/* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "opto/arraycopynode.hpp" #include "oops/objArrayKlass.hpp" #include "opto/convertnode.hpp" #include "opto/graphKit.hpp" #include "opto/macro.hpp" #include "opto/runtime.hpp" void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) { MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent); mb->init_req(TypeFunc::Control, *ctrl); mb->init_req(TypeFunc::Memory, *mem); transform_later(mb); *ctrl = new ProjNode(mb,TypeFunc::Control); transform_later(*ctrl); Node* mem_proj = new ProjNode(mb,TypeFunc::Memory); transform_later(mem_proj); *mem = mem_proj; } Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) { uint shift = exact_log2(type2aelembytes(elembt)); uint header = arrayOopDesc::base_offset_in_bytes(elembt); Node* base = basic_plus_adr(ary, header); #ifdef _LP64 // see comment in GraphKit::array_element_address int index_max = max_jint - 1; // array size is max_jint, index is one less const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax); idx = transform_later( new ConvI2LNode(idx, lidxtype) ); #endif Node* scale = new LShiftXNode(idx, intcon(shift)); transform_later(scale); return basic_plus_adr(ary, base, scale); } Node* PhaseMacroExpand::ConvI2L(Node* offset) { return transform_later(new ConvI2LNode(offset)); } Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem, const TypeFunc* call_type, address call_addr, const char* call_name, const TypePtr* adr_type, Node* parm0, Node* parm1, Node* parm2, Node* parm3, Node* parm4, Node* parm5, Node* parm6, Node* parm7) { int size = call_type->domain()->cnt(); Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type); call->init_req(TypeFunc::Control, ctrl); call->init_req(TypeFunc::I_O , top()); call->init_req(TypeFunc::Memory , mem); call->init_req(TypeFunc::ReturnAdr, top()); call->init_req(TypeFunc::FramePtr, top()); // Hook each parm in order. Stop looking at the first NULL. if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0); if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1); if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2); if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3); if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4); if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5); if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6); if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7); /* close each nested if ===> */ } } } } } } } } assert(call->in(call->req()-1) != NULL, "must initialize all parms"); return call; } //------------------------------generate_guard--------------------------- // Helper function for generating guarded fast-slow graph structures. // The given 'test', if true, guards a slow path. If the test fails // then a fast path can be taken. (We generally hope it fails.) // In all cases, GraphKit::control() is updated to the fast path. // The returned value represents the control for the slow path. // The return value is never 'top'; it is either a valid control // or NULL if it is obvious that the slow path can never be taken. // Also, if region and the slow control are not NULL, the slow edge // is appended to the region. Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) { if ((*ctrl)->is_top()) { // Already short circuited. return NULL; } // Build an if node and its projections. // If test is true we take the slow path, which we assume is uncommon. if (_igvn.type(test) == TypeInt::ZERO) { // The slow branch is never taken. No need to build this guard. return NULL; } IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN); transform_later(iff); Node* if_slow = new IfTrueNode(iff); transform_later(if_slow); if (region != NULL) { region->add_req(if_slow); } Node* if_fast = new IfFalseNode(iff); transform_later(if_fast); *ctrl = if_fast; return if_slow; } inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) { return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3)); } void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) { if ((*ctrl)->is_top()) return; // already stopped if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] return; // index is already adequately typed Node* cmp_lt = new CmpINode(index, intcon(0)); transform_later(cmp_lt); Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); transform_later(bol_lt); generate_guard(ctrl, bol_lt, region, PROB_MIN); } void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) { if ((*ctrl)->is_top()) return; // already stopped bool zero_offset = _igvn.type(offset) == TypeInt::ZERO; if (zero_offset && subseq_length->eqv_uncast(array_length)) return; // common case of whole-array copy Node* last = subseq_length; if (!zero_offset) { // last += offset last = new AddINode(last, offset); transform_later(last); } Node* cmp_lt = new CmpUNode(array_length, last); transform_later(cmp_lt); Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt); transform_later(bol_lt); generate_guard(ctrl, bol_lt, region, PROB_MIN); } Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) { if ((*ctrl)->is_top()) return NULL; if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint] return NULL; // index is already adequately typed Node* cmp_le = new CmpINode(index, intcon(0)); transform_later(cmp_le); BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le); Node* bol_le = new BoolNode(cmp_le, le_or_eq); transform_later(bol_le); Node* is_notp = generate_guard(ctrl, bol_le, NULL, PROB_MIN); return is_notp; } void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) { transform_later(call); *ctrl = new ProjNode(call,TypeFunc::Control); transform_later(*ctrl); Node* newmem = new ProjNode(call, TypeFunc::Memory); transform_later(newmem); uint alias_idx = C->get_alias_index(adr_type); if (alias_idx != Compile::AliasIdxBot) { *mem = MergeMemNode::make(*mem); (*mem)->set_memory_at(alias_idx, newmem); } else { *mem = MergeMemNode::make(newmem); } transform_later(*mem); } address PhaseMacroExpand::basictype2arraycopy(BasicType t, Node* src_offset, Node* dest_offset, bool disjoint_bases, const char* &name, bool dest_uninitialized) { const TypeInt* src_offset_inttype = _igvn.find_int_type(src_offset);; const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset);; bool aligned = false; bool disjoint = disjoint_bases; // if the offsets are the same, we can treat the memory regions as // disjoint, because either the memory regions are in different arrays, // or they are identical (which we can treat as disjoint.) We can also // treat a copy with a destination index less that the source index // as disjoint since a low->high copy will work correctly in this case. if (src_offset_inttype != NULL && src_offset_inttype->is_con() && dest_offset_inttype != NULL && dest_offset_inttype->is_con()) { // both indices are constants int s_offs = src_offset_inttype->get_con(); int d_offs = dest_offset_inttype->get_con(); int element_size = type2aelembytes(t); aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0); if (s_offs >= d_offs) disjoint = true; } else if (src_offset == dest_offset && src_offset != NULL) { // This can occur if the offsets are identical non-constants. disjoint = true; } return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized); } #define COMMA , #define XTOP LP64_ONLY(COMMA top()) // Generate an optimized call to arraycopy. // Caller must guard against non-arrays. // Caller must determine a common array basic-type for both arrays. // Caller must validate offsets against array bounds. // The slow_region has already collected guard failure paths // (such as out of bounds length or non-conformable array types). // The generated code has this shape, in general: // // if (length == 0) return // via zero_path // slowval = -1 // if (types unknown) { // slowval = call generic copy loop // if (slowval == 0) return // via checked_path // } else if (indexes in bounds) { // if ((is object array) && !(array type check)) { // slowval = call checked copy loop // if (slowval == 0) return // via checked_path // } else { // call bulk copy loop // return // via fast_path // } // } // // adjust params for remaining work: // if (slowval != -1) { // n = -1^slowval; src_offset += n; dest_offset += n; length -= n // } // slow_region: // call slow arraycopy(src, src_offset, dest, dest_offset, length) // return // via slow_call_path // // This routine is used from several intrinsics: System.arraycopy, // Object.clone (the array subcase), and Arrays.copyOf[Range]. // Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc, Node** ctrl, MergeMemNode* mem, Node** io, const TypePtr* adr_type, BasicType basic_elem_type, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, bool disjoint_bases, bool length_never_negative, RegionNode* slow_region) { if (slow_region == NULL) { slow_region = new RegionNode(1); transform_later(slow_region); } Node* original_dest = dest; bool dest_uninitialized = false; // See if this is the initialization of a newly-allocated array. // If so, we will take responsibility here for initializing it to zero. // (Note: Because tightly_coupled_allocation performs checks on the // out-edges of the dest, we need to avoid making derived pointers // from it until we have checked its uses.) if (ReduceBulkZeroing && !ZeroTLAB // pointless if already zeroed && basic_elem_type != T_CONFLICT // avoid corner case && !src->eqv_uncast(dest) && alloc != NULL && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0 && alloc->maybe_set_complete(&_igvn)) { // "You break it, you buy it." InitializeNode* init = alloc->initialization(); assert(init->is_complete(), "we just did this"); init->set_complete_with_arraycopy(); assert(dest->is_CheckCastPP(), "sanity"); assert(dest->in(0)->in(0) == init, "dest pinned"); adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory // From this point on, every exit path is responsible for // initializing any non-copied parts of the object to zero. // Also, if this flag is set we make sure that arraycopy interacts properly // with G1, eliding pre-barriers. See CR 6627983. dest_uninitialized = true; } else { // No zeroing elimination here. alloc = NULL; //original_dest = dest; //dest_uninitialized = false; } uint alias_idx = C->get_alias_index(adr_type); // Results are placed here: enum { fast_path = 1, // normal void-returning assembly stub checked_path = 2, // special assembly stub with cleanup slow_call_path = 3, // something went wrong; call the VM zero_path = 4, // bypass when length of copy is zero bcopy_path = 5, // copy primitive array by 64-bit blocks PATH_LIMIT = 6 }; RegionNode* result_region = new RegionNode(PATH_LIMIT); PhiNode* result_i_o = new PhiNode(result_region, Type::ABIO); PhiNode* result_memory = new PhiNode(result_region, Type::MEMORY, adr_type); assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice"); transform_later(result_region); transform_later(result_i_o); transform_later(result_memory); // The slow_control path: Node* slow_control; Node* slow_i_o = *io; Node* slow_mem = mem->memory_at(alias_idx); DEBUG_ONLY(slow_control = (Node*) badAddress); // Checked control path: Node* checked_control = top(); Node* checked_mem = NULL; Node* checked_i_o = NULL; Node* checked_value = NULL; if (basic_elem_type == T_CONFLICT) { assert(!dest_uninitialized, ""); Node* cv = generate_generic_arraycopy(ctrl, &mem, adr_type, src, src_offset, dest, dest_offset, copy_length, dest_uninitialized); if (cv == NULL) cv = intcon(-1); // failure (no stub available) checked_control = *ctrl; checked_i_o = *io; checked_mem = mem->memory_at(alias_idx); checked_value = cv; *ctrl = top(); } Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative); if (not_pos != NULL) { Node* local_ctrl = not_pos, *local_io = *io; MergeMemNode* local_mem = MergeMemNode::make(mem); transform_later(local_mem); // (6) length must not be negative. if (!length_never_negative) { generate_negative_guard(&local_ctrl, copy_length, slow_region); } // copy_length is 0. if (dest_uninitialized) { assert(!local_ctrl->is_top(), "no ctrl?"); Node* dest_length = alloc->in(AllocateNode::ALength); if (copy_length->eqv_uncast(dest_length) || _igvn.find_int_con(dest_length, 1) <= 0) { // There is no zeroing to do. No need for a secondary raw memory barrier. } else { // Clear the whole thing since there are no source elements to copy. generate_clear_array(local_ctrl, local_mem, adr_type, dest, basic_elem_type, intcon(0), NULL, alloc->in(AllocateNode::AllocSize)); // Use a secondary InitializeNode as raw memory barrier. // Currently it is needed only on this path since other // paths have stub or runtime calls as raw memory barriers. MemBarNode* mb = MemBarNode::make(C, Op_Initialize, Compile::AliasIdxRaw, top()); transform_later(mb); mb->set_req(TypeFunc::Control,local_ctrl); mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw)); local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control)); local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory))); InitializeNode* init = mb->as_Initialize(); init->set_complete(&_igvn); // (there is no corresponding AllocateNode) } } // Present the results of the fast call. result_region->init_req(zero_path, local_ctrl); result_i_o ->init_req(zero_path, local_io); result_memory->init_req(zero_path, local_mem->memory_at(alias_idx)); } if (!(*ctrl)->is_top() && dest_uninitialized) { // We have to initialize the *uncopied* part of the array to zero. // The copy destination is the slice dest[off..off+len]. The other slices // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length]. Node* dest_size = alloc->in(AllocateNode::AllocSize); Node* dest_length = alloc->in(AllocateNode::ALength); Node* dest_tail = transform_later( new AddINode(dest_offset, copy_length)); // If there is a head section that needs zeroing, do it now. if (_igvn.find_int_con(dest_offset, -1) != 0) { generate_clear_array(*ctrl, mem, adr_type, dest, basic_elem_type, intcon(0), dest_offset, NULL); } // Next, perform a dynamic check on the tail length. // It is often zero, and we can win big if we prove this. // There are two wins: Avoid generating the ClearArray // with its attendant messy index arithmetic, and upgrade // the copy to a more hardware-friendly word size of 64 bits. Node* tail_ctl = NULL; if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) { Node* cmp_lt = transform_later( new CmpINode(dest_tail, dest_length) ); Node* bol_lt = transform_later( new BoolNode(cmp_lt, BoolTest::lt) ); tail_ctl = generate_slow_guard(ctrl, bol_lt, NULL); assert(tail_ctl != NULL || !(*ctrl)->is_top(), "must be an outcome"); } // At this point, let's assume there is no tail. if (!(*ctrl)->is_top() && alloc != NULL && basic_elem_type != T_OBJECT) { // There is no tail. Try an upgrade to a 64-bit copy. bool didit = false; { Node* local_ctrl = *ctrl, *local_io = *io; MergeMemNode* local_mem = MergeMemNode::make(mem); transform_later(local_mem); didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io, adr_type, basic_elem_type, alloc, src, src_offset, dest, dest_offset, dest_size, dest_uninitialized); if (didit) { // Present the results of the block-copying fast call. result_region->init_req(bcopy_path, local_ctrl); result_i_o ->init_req(bcopy_path, local_io); result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx)); } } if (didit) { *ctrl = top(); // no regular fast path } } // Clear the tail, if any. if (tail_ctl != NULL) { Node* notail_ctl = (*ctrl)->is_top() ? NULL : *ctrl; *ctrl = tail_ctl; if (notail_ctl == NULL) { generate_clear_array(*ctrl, mem, adr_type, dest, basic_elem_type, dest_tail, NULL, dest_size); } else { // Make a local merge. Node* done_ctl = transform_later(new RegionNode(3)); Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type)); done_ctl->init_req(1, notail_ctl); done_mem->init_req(1, mem->memory_at(alias_idx)); generate_clear_array(*ctrl, mem, adr_type, dest, basic_elem_type, dest_tail, NULL, dest_size); done_ctl->init_req(2, *ctrl); done_mem->init_req(2, mem->memory_at(alias_idx)); *ctrl = done_ctl; mem->set_memory_at(alias_idx, done_mem); } } } BasicType copy_type = basic_elem_type; assert(basic_elem_type != T_ARRAY, "caller must fix this"); if (!(*ctrl)->is_top() && copy_type == T_OBJECT) { // If src and dest have compatible element types, we can copy bits. // Types S[] and D[] are compatible if D is a supertype of S. // // If they are not, we will use checked_oop_disjoint_arraycopy, // which performs a fast optimistic per-oop check, and backs off // further to JVM_ArrayCopy on the first per-oop check that fails. // (Actually, we don't move raw bits only; the GC requires card marks.) // Get the klass* for both src and dest Node* src_klass = ac->in(ArrayCopyNode::SrcKlass); Node* dest_klass = ac->in(ArrayCopyNode::DestKlass); assert(src_klass != NULL && dest_klass != NULL, "should have klasses"); // Generate the subtype check. // This might fold up statically, or then again it might not. // // Non-static example: Copying List.elements to a new String[]. // The backing store for a List is always an Object[], // but its elements are always type String, if the generic types // are correct at the source level. // // Test S[] against D[], not S against D, because (probably) // the secondary supertype cache is less busy for S[] than S. // This usually only matters when D is an interface. Node* not_subtype_ctrl = (ac->is_arraycopy_validated() || ac->is_copyof_validated() || ac->is_copyofrange_validated()) ? top() : Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, &_igvn); // Plug failing path into checked_oop_disjoint_arraycopy if (not_subtype_ctrl != top()) { Node* local_ctrl = not_subtype_ctrl; MergeMemNode* local_mem = MergeMemNode::make(mem); transform_later(local_mem); // (At this point we can assume disjoint_bases, since types differ.) int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); Node* p1 = basic_plus_adr(dest_klass, ek_offset); Node* n1 = LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), p1, TypeRawPtr::BOTTOM); Node* dest_elem_klass = transform_later(n1); Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem, adr_type, dest_elem_klass, src, src_offset, dest, dest_offset, ConvI2X(copy_length), dest_uninitialized); if (cv == NULL) cv = intcon(-1); // failure (no stub available) checked_control = local_ctrl; checked_i_o = *io; checked_mem = local_mem->memory_at(alias_idx); checked_value = cv; } // At this point we know we do not need type checks on oop stores. // Let's see if we need card marks: if (alloc != NULL && GraphKit::use_ReduceInitialCardMarks() && ! UseShenandoahGC) { // If we do not need card marks, copy using the jint or jlong stub. copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT); assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type), "sizes agree"); } } if (!(*ctrl)->is_top()) { // Generate the fast path, if possible. Node* local_ctrl = *ctrl; MergeMemNode* local_mem = MergeMemNode::make(mem); transform_later(local_mem); generate_unchecked_arraycopy(&local_ctrl, &local_mem, adr_type, copy_type, disjoint_bases, src, src_offset, dest, dest_offset, ConvI2X(copy_length), dest_uninitialized); // Present the results of the fast call. result_region->init_req(fast_path, local_ctrl); result_i_o ->init_req(fast_path, *io); result_memory->init_req(fast_path, local_mem->memory_at(alias_idx)); } // Here are all the slow paths up to this point, in one bundle: assert(slow_region != NULL, "allocated on entry"); slow_control = slow_region; DEBUG_ONLY(slow_region = (RegionNode*)badAddress); *ctrl = checked_control; if (!(*ctrl)->is_top()) { // Clean up after the checked call. // The returned value is either 0 or -1^K, // where K = number of partially transferred array elements. Node* cmp = new CmpINode(checked_value, intcon(0)); transform_later(cmp); Node* bol = new BoolNode(cmp, BoolTest::eq); transform_later(bol); IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN); transform_later(iff); // If it is 0, we are done, so transfer to the end. Node* checks_done = new IfTrueNode(iff); transform_later(checks_done); result_region->init_req(checked_path, checks_done); result_i_o ->init_req(checked_path, checked_i_o); result_memory->init_req(checked_path, checked_mem); // If it is not zero, merge into the slow call. *ctrl = new IfFalseNode(iff); transform_later(*ctrl); RegionNode* slow_reg2 = new RegionNode(3); PhiNode* slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO); PhiNode* slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type); transform_later(slow_reg2); transform_later(slow_i_o2); transform_later(slow_mem2); slow_reg2 ->init_req(1, slow_control); slow_i_o2 ->init_req(1, slow_i_o); slow_mem2 ->init_req(1, slow_mem); slow_reg2 ->init_req(2, *ctrl); slow_i_o2 ->init_req(2, checked_i_o); slow_mem2 ->init_req(2, checked_mem); slow_control = slow_reg2; slow_i_o = slow_i_o2; slow_mem = slow_mem2; if (alloc != NULL) { // We'll restart from the very beginning, after zeroing the whole thing. // This can cause double writes, but that's OK since dest is brand new. // So we ignore the low 31 bits of the value returned from the stub. } else { // We must continue the copy exactly where it failed, or else // another thread might see the wrong number of writes to dest. Node* checked_offset = new XorINode(checked_value, intcon(-1)); Node* slow_offset = new PhiNode(slow_reg2, TypeInt::INT); transform_later(checked_offset); transform_later(slow_offset); slow_offset->init_req(1, intcon(0)); slow_offset->init_req(2, checked_offset); // Adjust the arguments by the conditionally incoming offset. Node* src_off_plus = new AddINode(src_offset, slow_offset); transform_later(src_off_plus); Node* dest_off_plus = new AddINode(dest_offset, slow_offset); transform_later(dest_off_plus); Node* length_minus = new SubINode(copy_length, slow_offset); transform_later(length_minus); // Tweak the node variables to adjust the code produced below: src_offset = src_off_plus; dest_offset = dest_off_plus; copy_length = length_minus; } } *ctrl = slow_control; if (!(*ctrl)->is_top()) { Node* local_ctrl = *ctrl, *local_io = slow_i_o; MergeMemNode* local_mem = MergeMemNode::make(mem); transform_later(local_mem); // Generate the slow path, if needed. local_mem->set_memory_at(alias_idx, slow_mem); if (dest_uninitialized) { generate_clear_array(local_ctrl, local_mem, adr_type, dest, basic_elem_type, intcon(0), NULL, alloc->in(AllocateNode::AllocSize)); } local_mem = generate_slow_arraycopy(ac, &local_ctrl, local_mem, &local_io, adr_type, src, src_offset, dest, dest_offset, copy_length, /*dest_uninitialized*/false); result_region->init_req(slow_call_path, local_ctrl); result_i_o ->init_req(slow_call_path, local_io); result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx)); } else { ShouldNotReachHere(); // no call to generate_slow_arraycopy: // projections were not extracted } // Remove unused edges. for (uint i = 1; i < result_region->req(); i++) { if (result_region->in(i) == NULL) { result_region->init_req(i, top()); } } // Finished; return the combined state. *ctrl = result_region; *io = result_i_o; mem->set_memory_at(alias_idx, result_memory); // mem no longer guaranteed to stay a MergeMemNode Node* out_mem = mem; DEBUG_ONLY(mem = NULL); // The memory edges above are precise in order to model effects around // array copies accurately to allow value numbering of field loads around // arraycopy. Such field loads, both before and after, are common in Java // collections and similar classes involving header/array data structures. // // But with low number of register or when some registers are used or killed // by arraycopy calls it causes registers spilling on stack. See 6544710. // The next memory barrier is added to avoid it. If the arraycopy can be // optimized away (which it can, sometimes) then we can manually remove // the membar also. // // Do not let reads from the cloned object float above the arraycopy. if (alloc != NULL && !alloc->initialization()->does_not_escape()) { // Do not let stores that initialize this object be reordered with // a subsequent store that would make this object accessible by // other threads. insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore); } else if (InsertMemBarAfterArraycopy) { insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder); } _igvn.replace_node(_memproj_fallthrough, out_mem); _igvn.replace_node(_ioproj_fallthrough, *io); _igvn.replace_node(_fallthroughcatchproj, *ctrl); return out_mem; } // Helper for initialization of arrays, creating a ClearArray. // It writes zero bits in [start..end), within the body of an array object. // The memory effects are all chained onto the 'adr_type' alias category. // // Since the object is otherwise uninitialized, we are free // to put a little "slop" around the edges of the cleared area, // as long as it does not go back into the array's header, // or beyond the array end within the heap. // // The lower edge can be rounded down to the nearest jint and the // upper edge can be rounded up to the nearest MinObjAlignmentInBytes. // // Arguments: // adr_type memory slice where writes are generated // dest oop of the destination array // basic_elem_type element type of the destination // slice_idx array index of first element to store // slice_len number of elements to store (or NULL) // dest_size total size in bytes of the array object // // Exactly one of slice_len or dest_size must be non-NULL. // If dest_size is non-NULL, zeroing extends to the end of the object. // If slice_len is non-NULL, the slice_idx value must be a constant. void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem, const TypePtr* adr_type, Node* dest, BasicType basic_elem_type, Node* slice_idx, Node* slice_len, Node* dest_size) { // one or the other but not both of slice_len and dest_size: assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, ""); if (slice_len == NULL) slice_len = top(); if (dest_size == NULL) dest_size = top(); uint alias_idx = C->get_alias_index(adr_type); // operate on this memory slice: Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on // scaling and rounding of indexes: int scale = exact_log2(type2aelembytes(basic_elem_type)); int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); int clear_low = (-1 << scale) & (BytesPerInt - 1); int bump_bit = (-1 << scale) & BytesPerInt; // determine constant starts and ends const intptr_t BIG_NEG = -128; assert(BIG_NEG + 2*abase < 0, "neg enough"); intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG); intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG); if (slice_len_con == 0) { return; // nothing to do here } intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low; intptr_t end_con = _igvn.find_intptr_t_con(dest_size, -1); if (slice_idx_con >= 0 && slice_len_con >= 0) { assert(end_con < 0, "not two cons"); end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale), BytesPerLong); } if (start_con >= 0 && end_con >= 0) { // Constant start and end. Simple. mem = ClearArrayNode::clear_memory(ctrl, mem, dest, start_con, end_con, &_igvn); } else if (start_con >= 0 && dest_size != top()) { // Constant start, pre-rounded end after the tail of the array. Node* end = dest_size; mem = ClearArrayNode::clear_memory(ctrl, mem, dest, start_con, end, &_igvn); } else if (start_con >= 0 && slice_len != top()) { // Constant start, non-constant end. End needs rounding up. // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8) intptr_t end_base = abase + (slice_idx_con << scale); int end_round = (-1 << scale) & (BytesPerLong - 1); Node* end = ConvI2X(slice_len); if (scale != 0) end = transform_later(new LShiftXNode(end, intcon(scale) )); end_base += end_round; end = transform_later(new AddXNode(end, MakeConX(end_base)) ); end = transform_later(new AndXNode(end, MakeConX(~end_round)) ); mem = ClearArrayNode::clear_memory(ctrl, mem, dest, start_con, end, &_igvn); } else if (start_con < 0 && dest_size != top()) { // Non-constant start, pre-rounded end after the tail of the array. // This is almost certainly a "round-to-end" operation. Node* start = slice_idx; start = ConvI2X(start); if (scale != 0) start = transform_later(new LShiftXNode( start, intcon(scale) )); start = transform_later(new AddXNode(start, MakeConX(abase)) ); if ((bump_bit | clear_low) != 0) { int to_clear = (bump_bit | clear_low); // Align up mod 8, then store a jint zero unconditionally // just before the mod-8 boundary. if (((abase + bump_bit) & ~to_clear) - bump_bit < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) { bump_bit = 0; assert((abase & to_clear) == 0, "array base must be long-aligned"); } else { // Bump 'start' up to (or past) the next jint boundary: start = transform_later( new AddXNode(start, MakeConX(bump_bit)) ); assert((abase & clear_low) == 0, "array base must be int-aligned"); } // Round bumped 'start' down to jlong boundary in body of array. start = transform_later(new AndXNode(start, MakeConX(~to_clear)) ); if (bump_bit != 0) { // Store a zero to the immediately preceding jint: Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) ); Node* p1 = basic_plus_adr(dest, x1); mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered); mem = transform_later(mem); } } Node* end = dest_size; // pre-rounded mem = ClearArrayNode::clear_memory(ctrl, mem, dest, start, end, &_igvn); } else { // Non-constant start, unrounded non-constant end. // (Nobody zeroes a random midsection of an array using this routine.) ShouldNotReachHere(); // fix caller } // Done. merge_mem->set_memory_at(alias_idx, mem); } bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io, const TypePtr* adr_type, BasicType basic_elem_type, AllocateNode* alloc, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* dest_size, bool dest_uninitialized) { // See if there is an advantage from block transfer. int scale = exact_log2(type2aelembytes(basic_elem_type)); if (scale >= LogBytesPerLong) return false; // it is already a block transfer // Look at the alignment of the starting offsets. int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); intptr_t src_off_con = (intptr_t) _igvn.find_int_con(src_offset, -1); intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1); if (src_off_con < 0 || dest_off_con < 0) { // At present, we can only understand constants. return false; } intptr_t src_off = abase + (src_off_con << scale); intptr_t dest_off = abase + (dest_off_con << scale); if (((src_off | dest_off) & (BytesPerLong-1)) != 0) { // Non-aligned; too bad. // One more chance: Pick off an initial 32-bit word. // This is a common case, since abase can be odd mod 8. if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt && ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) { Node* sptr = basic_plus_adr(src, src_off); Node* dptr = basic_plus_adr(dest, dest_off); uint alias_idx = C->get_alias_index(adr_type); Node* sval = transform_later(LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), sptr, adr_type, TypeInt::INT, T_INT, MemNode::unordered)); Node* st = transform_later(StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(alias_idx), dptr, adr_type, sval, T_INT, MemNode::unordered)); (*mem)->set_memory_at(alias_idx, st); src_off += BytesPerInt; dest_off += BytesPerInt; } else { return false; } } assert(src_off % BytesPerLong == 0, ""); assert(dest_off % BytesPerLong == 0, ""); // Do this copy by giant steps. Node* sptr = basic_plus_adr(src, src_off); Node* dptr = basic_plus_adr(dest, dest_off); Node* countx = dest_size; countx = transform_later(new SubXNode(countx, MakeConX(dest_off))); countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong))); bool disjoint_bases = true; // since alloc != NULL generate_unchecked_arraycopy(ctrl, mem, adr_type, T_LONG, disjoint_bases, sptr, NULL, dptr, NULL, countx, dest_uninitialized); return true; } // Helper function; generates code for the slow case. // We make a call to a runtime method which emulates the native method, // but without the native wrapper overhead. MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac, Node** ctrl, Node* mem, Node** io, const TypePtr* adr_type, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, bool dest_uninitialized) { assert(!dest_uninitialized, "Invariant"); const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type(); CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(), "slow_arraycopy", ac->jvms()->bci(), TypePtr::BOTTOM); call->init_req(TypeFunc::Control, *ctrl); call->init_req(TypeFunc::I_O , *io); call->init_req(TypeFunc::Memory , mem); call->init_req(TypeFunc::ReturnAdr, top()); call->init_req(TypeFunc::FramePtr, top()); call->init_req(TypeFunc::Parms+0, src); call->init_req(TypeFunc::Parms+1, src_offset); call->init_req(TypeFunc::Parms+2, dest); call->init_req(TypeFunc::Parms+3, dest_offset); call->init_req(TypeFunc::Parms+4, copy_length); copy_call_debug_info(ac, call); call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. _igvn.replace_node(ac, call); transform_later(call); extract_call_projections(call); *ctrl = _fallthroughcatchproj->clone(); transform_later(*ctrl); Node* m = _memproj_fallthrough->clone(); transform_later(m); uint alias_idx = C->get_alias_index(adr_type); MergeMemNode* out_mem; if (alias_idx != Compile::AliasIdxBot) { out_mem = MergeMemNode::make(mem); out_mem->set_memory_at(alias_idx, m); } else { out_mem = MergeMemNode::make(m); } transform_later(out_mem); *io = _ioproj_fallthrough->clone(); transform_later(*io); return out_mem; } // Helper function; generates code for cases requiring runtime checks. Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type, Node* dest_elem_klass, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, bool dest_uninitialized) { if ((*ctrl)->is_top()) return NULL; address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized); if (copyfunc_addr == NULL) { // Stub was not generated, go slow path. return NULL; } // Pick out the parameters required to perform a store-check // for the target array. This is an optimistic check. It will // look in each non-null element's class, at the desired klass's // super_check_offset, for the desired klass. int sco_offset = in_bytes(Klass::super_check_offset_offset()); Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset); Node* n3 = new LoadINode(NULL, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered); Node* check_offset = ConvI2X(transform_later(n3)); Node* check_value = dest_elem_klass; Node* src_start = array_element_address(src, src_offset, T_OBJECT); Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT); const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type(); Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type, src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value); finish_arraycopy_call(call, ctrl, mem, adr_type); Node* proj = new ProjNode(call, TypeFunc::Parms); transform_later(proj); return proj; } // Helper function; generates code for cases requiring runtime checks. Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, bool dest_uninitialized) { if ((*ctrl)->is_top()) return NULL; assert(!dest_uninitialized, "Invariant"); address copyfunc_addr = StubRoutines::generic_arraycopy(); if (copyfunc_addr == NULL) { // Stub was not generated, go slow path. return NULL; } const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type(); Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type, src, src_offset, dest, dest_offset, copy_length); finish_arraycopy_call(call, ctrl, mem, adr_type); Node* proj = new ProjNode(call, TypeFunc::Parms); transform_later(proj); return proj; } // Helper function; generates the fast out-of-line call to an arraycopy stub. void PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type, BasicType basic_elem_type, bool disjoint_bases, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, bool dest_uninitialized) { if ((*ctrl)->is_top()) return; Node* src_start = src; Node* dest_start = dest; if (src_offset != NULL || dest_offset != NULL) { src_start = array_element_address(src, src_offset, basic_elem_type); dest_start = array_element_address(dest, dest_offset, basic_elem_type); } // Figure out which arraycopy runtime method to call. const char* copyfunc_name = "arraycopy"; address copyfunc_addr = basictype2arraycopy(basic_elem_type, src_offset, dest_offset, disjoint_bases, copyfunc_name, dest_uninitialized); const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type, src_start, dest_start, copy_length XTOP); finish_arraycopy_call(call, ctrl, mem, adr_type); } void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) { Node* ctrl = ac->in(TypeFunc::Control); Node* io = ac->in(TypeFunc::I_O); Node* src = ac->in(ArrayCopyNode::Src); Node* src_offset = ac->in(ArrayCopyNode::SrcPos); Node* dest = ac->in(ArrayCopyNode::Dest); Node* dest_offset = ac->in(ArrayCopyNode::DestPos); Node* length = ac->in(ArrayCopyNode::Length); MergeMemNode* merge_mem = NULL; if (ac->is_clonebasic()) { assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null"); Node* mem = ac->in(TypeFunc::Memory); const char* copyfunc_name = "arraycopy"; address copyfunc_addr = basictype2arraycopy(T_LONG, NULL, NULL, true, copyfunc_name, true); const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type(); Node* call = make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, src, dest, length XTOP); transform_later(call); _igvn.replace_node(ac, call); return; } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_cloneoop()) { Node* mem = ac->in(TypeFunc::Memory); merge_mem = MergeMemNode::make(mem); transform_later(merge_mem); RegionNode* slow_region = new RegionNode(1); transform_later(slow_region); AllocateArrayNode* alloc = NULL; if (ac->is_alloc_tightly_coupled()) { alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn); assert(alloc != NULL, "expect alloc"); } const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot); if (ac->_dest_type != TypeOopPtr::BOTTOM) { adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); } if (ac->_src_type != ac->_dest_type) { adr_type = TypeRawPtr::BOTTOM; } generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, adr_type, T_OBJECT, src, src_offset, dest, dest_offset, length, true, !ac->is_copyofrange()); return; } AllocateArrayNode* alloc = NULL; if (ac->is_alloc_tightly_coupled()) { alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn); assert(alloc != NULL, "expect alloc"); } assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy"); // Compile time checks. If any of these checks cannot be verified at compile time, // we do not make a fast path for this call. Instead, we let the call remain as it // is. The checks we choose to mandate at compile time are: // // (1) src and dest are arrays. const Type* src_type = src->Value(&_igvn); const Type* dest_type = dest->Value(&_igvn); const TypeAryPtr* top_src = src_type->isa_aryptr(); const TypeAryPtr* top_dest = dest_type->isa_aryptr(); if (top_src == NULL || top_src->klass() == NULL || top_dest == NULL || top_dest->klass() == NULL) { // Conservatively insert a memory barrier on all memory slices. // Do not let writes into the source float below the arraycopy. { Node* mem = ac->in(TypeFunc::Memory); insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); merge_mem = MergeMemNode::make(mem); transform_later(merge_mem); } // Call StubRoutines::generic_arraycopy stub. Node* mem = generate_arraycopy(ac, NULL, &ctrl, merge_mem, &io, TypeRawPtr::BOTTOM, T_CONFLICT, src, src_offset, dest, dest_offset, length); // Do not let reads from the destination float above the arraycopy. // Since we cannot type the arrays, we don't know which slices // might be affected. We could restrict this barrier only to those // memory slices which pertain to array elements--but don't bother. if (!InsertMemBarAfterArraycopy) { // (If InsertMemBarAfterArraycopy, there is already one in place.) insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder); } return; } // (2) src and dest arrays must have elements of the same BasicType // Figure out the size and type of the elements we will be copying. BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); if (src_elem == T_ARRAY) src_elem = T_OBJECT; if (dest_elem == T_ARRAY) dest_elem = T_OBJECT; if (src_elem != dest_elem || dest_elem == T_VOID) { // The component types are not the same or are not recognized. Punt. // (But, avoid the native method wrapper to JVM_ArrayCopy.) { Node* mem = ac->in(TypeFunc::Memory); merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false); } _igvn.replace_node(_memproj_fallthrough, merge_mem); _igvn.replace_node(_ioproj_fallthrough, io); _igvn.replace_node(_fallthroughcatchproj, ctrl); return; } //--------------------------------------------------------------------------- // We will make a fast path for this call to arraycopy. // We have the following tests left to perform: // // (3) src and dest must not be null. // (4) src_offset must not be negative. // (5) dest_offset must not be negative. // (6) length must not be negative. // (7) src_offset + length must not exceed length of src. // (8) dest_offset + length must not exceed length of dest. // (9) each element of an oop array must be assignable { Node* mem = ac->in(TypeFunc::Memory); merge_mem = MergeMemNode::make(mem); transform_later(merge_mem); } RegionNode* slow_region = new RegionNode(1); transform_later(slow_region); if (!ac->is_arraycopy_validated()) { // (3) operands must not be null // We currently perform our null checks with the null_check routine. // This means that the null exceptions will be reported in the caller // rather than (correctly) reported inside of the native arraycopy call. // This should be corrected, given time. We do our null check with the // stack pointer restored. // null checks done library_call.cpp // (4) src_offset must not be negative. generate_negative_guard(&ctrl, src_offset, slow_region); // (5) dest_offset must not be negative. generate_negative_guard(&ctrl, dest_offset, slow_region); // (6) length must not be negative (moved to generate_arraycopy()). // generate_negative_guard(length, slow_region); // (7) src_offset + length must not exceed length of src. Node* alen = ac->in(ArrayCopyNode::SrcLen); assert(alen != NULL, "need src len"); generate_limit_guard(&ctrl, src_offset, length, alen, slow_region); // (8) dest_offset + length must not exceed length of dest. alen = ac->in(ArrayCopyNode::DestLen); assert(alen != NULL, "need dest len"); generate_limit_guard(&ctrl, dest_offset, length, alen, slow_region); // (9) each element of an oop array must be assignable // The generate_arraycopy subroutine checks this. } // This is where the memory effects are placed: const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem); if (ac->_dest_type != TypeOopPtr::BOTTOM) { adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr(); } if (ac->_src_type != ac->_dest_type) { adr_type = TypeRawPtr::BOTTOM; } generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io, adr_type, dest_elem, src, src_offset, dest, dest_offset, length, false, false, slow_region); }