1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  38 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc/g1/heapRegion.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/collectedHeap.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "interpreter/linkResolver.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "opto/ad.hpp"
  50 #include "opto/addnode.hpp"
  51 #include "opto/callnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/graphKit.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/matcher.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/runtime.hpp"
  59 #include "opto/subnode.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/interfaceSupport.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/preserveException.hpp"
  73 
  74 
  75 // For debugging purposes:
  76 //  To force FullGCALot inside a runtime function, add the following two lines
  77 //
  78 //  Universe::release_fullgc_alot_dummy();
  79 //  MarkSweep::invoke(0, "Debugging");
  80 //
  81 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  82 
  83 
  84 
  85 
  86 // Compiled code entry points
  87 address OptoRuntime::_new_instance_Java                           = NULL;
  88 address OptoRuntime::_new_array_Java                              = NULL;
  89 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  90 address OptoRuntime::_multianewarray2_Java                        = NULL;
  91 address OptoRuntime::_multianewarray3_Java                        = NULL;
  92 address OptoRuntime::_multianewarray4_Java                        = NULL;
  93 address OptoRuntime::_multianewarray5_Java                        = NULL;
  94 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  95 address OptoRuntime::_shenandoah_write_barrier_Java               = NULL;
  96 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  97 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  98 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  99 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 100 address OptoRuntime::_monitor_notify_Java                         = NULL;
 101 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 102 address OptoRuntime::_rethrow_Java                                = NULL;
 103 
 104 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 105 address OptoRuntime::_register_finalizer_Java                     = NULL;
 106 
 107 # ifdef ENABLE_ZAP_DEAD_LOCALS
 108 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 109 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 110 # endif
 111 
 112 ExceptionBlob* OptoRuntime::_exception_blob;
 113 
 114 // This should be called in an assertion at the start of OptoRuntime routines
 115 // which are entered from compiled code (all of them)
 116 #ifdef ASSERT
 117 static bool check_compiled_frame(JavaThread* thread) {
 118   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 119   RegisterMap map(thread, false);
 120   frame caller = thread->last_frame().sender(&map);
 121   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 122   return true;
 123 }
 124 #endif // ASSERT
 125 
 126 
 127 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 128   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 129   if (var == NULL) { return false; }
 130 
 131 bool OptoRuntime::generate(ciEnv* env) {
 132 
 133   generate_exception_blob();
 134 
 135   // Note: tls: Means fetching the return oop out of the thread-local storage
 136   //
 137   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 138   // -------------------------------------------------------------------------------------------------------------------------------
 139   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 140   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 141   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 142   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 143   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 144   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 145   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 146   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 147   gen(env, _shenandoah_write_barrier_Java  , shenandoah_write_barrier_Type, ShenandoahBarrierSet::resolve_and_maybe_copy_oop_c2, 0, false, false, false);
 148   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 149   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 150   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 151   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 152   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 153   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 154 
 155   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 156   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 157 
 158 # ifdef ENABLE_ZAP_DEAD_LOCALS
 159   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 160   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 161 # endif
 162   return true;
 163 }
 164 
 165 #undef gen
 166 
 167 
 168 // Helper method to do generation of RunTimeStub's
 169 address OptoRuntime::generate_stub( ciEnv* env,
 170                                     TypeFunc_generator gen, address C_function,
 171                                     const char *name, int is_fancy_jump,
 172                                     bool pass_tls,
 173                                     bool save_argument_registers,
 174                                     bool return_pc ) {
 175   ResourceMark rm;
 176   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 177   return  C.stub_entry_point();
 178 }
 179 
 180 const char* OptoRuntime::stub_name(address entry) {
 181 #ifndef PRODUCT
 182   CodeBlob* cb = CodeCache::find_blob(entry);
 183   RuntimeStub* rs =(RuntimeStub *)cb;
 184   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 185   return rs->name();
 186 #else
 187   // Fast implementation for product mode (maybe it should be inlined too)
 188   return "runtime stub";
 189 #endif
 190 }
 191 
 192 
 193 //=============================================================================
 194 // Opto compiler runtime routines
 195 //=============================================================================
 196 
 197 
 198 //=============================allocation======================================
 199 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 200 // and try allocation again.
 201 
 202 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 203   // After any safepoint, just before going back to compiled code,
 204   // we inform the GC that we will be doing initializing writes to
 205   // this object in the future without emitting card-marks, so
 206   // GC may take any compensating steps.
 207   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 208 
 209   oop new_obj = thread->vm_result();
 210   if (new_obj == NULL)  return;
 211 
 212   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 213          "compiler must check this first");
 214   // GC may decide to give back a safer copy of new_obj.
 215   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 216   thread->set_vm_result(new_obj);
 217 }
 218 
 219 // object allocation
 220 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 221   JRT_BLOCK;
 222 #ifndef PRODUCT
 223   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 224 #endif
 225   assert(check_compiled_frame(thread), "incorrect caller");
 226 
 227   // These checks are cheap to make and support reflective allocation.
 228   int lh = klass->layout_helper();
 229   if (Klass::layout_helper_needs_slow_path(lh)
 230       || !InstanceKlass::cast(klass)->is_initialized()) {
 231     KlassHandle kh(THREAD, klass);
 232     kh->check_valid_for_instantiation(false, THREAD);
 233     if (!HAS_PENDING_EXCEPTION) {
 234       InstanceKlass::cast(kh())->initialize(THREAD);
 235     }
 236     if (!HAS_PENDING_EXCEPTION) {
 237       klass = kh();
 238     } else {
 239       klass = NULL;
 240     }
 241   }
 242 
 243   if (klass != NULL) {
 244     // Scavenge and allocate an instance.
 245     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 246     thread->set_vm_result(result);
 247 
 248     // Pass oops back through thread local storage.  Our apparent type to Java
 249     // is that we return an oop, but we can block on exit from this routine and
 250     // a GC can trash the oop in C's return register.  The generated stub will
 251     // fetch the oop from TLS after any possible GC.
 252   }
 253 
 254   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 255   JRT_BLOCK_END;
 256 
 257   if (GraphKit::use_ReduceInitialCardMarks()) {
 258     // inform GC that we won't do card marks for initializing writes.
 259     new_store_pre_barrier(thread);
 260   }
 261 JRT_END
 262 
 263 
 264 // array allocation
 265 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 266   JRT_BLOCK;
 267 #ifndef PRODUCT
 268   SharedRuntime::_new_array_ctr++;            // new array requires GC
 269 #endif
 270   assert(check_compiled_frame(thread), "incorrect caller");
 271 
 272   // Scavenge and allocate an instance.
 273   oop result;
 274 
 275   if (array_type->oop_is_typeArray()) {
 276     // The oopFactory likes to work with the element type.
 277     // (We could bypass the oopFactory, since it doesn't add much value.)
 278     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 279     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 280   } else {
 281     // Although the oopFactory likes to work with the elem_type,
 282     // the compiler prefers the array_type, since it must already have
 283     // that latter value in hand for the fast path.
 284     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 285     result = oopFactory::new_objArray(elem_type, len, THREAD);
 286   }
 287 
 288   // Pass oops back through thread local storage.  Our apparent type to Java
 289   // is that we return an oop, but we can block on exit from this routine and
 290   // a GC can trash the oop in C's return register.  The generated stub will
 291   // fetch the oop from TLS after any possible GC.
 292   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 293   thread->set_vm_result(result);
 294   JRT_BLOCK_END;
 295 
 296   if (GraphKit::use_ReduceInitialCardMarks()) {
 297     // inform GC that we won't do card marks for initializing writes.
 298     new_store_pre_barrier(thread);
 299   }
 300 JRT_END
 301 
 302 // array allocation without zeroing
 303 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 304   JRT_BLOCK;
 305 #ifndef PRODUCT
 306   SharedRuntime::_new_array_ctr++;            // new array requires GC
 307 #endif
 308   assert(check_compiled_frame(thread), "incorrect caller");
 309 
 310   // Scavenge and allocate an instance.
 311   oop result;
 312 
 313   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 314   // The oopFactory likes to work with the element type.
 315   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 316   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 317 
 318   // Pass oops back through thread local storage.  Our apparent type to Java
 319   // is that we return an oop, but we can block on exit from this routine and
 320   // a GC can trash the oop in C's return register.  The generated stub will
 321   // fetch the oop from TLS after any possible GC.
 322   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 323   thread->set_vm_result(result);
 324   JRT_BLOCK_END;
 325 
 326   if (GraphKit::use_ReduceInitialCardMarks()) {
 327     // inform GC that we won't do card marks for initializing writes.
 328     new_store_pre_barrier(thread);
 329   }
 330 
 331   oop result = thread->vm_result();
 332   if ((len > 0) && (result != NULL) &&
 333       is_deoptimized_caller_frame(thread)) {
 334     // Zero array here if the caller is deoptimized.
 335     int size = ((typeArrayOop)result)->object_size();
 336     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 337     const size_t hs = arrayOopDesc::header_size(elem_type);
 338     // Align to next 8 bytes to avoid trashing arrays's length.
 339     const size_t aligned_hs = align_object_offset(hs);
 340     HeapWord* obj = (HeapWord*)result;
 341     if (aligned_hs > hs) {
 342       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 343     }
 344     // Optimized zeroing.
 345     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 346   }
 347 
 348 JRT_END
 349 
 350 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 351 
 352 // multianewarray for 2 dimensions
 353 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 354 #ifndef PRODUCT
 355   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 356 #endif
 357   assert(check_compiled_frame(thread), "incorrect caller");
 358   assert(elem_type->is_klass(), "not a class");
 359   jint dims[2];
 360   dims[0] = len1;
 361   dims[1] = len2;
 362   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 363   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 364   thread->set_vm_result(obj);
 365 JRT_END
 366 
 367 // multianewarray for 3 dimensions
 368 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 369 #ifndef PRODUCT
 370   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 371 #endif
 372   assert(check_compiled_frame(thread), "incorrect caller");
 373   assert(elem_type->is_klass(), "not a class");
 374   jint dims[3];
 375   dims[0] = len1;
 376   dims[1] = len2;
 377   dims[2] = len3;
 378   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 379   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 380   thread->set_vm_result(obj);
 381 JRT_END
 382 
 383 // multianewarray for 4 dimensions
 384 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 385 #ifndef PRODUCT
 386   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 387 #endif
 388   assert(check_compiled_frame(thread), "incorrect caller");
 389   assert(elem_type->is_klass(), "not a class");
 390   jint dims[4];
 391   dims[0] = len1;
 392   dims[1] = len2;
 393   dims[2] = len3;
 394   dims[3] = len4;
 395   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 396   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 397   thread->set_vm_result(obj);
 398 JRT_END
 399 
 400 // multianewarray for 5 dimensions
 401 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 402 #ifndef PRODUCT
 403   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 404 #endif
 405   assert(check_compiled_frame(thread), "incorrect caller");
 406   assert(elem_type->is_klass(), "not a class");
 407   jint dims[5];
 408   dims[0] = len1;
 409   dims[1] = len2;
 410   dims[2] = len3;
 411   dims[3] = len4;
 412   dims[4] = len5;
 413   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 414   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 415   thread->set_vm_result(obj);
 416 JRT_END
 417 
 418 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 419   assert(check_compiled_frame(thread), "incorrect caller");
 420   assert(elem_type->is_klass(), "not a class");
 421   assert(oop(dims)->is_typeArray(), "not an array");
 422 
 423   ResourceMark rm;
 424   jint len = dims->length();
 425   assert(len > 0, "Dimensions array should contain data");
 426   jint *j_dims = typeArrayOop(oopDesc::bs()->read_barrier(dims))->int_at_addr(0);
 427   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 428   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 429 
 430   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 431   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 432   thread->set_vm_result(obj);
 433 JRT_END
 434 
 435 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 436 
 437   // Very few notify/notifyAll operations find any threads on the waitset, so
 438   // the dominant fast-path is to simply return.
 439   // Relatedly, it's critical that notify/notifyAll be fast in order to
 440   // reduce lock hold times.
 441   obj = oopDesc::bs()->write_barrier(obj);
 442   if (!SafepointSynchronize::is_synchronizing()) {
 443     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 444       return;
 445     }
 446   }
 447 
 448   // This is the case the fast-path above isn't provisioned to handle.
 449   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 450   // (The fast-path is just a degenerate variant of the slow-path).
 451   // Perform the dreaded state transition and pass control into the slow-path.
 452   JRT_BLOCK;
 453   Handle h_obj(THREAD, obj);
 454   ObjectSynchronizer::notify(h_obj, CHECK);
 455   JRT_BLOCK_END;
 456 JRT_END
 457 
 458 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 459 
 460   obj = oopDesc::bs()->write_barrier(obj);
 461   if (!SafepointSynchronize::is_synchronizing() ) {
 462     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 463       return;
 464     }
 465   }
 466 
 467   // This is the case the fast-path above isn't provisioned to handle.
 468   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 469   // (The fast-path is just a degenerate variant of the slow-path).
 470   // Perform the dreaded state transition and pass control into the slow-path.
 471   JRT_BLOCK;
 472   Handle h_obj(THREAD, obj);
 473   ObjectSynchronizer::notifyall(h_obj, CHECK);
 474   JRT_BLOCK_END;
 475 JRT_END
 476 
 477 const TypeFunc *OptoRuntime::new_instance_Type() {
 478   // create input type (domain)
 479   const Type **fields = TypeTuple::fields(1);
 480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 481   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 482 
 483   // create result type (range)
 484   fields = TypeTuple::fields(1);
 485   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 486 
 487   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 488 
 489   return TypeFunc::make(domain, range);
 490 }
 491 
 492 
 493 const TypeFunc *OptoRuntime::athrow_Type() {
 494   // create input type (domain)
 495   const Type **fields = TypeTuple::fields(1);
 496   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 497   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 498 
 499   // create result type (range)
 500   fields = TypeTuple::fields(0);
 501 
 502   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 503 
 504   return TypeFunc::make(domain, range);
 505 }
 506 
 507 
 508 const TypeFunc *OptoRuntime::new_array_Type() {
 509   // create input type (domain)
 510   const Type **fields = TypeTuple::fields(2);
 511   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 512   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 513   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 514 
 515   // create result type (range)
 516   fields = TypeTuple::fields(1);
 517   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 518 
 519   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 520 
 521   return TypeFunc::make(domain, range);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 525   // create input type (domain)
 526   const int nargs = ndim + 1;
 527   const Type **fields = TypeTuple::fields(nargs);
 528   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 529   for( int i = 1; i < nargs; i++ )
 530     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 531   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 532 
 533   // create result type (range)
 534   fields = TypeTuple::fields(1);
 535   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 537 
 538   return TypeFunc::make(domain, range);
 539 }
 540 
 541 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 542   return multianewarray_Type(2);
 543 }
 544 
 545 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 546   return multianewarray_Type(3);
 547 }
 548 
 549 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 550   return multianewarray_Type(4);
 551 }
 552 
 553 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 554   return multianewarray_Type(5);
 555 }
 556 
 557 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 558   // create input type (domain)
 559   const Type **fields = TypeTuple::fields(2);
 560   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 561   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 562   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 563 
 564   // create result type (range)
 565   fields = TypeTuple::fields(1);
 566   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 567   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 568 
 569   return TypeFunc::make(domain, range);
 570 }
 571 
 572 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 573   const Type **fields = TypeTuple::fields(2);
 574   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 575   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 576   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 577 
 578   // create result type (range)
 579   fields = TypeTuple::fields(0);
 580   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 581 
 582   return TypeFunc::make(domain, range);
 583 }
 584 
 585 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 586 
 587   const Type **fields = TypeTuple::fields(2);
 588   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 589   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 590   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 591 
 592   // create result type (range)
 593   fields = TypeTuple::fields(0);
 594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 595 
 596   return TypeFunc::make(domain, range);
 597 }
 598 
 599 const TypeFunc *OptoRuntime::shenandoah_clone_barrier_Type() {
 600   const Type **fields = TypeTuple::fields(1);
 601   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 602   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 603 
 604   // create result type (range)
 605   fields = TypeTuple::fields(0);
 606   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 607 
 608   return TypeFunc::make(domain, range);
 609 }
 610 
 611 const TypeFunc *OptoRuntime::shenandoah_cas_obj_Type() {
 612   const Type **fields = TypeTuple::fields(3);
 613   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Address
 614   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;  // New value
 615   fields[TypeFunc::Parms+2] = TypeInstPtr::BOTTOM;  // Expected value
 616   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 617 
 618   // create result type (range)
 619   fields = TypeTuple::fields(1);
 620   fields[TypeFunc::Parms+0] = TypeInt::BOOL;
 621   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 622 
 623   return TypeFunc::make(domain, range);
 624 }
 625 
 626 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 627   // create input type (domain)
 628   const Type **fields = TypeTuple::fields(1);
 629   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 630   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 631 
 632   // create result type (range)
 633   fields = TypeTuple::fields(0);
 634   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 635 
 636   return TypeFunc::make(domain, range);
 637 }
 638 
 639 # ifdef ENABLE_ZAP_DEAD_LOCALS
 640 // Type used for stub generation for zap_dead_locals.
 641 // No inputs or outputs
 642 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 643   // create input type (domain)
 644   const Type **fields = TypeTuple::fields(0);
 645   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 646 
 647   // create result type (range)
 648   fields = TypeTuple::fields(0);
 649   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 650 
 651   return TypeFunc::make(domain,range);
 652 }
 653 # endif
 654 
 655 
 656 //-----------------------------------------------------------------------------
 657 // Monitor Handling
 658 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 659   // create input type (domain)
 660   const Type **fields = TypeTuple::fields(2);
 661   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 662   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 663   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 664 
 665   // create result type (range)
 666   fields = TypeTuple::fields(0);
 667 
 668   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 669 
 670   return TypeFunc::make(domain,range);
 671 }
 672 
 673 
 674 //-----------------------------------------------------------------------------
 675 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 676   // create input type (domain)
 677   const Type **fields = TypeTuple::fields(3);
 678   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 679   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 680   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 681   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 682 
 683   // create result type (range)
 684   fields = TypeTuple::fields(0);
 685 
 686   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 687 
 688   return TypeFunc::make(domain, range);
 689 }
 690 
 691 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 692   // create input type (domain)
 693   const Type **fields = TypeTuple::fields(1);
 694   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 695   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 696 
 697   // create result type (range)
 698   fields = TypeTuple::fields(0);
 699   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 700   return TypeFunc::make(domain, range);
 701 }
 702 
 703 const TypeFunc* OptoRuntime::flush_windows_Type() {
 704   // create input type (domain)
 705   const Type** fields = TypeTuple::fields(1);
 706   fields[TypeFunc::Parms+0] = NULL; // void
 707   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 708 
 709   // create result type
 710   fields = TypeTuple::fields(1);
 711   fields[TypeFunc::Parms+0] = NULL; // void
 712   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 713 
 714   return TypeFunc::make(domain, range);
 715 }
 716 
 717 const TypeFunc* OptoRuntime::l2f_Type() {
 718   // create input type (domain)
 719   const Type **fields = TypeTuple::fields(2);
 720   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 721   fields[TypeFunc::Parms+1] = Type::HALF;
 722   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 723 
 724   // create result type (range)
 725   fields = TypeTuple::fields(1);
 726   fields[TypeFunc::Parms+0] = Type::FLOAT;
 727   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 728 
 729   return TypeFunc::make(domain, range);
 730 }
 731 
 732 const TypeFunc* OptoRuntime::modf_Type() {
 733   const Type **fields = TypeTuple::fields(2);
 734   fields[TypeFunc::Parms+0] = Type::FLOAT;
 735   fields[TypeFunc::Parms+1] = Type::FLOAT;
 736   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 737 
 738   // create result type (range)
 739   fields = TypeTuple::fields(1);
 740   fields[TypeFunc::Parms+0] = Type::FLOAT;
 741 
 742   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 743 
 744   return TypeFunc::make(domain, range);
 745 }
 746 
 747 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 748   // create input type (domain)
 749   const Type **fields = TypeTuple::fields(2);
 750   // Symbol* name of class to be loaded
 751   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 752   fields[TypeFunc::Parms+1] = Type::HALF;
 753   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 754 
 755   // create result type (range)
 756   fields = TypeTuple::fields(2);
 757   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 758   fields[TypeFunc::Parms+1] = Type::HALF;
 759   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 760 
 761   return TypeFunc::make(domain, range);
 762 }
 763 
 764 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 765   const Type **fields = TypeTuple::fields(4);
 766   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 767   fields[TypeFunc::Parms+1] = Type::HALF;
 768   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 769   fields[TypeFunc::Parms+3] = Type::HALF;
 770   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 771 
 772   // create result type (range)
 773   fields = TypeTuple::fields(2);
 774   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 775   fields[TypeFunc::Parms+1] = Type::HALF;
 776   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 777 
 778   return TypeFunc::make(domain, range);
 779 }
 780 
 781 //-------------- currentTimeMillis, currentTimeNanos, etc
 782 
 783 const TypeFunc* OptoRuntime::void_long_Type() {
 784   // create input type (domain)
 785   const Type **fields = TypeTuple::fields(0);
 786   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 787 
 788   // create result type (range)
 789   fields = TypeTuple::fields(2);
 790   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 791   fields[TypeFunc::Parms+1] = Type::HALF;
 792   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 793 
 794   return TypeFunc::make(domain, range);
 795 }
 796 
 797 // arraycopy stub variations:
 798 enum ArrayCopyType {
 799   ac_fast,                      // void(ptr, ptr, size_t)
 800   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 801   ac_slow,                      // void(ptr, int, ptr, int, int)
 802   ac_generic                    //  int(ptr, int, ptr, int, int)
 803 };
 804 
 805 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 806   // create input type (domain)
 807   int num_args      = (act == ac_fast ? 3 : 5);
 808   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 809   int argcnt = num_args;
 810   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 811   const Type** fields = TypeTuple::fields(argcnt);
 812   int argp = TypeFunc::Parms;
 813   fields[argp++] = TypePtr::NOTNULL;    // src
 814   if (num_size_args == 0) {
 815     fields[argp++] = TypeInt::INT;      // src_pos
 816   }
 817   fields[argp++] = TypePtr::NOTNULL;    // dest
 818   if (num_size_args == 0) {
 819     fields[argp++] = TypeInt::INT;      // dest_pos
 820     fields[argp++] = TypeInt::INT;      // length
 821   }
 822   while (num_size_args-- > 0) {
 823     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 824     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 825   }
 826   if (act == ac_checkcast) {
 827     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 828   }
 829   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 830   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 831 
 832   // create result type if needed
 833   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 834   fields = TypeTuple::fields(1);
 835   if (retcnt == 0)
 836     fields[TypeFunc::Parms+0] = NULL; // void
 837   else
 838     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 839   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 840   return TypeFunc::make(domain, range);
 841 }
 842 
 843 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 844   // This signature is simple:  Two base pointers and a size_t.
 845   return make_arraycopy_Type(ac_fast);
 846 }
 847 
 848 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 849   // An extension of fast_arraycopy_Type which adds type checking.
 850   return make_arraycopy_Type(ac_checkcast);
 851 }
 852 
 853 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 854   // This signature is exactly the same as System.arraycopy.
 855   // There are no intptr_t (int/long) arguments.
 856   return make_arraycopy_Type(ac_slow);
 857 }
 858 
 859 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 860   // This signature is like System.arraycopy, except that it returns status.
 861   return make_arraycopy_Type(ac_generic);
 862 }
 863 
 864 
 865 const TypeFunc* OptoRuntime::array_fill_Type() {
 866   const Type** fields;
 867   int argp = TypeFunc::Parms;
 868   // create input type (domain): pointer, int, size_t
 869   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 870   fields[argp++] = TypePtr::NOTNULL;
 871   fields[argp++] = TypeInt::INT;
 872   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 873   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 874   const TypeTuple *domain = TypeTuple::make(argp, fields);
 875 
 876   // create result type
 877   fields = TypeTuple::fields(1);
 878   fields[TypeFunc::Parms+0] = NULL; // void
 879   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 880 
 881   return TypeFunc::make(domain, range);
 882 }
 883 
 884 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 885 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 886   // create input type (domain)
 887   int num_args      = 3;
 888   if (Matcher::pass_original_key_for_aes()) {
 889     num_args = 4;
 890   }
 891   int argcnt = num_args;
 892   const Type** fields = TypeTuple::fields(argcnt);
 893   int argp = TypeFunc::Parms;
 894   fields[argp++] = TypePtr::NOTNULL;    // src
 895   fields[argp++] = TypePtr::NOTNULL;    // dest
 896   fields[argp++] = TypePtr::NOTNULL;    // k array
 897   if (Matcher::pass_original_key_for_aes()) {
 898     fields[argp++] = TypePtr::NOTNULL;    // original k array
 899   }
 900   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 901   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 902 
 903   // no result type needed
 904   fields = TypeTuple::fields(1);
 905   fields[TypeFunc::Parms+0] = NULL; // void
 906   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 907   return TypeFunc::make(domain, range);
 908 }
 909 
 910 /**
 911  * int updateBytesCRC32(int crc, byte* b, int len)
 912  */
 913 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 914   // create input type (domain)
 915   int num_args      = 3;
 916   int argcnt = num_args;
 917   const Type** fields = TypeTuple::fields(argcnt);
 918   int argp = TypeFunc::Parms;
 919   fields[argp++] = TypeInt::INT;        // crc
 920   fields[argp++] = TypePtr::NOTNULL;    // src
 921   fields[argp++] = TypeInt::INT;        // len
 922   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 923   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 924 
 925   // result type needed
 926   fields = TypeTuple::fields(1);
 927   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 928   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 929   return TypeFunc::make(domain, range);
 930 }
 931 
 932 /**
 933  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 934  */
 935 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 936   // create input type (domain)
 937   int num_args      = 4;
 938   int argcnt = num_args;
 939   const Type** fields = TypeTuple::fields(argcnt);
 940   int argp = TypeFunc::Parms;
 941   fields[argp++] = TypeInt::INT;        // crc
 942   fields[argp++] = TypePtr::NOTNULL;    // buf
 943   fields[argp++] = TypeInt::INT;        // len
 944   fields[argp++] = TypePtr::NOTNULL;    // table
 945   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 946   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 947 
 948   // result type needed
 949   fields = TypeTuple::fields(1);
 950   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 951   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 952   return TypeFunc::make(domain, range);
 953 }
 954 
 955 /**
 956 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 957 */
 958 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 959   // create input type (domain)
 960   int num_args      = 3;
 961   int argcnt = num_args;
 962   const Type** fields = TypeTuple::fields(argcnt);
 963   int argp = TypeFunc::Parms;
 964   fields[argp++] = TypeInt::INT;        // crc
 965   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 966   fields[argp++] = TypeInt::INT;        // len
 967   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 968   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 969 
 970   // result type needed
 971   fields = TypeTuple::fields(1);
 972   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 973   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 974   return TypeFunc::make(domain, range);
 975 }
 976 
 977 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 978 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 979   // create input type (domain)
 980   int num_args      = 5;
 981   if (Matcher::pass_original_key_for_aes()) {
 982     num_args = 6;
 983   }
 984   int argcnt = num_args;
 985   const Type** fields = TypeTuple::fields(argcnt);
 986   int argp = TypeFunc::Parms;
 987   fields[argp++] = TypePtr::NOTNULL;    // src
 988   fields[argp++] = TypePtr::NOTNULL;    // dest
 989   fields[argp++] = TypePtr::NOTNULL;    // k array
 990   fields[argp++] = TypePtr::NOTNULL;    // r array
 991   fields[argp++] = TypeInt::INT;        // src len
 992   if (Matcher::pass_original_key_for_aes()) {
 993     fields[argp++] = TypePtr::NOTNULL;    // original k array
 994   }
 995   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 996   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 997 
 998   // returning cipher len (int)
 999   fields = TypeTuple::fields(1);
1000   fields[TypeFunc::Parms+0] = TypeInt::INT;
1001   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1002   return TypeFunc::make(domain, range);
1003 }
1004 
1005 /*
1006  * void implCompress(byte[] buf, int ofs)
1007  */
1008 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
1009   // create input type (domain)
1010   int num_args = 2;
1011   int argcnt = num_args;
1012   const Type** fields = TypeTuple::fields(argcnt);
1013   int argp = TypeFunc::Parms;
1014   fields[argp++] = TypePtr::NOTNULL; // buf
1015   fields[argp++] = TypePtr::NOTNULL; // state
1016   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1017   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1018 
1019   // no result type needed
1020   fields = TypeTuple::fields(1);
1021   fields[TypeFunc::Parms+0] = NULL; // void
1022   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1023   return TypeFunc::make(domain, range);
1024 }
1025 
1026 /*
1027  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1028  */
1029 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
1030   // create input type (domain)
1031   int num_args = 4;
1032   int argcnt = num_args;
1033   const Type** fields = TypeTuple::fields(argcnt);
1034   int argp = TypeFunc::Parms;
1035   fields[argp++] = TypePtr::NOTNULL; // buf
1036   fields[argp++] = TypePtr::NOTNULL; // state
1037   fields[argp++] = TypeInt::INT;     // ofs
1038   fields[argp++] = TypeInt::INT;     // limit
1039   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1040   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1041 
1042   // returning ofs (int)
1043   fields = TypeTuple::fields(1);
1044   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1045   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1046   return TypeFunc::make(domain, range);
1047 }
1048 
1049 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1050   // create input type (domain)
1051   int num_args      = 6;
1052   int argcnt = num_args;
1053   const Type** fields = TypeTuple::fields(argcnt);
1054   int argp = TypeFunc::Parms;
1055   fields[argp++] = TypePtr::NOTNULL;    // x
1056   fields[argp++] = TypeInt::INT;        // xlen
1057   fields[argp++] = TypePtr::NOTNULL;    // y
1058   fields[argp++] = TypeInt::INT;        // ylen
1059   fields[argp++] = TypePtr::NOTNULL;    // z
1060   fields[argp++] = TypeInt::INT;        // zlen
1061   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1062   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1063 
1064   // no result type needed
1065   fields = TypeTuple::fields(1);
1066   fields[TypeFunc::Parms+0] = NULL;
1067   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1068   return TypeFunc::make(domain, range);
1069 }
1070 
1071 const TypeFunc* OptoRuntime::squareToLen_Type() {
1072   // create input type (domain)
1073   int num_args      = 4;
1074   int argcnt = num_args;
1075   const Type** fields = TypeTuple::fields(argcnt);
1076   int argp = TypeFunc::Parms;
1077   fields[argp++] = TypePtr::NOTNULL;    // x
1078   fields[argp++] = TypeInt::INT;        // len
1079   fields[argp++] = TypePtr::NOTNULL;    // z
1080   fields[argp++] = TypeInt::INT;        // zlen
1081   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1082   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1083 
1084   // no result type needed
1085   fields = TypeTuple::fields(1);
1086   fields[TypeFunc::Parms+0] = NULL;
1087   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1088   return TypeFunc::make(domain, range);
1089 }
1090 
1091 // for mulAdd calls, 2 pointers and 3 ints, returning int
1092 const TypeFunc* OptoRuntime::mulAdd_Type() {
1093   // create input type (domain)
1094   int num_args      = 5;
1095   int argcnt = num_args;
1096   const Type** fields = TypeTuple::fields(argcnt);
1097   int argp = TypeFunc::Parms;
1098   fields[argp++] = TypePtr::NOTNULL;    // out
1099   fields[argp++] = TypePtr::NOTNULL;    // in
1100   fields[argp++] = TypeInt::INT;        // offset
1101   fields[argp++] = TypeInt::INT;        // len
1102   fields[argp++] = TypeInt::INT;        // k
1103   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1104   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1105 
1106   // returning carry (int)
1107   fields = TypeTuple::fields(1);
1108   fields[TypeFunc::Parms+0] = TypeInt::INT;
1109   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1110   return TypeFunc::make(domain, range);
1111 }
1112 
1113 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1114   // create input type (domain)
1115   int num_args      = 7;
1116   int argcnt = num_args;
1117   const Type** fields = TypeTuple::fields(argcnt);
1118   int argp = TypeFunc::Parms;
1119   fields[argp++] = TypePtr::NOTNULL;    // a
1120   fields[argp++] = TypePtr::NOTNULL;    // b
1121   fields[argp++] = TypePtr::NOTNULL;    // n
1122   fields[argp++] = TypeInt::INT;        // len
1123   fields[argp++] = TypeLong::LONG;      // inv
1124   fields[argp++] = Type::HALF;
1125   fields[argp++] = TypePtr::NOTNULL;    // result
1126   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1127   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1128 
1129   // result type needed
1130   fields = TypeTuple::fields(1);
1131   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1132 
1133   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1134   return TypeFunc::make(domain, range);
1135 }
1136 
1137 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1138   // create input type (domain)
1139   int num_args      = 6;
1140   int argcnt = num_args;
1141   const Type** fields = TypeTuple::fields(argcnt);
1142   int argp = TypeFunc::Parms;
1143   fields[argp++] = TypePtr::NOTNULL;    // a
1144   fields[argp++] = TypePtr::NOTNULL;    // n
1145   fields[argp++] = TypeInt::INT;        // len
1146   fields[argp++] = TypeLong::LONG;      // inv
1147   fields[argp++] = Type::HALF;
1148   fields[argp++] = TypePtr::NOTNULL;    // result
1149   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1150   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1151 
1152   // result type needed
1153   fields = TypeTuple::fields(1);
1154   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1155 
1156   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1157   return TypeFunc::make(domain, range);
1158 }
1159 
1160 // GHASH block processing
1161 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1162     int argcnt = 4;
1163 
1164     const Type** fields = TypeTuple::fields(argcnt);
1165     int argp = TypeFunc::Parms;
1166     fields[argp++] = TypePtr::NOTNULL;    // state
1167     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1168     fields[argp++] = TypePtr::NOTNULL;    // data
1169     fields[argp++] = TypeInt::INT;        // blocks
1170     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1171     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1172 
1173     // result type needed
1174     fields = TypeTuple::fields(1);
1175     fields[TypeFunc::Parms+0] = NULL; // void
1176     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1177     return TypeFunc::make(domain, range);
1178 }
1179 
1180 //------------- Interpreter state access for on stack replacement
1181 const TypeFunc* OptoRuntime::osr_end_Type() {
1182   // create input type (domain)
1183   const Type **fields = TypeTuple::fields(1);
1184   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1185   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1186 
1187   // create result type
1188   fields = TypeTuple::fields(1);
1189   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1190   fields[TypeFunc::Parms+0] = NULL; // void
1191   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1192   return TypeFunc::make(domain, range);
1193 }
1194 
1195 //-------------- methodData update helpers
1196 
1197 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1198   // create input type (domain)
1199   const Type **fields = TypeTuple::fields(2);
1200   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1201   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1202   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1203 
1204   // create result type
1205   fields = TypeTuple::fields(1);
1206   fields[TypeFunc::Parms+0] = NULL; // void
1207   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1208   return TypeFunc::make(domain,range);
1209 }
1210 
1211 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1212   if (receiver == NULL) return;
1213   Klass* receiver_klass = receiver->klass();
1214 
1215   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1216   int empty_row = -1;           // free row, if any is encountered
1217 
1218   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1219   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1220     // if (vc->receiver(row) == receiver_klass)
1221     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1222     intptr_t row_recv = *(mdp + receiver_off);
1223     if (row_recv == (intptr_t) receiver_klass) {
1224       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1225       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1226       *(mdp + count_off) += DataLayout::counter_increment;
1227       return;
1228     } else if (row_recv == 0) {
1229       // else if (vc->receiver(row) == NULL)
1230       empty_row = (int) row;
1231     }
1232   }
1233 
1234   if (empty_row != -1) {
1235     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1236     // vc->set_receiver(empty_row, receiver_klass);
1237     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1238     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1239     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1240     *(mdp + count_off) = DataLayout::counter_increment;
1241   } else {
1242     // Receiver did not match any saved receiver and there is no empty row for it.
1243     // Increment total counter to indicate polymorphic case.
1244     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1245     *count_p += DataLayout::counter_increment;
1246   }
1247 JRT_END
1248 
1249 //-------------------------------------------------------------------------------------
1250 // register policy
1251 
1252 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1253   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1254   switch (register_save_policy[reg]) {
1255     case 'C': return false; //SOC
1256     case 'E': return true ; //SOE
1257     case 'N': return false; //NS
1258     case 'A': return false; //AS
1259   }
1260   ShouldNotReachHere();
1261   return false;
1262 }
1263 
1264 //-----------------------------------------------------------------------
1265 // Exceptions
1266 //
1267 
1268 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1269 
1270 // The method is an entry that is always called by a C++ method not
1271 // directly from compiled code. Compiled code will call the C++ method following.
1272 // We can't allow async exception to be installed during  exception processing.
1273 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1274 
1275   // Do not confuse exception_oop with pending_exception. The exception_oop
1276   // is only used to pass arguments into the method. Not for general
1277   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1278   // the runtime stubs checks this on exit.
1279   assert(thread->exception_oop() != NULL, "exception oop is found");
1280   address handler_address = NULL;
1281 
1282   Handle exception(thread, thread->exception_oop());
1283   address pc = thread->exception_pc();
1284 
1285   // Clear out the exception oop and pc since looking up an
1286   // exception handler can cause class loading, which might throw an
1287   // exception and those fields are expected to be clear during
1288   // normal bytecode execution.
1289   thread->clear_exception_oop_and_pc();
1290 
1291   if (TraceExceptions) {
1292     trace_exception(exception(), pc, "");
1293   }
1294 
1295   // for AbortVMOnException flag
1296   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1297 
1298 #ifdef ASSERT
1299   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1300     // should throw an exception here
1301     ShouldNotReachHere();
1302   }
1303 #endif
1304 
1305   // new exception handling: this method is entered only from adapters
1306   // exceptions from compiled java methods are handled in compiled code
1307   // using rethrow node
1308 
1309   nm = CodeCache::find_nmethod(pc);
1310   assert(nm != NULL, "No NMethod found");
1311   if (nm->is_native_method()) {
1312     fatal("Native method should not have path to exception handling");
1313   } else {
1314     // we are switching to old paradigm: search for exception handler in caller_frame
1315     // instead in exception handler of caller_frame.sender()
1316 
1317     if (JvmtiExport::can_post_on_exceptions()) {
1318       // "Full-speed catching" is not necessary here,
1319       // since we're notifying the VM on every catch.
1320       // Force deoptimization and the rest of the lookup
1321       // will be fine.
1322       deoptimize_caller_frame(thread);
1323     }
1324 
1325     // Check the stack guard pages.  If enabled, look for handler in this frame;
1326     // otherwise, forcibly unwind the frame.
1327     //
1328     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1329     bool force_unwind = !thread->reguard_stack();
1330     bool deopting = false;
1331     if (nm->is_deopt_pc(pc)) {
1332       deopting = true;
1333       RegisterMap map(thread, false);
1334       frame deoptee = thread->last_frame().sender(&map);
1335       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1336       // Adjust the pc back to the original throwing pc
1337       pc = deoptee.pc();
1338     }
1339 
1340     // If we are forcing an unwind because of stack overflow then deopt is
1341     // irrelevant since we are throwing the frame away anyway.
1342 
1343     if (deopting && !force_unwind) {
1344       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1345     } else {
1346 
1347       handler_address =
1348         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1349 
1350       if (handler_address == NULL) {
1351         Handle original_exception(thread, exception());
1352         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1353         assert (handler_address != NULL, "must have compiled handler");
1354         // Update the exception cache only when the unwind was not forced
1355         // and there didn't happen another exception during the computation of the
1356         // compiled exception handler.
1357         if (!force_unwind && original_exception() == exception()) {
1358           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1359         }
1360       } else {
1361         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1362       }
1363     }
1364 
1365     thread->set_exception_pc(pc);
1366     thread->set_exception_handler_pc(handler_address);
1367 
1368     // Check if the exception PC is a MethodHandle call site.
1369     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1370   }
1371 
1372   // Restore correct return pc.  Was saved above.
1373   thread->set_exception_oop(exception());
1374   return handler_address;
1375 
1376 JRT_END
1377 
1378 // We are entering here from exception_blob
1379 // If there is a compiled exception handler in this method, we will continue there;
1380 // otherwise we will unwind the stack and continue at the caller of top frame method
1381 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1382 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1383 // we looked up the handler for has been deoptimized in the meantime. If it has been
1384 // we must not use the handler and instead return the deopt blob.
1385 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1386 //
1387 // We are in Java not VM and in debug mode we have a NoHandleMark
1388 //
1389 #ifndef PRODUCT
1390   SharedRuntime::_find_handler_ctr++;          // find exception handler
1391 #endif
1392   debug_only(NoHandleMark __hm;)
1393   nmethod* nm = NULL;
1394   address handler_address = NULL;
1395   {
1396     // Enter the VM
1397 
1398     ResetNoHandleMark rnhm;
1399     handler_address = handle_exception_C_helper(thread, nm);
1400   }
1401 
1402   // Back in java: Use no oops, DON'T safepoint
1403 
1404   // Now check to see if the handler we are returning is in a now
1405   // deoptimized frame
1406 
1407   if (nm != NULL) {
1408     RegisterMap map(thread, false);
1409     frame caller = thread->last_frame().sender(&map);
1410 #ifdef ASSERT
1411     assert(caller.is_compiled_frame(), "must be");
1412 #endif // ASSERT
1413     if (caller.is_deoptimized_frame()) {
1414       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1415     }
1416   }
1417   return handler_address;
1418 }
1419 
1420 //------------------------------rethrow----------------------------------------
1421 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1422 // is either throwing or rethrowing an exception.  The callee-save registers
1423 // have been restored, synchronized objects have been unlocked and the callee
1424 // stack frame has been removed.  The return address was passed in.
1425 // Exception oop is passed as the 1st argument.  This routine is then called
1426 // from the stub.  On exit, we know where to jump in the caller's code.
1427 // After this C code exits, the stub will pop his frame and end in a jump
1428 // (instead of a return).  We enter the caller's default handler.
1429 //
1430 // This must be JRT_LEAF:
1431 //     - caller will not change its state as we cannot block on exit,
1432 //       therefore raw_exception_handler_for_return_address is all it takes
1433 //       to handle deoptimized blobs
1434 //
1435 // However, there needs to be a safepoint check in the middle!  So compiled
1436 // safepoints are completely watertight.
1437 //
1438 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1439 //
1440 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1441 //
1442 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1443 #ifndef PRODUCT
1444   SharedRuntime::_rethrow_ctr++;               // count rethrows
1445 #endif
1446   assert (exception != NULL, "should have thrown a NULLPointerException");
1447 #ifdef ASSERT
1448   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1449     // should throw an exception here
1450     ShouldNotReachHere();
1451   }
1452 #endif
1453 
1454   thread->set_vm_result(exception);
1455   // Frame not compiled (handles deoptimization blob)
1456   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1457 }
1458 
1459 
1460 const TypeFunc *OptoRuntime::rethrow_Type() {
1461   // create input type (domain)
1462   const Type **fields = TypeTuple::fields(1);
1463   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1464   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1465 
1466   // create result type (range)
1467   fields = TypeTuple::fields(1);
1468   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1469   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1470 
1471   return TypeFunc::make(domain, range);
1472 }
1473 
1474 
1475 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1476   // Deoptimize the caller before continuing, as the compiled
1477   // exception handler table may not be valid.
1478   if (!StressCompiledExceptionHandlers && doit) {
1479     deoptimize_caller_frame(thread);
1480   }
1481 }
1482 
1483 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1484   // Called from within the owner thread, so no need for safepoint
1485   RegisterMap reg_map(thread);
1486   frame stub_frame = thread->last_frame();
1487   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1488   frame caller_frame = stub_frame.sender(&reg_map);
1489 
1490   // Deoptimize the caller frame.
1491   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1492 }
1493 
1494 
1495 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1496   // Called from within the owner thread, so no need for safepoint
1497   RegisterMap reg_map(thread);
1498   frame stub_frame = thread->last_frame();
1499   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1500   frame caller_frame = stub_frame.sender(&reg_map);
1501   return caller_frame.is_deoptimized_frame();
1502 }
1503 
1504 
1505 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1506   // create input type (domain)
1507   const Type **fields = TypeTuple::fields(1);
1508   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1509   // // The JavaThread* is passed to each routine as the last argument
1510   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1511   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1512 
1513   // create result type (range)
1514   fields = TypeTuple::fields(0);
1515 
1516   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1517 
1518   return TypeFunc::make(domain,range);
1519 }
1520 
1521 
1522 //-----------------------------------------------------------------------------
1523 // Dtrace support.  entry and exit probes have the same signature
1524 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1525   // create input type (domain)
1526   const Type **fields = TypeTuple::fields(2);
1527   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1528   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1529   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1530 
1531   // create result type (range)
1532   fields = TypeTuple::fields(0);
1533 
1534   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1535 
1536   return TypeFunc::make(domain,range);
1537 }
1538 
1539 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1540   // create input type (domain)
1541   const Type **fields = TypeTuple::fields(2);
1542   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1543   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1544 
1545   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1546 
1547   // create result type (range)
1548   fields = TypeTuple::fields(0);
1549 
1550   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1551 
1552   return TypeFunc::make(domain,range);
1553 }
1554 
1555 /**
1556  * oop write_barrier_static(oop obj)
1557  * oop read_barrier_static(oop obj)
1558  */
1559 const TypeFunc* OptoRuntime::shenandoah_barrier_Type(const Type* type) {
1560   // create input type (domain)
1561   const Type** fields = TypeTuple::fields(1);
1562   fields[TypeFunc::Parms+0] = type;
1563 
1564   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1565 
1566   // result type needed
1567   fields = TypeTuple::fields(1);
1568   fields[TypeFunc::Parms+0] = type;
1569   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1570   return TypeFunc::make(domain, range);
1571 }
1572 
1573 const TypeFunc* OptoRuntime::shenandoah_write_barrier_Type() {
1574   // create input type (domain)
1575   const Type** fields = TypeTuple::fields(1);
1576   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL;
1577 
1578   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1579 
1580   // result type needed
1581   fields = TypeTuple::fields(1);
1582   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL;
1583   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1584   return TypeFunc::make(domain, range);
1585 }
1586 
1587 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1588   assert(obj->is_oop(), "must be a valid oop");
1589   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1590   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1591 JRT_END
1592 
1593 //-----------------------------------------------------------------------------
1594 
1595 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1596 
1597 //
1598 // dump the collected NamedCounters.
1599 //
1600 void OptoRuntime::print_named_counters() {
1601   int total_lock_count = 0;
1602   int eliminated_lock_count = 0;
1603 
1604   NamedCounter* c = _named_counters;
1605   while (c) {
1606     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1607       int count = c->count();
1608       if (count > 0) {
1609         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1610         if (Verbose) {
1611           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1612         }
1613         total_lock_count += count;
1614         if (eliminated) {
1615           eliminated_lock_count += count;
1616         }
1617       }
1618     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1619       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1620       if (blc->nonzero()) {
1621         tty->print_cr("%s", c->name());
1622         blc->print_on(tty);
1623       }
1624 #if INCLUDE_RTM_OPT
1625     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1626       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1627       if (rlc->nonzero()) {
1628         tty->print_cr("%s", c->name());
1629         rlc->print_on(tty);
1630       }
1631 #endif
1632     }
1633     c = c->next();
1634   }
1635   if (total_lock_count > 0) {
1636     tty->print_cr("dynamic locks: %d", total_lock_count);
1637     if (eliminated_lock_count) {
1638       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1639                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1640     }
1641   }
1642 }
1643 
1644 //
1645 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1646 //  name which consists of method@line for the inlining tree.
1647 //
1648 
1649 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1650   int max_depth = youngest_jvms->depth();
1651 
1652   // Visit scopes from youngest to oldest.
1653   bool first = true;
1654   stringStream st;
1655   for (int depth = max_depth; depth >= 1; depth--) {
1656     JVMState* jvms = youngest_jvms->of_depth(depth);
1657     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1658     if (!first) {
1659       st.print(" ");
1660     } else {
1661       first = false;
1662     }
1663     int bci = jvms->bci();
1664     if (bci < 0) bci = 0;
1665     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1666     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1667   }
1668   NamedCounter* c;
1669   if (tag == NamedCounter::BiasedLockingCounter) {
1670     c = new BiasedLockingNamedCounter(st.as_string());
1671   } else if (tag == NamedCounter::RTMLockingCounter) {
1672     c = new RTMLockingNamedCounter(st.as_string());
1673   } else {
1674     c = new NamedCounter(st.as_string(), tag);
1675   }
1676 
1677   // atomically add the new counter to the head of the list.  We only
1678   // add counters so this is safe.
1679   NamedCounter* head;
1680   do {
1681     c->set_next(NULL);
1682     head = _named_counters;
1683     c->set_next(head);
1684   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1685   return c;
1686 }
1687 
1688 //-----------------------------------------------------------------------------
1689 // Non-product code
1690 #ifndef PRODUCT
1691 
1692 int trace_exception_counter = 0;
1693 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1694   ttyLocker ttyl;
1695   trace_exception_counter++;
1696   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1697   exception_oop->print_value();
1698   tty->print(" in ");
1699   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1700   if (blob->is_nmethod()) {
1701     nmethod* nm = blob->as_nmethod_or_null();
1702     nm->method()->print_value();
1703   } else if (blob->is_runtime_stub()) {
1704     tty->print("<runtime-stub>");
1705   } else {
1706     tty->print("<unknown>");
1707   }
1708   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1709   tty->print_cr("]");
1710 }
1711 
1712 #endif  // PRODUCT
1713 
1714 
1715 # ifdef ENABLE_ZAP_DEAD_LOCALS
1716 // Called from call sites in compiled code with oop maps (actually safepoints)
1717 // Zaps dead locals in first java frame.
1718 // Is entry because may need to lock to generate oop maps
1719 // Currently, only used for compiler frames, but someday may be used
1720 // for interpreter frames, too.
1721 
1722 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1723 
1724 // avoid pointers to member funcs with these helpers
1725 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1726 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1727 
1728 
1729 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1730                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1731   assert(JavaThread::current() == thread, "is this needed?");
1732 
1733   if ( !ZapDeadCompiledLocals )  return;
1734 
1735   bool skip = false;
1736 
1737        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1738   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1739   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1740     warning("starting zapping after skipping");
1741 
1742        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1743   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1744   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1745     warning("about to zap last zap");
1746 
1747   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1748 
1749   if ( skip )  return;
1750 
1751   // find java frame and zap it
1752 
1753   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1754     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1755       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1756       return;
1757     }
1758   }
1759   warning("no frame found to zap in zap_dead_Java_locals_C");
1760 }
1761 
1762 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1763   zap_dead_java_or_native_locals(thread, is_java_frame);
1764 JRT_END
1765 
1766 // The following does not work because for one thing, the
1767 // thread state is wrong; it expects java, but it is native.
1768 // Also, the invariants in a native stub are different and
1769 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1770 // in there.
1771 // So for now, we do not zap in native stubs.
1772 
1773 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1774   zap_dead_java_or_native_locals(thread, is_native_frame);
1775 JRT_END
1776 
1777 # endif