1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcLocker.inline.hpp"
  35 #include "gc/shared/workgroup.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "interpreter/linkResolver.hpp"
  38 #include "interpreter/oopMapCache.hpp"
  39 #include "jvmtifiles/jvmtiEnv.hpp"
  40 #include "memory/metaspaceShared.hpp"
  41 #include "memory/oopFactory.hpp"
  42 #include "memory/universe.inline.hpp"
  43 #include "oops/instanceKlass.hpp"
  44 #include "oops/objArrayOop.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/symbol.hpp"
  47 #include "oops/verifyOopClosure.hpp"
  48 #include "prims/jvm_misc.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/jvmtiThreadState.hpp"
  51 #include "prims/privilegedStack.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.inline.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/commandLineFlagConstraintList.hpp"
  56 #include "runtime/commandLineFlagRangeList.hpp"
  57 #include "runtime/deoptimization.hpp"
  58 #include "runtime/fprofiler.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/globals.hpp"
  61 #include "runtime/init.hpp"
  62 #include "runtime/interfaceSupport.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/jniPeriodicChecker.hpp"
  66 #include "runtime/memprofiler.hpp"
  67 #include "runtime/mutexLocker.hpp"
  68 #include "runtime/objectMonitor.hpp"
  69 #include "runtime/orderAccess.inline.hpp"
  70 #include "runtime/osThread.hpp"
  71 #include "runtime/safepoint.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/statSampler.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/sweeper.hpp"
  76 #include "runtime/task.hpp"
  77 #include "runtime/thread.inline.hpp"
  78 #include "runtime/threadCritical.hpp"
  79 #include "runtime/threadLocalStorage.hpp"
  80 #include "runtime/vframe.hpp"
  81 #include "runtime/vframeArray.hpp"
  82 #include "runtime/vframe_hp.hpp"
  83 #include "runtime/vmThread.hpp"
  84 #include "runtime/vm_operations.hpp"
  85 #include "runtime/vm_version.hpp"
  86 #include "services/attachListener.hpp"
  87 #include "services/management.hpp"
  88 #include "services/memTracker.hpp"
  89 #include "services/threadService.hpp"
  90 #include "trace/traceMacros.hpp"
  91 #include "trace/tracing.hpp"
  92 #include "utilities/defaultStream.hpp"
  93 #include "utilities/dtrace.hpp"
  94 #include "utilities/events.hpp"
  95 #include "utilities/macros.hpp"
  96 #include "utilities/preserveException.hpp"
  97 #if INCLUDE_ALL_GCS
  98 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
  99 #include "gc/cms/concurrentMarkSweepThread.hpp"
 100 #include "gc/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc/parallel/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #ifdef COMPILER1
 104 #include "c1/c1_Compiler.hpp"
 105 #endif
 106 #ifdef COMPILER2
 107 #include "opto/c2compiler.hpp"
 108 #include "opto/idealGraphPrinter.hpp"
 109 #endif
 110 #if INCLUDE_RTM_OPT
 111 #include "runtime/rtmLocking.hpp"
 112 #endif
 113 
 114 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 115 
 116 #ifdef DTRACE_ENABLED
 117 
 118 // Only bother with this argument setup if dtrace is available
 119 
 120   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 121   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 122 
 123   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 124     {                                                                      \
 125       ResourceMark rm(this);                                               \
 126       int len = 0;                                                         \
 127       const char* name = (javathread)->get_thread_name();                  \
 128       len = strlen(name);                                                  \
 129       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 130         (char *) name, len,                                                \
 131         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 132         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 133         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 134     }
 135 
 136 #else //  ndef DTRACE_ENABLED
 137 
 138   #define DTRACE_THREAD_PROBE(probe, javathread)
 139 
 140 #endif // ndef DTRACE_ENABLED
 141 
 142 
 143 // Class hierarchy
 144 // - Thread
 145 //   - VMThread
 146 //   - WatcherThread
 147 //   - ConcurrentMarkSweepThread
 148 //   - JavaThread
 149 //     - CompilerThread
 150 
 151 // ======= Thread ========
 152 // Support for forcing alignment of thread objects for biased locking
 153 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 154   if (UseBiasedLocking) {
 155     const int alignment = markOopDesc::biased_lock_alignment;
 156     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 157     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 158                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 159                                                          AllocFailStrategy::RETURN_NULL);
 160     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 161     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 162            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 163            "JavaThread alignment code overflowed allocated storage");
 164     if (TraceBiasedLocking) {
 165       if (aligned_addr != real_malloc_addr) {
 166         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 167                       real_malloc_addr, aligned_addr);
 168       }
 169     }
 170     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 171     return aligned_addr;
 172   } else {
 173     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 174                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 175   }
 176 }
 177 
 178 void Thread::operator delete(void* p) {
 179   if (UseBiasedLocking) {
 180     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 181     FreeHeap(real_malloc_addr);
 182   } else {
 183     FreeHeap(p);
 184   }
 185 }
 186 
 187 
 188 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 189 // JavaThread
 190 
 191 
 192 Thread::Thread() {
 193   // stack and get_thread
 194   set_stack_base(NULL);
 195   set_stack_size(0);
 196   set_self_raw_id(0);
 197   set_lgrp_id(-1);
 198   DEBUG_ONLY(clear_suspendible_thread();)
 199 
 200   // allocated data structures
 201   set_osthread(NULL);
 202   set_resource_area(new (mtThread)ResourceArea());
 203   DEBUG_ONLY(_current_resource_mark = NULL;)
 204   set_handle_area(new (mtThread) HandleArea(NULL));
 205   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 206   set_active_handles(NULL);
 207   set_free_handle_block(NULL);
 208   set_last_handle_mark(NULL);
 209 
 210   // This initial value ==> never claimed.
 211   _oops_do_parity = 0;
 212 
 213   // the handle mark links itself to last_handle_mark
 214   new HandleMark(this);
 215 
 216   // plain initialization
 217   debug_only(_owned_locks = NULL;)
 218   debug_only(_allow_allocation_count = 0;)
 219   NOT_PRODUCT(_allow_safepoint_count = 0;)
 220   NOT_PRODUCT(_skip_gcalot = false;)
 221   _jvmti_env_iteration_count = 0;
 222   set_allocated_bytes(0);
 223   _vm_operation_started_count = 0;
 224   _vm_operation_completed_count = 0;
 225   _current_pending_monitor = NULL;
 226   _current_pending_monitor_is_from_java = true;
 227   _current_waiting_monitor = NULL;
 228   _num_nested_signal = 0;
 229   omFreeList = NULL;
 230   omFreeCount = 0;
 231   omFreeProvision = 32;
 232   omInUseList = NULL;
 233   omInUseCount = 0;
 234 
 235 #ifdef ASSERT
 236   _visited_for_critical_count = false;
 237 #endif
 238 
 239   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 240                          Monitor::_safepoint_check_sometimes);
 241   _suspend_flags = 0;
 242 
 243   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 244   _hashStateX = os::random();
 245   _hashStateY = 842502087;
 246   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 247   _hashStateW = 273326509;
 248 
 249   _OnTrap   = 0;
 250   _schedctl = NULL;
 251   _Stalled  = 0;
 252   _TypeTag  = 0x2BAD;
 253 
 254   // Many of the following fields are effectively final - immutable
 255   // Note that nascent threads can't use the Native Monitor-Mutex
 256   // construct until the _MutexEvent is initialized ...
 257   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 258   // we might instead use a stack of ParkEvents that we could provision on-demand.
 259   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 260   // and ::Release()
 261   _ParkEvent   = ParkEvent::Allocate(this);
 262   _SleepEvent  = ParkEvent::Allocate(this);
 263   _MutexEvent  = ParkEvent::Allocate(this);
 264   _MuxEvent    = ParkEvent::Allocate(this);
 265 
 266   _evacuating = false;
 267 
 268 #ifdef CHECK_UNHANDLED_OOPS
 269   if (CheckUnhandledOops) {
 270     _unhandled_oops = new UnhandledOops(this);
 271   }
 272 #endif // CHECK_UNHANDLED_OOPS
 273 #ifdef ASSERT
 274   if (UseBiasedLocking) {
 275     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 276     assert(this == _real_malloc_address ||
 277            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 278            "bug in forced alignment of thread objects");
 279   }
 280 #endif // ASSERT
 281 }
 282 
 283 // Non-inlined version to be used where thread.inline.hpp shouldn't be included.
 284 Thread* Thread::current_noinline() {
 285   return Thread::current();
 286 }
 287 
 288 void Thread::initialize_thread_local_storage() {
 289   // Note: Make sure this method only calls
 290   // non-blocking operations. Otherwise, it might not work
 291   // with the thread-startup/safepoint interaction.
 292 
 293   // During Java thread startup, safepoint code should allow this
 294   // method to complete because it may need to allocate memory to
 295   // store information for the new thread.
 296 
 297   // initialize structure dependent on thread local storage
 298   ThreadLocalStorage::set_thread(this);
 299 }
 300 
 301 void Thread::record_stack_base_and_size() {
 302   set_stack_base(os::current_stack_base());
 303   set_stack_size(os::current_stack_size());
 304   if (is_Java_thread()) {
 305     ((JavaThread*) this)->set_stack_overflow_limit();
 306   }
 307   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 308   // in initialize_thread(). Without the adjustment, stack size is
 309   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 310   // So far, only Solaris has real implementation of initialize_thread().
 311   //
 312   // set up any platform-specific state.
 313   os::initialize_thread(this);
 314 
 315 #if INCLUDE_NMT
 316   // record thread's native stack, stack grows downward
 317   address stack_low_addr = stack_base() - stack_size();
 318   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 319 #endif // INCLUDE_NMT
 320 }
 321 
 322 
 323 Thread::~Thread() {
 324   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 325   ObjectSynchronizer::omFlush(this);
 326 
 327   EVENT_THREAD_DESTRUCT(this);
 328 
 329   // stack_base can be NULL if the thread is never started or exited before
 330   // record_stack_base_and_size called. Although, we would like to ensure
 331   // that all started threads do call record_stack_base_and_size(), there is
 332   // not proper way to enforce that.
 333 #if INCLUDE_NMT
 334   if (_stack_base != NULL) {
 335     address low_stack_addr = stack_base() - stack_size();
 336     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 337 #ifdef ASSERT
 338     set_stack_base(NULL);
 339 #endif
 340   }
 341 #endif // INCLUDE_NMT
 342 
 343   // deallocate data structures
 344   delete resource_area();
 345   // since the handle marks are using the handle area, we have to deallocated the root
 346   // handle mark before deallocating the thread's handle area,
 347   assert(last_handle_mark() != NULL, "check we have an element");
 348   delete last_handle_mark();
 349   assert(last_handle_mark() == NULL, "check we have reached the end");
 350 
 351   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 352   // We NULL out the fields for good hygiene.
 353   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 354   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 355   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 356   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 357 
 358   delete handle_area();
 359   delete metadata_handles();
 360 
 361   // osthread() can be NULL, if creation of thread failed.
 362   if (osthread() != NULL) os::free_thread(osthread());
 363 
 364   delete _SR_lock;
 365 
 366   // clear thread local storage if the Thread is deleting itself
 367   if (this == Thread::current()) {
 368     ThreadLocalStorage::set_thread(NULL);
 369   } else {
 370     // In the case where we're not the current thread, invalidate all the
 371     // caches in case some code tries to get the current thread or the
 372     // thread that was destroyed, and gets stale information.
 373     ThreadLocalStorage::invalidate_all();
 374   }
 375   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 376 }
 377 
 378 // NOTE: dummy function for assertion purpose.
 379 void Thread::run() {
 380   ShouldNotReachHere();
 381 }
 382 
 383 #ifdef ASSERT
 384 // Private method to check for dangling thread pointer
 385 void check_for_dangling_thread_pointer(Thread *thread) {
 386   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 387          "possibility of dangling Thread pointer");
 388 }
 389 #endif
 390 
 391 ThreadPriority Thread::get_priority(const Thread* const thread) {
 392   ThreadPriority priority;
 393   // Can return an error!
 394   (void)os::get_priority(thread, priority);
 395   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 396   return priority;
 397 }
 398 
 399 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 400   debug_only(check_for_dangling_thread_pointer(thread);)
 401   // Can return an error!
 402   (void)os::set_priority(thread, priority);
 403 }
 404 
 405 
 406 void Thread::start(Thread* thread) {
 407   // Start is different from resume in that its safety is guaranteed by context or
 408   // being called from a Java method synchronized on the Thread object.
 409   if (!DisableStartThread) {
 410     if (thread->is_Java_thread()) {
 411       // Initialize the thread state to RUNNABLE before starting this thread.
 412       // Can not set it after the thread started because we do not know the
 413       // exact thread state at that time. It could be in MONITOR_WAIT or
 414       // in SLEEPING or some other state.
 415       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 416                                           java_lang_Thread::RUNNABLE);
 417     }
 418     os::start_thread(thread);
 419   }
 420 }
 421 
 422 // Enqueue a VM_Operation to do the job for us - sometime later
 423 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 424   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 425   VMThread::execute(vm_stop);
 426 }
 427 
 428 
 429 // Check if an external suspend request has completed (or has been
 430 // cancelled). Returns true if the thread is externally suspended and
 431 // false otherwise.
 432 //
 433 // The bits parameter returns information about the code path through
 434 // the routine. Useful for debugging:
 435 //
 436 // set in is_ext_suspend_completed():
 437 // 0x00000001 - routine was entered
 438 // 0x00000010 - routine return false at end
 439 // 0x00000100 - thread exited (return false)
 440 // 0x00000200 - suspend request cancelled (return false)
 441 // 0x00000400 - thread suspended (return true)
 442 // 0x00001000 - thread is in a suspend equivalent state (return true)
 443 // 0x00002000 - thread is native and walkable (return true)
 444 // 0x00004000 - thread is native_trans and walkable (needed retry)
 445 //
 446 // set in wait_for_ext_suspend_completion():
 447 // 0x00010000 - routine was entered
 448 // 0x00020000 - suspend request cancelled before loop (return false)
 449 // 0x00040000 - thread suspended before loop (return true)
 450 // 0x00080000 - suspend request cancelled in loop (return false)
 451 // 0x00100000 - thread suspended in loop (return true)
 452 // 0x00200000 - suspend not completed during retry loop (return false)
 453 
 454 // Helper class for tracing suspend wait debug bits.
 455 //
 456 // 0x00000100 indicates that the target thread exited before it could
 457 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 458 // 0x00080000 each indicate a cancelled suspend request so they don't
 459 // count as wait failures either.
 460 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 461 
 462 class TraceSuspendDebugBits : public StackObj {
 463  private:
 464   JavaThread * jt;
 465   bool         is_wait;
 466   bool         called_by_wait;  // meaningful when !is_wait
 467   uint32_t *   bits;
 468 
 469  public:
 470   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 471                         uint32_t *_bits) {
 472     jt             = _jt;
 473     is_wait        = _is_wait;
 474     called_by_wait = _called_by_wait;
 475     bits           = _bits;
 476   }
 477 
 478   ~TraceSuspendDebugBits() {
 479     if (!is_wait) {
 480 #if 1
 481       // By default, don't trace bits for is_ext_suspend_completed() calls.
 482       // That trace is very chatty.
 483       return;
 484 #else
 485       if (!called_by_wait) {
 486         // If tracing for is_ext_suspend_completed() is enabled, then only
 487         // trace calls to it from wait_for_ext_suspend_completion()
 488         return;
 489       }
 490 #endif
 491     }
 492 
 493     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 494       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 495         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 496         ResourceMark rm;
 497 
 498         tty->print_cr(
 499                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 500                       jt->get_thread_name(), *bits);
 501 
 502         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 503       }
 504     }
 505   }
 506 };
 507 #undef DEBUG_FALSE_BITS
 508 
 509 
 510 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 511                                           uint32_t *bits) {
 512   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 513 
 514   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 515   bool do_trans_retry;           // flag to force the retry
 516 
 517   *bits |= 0x00000001;
 518 
 519   do {
 520     do_trans_retry = false;
 521 
 522     if (is_exiting()) {
 523       // Thread is in the process of exiting. This is always checked
 524       // first to reduce the risk of dereferencing a freed JavaThread.
 525       *bits |= 0x00000100;
 526       return false;
 527     }
 528 
 529     if (!is_external_suspend()) {
 530       // Suspend request is cancelled. This is always checked before
 531       // is_ext_suspended() to reduce the risk of a rogue resume
 532       // confusing the thread that made the suspend request.
 533       *bits |= 0x00000200;
 534       return false;
 535     }
 536 
 537     if (is_ext_suspended()) {
 538       // thread is suspended
 539       *bits |= 0x00000400;
 540       return true;
 541     }
 542 
 543     // Now that we no longer do hard suspends of threads running
 544     // native code, the target thread can be changing thread state
 545     // while we are in this routine:
 546     //
 547     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 548     //
 549     // We save a copy of the thread state as observed at this moment
 550     // and make our decision about suspend completeness based on the
 551     // copy. This closes the race where the thread state is seen as
 552     // _thread_in_native_trans in the if-thread_blocked check, but is
 553     // seen as _thread_blocked in if-thread_in_native_trans check.
 554     JavaThreadState save_state = thread_state();
 555 
 556     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 557       // If the thread's state is _thread_blocked and this blocking
 558       // condition is known to be equivalent to a suspend, then we can
 559       // consider the thread to be externally suspended. This means that
 560       // the code that sets _thread_blocked has been modified to do
 561       // self-suspension if the blocking condition releases. We also
 562       // used to check for CONDVAR_WAIT here, but that is now covered by
 563       // the _thread_blocked with self-suspension check.
 564       //
 565       // Return true since we wouldn't be here unless there was still an
 566       // external suspend request.
 567       *bits |= 0x00001000;
 568       return true;
 569     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 570       // Threads running native code will self-suspend on native==>VM/Java
 571       // transitions. If its stack is walkable (should always be the case
 572       // unless this function is called before the actual java_suspend()
 573       // call), then the wait is done.
 574       *bits |= 0x00002000;
 575       return true;
 576     } else if (!called_by_wait && !did_trans_retry &&
 577                save_state == _thread_in_native_trans &&
 578                frame_anchor()->walkable()) {
 579       // The thread is transitioning from thread_in_native to another
 580       // thread state. check_safepoint_and_suspend_for_native_trans()
 581       // will force the thread to self-suspend. If it hasn't gotten
 582       // there yet we may have caught the thread in-between the native
 583       // code check above and the self-suspend. Lucky us. If we were
 584       // called by wait_for_ext_suspend_completion(), then it
 585       // will be doing the retries so we don't have to.
 586       //
 587       // Since we use the saved thread state in the if-statement above,
 588       // there is a chance that the thread has already transitioned to
 589       // _thread_blocked by the time we get here. In that case, we will
 590       // make a single unnecessary pass through the logic below. This
 591       // doesn't hurt anything since we still do the trans retry.
 592 
 593       *bits |= 0x00004000;
 594 
 595       // Once the thread leaves thread_in_native_trans for another
 596       // thread state, we break out of this retry loop. We shouldn't
 597       // need this flag to prevent us from getting back here, but
 598       // sometimes paranoia is good.
 599       did_trans_retry = true;
 600 
 601       // We wait for the thread to transition to a more usable state.
 602       for (int i = 1; i <= SuspendRetryCount; i++) {
 603         // We used to do an "os::yield_all(i)" call here with the intention
 604         // that yielding would increase on each retry. However, the parameter
 605         // is ignored on Linux which means the yield didn't scale up. Waiting
 606         // on the SR_lock below provides a much more predictable scale up for
 607         // the delay. It also provides a simple/direct point to check for any
 608         // safepoint requests from the VMThread
 609 
 610         // temporarily drops SR_lock while doing wait with safepoint check
 611         // (if we're a JavaThread - the WatcherThread can also call this)
 612         // and increase delay with each retry
 613         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 614 
 615         // check the actual thread state instead of what we saved above
 616         if (thread_state() != _thread_in_native_trans) {
 617           // the thread has transitioned to another thread state so
 618           // try all the checks (except this one) one more time.
 619           do_trans_retry = true;
 620           break;
 621         }
 622       } // end retry loop
 623 
 624 
 625     }
 626   } while (do_trans_retry);
 627 
 628   *bits |= 0x00000010;
 629   return false;
 630 }
 631 
 632 // Wait for an external suspend request to complete (or be cancelled).
 633 // Returns true if the thread is externally suspended and false otherwise.
 634 //
 635 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 636                                                  uint32_t *bits) {
 637   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 638                              false /* !called_by_wait */, bits);
 639 
 640   // local flag copies to minimize SR_lock hold time
 641   bool is_suspended;
 642   bool pending;
 643   uint32_t reset_bits;
 644 
 645   // set a marker so is_ext_suspend_completed() knows we are the caller
 646   *bits |= 0x00010000;
 647 
 648   // We use reset_bits to reinitialize the bits value at the top of
 649   // each retry loop. This allows the caller to make use of any
 650   // unused bits for their own marking purposes.
 651   reset_bits = *bits;
 652 
 653   {
 654     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 655     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 656                                             delay, bits);
 657     pending = is_external_suspend();
 658   }
 659   // must release SR_lock to allow suspension to complete
 660 
 661   if (!pending) {
 662     // A cancelled suspend request is the only false return from
 663     // is_ext_suspend_completed() that keeps us from entering the
 664     // retry loop.
 665     *bits |= 0x00020000;
 666     return false;
 667   }
 668 
 669   if (is_suspended) {
 670     *bits |= 0x00040000;
 671     return true;
 672   }
 673 
 674   for (int i = 1; i <= retries; i++) {
 675     *bits = reset_bits;  // reinit to only track last retry
 676 
 677     // We used to do an "os::yield_all(i)" call here with the intention
 678     // that yielding would increase on each retry. However, the parameter
 679     // is ignored on Linux which means the yield didn't scale up. Waiting
 680     // on the SR_lock below provides a much more predictable scale up for
 681     // the delay. It also provides a simple/direct point to check for any
 682     // safepoint requests from the VMThread
 683 
 684     {
 685       MutexLocker ml(SR_lock());
 686       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 687       // can also call this)  and increase delay with each retry
 688       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 689 
 690       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 691                                               delay, bits);
 692 
 693       // It is possible for the external suspend request to be cancelled
 694       // (by a resume) before the actual suspend operation is completed.
 695       // Refresh our local copy to see if we still need to wait.
 696       pending = is_external_suspend();
 697     }
 698 
 699     if (!pending) {
 700       // A cancelled suspend request is the only false return from
 701       // is_ext_suspend_completed() that keeps us from staying in the
 702       // retry loop.
 703       *bits |= 0x00080000;
 704       return false;
 705     }
 706 
 707     if (is_suspended) {
 708       *bits |= 0x00100000;
 709       return true;
 710     }
 711   } // end retry loop
 712 
 713   // thread did not suspend after all our retries
 714   *bits |= 0x00200000;
 715   return false;
 716 }
 717 
 718 #ifndef PRODUCT
 719 void JavaThread::record_jump(address target, address instr, const char* file,
 720                              int line) {
 721 
 722   // This should not need to be atomic as the only way for simultaneous
 723   // updates is via interrupts. Even then this should be rare or non-existent
 724   // and we don't care that much anyway.
 725 
 726   int index = _jmp_ring_index;
 727   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 728   _jmp_ring[index]._target = (intptr_t) target;
 729   _jmp_ring[index]._instruction = (intptr_t) instr;
 730   _jmp_ring[index]._file = file;
 731   _jmp_ring[index]._line = line;
 732 }
 733 #endif // PRODUCT
 734 
 735 // Called by flat profiler
 736 // Callers have already called wait_for_ext_suspend_completion
 737 // The assertion for that is currently too complex to put here:
 738 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 739   bool gotframe = false;
 740   // self suspension saves needed state.
 741   if (has_last_Java_frame() && _anchor.walkable()) {
 742     *_fr = pd_last_frame();
 743     gotframe = true;
 744   }
 745   return gotframe;
 746 }
 747 
 748 void Thread::interrupt(Thread* thread) {
 749   debug_only(check_for_dangling_thread_pointer(thread);)
 750   os::interrupt(thread);
 751 }
 752 
 753 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 754   debug_only(check_for_dangling_thread_pointer(thread);)
 755   // Note:  If clear_interrupted==false, this simply fetches and
 756   // returns the value of the field osthread()->interrupted().
 757   return os::is_interrupted(thread, clear_interrupted);
 758 }
 759 
 760 
 761 // GC Support
 762 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 763   jint thread_parity = _oops_do_parity;
 764   if (thread_parity != strong_roots_parity) {
 765     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 766     if (res == thread_parity) {
 767       return true;
 768     } else {
 769       guarantee(res == strong_roots_parity, "Or else what?");
 770       return false;
 771     }
 772   }
 773   return false;
 774 }
 775 
 776 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 777   active_handles()->oops_do(f);
 778   // Do oop for ThreadShadow
 779   f->do_oop((oop*)&_pending_exception);
 780   handle_area()->oops_do(f);
 781 }
 782 
 783 void Thread::nmethods_do(CodeBlobClosure* cf) {
 784   // no nmethods in a generic thread...
 785 }
 786 
 787 void Thread::metadata_handles_do(void f(Metadata*)) {
 788   // Only walk the Handles in Thread.
 789   if (metadata_handles() != NULL) {
 790     for (int i = 0; i< metadata_handles()->length(); i++) {
 791       f(metadata_handles()->at(i));
 792     }
 793   }
 794 }
 795 
 796 void Thread::print_on(outputStream* st) const {
 797   // get_priority assumes osthread initialized
 798   if (osthread() != NULL) {
 799     int os_prio;
 800     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 801       st->print("os_prio=%d ", os_prio);
 802     }
 803     st->print("tid=" INTPTR_FORMAT " ", this);
 804     ext().print_on(st);
 805     osthread()->print_on(st);
 806   }
 807   debug_only(if (WizardMode) print_owned_locks_on(st);)
 808 }
 809 
 810 // Thread::print_on_error() is called by fatal error handler. Don't use
 811 // any lock or allocate memory.
 812 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 813   if (is_VM_thread())                 st->print("VMThread");
 814   else if (is_Compiler_thread())      st->print("CompilerThread");
 815   else if (is_Java_thread())          st->print("JavaThread");
 816   else if (is_GC_task_thread())       st->print("GCTaskThread");
 817   else if (is_Watcher_thread())       st->print("WatcherThread");
 818   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 819   else                                st->print("Thread");
 820 
 821   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 822             _stack_base - _stack_size, _stack_base);
 823 
 824   if (osthread()) {
 825     st->print(" [id=%d]", osthread()->thread_id());
 826   }
 827 }
 828 
 829 #ifdef ASSERT
 830 void Thread::print_owned_locks_on(outputStream* st) const {
 831   Monitor *cur = _owned_locks;
 832   if (cur == NULL) {
 833     st->print(" (no locks) ");
 834   } else {
 835     st->print_cr(" Locks owned:");
 836     while (cur) {
 837       cur->print_on(st);
 838       cur = cur->next();
 839     }
 840   }
 841 }
 842 
 843 static int ref_use_count  = 0;
 844 
 845 bool Thread::owns_locks_but_compiled_lock() const {
 846   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 847     if (cur != Compile_lock) return true;
 848   }
 849   return false;
 850 }
 851 
 852 
 853 #endif
 854 
 855 #ifndef PRODUCT
 856 
 857 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 858 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 859 // no threads which allow_vm_block's are held
 860 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 861   // Check if current thread is allowed to block at a safepoint
 862   if (!(_allow_safepoint_count == 0)) {
 863     fatal("Possible safepoint reached by thread that does not allow it");
 864   }
 865   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 866     fatal("LEAF method calling lock?");
 867   }
 868 
 869 #ifdef ASSERT
 870   if (potential_vm_operation && is_Java_thread()
 871       && !Universe::is_bootstrapping()) {
 872     // Make sure we do not hold any locks that the VM thread also uses.
 873     // This could potentially lead to deadlocks
 874     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 875       // Threads_lock is special, since the safepoint synchronization will not start before this is
 876       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 877       // since it is used to transfer control between JavaThreads and the VMThread
 878       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 879       if ((cur->allow_vm_block() &&
 880            cur != Threads_lock &&
 881            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 882            cur != VMOperationRequest_lock &&
 883            cur != VMOperationQueue_lock) ||
 884            cur->rank() == Mutex::special) {
 885         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 886       }
 887     }
 888   }
 889 
 890   if (GCALotAtAllSafepoints) {
 891     // We could enter a safepoint here and thus have a gc
 892     InterfaceSupport::check_gc_alot();
 893   }
 894 #endif
 895 }
 896 #endif
 897 
 898 bool Thread::is_in_stack(address adr) const {
 899   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 900   address end = os::current_stack_pointer();
 901   // Allow non Java threads to call this without stack_base
 902   if (_stack_base == NULL) return true;
 903   if (stack_base() >= adr && adr >= end) return true;
 904 
 905   return false;
 906 }
 907 
 908 
 909 bool Thread::is_in_usable_stack(address adr) const {
 910   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 911   size_t usable_stack_size = _stack_size - stack_guard_size;
 912 
 913   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 914 }
 915 
 916 
 917 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 918 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 919 // used for compilation in the future. If that change is made, the need for these methods
 920 // should be revisited, and they should be removed if possible.
 921 
 922 bool Thread::is_lock_owned(address adr) const {
 923   return on_local_stack(adr);
 924 }
 925 
 926 bool Thread::set_as_starting_thread() {
 927   // NOTE: this must be called inside the main thread.
 928   return os::create_main_thread((JavaThread*)this);
 929 }
 930 
 931 static void initialize_class(Symbol* class_name, TRAPS) {
 932   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 933   InstanceKlass::cast(klass)->initialize(CHECK);
 934 }
 935 
 936 
 937 // Creates the initial ThreadGroup
 938 static Handle create_initial_thread_group(TRAPS) {
 939   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 940   instanceKlassHandle klass (THREAD, k);
 941 
 942   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 943   {
 944     JavaValue result(T_VOID);
 945     JavaCalls::call_special(&result,
 946                             system_instance,
 947                             klass,
 948                             vmSymbols::object_initializer_name(),
 949                             vmSymbols::void_method_signature(),
 950                             CHECK_NH);
 951   }
 952   Universe::set_system_thread_group(system_instance());
 953 
 954   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 955   {
 956     JavaValue result(T_VOID);
 957     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 958     JavaCalls::call_special(&result,
 959                             main_instance,
 960                             klass,
 961                             vmSymbols::object_initializer_name(),
 962                             vmSymbols::threadgroup_string_void_signature(),
 963                             system_instance,
 964                             string,
 965                             CHECK_NH);
 966   }
 967   return main_instance;
 968 }
 969 
 970 // Creates the initial Thread
 971 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 972                                  TRAPS) {
 973   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 974   instanceKlassHandle klass (THREAD, k);
 975   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 976 
 977   java_lang_Thread::set_thread(thread_oop(), thread);
 978   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 979   thread->set_threadObj(thread_oop());
 980 
 981   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 982 
 983   JavaValue result(T_VOID);
 984   JavaCalls::call_special(&result, thread_oop,
 985                           klass,
 986                           vmSymbols::object_initializer_name(),
 987                           vmSymbols::threadgroup_string_void_signature(),
 988                           thread_group,
 989                           string,
 990                           CHECK_NULL);
 991   return thread_oop();
 992 }
 993 
 994 static void call_initializeSystemClass(TRAPS) {
 995   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 996   instanceKlassHandle klass (THREAD, k);
 997 
 998   JavaValue result(T_VOID);
 999   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1000                          vmSymbols::void_method_signature(), CHECK);
1001 }
1002 
1003 char java_runtime_name[128] = "";
1004 char java_runtime_version[128] = "";
1005 
1006 // extract the JRE name from sun.misc.Version.java_runtime_name
1007 static const char* get_java_runtime_name(TRAPS) {
1008   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1009                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1010   fieldDescriptor fd;
1011   bool found = k != NULL &&
1012                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1013                                                         vmSymbols::string_signature(), &fd);
1014   if (found) {
1015     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1016     if (name_oop == NULL) {
1017       return NULL;
1018     }
1019     const char* name = java_lang_String::as_utf8_string(name_oop,
1020                                                         java_runtime_name,
1021                                                         sizeof(java_runtime_name));
1022     return name;
1023   } else {
1024     return NULL;
1025   }
1026 }
1027 
1028 // extract the JRE version from sun.misc.Version.java_runtime_version
1029 static const char* get_java_runtime_version(TRAPS) {
1030   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1031                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1032   fieldDescriptor fd;
1033   bool found = k != NULL &&
1034                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1035                                                         vmSymbols::string_signature(), &fd);
1036   if (found) {
1037     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1038     if (name_oop == NULL) {
1039       return NULL;
1040     }
1041     const char* name = java_lang_String::as_utf8_string(name_oop,
1042                                                         java_runtime_version,
1043                                                         sizeof(java_runtime_version));
1044     return name;
1045   } else {
1046     return NULL;
1047   }
1048 }
1049 
1050 // General purpose hook into Java code, run once when the VM is initialized.
1051 // The Java library method itself may be changed independently from the VM.
1052 static void call_postVMInitHook(TRAPS) {
1053   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1054   instanceKlassHandle klass (THREAD, k);
1055   if (klass.not_null()) {
1056     JavaValue result(T_VOID);
1057     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1058                            vmSymbols::void_method_signature(),
1059                            CHECK);
1060   }
1061 }
1062 
1063 static void reset_vm_info_property(TRAPS) {
1064   // the vm info string
1065   ResourceMark rm(THREAD);
1066   const char *vm_info = VM_Version::vm_info_string();
1067 
1068   // java.lang.System class
1069   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1070   instanceKlassHandle klass (THREAD, k);
1071 
1072   // setProperty arguments
1073   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1074   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1075 
1076   // return value
1077   JavaValue r(T_OBJECT);
1078 
1079   // public static String setProperty(String key, String value);
1080   JavaCalls::call_static(&r,
1081                          klass,
1082                          vmSymbols::setProperty_name(),
1083                          vmSymbols::string_string_string_signature(),
1084                          key_str,
1085                          value_str,
1086                          CHECK);
1087 }
1088 
1089 
1090 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1091                                     bool daemon, TRAPS) {
1092   assert(thread_group.not_null(), "thread group should be specified");
1093   assert(threadObj() == NULL, "should only create Java thread object once");
1094 
1095   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1096   instanceKlassHandle klass (THREAD, k);
1097   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1098 
1099   java_lang_Thread::set_thread(thread_oop(), this);
1100   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1101   set_threadObj(thread_oop());
1102 
1103   JavaValue result(T_VOID);
1104   if (thread_name != NULL) {
1105     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1106     // Thread gets assigned specified name and null target
1107     JavaCalls::call_special(&result,
1108                             thread_oop,
1109                             klass,
1110                             vmSymbols::object_initializer_name(),
1111                             vmSymbols::threadgroup_string_void_signature(),
1112                             thread_group, // Argument 1
1113                             name,         // Argument 2
1114                             THREAD);
1115   } else {
1116     // Thread gets assigned name "Thread-nnn" and null target
1117     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1118     JavaCalls::call_special(&result,
1119                             thread_oop,
1120                             klass,
1121                             vmSymbols::object_initializer_name(),
1122                             vmSymbols::threadgroup_runnable_void_signature(),
1123                             thread_group, // Argument 1
1124                             Handle(),     // Argument 2
1125                             THREAD);
1126   }
1127 
1128 
1129   if (daemon) {
1130     java_lang_Thread::set_daemon(thread_oop());
1131   }
1132 
1133   if (HAS_PENDING_EXCEPTION) {
1134     return;
1135   }
1136 
1137   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1138   Handle threadObj(THREAD, this->threadObj());
1139 
1140   JavaCalls::call_special(&result,
1141                           thread_group,
1142                           group,
1143                           vmSymbols::add_method_name(),
1144                           vmSymbols::thread_void_signature(),
1145                           threadObj,          // Arg 1
1146                           THREAD);
1147 }
1148 
1149 // NamedThread --  non-JavaThread subclasses with multiple
1150 // uniquely named instances should derive from this.
1151 NamedThread::NamedThread() : Thread() {
1152   _name = NULL;
1153   _processed_thread = NULL;
1154 }
1155 
1156 NamedThread::~NamedThread() {
1157   if (_name != NULL) {
1158     FREE_C_HEAP_ARRAY(char, _name);
1159     _name = NULL;
1160   }
1161 }
1162 
1163 void NamedThread::set_name(const char* format, ...) {
1164   guarantee(_name == NULL, "Only get to set name once.");
1165   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1166   guarantee(_name != NULL, "alloc failure");
1167   va_list ap;
1168   va_start(ap, format);
1169   jio_vsnprintf(_name, max_name_len, format, ap);
1170   va_end(ap);
1171 }
1172 
1173 void NamedThread::initialize_named_thread() {
1174   set_native_thread_name(name());
1175 }
1176 
1177 void NamedThread::print_on(outputStream* st) const {
1178   st->print("\"%s\" ", name());
1179   Thread::print_on(st);
1180   st->cr();
1181 }
1182 
1183 
1184 // ======= WatcherThread ========
1185 
1186 // The watcher thread exists to simulate timer interrupts.  It should
1187 // be replaced by an abstraction over whatever native support for
1188 // timer interrupts exists on the platform.
1189 
1190 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1191 bool WatcherThread::_startable = false;
1192 volatile bool  WatcherThread::_should_terminate = false;
1193 
1194 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1195   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1196   if (os::create_thread(this, os::watcher_thread)) {
1197     _watcher_thread = this;
1198 
1199     // Set the watcher thread to the highest OS priority which should not be
1200     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1201     // is created. The only normal thread using this priority is the reference
1202     // handler thread, which runs for very short intervals only.
1203     // If the VMThread's priority is not lower than the WatcherThread profiling
1204     // will be inaccurate.
1205     os::set_priority(this, MaxPriority);
1206     if (!DisableStartThread) {
1207       os::start_thread(this);
1208     }
1209   }
1210 }
1211 
1212 int WatcherThread::sleep() const {
1213   // The WatcherThread does not participate in the safepoint protocol
1214   // for the PeriodicTask_lock because it is not a JavaThread.
1215   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1216 
1217   if (_should_terminate) {
1218     // check for termination before we do any housekeeping or wait
1219     return 0;  // we did not sleep.
1220   }
1221 
1222   // remaining will be zero if there are no tasks,
1223   // causing the WatcherThread to sleep until a task is
1224   // enrolled
1225   int remaining = PeriodicTask::time_to_wait();
1226   int time_slept = 0;
1227 
1228   // we expect this to timeout - we only ever get unparked when
1229   // we should terminate or when a new task has been enrolled
1230   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1231 
1232   jlong time_before_loop = os::javaTimeNanos();
1233 
1234   while (true) {
1235     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1236                                             remaining);
1237     jlong now = os::javaTimeNanos();
1238 
1239     if (remaining == 0) {
1240       // if we didn't have any tasks we could have waited for a long time
1241       // consider the time_slept zero and reset time_before_loop
1242       time_slept = 0;
1243       time_before_loop = now;
1244     } else {
1245       // need to recalculate since we might have new tasks in _tasks
1246       time_slept = (int) ((now - time_before_loop) / 1000000);
1247     }
1248 
1249     // Change to task list or spurious wakeup of some kind
1250     if (timedout || _should_terminate) {
1251       break;
1252     }
1253 
1254     remaining = PeriodicTask::time_to_wait();
1255     if (remaining == 0) {
1256       // Last task was just disenrolled so loop around and wait until
1257       // another task gets enrolled
1258       continue;
1259     }
1260 
1261     remaining -= time_slept;
1262     if (remaining <= 0) {
1263       break;
1264     }
1265   }
1266 
1267   return time_slept;
1268 }
1269 
1270 void WatcherThread::run() {
1271 
1272   assert(this == watcher_thread(), "just checking");
1273 
1274   this->record_stack_base_and_size();
1275   this->initialize_thread_local_storage();
1276   this->set_native_thread_name(this->name());
1277   this->set_active_handles(JNIHandleBlock::allocate_block());
1278   while (true) {
1279     assert(watcher_thread() == Thread::current(), "thread consistency check");
1280     assert(watcher_thread() == this, "thread consistency check");
1281 
1282     // Calculate how long it'll be until the next PeriodicTask work
1283     // should be done, and sleep that amount of time.
1284     int time_waited = sleep();
1285 
1286     if (is_error_reported()) {
1287       // A fatal error has happened, the error handler(VMError::report_and_die)
1288       // should abort JVM after creating an error log file. However in some
1289       // rare cases, the error handler itself might deadlock. Here we try to
1290       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1291       //
1292       // This code is in WatcherThread because WatcherThread wakes up
1293       // periodically so the fatal error handler doesn't need to do anything;
1294       // also because the WatcherThread is less likely to crash than other
1295       // threads.
1296 
1297       for (;;) {
1298         if (!ShowMessageBoxOnError
1299             && (OnError == NULL || OnError[0] == '\0')
1300             && Arguments::abort_hook() == NULL) {
1301           os::sleep(this, ErrorLogTimeout * 60 * 1000, false);
1302           fdStream err(defaultStream::output_fd());
1303           err.print_raw_cr("# [ timer expired, abort... ]");
1304           // skip atexit/vm_exit/vm_abort hooks
1305           os::die();
1306         }
1307 
1308         // Wake up 5 seconds later, the fatal handler may reset OnError or
1309         // ShowMessageBoxOnError when it is ready to abort.
1310         os::sleep(this, 5 * 1000, false);
1311       }
1312     }
1313 
1314     if (_should_terminate) {
1315       // check for termination before posting the next tick
1316       break;
1317     }
1318 
1319     PeriodicTask::real_time_tick(time_waited);
1320   }
1321 
1322   // Signal that it is terminated
1323   {
1324     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1325     _watcher_thread = NULL;
1326     Terminator_lock->notify();
1327   }
1328 
1329   // Thread destructor usually does this..
1330   ThreadLocalStorage::set_thread(NULL);
1331 }
1332 
1333 void WatcherThread::start() {
1334   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1335 
1336   if (watcher_thread() == NULL && _startable) {
1337     _should_terminate = false;
1338     // Create the single instance of WatcherThread
1339     new WatcherThread();
1340   }
1341 }
1342 
1343 void WatcherThread::make_startable() {
1344   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1345   _startable = true;
1346 }
1347 
1348 void WatcherThread::stop() {
1349   {
1350     // Follow normal safepoint aware lock enter protocol since the
1351     // WatcherThread is stopped by another JavaThread.
1352     MutexLocker ml(PeriodicTask_lock);
1353     _should_terminate = true;
1354 
1355     WatcherThread* watcher = watcher_thread();
1356     if (watcher != NULL) {
1357       // unpark the WatcherThread so it can see that it should terminate
1358       watcher->unpark();
1359     }
1360   }
1361 
1362   MutexLocker mu(Terminator_lock);
1363 
1364   while (watcher_thread() != NULL) {
1365     // This wait should make safepoint checks, wait without a timeout,
1366     // and wait as a suspend-equivalent condition.
1367     //
1368     // Note: If the FlatProfiler is running, then this thread is waiting
1369     // for the WatcherThread to terminate and the WatcherThread, via the
1370     // FlatProfiler task, is waiting for the external suspend request on
1371     // this thread to complete. wait_for_ext_suspend_completion() will
1372     // eventually timeout, but that takes time. Making this wait a
1373     // suspend-equivalent condition solves that timeout problem.
1374     //
1375     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1376                           Mutex::_as_suspend_equivalent_flag);
1377   }
1378 }
1379 
1380 void WatcherThread::unpark() {
1381   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1382   PeriodicTask_lock->notify();
1383 }
1384 
1385 void WatcherThread::print_on(outputStream* st) const {
1386   st->print("\"%s\" ", name());
1387   Thread::print_on(st);
1388   st->cr();
1389 }
1390 
1391 // ======= JavaThread ========
1392 
1393 // A JavaThread is a normal Java thread
1394 
1395 void JavaThread::initialize() {
1396   // Initialize fields
1397 
1398   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1399   set_claimed_par_id(UINT_MAX);
1400 
1401   set_saved_exception_pc(NULL);
1402   set_threadObj(NULL);
1403   _anchor.clear();
1404   set_entry_point(NULL);
1405   set_jni_functions(jni_functions());
1406   set_callee_target(NULL);
1407   set_vm_result(NULL);
1408   set_vm_result_2(NULL);
1409   set_vframe_array_head(NULL);
1410   set_vframe_array_last(NULL);
1411   set_deferred_locals(NULL);
1412   set_deopt_mark(NULL);
1413   set_deopt_nmethod(NULL);
1414   clear_must_deopt_id();
1415   set_monitor_chunks(NULL);
1416   set_next(NULL);
1417   set_thread_state(_thread_new);
1418   _terminated = _not_terminated;
1419   _privileged_stack_top = NULL;
1420   _array_for_gc = NULL;
1421   _suspend_equivalent = false;
1422   _in_deopt_handler = 0;
1423   _doing_unsafe_access = false;
1424   _stack_guard_state = stack_guard_unused;
1425   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1426   _exception_pc  = 0;
1427   _exception_handler_pc = 0;
1428   _is_method_handle_return = 0;
1429   _jvmti_thread_state= NULL;
1430   _should_post_on_exceptions_flag = JNI_FALSE;
1431   _jvmti_get_loaded_classes_closure = NULL;
1432   _interp_only_mode    = 0;
1433   _special_runtime_exit_condition = _no_async_condition;
1434   _pending_async_exception = NULL;
1435   _thread_stat = NULL;
1436   _thread_stat = new ThreadStatistics();
1437   _blocked_on_compilation = false;
1438   _jni_active_critical = 0;
1439   _pending_jni_exception_check_fn = NULL;
1440   _do_not_unlock_if_synchronized = false;
1441   _cached_monitor_info = NULL;
1442   _parker = Parker::Allocate(this);
1443 
1444 #ifndef PRODUCT
1445   _jmp_ring_index = 0;
1446   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1447     record_jump(NULL, NULL, NULL, 0);
1448   }
1449 #endif // PRODUCT
1450 
1451   set_thread_profiler(NULL);
1452   if (FlatProfiler::is_active()) {
1453     // This is where we would decide to either give each thread it's own profiler
1454     // or use one global one from FlatProfiler,
1455     // or up to some count of the number of profiled threads, etc.
1456     ThreadProfiler* pp = new ThreadProfiler();
1457     pp->engage();
1458     set_thread_profiler(pp);
1459   }
1460 
1461   // Setup safepoint state info for this thread
1462   ThreadSafepointState::create(this);
1463 
1464   debug_only(_java_call_counter = 0);
1465 
1466   // JVMTI PopFrame support
1467   _popframe_condition = popframe_inactive;
1468   _popframe_preserved_args = NULL;
1469   _popframe_preserved_args_size = 0;
1470   _frames_to_pop_failed_realloc = 0;
1471 
1472   pd_initialize();
1473 }
1474 
1475 #if INCLUDE_ALL_GCS
1476 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1477 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1478 bool JavaThread::_evacuation_in_progress_global = false;
1479 #endif // INCLUDE_ALL_GCS
1480 
1481 JavaThread::JavaThread(bool is_attaching_via_jni) :
1482                        Thread()
1483 #if INCLUDE_ALL_GCS
1484                        , _satb_mark_queue(&_satb_mark_queue_set),
1485                        _dirty_card_queue(&_dirty_card_queue_set),
1486                        _evacuation_in_progress(_evacuation_in_progress_global)
1487 #endif // INCLUDE_ALL_GCS
1488 {
1489   initialize();
1490   if (is_attaching_via_jni) {
1491     _jni_attach_state = _attaching_via_jni;
1492   } else {
1493     _jni_attach_state = _not_attaching_via_jni;
1494   }
1495   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1496 }
1497 
1498 bool JavaThread::reguard_stack(address cur_sp) {
1499   if (_stack_guard_state != stack_guard_yellow_disabled) {
1500     return true; // Stack already guarded or guard pages not needed.
1501   }
1502 
1503   if (register_stack_overflow()) {
1504     // For those architectures which have separate register and
1505     // memory stacks, we must check the register stack to see if
1506     // it has overflowed.
1507     return false;
1508   }
1509 
1510   // Java code never executes within the yellow zone: the latter is only
1511   // there to provoke an exception during stack banging.  If java code
1512   // is executing there, either StackShadowPages should be larger, or
1513   // some exception code in c1, c2 or the interpreter isn't unwinding
1514   // when it should.
1515   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1516 
1517   enable_stack_yellow_zone();
1518   return true;
1519 }
1520 
1521 bool JavaThread::reguard_stack(void) {
1522   return reguard_stack(os::current_stack_pointer());
1523 }
1524 
1525 
1526 void JavaThread::block_if_vm_exited() {
1527   if (_terminated == _vm_exited) {
1528     // _vm_exited is set at safepoint, and Threads_lock is never released
1529     // we will block here forever
1530     Threads_lock->lock_without_safepoint_check();
1531     ShouldNotReachHere();
1532   }
1533 }
1534 
1535 
1536 // Remove this ifdef when C1 is ported to the compiler interface.
1537 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1538 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1539 
1540 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1541                        Thread()
1542 #if INCLUDE_ALL_GCS
1543                        , _satb_mark_queue(&_satb_mark_queue_set),
1544                        _dirty_card_queue(&_dirty_card_queue_set),
1545                        _evacuation_in_progress(_evacuation_in_progress_global)
1546 #endif // INCLUDE_ALL_GCS
1547 {
1548   initialize();
1549   _jni_attach_state = _not_attaching_via_jni;
1550   set_entry_point(entry_point);
1551   // Create the native thread itself.
1552   // %note runtime_23
1553   os::ThreadType thr_type = os::java_thread;
1554   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1555                                                      os::java_thread;
1556   os::create_thread(this, thr_type, stack_sz);
1557   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1558   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1559   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1560   // the exception consists of creating the exception object & initializing it, initialization
1561   // will leave the VM via a JavaCall and then all locks must be unlocked).
1562   //
1563   // The thread is still suspended when we reach here. Thread must be explicit started
1564   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1565   // by calling Threads:add. The reason why this is not done here, is because the thread
1566   // object must be fully initialized (take a look at JVM_Start)
1567 }
1568 
1569 JavaThread::~JavaThread() {
1570 
1571   // JSR166 -- return the parker to the free list
1572   Parker::Release(_parker);
1573   _parker = NULL;
1574 
1575   // Free any remaining  previous UnrollBlock
1576   vframeArray* old_array = vframe_array_last();
1577 
1578   if (old_array != NULL) {
1579     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1580     old_array->set_unroll_block(NULL);
1581     delete old_info;
1582     delete old_array;
1583   }
1584 
1585   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1586   if (deferred != NULL) {
1587     // This can only happen if thread is destroyed before deoptimization occurs.
1588     assert(deferred->length() != 0, "empty array!");
1589     do {
1590       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1591       deferred->remove_at(0);
1592       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1593       delete dlv;
1594     } while (deferred->length() != 0);
1595     delete deferred;
1596   }
1597 
1598   // All Java related clean up happens in exit
1599   ThreadSafepointState::destroy(this);
1600   if (_thread_profiler != NULL) delete _thread_profiler;
1601   if (_thread_stat != NULL) delete _thread_stat;
1602 }
1603 
1604 
1605 // The first routine called by a new Java thread
1606 void JavaThread::run() {
1607   // initialize thread-local alloc buffer related fields
1608   this->initialize_tlab();
1609 
1610   // used to test validity of stack trace backs
1611   this->record_base_of_stack_pointer();
1612 
1613   // Record real stack base and size.
1614   this->record_stack_base_and_size();
1615 
1616   // Initialize thread local storage; set before calling MutexLocker
1617   this->initialize_thread_local_storage();
1618 
1619   this->create_stack_guard_pages();
1620 
1621   this->cache_global_variables();
1622 
1623   // Thread is now sufficient initialized to be handled by the safepoint code as being
1624   // in the VM. Change thread state from _thread_new to _thread_in_vm
1625   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1626 
1627   assert(JavaThread::current() == this, "sanity check");
1628   assert(!Thread::current()->owns_locks(), "sanity check");
1629 
1630   DTRACE_THREAD_PROBE(start, this);
1631 
1632   // This operation might block. We call that after all safepoint checks for a new thread has
1633   // been completed.
1634   this->set_active_handles(JNIHandleBlock::allocate_block());
1635 
1636   if (JvmtiExport::should_post_thread_life()) {
1637     JvmtiExport::post_thread_start(this);
1638   }
1639 
1640   EventThreadStart event;
1641   if (event.should_commit()) {
1642     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1643     event.commit();
1644   }
1645 
1646   // We call another function to do the rest so we are sure that the stack addresses used
1647   // from there will be lower than the stack base just computed
1648   thread_main_inner();
1649 
1650   // Note, thread is no longer valid at this point!
1651 }
1652 
1653 
1654 void JavaThread::thread_main_inner() {
1655   assert(JavaThread::current() == this, "sanity check");
1656   assert(this->threadObj() != NULL, "just checking");
1657 
1658   // Execute thread entry point unless this thread has a pending exception
1659   // or has been stopped before starting.
1660   // Note: Due to JVM_StopThread we can have pending exceptions already!
1661   if (!this->has_pending_exception() &&
1662       !java_lang_Thread::is_stillborn(this->threadObj())) {
1663     {
1664       ResourceMark rm(this);
1665       this->set_native_thread_name(this->get_thread_name());
1666     }
1667     HandleMark hm(this);
1668     this->entry_point()(this, this);
1669   }
1670 
1671   DTRACE_THREAD_PROBE(stop, this);
1672 
1673   this->exit(false);
1674   delete this;
1675 }
1676 
1677 
1678 static void ensure_join(JavaThread* thread) {
1679   // We do not need to grap the Threads_lock, since we are operating on ourself.
1680   Handle threadObj(thread, oopDesc::bs()->write_barrier(thread->threadObj()));
1681   assert(threadObj.not_null(), "java thread object must exist");
1682   ObjectLocker lock(threadObj, thread);
1683   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1684   thread->clear_pending_exception();
1685   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1686   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1687   // Clear the native thread instance - this makes isAlive return false and allows the join()
1688   // to complete once we've done the notify_all below
1689   java_lang_Thread::set_thread(threadObj(), NULL);
1690   lock.notify_all(thread);
1691   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1692   thread->clear_pending_exception();
1693 }
1694 
1695 
1696 // For any new cleanup additions, please check to see if they need to be applied to
1697 // cleanup_failed_attach_current_thread as well.
1698 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1699   assert(this == JavaThread::current(), "thread consistency check");
1700 
1701   HandleMark hm(this);
1702   Handle uncaught_exception(this, this->pending_exception());
1703   this->clear_pending_exception();
1704   Handle threadObj(this, this->threadObj());
1705   assert(threadObj.not_null(), "Java thread object should be created");
1706 
1707   if (get_thread_profiler() != NULL) {
1708     get_thread_profiler()->disengage();
1709     ResourceMark rm;
1710     get_thread_profiler()->print(get_thread_name());
1711   }
1712 
1713 
1714   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1715   {
1716     EXCEPTION_MARK;
1717 
1718     CLEAR_PENDING_EXCEPTION;
1719   }
1720   if (!destroy_vm) {
1721     if (uncaught_exception.not_null()) {
1722       EXCEPTION_MARK;
1723       // Call method Thread.dispatchUncaughtException().
1724       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1725       JavaValue result(T_VOID);
1726       JavaCalls::call_virtual(&result,
1727                               threadObj, thread_klass,
1728                               vmSymbols::dispatchUncaughtException_name(),
1729                               vmSymbols::throwable_void_signature(),
1730                               uncaught_exception,
1731                               THREAD);
1732       if (HAS_PENDING_EXCEPTION) {
1733         ResourceMark rm(this);
1734         jio_fprintf(defaultStream::error_stream(),
1735                     "\nException: %s thrown from the UncaughtExceptionHandler"
1736                     " in thread \"%s\"\n",
1737                     pending_exception()->klass()->external_name(),
1738                     get_thread_name());
1739         CLEAR_PENDING_EXCEPTION;
1740       }
1741     }
1742 
1743     // Called before the java thread exit since we want to read info
1744     // from java_lang_Thread object
1745     EventThreadEnd event;
1746     if (event.should_commit()) {
1747       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1748       event.commit();
1749     }
1750 
1751     // Call after last event on thread
1752     EVENT_THREAD_EXIT(this);
1753 
1754     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1755     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1756     // is deprecated anyhow.
1757     if (!is_Compiler_thread()) {
1758       int count = 3;
1759       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1760         EXCEPTION_MARK;
1761         JavaValue result(T_VOID);
1762         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1763         JavaCalls::call_virtual(&result,
1764                                 threadObj, thread_klass,
1765                                 vmSymbols::exit_method_name(),
1766                                 vmSymbols::void_method_signature(),
1767                                 THREAD);
1768         CLEAR_PENDING_EXCEPTION;
1769       }
1770     }
1771     // notify JVMTI
1772     if (JvmtiExport::should_post_thread_life()) {
1773       JvmtiExport::post_thread_end(this);
1774     }
1775 
1776     // We have notified the agents that we are exiting, before we go on,
1777     // we must check for a pending external suspend request and honor it
1778     // in order to not surprise the thread that made the suspend request.
1779     while (true) {
1780       {
1781         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1782         if (!is_external_suspend()) {
1783           set_terminated(_thread_exiting);
1784           ThreadService::current_thread_exiting(this);
1785           break;
1786         }
1787         // Implied else:
1788         // Things get a little tricky here. We have a pending external
1789         // suspend request, but we are holding the SR_lock so we
1790         // can't just self-suspend. So we temporarily drop the lock
1791         // and then self-suspend.
1792       }
1793 
1794       ThreadBlockInVM tbivm(this);
1795       java_suspend_self();
1796 
1797       // We're done with this suspend request, but we have to loop around
1798       // and check again. Eventually we will get SR_lock without a pending
1799       // external suspend request and will be able to mark ourselves as
1800       // exiting.
1801     }
1802     // no more external suspends are allowed at this point
1803   } else {
1804     // before_exit() has already posted JVMTI THREAD_END events
1805   }
1806 
1807   // Notify waiters on thread object. This has to be done after exit() is called
1808   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1809   // group should have the destroyed bit set before waiters are notified).
1810   ensure_join(this);
1811   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1812 
1813   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1814   // held by this thread must be released. The spec does not distinguish
1815   // between JNI-acquired and regular Java monitors. We can only see
1816   // regular Java monitors here if monitor enter-exit matching is broken.
1817   //
1818   // Optionally release any monitors for regular JavaThread exits. This
1819   // is provided as a work around for any bugs in monitor enter-exit
1820   // matching. This can be expensive so it is not enabled by default.
1821   // ObjectMonitor::Knob_ExitRelease is a superset of the
1822   // JNIDetachReleasesMonitors option.
1823   //
1824   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1825   // ObjectSynchronizer::release_monitors_owned_by_thread().
1826   if ((exit_type == jni_detach && JNIDetachReleasesMonitors) ||
1827       ObjectMonitor::Knob_ExitRelease) {
1828     // Sanity check even though JNI DetachCurrentThread() would have
1829     // returned JNI_ERR if there was a Java frame. JavaThread exit
1830     // should be done executing Java code by the time we get here.
1831     assert(!this->has_last_Java_frame(),
1832            "should not have a Java frame when detaching or exiting");
1833     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1834     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1835   }
1836 
1837   // These things needs to be done while we are still a Java Thread. Make sure that thread
1838   // is in a consistent state, in case GC happens
1839   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1840 
1841   if (active_handles() != NULL) {
1842     JNIHandleBlock* block = active_handles();
1843     set_active_handles(NULL);
1844     JNIHandleBlock::release_block(block);
1845   }
1846 
1847   if (free_handle_block() != NULL) {
1848     JNIHandleBlock* block = free_handle_block();
1849     set_free_handle_block(NULL);
1850     JNIHandleBlock::release_block(block);
1851   }
1852 
1853   // These have to be removed while this is still a valid thread.
1854   remove_stack_guard_pages();
1855 
1856   if (UseTLAB) {
1857     tlab().make_parsable(true);  // retire TLAB
1858   }
1859 
1860   if (JvmtiEnv::environments_might_exist()) {
1861     JvmtiExport::cleanup_thread(this);
1862   }
1863 
1864   // We must flush any deferred card marks before removing a thread from
1865   // the list of active threads.
1866   Universe::heap()->flush_deferred_store_barrier(this);
1867   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1868 
1869 #if INCLUDE_ALL_GCS
1870   // We must flush the G1-related buffers before removing a thread
1871   // from the list of active threads. We must do this after any deferred
1872   // card marks have been flushed (above) so that any entries that are
1873   // added to the thread's dirty card queue as a result are not lost.
1874   if (UseG1GC || UseShenandoahGC) {
1875     flush_barrier_queues();
1876   }
1877   if (UseShenandoahGC && UseTLAB) {
1878     gclab().make_parsable(true);
1879   }
1880 #endif // INCLUDE_ALL_GCS
1881 
1882   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1883   Threads::remove(this);
1884 }
1885 
1886 #if INCLUDE_ALL_GCS
1887 // Flush G1-related queues.
1888 void JavaThread::flush_barrier_queues() {
1889   satb_mark_queue().flush();
1890   dirty_card_queue().flush();
1891 }
1892 
1893 void JavaThread::initialize_queues() {
1894   assert(!SafepointSynchronize::is_at_safepoint(),
1895          "we should not be at a safepoint");
1896 
1897   ObjPtrQueue& satb_queue = satb_mark_queue();
1898   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1899   // The SATB queue should have been constructed with its active
1900   // field set to false.
1901   assert(!satb_queue.is_active(), "SATB queue should not be active");
1902   assert(satb_queue.is_empty(), "SATB queue should be empty");
1903   // If we are creating the thread during a marking cycle, we should
1904   // set the active field of the SATB queue to true.
1905   if (satb_queue_set.is_active()) {
1906     satb_queue.set_active(true);
1907   }
1908 
1909   DirtyCardQueue& dirty_queue = dirty_card_queue();
1910   // The dirty card queue should have been constructed with its
1911   // active field set to true.
1912   assert(dirty_queue.is_active(), "dirty card queue should be active");
1913 }
1914 
1915 bool JavaThread::evacuation_in_progress() const {
1916   return _evacuation_in_progress;
1917 }
1918 
1919 void JavaThread::set_evacuation_in_progress(bool in_prog) {
1920   _evacuation_in_progress = in_prog;
1921 }
1922 
1923 void JavaThread::set_evacuation_in_progress_all_threads(bool in_prog) {
1924   _evacuation_in_progress_global = in_prog;
1925   for (JavaThread* t = Threads::first(); t; t = t->next()) {
1926     t->set_evacuation_in_progress(in_prog);
1927   }
1928 }
1929 #endif // INCLUDE_ALL_GCS
1930 
1931 void JavaThread::cleanup_failed_attach_current_thread() {
1932   if (get_thread_profiler() != NULL) {
1933     get_thread_profiler()->disengage();
1934     ResourceMark rm;
1935     get_thread_profiler()->print(get_thread_name());
1936   }
1937 
1938   if (active_handles() != NULL) {
1939     JNIHandleBlock* block = active_handles();
1940     set_active_handles(NULL);
1941     JNIHandleBlock::release_block(block);
1942   }
1943 
1944   if (free_handle_block() != NULL) {
1945     JNIHandleBlock* block = free_handle_block();
1946     set_free_handle_block(NULL);
1947     JNIHandleBlock::release_block(block);
1948   }
1949 
1950   // These have to be removed while this is still a valid thread.
1951   remove_stack_guard_pages();
1952 
1953   if (UseTLAB) {
1954     tlab().make_parsable(true);  // retire TLAB, if any
1955   }
1956 
1957 #if INCLUDE_ALL_GCS
1958   if (UseG1GC || UseShenandoahGC) {
1959     flush_barrier_queues();
1960   }
1961   if (UseShenandoahGC && UseTLAB) {
1962     gclab().make_parsable(true);
1963   }
1964 #endif // INCLUDE_ALL_GCS
1965 
1966   Threads::remove(this);
1967   delete this;
1968 }
1969 
1970 
1971 
1972 
1973 JavaThread* JavaThread::active() {
1974   Thread* thread = ThreadLocalStorage::thread();
1975   assert(thread != NULL, "just checking");
1976   if (thread->is_Java_thread()) {
1977     return (JavaThread*) thread;
1978   } else {
1979     assert(thread->is_VM_thread(), "this must be a vm thread");
1980     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1981     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1982     assert(ret->is_Java_thread(), "must be a Java thread");
1983     return ret;
1984   }
1985 }
1986 
1987 bool JavaThread::is_lock_owned(address adr) const {
1988   if (Thread::is_lock_owned(adr)) return true;
1989 
1990   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1991     if (chunk->contains(adr)) return true;
1992   }
1993 
1994   return false;
1995 }
1996 
1997 
1998 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1999   chunk->set_next(monitor_chunks());
2000   set_monitor_chunks(chunk);
2001 }
2002 
2003 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2004   guarantee(monitor_chunks() != NULL, "must be non empty");
2005   if (monitor_chunks() == chunk) {
2006     set_monitor_chunks(chunk->next());
2007   } else {
2008     MonitorChunk* prev = monitor_chunks();
2009     while (prev->next() != chunk) prev = prev->next();
2010     prev->set_next(chunk->next());
2011   }
2012 }
2013 
2014 // JVM support.
2015 
2016 // Note: this function shouldn't block if it's called in
2017 // _thread_in_native_trans state (such as from
2018 // check_special_condition_for_native_trans()).
2019 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2020 
2021   if (has_last_Java_frame() && has_async_condition()) {
2022     // If we are at a polling page safepoint (not a poll return)
2023     // then we must defer async exception because live registers
2024     // will be clobbered by the exception path. Poll return is
2025     // ok because the call we a returning from already collides
2026     // with exception handling registers and so there is no issue.
2027     // (The exception handling path kills call result registers but
2028     //  this is ok since the exception kills the result anyway).
2029 
2030     if (is_at_poll_safepoint()) {
2031       // if the code we are returning to has deoptimized we must defer
2032       // the exception otherwise live registers get clobbered on the
2033       // exception path before deoptimization is able to retrieve them.
2034       //
2035       RegisterMap map(this, false);
2036       frame caller_fr = last_frame().sender(&map);
2037       assert(caller_fr.is_compiled_frame(), "what?");
2038       if (caller_fr.is_deoptimized_frame()) {
2039         if (TraceExceptions) {
2040           ResourceMark rm;
2041           tty->print_cr("deferred async exception at compiled safepoint");
2042         }
2043         return;
2044       }
2045     }
2046   }
2047 
2048   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2049   if (condition == _no_async_condition) {
2050     // Conditions have changed since has_special_runtime_exit_condition()
2051     // was called:
2052     // - if we were here only because of an external suspend request,
2053     //   then that was taken care of above (or cancelled) so we are done
2054     // - if we were here because of another async request, then it has
2055     //   been cleared between the has_special_runtime_exit_condition()
2056     //   and now so again we are done
2057     return;
2058   }
2059 
2060   // Check for pending async. exception
2061   if (_pending_async_exception != NULL) {
2062     // Only overwrite an already pending exception, if it is not a threadDeath.
2063     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2064 
2065       // We cannot call Exceptions::_throw(...) here because we cannot block
2066       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2067 
2068       if (TraceExceptions) {
2069         ResourceMark rm;
2070         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2071         if (has_last_Java_frame()) {
2072           frame f = last_frame();
2073           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2074         }
2075         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2076       }
2077       _pending_async_exception = NULL;
2078       clear_has_async_exception();
2079     }
2080   }
2081 
2082   if (check_unsafe_error &&
2083       condition == _async_unsafe_access_error && !has_pending_exception()) {
2084     condition = _no_async_condition;  // done
2085     switch (thread_state()) {
2086     case _thread_in_vm: {
2087       JavaThread* THREAD = this;
2088       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2089     }
2090     case _thread_in_native: {
2091       ThreadInVMfromNative tiv(this);
2092       JavaThread* THREAD = this;
2093       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2094     }
2095     case _thread_in_Java: {
2096       ThreadInVMfromJava tiv(this);
2097       JavaThread* THREAD = this;
2098       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2099     }
2100     default:
2101       ShouldNotReachHere();
2102     }
2103   }
2104 
2105   assert(condition == _no_async_condition || has_pending_exception() ||
2106          (!check_unsafe_error && condition == _async_unsafe_access_error),
2107          "must have handled the async condition, if no exception");
2108 }
2109 
2110 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2111   //
2112   // Check for pending external suspend. Internal suspend requests do
2113   // not use handle_special_runtime_exit_condition().
2114   // If JNIEnv proxies are allowed, don't self-suspend if the target
2115   // thread is not the current thread. In older versions of jdbx, jdbx
2116   // threads could call into the VM with another thread's JNIEnv so we
2117   // can be here operating on behalf of a suspended thread (4432884).
2118   bool do_self_suspend = is_external_suspend_with_lock();
2119   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2120     //
2121     // Because thread is external suspended the safepoint code will count
2122     // thread as at a safepoint. This can be odd because we can be here
2123     // as _thread_in_Java which would normally transition to _thread_blocked
2124     // at a safepoint. We would like to mark the thread as _thread_blocked
2125     // before calling java_suspend_self like all other callers of it but
2126     // we must then observe proper safepoint protocol. (We can't leave
2127     // _thread_blocked with a safepoint in progress). However we can be
2128     // here as _thread_in_native_trans so we can't use a normal transition
2129     // constructor/destructor pair because they assert on that type of
2130     // transition. We could do something like:
2131     //
2132     // JavaThreadState state = thread_state();
2133     // set_thread_state(_thread_in_vm);
2134     // {
2135     //   ThreadBlockInVM tbivm(this);
2136     //   java_suspend_self()
2137     // }
2138     // set_thread_state(_thread_in_vm_trans);
2139     // if (safepoint) block;
2140     // set_thread_state(state);
2141     //
2142     // but that is pretty messy. Instead we just go with the way the
2143     // code has worked before and note that this is the only path to
2144     // java_suspend_self that doesn't put the thread in _thread_blocked
2145     // mode.
2146 
2147     frame_anchor()->make_walkable(this);
2148     java_suspend_self();
2149 
2150     // We might be here for reasons in addition to the self-suspend request
2151     // so check for other async requests.
2152   }
2153 
2154   if (check_asyncs) {
2155     check_and_handle_async_exceptions();
2156   }
2157 }
2158 
2159 void JavaThread::send_thread_stop(oop java_throwable)  {
2160   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2161   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2162   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2163 
2164   // Do not throw asynchronous exceptions against the compiler thread
2165   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2166   if (is_Compiler_thread()) return;
2167 
2168   {
2169     // Actually throw the Throwable against the target Thread - however
2170     // only if there is no thread death exception installed already.
2171     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2172       // If the topmost frame is a runtime stub, then we are calling into
2173       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2174       // must deoptimize the caller before continuing, as the compiled  exception handler table
2175       // may not be valid
2176       if (has_last_Java_frame()) {
2177         frame f = last_frame();
2178         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2179           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2180           RegisterMap reg_map(this, UseBiasedLocking);
2181           frame compiled_frame = f.sender(&reg_map);
2182           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2183             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2184           }
2185         }
2186       }
2187 
2188       // Set async. pending exception in thread.
2189       set_pending_async_exception(java_throwable);
2190 
2191       if (TraceExceptions) {
2192         ResourceMark rm;
2193         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2194       }
2195       // for AbortVMOnException flag
2196       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2197     }
2198   }
2199 
2200 
2201   // Interrupt thread so it will wake up from a potential wait()
2202   Thread::interrupt(this);
2203 }
2204 
2205 // External suspension mechanism.
2206 //
2207 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2208 // to any VM_locks and it is at a transition
2209 // Self-suspension will happen on the transition out of the vm.
2210 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2211 //
2212 // Guarantees on return:
2213 //   + Target thread will not execute any new bytecode (that's why we need to
2214 //     force a safepoint)
2215 //   + Target thread will not enter any new monitors
2216 //
2217 void JavaThread::java_suspend() {
2218   { MutexLocker mu(Threads_lock);
2219     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2220       return;
2221     }
2222   }
2223 
2224   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2225     if (!is_external_suspend()) {
2226       // a racing resume has cancelled us; bail out now
2227       return;
2228     }
2229 
2230     // suspend is done
2231     uint32_t debug_bits = 0;
2232     // Warning: is_ext_suspend_completed() may temporarily drop the
2233     // SR_lock to allow the thread to reach a stable thread state if
2234     // it is currently in a transient thread state.
2235     if (is_ext_suspend_completed(false /* !called_by_wait */,
2236                                  SuspendRetryDelay, &debug_bits)) {
2237       return;
2238     }
2239   }
2240 
2241   VM_ForceSafepoint vm_suspend;
2242   VMThread::execute(&vm_suspend);
2243 }
2244 
2245 // Part II of external suspension.
2246 // A JavaThread self suspends when it detects a pending external suspend
2247 // request. This is usually on transitions. It is also done in places
2248 // where continuing to the next transition would surprise the caller,
2249 // e.g., monitor entry.
2250 //
2251 // Returns the number of times that the thread self-suspended.
2252 //
2253 // Note: DO NOT call java_suspend_self() when you just want to block current
2254 //       thread. java_suspend_self() is the second stage of cooperative
2255 //       suspension for external suspend requests and should only be used
2256 //       to complete an external suspend request.
2257 //
2258 int JavaThread::java_suspend_self() {
2259   int ret = 0;
2260 
2261   // we are in the process of exiting so don't suspend
2262   if (is_exiting()) {
2263     clear_external_suspend();
2264     return ret;
2265   }
2266 
2267   assert(_anchor.walkable() ||
2268          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2269          "must have walkable stack");
2270 
2271   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2272 
2273   assert(!this->is_ext_suspended(),
2274          "a thread trying to self-suspend should not already be suspended");
2275 
2276   if (this->is_suspend_equivalent()) {
2277     // If we are self-suspending as a result of the lifting of a
2278     // suspend equivalent condition, then the suspend_equivalent
2279     // flag is not cleared until we set the ext_suspended flag so
2280     // that wait_for_ext_suspend_completion() returns consistent
2281     // results.
2282     this->clear_suspend_equivalent();
2283   }
2284 
2285   // A racing resume may have cancelled us before we grabbed SR_lock
2286   // above. Or another external suspend request could be waiting for us
2287   // by the time we return from SR_lock()->wait(). The thread
2288   // that requested the suspension may already be trying to walk our
2289   // stack and if we return now, we can change the stack out from under
2290   // it. This would be a "bad thing (TM)" and cause the stack walker
2291   // to crash. We stay self-suspended until there are no more pending
2292   // external suspend requests.
2293   while (is_external_suspend()) {
2294     ret++;
2295     this->set_ext_suspended();
2296 
2297     // _ext_suspended flag is cleared by java_resume()
2298     while (is_ext_suspended()) {
2299       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2300     }
2301   }
2302 
2303   return ret;
2304 }
2305 
2306 #ifdef ASSERT
2307 // verify the JavaThread has not yet been published in the Threads::list, and
2308 // hence doesn't need protection from concurrent access at this stage
2309 void JavaThread::verify_not_published() {
2310   if (!Threads_lock->owned_by_self()) {
2311     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2312     assert(!Threads::includes(this),
2313            "java thread shouldn't have been published yet!");
2314   } else {
2315     assert(!Threads::includes(this),
2316            "java thread shouldn't have been published yet!");
2317   }
2318 }
2319 #endif
2320 
2321 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2322 // progress or when _suspend_flags is non-zero.
2323 // Current thread needs to self-suspend if there is a suspend request and/or
2324 // block if a safepoint is in progress.
2325 // Async exception ISN'T checked.
2326 // Note only the ThreadInVMfromNative transition can call this function
2327 // directly and when thread state is _thread_in_native_trans
2328 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2329   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2330 
2331   JavaThread *curJT = JavaThread::current();
2332   bool do_self_suspend = thread->is_external_suspend();
2333 
2334   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2335 
2336   // If JNIEnv proxies are allowed, don't self-suspend if the target
2337   // thread is not the current thread. In older versions of jdbx, jdbx
2338   // threads could call into the VM with another thread's JNIEnv so we
2339   // can be here operating on behalf of a suspended thread (4432884).
2340   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2341     JavaThreadState state = thread->thread_state();
2342 
2343     // We mark this thread_blocked state as a suspend-equivalent so
2344     // that a caller to is_ext_suspend_completed() won't be confused.
2345     // The suspend-equivalent state is cleared by java_suspend_self().
2346     thread->set_suspend_equivalent();
2347 
2348     // If the safepoint code sees the _thread_in_native_trans state, it will
2349     // wait until the thread changes to other thread state. There is no
2350     // guarantee on how soon we can obtain the SR_lock and complete the
2351     // self-suspend request. It would be a bad idea to let safepoint wait for
2352     // too long. Temporarily change the state to _thread_blocked to
2353     // let the VM thread know that this thread is ready for GC. The problem
2354     // of changing thread state is that safepoint could happen just after
2355     // java_suspend_self() returns after being resumed, and VM thread will
2356     // see the _thread_blocked state. We must check for safepoint
2357     // after restoring the state and make sure we won't leave while a safepoint
2358     // is in progress.
2359     thread->set_thread_state(_thread_blocked);
2360     thread->java_suspend_self();
2361     thread->set_thread_state(state);
2362     // Make sure new state is seen by VM thread
2363     if (os::is_MP()) {
2364       if (UseMembar) {
2365         // Force a fence between the write above and read below
2366         OrderAccess::fence();
2367       } else {
2368         // Must use this rather than serialization page in particular on Windows
2369         InterfaceSupport::serialize_memory(thread);
2370       }
2371     }
2372   }
2373 
2374   if (SafepointSynchronize::do_call_back()) {
2375     // If we are safepointing, then block the caller which may not be
2376     // the same as the target thread (see above).
2377     SafepointSynchronize::block(curJT);
2378   }
2379 
2380   if (thread->is_deopt_suspend()) {
2381     thread->clear_deopt_suspend();
2382     RegisterMap map(thread, false);
2383     frame f = thread->last_frame();
2384     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2385       f = f.sender(&map);
2386     }
2387     if (f.id() == thread->must_deopt_id()) {
2388       thread->clear_must_deopt_id();
2389       f.deoptimize(thread);
2390     } else {
2391       fatal("missed deoptimization!");
2392     }
2393   }
2394 }
2395 
2396 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2397 // progress or when _suspend_flags is non-zero.
2398 // Current thread needs to self-suspend if there is a suspend request and/or
2399 // block if a safepoint is in progress.
2400 // Also check for pending async exception (not including unsafe access error).
2401 // Note only the native==>VM/Java barriers can call this function and when
2402 // thread state is _thread_in_native_trans.
2403 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2404   check_safepoint_and_suspend_for_native_trans(thread);
2405 
2406   if (thread->has_async_exception()) {
2407     // We are in _thread_in_native_trans state, don't handle unsafe
2408     // access error since that may block.
2409     thread->check_and_handle_async_exceptions(false);
2410   }
2411 }
2412 
2413 // This is a variant of the normal
2414 // check_special_condition_for_native_trans with slightly different
2415 // semantics for use by critical native wrappers.  It does all the
2416 // normal checks but also performs the transition back into
2417 // thread_in_Java state.  This is required so that critical natives
2418 // can potentially block and perform a GC if they are the last thread
2419 // exiting the GC_locker.
2420 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2421   check_special_condition_for_native_trans(thread);
2422 
2423   // Finish the transition
2424   thread->set_thread_state(_thread_in_Java);
2425 
2426   if (thread->do_critical_native_unlock()) {
2427     ThreadInVMfromJavaNoAsyncException tiv(thread);
2428     GC_locker::unlock_critical(thread);
2429     thread->clear_critical_native_unlock();
2430   }
2431 }
2432 
2433 // We need to guarantee the Threads_lock here, since resumes are not
2434 // allowed during safepoint synchronization
2435 // Can only resume from an external suspension
2436 void JavaThread::java_resume() {
2437   assert_locked_or_safepoint(Threads_lock);
2438 
2439   // Sanity check: thread is gone, has started exiting or the thread
2440   // was not externally suspended.
2441   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2442     return;
2443   }
2444 
2445   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2446 
2447   clear_external_suspend();
2448 
2449   if (is_ext_suspended()) {
2450     clear_ext_suspended();
2451     SR_lock()->notify_all();
2452   }
2453 }
2454 
2455 void JavaThread::create_stack_guard_pages() {
2456   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2457   address low_addr = stack_base() - stack_size();
2458   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2459 
2460   int allocate = os::allocate_stack_guard_pages();
2461   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2462 
2463   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2464     warning("Attempt to allocate stack guard pages failed.");
2465     return;
2466   }
2467 
2468   if (os::guard_memory((char *) low_addr, len)) {
2469     _stack_guard_state = stack_guard_enabled;
2470   } else {
2471     warning("Attempt to protect stack guard pages failed.");
2472     if (os::uncommit_memory((char *) low_addr, len)) {
2473       warning("Attempt to deallocate stack guard pages failed.");
2474     }
2475   }
2476 }
2477 
2478 void JavaThread::remove_stack_guard_pages() {
2479   assert(Thread::current() == this, "from different thread");
2480   if (_stack_guard_state == stack_guard_unused) return;
2481   address low_addr = stack_base() - stack_size();
2482   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2483 
2484   if (os::allocate_stack_guard_pages()) {
2485     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2486       _stack_guard_state = stack_guard_unused;
2487     } else {
2488       warning("Attempt to deallocate stack guard pages failed.");
2489     }
2490   } else {
2491     if (_stack_guard_state == stack_guard_unused) return;
2492     if (os::unguard_memory((char *) low_addr, len)) {
2493       _stack_guard_state = stack_guard_unused;
2494     } else {
2495       warning("Attempt to unprotect stack guard pages failed.");
2496     }
2497   }
2498 }
2499 
2500 void JavaThread::enable_stack_yellow_zone() {
2501   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2502   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2503 
2504   // The base notation is from the stacks point of view, growing downward.
2505   // We need to adjust it to work correctly with guard_memory()
2506   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2507 
2508   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2509   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2510 
2511   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2512     _stack_guard_state = stack_guard_enabled;
2513   } else {
2514     warning("Attempt to guard stack yellow zone failed.");
2515   }
2516   enable_register_stack_guard();
2517 }
2518 
2519 void JavaThread::disable_stack_yellow_zone() {
2520   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2521   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2522 
2523   // Simply return if called for a thread that does not use guard pages.
2524   if (_stack_guard_state == stack_guard_unused) return;
2525 
2526   // The base notation is from the stacks point of view, growing downward.
2527   // We need to adjust it to work correctly with guard_memory()
2528   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2529 
2530   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2531     _stack_guard_state = stack_guard_yellow_disabled;
2532   } else {
2533     warning("Attempt to unguard stack yellow zone failed.");
2534   }
2535   disable_register_stack_guard();
2536 }
2537 
2538 void JavaThread::enable_stack_red_zone() {
2539   // The base notation is from the stacks point of view, growing downward.
2540   // We need to adjust it to work correctly with guard_memory()
2541   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2542   address base = stack_red_zone_base() - stack_red_zone_size();
2543 
2544   guarantee(base < stack_base(), "Error calculating stack red zone");
2545   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2546 
2547   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2548     warning("Attempt to guard stack red zone failed.");
2549   }
2550 }
2551 
2552 void JavaThread::disable_stack_red_zone() {
2553   // The base notation is from the stacks point of view, growing downward.
2554   // We need to adjust it to work correctly with guard_memory()
2555   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2556   address base = stack_red_zone_base() - stack_red_zone_size();
2557   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2558     warning("Attempt to unguard stack red zone failed.");
2559   }
2560 }
2561 
2562 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2563   // ignore is there is no stack
2564   if (!has_last_Java_frame()) return;
2565   // traverse the stack frames. Starts from top frame.
2566   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2567     frame* fr = fst.current();
2568     f(fr, fst.register_map());
2569   }
2570 }
2571 
2572 
2573 #ifndef PRODUCT
2574 // Deoptimization
2575 // Function for testing deoptimization
2576 void JavaThread::deoptimize() {
2577   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2578   StackFrameStream fst(this, UseBiasedLocking);
2579   bool deopt = false;           // Dump stack only if a deopt actually happens.
2580   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2581   // Iterate over all frames in the thread and deoptimize
2582   for (; !fst.is_done(); fst.next()) {
2583     if (fst.current()->can_be_deoptimized()) {
2584 
2585       if (only_at) {
2586         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2587         // consists of comma or carriage return separated numbers so
2588         // search for the current bci in that string.
2589         address pc = fst.current()->pc();
2590         nmethod* nm =  (nmethod*) fst.current()->cb();
2591         ScopeDesc* sd = nm->scope_desc_at(pc);
2592         char buffer[8];
2593         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2594         size_t len = strlen(buffer);
2595         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2596         while (found != NULL) {
2597           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2598               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2599             // Check that the bci found is bracketed by terminators.
2600             break;
2601           }
2602           found = strstr(found + 1, buffer);
2603         }
2604         if (!found) {
2605           continue;
2606         }
2607       }
2608 
2609       if (DebugDeoptimization && !deopt) {
2610         deopt = true; // One-time only print before deopt
2611         tty->print_cr("[BEFORE Deoptimization]");
2612         trace_frames();
2613         trace_stack();
2614       }
2615       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2616     }
2617   }
2618 
2619   if (DebugDeoptimization && deopt) {
2620     tty->print_cr("[AFTER Deoptimization]");
2621     trace_frames();
2622   }
2623 }
2624 
2625 
2626 // Make zombies
2627 void JavaThread::make_zombies() {
2628   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2629     if (fst.current()->can_be_deoptimized()) {
2630       // it is a Java nmethod
2631       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2632       nm->make_not_entrant();
2633     }
2634   }
2635 }
2636 #endif // PRODUCT
2637 
2638 
2639 void JavaThread::deoptimized_wrt_marked_nmethods() {
2640   if (!has_last_Java_frame()) return;
2641   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2642   StackFrameStream fst(this, UseBiasedLocking);
2643   for (; !fst.is_done(); fst.next()) {
2644     if (fst.current()->should_be_deoptimized()) {
2645       if (LogCompilation && xtty != NULL) {
2646         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2647         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2648                    this->name(), nm != NULL ? nm->compile_id() : -1);
2649       }
2650 
2651       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2652     }
2653   }
2654 }
2655 
2656 
2657 // If the caller is a NamedThread, then remember, in the current scope,
2658 // the given JavaThread in its _processed_thread field.
2659 class RememberProcessedThread: public StackObj {
2660   NamedThread* _cur_thr;
2661  public:
2662   RememberProcessedThread(JavaThread* jthr) {
2663     Thread* thread = Thread::current();
2664     if (thread->is_Named_thread()) {
2665       _cur_thr = (NamedThread *)thread;
2666       _cur_thr->set_processed_thread(jthr);
2667     } else {
2668       _cur_thr = NULL;
2669     }
2670   }
2671 
2672   ~RememberProcessedThread() {
2673     if (_cur_thr) {
2674       _cur_thr->set_processed_thread(NULL);
2675     }
2676   }
2677 };
2678 
2679 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2680   // Verify that the deferred card marks have been flushed.
2681   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2682 
2683   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2684   // since there may be more than one thread using each ThreadProfiler.
2685 
2686   // Traverse the GCHandles
2687   Thread::oops_do(f, cld_f, cf);
2688 
2689   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2690          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2691 
2692   if (has_last_Java_frame()) {
2693     // Record JavaThread to GC thread
2694     RememberProcessedThread rpt(this);
2695 
2696     // Traverse the privileged stack
2697     if (_privileged_stack_top != NULL) {
2698       _privileged_stack_top->oops_do(f);
2699     }
2700 
2701     // traverse the registered growable array
2702     if (_array_for_gc != NULL) {
2703       for (int index = 0; index < _array_for_gc->length(); index++) {
2704         f->do_oop(_array_for_gc->adr_at(index));
2705       }
2706     }
2707 
2708     // Traverse the monitor chunks
2709     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2710       chunk->oops_do(f);
2711     }
2712 
2713     // Traverse the execution stack
2714     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2715       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2716     }
2717   }
2718 
2719   // callee_target is never live across a gc point so NULL it here should
2720   // it still contain a methdOop.
2721 
2722   set_callee_target(NULL);
2723 
2724   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2725   // If we have deferred set_locals there might be oops waiting to be
2726   // written
2727   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2728   if (list != NULL) {
2729     for (int i = 0; i < list->length(); i++) {
2730       list->at(i)->oops_do(f);
2731     }
2732   }
2733 
2734   // Traverse instance variables at the end since the GC may be moving things
2735   // around using this function
2736   f->do_oop((oop*) &_threadObj);
2737   f->do_oop((oop*) &_vm_result);
2738   f->do_oop((oop*) &_exception_oop);
2739   f->do_oop((oop*) &_pending_async_exception);
2740 
2741   if (jvmti_thread_state() != NULL) {
2742     jvmti_thread_state()->oops_do(f);
2743   }
2744 }
2745 
2746 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2747   Thread::nmethods_do(cf);  // (super method is a no-op)
2748 
2749   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2750          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2751 
2752   if (has_last_Java_frame()) {
2753     // Traverse the execution stack
2754     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2755       fst.current()->nmethods_do(cf);
2756     }
2757   }
2758 }
2759 
2760 void JavaThread::metadata_do(void f(Metadata*)) {
2761   if (has_last_Java_frame()) {
2762     // Traverse the execution stack to call f() on the methods in the stack
2763     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2764       fst.current()->metadata_do(f);
2765     }
2766   } else if (is_Compiler_thread()) {
2767     // need to walk ciMetadata in current compile tasks to keep alive.
2768     CompilerThread* ct = (CompilerThread*)this;
2769     if (ct->env() != NULL) {
2770       ct->env()->metadata_do(f);
2771     }
2772     if (ct->task() != NULL) {
2773       ct->task()->metadata_do(f);
2774     }
2775   }
2776 }
2777 
2778 // Printing
2779 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2780   switch (_thread_state) {
2781   case _thread_uninitialized:     return "_thread_uninitialized";
2782   case _thread_new:               return "_thread_new";
2783   case _thread_new_trans:         return "_thread_new_trans";
2784   case _thread_in_native:         return "_thread_in_native";
2785   case _thread_in_native_trans:   return "_thread_in_native_trans";
2786   case _thread_in_vm:             return "_thread_in_vm";
2787   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2788   case _thread_in_Java:           return "_thread_in_Java";
2789   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2790   case _thread_blocked:           return "_thread_blocked";
2791   case _thread_blocked_trans:     return "_thread_blocked_trans";
2792   default:                        return "unknown thread state";
2793   }
2794 }
2795 
2796 #ifndef PRODUCT
2797 void JavaThread::print_thread_state_on(outputStream *st) const {
2798   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2799 };
2800 void JavaThread::print_thread_state() const {
2801   print_thread_state_on(tty);
2802 }
2803 #endif // PRODUCT
2804 
2805 // Called by Threads::print() for VM_PrintThreads operation
2806 void JavaThread::print_on(outputStream *st) const {
2807   st->print("\"%s\" ", get_thread_name());
2808   oop thread_oop = threadObj();
2809   if (thread_oop != NULL) {
2810     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2811     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2812     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2813   }
2814   Thread::print_on(st);
2815   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2816   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2817   if (thread_oop != NULL) {
2818     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2819   }
2820 #ifndef PRODUCT
2821   print_thread_state_on(st);
2822   _safepoint_state->print_on(st);
2823 #endif // PRODUCT
2824 }
2825 
2826 // Called by fatal error handler. The difference between this and
2827 // JavaThread::print() is that we can't grab lock or allocate memory.
2828 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2829   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2830   oop thread_obj = threadObj();
2831   if (thread_obj != NULL) {
2832     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2833   }
2834   st->print(" [");
2835   st->print("%s", _get_thread_state_name(_thread_state));
2836   if (osthread()) {
2837     st->print(", id=%d", osthread()->thread_id());
2838   }
2839   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2840             _stack_base - _stack_size, _stack_base);
2841   st->print("]");
2842   return;
2843 }
2844 
2845 // Verification
2846 
2847 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2848 
2849 void JavaThread::verify() {
2850   // Verify oops in the thread.
2851   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2852 
2853   // Verify the stack frames.
2854   frames_do(frame_verify);
2855 }
2856 
2857 // CR 6300358 (sub-CR 2137150)
2858 // Most callers of this method assume that it can't return NULL but a
2859 // thread may not have a name whilst it is in the process of attaching to
2860 // the VM - see CR 6412693, and there are places where a JavaThread can be
2861 // seen prior to having it's threadObj set (eg JNI attaching threads and
2862 // if vm exit occurs during initialization). These cases can all be accounted
2863 // for such that this method never returns NULL.
2864 const char* JavaThread::get_thread_name() const {
2865 #ifdef ASSERT
2866   // early safepoints can hit while current thread does not yet have TLS
2867   if (!SafepointSynchronize::is_at_safepoint()) {
2868     Thread *cur = Thread::current();
2869     if (!(cur->is_Java_thread() && cur == this)) {
2870       // Current JavaThreads are allowed to get their own name without
2871       // the Threads_lock.
2872       assert_locked_or_safepoint(Threads_lock);
2873     }
2874   }
2875 #endif // ASSERT
2876   return get_thread_name_string();
2877 }
2878 
2879 // Returns a non-NULL representation of this thread's name, or a suitable
2880 // descriptive string if there is no set name
2881 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2882   const char* name_str;
2883   oop thread_obj = threadObj();
2884   if (thread_obj != NULL) {
2885     oop name = java_lang_Thread::name(thread_obj);
2886     if (name != NULL) {
2887       if (buf == NULL) {
2888         name_str = java_lang_String::as_utf8_string(name);
2889       } else {
2890         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2891       }
2892     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2893       name_str = "<no-name - thread is attaching>";
2894     } else {
2895       name_str = Thread::name();
2896     }
2897   } else {
2898     name_str = Thread::name();
2899   }
2900   assert(name_str != NULL, "unexpected NULL thread name");
2901   return name_str;
2902 }
2903 
2904 
2905 const char* JavaThread::get_threadgroup_name() const {
2906   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2907   oop thread_obj = threadObj();
2908   if (thread_obj != NULL) {
2909     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2910     if (thread_group != NULL) {
2911       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2912       name = typeArrayOop(oopDesc::bs()->read_barrier(name));
2913       // ThreadGroup.name can be null
2914       if (name != NULL) {
2915         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2916         return str;
2917       }
2918     }
2919   }
2920   return NULL;
2921 }
2922 
2923 const char* JavaThread::get_parent_name() const {
2924   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2925   oop thread_obj = threadObj();
2926   if (thread_obj != NULL) {
2927     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2928     if (thread_group != NULL) {
2929       oop parent = java_lang_ThreadGroup::parent(thread_group);
2930       if (parent != NULL) {
2931         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2932         name = typeArrayOop(oopDesc::bs()->read_barrier(name));
2933         // ThreadGroup.name can be null
2934         if (name != NULL) {
2935           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2936           return str;
2937         }
2938       }
2939     }
2940   }
2941   return NULL;
2942 }
2943 
2944 ThreadPriority JavaThread::java_priority() const {
2945   oop thr_oop = threadObj();
2946   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2947   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2948   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2949   return priority;
2950 }
2951 
2952 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2953 
2954   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2955   // Link Java Thread object <-> C++ Thread
2956 
2957   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2958   // and put it into a new Handle.  The Handle "thread_oop" can then
2959   // be used to pass the C++ thread object to other methods.
2960 
2961   // Set the Java level thread object (jthread) field of the
2962   // new thread (a JavaThread *) to C++ thread object using the
2963   // "thread_oop" handle.
2964 
2965   // Set the thread field (a JavaThread *) of the
2966   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2967 
2968   Handle thread_oop(Thread::current(),
2969                     JNIHandles::resolve_non_null(jni_thread));
2970   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2971          "must be initialized");
2972   set_threadObj(thread_oop());
2973   java_lang_Thread::set_thread(thread_oop(), this);
2974 
2975   if (prio == NoPriority) {
2976     prio = java_lang_Thread::priority(thread_oop());
2977     assert(prio != NoPriority, "A valid priority should be present");
2978   }
2979 
2980   // Push the Java priority down to the native thread; needs Threads_lock
2981   Thread::set_priority(this, prio);
2982 
2983   prepare_ext();
2984 
2985   // Add the new thread to the Threads list and set it in motion.
2986   // We must have threads lock in order to call Threads::add.
2987   // It is crucial that we do not block before the thread is
2988   // added to the Threads list for if a GC happens, then the java_thread oop
2989   // will not be visited by GC.
2990   Threads::add(this);
2991 }
2992 
2993 oop JavaThread::current_park_blocker() {
2994   // Support for JSR-166 locks
2995   oop thread_oop = threadObj();
2996   if (thread_oop != NULL &&
2997       JDK_Version::current().supports_thread_park_blocker()) {
2998     return java_lang_Thread::park_blocker(thread_oop);
2999   }
3000   return NULL;
3001 }
3002 
3003 
3004 void JavaThread::print_stack_on(outputStream* st) {
3005   if (!has_last_Java_frame()) return;
3006   ResourceMark rm;
3007   HandleMark   hm;
3008 
3009   RegisterMap reg_map(this);
3010   vframe* start_vf = last_java_vframe(&reg_map);
3011   int count = 0;
3012   for (vframe* f = start_vf; f; f = f->sender()) {
3013     if (f->is_java_frame()) {
3014       javaVFrame* jvf = javaVFrame::cast(f);
3015       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3016 
3017       // Print out lock information
3018       if (JavaMonitorsInStackTrace) {
3019         jvf->print_lock_info_on(st, count);
3020       }
3021     } else {
3022       // Ignore non-Java frames
3023     }
3024 
3025     // Bail-out case for too deep stacks
3026     count++;
3027     if (MaxJavaStackTraceDepth == count) return;
3028   }
3029 }
3030 
3031 
3032 // JVMTI PopFrame support
3033 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3034   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3035   if (in_bytes(size_in_bytes) != 0) {
3036     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3037     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3038     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3039   }
3040 }
3041 
3042 void* JavaThread::popframe_preserved_args() {
3043   return _popframe_preserved_args;
3044 }
3045 
3046 ByteSize JavaThread::popframe_preserved_args_size() {
3047   return in_ByteSize(_popframe_preserved_args_size);
3048 }
3049 
3050 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3051   int sz = in_bytes(popframe_preserved_args_size());
3052   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3053   return in_WordSize(sz / wordSize);
3054 }
3055 
3056 void JavaThread::popframe_free_preserved_args() {
3057   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3058   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3059   _popframe_preserved_args = NULL;
3060   _popframe_preserved_args_size = 0;
3061 }
3062 
3063 #ifndef PRODUCT
3064 
3065 void JavaThread::trace_frames() {
3066   tty->print_cr("[Describe stack]");
3067   int frame_no = 1;
3068   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3069     tty->print("  %d. ", frame_no++);
3070     fst.current()->print_value_on(tty, this);
3071     tty->cr();
3072   }
3073 }
3074 
3075 class PrintAndVerifyOopClosure: public OopClosure {
3076  protected:
3077   template <class T> inline void do_oop_work(T* p) {
3078     oop obj = oopDesc::load_decode_heap_oop(p);
3079     if (obj == NULL) return;
3080     tty->print(INTPTR_FORMAT ": ", p);
3081     if (obj->is_oop_or_null()) {
3082       if (obj->is_objArray()) {
3083         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3084       } else {
3085         obj->print();
3086       }
3087     } else {
3088       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3089     }
3090     tty->cr();
3091   }
3092  public:
3093   virtual void do_oop(oop* p) { do_oop_work(p); }
3094   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3095 };
3096 
3097 
3098 static void oops_print(frame* f, const RegisterMap *map) {
3099   PrintAndVerifyOopClosure print;
3100   f->print_value();
3101   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3102 }
3103 
3104 // Print our all the locations that contain oops and whether they are
3105 // valid or not.  This useful when trying to find the oldest frame
3106 // where an oop has gone bad since the frame walk is from youngest to
3107 // oldest.
3108 void JavaThread::trace_oops() {
3109   tty->print_cr("[Trace oops]");
3110   frames_do(oops_print);
3111 }
3112 
3113 
3114 #ifdef ASSERT
3115 // Print or validate the layout of stack frames
3116 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3117   ResourceMark rm;
3118   PRESERVE_EXCEPTION_MARK;
3119   FrameValues values;
3120   int frame_no = 0;
3121   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3122     fst.current()->describe(values, ++frame_no);
3123     if (depth == frame_no) break;
3124   }
3125   if (validate_only) {
3126     values.validate();
3127   } else {
3128     tty->print_cr("[Describe stack layout]");
3129     values.print(this);
3130   }
3131 }
3132 #endif
3133 
3134 void JavaThread::trace_stack_from(vframe* start_vf) {
3135   ResourceMark rm;
3136   int vframe_no = 1;
3137   for (vframe* f = start_vf; f; f = f->sender()) {
3138     if (f->is_java_frame()) {
3139       javaVFrame::cast(f)->print_activation(vframe_no++);
3140     } else {
3141       f->print();
3142     }
3143     if (vframe_no > StackPrintLimit) {
3144       tty->print_cr("...<more frames>...");
3145       return;
3146     }
3147   }
3148 }
3149 
3150 
3151 void JavaThread::trace_stack() {
3152   if (!has_last_Java_frame()) return;
3153   ResourceMark rm;
3154   HandleMark   hm;
3155   RegisterMap reg_map(this);
3156   trace_stack_from(last_java_vframe(&reg_map));
3157 }
3158 
3159 
3160 #endif // PRODUCT
3161 
3162 
3163 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3164   assert(reg_map != NULL, "a map must be given");
3165   frame f = last_frame();
3166   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3167     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3168   }
3169   return NULL;
3170 }
3171 
3172 
3173 Klass* JavaThread::security_get_caller_class(int depth) {
3174   vframeStream vfst(this);
3175   vfst.security_get_caller_frame(depth);
3176   if (!vfst.at_end()) {
3177     return vfst.method()->method_holder();
3178   }
3179   return NULL;
3180 }
3181 
3182 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3183   assert(thread->is_Compiler_thread(), "must be compiler thread");
3184   CompileBroker::compiler_thread_loop();
3185 }
3186 
3187 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3188   NMethodSweeper::sweeper_loop();
3189 }
3190 
3191 // Create a CompilerThread
3192 CompilerThread::CompilerThread(CompileQueue* queue,
3193                                CompilerCounters* counters)
3194                                : JavaThread(&compiler_thread_entry) {
3195   _env   = NULL;
3196   _log   = NULL;
3197   _task  = NULL;
3198   _queue = queue;
3199   _counters = counters;
3200   _buffer_blob = NULL;
3201   _compiler = NULL;
3202 
3203 #ifndef PRODUCT
3204   _ideal_graph_printer = NULL;
3205 #endif
3206 }
3207 
3208 // Create sweeper thread
3209 CodeCacheSweeperThread::CodeCacheSweeperThread()
3210 : JavaThread(&sweeper_thread_entry) {
3211   _scanned_nmethod = NULL;
3212 }
3213 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3214   JavaThread::oops_do(f, cld_f, cf);
3215   if (_scanned_nmethod != NULL && cf != NULL) {
3216     // Safepoints can occur when the sweeper is scanning an nmethod so
3217     // process it here to make sure it isn't unloaded in the middle of
3218     // a scan.
3219     cf->do_code_blob(_scanned_nmethod);
3220   }
3221 }
3222 
3223 
3224 // ======= Threads ========
3225 
3226 // The Threads class links together all active threads, and provides
3227 // operations over all threads.  It is protected by its own Mutex
3228 // lock, which is also used in other contexts to protect thread
3229 // operations from having the thread being operated on from exiting
3230 // and going away unexpectedly (e.g., safepoint synchronization)
3231 
3232 JavaThread* Threads::_thread_list = NULL;
3233 int         Threads::_number_of_threads = 0;
3234 int         Threads::_number_of_non_daemon_threads = 0;
3235 int         Threads::_return_code = 0;
3236 int         Threads::_thread_claim_parity = 0;
3237 size_t      JavaThread::_stack_size_at_create = 0;
3238 #ifdef ASSERT
3239 bool        Threads::_vm_complete = false;
3240 #endif
3241 
3242 // All JavaThreads
3243 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3244 
3245 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3246 void Threads::threads_do(ThreadClosure* tc) {
3247   assert_locked_or_safepoint(Threads_lock);
3248   // ALL_JAVA_THREADS iterates through all JavaThreads
3249   ALL_JAVA_THREADS(p) {
3250     tc->do_thread(p);
3251   }
3252   // Someday we could have a table or list of all non-JavaThreads.
3253   // For now, just manually iterate through them.
3254   tc->do_thread(VMThread::vm_thread());
3255   Universe::heap()->gc_threads_do(tc);
3256   WatcherThread *wt = WatcherThread::watcher_thread();
3257   // Strictly speaking, the following NULL check isn't sufficient to make sure
3258   // the data for WatcherThread is still valid upon being examined. However,
3259   // considering that WatchThread terminates when the VM is on the way to
3260   // exit at safepoint, the chance of the above is extremely small. The right
3261   // way to prevent termination of WatcherThread would be to acquire
3262   // Terminator_lock, but we can't do that without violating the lock rank
3263   // checking in some cases.
3264   if (wt != NULL) {
3265     tc->do_thread(wt);
3266   }
3267 
3268   // If CompilerThreads ever become non-JavaThreads, add them here
3269 }
3270 
3271 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3272   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3273 
3274   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3275     create_vm_init_libraries();
3276   }
3277 
3278   initialize_class(vmSymbols::java_lang_String(), CHECK);
3279 
3280   // Initialize java_lang.System (needed before creating the thread)
3281   initialize_class(vmSymbols::java_lang_System(), CHECK);
3282   // The VM creates & returns objects of this class. Make sure it's initialized.
3283   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3284   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3285   Handle thread_group = create_initial_thread_group(CHECK);
3286   Universe::set_main_thread_group(thread_group());
3287   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3288   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3289   main_thread->set_threadObj(thread_object);
3290   // Set thread status to running since main thread has
3291   // been started and running.
3292   java_lang_Thread::set_thread_status(thread_object,
3293                                       java_lang_Thread::RUNNABLE);
3294 
3295   // The VM preresolves methods to these classes. Make sure that they get initialized
3296   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3297   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3298   call_initializeSystemClass(CHECK);
3299 
3300   // get the Java runtime name after java.lang.System is initialized
3301   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3302   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3303 
3304   // an instance of OutOfMemory exception has been allocated earlier
3305   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3306   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3307   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3308   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3309   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3310   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3311   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3312   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3313 }
3314 
3315 void Threads::initialize_jsr292_core_classes(TRAPS) {
3316   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3317   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3318   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3319 }
3320 
3321 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3322   extern void JDK_Version_init();
3323 
3324   // Preinitialize version info.
3325   VM_Version::early_initialize();
3326 
3327   // Check version
3328   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3329 
3330   // Initialize the output stream module
3331   ostream_init();
3332 
3333   // Process java launcher properties.
3334   Arguments::process_sun_java_launcher_properties(args);
3335 
3336   // Initialize the os module before using TLS
3337   os::init();
3338 
3339   // Initialize system properties.
3340   Arguments::init_system_properties();
3341 
3342   // So that JDK version can be used as a discriminator when parsing arguments
3343   JDK_Version_init();
3344 
3345   // Update/Initialize System properties after JDK version number is known
3346   Arguments::init_version_specific_system_properties();
3347 
3348   // Parse arguments
3349   jint parse_result = Arguments::parse(args);
3350   if (parse_result != JNI_OK) return parse_result;
3351 
3352   os::init_before_ergo();
3353 
3354   jint ergo_result = Arguments::apply_ergo();
3355   if (ergo_result != JNI_OK) return ergo_result;
3356 
3357   // Final check of all ranges after ergonomics which may change values.
3358   if (!CommandLineFlagRangeList::check_ranges()) {
3359     return JNI_EINVAL;
3360   }
3361 
3362   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3363   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3364   if (!constraint_result) {
3365     return JNI_EINVAL;
3366   }
3367 
3368   if (PauseAtStartup) {
3369     os::pause();
3370   }
3371 
3372   HOTSPOT_VM_INIT_BEGIN();
3373 
3374   // Record VM creation timing statistics
3375   TraceVmCreationTime create_vm_timer;
3376   create_vm_timer.start();
3377 
3378   // Timing (must come after argument parsing)
3379   TraceTime timer("Create VM", TraceStartupTime);
3380 
3381   // Initialize the os module after parsing the args
3382   jint os_init_2_result = os::init_2();
3383   if (os_init_2_result != JNI_OK) return os_init_2_result;
3384 
3385   jint adjust_after_os_result = Arguments::adjust_after_os();
3386   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3387 
3388   // initialize TLS
3389   ThreadLocalStorage::init();
3390 
3391   // Initialize output stream logging
3392   ostream_init_log();
3393 
3394   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3395   // Must be before create_vm_init_agents()
3396   if (Arguments::init_libraries_at_startup()) {
3397     convert_vm_init_libraries_to_agents();
3398   }
3399 
3400   // Launch -agentlib/-agentpath and converted -Xrun agents
3401   if (Arguments::init_agents_at_startup()) {
3402     create_vm_init_agents();
3403   }
3404 
3405   // Initialize Threads state
3406   _thread_list = NULL;
3407   _number_of_threads = 0;
3408   _number_of_non_daemon_threads = 0;
3409 
3410   // Initialize global data structures and create system classes in heap
3411   vm_init_globals();
3412 
3413   // Attach the main thread to this os thread
3414   JavaThread* main_thread = new JavaThread();
3415   main_thread->set_thread_state(_thread_in_vm);
3416   // must do this before set_active_handles and initialize_thread_local_storage
3417   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3418   // change the stack size recorded here to one based on the java thread
3419   // stacksize. This adjusted size is what is used to figure the placement
3420   // of the guard pages.
3421   main_thread->record_stack_base_and_size();
3422   main_thread->initialize_thread_local_storage();
3423 
3424   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3425 
3426   if (!main_thread->set_as_starting_thread()) {
3427     vm_shutdown_during_initialization(
3428                                       "Failed necessary internal allocation. Out of swap space");
3429     delete main_thread;
3430     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3431     return JNI_ENOMEM;
3432   }
3433 
3434   // Enable guard page *after* os::create_main_thread(), otherwise it would
3435   // crash Linux VM, see notes in os_linux.cpp.
3436   main_thread->create_stack_guard_pages();
3437 
3438   // Initialize Java-Level synchronization subsystem
3439   ObjectMonitor::Initialize();
3440 
3441   // Initialize global modules
3442   jint status = init_globals();
3443   if (status != JNI_OK) {
3444     delete main_thread;
3445     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3446     return status;
3447   }
3448 
3449   // Should be done after the heap is fully created
3450   main_thread->cache_global_variables();
3451 
3452   HandleMark hm;
3453 
3454   { MutexLocker mu(Threads_lock);
3455     Threads::add(main_thread);
3456   }
3457 
3458   // Any JVMTI raw monitors entered in onload will transition into
3459   // real raw monitor. VM is setup enough here for raw monitor enter.
3460   JvmtiExport::transition_pending_onload_raw_monitors();
3461 
3462   // Create the VMThread
3463   { TraceTime timer("Start VMThread", TraceStartupTime);
3464     VMThread::create();
3465     Thread* vmthread = VMThread::vm_thread();
3466 
3467     if (!os::create_thread(vmthread, os::vm_thread)) {
3468       vm_exit_during_initialization("Cannot create VM thread. "
3469                                     "Out of system resources.");
3470     }
3471 
3472     // Wait for the VM thread to become ready, and VMThread::run to initialize
3473     // Monitors can have spurious returns, must always check another state flag
3474     {
3475       MutexLocker ml(Notify_lock);
3476       os::start_thread(vmthread);
3477       while (vmthread->active_handles() == NULL) {
3478         Notify_lock->wait();
3479       }
3480     }
3481   }
3482 
3483   assert(Universe::is_fully_initialized(), "not initialized");
3484   if (VerifyDuringStartup) {
3485     // Make sure we're starting with a clean slate.
3486     VM_Verify verify_op;
3487     VMThread::execute(&verify_op);
3488   }
3489 
3490   Thread* THREAD = Thread::current();
3491 
3492   // At this point, the Universe is initialized, but we have not executed
3493   // any byte code.  Now is a good time (the only time) to dump out the
3494   // internal state of the JVM for sharing.
3495   if (DumpSharedSpaces) {
3496     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3497     ShouldNotReachHere();
3498   }
3499 
3500   // Always call even when there are not JVMTI environments yet, since environments
3501   // may be attached late and JVMTI must track phases of VM execution
3502   JvmtiExport::enter_start_phase();
3503 
3504   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3505   JvmtiExport::post_vm_start();
3506 
3507   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3508 
3509   // We need this for ClassDataSharing - the initial vm.info property is set
3510   // with the default value of CDS "sharing" which may be reset through
3511   // command line options.
3512   reset_vm_info_property(CHECK_JNI_ERR);
3513 
3514   quicken_jni_functions();
3515 
3516   // Must be run after init_ft which initializes ft_enabled
3517   if (TRACE_INITIALIZE() != JNI_OK) {
3518     vm_exit_during_initialization("Failed to initialize tracing backend");
3519   }
3520 
3521   // Set flag that basic initialization has completed. Used by exceptions and various
3522   // debug stuff, that does not work until all basic classes have been initialized.
3523   set_init_completed();
3524 
3525   Metaspace::post_initialize();
3526 
3527   HOTSPOT_VM_INIT_END();
3528 
3529   // record VM initialization completion time
3530 #if INCLUDE_MANAGEMENT
3531   Management::record_vm_init_completed();
3532 #endif // INCLUDE_MANAGEMENT
3533 
3534   // Compute system loader. Note that this has to occur after set_init_completed, since
3535   // valid exceptions may be thrown in the process.
3536   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3537   // set_init_completed has just been called, causing exceptions not to be shortcut
3538   // anymore. We call vm_exit_during_initialization directly instead.
3539   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3540 
3541 #if INCLUDE_ALL_GCS
3542   // Support for ConcurrentMarkSweep. This should be cleaned up
3543   // and better encapsulated. The ugly nested if test would go away
3544   // once things are properly refactored. XXX YSR
3545   if (UseConcMarkSweepGC || UseG1GC || UseShenandoahGC) {
3546     if (UseConcMarkSweepGC) {
3547       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3548     } else if (UseShenandoahGC) {
3549       ShenandoahConcurrentThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3550     } else {
3551       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3552     }
3553   }
3554 #endif // INCLUDE_ALL_GCS
3555 
3556   // Always call even when there are not JVMTI environments yet, since environments
3557   // may be attached late and JVMTI must track phases of VM execution
3558   JvmtiExport::enter_live_phase();
3559 
3560   // Signal Dispatcher needs to be started before VMInit event is posted
3561   os::signal_init();
3562 
3563   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3564   if (!DisableAttachMechanism) {
3565     AttachListener::vm_start();
3566     if (StartAttachListener || AttachListener::init_at_startup()) {
3567       AttachListener::init();
3568     }
3569   }
3570 
3571   // Launch -Xrun agents
3572   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3573   // back-end can launch with -Xdebug -Xrunjdwp.
3574   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3575     create_vm_init_libraries();
3576   }
3577 
3578   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3579   JvmtiExport::post_vm_initialized();
3580 
3581   if (TRACE_START() != JNI_OK) {
3582     vm_exit_during_initialization("Failed to start tracing backend.");
3583   }
3584 
3585   if (CleanChunkPoolAsync) {
3586     Chunk::start_chunk_pool_cleaner_task();
3587   }
3588 
3589   // initialize compiler(s)
3590 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3591   CompileBroker::compilation_init();
3592 #endif
3593 
3594   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3595   // It is done after compilers are initialized, because otherwise compilations of
3596   // signature polymorphic MH intrinsics can be missed
3597   // (see SystemDictionary::find_method_handle_intrinsic).
3598   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3599 
3600 #if INCLUDE_MANAGEMENT
3601   Management::initialize(THREAD);
3602 
3603   if (HAS_PENDING_EXCEPTION) {
3604     // management agent fails to start possibly due to
3605     // configuration problem and is responsible for printing
3606     // stack trace if appropriate. Simply exit VM.
3607     vm_exit(1);
3608   }
3609 #endif // INCLUDE_MANAGEMENT
3610 
3611   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3612   if (MemProfiling)                   MemProfiler::engage();
3613   StatSampler::engage();
3614   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3615 
3616   BiasedLocking::init();
3617 
3618 #if INCLUDE_RTM_OPT
3619   RTMLockingCounters::init();
3620 #endif
3621 
3622   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3623     call_postVMInitHook(THREAD);
3624     // The Java side of PostVMInitHook.run must deal with all
3625     // exceptions and provide means of diagnosis.
3626     if (HAS_PENDING_EXCEPTION) {
3627       CLEAR_PENDING_EXCEPTION;
3628     }
3629   }
3630 
3631   {
3632     MutexLocker ml(PeriodicTask_lock);
3633     // Make sure the WatcherThread can be started by WatcherThread::start()
3634     // or by dynamic enrollment.
3635     WatcherThread::make_startable();
3636     // Start up the WatcherThread if there are any periodic tasks
3637     // NOTE:  All PeriodicTasks should be registered by now. If they
3638     //   aren't, late joiners might appear to start slowly (we might
3639     //   take a while to process their first tick).
3640     if (PeriodicTask::num_tasks() > 0) {
3641       WatcherThread::start();
3642     }
3643   }
3644 
3645   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3646 
3647   create_vm_timer.end();
3648 #ifdef ASSERT
3649   _vm_complete = true;
3650 #endif
3651   return JNI_OK;
3652 }
3653 
3654 // type for the Agent_OnLoad and JVM_OnLoad entry points
3655 extern "C" {
3656   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3657 }
3658 // Find a command line agent library and return its entry point for
3659 //         -agentlib:  -agentpath:   -Xrun
3660 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3661 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3662                                     const char *on_load_symbols[],
3663                                     size_t num_symbol_entries) {
3664   OnLoadEntry_t on_load_entry = NULL;
3665   void *library = NULL;
3666 
3667   if (!agent->valid()) {
3668     char buffer[JVM_MAXPATHLEN];
3669     char ebuf[1024] = "";
3670     const char *name = agent->name();
3671     const char *msg = "Could not find agent library ";
3672 
3673     // First check to see if agent is statically linked into executable
3674     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3675       library = agent->os_lib();
3676     } else if (agent->is_absolute_path()) {
3677       library = os::dll_load(name, ebuf, sizeof ebuf);
3678       if (library == NULL) {
3679         const char *sub_msg = " in absolute path, with error: ";
3680         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3681         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3682         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3683         // If we can't find the agent, exit.
3684         vm_exit_during_initialization(buf, NULL);
3685         FREE_C_HEAP_ARRAY(char, buf);
3686       }
3687     } else {
3688       // Try to load the agent from the standard dll directory
3689       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3690                              name)) {
3691         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3692       }
3693       if (library == NULL) { // Try the local directory
3694         char ns[1] = {0};
3695         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3696           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3697         }
3698         if (library == NULL) {
3699           const char *sub_msg = " on the library path, with error: ";
3700           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3701           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3702           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3703           // If we can't find the agent, exit.
3704           vm_exit_during_initialization(buf, NULL);
3705           FREE_C_HEAP_ARRAY(char, buf);
3706         }
3707       }
3708     }
3709     agent->set_os_lib(library);
3710     agent->set_valid();
3711   }
3712 
3713   // Find the OnLoad function.
3714   on_load_entry =
3715     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3716                                                           false,
3717                                                           on_load_symbols,
3718                                                           num_symbol_entries));
3719   return on_load_entry;
3720 }
3721 
3722 // Find the JVM_OnLoad entry point
3723 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3724   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3725   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3726 }
3727 
3728 // Find the Agent_OnLoad entry point
3729 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3730   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3731   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3732 }
3733 
3734 // For backwards compatibility with -Xrun
3735 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3736 // treated like -agentpath:
3737 // Must be called before agent libraries are created
3738 void Threads::convert_vm_init_libraries_to_agents() {
3739   AgentLibrary* agent;
3740   AgentLibrary* next;
3741 
3742   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3743     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3744     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3745 
3746     // If there is an JVM_OnLoad function it will get called later,
3747     // otherwise see if there is an Agent_OnLoad
3748     if (on_load_entry == NULL) {
3749       on_load_entry = lookup_agent_on_load(agent);
3750       if (on_load_entry != NULL) {
3751         // switch it to the agent list -- so that Agent_OnLoad will be called,
3752         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3753         Arguments::convert_library_to_agent(agent);
3754       } else {
3755         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3756       }
3757     }
3758   }
3759 }
3760 
3761 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3762 // Invokes Agent_OnLoad
3763 // Called very early -- before JavaThreads exist
3764 void Threads::create_vm_init_agents() {
3765   extern struct JavaVM_ main_vm;
3766   AgentLibrary* agent;
3767 
3768   JvmtiExport::enter_onload_phase();
3769 
3770   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3771     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3772 
3773     if (on_load_entry != NULL) {
3774       // Invoke the Agent_OnLoad function
3775       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3776       if (err != JNI_OK) {
3777         vm_exit_during_initialization("agent library failed to init", agent->name());
3778       }
3779     } else {
3780       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3781     }
3782   }
3783   JvmtiExport::enter_primordial_phase();
3784 }
3785 
3786 extern "C" {
3787   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3788 }
3789 
3790 void Threads::shutdown_vm_agents() {
3791   // Send any Agent_OnUnload notifications
3792   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3793   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3794   extern struct JavaVM_ main_vm;
3795   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3796 
3797     // Find the Agent_OnUnload function.
3798     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3799                                                    os::find_agent_function(agent,
3800                                                    false,
3801                                                    on_unload_symbols,
3802                                                    num_symbol_entries));
3803 
3804     // Invoke the Agent_OnUnload function
3805     if (unload_entry != NULL) {
3806       JavaThread* thread = JavaThread::current();
3807       ThreadToNativeFromVM ttn(thread);
3808       HandleMark hm(thread);
3809       (*unload_entry)(&main_vm);
3810     }
3811   }
3812 }
3813 
3814 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3815 // Invokes JVM_OnLoad
3816 void Threads::create_vm_init_libraries() {
3817   extern struct JavaVM_ main_vm;
3818   AgentLibrary* agent;
3819 
3820   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3821     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3822 
3823     if (on_load_entry != NULL) {
3824       // Invoke the JVM_OnLoad function
3825       JavaThread* thread = JavaThread::current();
3826       ThreadToNativeFromVM ttn(thread);
3827       HandleMark hm(thread);
3828       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3829       if (err != JNI_OK) {
3830         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3831       }
3832     } else {
3833       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3834     }
3835   }
3836 }
3837 
3838 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3839   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3840 
3841   JavaThread* java_thread = NULL;
3842   // Sequential search for now.  Need to do better optimization later.
3843   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3844     oop tobj = thread->threadObj();
3845     if (!thread->is_exiting() &&
3846         tobj != NULL &&
3847         java_tid == java_lang_Thread::thread_id(tobj)) {
3848       java_thread = thread;
3849       break;
3850     }
3851   }
3852   return java_thread;
3853 }
3854 
3855 
3856 // Last thread running calls java.lang.Shutdown.shutdown()
3857 void JavaThread::invoke_shutdown_hooks() {
3858   HandleMark hm(this);
3859 
3860   // We could get here with a pending exception, if so clear it now.
3861   if (this->has_pending_exception()) {
3862     this->clear_pending_exception();
3863   }
3864 
3865   EXCEPTION_MARK;
3866   Klass* k =
3867     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3868                                       THREAD);
3869   if (k != NULL) {
3870     // SystemDictionary::resolve_or_null will return null if there was
3871     // an exception.  If we cannot load the Shutdown class, just don't
3872     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3873     // and finalizers (if runFinalizersOnExit is set) won't be run.
3874     // Note that if a shutdown hook was registered or runFinalizersOnExit
3875     // was called, the Shutdown class would have already been loaded
3876     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3877     instanceKlassHandle shutdown_klass (THREAD, k);
3878     JavaValue result(T_VOID);
3879     JavaCalls::call_static(&result,
3880                            shutdown_klass,
3881                            vmSymbols::shutdown_method_name(),
3882                            vmSymbols::void_method_signature(),
3883                            THREAD);
3884   }
3885   CLEAR_PENDING_EXCEPTION;
3886 }
3887 
3888 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3889 // the program falls off the end of main(). Another VM exit path is through
3890 // vm_exit() when the program calls System.exit() to return a value or when
3891 // there is a serious error in VM. The two shutdown paths are not exactly
3892 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3893 // and VM_Exit op at VM level.
3894 //
3895 // Shutdown sequence:
3896 //   + Shutdown native memory tracking if it is on
3897 //   + Wait until we are the last non-daemon thread to execute
3898 //     <-- every thing is still working at this moment -->
3899 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3900 //        shutdown hooks, run finalizers if finalization-on-exit
3901 //   + Call before_exit(), prepare for VM exit
3902 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3903 //        currently the only user of this mechanism is File.deleteOnExit())
3904 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3905 //        post thread end and vm death events to JVMTI,
3906 //        stop signal thread
3907 //   + Call JavaThread::exit(), it will:
3908 //      > release JNI handle blocks, remove stack guard pages
3909 //      > remove this thread from Threads list
3910 //     <-- no more Java code from this thread after this point -->
3911 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3912 //     the compiler threads at safepoint
3913 //     <-- do not use anything that could get blocked by Safepoint -->
3914 //   + Disable tracing at JNI/JVM barriers
3915 //   + Set _vm_exited flag for threads that are still running native code
3916 //   + Delete this thread
3917 //   + Call exit_globals()
3918 //      > deletes tty
3919 //      > deletes PerfMemory resources
3920 //   + Return to caller
3921 
3922 bool Threads::destroy_vm() {
3923   JavaThread* thread = JavaThread::current();
3924 
3925 #ifdef ASSERT
3926   _vm_complete = false;
3927 #endif
3928   // Wait until we are the last non-daemon thread to execute
3929   { MutexLocker nu(Threads_lock);
3930     while (Threads::number_of_non_daemon_threads() > 1)
3931       // This wait should make safepoint checks, wait without a timeout,
3932       // and wait as a suspend-equivalent condition.
3933       //
3934       // Note: If the FlatProfiler is running and this thread is waiting
3935       // for another non-daemon thread to finish, then the FlatProfiler
3936       // is waiting for the external suspend request on this thread to
3937       // complete. wait_for_ext_suspend_completion() will eventually
3938       // timeout, but that takes time. Making this wait a suspend-
3939       // equivalent condition solves that timeout problem.
3940       //
3941       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3942                          Mutex::_as_suspend_equivalent_flag);
3943   }
3944 
3945   // Hang forever on exit if we are reporting an error.
3946   if (ShowMessageBoxOnError && is_error_reported()) {
3947     os::infinite_sleep();
3948   }
3949   os::wait_for_keypress_at_exit();
3950 
3951   // run Java level shutdown hooks
3952   thread->invoke_shutdown_hooks();
3953 
3954   before_exit(thread);
3955 
3956   thread->exit(true);
3957 
3958   // Stop GC threads.
3959   Universe::heap()->shutdown();
3960 
3961   // Stop VM thread.
3962   {
3963     // 4945125 The vm thread comes to a safepoint during exit.
3964     // GC vm_operations can get caught at the safepoint, and the
3965     // heap is unparseable if they are caught. Grab the Heap_lock
3966     // to prevent this. The GC vm_operations will not be able to
3967     // queue until after the vm thread is dead. After this point,
3968     // we'll never emerge out of the safepoint before the VM exits.
3969 
3970     MutexLocker ml(Heap_lock);
3971 
3972     VMThread::wait_for_vm_thread_exit();
3973     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3974     VMThread::destroy();
3975   }
3976 
3977   // clean up ideal graph printers
3978 #if defined(COMPILER2) && !defined(PRODUCT)
3979   IdealGraphPrinter::clean_up();
3980 #endif
3981 
3982   // Now, all Java threads are gone except daemon threads. Daemon threads
3983   // running Java code or in VM are stopped by the Safepoint. However,
3984   // daemon threads executing native code are still running.  But they
3985   // will be stopped at native=>Java/VM barriers. Note that we can't
3986   // simply kill or suspend them, as it is inherently deadlock-prone.
3987 
3988 #ifndef PRODUCT
3989   // disable function tracing at JNI/JVM barriers
3990   TraceJNICalls = false;
3991   TraceJVMCalls = false;
3992   TraceRuntimeCalls = false;
3993 #endif
3994 
3995   VM_Exit::set_vm_exited();
3996 
3997   notify_vm_shutdown();
3998 
3999   delete thread;
4000 
4001   // exit_globals() will delete tty
4002   exit_globals();
4003 
4004   return true;
4005 }
4006 
4007 
4008 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4009   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4010   return is_supported_jni_version(version);
4011 }
4012 
4013 
4014 jboolean Threads::is_supported_jni_version(jint version) {
4015   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4016   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4017   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4018   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4019   return JNI_FALSE;
4020 }
4021 
4022 
4023 void Threads::add(JavaThread* p, bool force_daemon) {
4024   // The threads lock must be owned at this point
4025   assert_locked_or_safepoint(Threads_lock);
4026 
4027   // See the comment for this method in thread.hpp for its purpose and
4028   // why it is called here.
4029   p->initialize_queues();
4030   p->set_next(_thread_list);
4031   _thread_list = p;
4032   _number_of_threads++;
4033   oop threadObj = p->threadObj();
4034   bool daemon = true;
4035   // Bootstrapping problem: threadObj can be null for initial
4036   // JavaThread (or for threads attached via JNI)
4037   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4038     _number_of_non_daemon_threads++;
4039     daemon = false;
4040   }
4041 
4042   ThreadService::add_thread(p, daemon);
4043 
4044   // Possible GC point.
4045   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4046 }
4047 
4048 void Threads::remove(JavaThread* p) {
4049   // Extra scope needed for Thread_lock, so we can check
4050   // that we do not remove thread without safepoint code notice
4051   { MutexLocker ml(Threads_lock);
4052 
4053     assert(includes(p), "p must be present");
4054 
4055     JavaThread* current = _thread_list;
4056     JavaThread* prev    = NULL;
4057 
4058     while (current != p) {
4059       prev    = current;
4060       current = current->next();
4061     }
4062 
4063     if (prev) {
4064       prev->set_next(current->next());
4065     } else {
4066       _thread_list = p->next();
4067     }
4068     _number_of_threads--;
4069     oop threadObj = p->threadObj();
4070     bool daemon = true;
4071     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4072       _number_of_non_daemon_threads--;
4073       daemon = false;
4074 
4075       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4076       // on destroy_vm will wake up.
4077       if (number_of_non_daemon_threads() == 1) {
4078         Threads_lock->notify_all();
4079       }
4080     }
4081     ThreadService::remove_thread(p, daemon);
4082 
4083     // Make sure that safepoint code disregard this thread. This is needed since
4084     // the thread might mess around with locks after this point. This can cause it
4085     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4086     // of this thread since it is removed from the queue.
4087     p->set_terminated_value();
4088   } // unlock Threads_lock
4089 
4090   // Since Events::log uses a lock, we grab it outside the Threads_lock
4091   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4092 }
4093 
4094 // Threads_lock must be held when this is called (or must be called during a safepoint)
4095 bool Threads::includes(JavaThread* p) {
4096   assert(Threads_lock->is_locked(), "sanity check");
4097   ALL_JAVA_THREADS(q) {
4098     if (q == p) {
4099       return true;
4100     }
4101   }
4102   return false;
4103 }
4104 
4105 // Operations on the Threads list for GC.  These are not explicitly locked,
4106 // but the garbage collector must provide a safe context for them to run.
4107 // In particular, these things should never be called when the Threads_lock
4108 // is held by some other thread. (Note: the Safepoint abstraction also
4109 // uses the Threads_lock to guarantee this property. It also makes sure that
4110 // all threads gets blocked when exiting or starting).
4111 
4112 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4113   ALL_JAVA_THREADS(p) {
4114     p->oops_do(f, cld_f, cf);
4115   }
4116   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4117 }
4118 
4119 void Threads::change_thread_claim_parity() {
4120   // Set the new claim parity.
4121   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4122          "Not in range.");
4123   _thread_claim_parity++;
4124   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4125   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4126          "Not in range.");
4127 }
4128 
4129 #ifdef ASSERT
4130 void Threads::assert_all_threads_claimed() {
4131   ALL_JAVA_THREADS(p) {
4132     const int thread_parity = p->oops_do_parity();
4133     assert((thread_parity == _thread_claim_parity),
4134         err_msg("Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity));
4135   }
4136 }
4137 #endif // ASSERT
4138 
4139 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4140   int cp = Threads::thread_claim_parity();
4141   ALL_JAVA_THREADS(p) {
4142     if (p->claim_oops_do(is_par, cp)) {
4143       p->oops_do(f, cld_f, cf);
4144     }
4145   }
4146   VMThread* vmt = VMThread::vm_thread();
4147   if (vmt->claim_oops_do(is_par, cp)) {
4148     vmt->oops_do(f, cld_f, cf);
4149   }
4150 }
4151 
4152 #if INCLUDE_ALL_GCS
4153 // Used by ParallelScavenge
4154 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4155   ALL_JAVA_THREADS(p) {
4156     q->enqueue(new ThreadRootsTask(p));
4157   }
4158   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4159 }
4160 
4161 // Used by Parallel Old
4162 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4163   ALL_JAVA_THREADS(p) {
4164     q->enqueue(new ThreadRootsMarkingTask(p));
4165   }
4166   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4167 }
4168 #endif // INCLUDE_ALL_GCS
4169 
4170 void Threads::nmethods_do(CodeBlobClosure* cf) {
4171   ALL_JAVA_THREADS(p) {
4172     p->nmethods_do(cf);
4173   }
4174   VMThread::vm_thread()->nmethods_do(cf);
4175 }
4176 
4177 void Threads::metadata_do(void f(Metadata*)) {
4178   ALL_JAVA_THREADS(p) {
4179     p->metadata_do(f);
4180   }
4181 }
4182 
4183 class ThreadHandlesClosure : public ThreadClosure {
4184   void (*_f)(Metadata*);
4185  public:
4186   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4187   virtual void do_thread(Thread* thread) {
4188     thread->metadata_handles_do(_f);
4189   }
4190 };
4191 
4192 void Threads::metadata_handles_do(void f(Metadata*)) {
4193   // Only walk the Handles in Thread.
4194   ThreadHandlesClosure handles_closure(f);
4195   threads_do(&handles_closure);
4196 }
4197 
4198 void Threads::deoptimized_wrt_marked_nmethods() {
4199   ALL_JAVA_THREADS(p) {
4200     p->deoptimized_wrt_marked_nmethods();
4201   }
4202 }
4203 
4204 
4205 // Get count Java threads that are waiting to enter the specified monitor.
4206 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4207                                                          address monitor,
4208                                                          bool doLock) {
4209   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4210          "must grab Threads_lock or be at safepoint");
4211   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4212 
4213   int i = 0;
4214   {
4215     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4216     ALL_JAVA_THREADS(p) {
4217       if (p->is_Compiler_thread()) continue;
4218 
4219       address pending = (address)p->current_pending_monitor();
4220       if (pending == monitor) {             // found a match
4221         if (i < count) result->append(p);   // save the first count matches
4222         i++;
4223       }
4224     }
4225   }
4226   return result;
4227 }
4228 
4229 
4230 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4231                                                       bool doLock) {
4232   assert(doLock ||
4233          Threads_lock->owned_by_self() ||
4234          SafepointSynchronize::is_at_safepoint(),
4235          "must grab Threads_lock or be at safepoint");
4236 
4237   // NULL owner means not locked so we can skip the search
4238   if (owner == NULL) return NULL;
4239 
4240   {
4241     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4242     ALL_JAVA_THREADS(p) {
4243       // first, see if owner is the address of a Java thread
4244       if (owner == (address)p) return p;
4245     }
4246   }
4247   // Cannot assert on lack of success here since this function may be
4248   // used by code that is trying to report useful problem information
4249   // like deadlock detection.
4250   if (UseHeavyMonitors) return NULL;
4251 
4252   // If we didn't find a matching Java thread and we didn't force use of
4253   // heavyweight monitors, then the owner is the stack address of the
4254   // Lock Word in the owning Java thread's stack.
4255   //
4256   JavaThread* the_owner = NULL;
4257   {
4258     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4259     ALL_JAVA_THREADS(q) {
4260       if (q->is_lock_owned(owner)) {
4261         the_owner = q;
4262         break;
4263       }
4264     }
4265   }
4266   // cannot assert on lack of success here; see above comment
4267   return the_owner;
4268 }
4269 
4270 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4271 void Threads::print_on(outputStream* st, bool print_stacks,
4272                        bool internal_format, bool print_concurrent_locks) {
4273   char buf[32];
4274   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4275 
4276   st->print_cr("Full thread dump %s (%s %s):",
4277                Abstract_VM_Version::vm_name(),
4278                Abstract_VM_Version::vm_release(),
4279                Abstract_VM_Version::vm_info_string());
4280   st->cr();
4281 
4282 #if INCLUDE_SERVICES
4283   // Dump concurrent locks
4284   ConcurrentLocksDump concurrent_locks;
4285   if (print_concurrent_locks) {
4286     concurrent_locks.dump_at_safepoint();
4287   }
4288 #endif // INCLUDE_SERVICES
4289 
4290   ALL_JAVA_THREADS(p) {
4291     ResourceMark rm;
4292     p->print_on(st);
4293     if (print_stacks) {
4294       if (internal_format) {
4295         p->trace_stack();
4296       } else {
4297         p->print_stack_on(st);
4298       }
4299     }
4300     st->cr();
4301 #if INCLUDE_SERVICES
4302     if (print_concurrent_locks) {
4303       concurrent_locks.print_locks_on(p, st);
4304     }
4305 #endif // INCLUDE_SERVICES
4306   }
4307 
4308   VMThread::vm_thread()->print_on(st);
4309   st->cr();
4310   Universe::heap()->print_gc_threads_on(st);
4311   WatcherThread* wt = WatcherThread::watcher_thread();
4312   if (wt != NULL) {
4313     wt->print_on(st);
4314     st->cr();
4315   }
4316   CompileBroker::print_compiler_threads_on(st);
4317   st->flush();
4318 }
4319 
4320 // Threads::print_on_error() is called by fatal error handler. It's possible
4321 // that VM is not at safepoint and/or current thread is inside signal handler.
4322 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4323 // memory (even in resource area), it might deadlock the error handler.
4324 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4325                              int buflen) {
4326   bool found_current = false;
4327   st->print_cr("Java Threads: ( => current thread )");
4328   ALL_JAVA_THREADS(thread) {
4329     bool is_current = (current == thread);
4330     found_current = found_current || is_current;
4331 
4332     st->print("%s", is_current ? "=>" : "  ");
4333 
4334     st->print(PTR_FORMAT, thread);
4335     st->print(" ");
4336     thread->print_on_error(st, buf, buflen);
4337     st->cr();
4338   }
4339   st->cr();
4340 
4341   st->print_cr("Other Threads:");
4342   if (VMThread::vm_thread()) {
4343     bool is_current = (current == VMThread::vm_thread());
4344     found_current = found_current || is_current;
4345     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4346 
4347     st->print(PTR_FORMAT, VMThread::vm_thread());
4348     st->print(" ");
4349     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4350     st->cr();
4351   }
4352   WatcherThread* wt = WatcherThread::watcher_thread();
4353   if (wt != NULL) {
4354     bool is_current = (current == wt);
4355     found_current = found_current || is_current;
4356     st->print("%s", is_current ? "=>" : "  ");
4357 
4358     st->print(PTR_FORMAT, wt);
4359     st->print(" ");
4360     wt->print_on_error(st, buf, buflen);
4361     st->cr();
4362   }
4363   if (!found_current) {
4364     st->cr();
4365     st->print("=>" PTR_FORMAT " (exited) ", current);
4366     current->print_on_error(st, buf, buflen);
4367     st->cr();
4368   }
4369 }
4370 
4371 // Internal SpinLock and Mutex
4372 // Based on ParkEvent
4373 
4374 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4375 //
4376 // We employ SpinLocks _only for low-contention, fixed-length
4377 // short-duration critical sections where we're concerned
4378 // about native mutex_t or HotSpot Mutex:: latency.
4379 // The mux construct provides a spin-then-block mutual exclusion
4380 // mechanism.
4381 //
4382 // Testing has shown that contention on the ListLock guarding gFreeList
4383 // is common.  If we implement ListLock as a simple SpinLock it's common
4384 // for the JVM to devolve to yielding with little progress.  This is true
4385 // despite the fact that the critical sections protected by ListLock are
4386 // extremely short.
4387 //
4388 // TODO-FIXME: ListLock should be of type SpinLock.
4389 // We should make this a 1st-class type, integrated into the lock
4390 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4391 // should have sufficient padding to avoid false-sharing and excessive
4392 // cache-coherency traffic.
4393 
4394 
4395 typedef volatile int SpinLockT;
4396 
4397 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4398   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4399     return;   // normal fast-path return
4400   }
4401 
4402   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4403   TEVENT(SpinAcquire - ctx);
4404   int ctr = 0;
4405   int Yields = 0;
4406   for (;;) {
4407     while (*adr != 0) {
4408       ++ctr;
4409       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4410         if (Yields > 5) {
4411           os::naked_short_sleep(1);
4412         } else {
4413           os::naked_yield();
4414           ++Yields;
4415         }
4416       } else {
4417         SpinPause();
4418       }
4419     }
4420     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4421   }
4422 }
4423 
4424 void Thread::SpinRelease(volatile int * adr) {
4425   assert(*adr != 0, "invariant");
4426   OrderAccess::fence();      // guarantee at least release consistency.
4427   // Roach-motel semantics.
4428   // It's safe if subsequent LDs and STs float "up" into the critical section,
4429   // but prior LDs and STs within the critical section can't be allowed
4430   // to reorder or float past the ST that releases the lock.
4431   // Loads and stores in the critical section - which appear in program
4432   // order before the store that releases the lock - must also appear
4433   // before the store that releases the lock in memory visibility order.
4434   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4435   // the ST of 0 into the lock-word which releases the lock, so fence
4436   // more than covers this on all platforms.
4437   *adr = 0;
4438 }
4439 
4440 // muxAcquire and muxRelease:
4441 //
4442 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4443 //    The LSB of the word is set IFF the lock is held.
4444 //    The remainder of the word points to the head of a singly-linked list
4445 //    of threads blocked on the lock.
4446 //
4447 // *  The current implementation of muxAcquire-muxRelease uses its own
4448 //    dedicated Thread._MuxEvent instance.  If we're interested in
4449 //    minimizing the peak number of extant ParkEvent instances then
4450 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4451 //    as certain invariants were satisfied.  Specifically, care would need
4452 //    to be taken with regards to consuming unpark() "permits".
4453 //    A safe rule of thumb is that a thread would never call muxAcquire()
4454 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4455 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4456 //    consume an unpark() permit intended for monitorenter, for instance.
4457 //    One way around this would be to widen the restricted-range semaphore
4458 //    implemented in park().  Another alternative would be to provide
4459 //    multiple instances of the PlatformEvent() for each thread.  One
4460 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4461 //
4462 // *  Usage:
4463 //    -- Only as leaf locks
4464 //    -- for short-term locking only as muxAcquire does not perform
4465 //       thread state transitions.
4466 //
4467 // Alternatives:
4468 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4469 //    but with parking or spin-then-park instead of pure spinning.
4470 // *  Use Taura-Oyama-Yonenzawa locks.
4471 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4472 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4473 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4474 //    acquiring threads use timers (ParkTimed) to detect and recover from
4475 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4476 //    boundaries by using placement-new.
4477 // *  Augment MCS with advisory back-link fields maintained with CAS().
4478 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4479 //    The validity of the backlinks must be ratified before we trust the value.
4480 //    If the backlinks are invalid the exiting thread must back-track through the
4481 //    the forward links, which are always trustworthy.
4482 // *  Add a successor indication.  The LockWord is currently encoded as
4483 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4484 //    to provide the usual futile-wakeup optimization.
4485 //    See RTStt for details.
4486 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4487 //
4488 
4489 
4490 typedef volatile intptr_t MutexT;      // Mux Lock-word
4491 enum MuxBits { LOCKBIT = 1 };
4492 
4493 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4494   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4495   if (w == 0) return;
4496   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4497     return;
4498   }
4499 
4500   TEVENT(muxAcquire - Contention);
4501   ParkEvent * const Self = Thread::current()->_MuxEvent;
4502   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4503   for (;;) {
4504     int its = (os::is_MP() ? 100 : 0) + 1;
4505 
4506     // Optional spin phase: spin-then-park strategy
4507     while (--its >= 0) {
4508       w = *Lock;
4509       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4510         return;
4511       }
4512     }
4513 
4514     Self->reset();
4515     Self->OnList = intptr_t(Lock);
4516     // The following fence() isn't _strictly necessary as the subsequent
4517     // CAS() both serializes execution and ratifies the fetched *Lock value.
4518     OrderAccess::fence();
4519     for (;;) {
4520       w = *Lock;
4521       if ((w & LOCKBIT) == 0) {
4522         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4523           Self->OnList = 0;   // hygiene - allows stronger asserts
4524           return;
4525         }
4526         continue;      // Interference -- *Lock changed -- Just retry
4527       }
4528       assert(w & LOCKBIT, "invariant");
4529       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4530       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4531     }
4532 
4533     while (Self->OnList != 0) {
4534       Self->park();
4535     }
4536   }
4537 }
4538 
4539 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4540   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4541   if (w == 0) return;
4542   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4543     return;
4544   }
4545 
4546   TEVENT(muxAcquire - Contention);
4547   ParkEvent * ReleaseAfter = NULL;
4548   if (ev == NULL) {
4549     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4550   }
4551   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4552   for (;;) {
4553     guarantee(ev->OnList == 0, "invariant");
4554     int its = (os::is_MP() ? 100 : 0) + 1;
4555 
4556     // Optional spin phase: spin-then-park strategy
4557     while (--its >= 0) {
4558       w = *Lock;
4559       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4560         if (ReleaseAfter != NULL) {
4561           ParkEvent::Release(ReleaseAfter);
4562         }
4563         return;
4564       }
4565     }
4566 
4567     ev->reset();
4568     ev->OnList = intptr_t(Lock);
4569     // The following fence() isn't _strictly necessary as the subsequent
4570     // CAS() both serializes execution and ratifies the fetched *Lock value.
4571     OrderAccess::fence();
4572     for (;;) {
4573       w = *Lock;
4574       if ((w & LOCKBIT) == 0) {
4575         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4576           ev->OnList = 0;
4577           // We call ::Release while holding the outer lock, thus
4578           // artificially lengthening the critical section.
4579           // Consider deferring the ::Release() until the subsequent unlock(),
4580           // after we've dropped the outer lock.
4581           if (ReleaseAfter != NULL) {
4582             ParkEvent::Release(ReleaseAfter);
4583           }
4584           return;
4585         }
4586         continue;      // Interference -- *Lock changed -- Just retry
4587       }
4588       assert(w & LOCKBIT, "invariant");
4589       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4590       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4591     }
4592 
4593     while (ev->OnList != 0) {
4594       ev->park();
4595     }
4596   }
4597 }
4598 
4599 // Release() must extract a successor from the list and then wake that thread.
4600 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4601 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4602 // Release() would :
4603 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4604 // (B) Extract a successor from the private list "in-hand"
4605 // (C) attempt to CAS() the residual back into *Lock over null.
4606 //     If there were any newly arrived threads and the CAS() would fail.
4607 //     In that case Release() would detach the RATs, re-merge the list in-hand
4608 //     with the RATs and repeat as needed.  Alternately, Release() might
4609 //     detach and extract a successor, but then pass the residual list to the wakee.
4610 //     The wakee would be responsible for reattaching and remerging before it
4611 //     competed for the lock.
4612 //
4613 // Both "pop" and DMR are immune from ABA corruption -- there can be
4614 // multiple concurrent pushers, but only one popper or detacher.
4615 // This implementation pops from the head of the list.  This is unfair,
4616 // but tends to provide excellent throughput as hot threads remain hot.
4617 // (We wake recently run threads first).
4618 //
4619 // All paths through muxRelease() will execute a CAS.
4620 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4621 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4622 // executed within the critical section are complete and globally visible before the
4623 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4624 void Thread::muxRelease(volatile intptr_t * Lock)  {
4625   for (;;) {
4626     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4627     assert(w & LOCKBIT, "invariant");
4628     if (w == LOCKBIT) return;
4629     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4630     assert(List != NULL, "invariant");
4631     assert(List->OnList == intptr_t(Lock), "invariant");
4632     ParkEvent * const nxt = List->ListNext;
4633     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4634 
4635     // The following CAS() releases the lock and pops the head element.
4636     // The CAS() also ratifies the previously fetched lock-word value.
4637     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4638       continue;
4639     }
4640     List->OnList = 0;
4641     OrderAccess::fence();
4642     List->unpark();
4643     return;
4644   }
4645 }
4646 
4647 
4648 void Threads::verify() {
4649   ALL_JAVA_THREADS(p) {
4650     p->verify();
4651   }
4652   VMThread* thread = VMThread::vm_thread();
4653   if (thread != NULL) thread->verify();
4654 }