(x, inv);
 251   }
 252   phase->register_new_node(addx, phase->get_ctrl(x));
 253   phase->_igvn.replace_node(n1, addx);
 254   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 255   _body.yank(n1);
 256   return addx;
 257 }
 258 
 259 //---------------------reassociate_invariants-----------------------------
 260 // Reassociate invariant expressions:
 261 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 262   for (int i = _body.size() - 1; i >= 0; i--) {
 263     Node *n = _body.at(i);
 264     for (int j = 0; j < 5; j++) {
 265       Node* nn = reassociate_add_sub(n, phase);
 266       if (nn == NULL) break;
 267       n = nn; // again
 268     };
 269   }
 270 }
 271 
 272 //------------------------------policy_peeling---------------------------------
 273 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 274 // make some loop-invariant test (usually a null-check) happen before the loop.
 275 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
 276   Node *test = ((IdealLoopTree*)this)->tail();
 277   int  body_size = ((IdealLoopTree*)this)->_body.size();
 278   // Peeling does loop cloning which can result in O(N^2) node construction
 279   if( body_size > 255 /* Prevent overflow for large body_size */
 280       || (body_size * body_size + phase->C->live_nodes()) > phase->C->max_node_limit() ) {
 281     return false;           // too large to safely clone
 282   }
 283 
 284   // check for vectorized loops, any peeling done was already applied
 285   if (_head->is_CountedLoop() && _head->as_CountedLoop()->do_unroll_only()) return false;
 286 
 287   while( test != _head ) {      // Scan till run off top of loop
 288     if( test->is_If() ) {       // Test?
 289       Node *ctrl = phase->get_ctrl(test->in(1));
 290       if (ctrl->is_top())
 291         return false;           // Found dead test on live IF?  No peeling!
 292       // Standard IF only has one input value to check for loop invariance
 293       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
 294       // Condition is not a member of this loop?
 295       if( !is_member(phase->get_loop(ctrl)) &&
 296           is_loop_exit(test) )
 297         return true;            // Found reason to peel!
 298     }
 299     // Walk up dominators to loop _head looking for test which is
 300     // executed on every path thru loop.
 301     test = phase->idom(test);
 302   }
 303   return false;
 304 }
 305 
 306 //------------------------------peeled_dom_test_elim---------------------------
 307 // If we got the effect of peeling, either by actually peeling or by making
 308 // a pre-loop which must execute at least once, we can remove all
 309 // loop-invariant dominated tests in the main body.
 310 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
 311   bool progress = true;
 312   while( progress ) {
 313     progress = false;           // Reset for next iteration
 314     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
 315     Node *test = prev->in(0);
 316     while( test != loop->_head ) { // Scan till run off top of loop
 317 
 318       int p_op = prev->Opcode();
 319       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
 320           test->is_If() &&      // Test?
 321           !test->in(1)->is_Con() && // And not already obvious?
 322           // Condition is not a member of this loop?
 323           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
 324         // Walk loop body looking for instances of this test
 325         for( uint i = 0; i < loop->_body.size(); i++ ) {
 326           Node *n = loop->_body.at(i);
 327           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
 328             // IfNode was dominated by version in peeled loop body
 329             progress = true;
 330             dominated_by( old_new[prev->_idx], n );
 331           }
 332         }
 333       }
 334       prev = test;
 335       test = idom(test);
 336     } // End of scan tests in loop
 337 
 338   } // End of while( progress )
 339 }
 340 
 341 //------------------------------do_peeling-------------------------------------
 342 // Peel the first iteration of the given loop.
 343 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 344 //         The pre-loop illegally has 2 control users (old & new loops).
 345 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 346 //         Do this by making the old-loop fall-in edges act as if they came
 347 //         around the loopback from the prior iteration (follow the old-loop
 348 //         backedges) and then map to the new peeled iteration.  This leaves
 349 //         the pre-loop with only 1 user (the new peeled iteration), but the
 350 //         peeled-loop backedge has 2 users.
 351 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 352 //         extra backedge user.
 353 //
 354 //                   orig
 355 //
 356 //                  stmt1
 357 //                    |
 358 //                    v
 359 //              loop predicate
 360 //                    |
 361 //                    v
 362 //                   loop<----+
 363 //                     |      |
 364 //                   stmt2    |
 365 //                     |      |
 366 //                     v      |
 367 //                    if      ^
 368 //                   / \      |
 369 //                  /   \     |
 370 //                 v     v    |
 371 //               false true   |
 372 //               /       \    |
 373 //              /         ----+
 374 //             |
 375 //             v
 376 //           exit
 377 //
 378 //
 379 //            after clone loop
 380 //
 381 //                   stmt1
 382 //                     |
 383 //                     v
 384 //               loop predicate
 385 //                 /       \
 386 //        clone   /         \   orig
 387 //               /           \
 388 //              /             \
 389 //             v               v
 390 //   +---->loop clone          loop<----+
 391 //   |      |                    |      |
 392 //   |    stmt2 clone          stmt2    |
 393 //   |      |                    |      |
 394 //   |      v                    v      |
 395 //   ^      if clone            If      ^
 396 //   |      / \                / \      |
 397 //   |     /   \              /   \     |
 398 //   |    v     v            v     v    |
 399 //   |    true  false      false true   |
 400 //   |    /         \      /       \    |
 401 //   +----           \    /         ----+
 402 //                    \  /
 403 //                    1v v2
 404 //                  region
 405 //                     |
 406 //                     v
 407 //                   exit
 408 //
 409 //
 410 //         after peel and predicate move
 411 //
 412 //                   stmt1
 413 //                    /
 414 //                   /
 415 //        clone     /            orig
 416 //                 /
 417 //                /              +----------+
 418 //               /               |          |
 419 //              /          loop predicate   |
 420 //             /                 |          |
 421 //            v                  v          |
 422 //   TOP-->loop clone          loop<----+   |
 423 //          |                    |      |   |
 424 //        stmt2 clone          stmt2    |   |
 425 //          |                    |      |   ^
 426 //          v                    v      |   |
 427 //          if clone            If      ^   |
 428 //          / \                / \      |   |
 429 //         /   \              /   \     |   |
 430 //        v     v            v     v    |   |
 431 //      true   false      false  true   |   |
 432 //        |         \      /       \    |   |
 433 //        |          \    /         ----+   ^
 434 //        |           \  /                  |
 435 //        |           1v v2                 |
 436 //        v         region                  |
 437 //        |            |                    |
 438 //        |            v                    |
 439 //        |          exit                   |
 440 //        |                                 |
 441 //        +--------------->-----------------+
 442 //
 443 //
 444 //              final graph
 445 //
 446 //                  stmt1
 447 //                    |
 448 //                    v
 449 //                  stmt2 clone
 450 //                    |
 451 //                    v
 452 //                   if clone
 453 //                  / |
 454 //                 /  |
 455 //                v   v
 456 //            false  true
 457 //             |      |
 458 //             |      v
 459 //             | loop predicate
 460 //             |      |
 461 //             |      v
 462 //             |     loop<----+
 463 //             |      |       |
 464 //             |    stmt2     |
 465 //             |      |       |
 466 //             |      v       |
 467 //             v      if      ^
 468 //             |     /  \     |
 469 //             |    /    \    |
 470 //             |   v     v    |
 471 //             | false  true  |
 472 //             |  |        \  |
 473 //             v  v         --+
 474 //            region
 475 //              |
 476 //              v
 477 //             exit
 478 //
 479 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
 480 
 481   C->set_major_progress();
 482   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
 483   // 'pre' loop from the main and the 'pre' can no longer have its
 484   // iterations adjusted.  Therefore, we need to declare this loop as
 485   // no longer a 'main' loop; it will need new pre and post loops before
 486   // we can do further RCE.
 487 #ifndef PRODUCT
 488   if (TraceLoopOpts) {
 489     tty->print("Peel         ");
 490     loop->dump_head();
 491   }
 492 #endif
 493   Node* head = loop->_head;
 494   bool counted_loop = head->is_CountedLoop();
 495   if (counted_loop) {
 496     CountedLoopNode *cl = head->as_CountedLoop();
 497     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
 498     cl->set_trip_count(cl->trip_count() - 1);
 499     if (cl->is_main_loop()) {
 500       cl->set_normal_loop();
 501 #ifndef PRODUCT
 502       if (PrintOpto && VerifyLoopOptimizations) {
 503         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
 504         loop->dump_head();
 505       }
 506 #endif
 507     }
 508   }
 509   Node* entry = head->in(LoopNode::EntryControl);
 510 
 511   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 512   //         The pre-loop illegally has 2 control users (old & new loops).
 513   clone_loop( loop, old_new, dom_depth(head) );
 514 
 515   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 516   //         Do this by making the old-loop fall-in edges act as if they came
 517   //         around the loopback from the prior iteration (follow the old-loop
 518   //         backedges) and then map to the new peeled iteration.  This leaves
 519   //         the pre-loop with only 1 user (the new peeled iteration), but the
 520   //         peeled-loop backedge has 2 users.
 521   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
 522   _igvn.hash_delete(head);
 523   head->set_req(LoopNode::EntryControl, new_entry);
 524   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
 525     Node* old = head->fast_out(j);
 526     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
 527       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
 528       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
 529         // Then loop body backedge value remains the same.
 530         new_exit_value = old->in(LoopNode::LoopBackControl);
 531       _igvn.hash_delete(old);
 532       old->set_req(LoopNode::EntryControl, new_exit_value);
 533     }
 534   }
 535 
 536 
 537   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 538   //         extra backedge user.
 539   Node* new_head = old_new[head->_idx];
 540   _igvn.hash_delete(new_head);
 541   new_head->set_req(LoopNode::LoopBackControl, C->top());
 542   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
 543     Node* use = new_head->fast_out(j2);
 544     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
 545       _igvn.hash_delete(use);
 546       use->set_req(LoopNode::LoopBackControl, C->top());
 547     }
 548   }
 549 
 550 
 551   // Step 4: Correct dom-depth info.  Set to loop-head depth.
 552   int dd = dom_depth(head);
 553   set_idom(head, head->in(1), dd);
 554   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
 555     Node *old = loop->_body.at(j3);
 556     Node *nnn = old_new[old->_idx];
 557     if (!has_ctrl(nnn))
 558       set_idom(nnn, idom(nnn), dd-1);
 559   }
 560 
 561   // Now force out all loop-invariant dominating tests.  The optimizer
 562   // finds some, but we _know_ they are all useless.
 563   peeled_dom_test_elim(loop,old_new);
 564 
 565   loop->record_for_igvn();
 566 }
 567 
 568 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
 569 
 570 //------------------------------policy_maximally_unroll------------------------
 571 // Calculate exact loop trip count and return true if loop can be maximally
 572 // unrolled.
 573 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
 574   CountedLoopNode *cl = _head->as_CountedLoop();
 575   assert(cl->is_normal_loop(), "");
 576   if (!cl->is_valid_counted_loop())
 577     return false; // Malformed counted loop
 578 
 579   if (!cl->has_exact_trip_count()) {
 580     // Trip count is not exact.
 581     return false;
 582   }
 583 
 584   uint trip_count = cl->trip_count();
 585   // Note, max_juint is used to indicate unknown trip count.
 586   assert(trip_count > 1, "one iteration loop should be optimized out already");
 587   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
 588 
 589   // Real policy: if we maximally unroll, does it get too big?
 590   // Allow the unrolled mess to get larger than standard loop
 591   // size.  After all, it will no longer be a loop.
 592   uint body_size    = _body.size();
 593   uint unroll_limit = (uint)LoopUnrollLimit * 4;
 594   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
 595   if (trip_count > unroll_limit || body_size > unroll_limit) {
 596     return false;
 597   }
 598 
 599   // Fully unroll a loop with few iterations regardless next
 600   // conditions since following loop optimizations will split
 601   // such loop anyway (pre-main-post).
 602   if (trip_count <= 3)
 603     return true;
 604 
 605   // Take into account that after unroll conjoined heads and tails will fold,
 606   // otherwise policy_unroll() may allow more unrolling than max unrolling.
 607   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
 608   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
 609   if (body_size != tst_body_size) // Check for int overflow
 610     return false;
 611   if (new_body_size > unroll_limit ||
 612       // Unrolling can result in a large amount of node construction
 613       new_body_size >= phase->C->max_node_limit() - phase->C->live_nodes()) {
 614     return false;
 615   }
 616 
 617   // Do not unroll a loop with String intrinsics code.
 618   // String intrinsics are large and have loops.
 619   for (uint k = 0; k < _body.size(); k++) {
 620     Node* n = _body.at(k);
 621     switch (n->Opcode()) {
 622       case Op_StrComp:
 623       case Op_StrEquals:
 624       case Op_StrIndexOf:
 625       case Op_EncodeISOArray:
 626       case Op_AryEq: {
 627         return false;
 628       }
 629 #if INCLUDE_RTM_OPT
 630       case Op_FastLock:
 631       case Op_FastUnlock: {
 632         // Don't unroll RTM locking code because it is large.
 633         if (UseRTMLocking) {
 634           return false;
 635         }
 636       }
 637 #endif
 638     } // switch
 639   }
 640 
 641   return true; // Do maximally unroll
 642 }
 643 
 644 
 645 //------------------------------policy_unroll----------------------------------
 646 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 647 // the loop is a CountedLoop and the body is small enough.
 648 bool IdealLoopTree::policy_unroll(PhaseIdealLoop *phase) {
 649 
 650   CountedLoopNode *cl = _head->as_CountedLoop();
 651   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
 652 
 653   if (!cl->is_valid_counted_loop())
 654     return false; // Malformed counted loop
 655 
 656   // Protect against over-unrolling.
 657   // After split at least one iteration will be executed in pre-loop.
 658   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
 659 
 660   _local_loop_unroll_limit = LoopUnrollLimit;
 661   _local_loop_unroll_factor = 4;
 662   int future_unroll_ct = cl->unrolled_count() * 2;
 663   if (!cl->do_unroll_only()) {
 664     if (future_unroll_ct > LoopMaxUnroll) return false;
 665   } else {
 666     // obey user constraints on vector mapped loops with additional unrolling applied
 667     if ((future_unroll_ct / cl->slp_max_unroll()) > LoopMaxUnroll) return false;
 668   }
 669 
 670   // Check for initial stride being a small enough constant
 671   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
 672 
 673   // Don't unroll if the next round of unrolling would push us
 674   // over the expected trip count of the loop.  One is subtracted
 675   // from the expected trip count because the pre-loop normally
 676   // executes 1 iteration.
 677   if (UnrollLimitForProfileCheck > 0 &&
 678       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
 679       future_unroll_ct        > UnrollLimitForProfileCheck &&
 680       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
 681     return false;
 682   }
 683 
 684   // When unroll count is greater than LoopUnrollMin, don't unroll if:
 685   //   the residual iterations are more than 10% of the trip count
 686   //   and rounds of "unroll,optimize" are not making significant progress
 687   //   Progress defined as current size less than 20% larger than previous size.
 688   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
 689       future_unroll_ct > LoopUnrollMin &&
 690       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
 691       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
 692     return false;
 693   }
 694 
 695   Node *init_n = cl->init_trip();
 696   Node *limit_n = cl->limit();
 697   int stride_con = cl->stride_con();
 698   // Non-constant bounds.
 699   // Protect against over-unrolling when init or/and limit are not constant
 700   // (so that trip_count's init value is maxint) but iv range is known.
 701   if (init_n   == NULL || !init_n->is_Con()  ||
 702       limit_n  == NULL || !limit_n->is_Con()) {
 703     Node* phi = cl->phi();
 704     if (phi != NULL) {
 705       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
 706       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
 707       int next_stride = stride_con * 2; // stride after this unroll
 708       if (next_stride > 0) {
 709         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
 710             iv_type->_lo + next_stride >  iv_type->_hi) {
 711           return false;  // over-unrolling
 712         }
 713       } else if (next_stride < 0) {
 714         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
 715             iv_type->_hi + next_stride <  iv_type->_lo) {
 716           return false;  // over-unrolling
 717         }
 718       }
 719     }
 720   }
 721 
 722   // After unroll limit will be adjusted: new_limit = limit-stride.
 723   // Bailout if adjustment overflow.
 724   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
 725   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
 726       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
 727     return false;  // overflow
 728 
 729   // Adjust body_size to determine if we unroll or not
 730   uint body_size = _body.size();
 731   // Key test to unroll loop in CRC32 java code
 732   int xors_in_loop = 0;
 733   // Also count ModL, DivL and MulL which expand mightly
 734   for (uint k = 0; k < _body.size(); k++) {
 735     Node* n = _body.at(k);
 736     switch (n->Opcode()) {
 737       case Op_XorI: xors_in_loop++; break; // CRC32 java code
 738       case Op_ModL: body_size += 30; break;
 739       case Op_DivL: body_size += 30; break;
 740       case Op_MulL: body_size += 10; break;
 741       case Op_StrComp:
 742       case Op_StrEquals:
 743       case Op_StrIndexOf:
 744       case Op_EncodeISOArray:
 745       case Op_AryEq: {
 746         // Do not unroll a loop with String intrinsics code.
 747         // String intrinsics are large and have loops.
 748         return false;
 749       }
 750 #if INCLUDE_RTM_OPT
 751       case Op_FastLock:
 752       case Op_FastUnlock: {
 753         // Don't unroll RTM locking code because it is large.
 754         if (UseRTMLocking) {
 755           return false;
 756         }
 757       }
 758 #endif
 759     } // switch
 760   }
 761 
 762   if (UseSuperWord) {
 763     if (!cl->is_reduction_loop()) {
 764       phase->mark_reductions(this);
 765     }
 766 
 767     // Only attempt slp analysis when user controls do not prohibit it
 768     if (LoopMaxUnroll > _local_loop_unroll_factor) {
 769       // Once policy_slp_analysis succeeds, mark the loop with the
 770       // maximal unroll factor so that we minimize analysis passes
 771       if (future_unroll_ct >= _local_loop_unroll_factor) {
 772         policy_unroll_slp_analysis(cl, phase, future_unroll_ct);
 773       }
 774     }
 775   }
 776 
 777   int slp_max_unroll_factor = cl->slp_max_unroll();
 778   if (cl->has_passed_slp()) {
 779     if (slp_max_unroll_factor >= future_unroll_ct) return true;
 780     // Normal case: loop too big
 781     return false;
 782   }
 783 
 784   // Check for being too big
 785   if (body_size > (uint)_local_loop_unroll_limit) {
 786     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
 787     // Normal case: loop too big
 788     return false;
 789   }
 790 
 791   if(cl->do_unroll_only()) {
 792     NOT_PRODUCT(if (TraceSuperWordLoopUnrollAnalysis) tty->print_cr("policy_unroll passed vector loop(vlen=%d,factor = %d)\n", slp_max_unroll_factor, future_unroll_ct));
 793   }
 794 
 795   // Unroll once!  (Each trip will soon do double iterations)
 796   return true;
 797 }
 798 
 799 void IdealLoopTree::policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct) {
 800   // Enable this functionality target by target as needed
 801   if (SuperWordLoopUnrollAnalysis) {
 802     if (!cl->was_slp_analyzed()) {
 803       SuperWord sw(phase);
 804       sw.transform_loop(this, false);
 805 
 806       // If the loop is slp canonical analyze it
 807       if (sw.early_return() == false) {
 808         sw.unrolling_analysis(_local_loop_unroll_factor);
 809       }
 810     }
 811 
 812     if (cl->has_passed_slp()) {
 813       int slp_max_unroll_factor = cl->slp_max_unroll();
 814       if (slp_max_unroll_factor >= future_unroll_ct) {
 815         int new_limit = cl->node_count_before_unroll() * slp_max_unroll_factor;
 816         if (new_limit > LoopUnrollLimit) {
 817           NOT_PRODUCT(if (TraceSuperWordLoopUnrollAnalysis) tty->print_cr("slp analysis unroll=%d, default limit=%d\n", new_limit, _local_loop_unroll_limit));
 818           _local_loop_unroll_limit = new_limit;
 819         }
 820       }
 821     }
 822   }
 823 }
 824 
 825 //------------------------------policy_align-----------------------------------
 826 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
 827 // expression that does the alignment.  Note that only one array base can be
 828 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
 829 // if we vectorize short memory ops into longer memory ops, we may want to
 830 // increase alignment.
 831 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
 832   return false;
 833 }
 834 
 835 //------------------------------policy_range_check-----------------------------
 836 // Return TRUE or FALSE if the loop should be range-check-eliminated.
 837 // Actually we do iteration-splitting, a more powerful form of RCE.
 838 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
 839   if (!RangeCheckElimination) return false;
 840 
 841   CountedLoopNode *cl = _head->as_CountedLoop();
 842   // If we unrolled with no intention of doing RCE and we later
 843   // changed our minds, we got no pre-loop.  Either we need to
 844   // make a new pre-loop, or we gotta disallow RCE.
 845   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
 846   Node *trip_counter = cl->phi();
 847 
 848   // check for vectorized loops, some opts are no longer needed
 849   if (cl->do_unroll_only()) return false;
 850 
 851   // Check loop body for tests of trip-counter plus loop-invariant vs
 852   // loop-invariant.
 853   for (uint i = 0; i < _body.size(); i++) {
 854     Node *iff = _body[i];
 855     if (iff->Opcode() == Op_If) { // Test?
 856 
 857       // Comparing trip+off vs limit
 858       Node *bol = iff->in(1);
 859       if (bol->req() != 2) continue; // dead constant test
 860       if (!bol->is_Bool()) {
 861         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
 862         continue;
 863       }
 864       if (bol->as_Bool()->_test._test == BoolTest::ne)
 865         continue; // not RC
 866 
 867       Node *cmp = bol->in(1);
 868       Node *rc_exp = cmp->in(1);
 869       Node *limit = cmp->in(2);
 870 
 871       Node *limit_c = phase->get_ctrl(limit);
 872       if( limit_c == phase->C->top() )
 873         return false;           // Found dead test on live IF?  No RCE!
 874       if( is_member(phase->get_loop(limit_c) ) ) {
 875         // Compare might have operands swapped; commute them
 876         rc_exp = cmp->in(2);
 877         limit  = cmp->in(1);
 878         limit_c = phase->get_ctrl(limit);
 879         if( is_member(phase->get_loop(limit_c) ) )
 880           continue;             // Both inputs are loop varying; cannot RCE
 881       }
 882 
 883       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
 884         continue;
 885       }
 886       // Yeah!  Found a test like 'trip+off vs limit'
 887       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
 888       // we need loop unswitching instead of iteration splitting.
 889       if( is_loop_exit(iff) )
 890         return true;            // Found reason to split iterations
 891     } // End of is IF
 892   }
 893 
 894   return false;
 895 }
 896 
 897 //------------------------------policy_peel_only-------------------------------
 898 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
 899 // for unrolling loops with NO array accesses.
 900 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
 901   // check for vectorized loops, any peeling done was already applied
 902   if (_head->is_CountedLoop() && _head->as_CountedLoop()->do_unroll_only()) return false;
 903 
 904   for( uint i = 0; i < _body.size(); i++ )
 905     if( _body[i]->is_Mem() )
 906       return false;
 907 
 908   // No memory accesses at all!
 909   return true;
 910 }
 911 
 912 //------------------------------clone_up_backedge_goo--------------------------
 913 // If Node n lives in the back_ctrl block and cannot float, we clone a private
 914 // version of n in preheader_ctrl block and return that, otherwise return n.
 915 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
 916   if( get_ctrl(n) != back_ctrl ) return n;
 917 
 918   // Only visit once
 919   if (visited.test_set(n->_idx)) {
 920     Node *x = clones.find(n->_idx);
 921     if (x != NULL)
 922       return x;
 923     return n;
 924   }
 925 
 926   Node *x = NULL;               // If required, a clone of 'n'
 927   // Check for 'n' being pinned in the backedge.
 928   if( n->in(0) && n->in(0) == back_ctrl ) {
 929     assert(clones.find(n->_idx) == NULL, "dead loop");
 930     assert(n->Opcode() != Op_ShenandoahWriteBarrier, "no wbs yet");
 931     x = n->clone();             // Clone a copy of 'n' to preheader
 932     clones.push(x, n->_idx);
 933     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
 934   }
 935 
 936   // Recursive fixup any other input edges into x.
 937   // If there are no changes we can just return 'n', otherwise
 938   // we need to clone a private copy and change it.
 939   for( uint i = 1; i < n->req(); i++ ) {
 940     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
 941     if( g != n->in(i) ) {
 942       if( !x ) {
 943         assert(clones.find(n->_idx) == NULL, "dead loop");
 944         x = n->clone();
 945         clones.push(x, n->_idx);
 946       }
 947       x->set_req(i, g);
 948     }
 949   }
 950   if( x ) {                     // x can legally float to pre-header location
 951     register_new_node( x, preheader_ctrl );
 952     return x;
 953   } else {                      // raise n to cover LCA of uses
 954     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
 955   }
 956   return n;
 957 }
 958 
 959 bool PhaseIdealLoop::cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop) {
 960   Node* castii = new CastIINode(incr, TypeInt::INT, true);
 961   castii->set_req(0, ctrl);
 962   register_new_node(castii, ctrl);
 963   for (DUIterator_Fast imax, i = incr->fast_outs(imax); i < imax; i++) {
 964     Node* n = incr->fast_out(i);
 965     if (n->is_Phi() && n->in(0) == loop) {
 966       int nrep = n->replace_edge(incr, castii);
 967       return true;
 968     }
 969   }
 970   return false;
 971 }
 972 
 973 //------------------------------insert_pre_post_loops--------------------------
 974 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
 975 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
 976 // alignment.  Useful to unroll loops that do no array accesses.
 977 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
 978 
 979 #ifndef PRODUCT
 980   if (TraceLoopOpts) {
 981     if (peel_only)
 982       tty->print("PeelMainPost ");
 983     else
 984       tty->print("PreMainPost  ");
 985     loop->dump_head();
 986   }
 987 #endif
 988   C->set_major_progress();
 989 
 990   // Find common pieces of the loop being guarded with pre & post loops
 991   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
 992   assert( main_head->is_normal_loop(), "" );
 993   CountedLoopEndNode *main_end = main_head->loopexit();
 994   guarantee(main_end != NULL, "no loop exit node");
 995   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
 996   uint dd_main_head = dom_depth(main_head);
 997   uint max = main_head->outcnt();
 998 
 999   Node *pre_header= main_head->in(LoopNode::EntryControl);
1000   Node *init      = main_head->init_trip();
1001   Node *incr      = main_end ->incr();
1002   Node *limit     = main_end ->limit();
1003   Node *stride    = main_end ->stride();
1004   Node *cmp       = main_end ->cmp_node();
1005   BoolTest::mask b_test = main_end->test_trip();
1006 
1007   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
1008   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
1009   if( bol->outcnt() != 1 ) {
1010     bol = bol->clone();
1011     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
1012     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, bol);
1013   }
1014   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
1015   if( cmp->outcnt() != 1 ) {
1016     cmp = cmp->clone();
1017     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
1018     _igvn.replace_input_of(bol, 1, cmp);
1019   }
1020 
1021   //------------------------------
1022   // Step A: Create Post-Loop.
1023   Node* main_exit = main_end->proj_out(false);
1024   assert( main_exit->Opcode() == Op_IfFalse, "" );
1025   int dd_main_exit = dom_depth(main_exit);
1026 
1027   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
1028   // loop pre-header illegally has 2 control users (old & new loops).
1029   clone_loop( loop, old_new, dd_main_exit );
1030   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
1031   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
1032   post_head->set_post_loop(main_head);
1033 
1034   // Reduce the post-loop trip count.
1035   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
1036   post_end->_prob = PROB_FAIR;
1037 
1038   // Build the main-loop normal exit.
1039   IfFalseNode *new_main_exit = new IfFalseNode(main_end);
1040   _igvn.register_new_node_with_optimizer( new_main_exit );
1041   set_idom(new_main_exit, main_end, dd_main_exit );
1042   set_loop(new_main_exit, loop->_parent);
1043 
1044   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
1045   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
1046   // (the main-loop trip-counter exit value) because we will be changing
1047   // the exit value (via unrolling) so we cannot constant-fold away the zero
1048   // trip guard until all unrolling is done.
1049   Node *zer_opaq = new Opaque1Node(C, incr);
1050   Node *zer_cmp  = new CmpINode( zer_opaq, limit );
1051   Node *zer_bol  = new BoolNode( zer_cmp, b_test );
1052   register_new_node( zer_opaq, new_main_exit );
1053   register_new_node( zer_cmp , new_main_exit );
1054   register_new_node( zer_bol , new_main_exit );
1055 
1056   // Build the IfNode
1057   IfNode *zer_iff = new IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
1058   _igvn.register_new_node_with_optimizer( zer_iff );
1059   set_idom(zer_iff, new_main_exit, dd_main_exit);
1060   set_loop(zer_iff, loop->_parent);
1061 
1062   // Plug in the false-path, taken if we need to skip post-loop
1063   _igvn.replace_input_of(main_exit, 0, zer_iff);
1064   set_idom(main_exit, zer_iff, dd_main_exit);
1065   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
1066   // Make the true-path, must enter the post loop
1067   Node *zer_taken = new IfTrueNode( zer_iff );
1068   _igvn.register_new_node_with_optimizer( zer_taken );
1069   set_idom(zer_taken, zer_iff, dd_main_exit);
1070   set_loop(zer_taken, loop->_parent);
1071   // Plug in the true path
1072   _igvn.hash_delete( post_head );
1073   post_head->set_req(LoopNode::EntryControl, zer_taken);
1074   set_idom(post_head, zer_taken, dd_main_exit);
1075 
1076   Arena *a = Thread::current()->resource_area();
1077   VectorSet visited(a);
1078   Node_Stack clones(a, main_head->back_control()->outcnt());
1079   // Step A3: Make the fall-in values to the post-loop come from the
1080   // fall-out values of the main-loop.
1081   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
1082     Node* main_phi = main_head->fast_out(i);
1083     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
1084       Node *post_phi = old_new[main_phi->_idx];
1085       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
1086                                               post_head->init_control(),
1087                                               main_phi->in(LoopNode::LoopBackControl),
1088                                               visited, clones);
1089       _igvn.hash_delete(post_phi);
1090       post_phi->set_req( LoopNode::EntryControl, fallmain );
1091     }
1092   }
1093 
1094   // Update local caches for next stanza
1095   main_exit = new_main_exit;
1096 
1097 
1098   //------------------------------
1099   // Step B: Create Pre-Loop.
1100 
1101   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1102   // loop pre-header illegally has 2 control users (old & new loops).
1103   clone_loop( loop, old_new, dd_main_head );
1104   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1105   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1106   pre_head->set_pre_loop(main_head);
1107   Node *pre_incr = old_new[incr->_idx];
1108 
1109   // Reduce the pre-loop trip count.
1110   pre_end->_prob = PROB_FAIR;
1111 
1112   // Find the pre-loop normal exit.
1113   Node* pre_exit = pre_end->proj_out(false);
1114   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1115   IfFalseNode *new_pre_exit = new IfFalseNode(pre_end);
1116   _igvn.register_new_node_with_optimizer( new_pre_exit );
1117   set_idom(new_pre_exit, pre_end, dd_main_head);
1118   set_loop(new_pre_exit, loop->_parent);
1119 
1120   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1121   // pre-loop, the main-loop may not execute at all.  Later in life this
1122   // zero-trip guard will become the minimum-trip guard when we unroll
1123   // the main-loop.
1124   Node *min_opaq = new Opaque1Node(C, limit);
1125   Node *min_cmp  = new CmpINode( pre_incr, min_opaq );
1126   Node *min_bol  = new BoolNode( min_cmp, b_test );
1127   register_new_node( min_opaq, new_pre_exit );
1128   register_new_node( min_cmp , new_pre_exit );
1129   register_new_node( min_bol , new_pre_exit );
1130 
1131   // Build the IfNode (assume the main-loop is executed always).
1132   IfNode *min_iff = new IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1133   _igvn.register_new_node_with_optimizer( min_iff );
1134   set_idom(min_iff, new_pre_exit, dd_main_head);
1135   set_loop(min_iff, loop->_parent);
1136 
1137   // Plug in the false-path, taken if we need to skip main-loop
1138   _igvn.hash_delete( pre_exit );
1139   pre_exit->set_req(0, min_iff);
1140   set_idom(pre_exit, min_iff, dd_main_head);
1141   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1142   // Make the true-path, must enter the main loop
1143   Node *min_taken = new IfTrueNode( min_iff );
1144   _igvn.register_new_node_with_optimizer( min_taken );
1145   set_idom(min_taken, min_iff, dd_main_head);
1146   set_loop(min_taken, loop->_parent);
1147   // Plug in the true path
1148   _igvn.hash_delete( main_head );
1149   main_head->set_req(LoopNode::EntryControl, min_taken);
1150   set_idom(main_head, min_taken, dd_main_head);
1151 
1152   visited.Clear();
1153   clones.clear();
1154   // Step B3: Make the fall-in values to the main-loop come from the
1155   // fall-out values of the pre-loop.
1156   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1157     Node* main_phi = main_head->fast_out(i2);
1158     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1159       Node *pre_phi = old_new[main_phi->_idx];
1160       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1161                                              main_head->init_control(),
1162                                              pre_phi->in(LoopNode::LoopBackControl),
1163                                              visited, clones);
1164       _igvn.hash_delete(main_phi);
1165       main_phi->set_req( LoopNode::EntryControl, fallpre );
1166     }
1167   }
1168 
1169   // Nodes inside the loop may be control dependent on a predicate
1170   // that was moved before the preloop. If the back branch of the main
1171   // or post loops becomes dead, those nodes won't be dependent on the
1172   // test that guards that loop nest anymore which could lead to an
1173   // incorrect array access because it executes independently of the
1174   // test that was guarding the loop nest. We add a special CastII on
1175   // the if branch that enters the loop, between the input induction
1176   // variable value and the induction variable Phi to preserve correct
1177   // dependencies.
1178 
1179   // CastII for the post loop:
1180   bool inserted = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head);
1181   assert(inserted, "no castII inserted");
1182 
1183   // CastII for the main loop:
1184   inserted = cast_incr_before_loop(pre_incr, min_taken, main_head);
1185   assert(inserted, "no castII inserted");
1186 
1187   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1188   // RCE and alignment may change this later.
1189   Node *cmp_end = pre_end->cmp_node();
1190   assert( cmp_end->in(2) == limit, "" );
1191   Node *pre_limit = new AddINode( init, stride );
1192 
1193   // Save the original loop limit in this Opaque1 node for
1194   // use by range check elimination.
1195   Node *pre_opaq  = new Opaque1Node(C, pre_limit, limit);
1196 
1197   register_new_node( pre_limit, pre_head->in(0) );
1198   register_new_node( pre_opaq , pre_head->in(0) );
1199 
1200   // Since no other users of pre-loop compare, I can hack limit directly
1201   assert( cmp_end->outcnt() == 1, "no other users" );
1202   _igvn.hash_delete(cmp_end);
1203   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1204 
1205   // Special case for not-equal loop bounds:
1206   // Change pre loop test, main loop test, and the
1207   // main loop guard test to use lt or gt depending on stride
1208   // direction:
1209   // positive stride use <
1210   // negative stride use >
1211   //
1212   // not-equal test is kept for post loop to handle case
1213   // when init > limit when stride > 0 (and reverse).
1214 
1215   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1216 
1217     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1218     // Modify pre loop end condition
1219     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1220     BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test);
1221     register_new_node( new_bol0, pre_head->in(0) );
1222     _igvn.replace_input_of(pre_end, CountedLoopEndNode::TestValue, new_bol0);
1223     // Modify main loop guard condition
1224     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1225     BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test);
1226     register_new_node( new_bol1, new_pre_exit );
1227     _igvn.hash_delete(min_iff);
1228     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1229     // Modify main loop end condition
1230     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1231     BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test);
1232     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1233     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, new_bol2);
1234   }
1235 
1236   // Flag main loop
1237   main_head->set_main_loop();
1238   if( peel_only ) main_head->set_main_no_pre_loop();
1239 
1240   // Subtract a trip count for the pre-loop.
1241   main_head->set_trip_count(main_head->trip_count() - 1);
1242 
1243   // It's difficult to be precise about the trip-counts
1244   // for the pre/post loops.  They are usually very short,
1245   // so guess that 4 trips is a reasonable value.
1246   post_head->set_profile_trip_cnt(4.0);
1247   pre_head->set_profile_trip_cnt(4.0);
1248 
1249   // Now force out all loop-invariant dominating tests.  The optimizer
1250   // finds some, but we _know_ they are all useless.
1251   peeled_dom_test_elim(loop,old_new);
1252   loop->record_for_igvn();
1253 }
1254 
1255 //------------------------------is_invariant-----------------------------
1256 // Return true if n is invariant
1257 bool IdealLoopTree::is_invariant(Node* n) const {
1258   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
1259   if (n_c->is_top()) return false;
1260   return !is_member(_phase->get_loop(n_c));
1261 }
1262 
1263 
1264 //------------------------------do_unroll--------------------------------------
1265 // Unroll the loop body one step - make each trip do 2 iterations.
1266 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
1267   assert(LoopUnrollLimit, "");
1268   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
1269   CountedLoopEndNode *loop_end = loop_head->loopexit();
1270   assert(loop_end, "");
1271 #ifndef PRODUCT
1272   if (PrintOpto && VerifyLoopOptimizations) {
1273     tty->print("Unrolling ");
1274     loop->dump_head();
1275   } else if (TraceLoopOpts) {
1276     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
1277       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
1278     } else {
1279       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
1280     }
1281     loop->dump_head();
1282   }
1283 
1284   if (C->do_vector_loop() && (PrintOpto && VerifyLoopOptimizations || TraceLoopOpts)) {
1285     Arena* arena = Thread::current()->resource_area();
1286     Node_Stack stack(arena, C->live_nodes() >> 2);
1287     Node_List rpo_list;
1288     VectorSet visited(arena);
1289     visited.set(loop_head->_idx);
1290     rpo( loop_head, stack, visited, rpo_list );
1291     dump(loop, rpo_list.size(), rpo_list );
1292   }
1293 #endif
1294 
1295   // Remember loop node count before unrolling to detect
1296   // if rounds of unroll,optimize are making progress
1297   loop_head->set_node_count_before_unroll(loop->_body.size());
1298 
1299   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
1300   Node *limit = loop_head->limit();
1301   Node *init  = loop_head->init_trip();
1302   Node *stride = loop_head->stride();
1303 
1304   Node *opaq = NULL;
1305   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
1306     // Search for zero-trip guard.
1307     assert( loop_head->is_main_loop(), "" );
1308     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1309     Node *iff = ctrl->in(0);
1310     assert( iff->Opcode() == Op_If, "" );
1311     Node *bol = iff->in(1);
1312     assert( bol->Opcode() == Op_Bool, "" );
1313     Node *cmp = bol->in(1);
1314     assert( cmp->Opcode() == Op_CmpI, "" );
1315     opaq = cmp->in(2);
1316     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
1317     // optimized away and then another round of loop opts attempted.
1318     // We can not optimize this particular loop in that case.
1319     if (opaq->Opcode() != Op_Opaque1)
1320       return; // Cannot find zero-trip guard!  Bail out!
1321     // Zero-trip test uses an 'opaque' node which is not shared.
1322     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
1323   }
1324 
1325   C->set_major_progress();
1326 
1327   Node* new_limit = NULL;
1328   if (UnrollLimitCheck) {
1329     int stride_con = stride->get_int();
1330     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
1331     uint old_trip_count = loop_head->trip_count();
1332     // Verify that unroll policy result is still valid.
1333     assert(old_trip_count > 1 &&
1334            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
1335 
1336     // Adjust loop limit to keep valid iterations number after unroll.
1337     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
1338     // which may overflow.
1339     if (!adjust_min_trip) {
1340       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
1341              "odd trip count for maximally unroll");
1342       // Don't need to adjust limit for maximally unroll since trip count is even.
1343     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
1344       // Loop's limit is constant. Loop's init could be constant when pre-loop
1345       // become peeled iteration.
1346       jlong init_con = init->get_int();
1347       // We can keep old loop limit if iterations count stays the same:
1348       //   old_trip_count == new_trip_count * 2
1349       // Note: since old_trip_count >= 2 then new_trip_count >= 1
1350       // so we also don't need to adjust zero trip test.
1351       jlong limit_con  = limit->get_int();
1352       // (stride_con*2) not overflow since stride_con <= 8.
1353       int new_stride_con = stride_con * 2;
1354       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
1355       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
1356       // New trip count should satisfy next conditions.
1357       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
1358       uint new_trip_count = (uint)trip_count;
1359       adjust_min_trip = (old_trip_count != new_trip_count*2);
1360     }
1361 
1362     if (adjust_min_trip) {
1363       // Step 2: Adjust the trip limit if it is called for.
1364       // The adjustment amount is -stride. Need to make sure if the
1365       // adjustment underflows or overflows, then the main loop is skipped.
1366       Node* cmp = loop_end->cmp_node();
1367       assert(cmp->in(2) == limit, "sanity");
1368       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
1369 
1370       // Verify that policy_unroll result is still valid.
1371       const TypeInt* limit_type = _igvn.type(limit)->is_int();
1372       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1373              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1374 
1375       if (limit->is_Con()) {
1376         // The check in policy_unroll and the assert above guarantee
1377         // no underflow if limit is constant.
1378         new_limit = _igvn.intcon(limit->get_int() - stride_con);
1379         set_ctrl(new_limit, C->root());
1380       } else {
1381         // Limit is not constant.
1382         if (loop_head->unrolled_count() == 1) { // only for first unroll
1383           // Separate limit by Opaque node in case it is an incremented
1384           // variable from previous loop to avoid using pre-incremented
1385           // value which could increase register pressure.
1386           // Otherwise reorg_offsets() optimization will create a separate
1387           // Opaque node for each use of trip-counter and as result
1388           // zero trip guard limit will be different from loop limit.
1389           assert(has_ctrl(opaq), "should have it");
1390           Node* opaq_ctrl = get_ctrl(opaq);
1391           limit = new Opaque2Node( C, limit );
1392           register_new_node( limit, opaq_ctrl );
1393         }
1394         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
1395                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
1396           // No underflow.
1397           new_limit = new SubINode(limit, stride);
1398         } else {
1399           // (limit - stride) may underflow.
1400           // Clamp the adjustment value with MININT or MAXINT:
1401           //
1402           //   new_limit = limit-stride
1403           //   if (stride > 0)
1404           //     new_limit = (limit < new_limit) ? MININT : new_limit;
1405           //   else
1406           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1407           //
1408           BoolTest::mask bt = loop_end->test_trip();
1409           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1410           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1411           set_ctrl(adj_max, C->root());
1412           Node* old_limit = NULL;
1413           Node* adj_limit = NULL;
1414           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1415           if (loop_head->unrolled_count() > 1 &&
1416               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1417               limit->in(CMoveNode::IfTrue) == adj_max &&
1418               bol->as_Bool()->_test._test == bt &&
1419               bol->in(1)->Opcode() == Op_CmpI &&
1420               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1421             // Loop was unrolled before.
1422             // Optimize the limit to avoid nested CMove:
1423             // use original limit as old limit.
1424             old_limit = bol->in(1)->in(1);
1425             // Adjust previous adjusted limit.
1426             adj_limit = limit->in(CMoveNode::IfFalse);
1427             adj_limit = new SubINode(adj_limit, stride);
1428           } else {
1429             old_limit = limit;
1430             adj_limit = new SubINode(limit, stride);
1431           }
1432           assert(old_limit != NULL && adj_limit != NULL, "");
1433           register_new_node( adj_limit, ctrl ); // adjust amount
1434           Node* adj_cmp = new CmpINode(old_limit, adj_limit);
1435           register_new_node( adj_cmp, ctrl );
1436           Node* adj_bool = new BoolNode(adj_cmp, bt);
1437           register_new_node( adj_bool, ctrl );
1438           new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1439         }
1440         register_new_node(new_limit, ctrl);
1441       }
1442       assert(new_limit != NULL, "");
1443       // Replace in loop test.
1444       assert(loop_end->in(1)->in(1) == cmp, "sanity");
1445       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1446         // Don't need to create new test since only one user.
1447         _igvn.hash_delete(cmp);
1448         cmp->set_req(2, new_limit);
1449       } else {
1450         // Create new test since it is shared.
1451         Node* ctrl2 = loop_end->in(0);
1452         Node* cmp2  = cmp->clone();
1453         cmp2->set_req(2, new_limit);
1454         register_new_node(cmp2, ctrl2);
1455         Node* bol2 = loop_end->in(1)->clone();
1456         bol2->set_req(1, cmp2);
1457         register_new_node(bol2, ctrl2);
1458         _igvn.replace_input_of(loop_end, 1, bol2);
1459       }
1460       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1461       // Make it a 1-trip test (means at least 2 trips).
1462 
1463       // Guard test uses an 'opaque' node which is not shared.  Hence I
1464       // can edit it's inputs directly.  Hammer in the new limit for the
1465       // minimum-trip guard.
1466       assert(opaq->outcnt() == 1, "");
1467       _igvn.replace_input_of(opaq, 1, new_limit);
1468     }
1469 
1470     // Adjust max trip count. The trip count is intentionally rounded
1471     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1472     // the main, unrolled, part of the loop will never execute as it is protected
1473     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1474     // and later determined that part of the unrolled loop was dead.
1475     loop_head->set_trip_count(old_trip_count / 2);
1476 
1477     // Double the count of original iterations in the unrolled loop body.
1478     loop_head->double_unrolled_count();
1479 
1480   } else { // LoopLimitCheck
1481 
1482     // Adjust max trip count. The trip count is intentionally rounded
1483     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1484     // the main, unrolled, part of the loop will never execute as it is protected
1485     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1486     // and later determined that part of the unrolled loop was dead.
1487     loop_head->set_trip_count(loop_head->trip_count() / 2);
1488 
1489     // Double the count of original iterations in the unrolled loop body.
1490     loop_head->double_unrolled_count();
1491 
1492     // -----------
1493     // Step 2: Cut back the trip counter for an unroll amount of 2.
1494     // Loop will normally trip (limit - init)/stride_con.  Since it's a
1495     // CountedLoop this is exact (stride divides limit-init exactly).
1496     // We are going to double the loop body, so we want to knock off any
1497     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1498     Node *span = new SubINode( limit, init );
1499     register_new_node( span, ctrl );
1500     Node *trip = new DivINode( 0, span, stride );
1501     register_new_node( trip, ctrl );
1502     Node *mtwo = _igvn.intcon(-2);
1503     set_ctrl(mtwo, C->root());
1504     Node *rond = new AndINode( trip, mtwo );
1505     register_new_node( rond, ctrl );
1506     Node *spn2 = new MulINode( rond, stride );
1507     register_new_node( spn2, ctrl );
1508     new_limit = new AddINode( spn2, init );
1509     register_new_node( new_limit, ctrl );
1510 
1511     // Hammer in the new limit
1512     Node *ctrl2 = loop_end->in(0);
1513     Node *cmp2 = new CmpINode( loop_head->incr(), new_limit );
1514     register_new_node( cmp2, ctrl2 );
1515     Node *bol2 = new BoolNode( cmp2, loop_end->test_trip() );
1516     register_new_node( bol2, ctrl2 );
1517     _igvn.replace_input_of(loop_end, CountedLoopEndNode::TestValue, bol2);
1518 
1519     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1520     // Make it a 1-trip test (means at least 2 trips).
1521     if( adjust_min_trip ) {
1522       assert( new_limit != NULL, "" );
1523       // Guard test uses an 'opaque' node which is not shared.  Hence I
1524       // can edit it's inputs directly.  Hammer in the new limit for the
1525       // minimum-trip guard.
1526       assert( opaq->outcnt() == 1, "" );
1527       _igvn.hash_delete(opaq);
1528       opaq->set_req(1, new_limit);
1529     }
1530   } // LoopLimitCheck
1531 
1532   // ---------
1533   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1534   // represents the odd iterations; since the loop trips an even number of
1535   // times its backedge is never taken.  Kill the backedge.
1536   uint dd = dom_depth(loop_head);
1537   clone_loop( loop, old_new, dd );
1538 
1539   // Make backedges of the clone equal to backedges of the original.
1540   // Make the fall-in from the original come from the fall-out of the clone.
1541   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
1542     Node* phi = loop_head->fast_out(j);
1543     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
1544       Node *newphi = old_new[phi->_idx];
1545       _igvn.hash_delete( phi );
1546       _igvn.hash_delete( newphi );
1547 
1548       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
1549       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
1550       phi   ->set_req(LoopNode::LoopBackControl, C->top());
1551     }
1552   }
1553   Node *clone_head = old_new[loop_head->_idx];
1554   _igvn.hash_delete( clone_head );
1555   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1556   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1557   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1558   loop->_head = clone_head;     // New loop header
1559 
1560   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1561   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1562 
1563   // Kill the clone's backedge
1564   Node *newcle = old_new[loop_end->_idx];
1565   _igvn.hash_delete( newcle );
1566   Node *one = _igvn.intcon(1);
1567   set_ctrl(one, C->root());
1568   newcle->set_req(1, one);
1569   // Force clone into same loop body
1570   uint max = loop->_body.size();
1571   for( uint k = 0; k < max; k++ ) {
1572     Node *old = loop->_body.at(k);
1573     Node *nnn = old_new[old->_idx];
1574     loop->_body.push(nnn);
1575     if (!has_ctrl(old))
1576       set_loop(nnn, loop);
1577   }
1578 
1579   loop->record_for_igvn();
1580 
1581 #ifndef PRODUCT
1582   if (C->do_vector_loop() && (PrintOpto && VerifyLoopOptimizations || TraceLoopOpts)) {
1583     tty->print("\nnew loop after unroll\n");       loop->dump_head();
1584     for (uint i = 0; i < loop->_body.size(); i++) {
1585       loop->_body.at(i)->dump();
1586     }
1587     if(C->clone_map().is_debug()) {
1588       tty->print("\nCloneMap\n");
1589       Dict* dict = C->clone_map().dict();
1590       DictI i(dict);
1591       tty->print_cr("Dict@%p[%d] = ", dict, dict->Size());
1592       for (int ii = 0; i.test(); ++i, ++ii) {
1593         NodeCloneInfo cl((uint64_t)dict->operator[]((void*)i._key));
1594         tty->print("%d->%d:%d,", (int)(intptr_t)i._key, cl.idx(), cl.gen());
1595         if (ii % 10 == 9) {
1596           tty->print_cr(" ");
1597         }
1598       }
1599       tty->print_cr(" ");
1600     }
1601   }
1602 #endif
1603 
1604 }
1605 
1606 //------------------------------do_maximally_unroll----------------------------
1607 
1608 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1609   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1610   assert(cl->has_exact_trip_count(), "trip count is not exact");
1611   assert(cl->trip_count() > 0, "");
1612 #ifndef PRODUCT
1613   if (TraceLoopOpts) {
1614     tty->print("MaxUnroll  %d ", cl->trip_count());
1615     loop->dump_head();
1616   }
1617 #endif
1618 
1619   // If loop is tripping an odd number of times, peel odd iteration
1620   if ((cl->trip_count() & 1) == 1) {
1621     do_peeling(loop, old_new);
1622   }
1623 
1624   // Now its tripping an even number of times remaining.  Double loop body.
1625   // Do not adjust pre-guards; they are not needed and do not exist.
1626   if (cl->trip_count() > 0) {
1627     assert((cl->trip_count() & 1) == 0, "missed peeling");
1628     do_unroll(loop, old_new, false);
1629   }
1630 }
1631 
1632 void PhaseIdealLoop::mark_reductions(IdealLoopTree *loop) {
1633   if (SuperWordReductions == false) return;
1634 
1635   CountedLoopNode* loop_head = loop->_head->as_CountedLoop();
1636   if (loop_head->unrolled_count() > 1) {
1637     return;
1638   }
1639 
1640   Node* trip_phi = loop_head->phi();
1641   for (DUIterator_Fast imax, i = loop_head->fast_outs(imax); i < imax; i++) {
1642     Node* phi = loop_head->fast_out(i);
1643     if (phi->is_Phi() && phi->outcnt() > 0 && phi != trip_phi) {
1644       // For definitions which are loop inclusive and not tripcounts.
1645       Node* def_node = phi->in(LoopNode::LoopBackControl);
1646 
1647       if (def_node != NULL) {
1648         Node* n_ctrl = get_ctrl(def_node);
1649         if (n_ctrl != NULL && loop->is_member(get_loop(n_ctrl))) {
1650           // Now test it to see if it fits the standard pattern for a reduction operator.
1651           int opc = def_node->Opcode();
1652           if (opc != ReductionNode::opcode(opc, def_node->bottom_type()->basic_type())) {
1653             if (!def_node->is_reduction()) { // Not marked yet
1654               // To be a reduction, the arithmetic node must have the phi as input and provide a def to it
1655               bool ok = false;
1656               for (unsigned j = 1; j < def_node->req(); j++) {
1657                 Node* in = def_node->in(j);
1658                 if (in == phi) {
1659                   ok = true;
1660                   break;
1661                 }
1662               }
1663 
1664               // do nothing if we did not match the initial criteria
1665               if (ok == false) {
1666                 continue;
1667               }
1668 
1669               // The result of the reduction must not be used in the loop
1670               for (DUIterator_Fast imax, i = def_node->fast_outs(imax); i < imax && ok; i++) {
1671                 Node* u = def_node->fast_out(i);
1672                 if (has_ctrl(u) && !loop->is_member(get_loop(get_ctrl(u)))) {
1673                   continue;
1674                 }
1675                 if (u == phi) {
1676                   continue;
1677                 }
1678                 ok = false;
1679               }
1680 
1681               // iff the uses conform
1682               if (ok) {
1683                 def_node->add_flag(Node::Flag_is_reduction);
1684                 loop_head->mark_has_reductions();
1685               }
1686             }
1687           }
1688         }
1689       }
1690     }
1691   }
1692 }
1693 
1694 //------------------------------dominates_backedge---------------------------------
1695 // Returns true if ctrl is executed on every complete iteration
1696 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1697   assert(ctrl->is_CFG(), "must be control");
1698   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1699   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1700 }
1701 
1702 //------------------------------adjust_limit-----------------------------------
1703 // Helper function for add_constraint().
1704 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1705   // Compute "I :: (limit-offset)/scale"
1706   Node *con = new SubINode(rc_limit, offset);
1707   register_new_node(con, pre_ctrl);
1708   Node *X = new DivINode(0, con, scale);
1709   register_new_node(X, pre_ctrl);
1710 
1711   // Adjust loop limit
1712   loop_limit = (stride_con > 0)
1713                ? (Node*)(new MinINode(loop_limit, X))
1714                : (Node*)(new MaxINode(loop_limit, X));
1715   register_new_node(loop_limit, pre_ctrl);
1716   return loop_limit;
1717 }
1718 
1719 //------------------------------add_constraint---------------------------------
1720 // Constrain the main loop iterations so the conditions:
1721 //    low_limit <= scale_con * I + offset  <  upper_limit
1722 // always holds true.  That is, either increase the number of iterations in
1723 // the pre-loop or the post-loop until the condition holds true in the main
1724 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1725 // stride and scale are constants (offset and limit often are).
1726 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1727   // For positive stride, the pre-loop limit always uses a MAX function
1728   // and the main loop a MIN function.  For negative stride these are
1729   // reversed.
1730 
1731   // Also for positive stride*scale the affine function is increasing, so the
1732   // pre-loop must check for underflow and the post-loop for overflow.
1733   // Negative stride*scale reverses this; pre-loop checks for overflow and
1734   // post-loop for underflow.
1735 
1736   Node *scale = _igvn.intcon(scale_con);
1737   set_ctrl(scale, C->root());
1738 
1739   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
1740     // The overflow limit: scale*I+offset < upper_limit
1741     // For main-loop compute
1742     //   ( if (scale > 0) /* and stride > 0 */
1743     //       I < (upper_limit-offset)/scale
1744     //     else /* scale < 0 and stride < 0 */
1745     //       I > (upper_limit-offset)/scale
1746     //   )
1747     //
1748     // (upper_limit-offset) may overflow or underflow.
1749     // But it is fine since main loop will either have
1750     // less iterations or will be skipped in such case.
1751     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
1752 
1753     // The underflow limit: low_limit <= scale*I+offset.
1754     // For pre-loop compute
1755     //   NOT(scale*I+offset >= low_limit)
1756     //   scale*I+offset < low_limit
1757     //   ( if (scale > 0) /* and stride > 0 */
1758     //       I < (low_limit-offset)/scale
1759     //     else /* scale < 0 and stride < 0 */
1760     //       I > (low_limit-offset)/scale
1761     //   )
1762 
1763     if (low_limit->get_int() == -max_jint) {
1764       if (!RangeLimitCheck) return;
1765       // We need this guard when scale*pre_limit+offset >= limit
1766       // due to underflow. So we need execute pre-loop until
1767       // scale*I+offset >= min_int. But (min_int-offset) will
1768       // underflow when offset > 0 and X will be > original_limit
1769       // when stride > 0. To avoid it we replace positive offset with 0.
1770       //
1771       // Also (min_int+1 == -max_int) is used instead of min_int here
1772       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1773       Node* shift = _igvn.intcon(31);
1774       set_ctrl(shift, C->root());
1775       Node* sign = new RShiftINode(offset, shift);
1776       register_new_node(sign, pre_ctrl);
1777       offset = new AndINode(offset, sign);
1778       register_new_node(offset, pre_ctrl);
1779     } else {
1780       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1781       // The only problem we have here when offset == min_int
1782       // since (0-min_int) == min_int. It may be fine for stride > 0
1783       // but for stride < 0 X will be < original_limit. To avoid it
1784       // max(pre_limit, original_limit) is used in do_range_check().
1785     }
1786     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1787     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1788 
1789   } else { // stride_con*scale_con < 0
1790     // For negative stride*scale pre-loop checks for overflow and
1791     // post-loop for underflow.
1792     //
1793     // The overflow limit: scale*I+offset < upper_limit
1794     // For pre-loop compute
1795     //   NOT(scale*I+offset < upper_limit)
1796     //   scale*I+offset >= upper_limit
1797     //   scale*I+offset+1 > upper_limit
1798     //   ( if (scale < 0) /* and stride > 0 */
1799     //       I < (upper_limit-(offset+1))/scale
1800     //     else /* scale > 0 and stride < 0 */
1801     //       I > (upper_limit-(offset+1))/scale
1802     //   )
1803     //
1804     // (upper_limit-offset-1) may underflow or overflow.
1805     // To avoid it min(pre_limit, original_limit) is used
1806     // in do_range_check() for stride > 0 and max() for < 0.
1807     Node *one  = _igvn.intcon(1);
1808     set_ctrl(one, C->root());
1809 
1810     Node *plus_one = new AddINode(offset, one);
1811     register_new_node( plus_one, pre_ctrl );
1812     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1813     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1814 
1815     if (low_limit->get_int() == -max_jint) {
1816       if (!RangeLimitCheck) return;
1817       // We need this guard when scale*main_limit+offset >= limit
1818       // due to underflow. So we need execute main-loop while
1819       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1820       // underflow when (offset+1) > 0 and X will be < main_limit
1821       // when scale < 0 (and stride > 0). To avoid it we replace
1822       // positive (offset+1) with 0.
1823       //
1824       // Also (min_int+1 == -max_int) is used instead of min_int here
1825       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1826       Node* shift = _igvn.intcon(31);
1827       set_ctrl(shift, C->root());
1828       Node* sign = new RShiftINode(plus_one, shift);
1829       register_new_node(sign, pre_ctrl);
1830       plus_one = new AndINode(plus_one, sign);
1831       register_new_node(plus_one, pre_ctrl);
1832     } else {
1833       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1834       // The only problem we have here when offset == max_int
1835       // since (max_int+1) == min_int and (0-min_int) == min_int.
1836       // But it is fine since main loop will either have
1837       // less iterations or will be skipped in such case.
1838     }
1839     // The underflow limit: low_limit <= scale*I+offset.
1840     // For main-loop compute
1841     //   scale*I+offset+1 > low_limit
1842     //   ( if (scale < 0) /* and stride > 0 */
1843     //       I < (low_limit-(offset+1))/scale
1844     //     else /* scale > 0 and stride < 0 */
1845     //       I > (low_limit-(offset+1))/scale
1846     //   )
1847 
1848     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1849   }
1850 }
1851 
1852 
1853 //------------------------------is_scaled_iv---------------------------------
1854 // Return true if exp is a constant times an induction var
1855 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1856   if (exp == iv) {
1857     if (p_scale != NULL) {
1858       *p_scale = 1;
1859     }
1860     return true;
1861   }
1862   int opc = exp->Opcode();
1863   if (opc == Op_MulI) {
1864     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1865       if (p_scale != NULL) {
1866         *p_scale = exp->in(2)->get_int();
1867       }
1868       return true;
1869     }
1870     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1871       if (p_scale != NULL) {
1872         *p_scale = exp->in(1)->get_int();
1873       }
1874       return true;
1875     }
1876   } else if (opc == Op_LShiftI) {
1877     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1878       if (p_scale != NULL) {
1879         *p_scale = 1 << exp->in(2)->get_int();
1880       }
1881       return true;
1882     }
1883   }
1884   return false;
1885 }
1886 
1887 //-----------------------------is_scaled_iv_plus_offset------------------------------
1888 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1889 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1890   if (is_scaled_iv(exp, iv, p_scale)) {
1891     if (p_offset != NULL) {
1892       Node *zero = _igvn.intcon(0);
1893       set_ctrl(zero, C->root());
1894       *p_offset = zero;
1895     }
1896     return true;
1897   }
1898   int opc = exp->Opcode();
1899   if (opc == Op_AddI) {
1900     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1901       if (p_offset != NULL) {
1902         *p_offset = exp->in(2);
1903       }
1904       return true;
1905     }
1906     if (exp->in(2)->is_Con()) {
1907       Node* offset2 = NULL;
1908       if (depth < 2 &&
1909           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1910                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1911         if (p_offset != NULL) {
1912           Node *ctrl_off2 = get_ctrl(offset2);
1913           Node* offset = new AddINode(offset2, exp->in(2));
1914           register_new_node(offset, ctrl_off2);
1915           *p_offset = offset;
1916         }
1917         return true;
1918       }
1919     }
1920   } else if (opc == Op_SubI) {
1921     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1922       if (p_offset != NULL) {
1923         Node *zero = _igvn.intcon(0);
1924         set_ctrl(zero, C->root());
1925         Node *ctrl_off = get_ctrl(exp->in(2));
1926         Node* offset = new SubINode(zero, exp->in(2));
1927         register_new_node(offset, ctrl_off);
1928         *p_offset = offset;
1929       }
1930       return true;
1931     }
1932     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1933       if (p_offset != NULL) {
1934         *p_scale *= -1;
1935         *p_offset = exp->in(1);
1936       }
1937       return true;
1938     }
1939   }
1940   return false;
1941 }
1942 
1943 //------------------------------do_range_check---------------------------------
1944 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1945 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1946 #ifndef PRODUCT
1947   if (PrintOpto && VerifyLoopOptimizations) {
1948     tty->print("Range Check Elimination ");
1949     loop->dump_head();
1950   } else if (TraceLoopOpts) {
1951     tty->print("RangeCheck   ");
1952     loop->dump_head();
1953   }
1954 #endif
1955   assert(RangeCheckElimination, "");
1956   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1957   assert(cl->is_main_loop(), "");
1958 
1959   // protect against stride not being a constant
1960   if (!cl->stride_is_con())
1961     return;
1962 
1963   // Find the trip counter; we are iteration splitting based on it
1964   Node *trip_counter = cl->phi();
1965   // Find the main loop limit; we will trim it's iterations
1966   // to not ever trip end tests
1967   Node *main_limit = cl->limit();
1968 
1969   // Need to find the main-loop zero-trip guard
1970   Node *ctrl  = cl->in(LoopNode::EntryControl);
1971   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
1972   Node *iffm = ctrl->in(0);
1973   assert(iffm->Opcode() == Op_If, "");
1974   Node *bolzm = iffm->in(1);
1975   assert(bolzm->Opcode() == Op_Bool, "");
1976   Node *cmpzm = bolzm->in(1);
1977   assert(cmpzm->is_Cmp(), "");
1978   Node *opqzm = cmpzm->in(2);
1979   // Can not optimize a loop if zero-trip Opaque1 node is optimized
1980   // away and then another round of loop opts attempted.
1981   if (opqzm->Opcode() != Op_Opaque1)
1982     return;
1983   assert(opqzm->in(1) == main_limit, "do not understand situation");
1984 
1985   // Find the pre-loop limit; we will expand its iterations to
1986   // not ever trip low tests.
1987   Node *p_f = iffm->in(0);
1988   // pre loop may have been optimized out
1989   if (p_f->Opcode() != Op_IfFalse) {
1990     return;
1991   }
1992   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1993   assert(pre_end->loopnode()->is_pre_loop(), "");
1994   Node *pre_opaq1 = pre_end->limit();
1995   // Occasionally it's possible for a pre-loop Opaque1 node to be
1996   // optimized away and then another round of loop opts attempted.
1997   // We can not optimize this particular loop in that case.
1998   if (pre_opaq1->Opcode() != Op_Opaque1)
1999     return;
2000   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
2001   Node *pre_limit = pre_opaq->in(1);
2002 
2003   // Where do we put new limit calculations
2004   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
2005 
2006   // Ensure the original loop limit is available from the
2007   // pre-loop Opaque1 node.
2008   Node *orig_limit = pre_opaq->original_loop_limit();
2009   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
2010     return;
2011 
2012   // Must know if its a count-up or count-down loop
2013 
2014   int stride_con = cl->stride_con();
2015   Node *zero = _igvn.intcon(0);
2016   Node *one  = _igvn.intcon(1);
2017   // Use symmetrical int range [-max_jint,max_jint]
2018   Node *mini = _igvn.intcon(-max_jint);
2019   set_ctrl(zero, C->root());
2020   set_ctrl(one,  C->root());
2021   set_ctrl(mini, C->root());
2022 
2023   // Range checks that do not dominate the loop backedge (ie.
2024   // conditionally executed) can lengthen the pre loop limit beyond
2025   // the original loop limit. To prevent this, the pre limit is
2026   // (for stride > 0) MINed with the original loop limit (MAXed
2027   // stride < 0) when some range_check (rc) is conditionally
2028   // executed.
2029   bool conditional_rc = false;
2030 
2031   // Check loop body for tests of trip-counter plus loop-invariant vs
2032   // loop-invariant.
2033   for( uint i = 0; i < loop->_body.size(); i++ ) {
2034     Node *iff = loop->_body[i];
2035     if( iff->Opcode() == Op_If ) { // Test?
2036 
2037       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
2038       // we need loop unswitching instead of iteration splitting.
2039       Node *exit = loop->is_loop_exit(iff);
2040       if( !exit ) continue;
2041       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
2042 
2043       // Get boolean condition to test
2044       Node *i1 = iff->in(1);
2045       if( !i1->is_Bool() ) continue;
2046       BoolNode *bol = i1->as_Bool();
2047       BoolTest b_test = bol->_test;
2048       // Flip sense of test if exit condition is flipped
2049       if( flip )
2050         b_test = b_test.negate();
2051 
2052       // Get compare
2053       Node *cmp = bol->in(1);
2054 
2055       // Look for trip_counter + offset vs limit
2056       Node *rc_exp = cmp->in(1);
2057       Node *limit  = cmp->in(2);
2058       jint scale_con= 1;        // Assume trip counter not scaled
2059 
2060       Node *limit_c = get_ctrl(limit);
2061       if( loop->is_member(get_loop(limit_c) ) ) {
2062         // Compare might have operands swapped; commute them
2063         b_test = b_test.commute();
2064         rc_exp = cmp->in(2);
2065         limit  = cmp->in(1);
2066         limit_c = get_ctrl(limit);
2067         if( loop->is_member(get_loop(limit_c) ) )
2068           continue;             // Both inputs are loop varying; cannot RCE
2069       }
2070       // Here we know 'limit' is loop invariant
2071 
2072       // 'limit' maybe pinned below the zero trip test (probably from a
2073       // previous round of rce), in which case, it can't be used in the
2074       // zero trip test expression which must occur before the zero test's if.
2075       if( limit_c == ctrl ) {
2076         continue;  // Don't rce this check but continue looking for other candidates.
2077       }
2078 
2079       // Check for scaled induction variable plus an offset
2080       Node *offset = NULL;
2081 
2082       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
2083         continue;
2084       }
2085 
2086       Node *offset_c = get_ctrl(offset);
2087       if( loop->is_member( get_loop(offset_c) ) )
2088         continue;               // Offset is not really loop invariant
2089       // Here we know 'offset' is loop invariant.
2090 
2091       // As above for the 'limit', the 'offset' maybe pinned below the
2092       // zero trip test.
2093       if( offset_c == ctrl ) {
2094         continue; // Don't rce this check but continue looking for other candidates.
2095       }
2096 #ifdef ASSERT
2097       if (TraceRangeLimitCheck) {
2098         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
2099         bol->dump(2);
2100       }
2101 #endif
2102       // At this point we have the expression as:
2103       //   scale_con * trip_counter + offset :: limit
2104       // where scale_con, offset and limit are loop invariant.  Trip_counter
2105       // monotonically increases by stride_con, a constant.  Both (or either)
2106       // stride_con and scale_con can be negative which will flip about the
2107       // sense of the test.
2108 
2109       // Adjust pre and main loop limits to guard the correct iteration set
2110       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
2111         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
2112           // The underflow and overflow limits: 0 <= scale*I+offset < limit
2113           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
2114           if (!conditional_rc) {
2115             // (0-offset)/scale could be outside of loop iterations range.
2116             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
2117           }
2118         } else {
2119 #ifndef PRODUCT
2120           if( PrintOpto )
2121             tty->print_cr("missed RCE opportunity");
2122 #endif
2123           continue;             // In release mode, ignore it
2124         }
2125       } else {                  // Otherwise work on normal compares
2126         switch( b_test._test ) {
2127         case BoolTest::gt:
2128           // Fall into GE case
2129         case BoolTest::ge:
2130           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
2131           scale_con = -scale_con;
2132           offset = new SubINode( zero, offset );
2133           register_new_node( offset, pre_ctrl );
2134           limit  = new SubINode( zero, limit  );
2135           register_new_node( limit, pre_ctrl );
2136           // Fall into LE case
2137         case BoolTest::le:
2138           if (b_test._test != BoolTest::gt) {
2139             // Convert X <= Y to X < Y+1
2140             limit = new AddINode( limit, one );
2141             register_new_node( limit, pre_ctrl );
2142           }
2143           // Fall into LT case
2144         case BoolTest::lt:
2145           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
2146           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
2147           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
2148           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
2149           if (!conditional_rc) {
2150             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
2151             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
2152             // still be outside of loop range.
2153             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
2154           }
2155           break;
2156         default:
2157 #ifndef PRODUCT
2158           if( PrintOpto )
2159             tty->print_cr("missed RCE opportunity");
2160 #endif
2161           continue;             // Unhandled case
2162         }
2163       }
2164 
2165       // Kill the eliminated test
2166       C->set_major_progress();
2167       Node *kill_con = _igvn.intcon( 1-flip );
2168       set_ctrl(kill_con, C->root());
2169       _igvn.replace_input_of(iff, 1, kill_con);
2170       // Find surviving projection
2171       assert(iff->is_If(), "");
2172       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
2173       // Find loads off the surviving projection; remove their control edge
2174       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
2175         Node* cd = dp->fast_out(i); // Control-dependent node
2176         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
2177           // Allow the load to float around in the loop, or before it
2178           // but NOT before the pre-loop.
2179           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
2180           --i;
2181           --imax;
2182         }
2183       }
2184 
2185     } // End of is IF
2186 
2187   }
2188 
2189   // Update loop limits
2190   if (conditional_rc) {
2191     pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit)
2192                                  : (Node*)new MaxINode(pre_limit, orig_limit);
2193     register_new_node(pre_limit, pre_ctrl);
2194   }
2195   _igvn.replace_input_of(pre_opaq, 1, pre_limit);
2196 
2197   // Note:: we are making the main loop limit no longer precise;
2198   // need to round up based on stride.
2199   cl->set_nonexact_trip_count();
2200   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
2201     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
2202     // Hopefully, compiler will optimize for powers of 2.
2203     Node *ctrl = get_ctrl(main_limit);
2204     Node *stride = cl->stride();
2205     Node *init = cl->init_trip()->uncast();
2206     Node *span = new SubINode(main_limit,init);
2207     register_new_node(span,ctrl);
2208     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
2209     Node *add = new AddINode(span,rndup);
2210     register_new_node(add,ctrl);
2211     Node *div = new DivINode(0,add,stride);
2212     register_new_node(div,ctrl);
2213     Node *mul = new MulINode(div,stride);
2214     register_new_node(mul,ctrl);
2215     Node *newlim = new AddINode(mul,init);
2216     register_new_node(newlim,ctrl);
2217     main_limit = newlim;
2218   }
2219 
2220   Node *main_cle = cl->loopexit();
2221   Node *main_bol = main_cle->in(1);
2222   // Hacking loop bounds; need private copies of exit test
2223   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2224     main_bol = main_bol->clone();// Clone a private BoolNode
2225     register_new_node( main_bol, main_cle->in(0) );
2226     _igvn.replace_input_of(main_cle, 1, main_bol);
2227   }
2228   Node *main_cmp = main_bol->in(1);
2229   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2230     main_cmp = main_cmp->clone();// Clone a private CmpNode
2231     register_new_node( main_cmp, main_cle->in(0) );
2232     _igvn.replace_input_of(main_bol, 1, main_cmp);
2233   }
2234   // Hack the now-private loop bounds
2235   _igvn.replace_input_of(main_cmp, 2, main_limit);
2236   // The OpaqueNode is unshared by design
2237   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
2238   _igvn.replace_input_of(opqzm, 1, main_limit);
2239 }
2240 
2241 //------------------------------DCE_loop_body----------------------------------
2242 // Remove simplistic dead code from loop body
2243 void IdealLoopTree::DCE_loop_body() {
2244   for( uint i = 0; i < _body.size(); i++ )
2245     if( _body.at(i)->outcnt() == 0 )
2246       _body.map( i--, _body.pop() );
2247 }
2248 
2249 
2250 //------------------------------adjust_loop_exit_prob--------------------------
2251 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
2252 // Replace with a 1-in-10 exit guess.
2253 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
2254   Node *test = tail();
2255   while( test != _head ) {
2256     uint top = test->Opcode();
2257     if( top == Op_IfTrue || top == Op_IfFalse ) {
2258       int test_con = ((ProjNode*)test)->_con;
2259       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
2260       IfNode *iff = test->in(0)->as_If();
2261       if( iff->outcnt() == 2 ) {        // Ignore dead tests
2262         Node *bol = iff->in(1);
2263         if( bol && bol->req() > 1 && bol->in(1) &&
2264             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
2265              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
2266              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
2267              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
2268              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
2269              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
2270              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
2271           return;               // Allocation loops RARELY take backedge
2272         // Find the OTHER exit path from the IF
2273         Node* ex = iff->proj_out(1-test_con);
2274         float p = iff->_prob;
2275         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
2276           if( top == Op_IfTrue ) {
2277             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
2278               iff->_prob = PROB_STATIC_FREQUENT;
2279             }
2280           } else {
2281             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
2282               iff->_prob = PROB_STATIC_INFREQUENT;
2283             }
2284           }
2285         }
2286       }
2287     }
2288     test = phase->idom(test);
2289   }
2290 }
2291 
2292 #ifdef ASSERT
2293 static CountedLoopNode* locate_pre_from_main(CountedLoopNode *cl) {
2294   Node *ctrl  = cl->in(LoopNode::EntryControl);
2295   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
2296   Node *iffm = ctrl->in(0);
2297   assert(iffm->Opcode() == Op_If, "");
2298   Node *p_f = iffm->in(0);
2299   assert(p_f->Opcode() == Op_IfFalse, "");
2300   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
2301   assert(pre_end->loopnode()->is_pre_loop(), "");
2302   return pre_end->loopnode();
2303 }
2304 #endif
2305 
2306 // Remove the main and post loops and make the pre loop execute all
2307 // iterations. Useful when the pre loop is found empty.
2308 void IdealLoopTree::remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase) {
2309   CountedLoopEndNode* pre_end = cl->loopexit();
2310   Node* pre_cmp = pre_end->cmp_node();
2311   if (pre_cmp->in(2)->Opcode() != Op_Opaque1) {
2312     // Only safe to remove the main loop if the compiler optimized it
2313     // out based on an unknown number of iterations
2314     return;
2315   }
2316 
2317   // Can we find the main loop?
2318   if (_next == NULL) {
2319     return;
2320   }
2321 
2322   Node* next_head = _next->_head;
2323   if (!next_head->is_CountedLoop()) {
2324     return;
2325   }
2326 
2327   CountedLoopNode* main_head = next_head->as_CountedLoop();
2328   if (!main_head->is_main_loop()) {
2329     return;
2330   }
2331 
2332   assert(locate_pre_from_main(main_head) == cl, "bad main loop");
2333   Node* main_iff = main_head->in(LoopNode::EntryControl)->in(0);
2334 
2335   // Remove the Opaque1Node of the pre loop and make it execute all iterations
2336   phase->_igvn.replace_input_of(pre_cmp, 2, pre_cmp->in(2)->in(2));
2337   // Remove the Opaque1Node of the main loop so it can be optimized out
2338   Node* main_cmp = main_iff->in(1)->in(1);
2339   assert(main_cmp->in(2)->Opcode() == Op_Opaque1, "main loop has no opaque node?");
2340   phase->_igvn.replace_input_of(main_cmp, 2, main_cmp->in(2)->in(1));
2341 }
2342 
2343 //------------------------------policy_do_remove_empty_loop--------------------
2344 // Micro-benchmark spamming.  Policy is to always remove empty loops.
2345 // The 'DO' part is to replace the trip counter with the value it will
2346 // have on the last iteration.  This will break the loop.
2347 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
2348   // Minimum size must be empty loop
2349   if (_body.size() > EMPTY_LOOP_SIZE)
2350     return false;
2351 
2352   if (!_head->is_CountedLoop())
2353     return false;     // Dead loop
2354   CountedLoopNode *cl = _head->as_CountedLoop();
2355   if (!cl->is_valid_counted_loop())
2356     return false; // Malformed loop
2357   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
2358     return false;             // Infinite loop
2359 
2360   if (cl->is_pre_loop()) {
2361     // If the loop we are removing is a pre-loop then the main and
2362     // post loop can be removed as well
2363     remove_main_post_loops(cl, phase);
2364   }
2365 
2366 #ifdef ASSERT
2367   // Ensure only one phi which is the iv.
2368   Node* iv = NULL;
2369   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
2370     Node* n = cl->fast_out(i);
2371     if (n->Opcode() == Op_Phi) {
2372       assert(iv == NULL, "Too many phis" );
2373       iv = n;
2374     }
2375   }
2376   assert(iv == cl->phi(), "Wrong phi" );
2377 #endif
2378 
2379   // main and post loops have explicitly created zero trip guard
2380   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
2381   if (needs_guard) {
2382     // Skip guard if values not overlap.
2383     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
2384     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
2385     int  stride_con = cl->stride_con();
2386     if (stride_con > 0) {
2387       needs_guard = (init_t->_hi >= limit_t->_lo);
2388     } else {
2389       needs_guard = (init_t->_lo <= limit_t->_hi);
2390     }
2391   }
2392   if (needs_guard) {
2393     // Check for an obvious zero trip guard.
2394     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
2395     if (inctrl->Opcode() == Op_IfTrue) {
2396       // The test should look like just the backedge of a CountedLoop
2397       Node* iff = inctrl->in(0);
2398       if (iff->is_If()) {
2399         Node* bol = iff->in(1);
2400         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
2401           Node* cmp = bol->in(1);
2402           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
2403             needs_guard = false;
2404           }
2405         }
2406       }
2407     }
2408   }
2409 
2410 #ifndef PRODUCT
2411   if (PrintOpto) {
2412     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
2413     this->dump_head();
2414   } else if (TraceLoopOpts) {
2415     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
2416     this->dump_head();
2417   }
2418 #endif
2419 
2420   if (needs_guard) {
2421     // Peel the loop to ensure there's a zero trip guard
2422     Node_List old_new;
2423     phase->do_peeling(this, old_new);
2424   }
2425 
2426   // Replace the phi at loop head with the final value of the last
2427   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2428   // taken) and all loop-invariant uses of the exit values will be correct.
2429   Node *phi = cl->phi();
2430   Node *exact_limit = phase->exact_limit(this);
2431   if (exact_limit != cl->limit()) {
2432     // We also need to replace the original limit to collapse loop exit.
2433     Node* cmp = cl->loopexit()->cmp_node();
2434     assert(cl->limit() == cmp->in(2), "sanity");
2435     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2436     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2437   }
2438   // Note: the final value after increment should not overflow since
2439   // counted loop has limit check predicate.
2440   Node *final = new SubINode( exact_limit, cl->stride() );
2441   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2442   phase->_igvn.replace_node(phi,final);
2443   phase->C->set_major_progress();
2444   return true;
2445 }
2446 
2447 //------------------------------policy_do_one_iteration_loop-------------------
2448 // Convert one iteration loop into normal code.
2449 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2450   if (!_head->as_Loop()->is_valid_counted_loop())
2451     return false; // Only for counted loop
2452 
2453   CountedLoopNode *cl = _head->as_CountedLoop();
2454   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2455     return false;
2456   }
2457 
2458 #ifndef PRODUCT
2459   if(TraceLoopOpts) {
2460     tty->print("OneIteration ");
2461     this->dump_head();
2462   }
2463 #endif
2464 
2465   Node *init_n = cl->init_trip();
2466 #ifdef ASSERT
2467   // Loop boundaries should be constant since trip count is exact.
2468   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
2469 #endif
2470   // Replace the phi at loop head with the value of the init_trip.
2471   // Then the CountedLoopEnd will collapse (backedge will not be taken)
2472   // and all loop-invariant uses of the exit values will be correct.
2473   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
2474   phase->C->set_major_progress();
2475   return true;
2476 }
2477 
2478 //=============================================================================
2479 //------------------------------iteration_split_impl---------------------------
2480 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
2481   // Compute exact loop trip count if possible.
2482   compute_exact_trip_count(phase);
2483 
2484   // Convert one iteration loop into normal code.
2485   if (policy_do_one_iteration_loop(phase))
2486     return true;
2487 
2488   // Check and remove empty loops (spam micro-benchmarks)
2489   if (policy_do_remove_empty_loop(phase))
2490     return true;  // Here we removed an empty loop
2491 
2492   bool should_peel = policy_peeling(phase); // Should we peel?
2493 
2494   bool should_unswitch = policy_unswitching(phase);
2495 
2496   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
2497   // This removes loop-invariant tests (usually null checks).
2498   if (!_head->is_CountedLoop()) { // Non-counted loop
2499     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
2500       // Partial peel succeeded so terminate this round of loop opts
2501       return false;
2502     }
2503     if (should_peel) {            // Should we peel?
2504 #ifndef PRODUCT
2505       if (PrintOpto) tty->print_cr("should_peel");
2506 #endif
2507       phase->do_peeling(this,old_new);
2508     } else if (should_unswitch) {
2509       phase->do_unswitching(this, old_new);
2510     }
2511     return true;
2512   }
2513   CountedLoopNode *cl = _head->as_CountedLoop();
2514 
2515   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
2516 
2517   // Do nothing special to pre- and post- loops
2518   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
2519 
2520   // Compute loop trip count from profile data
2521   compute_profile_trip_cnt(phase);
2522 
2523   // Before attempting fancy unrolling, RCE or alignment, see if we want
2524   // to completely unroll this loop or do loop unswitching.
2525   if (cl->is_normal_loop()) {
2526     if (should_unswitch) {
2527       phase->do_unswitching(this, old_new);
2528       return true;
2529     }
2530     bool should_maximally_unroll =  policy_maximally_unroll(phase);
2531     if (should_maximally_unroll) {
2532       // Here we did some unrolling and peeling.  Eventually we will
2533       // completely unroll this loop and it will no longer be a loop.
2534       phase->do_maximally_unroll(this,old_new);
2535       return true;
2536     }
2537   }
2538 
2539   // Skip next optimizations if running low on nodes. Note that
2540   // policy_unswitching and policy_maximally_unroll have this check.
2541   int nodes_left = phase->C->max_node_limit() - phase->C->live_nodes();
2542   if ((int)(2 * _body.size()) > nodes_left) {
2543     return true;
2544   }
2545 
2546   // Counted loops may be peeled, may need some iterations run up
2547   // front for RCE, and may want to align loop refs to a cache
2548   // line.  Thus we clone a full loop up front whose trip count is
2549   // at least 1 (if peeling), but may be several more.
2550 
2551   // The main loop will start cache-line aligned with at least 1
2552   // iteration of the unrolled body (zero-trip test required) and
2553   // will have some range checks removed.
2554 
2555   // A post-loop will finish any odd iterations (leftover after
2556   // unrolling), plus any needed for RCE purposes.
2557 
2558   bool should_unroll = policy_unroll(phase);
2559 
2560   bool should_rce = policy_range_check(phase);
2561 
2562   bool should_align = policy_align(phase);
2563 
2564   // If not RCE'ing (iteration splitting) or Aligning, then we do not
2565   // need a pre-loop.  We may still need to peel an initial iteration but
2566   // we will not be needing an unknown number of pre-iterations.
2567   //
2568   // Basically, if may_rce_align reports FALSE first time through,
2569   // we will not be able to later do RCE or Aligning on this loop.
2570   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
2571 
2572   // If we have any of these conditions (RCE, alignment, unrolling) met, then
2573   // we switch to the pre-/main-/post-loop model.  This model also covers
2574   // peeling.
2575   if (should_rce || should_align || should_unroll) {
2576     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
2577       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
2578 
2579     // Adjust the pre- and main-loop limits to let the pre and post loops run
2580     // with full checks, but the main-loop with no checks.  Remove said
2581     // checks from the main body.
2582     if (should_rce)
2583       phase->do_range_check(this,old_new);
2584 
2585     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
2586     // twice as many iterations as before) and the main body limit (only do
2587     // an even number of trips).  If we are peeling, we might enable some RCE
2588     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
2589     // peeling.
2590     if (should_unroll && !should_peel) {
2591       phase->do_unroll(this, old_new, true);
2592     }
2593 
2594     // Adjust the pre-loop limits to align the main body
2595     // iterations.
2596     if (should_align)
2597       Unimplemented();
2598 
2599   } else {                      // Else we have an unchanged counted loop
2600     if (should_peel)           // Might want to peel but do nothing else
2601       phase->do_peeling(this,old_new);
2602   }
2603   return true;
2604 }
2605 
2606 
2607 //=============================================================================
2608 //------------------------------iteration_split--------------------------------
2609 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
2610   // Recursively iteration split nested loops
2611   if (_child && !_child->iteration_split(phase, old_new))
2612     return false;
2613 
2614   // Clean out prior deadwood
2615   DCE_loop_body();
2616 
2617 
2618   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
2619   // Replace with a 1-in-10 exit guess.
2620   if (_parent /*not the root loop*/ &&
2621       !_irreducible &&
2622       // Also ignore the occasional dead backedge
2623       !tail()->is_top()) {
2624     adjust_loop_exit_prob(phase);
2625   }
2626 
2627   // Gate unrolling, RCE and peeling efforts.
2628   if (!_child &&                // If not an inner loop, do not split
2629       !_irreducible &&
2630       _allow_optimizations &&
2631       !tail()->is_top()) {     // Also ignore the occasional dead backedge
2632     if (!_has_call) {
2633         if (!iteration_split_impl(phase, old_new)) {
2634           return false;
2635         }
2636     } else if (policy_unswitching(phase)) {
2637       phase->do_unswitching(this, old_new);
2638     }
2639   }
2640 
2641   // Minor offset re-organization to remove loop-fallout uses of
2642   // trip counter when there was no major reshaping.
2643   phase->reorg_offsets(this);
2644 
2645   if (_next && !_next->iteration_split(phase, old_new))
2646     return false;
2647   return true;
2648 }
2649 
2650 
2651 //=============================================================================
2652 // Process all the loops in the loop tree and replace any fill
2653 // patterns with an intrisc version.
2654 bool PhaseIdealLoop::do_intrinsify_fill() {
2655   bool changed = false;
2656   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2657     IdealLoopTree* lpt = iter.current();
2658     changed |= intrinsify_fill(lpt);
2659   }
2660   return changed;
2661 }
2662 
2663 
2664 // Examine an inner loop looking for a a single store of an invariant
2665 // value in a unit stride loop,
2666 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
2667                                      Node*& shift, Node*& con) {
2668   const char* msg = NULL;
2669   Node* msg_node = NULL;
2670 
2671   store_value = NULL;
2672   con = NULL;
2673   shift = NULL;
2674 
2675   // Process the loop looking for stores.  If there are multiple
2676   // stores or extra control flow give at this point.
2677   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2678   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2679     Node* n = lpt->_body.at(i);
2680     if (n->outcnt() == 0) continue; // Ignore dead
2681     if (n->is_Store()) {
2682       if (store != NULL) {
2683         msg = "multiple stores";
2684         break;
2685       }
2686       int opc = n->Opcode();
2687       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
2688         msg = "oop fills not handled";
2689         break;
2690       }
2691       Node* value = n->in(MemNode::ValueIn);
2692       if (!lpt->is_invariant(value)) {
2693         msg  = "variant store value";
2694       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
2695         msg = "not array address";
2696       }
2697       store = n;
2698       store_value = value;
2699     } else if (n->is_If() && n != head->loopexit()) {
2700       msg = "extra control flow";
2701       msg_node = n;
2702     }
2703   }
2704 
2705   if (store == NULL) {
2706     // No store in loop
2707     return false;
2708   }
2709 
2710   if (msg == NULL && head->stride_con() != 1) {
2711     // could handle negative strides too
2712     if (head->stride_con() < 0) {
2713       msg = "negative stride";
2714     } else {
2715       msg = "non-unit stride";
2716     }
2717   }
2718 
2719   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
2720     msg = "can't handle store address";
2721     msg_node = store->in(MemNode::Address);
2722   }
2723 
2724   if (msg == NULL &&
2725       (!store->in(MemNode::Memory)->is_Phi() ||
2726        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
2727     msg = "store memory isn't proper phi";
2728     msg_node = store->in(MemNode::Memory);
2729   }
2730 
2731   // Make sure there is an appropriate fill routine
2732   BasicType t = store->as_Mem()->memory_type();
2733   const char* fill_name;
2734   if (msg == NULL &&
2735       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
2736     msg = "unsupported store";
2737     msg_node = store;
2738   }
2739 
2740   if (msg != NULL) {
2741 #ifndef PRODUCT
2742     if (TraceOptimizeFill) {
2743       tty->print_cr("not fill intrinsic candidate: %s", msg);
2744       if (msg_node != NULL) msg_node->dump();
2745     }
2746 #endif
2747     return false;
2748   }
2749 
2750   // Make sure the address expression can be handled.  It should be
2751   // head->phi * elsize + con.  head->phi might have a ConvI2L.
2752   Node* elements[4];
2753   Node* conv = NULL;
2754   bool found_index = false;
2755   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
2756   for (int e = 0; e < count; e++) {
2757     Node* n = elements[e];
2758     if (n->is_Con() && con == NULL) {
2759       con = n;
2760     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
2761       Node* value = n->in(1);
2762 #ifdef _LP64
2763       if (value->Opcode() == Op_ConvI2L) {
2764         conv = value;
2765         value = value->in(1);
2766       }
2767 #endif
2768       if (value != head->phi()) {
2769         msg = "unhandled shift in address";
2770       } else {
2771         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
2772           msg = "scale doesn't match";
2773         } else {
2774           found_index = true;
2775           shift = n;
2776         }
2777       }
2778     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
2779       if (n->in(1) == head->phi()) {
2780         found_index = true;
2781         conv = n;
2782       } else {
2783         msg = "unhandled input to ConvI2L";
2784       }
2785     } else if (n == head->phi()) {
2786       // no shift, check below for allowed cases
2787       found_index = true;
2788     } else {
2789       msg = "unhandled node in address";
2790       msg_node = n;
2791     }
2792   }
2793 
2794   if (count == -1) {
2795     msg = "malformed address expression";
2796     msg_node = store;
2797   }
2798 
2799   if (!found_index) {
2800     msg = "missing use of index";
2801   }
2802 
2803   // byte sized items won't have a shift
2804   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
2805     msg = "can't find shift";
2806     msg_node = store;
2807   }
2808 
2809   if (msg != NULL) {
2810 #ifndef PRODUCT
2811     if (TraceOptimizeFill) {
2812       tty->print_cr("not fill intrinsic: %s", msg);
2813       if (msg_node != NULL) msg_node->dump();
2814     }
2815 #endif
2816     return false;
2817   }
2818 
2819   // No make sure all the other nodes in the loop can be handled
2820   VectorSet ok(Thread::current()->resource_area());
2821 
2822   // store related values are ok
2823   ok.set(store->_idx);
2824   ok.set(store->in(MemNode::Memory)->_idx);
2825 
2826   CountedLoopEndNode* loop_exit = head->loopexit();
2827   guarantee(loop_exit != NULL, "no loop exit node");
2828 
2829   // Loop structure is ok
2830   ok.set(head->_idx);
2831   ok.set(loop_exit->_idx);
2832   ok.set(head->phi()->_idx);
2833   ok.set(head->incr()->_idx);
2834   ok.set(loop_exit->cmp_node()->_idx);
2835   ok.set(loop_exit->in(1)->_idx);
2836 
2837   // Address elements are ok
2838   if (con)   ok.set(con->_idx);
2839   if (shift) ok.set(shift->_idx);
2840   if (conv)  ok.set(conv->_idx);
2841 
2842   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2843     Node* n = lpt->_body.at(i);
2844     if (n->outcnt() == 0) continue; // Ignore dead
2845     if (ok.test(n->_idx)) continue;
2846     // Backedge projection is ok
2847     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
2848     if (!n->is_AddP()) {
2849       msg = "unhandled node";
2850       msg_node = n;
2851       break;
2852     }
2853   }
2854 
2855   // Make sure no unexpected values are used outside the loop
2856   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2857     Node* n = lpt->_body.at(i);
2858     // These values can be replaced with other nodes if they are used
2859     // outside the loop.
2860     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
2861     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
2862       Node* use = iter.get();
2863       if (!lpt->_body.contains(use)) {
2864         msg = "node is used outside loop";
2865         // lpt->_body.dump();
2866         msg_node = n;
2867         break;
2868       }
2869     }
2870   }
2871 
2872 #ifdef ASSERT
2873   if (TraceOptimizeFill) {
2874     if (msg != NULL) {
2875       tty->print_cr("no fill intrinsic: %s", msg);
2876       if (msg_node != NULL) msg_node->dump();
2877     } else {
2878       tty->print_cr("fill intrinsic for:");
2879     }
2880     store->dump();
2881     if (Verbose) {
2882       lpt->_body.dump();
2883     }
2884   }
2885 #endif
2886 
2887   return msg == NULL;
2888 }
2889 
2890 
2891 
2892 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
2893   // Only for counted inner loops
2894   if (!lpt->is_counted() || !lpt->is_inner()) {
2895     return false;
2896   }
2897 
2898   // Must have constant stride
2899   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2900   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
2901     return false;
2902   }
2903 
2904   // Check that the body only contains a store of a loop invariant
2905   // value that is indexed by the loop phi.
2906   Node* store = NULL;
2907   Node* store_value = NULL;
2908   Node* shift = NULL;
2909   Node* offset = NULL;
2910   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2911     return false;
2912   }
2913 
2914 #ifndef PRODUCT
2915   if (TraceLoopOpts) {
2916     tty->print("ArrayFill    ");
2917     lpt->dump_head();
2918   }
2919 #endif
2920 
2921   // Now replace the whole loop body by a call to a fill routine that
2922   // covers the same region as the loop.
2923   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2924 
2925   // Build an expression for the beginning of the copy region
2926   Node* index = head->init_trip();
2927 #ifdef _LP64
2928   index = new ConvI2LNode(index);
2929   _igvn.register_new_node_with_optimizer(index);
2930 #endif
2931   if (shift != NULL) {
2932     // byte arrays don't require a shift but others do.
2933     index = new LShiftXNode(index, shift->in(2));
2934     _igvn.register_new_node_with_optimizer(index);
2935   }
2936   index = new AddPNode(base, base, index);
2937   _igvn.register_new_node_with_optimizer(index);
2938   Node* from = new AddPNode(base, index, offset);
2939   _igvn.register_new_node_with_optimizer(from);
2940   // Compute the number of elements to copy
2941   Node* len = new SubINode(head->limit(), head->init_trip());
2942   _igvn.register_new_node_with_optimizer(len);
2943 
2944   BasicType t = store->as_Mem()->memory_type();
2945   bool aligned = false;
2946   if (offset != NULL && head->init_trip()->is_Con()) {
2947     int element_size = type2aelembytes(t);
2948     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2949   }
2950 
2951   // Build a call to the fill routine
2952   const char* fill_name;
2953   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2954   assert(fill != NULL, "what?");
2955 
2956   // Convert float/double to int/long for fill routines
2957   if (t == T_FLOAT) {
2958     store_value = new MoveF2INode(store_value);
2959     _igvn.register_new_node_with_optimizer(store_value);
2960   } else if (t == T_DOUBLE) {
2961     store_value = new MoveD2LNode(store_value);
2962     _igvn.register_new_node_with_optimizer(store_value);
2963   }
2964 
2965   Node* mem_phi = store->in(MemNode::Memory);
2966   Node* result_ctrl;
2967   Node* result_mem;
2968   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2969   CallLeafNode *call = new CallLeafNoFPNode(call_type, fill,
2970                                             fill_name, TypeAryPtr::get_array_body_type(t));
2971   uint cnt = 0;
2972   call->init_req(TypeFunc::Parms + cnt++, from);
2973   call->init_req(TypeFunc::Parms + cnt++, store_value);
2974 #ifdef _LP64
2975   len = new ConvI2LNode(len);
2976   _igvn.register_new_node_with_optimizer(len);
2977 #endif
2978   call->init_req(TypeFunc::Parms + cnt++, len);
2979 #ifdef _LP64
2980   call->init_req(TypeFunc::Parms + cnt++, C->top());
2981 #endif
2982   call->init_req(TypeFunc::Control,   head->init_control());
2983   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
2984   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
2985   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
2986   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
2987   _igvn.register_new_node_with_optimizer(call);
2988   result_ctrl = new ProjNode(call,TypeFunc::Control);
2989   _igvn.register_new_node_with_optimizer(result_ctrl);
2990   result_mem = new ProjNode(call,TypeFunc::Memory);
2991   _igvn.register_new_node_with_optimizer(result_mem);
2992 
2993 /* Disable following optimization until proper fix (add missing checks).
2994 
2995   // If this fill is tightly coupled to an allocation and overwrites
2996   // the whole body, allow it to take over the zeroing.
2997   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
2998   if (alloc != NULL && alloc->is_AllocateArray()) {
2999     Node* length = alloc->as_AllocateArray()->Ideal_length();
3000     if (head->limit() == length &&
3001         head->init_trip() == _igvn.intcon(0)) {
3002       if (TraceOptimizeFill) {
3003         tty->print_cr("Eliminated zeroing in allocation");
3004       }
3005       alloc->maybe_set_complete(&_igvn);
3006     } else {
3007 #ifdef ASSERT
3008       if (TraceOptimizeFill) {
3009         tty->print_cr("filling array but bounds don't match");
3010         alloc->dump();
3011         head->init_trip()->dump();
3012         head->limit()->dump();
3013         length->dump();
3014       }
3015 #endif
3016     }
3017   }
3018 */
3019 
3020   // Redirect the old control and memory edges that are outside the loop.
3021   Node* exit = head->loopexit()->proj_out(0);
3022   // Sometimes the memory phi of the head is used as the outgoing
3023   // state of the loop.  It's safe in this case to replace it with the
3024   // result_mem.
3025   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
3026   _igvn.replace_node(exit, result_ctrl);
3027   _igvn.replace_node(store, result_mem);
3028   // Any uses the increment outside of the loop become the loop limit.
3029   _igvn.replace_node(head->incr(), head->limit());
3030 
3031   // Disconnect the head from the loop.
3032   for (uint i = 0; i < lpt->_body.size(); i++) {
3033     Node* n = lpt->_body.at(i);
3034     _igvn.replace_node(n, C->top());
3035   }
3036 
3037   return true;
3038 }