1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/loopnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/regalloc.hpp"
  36 #include "opto/rootnode.hpp"
  37 #include "opto/shenandoahSupport.hpp"
  38 
  39 //=============================================================================
  40 #define NODE_HASH_MINIMUM_SIZE    255
  41 //------------------------------NodeHash---------------------------------------
  42 NodeHash::NodeHash(uint est_max_size) :
  43   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  44   _a(Thread::current()->resource_area()),
  45   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  46   _inserts(0), _insert_limit( insert_limit() )
  47 #ifndef PRODUCT
  48   ,_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  49   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  50   _total_insert_probes(0), _total_inserts(0),
  51   _insert_probes(0), _grows(0)
  52 #endif
  53 {
  54   // _sentinel must be in the current node space
  55   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  56   memset(_table,0,sizeof(Node*)*_max);
  57 }
  58 
  59 //------------------------------NodeHash---------------------------------------
  60 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  61   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  62   _a(arena),
  63   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
  64   _inserts(0), _insert_limit( insert_limit() )
  65 #ifndef PRODUCT
  66   ,_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  67   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  68   _total_insert_probes(0), _total_inserts(0),
  69   _insert_probes(0), _grows(0)
  70 #endif
  71 {
  72   // _sentinel must be in the current node space
  73   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  74   memset(_table,0,sizeof(Node*)*_max);
  75 }
  76 
  77 //------------------------------NodeHash---------------------------------------
  78 NodeHash::NodeHash(NodeHash *nh) {
  79   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  80   // just copy in all the fields
  81   *this = *nh;
  82   // nh->_sentinel must be in the current node space
  83 }
  84 
  85 void NodeHash::replace_with(NodeHash *nh) {
  86   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  87   // just copy in all the fields
  88   *this = *nh;
  89   // nh->_sentinel must be in the current node space
  90 }
  91 
  92 //------------------------------hash_find--------------------------------------
  93 // Find in hash table
  94 Node *NodeHash::hash_find( const Node *n ) {
  95   // ((Node*)n)->set_hash( n->hash() );
  96   uint hash = n->hash();
  97   if (hash == Node::NO_HASH) {
  98     NOT_PRODUCT( _lookup_misses++ );
  99     return NULL;
 100   }
 101   uint key = hash & (_max-1);
 102   uint stride = key | 0x01;
 103   NOT_PRODUCT( _look_probes++ );
 104   Node *k = _table[key];        // Get hashed value
 105   if( !k ) {                    // ?Miss?
 106     NOT_PRODUCT( _lookup_misses++ );
 107     return NULL;                // Miss!
 108   }
 109 
 110   int op = n->Opcode();
 111   uint req = n->req();
 112   while( 1 ) {                  // While probing hash table
 113     if( k->req() == req &&      // Same count of inputs
 114         k->Opcode() == op ) {   // Same Opcode
 115       for( uint i=0; i<req; i++ )
 116         if( n->in(i)!=k->in(i)) // Different inputs?
 117           goto collision;       // "goto" is a speed hack...
 118       if( n->cmp(*k) ) {        // Check for any special bits
 119         NOT_PRODUCT( _lookup_hits++ );
 120         return k;               // Hit!
 121       }
 122     }
 123   collision:
 124     NOT_PRODUCT( _look_probes++ );
 125     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 126     k = _table[key];            // Get hashed value
 127     if( !k ) {                  // ?Miss?
 128       NOT_PRODUCT( _lookup_misses++ );
 129       return NULL;              // Miss!
 130     }
 131   }
 132   ShouldNotReachHere();
 133   return NULL;
 134 }
 135 
 136 //------------------------------hash_find_insert-------------------------------
 137 // Find in hash table, insert if not already present
 138 // Used to preserve unique entries in hash table
 139 Node *NodeHash::hash_find_insert( Node *n ) {
 140   // n->set_hash( );
 141   uint hash = n->hash();
 142   if (hash == Node::NO_HASH) {
 143     NOT_PRODUCT( _lookup_misses++ );
 144     return NULL;
 145   }
 146   uint key = hash & (_max-1);
 147   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 148   uint first_sentinel = 0;      // replace a sentinel if seen.
 149   NOT_PRODUCT( _look_probes++ );
 150   Node *k = _table[key];        // Get hashed value
 151   if( !k ) {                    // ?Miss?
 152     NOT_PRODUCT( _lookup_misses++ );
 153     _table[key] = n;            // Insert into table!
 154     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 155     check_grow();               // Grow table if insert hit limit
 156     return NULL;                // Miss!
 157   }
 158   else if( k == _sentinel ) {
 159     first_sentinel = key;      // Can insert here
 160   }
 161 
 162   int op = n->Opcode();
 163   uint req = n->req();
 164   while( 1 ) {                  // While probing hash table
 165     if( k->req() == req &&      // Same count of inputs
 166         k->Opcode() == op ) {   // Same Opcode
 167       for( uint i=0; i<req; i++ )
 168         if( n->in(i)!=k->in(i)) // Different inputs?
 169           goto collision;       // "goto" is a speed hack...
 170       if( n->cmp(*k) ) {        // Check for any special bits
 171         NOT_PRODUCT( _lookup_hits++ );
 172         return k;               // Hit!
 173       }
 174     }
 175   collision:
 176     NOT_PRODUCT( _look_probes++ );
 177     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 178     k = _table[key];            // Get hashed value
 179     if( !k ) {                  // ?Miss?
 180       NOT_PRODUCT( _lookup_misses++ );
 181       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 182       _table[key] = n;          // Insert into table!
 183       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 184       check_grow();             // Grow table if insert hit limit
 185       return NULL;              // Miss!
 186     }
 187     else if( first_sentinel == 0 && k == _sentinel ) {
 188       first_sentinel = key;    // Can insert here
 189     }
 190 
 191   }
 192   ShouldNotReachHere();
 193   return NULL;
 194 }
 195 
 196 //------------------------------hash_insert------------------------------------
 197 // Insert into hash table
 198 void NodeHash::hash_insert( Node *n ) {
 199   // // "conflict" comments -- print nodes that conflict
 200   // bool conflict = false;
 201   // n->set_hash();
 202   uint hash = n->hash();
 203   if (hash == Node::NO_HASH) {
 204     return;
 205   }
 206   check_grow();
 207   uint key = hash & (_max-1);
 208   uint stride = key | 0x01;
 209 
 210   while( 1 ) {                  // While probing hash table
 211     NOT_PRODUCT( _insert_probes++ );
 212     Node *k = _table[key];      // Get hashed value
 213     if( !k || (k == _sentinel) ) break;       // Found a slot
 214     assert( k != n, "already inserted" );
 215     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 216     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 217   }
 218   _table[key] = n;              // Insert into table!
 219   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 220   // if( conflict ) { n->dump(); }
 221 }
 222 
 223 //------------------------------hash_delete------------------------------------
 224 // Replace in hash table with sentinel
 225 bool NodeHash::hash_delete( const Node *n ) {
 226   Node *k;
 227   uint hash = n->hash();
 228   if (hash == Node::NO_HASH) {
 229     NOT_PRODUCT( _delete_misses++ );
 230     return false;
 231   }
 232   uint key = hash & (_max-1);
 233   uint stride = key | 0x01;
 234   debug_only( uint counter = 0; );
 235   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 236     debug_only( counter++ );
 237     NOT_PRODUCT( _delete_probes++ );
 238     k = _table[key];            // Get hashed value
 239     if( !k ) {                  // Miss?
 240       NOT_PRODUCT( _delete_misses++ );
 241 #ifdef ASSERT
 242       if( VerifyOpto ) {
 243         for( uint i=0; i < _max; i++ )
 244           assert( _table[i] != n, "changed edges with rehashing" );
 245       }
 246 #endif
 247       return false;             // Miss! Not in chain
 248     }
 249     else if( n == k ) {
 250       NOT_PRODUCT( _delete_hits++ );
 251       _table[key] = _sentinel;  // Hit! Label as deleted entry
 252       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 253       return true;
 254     }
 255     else {
 256       // collision: move through table with prime offset
 257       key = (key + stride/*7*/) & (_max-1);
 258       assert( counter <= _insert_limit, "Cycle in hash-table");
 259     }
 260   }
 261   ShouldNotReachHere();
 262   return false;
 263 }
 264 
 265 //------------------------------round_up---------------------------------------
 266 // Round up to nearest power of 2
 267 uint NodeHash::round_up( uint x ) {
 268   x += (x>>2);                  // Add 25% slop
 269   if( x <16 ) return 16;        // Small stuff
 270   uint i=16;
 271   while( i < x ) i <<= 1;       // Double to fit
 272   return i;                     // Return hash table size
 273 }
 274 
 275 //------------------------------grow-------------------------------------------
 276 // Grow _table to next power of 2 and insert old entries
 277 void  NodeHash::grow() {
 278   // Record old state
 279   uint   old_max   = _max;
 280   Node **old_table = _table;
 281   // Construct new table with twice the space
 282 #ifndef PRODUCT
 283   _grows++;
 284   _total_inserts       += _inserts;
 285   _total_insert_probes += _insert_probes;
 286   _insert_probes   = 0;
 287 #endif
 288   _inserts         = 0;
 289   _max     = _max << 1;
 290   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 291   memset(_table,0,sizeof(Node*)*_max);
 292   _insert_limit = insert_limit();
 293   // Insert old entries into the new table
 294   for( uint i = 0; i < old_max; i++ ) {
 295     Node *m = *old_table++;
 296     if( !m || m == _sentinel ) continue;
 297     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 298     hash_insert(m);
 299   }
 300 }
 301 
 302 //------------------------------clear------------------------------------------
 303 // Clear all entries in _table to NULL but keep storage
 304 void  NodeHash::clear() {
 305 #ifdef ASSERT
 306   // Unlock all nodes upon removal from table.
 307   for (uint i = 0; i < _max; i++) {
 308     Node* n = _table[i];
 309     if (!n || n == _sentinel)  continue;
 310     n->exit_hash_lock();
 311   }
 312 #endif
 313 
 314   memset( _table, 0, _max * sizeof(Node*) );
 315 }
 316 
 317 //-----------------------remove_useless_nodes----------------------------------
 318 // Remove useless nodes from value table,
 319 // implementation does not depend on hash function
 320 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 321 
 322   // Dead nodes in the hash table inherited from GVN should not replace
 323   // existing nodes, remove dead nodes.
 324   uint max = size();
 325   Node *sentinel_node = sentinel();
 326   for( uint i = 0; i < max; ++i ) {
 327     Node *n = at(i);
 328     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 329       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 330       _table[i] = sentinel_node;       // Replace with placeholder
 331     }
 332   }
 333 }
 334 
 335 
 336 void NodeHash::check_no_speculative_types() {
 337 #ifdef ASSERT
 338   uint max = size();
 339   Node *sentinel_node = sentinel();
 340   for (uint i = 0; i < max; ++i) {
 341     Node *n = at(i);
 342     if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
 343       TypeNode* tn = n->as_Type();
 344       const Type* t = tn->type();
 345       const Type* t_no_spec = t->remove_speculative();
 346       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
 347     }
 348   }
 349 #endif
 350 }
 351 
 352 #ifndef PRODUCT
 353 //------------------------------dump-------------------------------------------
 354 // Dump statistics for the hash table
 355 void NodeHash::dump() {
 356   _total_inserts       += _inserts;
 357   _total_insert_probes += _insert_probes;
 358   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
 359     if (WizardMode) {
 360       for (uint i=0; i<_max; i++) {
 361         if (_table[i])
 362           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 363       }
 364     }
 365     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 366     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 367     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 368     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 369     // sentinels increase lookup cost, but not insert cost
 370     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 371     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 372     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 373   }
 374 }
 375 
 376 Node *NodeHash::find_index(uint idx) { // For debugging
 377   // Find an entry by its index value
 378   for( uint i = 0; i < _max; i++ ) {
 379     Node *m = _table[i];
 380     if( !m || m == _sentinel ) continue;
 381     if( m->_idx == (uint)idx ) return m;
 382   }
 383   return NULL;
 384 }
 385 #endif
 386 
 387 #ifdef ASSERT
 388 NodeHash::~NodeHash() {
 389   // Unlock all nodes upon destruction of table.
 390   if (_table != (Node**)badAddress)  clear();
 391 }
 392 
 393 void NodeHash::operator=(const NodeHash& nh) {
 394   // Unlock all nodes upon replacement of table.
 395   if (&nh == this)  return;
 396   if (_table != (Node**)badAddress)  clear();
 397   memcpy(this, &nh, sizeof(*this));
 398   // Do not increment hash_lock counts again.
 399   // Instead, be sure we never again use the source table.
 400   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 401 }
 402 
 403 
 404 #endif
 405 
 406 
 407 //=============================================================================
 408 //------------------------------PhaseRemoveUseless-----------------------------
 409 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 410 PhaseRemoveUseless::PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ) : Phase(Remove_Useless),
 411   _useful(Thread::current()->resource_area()) {
 412 
 413   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 414   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 415   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 416 
 417   // Identify nodes that are reachable from below, useful.
 418   C->identify_useful_nodes(_useful);
 419   // Update dead node list
 420   C->update_dead_node_list(_useful);
 421 
 422   // Remove all useless nodes from PhaseValues' recorded types
 423   // Must be done before disconnecting nodes to preserve hash-table-invariant
 424   gvn->remove_useless_nodes(_useful.member_set());
 425 
 426   // Remove all useless nodes from future worklist
 427   worklist->remove_useless_nodes(_useful.member_set());
 428 
 429   // Disconnect 'useless' nodes that are adjacent to useful nodes
 430   C->remove_useless_nodes(_useful);
 431 
 432   // Remove edges from "root" to each SafePoint at a backward branch.
 433   // They were inserted during parsing (see add_safepoint()) to make infinite
 434   // loops without calls or exceptions visible to root, i.e., useful.
 435   Node *root = C->root();
 436   if( root != NULL ) {
 437     for( uint i = root->req(); i < root->len(); ++i ) {
 438       Node *n = root->in(i);
 439       if( n != NULL && n->is_SafePoint() ) {
 440         root->rm_prec(i);
 441         --i;
 442       }
 443     }
 444   }
 445 }
 446 
 447 
 448 //=============================================================================
 449 //------------------------------PhaseTransform---------------------------------
 450 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 451   _arena(Thread::current()->resource_area()),
 452   _nodes(_arena),
 453   _types(_arena)
 454 {
 455   init_con_caches();
 456 #ifndef PRODUCT
 457   clear_progress();
 458   clear_transforms();
 459   set_allow_progress(true);
 460 #endif
 461   // Force allocation for currently existing nodes
 462   _types.map(C->unique(), NULL);
 463 }
 464 
 465 //------------------------------PhaseTransform---------------------------------
 466 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 467   _arena(arena),
 468   _nodes(arena),
 469   _types(arena)
 470 {
 471   init_con_caches();
 472 #ifndef PRODUCT
 473   clear_progress();
 474   clear_transforms();
 475   set_allow_progress(true);
 476 #endif
 477   // Force allocation for currently existing nodes
 478   _types.map(C->unique(), NULL);
 479 }
 480 
 481 //------------------------------PhaseTransform---------------------------------
 482 // Initialize with previously generated type information
 483 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 484   _arena(pt->_arena),
 485   _nodes(pt->_nodes),
 486   _types(pt->_types)
 487 {
 488   init_con_caches();
 489 #ifndef PRODUCT
 490   clear_progress();
 491   clear_transforms();
 492   set_allow_progress(true);
 493 #endif
 494 }
 495 
 496 void PhaseTransform::init_con_caches() {
 497   memset(_icons,0,sizeof(_icons));
 498   memset(_lcons,0,sizeof(_lcons));
 499   memset(_zcons,0,sizeof(_zcons));
 500 }
 501 
 502 
 503 //--------------------------------find_int_type--------------------------------
 504 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 505   if (n == NULL)  return NULL;
 506   // Call type_or_null(n) to determine node's type since we might be in
 507   // parse phase and call n->Value() may return wrong type.
 508   // (For example, a phi node at the beginning of loop parsing is not ready.)
 509   const Type* t = type_or_null(n);
 510   if (t == NULL)  return NULL;
 511   return t->isa_int();
 512 }
 513 
 514 
 515 //-------------------------------find_long_type--------------------------------
 516 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 517   if (n == NULL)  return NULL;
 518   // (See comment above on type_or_null.)
 519   const Type* t = type_or_null(n);
 520   if (t == NULL)  return NULL;
 521   return t->isa_long();
 522 }
 523 
 524 
 525 #ifndef PRODUCT
 526 void PhaseTransform::dump_old2new_map() const {
 527   _nodes.dump();
 528 }
 529 
 530 void PhaseTransform::dump_new( uint nidx ) const {
 531   for( uint i=0; i<_nodes.Size(); i++ )
 532     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 533       _nodes[i]->dump();
 534       tty->cr();
 535       tty->print_cr("Old index= %d",i);
 536       return;
 537     }
 538   tty->print_cr("Node %d not found in the new indices", nidx);
 539 }
 540 
 541 //------------------------------dump_types-------------------------------------
 542 void PhaseTransform::dump_types( ) const {
 543   _types.dump();
 544 }
 545 
 546 //------------------------------dump_nodes_and_types---------------------------
 547 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 548   VectorSet visited(Thread::current()->resource_area());
 549   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 550 }
 551 
 552 //------------------------------dump_nodes_and_types_recur---------------------
 553 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 554   if( !n ) return;
 555   if( depth == 0 ) return;
 556   if( visited.test_set(n->_idx) ) return;
 557   for( uint i=0; i<n->len(); i++ ) {
 558     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 559     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 560   }
 561   n->dump();
 562   if (type_or_null(n) != NULL) {
 563     tty->print("      "); type(n)->dump(); tty->cr();
 564   }
 565 }
 566 
 567 #endif
 568 
 569 bool PhaseTransform::eqv(const Node* n1, const Node* n2) const {
 570   if (UseShenandoahGC) {
 571 
 572     if (n1 == n2) return true;
 573 
 574     if (n1 == NULL || n2 == NULL) return false;
 575 
 576     if (n1->is_AddP() && n2->is_AddP()) {
 577       Node* addp1 = n1->as_AddP();
 578       Node* base1 = addp1->in(AddPNode::Base);
 579       Node* addr1 = addp1->in(AddPNode::Address);
 580       Node* offs1 = addp1->in(AddPNode::Offset);
 581 
 582       Node* addp2 = n2->as_AddP();
 583       Node* base2 = addp2->in(AddPNode::Base);
 584       Node* addr2 = addp2->in(AddPNode::Address);
 585       Node* offs2 = addp2->in(AddPNode::Offset);
 586 
 587       if (base1 == addr1 && base2 == addr2) {
 588 
 589         addr1 = ShenandoahBarrierNode::skip_through_barrier(addr1);
 590         addr2 = ShenandoahBarrierNode::skip_through_barrier(addr2);
 591 
 592         if (addr1 == addr2 && offs1 == offs2) return true;
 593       }
 594 
 595     }
 596     return false;
 597   } else {
 598     return n1 == n2;
 599   }
 600 }
 601 
 602 //=============================================================================
 603 //------------------------------PhaseValues------------------------------------
 604 // Set minimum table size to "255"
 605 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 606   NOT_PRODUCT( clear_new_values(); )
 607 }
 608 
 609 //------------------------------PhaseValues------------------------------------
 610 // Set minimum table size to "255"
 611 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 612   _table(&ptv->_table) {
 613   NOT_PRODUCT( clear_new_values(); )
 614 }
 615 
 616 //------------------------------PhaseValues------------------------------------
 617 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 618 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 619   _table(ptv->arena(),ptv->_table.size()) {
 620   NOT_PRODUCT( clear_new_values(); )
 621 }
 622 
 623 //------------------------------~PhaseValues-----------------------------------
 624 #ifndef PRODUCT
 625 PhaseValues::~PhaseValues() {
 626   _table.dump();
 627 
 628   // Statistics for value progress and efficiency
 629   if( PrintCompilation && Verbose && WizardMode ) {
 630     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 631       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 632     if( made_transforms() != 0 ) {
 633       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 634     } else {
 635       tty->cr();
 636     }
 637   }
 638 }
 639 #endif
 640 
 641 //------------------------------makecon----------------------------------------
 642 ConNode* PhaseTransform::makecon(const Type *t) {
 643   assert(t->singleton(), "must be a constant");
 644   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 645   switch (t->base()) {  // fast paths
 646   case Type::Half:
 647   case Type::Top:  return (ConNode*) C->top();
 648   case Type::Int:  return intcon( t->is_int()->get_con() );
 649   case Type::Long: return longcon( t->is_long()->get_con() );
 650   }
 651   if (t->is_zero_type())
 652     return zerocon(t->basic_type());
 653   return uncached_makecon(t);
 654 }
 655 
 656 //--------------------------uncached_makecon-----------------------------------
 657 // Make an idealized constant - one of ConINode, ConPNode, etc.
 658 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 659   assert(t->singleton(), "must be a constant");
 660   ConNode* x = ConNode::make(t);
 661   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 662   if (k == NULL) {
 663     set_type(x, t);             // Missed, provide type mapping
 664     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 665     if (nna != NULL) {
 666       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 667       loc->clear(); // do not put debug info on constants
 668     }
 669   } else {
 670     x->destruct();              // Hit, destroy duplicate constant
 671     x = k;                      // use existing constant
 672   }
 673   return x;
 674 }
 675 
 676 //------------------------------intcon-----------------------------------------
 677 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 678 ConINode* PhaseTransform::intcon(int i) {
 679   // Small integer?  Check cache! Check that cached node is not dead
 680   if (i >= _icon_min && i <= _icon_max) {
 681     ConINode* icon = _icons[i-_icon_min];
 682     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 683       return icon;
 684   }
 685   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 686   assert(icon->is_Con(), "");
 687   if (i >= _icon_min && i <= _icon_max)
 688     _icons[i-_icon_min] = icon;   // Cache small integers
 689   return icon;
 690 }
 691 
 692 //------------------------------longcon----------------------------------------
 693 // Fast long constant.
 694 ConLNode* PhaseTransform::longcon(jlong l) {
 695   // Small integer?  Check cache! Check that cached node is not dead
 696   if (l >= _lcon_min && l <= _lcon_max) {
 697     ConLNode* lcon = _lcons[l-_lcon_min];
 698     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 699       return lcon;
 700   }
 701   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 702   assert(lcon->is_Con(), "");
 703   if (l >= _lcon_min && l <= _lcon_max)
 704     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 705   return lcon;
 706 }
 707 
 708 //------------------------------zerocon-----------------------------------------
 709 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 710 ConNode* PhaseTransform::zerocon(BasicType bt) {
 711   assert((uint)bt <= _zcon_max, "domain check");
 712   ConNode* zcon = _zcons[bt];
 713   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 714     return zcon;
 715   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 716   _zcons[bt] = zcon;
 717   return zcon;
 718 }
 719 
 720 
 721 
 722 //=============================================================================
 723 //------------------------------transform--------------------------------------
 724 // Return a node which computes the same function as this node, but in a
 725 // faster or cheaper fashion.
 726 Node *PhaseGVN::transform( Node *n ) {
 727   return transform_no_reclaim(n);
 728 }
 729 
 730 //------------------------------transform--------------------------------------
 731 // Return a node which computes the same function as this node, but
 732 // in a faster or cheaper fashion.
 733 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 734   NOT_PRODUCT( set_transforms(); )
 735 
 736   // Apply the Ideal call in a loop until it no longer applies
 737   Node *k = n;
 738   NOT_PRODUCT( uint loop_count = 0; )
 739   while( 1 ) {
 740     Node *i = k->Ideal(this, /*can_reshape=*/false);
 741     if( !i ) break;
 742     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 743     k = i;
 744     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 745   }
 746   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 747 
 748 
 749   // If brand new node, make space in type array.
 750   ensure_type_or_null(k);
 751 
 752   // Since I just called 'Value' to compute the set of run-time values
 753   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 754   // cache Value.  Later requests for the local phase->type of this Node can
 755   // use the cached Value instead of suffering with 'bottom_type'.
 756   const Type *t = k->Value(this); // Get runtime Value set
 757   assert(t != NULL, "value sanity");
 758   if (type_or_null(k) != t) {
 759 #ifndef PRODUCT
 760     // Do not count initial visit to node as a transformation
 761     if (type_or_null(k) == NULL) {
 762       inc_new_values();
 763       set_progress();
 764     }
 765 #endif
 766     set_type(k, t);
 767     // If k is a TypeNode, capture any more-precise type permanently into Node
 768     k->raise_bottom_type(t);
 769   }
 770 
 771   if( t->singleton() && !k->is_Con() ) {
 772     NOT_PRODUCT( set_progress(); )
 773     return makecon(t);          // Turn into a constant
 774   }
 775 
 776   // Now check for Identities
 777   Node *i = k->Identity(this);  // Look for a nearby replacement
 778   if( i != k ) {                // Found? Return replacement!
 779     NOT_PRODUCT( set_progress(); )
 780     return i;
 781   }
 782 
 783   // Global Value Numbering
 784   i = hash_find_insert(k);      // Insert if new
 785   if( i && (i != k) ) {
 786     // Return the pre-existing node
 787     NOT_PRODUCT( set_progress(); )
 788     return i;
 789   }
 790 
 791   // Return Idealized original
 792   return k;
 793 }
 794 
 795 #ifdef ASSERT
 796 //------------------------------dead_loop_check--------------------------------
 797 // Check for a simple dead loop when a data node references itself directly
 798 // or through an other data node excluding cons and phis.
 799 void PhaseGVN::dead_loop_check( Node *n ) {
 800   // Phi may reference itself in a loop
 801   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 802     // Do 2 levels check and only data inputs.
 803     bool no_dead_loop = true;
 804     uint cnt = n->req();
 805     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 806       Node *in = n->in(i);
 807       if (in == n) {
 808         no_dead_loop = false;
 809       } else if (in != NULL && !in->is_dead_loop_safe()) {
 810         uint icnt = in->req();
 811         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 812           if (in->in(j) == n || in->in(j) == in)
 813             no_dead_loop = false;
 814         }
 815       }
 816     }
 817     if (!no_dead_loop) n->dump(3);
 818     assert(no_dead_loop, "dead loop detected");
 819   }
 820 }
 821 #endif
 822 
 823 //=============================================================================
 824 //------------------------------PhaseIterGVN-----------------------------------
 825 // Initialize hash table to fresh and clean for +VerifyOpto
 826 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
 827                                                                       _stack(C->live_nodes() >> 1),
 828                                                                       _delay_transform(false) {
 829 }
 830 
 831 //------------------------------PhaseIterGVN-----------------------------------
 832 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 833 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 834                                                    _worklist( igvn->_worklist ),
 835                                                    _stack( igvn->_stack ),
 836                                                    _delay_transform(igvn->_delay_transform)
 837 {
 838 }
 839 
 840 //------------------------------PhaseIterGVN-----------------------------------
 841 // Initialize with previous PhaseGVN info from Parser
 842 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 843                                               _worklist(*C->for_igvn()),
 844 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
 845 //       the constructor is used in incremental inlining, this consumes too much memory:
 846 //                                            _stack(C->live_nodes() >> 1),
 847 //       So, as a band-aid, we replace this by:
 848                                               _stack(C->comp_arena(), 32),
 849                                               _delay_transform(false)
 850 {
 851   uint max;
 852 
 853   // Dead nodes in the hash table inherited from GVN were not treated as
 854   // roots during def-use info creation; hence they represent an invisible
 855   // use.  Clear them out.
 856   max = _table.size();
 857   for( uint i = 0; i < max; ++i ) {
 858     Node *n = _table.at(i);
 859     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 860       if( n->is_top() ) continue;
 861       assert( false, "Parse::remove_useless_nodes missed this node");
 862       hash_delete(n);
 863     }
 864   }
 865 
 866   // Any Phis or Regions on the worklist probably had uses that could not
 867   // make more progress because the uses were made while the Phis and Regions
 868   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 869   max = _worklist.size();
 870   for( uint j = 0; j < max; j++ ) {
 871     Node *n = _worklist.at(j);
 872     uint uop = n->Opcode();
 873     if( uop == Op_Phi || uop == Op_Region ||
 874         n->is_Type() ||
 875         n->is_Mem() )
 876       add_users_to_worklist(n);
 877   }
 878 }
 879 
 880 /**
 881  * Initialize worklist for each node.
 882  */
 883 void PhaseIterGVN::init_worklist(Node* first) {
 884   Unique_Node_List to_process;
 885   to_process.push(first);
 886 
 887   while (to_process.size() > 0) {
 888     Node* n = to_process.pop();
 889     if (!_worklist.member(n)) {
 890       _worklist.push(n);
 891 
 892       uint cnt = n->req();
 893       for(uint i = 0; i < cnt; i++) {
 894         Node* m = n->in(i);
 895         if (m != NULL) {
 896           to_process.push(m);
 897         }
 898       }
 899     }
 900   }
 901 }
 902 
 903 #ifndef PRODUCT
 904 void PhaseIterGVN::verify_step(Node* n) {
 905   if (VerifyIterativeGVN) {
 906     _verify_window[_verify_counter % _verify_window_size] = n;
 907     ++_verify_counter;
 908     ResourceMark rm;
 909     ResourceArea* area = Thread::current()->resource_area();
 910     VectorSet old_space(area), new_space(area);
 911     if (C->unique() < 1000 ||
 912         0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 913       ++_verify_full_passes;
 914       Node::verify_recur(C->root(), -1, old_space, new_space);
 915     }
 916     const int verify_depth = 4;
 917     for ( int i = 0; i < _verify_window_size; i++ ) {
 918       Node* n = _verify_window[i];
 919       if ( n == NULL )  continue;
 920       if( n->in(0) == NodeSentinel ) {  // xform_idom
 921         _verify_window[i] = n->in(1);
 922         --i; continue;
 923       }
 924       // Typical fanout is 1-2, so this call visits about 6 nodes.
 925       Node::verify_recur(n, verify_depth, old_space, new_space);
 926     }
 927   }
 928 }
 929 
 930 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
 931   if (TraceIterativeGVN) {
 932     uint wlsize = _worklist.size();
 933     const Type* newtype = type_or_null(n);
 934     if (nn != n) {
 935       // print old node
 936       tty->print("< ");
 937       if (oldtype != newtype && oldtype != NULL) {
 938         oldtype->dump();
 939       }
 940       do { tty->print("\t"); } while (tty->position() < 16);
 941       tty->print("<");
 942       n->dump();
 943     }
 944     if (oldtype != newtype || nn != n) {
 945       // print new node and/or new type
 946       if (oldtype == NULL) {
 947         tty->print("* ");
 948       } else if (nn != n) {
 949         tty->print("> ");
 950       } else {
 951         tty->print("= ");
 952       }
 953       if (newtype == NULL) {
 954         tty->print("null");
 955       } else {
 956         newtype->dump();
 957       }
 958       do { tty->print("\t"); } while (tty->position() < 16);
 959       nn->dump();
 960     }
 961     if (Verbose && wlsize < _worklist.size()) {
 962       tty->print("  Push {");
 963       while (wlsize != _worklist.size()) {
 964         Node* pushed = _worklist.at(wlsize++);
 965         tty->print(" %d", pushed->_idx);
 966       }
 967       tty->print_cr(" }");
 968     }
 969     if (nn != n) {
 970       // ignore n, it might be subsumed
 971       verify_step((Node*) NULL);
 972     }
 973   }
 974 }
 975 
 976 void PhaseIterGVN::init_verifyPhaseIterGVN() {
 977   _verify_counter = 0;
 978   _verify_full_passes = 0;
 979   for (int i = 0; i < _verify_window_size; i++) {
 980     _verify_window[i] = NULL;
 981   }
 982 #ifdef ASSERT
 983   // Verify that all modified nodes are on _worklist
 984   Unique_Node_List* modified_list = C->modified_nodes();
 985   while (modified_list != NULL && modified_list->size()) {
 986     Node* n = modified_list->pop();
 987     if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) {
 988       n->dump();
 989       assert(false, "modified node is not on IGVN._worklist");
 990     }
 991   }
 992 #endif
 993 }
 994 
 995 void PhaseIterGVN::verify_PhaseIterGVN() {
 996 #ifdef ASSERT
 997   // Verify nodes with changed inputs.
 998   Unique_Node_List* modified_list = C->modified_nodes();
 999   while (modified_list != NULL && modified_list->size()) {
1000     Node* n = modified_list->pop();
1001     if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes
1002       n->dump();
1003       assert(false, "modified node was not processed by IGVN.transform_old()");
1004     }
1005   }
1006 #endif
1007 
1008   C->verify_graph_edges();
1009   if( VerifyOpto && allow_progress() ) {
1010     // Must turn off allow_progress to enable assert and break recursion
1011     C->root()->verify();
1012     { // Check if any progress was missed using IterGVN
1013       // Def-Use info enables transformations not attempted in wash-pass
1014       // e.g. Region/Phi cleanup, ...
1015       // Null-check elision -- may not have reached fixpoint
1016       //                       do not propagate to dominated nodes
1017       ResourceMark rm;
1018       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
1019       // Fill worklist completely
1020       igvn2.init_worklist(C->root());
1021 
1022       igvn2.set_allow_progress(false);
1023       igvn2.optimize();
1024       igvn2.set_allow_progress(true);
1025     }
1026   }
1027   if (VerifyIterativeGVN && PrintOpto) {
1028     if (_verify_counter == _verify_full_passes) {
1029       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1030                     (int) _verify_full_passes);
1031     } else {
1032       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1033                   (int) _verify_counter, (int) _verify_full_passes);
1034     }
1035   }
1036 
1037 #ifdef ASSERT
1038   while (modified_list->size()) {
1039     Node* n = modified_list->pop();
1040     n->dump();
1041     assert(false, "VerifyIterativeGVN: new modified node was added");
1042   }
1043 #endif
1044 }
1045 #endif /* PRODUCT */
1046 
1047 #ifdef ASSERT
1048 /**
1049  * Dumps information that can help to debug the problem. A debug
1050  * build fails with an assert.
1051  */
1052 void PhaseIterGVN::dump_infinite_loop_info(Node* n) {
1053   n->dump(4);
1054   _worklist.dump();
1055   assert(false, "infinite loop in PhaseIterGVN::optimize");
1056 }
1057 
1058 /**
1059  * Prints out information about IGVN if the 'verbose' option is used.
1060  */
1061 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1062   if (TraceIterativeGVN && Verbose) {
1063     tty->print("  Pop ");
1064     n->dump();
1065     if ((num_processed % 100) == 0) {
1066       _worklist.print_set();
1067     }
1068   }
1069 }
1070 #endif /* ASSERT */
1071 
1072 void PhaseIterGVN::optimize() {
1073   DEBUG_ONLY(uint num_processed  = 0;)
1074   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1075 
1076   uint loop_count = 0;
1077   // Pull from worklist and transform the node. If the node has changed,
1078   // update edge info and put uses on worklist.
1079   while(_worklist.size()) {
1080     if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) {
1081       return;
1082     }
1083     Node* n  = _worklist.pop();
1084     if (++loop_count >= K * C->live_nodes()) {
1085       DEBUG_ONLY(dump_infinite_loop_info(n);)
1086       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1087       return;
1088     }
1089     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1090     if (n->outcnt() != 0) {
1091       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1092       // Do the transformation
1093       Node* nn = transform_old(n);
1094       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1095     } else if (!n->is_top()) {
1096       remove_dead_node(n);
1097     }
1098   }
1099   NOT_PRODUCT(verify_PhaseIterGVN();)
1100 }
1101 
1102 
1103 /**
1104  * Register a new node with the optimizer.  Update the types array, the def-use
1105  * info.  Put on worklist.
1106  */
1107 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1108   set_type_bottom(n);
1109   _worklist.push(n);
1110   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1111   return n;
1112 }
1113 
1114 //------------------------------transform--------------------------------------
1115 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
1116 Node *PhaseIterGVN::transform( Node *n ) {
1117   if (_delay_transform) {
1118     // Register the node but don't optimize for now
1119     register_new_node_with_optimizer(n);
1120     return n;
1121   }
1122 
1123   // If brand new node, make space in type array, and give it a type.
1124   ensure_type_or_null(n);
1125   if (type_or_null(n) == NULL) {
1126     set_type_bottom(n);
1127   }
1128 
1129   return transform_old(n);
1130 }
1131 
1132 Node *PhaseIterGVN::transform_old(Node* n) {
1133   DEBUG_ONLY(uint loop_count = 0;);
1134   NOT_PRODUCT(set_transforms());
1135 
1136   // Remove 'n' from hash table in case it gets modified
1137   _table.hash_delete(n);
1138   if (VerifyIterativeGVN) {
1139    assert(!_table.find_index(n->_idx), "found duplicate entry in table");
1140   }
1141 
1142   // Apply the Ideal call in a loop until it no longer applies
1143   Node* k = n;
1144   DEBUG_ONLY(dead_loop_check(k);)
1145   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1146   C->remove_modified_node(k);
1147   Node* i = k->Ideal(this, /*can_reshape=*/true);
1148   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1149 #ifndef PRODUCT
1150   verify_step(k);
1151   if (i && VerifyOpto ) {
1152     if (!allow_progress()) {
1153       if (i->is_Add() && (i->outcnt() == 1)) {
1154         // Switched input to left side because this is the only use
1155       } else if (i->is_If() && (i->in(0) == NULL)) {
1156         // This IF is dead because it is dominated by an equivalent IF When
1157         // dominating if changed, info is not propagated sparsely to 'this'
1158         // Propagating this info further will spuriously identify other
1159         // progress.
1160         return i;
1161       } else
1162         set_progress();
1163     } else {
1164       set_progress();
1165     }
1166   }
1167 #endif
1168 
1169   while (i != NULL) {
1170 #ifdef ASSERT
1171     if (loop_count >= K) {
1172       dump_infinite_loop_info(i);
1173     }
1174     loop_count++;
1175 #endif
1176     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1177     // Made a change; put users of original Node on worklist
1178     add_users_to_worklist(k);
1179     // Replacing root of transform tree?
1180     if (k != i) {
1181       // Make users of old Node now use new.
1182       subsume_node(k, i);
1183       k = i;
1184     }
1185     DEBUG_ONLY(dead_loop_check(k);)
1186     // Try idealizing again
1187     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1188     C->remove_modified_node(k);
1189     i = k->Ideal(this, /*can_reshape=*/true);
1190     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
1191 #ifndef PRODUCT
1192     verify_step(k);
1193     if (i && VerifyOpto) {
1194       set_progress();
1195     }
1196 #endif
1197   }
1198 
1199   // If brand new node, make space in type array.
1200   ensure_type_or_null(k);
1201 
1202   // See what kind of values 'k' takes on at runtime
1203   const Type* t = k->Value(this);
1204   assert(t != NULL, "value sanity");
1205 
1206   // Since I just called 'Value' to compute the set of run-time values
1207   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1208   // cache Value.  Later requests for the local phase->type of this Node can
1209   // use the cached Value instead of suffering with 'bottom_type'.
1210   if (type_or_null(k) != t) {
1211 #ifndef PRODUCT
1212     inc_new_values();
1213     set_progress();
1214 #endif
1215     set_type(k, t);
1216     // If k is a TypeNode, capture any more-precise type permanently into Node
1217     k->raise_bottom_type(t);
1218     // Move users of node to worklist
1219     add_users_to_worklist(k);
1220   }
1221   // If 'k' computes a constant, replace it with a constant
1222   if (t->singleton() && !k->is_Con()) {
1223     NOT_PRODUCT(set_progress();)
1224     Node* con = makecon(t);     // Make a constant
1225     add_users_to_worklist(k);
1226     if (k->Opcode() == Op_ShenandoahWriteBarrier) {
1227       assert(con->is_top(), "can only replace barrier with top");
1228     }
1229     subsume_node(k, con);       // Everybody using k now uses con
1230     return con;
1231   }
1232 
1233   // Now check for Identities
1234   i = k->Identity(this);      // Look for a nearby replacement
1235   if (i != k) {                // Found? Return replacement!
1236     NOT_PRODUCT(set_progress();)
1237     add_users_to_worklist(k);
1238     subsume_node(k, i);       // Everybody using k now uses i
1239     return i;
1240   }
1241 
1242   // Global Value Numbering
1243   i = hash_find_insert(k);      // Check for pre-existing node
1244   if (i && (i != k)) {
1245     // Return the pre-existing node if it isn't dead
1246     NOT_PRODUCT(set_progress();)
1247     add_users_to_worklist(k);
1248     subsume_node(k, i);       // Everybody using k now uses i
1249     return i;
1250   }
1251 
1252   // Return Idealized original
1253   return k;
1254 }
1255 
1256 //---------------------------------saturate------------------------------------
1257 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1258                                    const Type* limit_type) const {
1259   return new_type->narrow(old_type);
1260 }
1261 
1262 //------------------------------remove_globally_dead_node----------------------
1263 // Kill a globally dead Node.  All uses are also globally dead and are
1264 // aggressively trimmed.
1265 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1266   enum DeleteProgress {
1267     PROCESS_INPUTS,
1268     PROCESS_OUTPUTS
1269   };
1270   assert(_stack.is_empty(), "not empty");
1271   _stack.push(dead, PROCESS_INPUTS);
1272 
1273   while (_stack.is_nonempty()) {
1274     dead = _stack.node();
1275     uint progress_state = _stack.index();
1276     assert(dead != C->root(), "killing root, eh?");
1277     assert(!dead->is_top(), "add check for top when pushing");
1278     NOT_PRODUCT( set_progress(); )
1279     if (progress_state == PROCESS_INPUTS) {
1280       // After following inputs, continue to outputs
1281       _stack.set_index(PROCESS_OUTPUTS);
1282       if (!dead->is_Con()) { // Don't kill cons but uses
1283         bool recurse = false;
1284         // Remove from hash table
1285         _table.hash_delete( dead );
1286         // Smash all inputs to 'dead', isolating him completely
1287         for (uint i = 0; i < dead->req(); i++) {
1288           Node *in = dead->in(i);
1289           if (in != NULL && in != C->top()) {  // Points to something?
1290             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1291             assert((nrep > 0), "sanity");
1292             if (in->outcnt() == 0) { // Made input go dead?
1293               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1294               recurse = true;
1295             } else if (in->outcnt() == 1 &&
1296                        in->has_special_unique_user()) {
1297               _worklist.push(in->unique_out());
1298             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1299               if (in->Opcode() == Op_Region) {
1300                 _worklist.push(in);
1301               } else if (in->is_Store()) {
1302                 DUIterator_Fast imax, i = in->fast_outs(imax);
1303                 _worklist.push(in->fast_out(i));
1304                 i++;
1305                 if (in->outcnt() == 2) {
1306                   _worklist.push(in->fast_out(i));
1307                   i++;
1308                 }
1309                 assert(!(i < imax), "sanity");
1310               }
1311             }
1312             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1313                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1314               // A Load that directly follows an InitializeNode is
1315               // going away. The Stores that follow are candidates
1316               // again to be captured by the InitializeNode.
1317               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1318                 Node *n = in->fast_out(j);
1319                 if (n->is_Store()) {
1320                   _worklist.push(n);
1321                 }
1322               }
1323             }
1324           } // if (in != NULL && in != C->top())
1325         } // for (uint i = 0; i < dead->req(); i++)
1326         if (recurse) {
1327           continue;
1328         }
1329       } // if (!dead->is_Con())
1330     } // if (progress_state == PROCESS_INPUTS)
1331 
1332     // Aggressively kill globally dead uses
1333     // (Rather than pushing all the outs at once, we push one at a time,
1334     // plus the parent to resume later, because of the indefinite number
1335     // of edge deletions per loop trip.)
1336     if (dead->outcnt() > 0) {
1337       // Recursively remove output edges
1338       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1339     } else {
1340       // Finished disconnecting all input and output edges.
1341       _stack.pop();
1342       // Remove dead node from iterative worklist
1343       _worklist.remove(dead);
1344       C->remove_modified_node(dead);
1345       // Constant node that has no out-edges and has only one in-edge from
1346       // root is usually dead. However, sometimes reshaping walk makes
1347       // it reachable by adding use edges. So, we will NOT count Con nodes
1348       // as dead to be conservative about the dead node count at any
1349       // given time.
1350       if (!dead->is_Con()) {
1351         C->record_dead_node(dead->_idx);
1352       }
1353       if (dead->is_macro()) {
1354         C->remove_macro_node(dead);
1355       }
1356       if (dead->is_expensive()) {
1357         C->remove_expensive_node(dead);
1358       }
1359     }
1360   } // while (_stack.is_nonempty())
1361 }
1362 
1363 //------------------------------subsume_node-----------------------------------
1364 // Remove users from node 'old' and add them to node 'nn'.
1365 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1366   assert( old != hash_find(old), "should already been removed" );
1367   assert( old != C->top(), "cannot subsume top node");
1368   // Copy debug or profile information to the new version:
1369   C->copy_node_notes_to(nn, old);
1370   // Move users of node 'old' to node 'nn'
1371   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1372     Node* use = old->last_out(i);  // for each use...
1373     // use might need re-hashing (but it won't if it's a new node)
1374     rehash_node_delayed(use);
1375     // Update use-def info as well
1376     // We remove all occurrences of old within use->in,
1377     // so as to avoid rehashing any node more than once.
1378     // The hash table probe swamps any outer loop overhead.
1379     uint num_edges = 0;
1380     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1381       if (use->in(j) == old) {
1382         use->set_req(j, nn);
1383         ++num_edges;
1384       }
1385     }
1386     i -= num_edges;    // we deleted 1 or more copies of this edge
1387   }
1388 
1389   // Smash all inputs to 'old', isolating him completely
1390   Node *temp = new Node(1);
1391   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1392   remove_dead_node( old );
1393   temp->del_req(0);         // Yank bogus edge
1394 #ifndef PRODUCT
1395   if( VerifyIterativeGVN ) {
1396     for ( int i = 0; i < _verify_window_size; i++ ) {
1397       if ( _verify_window[i] == old )
1398         _verify_window[i] = nn;
1399     }
1400   }
1401 #endif
1402   _worklist.remove(temp);   // this can be necessary
1403   temp->destruct();         // reuse the _idx of this little guy
1404 }
1405 
1406 //------------------------------add_users_to_worklist--------------------------
1407 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1408   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1409     _worklist.push(n->fast_out(i));  // Push on worklist
1410   }
1411 }
1412 
1413 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1414   add_users_to_worklist0(n);
1415 
1416   // Move users of node to worklist
1417   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1418     Node* use = n->fast_out(i); // Get use
1419 
1420     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1421         use->is_Store() )       // Enable store/load same address
1422       add_users_to_worklist0(use);
1423 
1424     // If we changed the receiver type to a call, we need to revisit
1425     // the Catch following the call.  It's looking for a non-NULL
1426     // receiver to know when to enable the regular fall-through path
1427     // in addition to the NullPtrException path.
1428     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1429       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
1430       if (p != NULL) {
1431         add_users_to_worklist0(p);
1432       }
1433     }
1434 
1435     uint use_op = use->Opcode();
1436     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1437       add_users_to_worklist(use); // Put Bool on worklist
1438       if (use->outcnt() > 0) {
1439         Node* bol = use->raw_out(0);
1440         if (bol->outcnt() > 0) {
1441           Node* iff = bol->raw_out(0);
1442           if (use_op == Op_CmpI &&
1443               iff->is_CountedLoopEnd()) {
1444             CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1445             if (cle->limit() == n && cle->phi() != NULL) {
1446               // If an opaque node feeds into the limit condition of a
1447               // CountedLoop, we need to process the Phi node for the
1448               // induction variable when the opaque node is removed:
1449               // the range of values taken by the Phi is now known and
1450               // so its type is also known.
1451               _worklist.push(cle->phi());
1452             }
1453           } else if (iff->outcnt() == 2) {
1454             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1455             // phi merging either 0 or 1 onto the worklist
1456             Node* ifproj0 = iff->raw_out(0);
1457             Node* ifproj1 = iff->raw_out(1);
1458             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1459               Node* region0 = ifproj0->raw_out(0);
1460               Node* region1 = ifproj1->raw_out(0);
1461               if( region0 == region1 )
1462                 add_users_to_worklist0(region0);
1463             }
1464           }
1465         }
1466       }
1467       if (use_op == Op_CmpI) {
1468         Node* in1 = use->in(1);
1469         for (uint i = 0; i < in1->outcnt(); i++) {
1470           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1471             Node* castii = in1->raw_out(i);
1472             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1473               Node* ifnode = castii->in(0)->in(0);
1474               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1475                 // Reprocess a CastII node that may depend on an
1476                 // opaque node value when the opaque node is
1477                 // removed. In case it carries a dependency we can do
1478                 // a better job of computing its type.
1479                 _worklist.push(castii);
1480               }
1481             }
1482           }
1483         }
1484       }
1485     }
1486 
1487     // If changed Cast input, check Phi users for simple cycles
1488     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
1489       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1490         Node* u = use->fast_out(i2);
1491         if (u->is_Phi())
1492           _worklist.push(u);
1493       }
1494     }
1495     // If changed LShift inputs, check RShift users for useless sign-ext
1496     if( use_op == Op_LShiftI ) {
1497       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1498         Node* u = use->fast_out(i2);
1499         if (u->Opcode() == Op_RShiftI)
1500           _worklist.push(u);
1501       }
1502     }
1503     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1504     if (use_op == Op_AddI || use_op == Op_SubI) {
1505       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1506         Node* u = use->fast_out(i2);
1507         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1508           _worklist.push(u);
1509         }
1510       }
1511     }
1512     // If changed AddP inputs, check Stores for loop invariant
1513     if( use_op == Op_AddP ) {
1514       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1515         Node* u = use->fast_out(i2);
1516         if (u->is_Mem())
1517           _worklist.push(u);
1518       }
1519     }
1520     // If changed initialization activity, check dependent Stores
1521     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1522       InitializeNode* init = use->as_Allocate()->initialization();
1523       if (init != NULL) {
1524         Node* imem = init->proj_out(TypeFunc::Memory);
1525         if (imem != NULL)  add_users_to_worklist0(imem);
1526       }
1527     }
1528     if (use_op == Op_Initialize) {
1529       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
1530       if (imem != NULL)  add_users_to_worklist0(imem);
1531     }
1532   }
1533 }
1534 
1535 /**
1536  * Remove the speculative part of all types that we know of
1537  */
1538 void PhaseIterGVN::remove_speculative_types()  {
1539   assert(UseTypeSpeculation, "speculation is off");
1540   for (uint i = 0; i < _types.Size(); i++)  {
1541     const Type* t = _types.fast_lookup(i);
1542     if (t != NULL) {
1543       _types.map(i, t->remove_speculative());
1544     }
1545   }
1546   _table.check_no_speculative_types();
1547 }
1548 
1549 //=============================================================================
1550 #ifndef PRODUCT
1551 uint PhaseCCP::_total_invokes   = 0;
1552 uint PhaseCCP::_total_constants = 0;
1553 #endif
1554 //------------------------------PhaseCCP---------------------------------------
1555 // Conditional Constant Propagation, ala Wegman & Zadeck
1556 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1557   NOT_PRODUCT( clear_constants(); )
1558   assert( _worklist.size() == 0, "" );
1559   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1560   _nodes.clear();               // Clear out from IterGVN
1561   analyze();
1562 }
1563 
1564 #ifndef PRODUCT
1565 //------------------------------~PhaseCCP--------------------------------------
1566 PhaseCCP::~PhaseCCP() {
1567   inc_invokes();
1568   _total_constants += count_constants();
1569 }
1570 #endif
1571 
1572 
1573 #ifdef ASSERT
1574 static bool ccp_type_widens(const Type* t, const Type* t0) {
1575   assert(t->meet(t0) == t, "Not monotonic");
1576   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1577   case Type::Int:
1578     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1579     break;
1580   case Type::Long:
1581     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1582     break;
1583   }
1584   return true;
1585 }
1586 #endif //ASSERT
1587 
1588 //------------------------------analyze----------------------------------------
1589 void PhaseCCP::analyze() {
1590   // Initialize all types to TOP, optimistic analysis
1591   for (int i = C->unique() - 1; i >= 0; i--)  {
1592     _types.map(i,Type::TOP);
1593   }
1594 
1595   // Push root onto worklist
1596   Unique_Node_List worklist;
1597   worklist.push(C->root());
1598 
1599   // Pull from worklist; compute new value; push changes out.
1600   // This loop is the meat of CCP.
1601   while( worklist.size() ) {
1602     Node *n = worklist.pop();
1603     const Type *t = n->Value(this);
1604     if (t != type(n)) {
1605       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1606 #ifndef PRODUCT
1607       if( TracePhaseCCP ) {
1608         t->dump();
1609         do { tty->print("\t"); } while (tty->position() < 16);
1610         n->dump();
1611       }
1612 #endif
1613       set_type(n, t);
1614       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1615         Node* m = n->fast_out(i);   // Get user
1616         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1617           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1618             Node* p = m->fast_out(i2); // Propagate changes to uses
1619             if (p->bottom_type() != type(p)) { // If not already bottomed out
1620               worklist.push(p); // Propagate change to user
1621             }
1622           }
1623         }
1624         // If we changed the receiver type to a call, we need to revisit
1625         // the Catch following the call.  It's looking for a non-NULL
1626         // receiver to know when to enable the regular fall-through path
1627         // in addition to the NullPtrException path
1628         if (m->is_Call()) {
1629           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1630             Node* p = m->fast_out(i2);  // Propagate changes to uses
1631             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) {
1632               worklist.push(p->unique_out());
1633             }
1634           }
1635         }
1636         if (m->bottom_type() != type(m)) { // If not already bottomed out
1637           worklist.push(m);     // Propagate change to user
1638         }
1639 
1640         // CmpU nodes can get their type information from two nodes up in the
1641         // graph (instead of from the nodes immediately above). Make sure they
1642         // are added to the worklist if nodes they depend on are updated, since
1643         // they could be missed and get wrong types otherwise.
1644         uint m_op = m->Opcode();
1645         if (m_op == Op_AddI || m_op == Op_SubI) {
1646           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1647             Node* p = m->fast_out(i2); // Propagate changes to uses
1648             if (p->Opcode() == Op_CmpU) {
1649               // Got a CmpU which might need the new type information from node n.
1650               if(p->bottom_type() != type(p)) { // If not already bottomed out
1651                 worklist.push(p); // Propagate change to user
1652               }
1653             }
1654           }
1655         }
1656       }
1657     }
1658   }
1659 }
1660 
1661 //------------------------------do_transform-----------------------------------
1662 // Top level driver for the recursive transformer
1663 void PhaseCCP::do_transform() {
1664   // Correct leaves of new-space Nodes; they point to old-space.
1665   C->set_root( transform(C->root())->as_Root() );
1666   assert( C->top(),  "missing TOP node" );
1667   assert( C->root(), "missing root" );
1668 }
1669 
1670 //------------------------------transform--------------------------------------
1671 // Given a Node in old-space, clone him into new-space.
1672 // Convert any of his old-space children into new-space children.
1673 Node *PhaseCCP::transform( Node *n ) {
1674   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1675   if( new_node != NULL )
1676     return new_node;                // Been there, done that, return old answer
1677   new_node = transform_once(n);     // Check for constant
1678   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1679 
1680   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1681   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1682 
1683   trstack.push(new_node);           // Process children of cloned node
1684   while ( trstack.is_nonempty() ) {
1685     Node *clone = trstack.pop();
1686     uint cnt = clone->req();
1687     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1688       Node *input = clone->in(i);
1689       if( input != NULL ) {                    // Ignore NULLs
1690         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1691         if( new_input == NULL ) {
1692           new_input = transform_once(input);   // Check for constant
1693           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1694           trstack.push(new_input);
1695         }
1696         assert( new_input == clone->in(i), "insanity check");
1697       }
1698     }
1699   }
1700   return new_node;
1701 }
1702 
1703 
1704 //------------------------------transform_once---------------------------------
1705 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1706 Node *PhaseCCP::transform_once( Node *n ) {
1707   const Type *t = type(n);
1708   // Constant?  Use constant Node instead
1709   if( t->singleton() ) {
1710     Node *nn = n;               // Default is to return the original constant
1711     if( t == Type::TOP ) {
1712       // cache my top node on the Compile instance
1713       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1714         C->set_cached_top_node(ConNode::make(Type::TOP));
1715         set_type(C->top(), Type::TOP);
1716       }
1717       nn = C->top();
1718     }
1719     if( !n->is_Con() ) {
1720       if( t != Type::TOP ) {
1721         nn = makecon(t);        // ConNode::make(t);
1722         NOT_PRODUCT( inc_constants(); )
1723       } else if( n->is_Region() ) { // Unreachable region
1724         // Note: nn == C->top()
1725         n->set_req(0, NULL);        // Cut selfreference
1726         // Eagerly remove dead phis to avoid phis copies creation.
1727         for (DUIterator i = n->outs(); n->has_out(i); i++) {
1728           Node* m = n->out(i);
1729           if( m->is_Phi() ) {
1730             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1731             replace_node(m, nn);
1732             --i; // deleted this phi; rescan starting with next position
1733           }
1734         }
1735       }
1736       replace_node(n,nn);       // Update DefUse edges for new constant
1737     }
1738     return nn;
1739   }
1740 
1741   // If x is a TypeNode, capture any more-precise type permanently into Node
1742   if (t != n->bottom_type()) {
1743     hash_delete(n);             // changing bottom type may force a rehash
1744     n->raise_bottom_type(t);
1745     _worklist.push(n);          // n re-enters the hash table via the worklist
1746   }
1747 
1748   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1749   switch( n->Opcode() ) {
1750   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1751   case Op_If:
1752   case Op_CountedLoopEnd:
1753   case Op_Region:
1754   case Op_Loop:
1755   case Op_CountedLoop:
1756   case Op_Conv2B:
1757   case Op_Opaque1:
1758   case Op_Opaque2:
1759     _worklist.push(n);
1760     break;
1761   default:
1762     break;
1763   }
1764 
1765   return  n;
1766 }
1767 
1768 //---------------------------------saturate------------------------------------
1769 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1770                                const Type* limit_type) const {
1771   const Type* wide_type = new_type->widen(old_type, limit_type);
1772   if (wide_type != new_type) {          // did we widen?
1773     // If so, we may have widened beyond the limit type.  Clip it back down.
1774     new_type = wide_type->filter(limit_type);
1775   }
1776   return new_type;
1777 }
1778 
1779 //------------------------------print_statistics-------------------------------
1780 #ifndef PRODUCT
1781 void PhaseCCP::print_statistics() {
1782   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1783 }
1784 #endif
1785 
1786 
1787 //=============================================================================
1788 #ifndef PRODUCT
1789 uint PhasePeephole::_total_peepholes = 0;
1790 #endif
1791 //------------------------------PhasePeephole----------------------------------
1792 // Conditional Constant Propagation, ala Wegman & Zadeck
1793 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1794   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1795   NOT_PRODUCT( clear_peepholes(); )
1796 }
1797 
1798 #ifndef PRODUCT
1799 //------------------------------~PhasePeephole---------------------------------
1800 PhasePeephole::~PhasePeephole() {
1801   _total_peepholes += count_peepholes();
1802 }
1803 #endif
1804 
1805 //------------------------------transform--------------------------------------
1806 Node *PhasePeephole::transform( Node *n ) {
1807   ShouldNotCallThis();
1808   return NULL;
1809 }
1810 
1811 //------------------------------do_transform-----------------------------------
1812 void PhasePeephole::do_transform() {
1813   bool method_name_not_printed = true;
1814 
1815   // Examine each basic block
1816   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
1817     Block* block = _cfg.get_block(block_number);
1818     bool block_not_printed = true;
1819 
1820     // and each instruction within a block
1821     uint end_index = block->number_of_nodes();
1822     // block->end_idx() not valid after PhaseRegAlloc
1823     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1824       Node     *n = block->get_node(instruction_index);
1825       if( n->is_Mach() ) {
1826         MachNode *m = n->as_Mach();
1827         int deleted_count = 0;
1828         // check for peephole opportunities
1829         MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count);
1830         if( m2 != NULL ) {
1831 #ifndef PRODUCT
1832           if( PrintOptoPeephole ) {
1833             // Print method, first time only
1834             if( C->method() && method_name_not_printed ) {
1835               C->method()->print_short_name(); tty->cr();
1836               method_name_not_printed = false;
1837             }
1838             // Print this block
1839             if( Verbose && block_not_printed) {
1840               tty->print_cr("in block");
1841               block->dump();
1842               block_not_printed = false;
1843             }
1844             // Print instructions being deleted
1845             for( int i = (deleted_count - 1); i >= 0; --i ) {
1846               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
1847             }
1848             tty->print_cr("replaced with");
1849             // Print new instruction
1850             m2->format(_regalloc);
1851             tty->print("\n\n");
1852           }
1853 #endif
1854           // Remove old nodes from basic block and update instruction_index
1855           // (old nodes still exist and may have edges pointing to them
1856           //  as register allocation info is stored in the allocator using
1857           //  the node index to live range mappings.)
1858           uint safe_instruction_index = (instruction_index - deleted_count);
1859           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
1860             block->remove_node( instruction_index );
1861           }
1862           // install new node after safe_instruction_index
1863           block->insert_node(m2, safe_instruction_index + 1);
1864           end_index = block->number_of_nodes() - 1; // Recompute new block size
1865           NOT_PRODUCT( inc_peepholes(); )
1866         }
1867       }
1868     }
1869   }
1870 }
1871 
1872 //------------------------------print_statistics-------------------------------
1873 #ifndef PRODUCT
1874 void PhasePeephole::print_statistics() {
1875   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
1876 }
1877 #endif
1878 
1879 
1880 //=============================================================================
1881 //------------------------------set_req_X--------------------------------------
1882 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
1883   assert( is_not_dead(n), "can not use dead node");
1884   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
1885   Node *old = in(i);
1886   set_req(i, n);
1887 
1888   // old goes dead?
1889   if( old ) {
1890     switch (old->outcnt()) {
1891     case 0:
1892       // Put into the worklist to kill later. We do not kill it now because the
1893       // recursive kill will delete the current node (this) if dead-loop exists
1894       if (!old->is_top())
1895         igvn->_worklist.push( old );
1896       break;
1897     case 1:
1898       if( old->is_Store() || old->has_special_unique_user() )
1899         igvn->add_users_to_worklist( old );
1900       break;
1901     case 2:
1902       if( old->is_Store() )
1903         igvn->add_users_to_worklist( old );
1904       if( old->Opcode() == Op_Region )
1905         igvn->_worklist.push(old);
1906       break;
1907     case 3:
1908       if( old->Opcode() == Op_Region ) {
1909         igvn->_worklist.push(old);
1910         igvn->add_users_to_worklist( old );
1911       }
1912       break;
1913     default:
1914       break;
1915     }
1916   }
1917 
1918 }
1919 
1920 //-------------------------------replace_by-----------------------------------
1921 // Using def-use info, replace one node for another.  Follow the def-use info
1922 // to all users of the OLD node.  Then make all uses point to the NEW node.
1923 void Node::replace_by(Node *new_node) {
1924   assert(!is_top(), "top node has no DU info");
1925   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
1926     Node* use = last_out(i);
1927     uint uses_found = 0;
1928     for (uint j = 0; j < use->len(); j++) {
1929       if (use->in(j) == this) {
1930         if (j < use->req())
1931               use->set_req(j, new_node);
1932         else  use->set_prec(j, new_node);
1933         uses_found++;
1934       }
1935     }
1936     i -= uses_found;    // we deleted 1 or more copies of this edge
1937   }
1938 }
1939 
1940 //=============================================================================
1941 //-----------------------------------------------------------------------------
1942 void Type_Array::grow( uint i ) {
1943   if( !_max ) {
1944     _max = 1;
1945     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
1946     _types[0] = NULL;
1947   }
1948   uint old = _max;
1949   while( i >= _max ) _max <<= 1;        // Double to fit
1950   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
1951   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
1952 }
1953 
1954 //------------------------------dump-------------------------------------------
1955 #ifndef PRODUCT
1956 void Type_Array::dump() const {
1957   uint max = Size();
1958   for( uint i = 0; i < max; i++ ) {
1959     if( _types[i] != NULL ) {
1960       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
1961     }
1962   }
1963 }
1964 #endif