1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "nativeInst_x86.hpp"
  32 #include "oops/compiledICHolder.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "register_x86.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/signature.hpp"
  38 #include "runtime/vframeArray.hpp"
  39 #include "utilities/macros.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 #if INCLUDE_ALL_GCS
  42 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  43 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  44 #endif
  45 
  46 
  47 // Implementation of StubAssembler
  48 
  49 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
  50   // setup registers
  51   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
  52   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
  53   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
  54   assert(args_size >= 0, "illegal args_size");
  55   bool align_stack = false;
  56 #ifdef _LP64
  57   // At a method handle call, the stack may not be properly aligned
  58   // when returning with an exception.
  59   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
  60 #endif
  61 
  62 #ifdef _LP64
  63   mov(c_rarg0, thread);
  64   set_num_rt_args(0); // Nothing on stack
  65 #else
  66   set_num_rt_args(1 + args_size);
  67 
  68   // push java thread (becomes first argument of C function)
  69   get_thread(thread);
  70   push(thread);
  71 #endif // _LP64
  72 
  73   int call_offset;
  74   if (!align_stack) {
  75     set_last_Java_frame(thread, noreg, rbp, NULL);
  76   } else {
  77     address the_pc = pc();
  78     call_offset = offset();
  79     set_last_Java_frame(thread, noreg, rbp, the_pc);
  80     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  81   }
  82 
  83   // do the call
  84   call(RuntimeAddress(entry));
  85   if (!align_stack) {
  86     call_offset = offset();
  87   }
  88   // verify callee-saved register
  89 #ifdef ASSERT
  90   guarantee(thread != rax, "change this code");
  91   push(rax);
  92   { Label L;
  93     get_thread(rax);
  94     cmpptr(thread, rax);
  95     jcc(Assembler::equal, L);
  96     int3();
  97     stop("StubAssembler::call_RT: rdi not callee saved?");
  98     bind(L);
  99   }
 100   pop(rax);
 101 #endif
 102   reset_last_Java_frame(thread, true, align_stack);
 103 
 104   // discard thread and arguments
 105   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
 106 
 107   // check for pending exceptions
 108   { Label L;
 109     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 110     jcc(Assembler::equal, L);
 111     // exception pending => remove activation and forward to exception handler
 112     movptr(rax, Address(thread, Thread::pending_exception_offset()));
 113     // make sure that the vm_results are cleared
 114     if (oop_result1->is_valid()) {
 115       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
 116     }
 117     if (metadata_result->is_valid()) {
 118       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 119     }
 120     if (frame_size() == no_frame_size) {
 121       leave();
 122       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 123     } else if (_stub_id == Runtime1::forward_exception_id) {
 124       should_not_reach_here();
 125     } else {
 126       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 127     }
 128     bind(L);
 129   }
 130   // get oop results if there are any and reset the values in the thread
 131   if (oop_result1->is_valid()) {
 132     get_vm_result(oop_result1, thread);
 133   }
 134   if (metadata_result->is_valid()) {
 135     get_vm_result_2(metadata_result, thread);
 136   }
 137   return call_offset;
 138 }
 139 
 140 
 141 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
 142 #ifdef _LP64
 143   mov(c_rarg1, arg1);
 144 #else
 145   push(arg1);
 146 #endif // _LP64
 147   return call_RT(oop_result1, metadata_result, entry, 1);
 148 }
 149 
 150 
 151 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
 152 #ifdef _LP64
 153   if (c_rarg1 == arg2) {
 154     if (c_rarg2 == arg1) {
 155       xchgq(arg1, arg2);
 156     } else {
 157       mov(c_rarg2, arg2);
 158       mov(c_rarg1, arg1);
 159     }
 160   } else {
 161     mov(c_rarg1, arg1);
 162     mov(c_rarg2, arg2);
 163   }
 164 #else
 165   push(arg2);
 166   push(arg1);
 167 #endif // _LP64
 168   return call_RT(oop_result1, metadata_result, entry, 2);
 169 }
 170 
 171 
 172 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
 173 #ifdef _LP64
 174   // if there is any conflict use the stack
 175   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
 176       arg2 == c_rarg1 || arg1 == c_rarg3 ||
 177       arg3 == c_rarg1 || arg1 == c_rarg2) {
 178     push(arg3);
 179     push(arg2);
 180     push(arg1);
 181     pop(c_rarg1);
 182     pop(c_rarg2);
 183     pop(c_rarg3);
 184   } else {
 185     mov(c_rarg1, arg1);
 186     mov(c_rarg2, arg2);
 187     mov(c_rarg3, arg3);
 188   }
 189 #else
 190   push(arg3);
 191   push(arg2);
 192   push(arg1);
 193 #endif // _LP64
 194   return call_RT(oop_result1, metadata_result, entry, 3);
 195 }
 196 
 197 
 198 // Implementation of StubFrame
 199 
 200 class StubFrame: public StackObj {
 201  private:
 202   StubAssembler* _sasm;
 203 
 204  public:
 205   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
 206   void load_argument(int offset_in_words, Register reg);
 207 
 208   ~StubFrame();
 209 };
 210 
 211 
 212 #define __ _sasm->
 213 
 214 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
 215   _sasm = sasm;
 216   __ set_info(name, must_gc_arguments);
 217   __ enter();
 218 }
 219 
 220 // load parameters that were stored with LIR_Assembler::store_parameter
 221 // Note: offsets for store_parameter and load_argument must match
 222 void StubFrame::load_argument(int offset_in_words, Register reg) {
 223   // rbp, + 0: link
 224   //     + 1: return address
 225   //     + 2: argument with offset 0
 226   //     + 3: argument with offset 1
 227   //     + 4: ...
 228 
 229   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
 230 }
 231 
 232 
 233 StubFrame::~StubFrame() {
 234   __ leave();
 235   __ ret(0);
 236 }
 237 
 238 #undef __
 239 
 240 
 241 // Implementation of Runtime1
 242 
 243 #define __ sasm->
 244 
 245 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
 246 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
 247 
 248 // Stack layout for saving/restoring  all the registers needed during a runtime
 249 // call (this includes deoptimization)
 250 // Note: note that users of this frame may well have arguments to some runtime
 251 // while these values are on the stack. These positions neglect those arguments
 252 // but the code in save_live_registers will take the argument count into
 253 // account.
 254 //
 255 #ifdef _LP64
 256   #define SLOT2(x) x,
 257   #define SLOT_PER_WORD 2
 258 #else
 259   #define SLOT2(x)
 260   #define SLOT_PER_WORD 1
 261 #endif // _LP64
 262 
 263 enum reg_save_layout {
 264   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
 265   // happen and will assert if the stack size we create is misaligned
 266 #ifdef _LP64
 267   align_dummy_0, align_dummy_1,
 268 #endif // _LP64
 269 #ifdef _WIN64
 270   // Windows always allocates space for it's argument registers (see
 271   // frame::arg_reg_save_area_bytes).
 272   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
 273   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
 274   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
 275   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
 276 #endif // _WIN64
 277   xmm_regs_as_doubles_off,                                                                  // 32
 278   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
 279   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
 280   // fpu_state_end_off is exclusive
 281   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
 282   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
 283   extra_space_offset,                                                                       // 360
 284 #ifdef _LP64
 285   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
 286   r14_off, r14H_off,                                                                        // 368, 372
 287   r13_off, r13H_off,                                                                        // 376, 380
 288   r12_off, r12H_off,                                                                        // 384, 388
 289   r11_off, r11H_off,                                                                        // 392, 396
 290   r10_off, r10H_off,                                                                        // 400, 404
 291   r9_off, r9H_off,                                                                          // 408, 412
 292   r8_off, r8H_off,                                                                          // 416, 420
 293   rdi_off, rdiH_off,                                                                        // 424, 428
 294 #else
 295   rdi_off = extra_space_offset,
 296 #endif // _LP64
 297   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
 298   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
 299   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
 300   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
 301   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
 302   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
 303   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
 304   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
 305   return_off, SLOT2(returnH_off)                                                            // 496, 500
 306   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
 307 };
 308 
 309 
 310 
 311 // Save off registers which might be killed by calls into the runtime.
 312 // Tries to smart of about FP registers.  In particular we separate
 313 // saving and describing the FPU registers for deoptimization since we
 314 // have to save the FPU registers twice if we describe them and on P4
 315 // saving FPU registers which don't contain anything appears
 316 // expensive.  The deopt blob is the only thing which needs to
 317 // describe FPU registers.  In all other cases it should be sufficient
 318 // to simply save their current value.
 319 
 320 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
 321                                 bool save_fpu_registers = true) {
 322 
 323   // In 64bit all the args are in regs so there are no additional stack slots
 324   LP64_ONLY(num_rt_args = 0);
 325   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
 326   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
 327   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
 328 
 329   // record saved value locations in an OopMap
 330   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
 331   OopMap* map = new OopMap(frame_size_in_slots, 0);
 332   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
 333   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
 334   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
 335   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
 336   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
 337   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
 338 #ifdef _LP64
 339   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
 340   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
 341   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
 342   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
 343   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
 344   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
 345   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
 346   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
 347 
 348   // This is stupid but needed.
 349   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
 350   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
 351   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
 352   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
 353   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
 354   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
 355 
 356   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
 357   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
 358   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
 359   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
 360   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
 361   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
 362   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
 363   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
 364 #endif // _LP64
 365 
 366   int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 367 #ifdef _LP64
 368   if (UseAVX < 3) {
 369     xmm_bypass_limit = xmm_bypass_limit / 2;
 370   }
 371 #endif
 372 
 373   if (save_fpu_registers) {
 374     if (UseSSE < 2) {
 375       int fpu_off = float_regs_as_doubles_off;
 376       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 377         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
 378         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
 379         // %%% This is really a waste but we'll keep things as they were for now
 380         if (true) {
 381           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
 382         }
 383         fpu_off += 2;
 384       }
 385       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
 386     }
 387 
 388     if (UseSSE >= 2) {
 389       int xmm_off = xmm_regs_as_doubles_off;
 390       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 391         if (n < xmm_bypass_limit) {
 392           VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 393           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
 394           // %%% This is really a waste but we'll keep things as they were for now
 395           if (true) {
 396             map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
 397           }
 398         }
 399         xmm_off += 2;
 400       }
 401       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 402 
 403     } else if (UseSSE == 1) {
 404       int xmm_off = xmm_regs_as_doubles_off;
 405       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 406         if (n < xmm_bypass_limit) {
 407           VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 408           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
 409         }
 410         xmm_off += 2;
 411       }
 412       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 413     }
 414   }
 415 
 416   return map;
 417 }
 418 
 419 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
 420                                    bool save_fpu_registers = true) {
 421   __ block_comment("save_live_registers");
 422 
 423   __ pusha();         // integer registers
 424 
 425   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
 426   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
 427 
 428   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 429 
 430 #ifdef ASSERT
 431   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 432 #endif
 433 
 434   if (save_fpu_registers) {
 435     if (UseSSE < 2) {
 436       // save FPU stack
 437       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 438       __ fwait();
 439 
 440 #ifdef ASSERT
 441       Label ok;
 442       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 443       __ jccb(Assembler::equal, ok);
 444       __ stop("corrupted control word detected");
 445       __ bind(ok);
 446 #endif
 447 
 448       // Reset the control word to guard against exceptions being unmasked
 449       // since fstp_d can cause FPU stack underflow exceptions.  Write it
 450       // into the on stack copy and then reload that to make sure that the
 451       // current and future values are correct.
 452       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 453       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 454 
 455       // Save the FPU registers in de-opt-able form
 456       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 457       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 458       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 459       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 460       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 461       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 462       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 463       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 464     }
 465 
 466     if (UseSSE >= 2) {
 467       // save XMM registers
 468       // XMM registers can contain float or double values, but this is not known here,
 469       // so always save them as doubles.
 470       // note that float values are _not_ converted automatically, so for float values
 471       // the second word contains only garbage data.
 472       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
 473       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
 474       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
 475       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
 476       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
 477       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
 478       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
 479       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
 480 #ifdef _LP64
 481       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
 482       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
 483       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
 484       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
 485       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
 486       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
 487       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
 488       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
 489       if (UseAVX > 2) {
 490         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 128), xmm16);
 491         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 136), xmm17);
 492         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 144), xmm18);
 493         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 152), xmm19);
 494         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 160), xmm20);
 495         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 168), xmm21);
 496         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 176), xmm22);
 497         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 184), xmm23);
 498         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 192), xmm24);
 499         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 200), xmm25);
 500         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 208), xmm26);
 501         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 216), xmm27);
 502         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 224), xmm28);
 503         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 232), xmm29);
 504         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 240), xmm30);
 505         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 248), xmm31);
 506       }
 507 #endif // _LP64
 508     } else if (UseSSE == 1) {
 509       // save XMM registers as float because double not supported without SSE2
 510       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
 511       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
 512       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
 513       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
 514       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
 515       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
 516       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
 517       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
 518     }
 519   }
 520 
 521   // FPU stack must be empty now
 522   __ verify_FPU(0, "save_live_registers");
 523 
 524   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
 525 }
 526 
 527 
 528 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
 529   if (restore_fpu_registers) {
 530     if (UseSSE >= 2) {
 531       // restore XMM registers
 532       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 533       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 534       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 535       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 536       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 537       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 538       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 539       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 540 #ifdef _LP64
 541       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
 542       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
 543       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
 544       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
 545       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
 546       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
 547       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
 548       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
 549       if (UseAVX > 2) {
 550         __ movdbl(xmm16, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 128));
 551         __ movdbl(xmm17, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 136));
 552         __ movdbl(xmm18, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 144));
 553         __ movdbl(xmm19, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 152));
 554         __ movdbl(xmm20, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 160));
 555         __ movdbl(xmm21, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 168));
 556         __ movdbl(xmm22, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 176));
 557         __ movdbl(xmm23, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 184));
 558         __ movdbl(xmm24, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 192));
 559         __ movdbl(xmm25, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 200));
 560         __ movdbl(xmm26, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 208));
 561         __ movdbl(xmm27, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 216));
 562         __ movdbl(xmm28, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 224));
 563         __ movdbl(xmm29, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 232));
 564         __ movdbl(xmm30, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 240));
 565         __ movdbl(xmm31, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 248));
 566       }
 567 #endif // _LP64
 568     } else if (UseSSE == 1) {
 569       // restore XMM registers
 570       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 571       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 572       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 573       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 574       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 575       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 576       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 577       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 578     }
 579 
 580     if (UseSSE < 2) {
 581       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 582     } else {
 583       // check that FPU stack is really empty
 584       __ verify_FPU(0, "restore_live_registers");
 585     }
 586 
 587   } else {
 588     // check that FPU stack is really empty
 589     __ verify_FPU(0, "restore_live_registers");
 590   }
 591 
 592 #ifdef ASSERT
 593   {
 594     Label ok;
 595     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 596     __ jcc(Assembler::equal, ok);
 597     __ stop("bad offsets in frame");
 598     __ bind(ok);
 599   }
 600 #endif // ASSERT
 601 
 602   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 603 }
 604 
 605 
 606 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
 607   __ block_comment("restore_live_registers");
 608 
 609   restore_fpu(sasm, restore_fpu_registers);
 610   __ popa();
 611 }
 612 
 613 
 614 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
 615   __ block_comment("restore_live_registers_except_rax");
 616 
 617   restore_fpu(sasm, restore_fpu_registers);
 618 
 619 #ifdef _LP64
 620   __ movptr(r15, Address(rsp, 0));
 621   __ movptr(r14, Address(rsp, wordSize));
 622   __ movptr(r13, Address(rsp, 2 * wordSize));
 623   __ movptr(r12, Address(rsp, 3 * wordSize));
 624   __ movptr(r11, Address(rsp, 4 * wordSize));
 625   __ movptr(r10, Address(rsp, 5 * wordSize));
 626   __ movptr(r9,  Address(rsp, 6 * wordSize));
 627   __ movptr(r8,  Address(rsp, 7 * wordSize));
 628   __ movptr(rdi, Address(rsp, 8 * wordSize));
 629   __ movptr(rsi, Address(rsp, 9 * wordSize));
 630   __ movptr(rbp, Address(rsp, 10 * wordSize));
 631   // skip rsp
 632   __ movptr(rbx, Address(rsp, 12 * wordSize));
 633   __ movptr(rdx, Address(rsp, 13 * wordSize));
 634   __ movptr(rcx, Address(rsp, 14 * wordSize));
 635 
 636   __ addptr(rsp, 16 * wordSize);
 637 #else
 638 
 639   __ pop(rdi);
 640   __ pop(rsi);
 641   __ pop(rbp);
 642   __ pop(rbx); // skip this value
 643   __ pop(rbx);
 644   __ pop(rdx);
 645   __ pop(rcx);
 646   __ addptr(rsp, BytesPerWord);
 647 #endif // _LP64
 648 }
 649 
 650 
 651 void Runtime1::initialize_pd() {
 652   // nothing to do
 653 }
 654 
 655 
 656 // target: the entry point of the method that creates and posts the exception oop
 657 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
 658 
 659 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
 660   // preserve all registers
 661   int num_rt_args = has_argument ? 2 : 1;
 662   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 663 
 664   // now all registers are saved and can be used freely
 665   // verify that no old value is used accidentally
 666   __ invalidate_registers(true, true, true, true, true, true);
 667 
 668   // registers used by this stub
 669   const Register temp_reg = rbx;
 670 
 671   // load argument for exception that is passed as an argument into the stub
 672   if (has_argument) {
 673 #ifdef _LP64
 674     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
 675 #else
 676     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
 677     __ push(temp_reg);
 678 #endif // _LP64
 679   }
 680   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
 681 
 682   OopMapSet* oop_maps = new OopMapSet();
 683   oop_maps->add_gc_map(call_offset, oop_map);
 684 
 685   __ stop("should not reach here");
 686 
 687   return oop_maps;
 688 }
 689 
 690 
 691 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
 692   __ block_comment("generate_handle_exception");
 693 
 694   // incoming parameters
 695   const Register exception_oop = rax;
 696   const Register exception_pc  = rdx;
 697   // other registers used in this stub
 698   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 699 
 700   // Save registers, if required.
 701   OopMapSet* oop_maps = new OopMapSet();
 702   OopMap* oop_map = NULL;
 703   switch (id) {
 704   case forward_exception_id:
 705     // We're handling an exception in the context of a compiled frame.
 706     // The registers have been saved in the standard places.  Perform
 707     // an exception lookup in the caller and dispatch to the handler
 708     // if found.  Otherwise unwind and dispatch to the callers
 709     // exception handler.
 710     oop_map = generate_oop_map(sasm, 1 /*thread*/);
 711 
 712     // load and clear pending exception oop into RAX
 713     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 714     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 715 
 716     // load issuing PC (the return address for this stub) into rdx
 717     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
 718 
 719     // make sure that the vm_results are cleared (may be unnecessary)
 720     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
 721     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 722     break;
 723   case handle_exception_nofpu_id:
 724   case handle_exception_id:
 725     // At this point all registers MAY be live.
 726     oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
 727     break;
 728   case handle_exception_from_callee_id: {
 729     // At this point all registers except exception oop (RAX) and
 730     // exception pc (RDX) are dead.
 731     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
 732     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
 733     sasm->set_frame_size(frame_size);
 734     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
 735     break;
 736   }
 737   default:  ShouldNotReachHere();
 738   }
 739 
 740 #ifdef TIERED
 741   // C2 can leave the fpu stack dirty
 742   if (UseSSE < 2) {
 743     __ empty_FPU_stack();
 744   }
 745 #endif // TIERED
 746 
 747   // verify that only rax, and rdx is valid at this time
 748   __ invalidate_registers(false, true, true, false, true, true);
 749   // verify that rax, contains a valid exception
 750   __ verify_not_null_oop(exception_oop);
 751 
 752   // load address of JavaThread object for thread-local data
 753   NOT_LP64(__ get_thread(thread);)
 754 
 755 #ifdef ASSERT
 756   // check that fields in JavaThread for exception oop and issuing pc are
 757   // empty before writing to them
 758   Label oop_empty;
 759   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
 760   __ jcc(Assembler::equal, oop_empty);
 761   __ stop("exception oop already set");
 762   __ bind(oop_empty);
 763 
 764   Label pc_empty;
 765   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 766   __ jcc(Assembler::equal, pc_empty);
 767   __ stop("exception pc already set");
 768   __ bind(pc_empty);
 769 #endif
 770 
 771   // save exception oop and issuing pc into JavaThread
 772   // (exception handler will load it from here)
 773   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
 774   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
 775 
 776   // patch throwing pc into return address (has bci & oop map)
 777   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
 778 
 779   // compute the exception handler.
 780   // the exception oop and the throwing pc are read from the fields in JavaThread
 781   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
 782   oop_maps->add_gc_map(call_offset, oop_map);
 783 
 784   // rax: handler address
 785   //      will be the deopt blob if nmethod was deoptimized while we looked up
 786   //      handler regardless of whether handler existed in the nmethod.
 787 
 788   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
 789   __ invalidate_registers(false, true, true, true, true, true);
 790 
 791   // patch the return address, this stub will directly return to the exception handler
 792   __ movptr(Address(rbp, 1*BytesPerWord), rax);
 793 
 794   switch (id) {
 795   case forward_exception_id:
 796   case handle_exception_nofpu_id:
 797   case handle_exception_id:
 798     // Restore the registers that were saved at the beginning.
 799     restore_live_registers(sasm, id != handle_exception_nofpu_id);
 800     break;
 801   case handle_exception_from_callee_id:
 802     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
 803     // since we do a leave anyway.
 804 
 805     // Pop the return address.
 806     __ leave();
 807     __ pop(rcx);
 808     __ jmp(rcx);  // jump to exception handler
 809     break;
 810   default:  ShouldNotReachHere();
 811   }
 812 
 813   return oop_maps;
 814 }
 815 
 816 
 817 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
 818   // incoming parameters
 819   const Register exception_oop = rax;
 820   // callee-saved copy of exception_oop during runtime call
 821   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
 822   // other registers used in this stub
 823   const Register exception_pc = rdx;
 824   const Register handler_addr = rbx;
 825   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 826 
 827   // verify that only rax, is valid at this time
 828   __ invalidate_registers(false, true, true, true, true, true);
 829 
 830 #ifdef ASSERT
 831   // check that fields in JavaThread for exception oop and issuing pc are empty
 832   NOT_LP64(__ get_thread(thread);)
 833   Label oop_empty;
 834   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
 835   __ jcc(Assembler::equal, oop_empty);
 836   __ stop("exception oop must be empty");
 837   __ bind(oop_empty);
 838 
 839   Label pc_empty;
 840   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 841   __ jcc(Assembler::equal, pc_empty);
 842   __ stop("exception pc must be empty");
 843   __ bind(pc_empty);
 844 #endif
 845 
 846   // clear the FPU stack in case any FPU results are left behind
 847   __ empty_FPU_stack();
 848 
 849   // save exception_oop in callee-saved register to preserve it during runtime calls
 850   __ verify_not_null_oop(exception_oop);
 851   __ movptr(exception_oop_callee_saved, exception_oop);
 852 
 853   NOT_LP64(__ get_thread(thread);)
 854   // Get return address (is on top of stack after leave).
 855   __ movptr(exception_pc, Address(rsp, 0));
 856 
 857   // search the exception handler address of the caller (using the return address)
 858   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 859   // rax: exception handler address of the caller
 860 
 861   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
 862   __ invalidate_registers(false, true, true, true, false, true);
 863 
 864   // move result of call into correct register
 865   __ movptr(handler_addr, rax);
 866 
 867   // Restore exception oop to RAX (required convention of exception handler).
 868   __ movptr(exception_oop, exception_oop_callee_saved);
 869 
 870   // verify that there is really a valid exception in rax
 871   __ verify_not_null_oop(exception_oop);
 872 
 873   // get throwing pc (= return address).
 874   // rdx has been destroyed by the call, so it must be set again
 875   // the pop is also necessary to simulate the effect of a ret(0)
 876   __ pop(exception_pc);
 877 
 878   // continue at exception handler (return address removed)
 879   // note: do *not* remove arguments when unwinding the
 880   //       activation since the caller assumes having
 881   //       all arguments on the stack when entering the
 882   //       runtime to determine the exception handler
 883   //       (GC happens at call site with arguments!)
 884   // rax: exception oop
 885   // rdx: throwing pc
 886   // rbx: exception handler
 887   __ jmp(handler_addr);
 888 }
 889 
 890 
 891 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
 892   // use the maximum number of runtime-arguments here because it is difficult to
 893   // distinguish each RT-Call.
 894   // Note: This number affects also the RT-Call in generate_handle_exception because
 895   //       the oop-map is shared for all calls.
 896   const int num_rt_args = 2;  // thread + dummy
 897 
 898   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
 899   assert(deopt_blob != NULL, "deoptimization blob must have been created");
 900 
 901   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 902 
 903 #ifdef _LP64
 904   const Register thread = r15_thread;
 905   // No need to worry about dummy
 906   __ mov(c_rarg0, thread);
 907 #else
 908   __ push(rax); // push dummy
 909 
 910   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
 911   // push java thread (becomes first argument of C function)
 912   __ get_thread(thread);
 913   __ push(thread);
 914 #endif // _LP64
 915   __ set_last_Java_frame(thread, noreg, rbp, NULL);
 916   // do the call
 917   __ call(RuntimeAddress(target));
 918   OopMapSet* oop_maps = new OopMapSet();
 919   oop_maps->add_gc_map(__ offset(), oop_map);
 920   // verify callee-saved register
 921 #ifdef ASSERT
 922   guarantee(thread != rax, "change this code");
 923   __ push(rax);
 924   { Label L;
 925     __ get_thread(rax);
 926     __ cmpptr(thread, rax);
 927     __ jcc(Assembler::equal, L);
 928     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
 929     __ bind(L);
 930   }
 931   __ pop(rax);
 932 #endif
 933   __ reset_last_Java_frame(thread, true, false);
 934 #ifndef _LP64
 935   __ pop(rcx); // discard thread arg
 936   __ pop(rcx); // discard dummy
 937 #endif // _LP64
 938 
 939   // check for pending exceptions
 940   { Label L;
 941     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 942     __ jcc(Assembler::equal, L);
 943     // exception pending => remove activation and forward to exception handler
 944 
 945     __ testptr(rax, rax);                                   // have we deoptimized?
 946     __ jump_cc(Assembler::equal,
 947                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 948 
 949     // the deopt blob expects exceptions in the special fields of
 950     // JavaThread, so copy and clear pending exception.
 951 
 952     // load and clear pending exception
 953     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
 954     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 955 
 956     // check that there is really a valid exception
 957     __ verify_not_null_oop(rax);
 958 
 959     // load throwing pc: this is the return address of the stub
 960     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
 961 
 962 #ifdef ASSERT
 963     // check that fields in JavaThread for exception oop and issuing pc are empty
 964     Label oop_empty;
 965     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 966     __ jcc(Assembler::equal, oop_empty);
 967     __ stop("exception oop must be empty");
 968     __ bind(oop_empty);
 969 
 970     Label pc_empty;
 971     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 972     __ jcc(Assembler::equal, pc_empty);
 973     __ stop("exception pc must be empty");
 974     __ bind(pc_empty);
 975 #endif
 976 
 977     // store exception oop and throwing pc to JavaThread
 978     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
 979     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
 980 
 981     restore_live_registers(sasm);
 982 
 983     __ leave();
 984     __ addptr(rsp, BytesPerWord);  // remove return address from stack
 985 
 986     // Forward the exception directly to deopt blob. We can blow no
 987     // registers and must leave throwing pc on the stack.  A patch may
 988     // have values live in registers so the entry point with the
 989     // exception in tls.
 990     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
 991 
 992     __ bind(L);
 993   }
 994 
 995 
 996   // Runtime will return true if the nmethod has been deoptimized during
 997   // the patching process. In that case we must do a deopt reexecute instead.
 998 
 999   Label reexecuteEntry, cont;
1000 
1001   __ testptr(rax, rax);                                 // have we deoptimized?
1002   __ jcc(Assembler::equal, cont);                       // no
1003 
1004   // Will reexecute. Proper return address is already on the stack we just restore
1005   // registers, pop all of our frame but the return address and jump to the deopt blob
1006   restore_live_registers(sasm);
1007   __ leave();
1008   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1009 
1010   __ bind(cont);
1011   restore_live_registers(sasm);
1012   __ leave();
1013   __ ret(0);
1014 
1015   return oop_maps;
1016 }
1017 
1018 
1019 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
1020 
1021   // for better readability
1022   const bool must_gc_arguments = true;
1023   const bool dont_gc_arguments = false;
1024 
1025   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
1026   bool save_fpu_registers = true;
1027 
1028   // stub code & info for the different stubs
1029   OopMapSet* oop_maps = NULL;
1030   switch (id) {
1031     case forward_exception_id:
1032       {
1033         oop_maps = generate_handle_exception(id, sasm);
1034         __ leave();
1035         __ ret(0);
1036       }
1037       break;
1038 
1039     case new_instance_id:
1040     case fast_new_instance_id:
1041     case fast_new_instance_init_check_id:
1042       {
1043         Register klass = rdx; // Incoming
1044         Register obj   = rax; // Result
1045 
1046         if (id == new_instance_id) {
1047           __ set_info("new_instance", dont_gc_arguments);
1048         } else if (id == fast_new_instance_id) {
1049           __ set_info("fast new_instance", dont_gc_arguments);
1050         } else {
1051           assert(id == fast_new_instance_init_check_id, "bad StubID");
1052           __ set_info("fast new_instance init check", dont_gc_arguments);
1053         }
1054 
1055         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
1056             UseTLAB && FastTLABRefill) {
1057           Label slow_path;
1058           Register obj_size = rcx;
1059           Register t1       = rbx;
1060           Register t2       = rsi;
1061           assert_different_registers(klass, obj, obj_size, t1, t2);
1062 
1063           __ push(rdi);
1064           __ push(rbx);
1065 
1066           if (id == fast_new_instance_init_check_id) {
1067             // make sure the klass is initialized
1068             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1069             __ jcc(Assembler::notEqual, slow_path);
1070           }
1071 
1072 #ifdef ASSERT
1073           // assert object can be fast path allocated
1074           {
1075             Label ok, not_ok;
1076             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1077             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1078             __ jcc(Assembler::lessEqual, not_ok);
1079             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1080             __ jcc(Assembler::zero, ok);
1081             __ bind(not_ok);
1082             __ stop("assert(can be fast path allocated)");
1083             __ should_not_reach_here();
1084             __ bind(ok);
1085           }
1086 #endif // ASSERT
1087 
1088           // if we got here then the TLAB allocation failed, so try
1089           // refilling the TLAB or allocating directly from eden.
1090           Label retry_tlab, try_eden;
1091           const Register thread =
1092             __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
1093 
1094           __ bind(retry_tlab);
1095 
1096           // get the instance size (size is postive so movl is fine for 64bit)
1097           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1098 
1099           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
1100 
1101           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1102           __ verify_oop(obj);
1103           __ pop(rbx);
1104           __ pop(rdi);
1105           __ ret(0);
1106 
1107           __ bind(try_eden);
1108           // get the instance size (size is postive so movl is fine for 64bit)
1109           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1110 
1111           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1112           __ incr_allocated_bytes(thread, obj_size, 0);
1113 
1114           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1115           __ verify_oop(obj);
1116           __ pop(rbx);
1117           __ pop(rdi);
1118           __ ret(0);
1119 
1120           __ bind(slow_path);
1121           __ pop(rbx);
1122           __ pop(rdi);
1123         }
1124 
1125         __ enter();
1126         OopMap* map = save_live_registers(sasm, 2);
1127         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1128         oop_maps = new OopMapSet();
1129         oop_maps->add_gc_map(call_offset, map);
1130         restore_live_registers_except_rax(sasm);
1131         __ verify_oop(obj);
1132         __ leave();
1133         __ ret(0);
1134 
1135         // rax,: new instance
1136       }
1137 
1138       break;
1139 
1140     case counter_overflow_id:
1141       {
1142         Register bci = rax, method = rbx;
1143         __ enter();
1144         OopMap* map = save_live_registers(sasm, 3);
1145         // Retrieve bci
1146         __ movl(bci, Address(rbp, 2*BytesPerWord));
1147         // And a pointer to the Method*
1148         __ movptr(method, Address(rbp, 3*BytesPerWord));
1149         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1150         oop_maps = new OopMapSet();
1151         oop_maps->add_gc_map(call_offset, map);
1152         restore_live_registers(sasm);
1153         __ leave();
1154         __ ret(0);
1155       }
1156       break;
1157 
1158     case new_type_array_id:
1159     case new_object_array_id:
1160       {
1161         Register length   = rbx; // Incoming
1162         Register klass    = rdx; // Incoming
1163         Register obj      = rax; // Result
1164 
1165         if (id == new_type_array_id) {
1166           __ set_info("new_type_array", dont_gc_arguments);
1167         } else {
1168           __ set_info("new_object_array", dont_gc_arguments);
1169         }
1170 
1171 #ifdef ASSERT
1172         // assert object type is really an array of the proper kind
1173         {
1174           Label ok;
1175           Register t0 = obj;
1176           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1177           __ sarl(t0, Klass::_lh_array_tag_shift);
1178           int tag = ((id == new_type_array_id)
1179                      ? Klass::_lh_array_tag_type_value
1180                      : Klass::_lh_array_tag_obj_value);
1181           __ cmpl(t0, tag);
1182           __ jcc(Assembler::equal, ok);
1183           __ stop("assert(is an array klass)");
1184           __ should_not_reach_here();
1185           __ bind(ok);
1186         }
1187 #endif // ASSERT
1188 
1189         if (UseTLAB && FastTLABRefill) {
1190           Register arr_size = rsi;
1191           Register t1       = rcx;  // must be rcx for use as shift count
1192           Register t2       = rdi;
1193           Label slow_path;
1194           assert_different_registers(length, klass, obj, arr_size, t1, t2);
1195 
1196           // check that array length is small enough for fast path.
1197           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
1198           __ jcc(Assembler::above, slow_path);
1199 
1200           // if we got here then the TLAB allocation failed, so try
1201           // refilling the TLAB or allocating directly from eden.
1202           Label retry_tlab, try_eden;
1203           const Register thread =
1204             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
1205 
1206           __ bind(retry_tlab);
1207 
1208           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1209           // since size is positive movl does right thing on 64bit
1210           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1211           // since size is postive movl does right thing on 64bit
1212           __ movl(arr_size, length);
1213           assert(t1 == rcx, "fixed register usage");
1214           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1215           __ shrptr(t1, Klass::_lh_header_size_shift);
1216           __ andptr(t1, Klass::_lh_header_size_mask);
1217           __ addptr(arr_size, t1);
1218           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1219           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1220 
1221           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
1222 
1223           __ initialize_header(obj, klass, length, t1, t2);
1224           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1225           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1226           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1227           __ andptr(t1, Klass::_lh_header_size_mask);
1228           __ subptr(arr_size, t1);  // body length
1229           __ addptr(t1, obj);       // body start
1230           __ initialize_body(t1, arr_size, 0, t2);
1231           __ verify_oop(obj);
1232           __ ret(0);
1233 
1234           __ bind(try_eden);
1235           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1236           // since size is positive movl does right thing on 64bit
1237           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1238           // since size is postive movl does right thing on 64bit
1239           __ movl(arr_size, length);
1240           assert(t1 == rcx, "fixed register usage");
1241           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1242           __ shrptr(t1, Klass::_lh_header_size_shift);
1243           __ andptr(t1, Klass::_lh_header_size_mask);
1244           __ addptr(arr_size, t1);
1245           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1246           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1247 
1248           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1249           __ incr_allocated_bytes(thread, arr_size, 0);
1250 
1251           __ initialize_header(obj, klass, length, t1, t2);
1252           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1253           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1254           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1255           __ andptr(t1, Klass::_lh_header_size_mask);
1256           __ subptr(arr_size, t1);  // body length
1257           __ addptr(t1, obj);       // body start
1258           __ initialize_body(t1, arr_size, 0, t2);
1259           __ verify_oop(obj);
1260           __ ret(0);
1261 
1262           __ bind(slow_path);
1263         }
1264 
1265         __ enter();
1266         OopMap* map = save_live_registers(sasm, 3);
1267         int call_offset;
1268         if (id == new_type_array_id) {
1269           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1270         } else {
1271           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1272         }
1273 
1274         oop_maps = new OopMapSet();
1275         oop_maps->add_gc_map(call_offset, map);
1276         restore_live_registers_except_rax(sasm);
1277 
1278         __ verify_oop(obj);
1279         __ leave();
1280         __ ret(0);
1281 
1282         // rax,: new array
1283       }
1284       break;
1285 
1286     case new_multi_array_id:
1287       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1288         // rax,: klass
1289         // rbx,: rank
1290         // rcx: address of 1st dimension
1291         OopMap* map = save_live_registers(sasm, 4);
1292         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1293 
1294         oop_maps = new OopMapSet();
1295         oop_maps->add_gc_map(call_offset, map);
1296         restore_live_registers_except_rax(sasm);
1297 
1298         // rax,: new multi array
1299         __ verify_oop(rax);
1300       }
1301       break;
1302 
1303     case register_finalizer_id:
1304       {
1305         __ set_info("register_finalizer", dont_gc_arguments);
1306 
1307         // This is called via call_runtime so the arguments
1308         // will be place in C abi locations
1309 
1310 #ifdef _LP64
1311         __ verify_oop(c_rarg0);
1312         __ mov(rax, c_rarg0);
1313 #else
1314         // The object is passed on the stack and we haven't pushed a
1315         // frame yet so it's one work away from top of stack.
1316         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1317         __ verify_oop(rax);
1318 #endif // _LP64
1319 
1320         // load the klass and check the has finalizer flag
1321         Label register_finalizer;
1322         Register t = rsi;
1323         __ load_klass(t, rax);
1324         __ movl(t, Address(t, Klass::access_flags_offset()));
1325         __ testl(t, JVM_ACC_HAS_FINALIZER);
1326         __ jcc(Assembler::notZero, register_finalizer);
1327         __ ret(0);
1328 
1329         __ bind(register_finalizer);
1330         __ enter();
1331         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1332         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1333         oop_maps = new OopMapSet();
1334         oop_maps->add_gc_map(call_offset, oop_map);
1335 
1336         // Now restore all the live registers
1337         restore_live_registers(sasm);
1338 
1339         __ leave();
1340         __ ret(0);
1341       }
1342       break;
1343 
1344     case throw_range_check_failed_id:
1345       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1346         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1347       }
1348       break;
1349 
1350     case throw_index_exception_id:
1351       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1352         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1353       }
1354       break;
1355 
1356     case throw_div0_exception_id:
1357       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1358         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1359       }
1360       break;
1361 
1362     case throw_null_pointer_exception_id:
1363       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1364         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1365       }
1366       break;
1367 
1368     case handle_exception_nofpu_id:
1369     case handle_exception_id:
1370       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1371         oop_maps = generate_handle_exception(id, sasm);
1372       }
1373       break;
1374 
1375     case handle_exception_from_callee_id:
1376       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1377         oop_maps = generate_handle_exception(id, sasm);
1378       }
1379       break;
1380 
1381     case unwind_exception_id:
1382       { __ set_info("unwind_exception", dont_gc_arguments);
1383         // note: no stubframe since we are about to leave the current
1384         //       activation and we are calling a leaf VM function only.
1385         generate_unwind_exception(sasm);
1386       }
1387       break;
1388 
1389     case throw_array_store_exception_id:
1390       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1391         // tos + 0: link
1392         //     + 1: return address
1393         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1394       }
1395       break;
1396 
1397     case throw_class_cast_exception_id:
1398       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1399         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1400       }
1401       break;
1402 
1403     case throw_incompatible_class_change_error_id:
1404       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1405         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1406       }
1407       break;
1408 
1409     case slow_subtype_check_id:
1410       {
1411         // Typical calling sequence:
1412         // __ push(klass_RInfo);  // object klass or other subclass
1413         // __ push(sup_k_RInfo);  // array element klass or other superclass
1414         // __ call(slow_subtype_check);
1415         // Note that the subclass is pushed first, and is therefore deepest.
1416         // Previous versions of this code reversed the names 'sub' and 'super'.
1417         // This was operationally harmless but made the code unreadable.
1418         enum layout {
1419           rax_off, SLOT2(raxH_off)
1420           rcx_off, SLOT2(rcxH_off)
1421           rsi_off, SLOT2(rsiH_off)
1422           rdi_off, SLOT2(rdiH_off)
1423           // saved_rbp_off, SLOT2(saved_rbpH_off)
1424           return_off, SLOT2(returnH_off)
1425           sup_k_off, SLOT2(sup_kH_off)
1426           klass_off, SLOT2(superH_off)
1427           framesize,
1428           result_off = klass_off  // deepest argument is also the return value
1429         };
1430 
1431         __ set_info("slow_subtype_check", dont_gc_arguments);
1432         __ push(rdi);
1433         __ push(rsi);
1434         __ push(rcx);
1435         __ push(rax);
1436 
1437         // This is called by pushing args and not with C abi
1438         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1439         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1440 
1441         Label miss;
1442         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1443 
1444         // fallthrough on success:
1445         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1446         __ pop(rax);
1447         __ pop(rcx);
1448         __ pop(rsi);
1449         __ pop(rdi);
1450         __ ret(0);
1451 
1452         __ bind(miss);
1453         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1454         __ pop(rax);
1455         __ pop(rcx);
1456         __ pop(rsi);
1457         __ pop(rdi);
1458         __ ret(0);
1459       }
1460       break;
1461 
1462     case monitorenter_nofpu_id:
1463       save_fpu_registers = false;
1464       // fall through
1465     case monitorenter_id:
1466       {
1467         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1468         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1469 
1470         // Called with store_parameter and not C abi
1471 
1472         f.load_argument(1, rax); // rax,: object
1473         f.load_argument(0, rbx); // rbx,: lock address
1474 
1475         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1476 
1477         oop_maps = new OopMapSet();
1478         oop_maps->add_gc_map(call_offset, map);
1479         restore_live_registers(sasm, save_fpu_registers);
1480       }
1481       break;
1482 
1483     case monitorexit_nofpu_id:
1484       save_fpu_registers = false;
1485       // fall through
1486     case monitorexit_id:
1487       {
1488         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1489         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1490 
1491         // Called with store_parameter and not C abi
1492 
1493         f.load_argument(0, rax); // rax,: lock address
1494 
1495         // note: really a leaf routine but must setup last java sp
1496         //       => use call_RT for now (speed can be improved by
1497         //       doing last java sp setup manually)
1498         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1499 
1500         oop_maps = new OopMapSet();
1501         oop_maps->add_gc_map(call_offset, map);
1502         restore_live_registers(sasm, save_fpu_registers);
1503       }
1504       break;
1505 
1506     case deoptimize_id:
1507       {
1508         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1509         const int num_rt_args = 2;  // thread, trap_request
1510         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1511         f.load_argument(0, rax);
1512         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax);
1513         oop_maps = new OopMapSet();
1514         oop_maps->add_gc_map(call_offset, oop_map);
1515         restore_live_registers(sasm);
1516         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1517         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1518         __ leave();
1519         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1520       }
1521       break;
1522 
1523     case access_field_patching_id:
1524       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1525         // we should set up register map
1526         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1527       }
1528       break;
1529 
1530     case load_klass_patching_id:
1531       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1532         // we should set up register map
1533         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1534       }
1535       break;
1536 
1537     case load_mirror_patching_id:
1538       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1539         // we should set up register map
1540         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1541       }
1542       break;
1543 
1544     case load_appendix_patching_id:
1545       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1546         // we should set up register map
1547         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1548       }
1549       break;
1550 
1551     case dtrace_object_alloc_id:
1552       { // rax,: object
1553         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1554         // we can't gc here so skip the oopmap but make sure that all
1555         // the live registers get saved.
1556         save_live_registers(sasm, 1);
1557 
1558         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1559         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1560         NOT_LP64(__ pop(rax));
1561 
1562         restore_live_registers(sasm);
1563       }
1564       break;
1565 
1566     case fpu2long_stub_id:
1567       {
1568         // rax, and rdx are destroyed, but should be free since the result is returned there
1569         // preserve rsi,ecx
1570         __ push(rsi);
1571         __ push(rcx);
1572         LP64_ONLY(__ push(rdx);)
1573 
1574         // check for NaN
1575         Label return0, do_return, return_min_jlong, do_convert;
1576 
1577         Address value_high_word(rsp, wordSize + 4);
1578         Address value_low_word(rsp, wordSize);
1579         Address result_high_word(rsp, 3*wordSize + 4);
1580         Address result_low_word(rsp, 3*wordSize);
1581 
1582         __ subptr(rsp, 32);                    // more than enough on 32bit
1583         __ fst_d(value_low_word);
1584         __ movl(rax, value_high_word);
1585         __ andl(rax, 0x7ff00000);
1586         __ cmpl(rax, 0x7ff00000);
1587         __ jcc(Assembler::notEqual, do_convert);
1588         __ movl(rax, value_high_word);
1589         __ andl(rax, 0xfffff);
1590         __ orl(rax, value_low_word);
1591         __ jcc(Assembler::notZero, return0);
1592 
1593         __ bind(do_convert);
1594         __ fnstcw(Address(rsp, 0));
1595         __ movzwl(rax, Address(rsp, 0));
1596         __ orl(rax, 0xc00);
1597         __ movw(Address(rsp, 2), rax);
1598         __ fldcw(Address(rsp, 2));
1599         __ fwait();
1600         __ fistp_d(result_low_word);
1601         __ fldcw(Address(rsp, 0));
1602         __ fwait();
1603         // This gets the entire long in rax on 64bit
1604         __ movptr(rax, result_low_word);
1605         // testing of high bits
1606         __ movl(rdx, result_high_word);
1607         __ mov(rcx, rax);
1608         // What the heck is the point of the next instruction???
1609         __ xorl(rcx, 0x0);
1610         __ movl(rsi, 0x80000000);
1611         __ xorl(rsi, rdx);
1612         __ orl(rcx, rsi);
1613         __ jcc(Assembler::notEqual, do_return);
1614         __ fldz();
1615         __ fcomp_d(value_low_word);
1616         __ fnstsw_ax();
1617 #ifdef _LP64
1618         __ testl(rax, 0x4100);  // ZF & CF == 0
1619         __ jcc(Assembler::equal, return_min_jlong);
1620 #else
1621         __ sahf();
1622         __ jcc(Assembler::above, return_min_jlong);
1623 #endif // _LP64
1624         // return max_jlong
1625 #ifndef _LP64
1626         __ movl(rdx, 0x7fffffff);
1627         __ movl(rax, 0xffffffff);
1628 #else
1629         __ mov64(rax, CONST64(0x7fffffffffffffff));
1630 #endif // _LP64
1631         __ jmp(do_return);
1632 
1633         __ bind(return_min_jlong);
1634 #ifndef _LP64
1635         __ movl(rdx, 0x80000000);
1636         __ xorl(rax, rax);
1637 #else
1638         __ mov64(rax, UCONST64(0x8000000000000000));
1639 #endif // _LP64
1640         __ jmp(do_return);
1641 
1642         __ bind(return0);
1643         __ fpop();
1644 #ifndef _LP64
1645         __ xorptr(rdx,rdx);
1646         __ xorptr(rax,rax);
1647 #else
1648         __ xorptr(rax, rax);
1649 #endif // _LP64
1650 
1651         __ bind(do_return);
1652         __ addptr(rsp, 32);
1653         LP64_ONLY(__ pop(rdx);)
1654         __ pop(rcx);
1655         __ pop(rsi);
1656         __ ret(0);
1657       }
1658       break;
1659 
1660 #if INCLUDE_ALL_GCS
1661     case shenandoah_write_barrier_slow_id:
1662       {
1663         StubFrame f(sasm, "shenandoah_write_barrier", dont_gc_arguments);
1664 
1665         save_live_registers(sasm, 1);
1666         __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahBarrierSet::write_barrier_c1), r15_thread, rax);
1667         restore_live_registers_except_rax(sasm);
1668         __ verify_oop(rax);
1669 
1670       }
1671       break;
1672     case g1_pre_barrier_slow_id:
1673       {
1674         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1675         // arg0 : previous value of memory
1676 
1677         BarrierSet* bs = Universe::heap()->barrier_set();
1678         if (bs->kind() != BarrierSet::G1SATBCTLogging && bs->kind() != BarrierSet::ShenandoahBarrierSet) {
1679           __ movptr(rax, (int)id);
1680           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1681           __ should_not_reach_here();
1682           break;
1683         }
1684         __ push(rax);
1685         __ push(rdx);
1686 
1687         const Register pre_val = rax;
1688         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1689         const Register tmp = rdx;
1690 
1691         NOT_LP64(__ get_thread(thread);)
1692 
1693         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1694                                              PtrQueue::byte_offset_of_index()));
1695         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1696                                         PtrQueue::byte_offset_of_buf()));
1697 
1698         Label done;
1699         Label runtime;
1700 
1701         // Can we store original value in the thread's buffer?
1702 
1703         __ movptr(tmp, queue_index);
1704         __ testptr(tmp, tmp);
1705         __ jcc(Assembler::zero, runtime);
1706         __ subptr(tmp, wordSize);
1707         __ movptr(queue_index, tmp);
1708         __ addptr(tmp, buffer);
1709 
1710         // prev_val (rax)
1711         f.load_argument(0, pre_val);
1712         __ movptr(Address(tmp, 0), pre_val);
1713         __ jmp(done);
1714 
1715         __ bind(runtime);
1716         __ push(rcx);
1717 #ifdef _LP64
1718         __ push(r8);
1719         __ push(r9);
1720         __ push(r10);
1721         __ push(r11);
1722 #  ifndef _WIN64
1723         __ push(rdi);
1724         __ push(rsi);
1725 #  endif
1726 #endif
1727         // load the pre-value
1728         f.load_argument(0, rcx);
1729         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1730 #ifdef _LP64
1731 #  ifndef _WIN64
1732         __ pop(rsi);
1733         __ pop(rdi);
1734 #  endif
1735         __ pop(r11);
1736         __ pop(r10);
1737         __ pop(r9);
1738         __ pop(r8);
1739 #endif
1740         __ pop(rcx);
1741         __ bind(done);
1742 
1743         __ pop(rdx);
1744         __ pop(rax);
1745       }
1746       break;
1747 
1748     case g1_post_barrier_slow_id:
1749       {
1750         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1751 
1752 
1753         // arg0: store_address
1754         Address store_addr(rbp, 2*BytesPerWord);
1755 
1756         BarrierSet* bs = Universe::heap()->barrier_set();
1757         if (bs->kind() == BarrierSet::ShenandoahBarrierSet) {
1758           __ movptr(rax, (int)id);
1759           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1760           __ should_not_reach_here();
1761           break;
1762         }
1763         CardTableModRefBS* ct =
1764           barrier_set_cast<CardTableModRefBS>(bs);
1765         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1766 
1767         Label done;
1768         Label enqueued;
1769         Label runtime;
1770 
1771         // At this point we know new_value is non-NULL and the new_value crosses regions.
1772         // Must check to see if card is already dirty
1773 
1774         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1775 
1776         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1777                                              PtrQueue::byte_offset_of_index()));
1778         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1779                                         PtrQueue::byte_offset_of_buf()));
1780 
1781         __ push(rax);
1782         __ push(rcx);
1783 
1784         const Register cardtable = rax;
1785         const Register card_addr = rcx;
1786 
1787         f.load_argument(0, card_addr);
1788         __ shrptr(card_addr, CardTableModRefBS::card_shift);
1789         // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
1790         // a valid address and therefore is not properly handled by the relocation code.
1791         __ movptr(cardtable, (intptr_t)ct->byte_map_base);
1792         __ addptr(card_addr, cardtable);
1793 
1794         NOT_LP64(__ get_thread(thread);)
1795 
1796         __ cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
1797         __ jcc(Assembler::equal, done);
1798 
1799         __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
1800         __ cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
1801         __ jcc(Assembler::equal, done);
1802 
1803         // storing region crossing non-NULL, card is clean.
1804         // dirty card and log.
1805 
1806         __ movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
1807 
1808         const Register tmp = rdx;
1809         __ push(rdx);
1810 
1811         __ movptr(tmp, queue_index);
1812         __ testptr(tmp, tmp);
1813         __ jcc(Assembler::zero, runtime);
1814         __ subptr(tmp, wordSize);
1815         __ movptr(queue_index, tmp);
1816         __ addptr(tmp, buffer);
1817         __ movptr(Address(tmp, 0), card_addr);
1818         __ jmp(enqueued);
1819 
1820         __ bind(runtime);
1821 #ifdef _LP64
1822         __ push(r8);
1823         __ push(r9);
1824         __ push(r10);
1825         __ push(r11);
1826 #  ifndef _WIN64
1827         __ push(rdi);
1828         __ push(rsi);
1829 #  endif
1830 #endif
1831         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1832 #ifdef _LP64
1833 #  ifndef _WIN64
1834         __ pop(rsi);
1835         __ pop(rdi);
1836 #  endif
1837         __ pop(r11);
1838         __ pop(r10);
1839         __ pop(r9);
1840         __ pop(r8);
1841 #endif
1842         __ bind(enqueued);
1843         __ pop(rdx);
1844 
1845         __ bind(done);
1846         __ pop(rcx);
1847         __ pop(rax);
1848       }
1849       break;
1850 #endif // INCLUDE_ALL_GCS
1851 
1852     case predicate_failed_trap_id:
1853       {
1854         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1855 
1856         OopMap* map = save_live_registers(sasm, 1);
1857 
1858         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1859         oop_maps = new OopMapSet();
1860         oop_maps->add_gc_map(call_offset, map);
1861         restore_live_registers(sasm);
1862         __ leave();
1863         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1864         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1865 
1866         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1867       }
1868       break;
1869 
1870     default:
1871       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1872         __ movptr(rax, (int)id);
1873         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1874         __ should_not_reach_here();
1875       }
1876       break;
1877   }
1878   return oop_maps;
1879 }
1880 
1881 #undef __
1882 
1883 const char *Runtime1::pd_name_for_address(address entry) {
1884   return "<unknown function>";
1885 }