1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  30 #include "gc/g1/heapRegionSet.hpp"
  31 #include "gc/shared/cmBitMap.inline.hpp"
  32 #include "gc/shared/gcId.hpp"
  33 #include "gc/shared/taskqueue.hpp"
  34 
  35 class G1CollectedHeap;
  36 class CMBitMap;
  37 class CMTask;
  38 class ConcurrentMark;
  39 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
  40 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
  41 
  42 // Closure used by CM during concurrent reference discovery
  43 // and reference processing (during remarking) to determine
  44 // if a particular object is alive. It is primarily used
  45 // to determine if referents of discovered reference objects
  46 // are alive. An instance is also embedded into the
  47 // reference processor as the _is_alive_non_header field
  48 class G1CMIsAliveClosure: public BoolObjectClosure {
  49   G1CollectedHeap* _g1;
  50  public:
  51   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  52 
  53   bool do_object_b(oop obj);
  54 };
  55 
  56 class CMBitMapMappingChangedListener : public G1MappingChangedListener {
  57  private:
  58   CMBitMap* _bm;
  59  public:
  60   CMBitMapMappingChangedListener() : _bm(NULL) {}
  61 
  62   void set_bitmap(CMBitMap* bm) { _bm = bm; }
  63 
  64   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
  65 };
  66 
  67 class G1CMBitMap : public CMBitMap {
  68  private:
  69   CMBitMapMappingChangedListener _listener;
  70 
  71  public:
  72   G1CMBitMap() : CMBitMap(), _listener() { _listener.set_bitmap(this); }
  73   static size_t compute_size(size_t heap_size);
  74   // Returns the amount of bytes on the heap between two marks in the bitmap.
  75   static size_t mark_distance();
  76   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
  77   // mark bitmap corresponds to. This is the same as the mark distance above.
  78   static size_t heap_map_factor() {
  79     return mark_distance();
  80   }
  81 
  82   // Initializes the underlying BitMap to cover the given area.
  83   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
  84 
  85   // Clear the whole mark bitmap.
  86   void clearAll();
  87 };
  88 
  89 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
  90 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
  91   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
  92   ConcurrentMark* _cm;
  93   oop* _base;        // bottom of stack
  94   jint _index;       // one more than last occupied index
  95   jint _capacity;    // max #elements
  96   jint _saved_index; // value of _index saved at start of GC
  97 
  98   bool  _overflow;
  99   bool  _should_expand;
 100   DEBUG_ONLY(bool _drain_in_progress;)
 101   DEBUG_ONLY(bool _drain_in_progress_yields;)
 102 
 103   oop pop() {
 104     if (!isEmpty()) {
 105       return _base[--_index] ;
 106     }
 107     return NULL;
 108   }
 109 
 110  public:
 111   CMMarkStack(ConcurrentMark* cm);
 112   ~CMMarkStack();
 113 
 114   bool allocate(size_t capacity);
 115 
 116   // Pushes the first "n" elements of "ptr_arr" on the stack.
 117   // Locking impl: concurrency is allowed only with
 118   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 119   // locking strategy.
 120   void par_push_arr(oop* ptr_arr, int n);
 121 
 122   // If returns false, the array was empty.  Otherwise, removes up to "max"
 123   // elements from the stack, and transfers them to "ptr_arr" in an
 124   // unspecified order.  The actual number transferred is given in "n" ("n
 125   // == 0" is deliberately redundant with the return value.)  Locking impl:
 126   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 127   // operations, which use the same locking strategy.
 128   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 129 
 130   // Drain the mark stack, applying the given closure to all fields of
 131   // objects on the stack.  (That is, continue until the stack is empty,
 132   // even if closure applications add entries to the stack.)  The "bm"
 133   // argument, if non-null, may be used to verify that only marked objects
 134   // are on the mark stack.  If "yield_after" is "true", then the
 135   // concurrent marker performing the drain offers to yield after
 136   // processing each object.  If a yield occurs, stops the drain operation
 137   // and returns false.  Otherwise, returns true.
 138   template<class OopClosureClass>
 139   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 140 
 141   bool isEmpty()    { return _index == 0; }
 142   int  maxElems()   { return _capacity; }
 143 
 144   bool overflow() { return _overflow; }
 145   void clear_overflow() { _overflow = false; }
 146 
 147   bool should_expand() const { return _should_expand; }
 148   void set_should_expand();
 149 
 150   // Expand the stack, typically in response to an overflow condition
 151   void expand();
 152 
 153   int  size() { return _index; }
 154 
 155   void setEmpty()   { _index = 0; clear_overflow(); }
 156 
 157   // Record the current index.
 158   void note_start_of_gc();
 159 
 160   // Make sure that we have not added any entries to the stack during GC.
 161   void note_end_of_gc();
 162 
 163   // Apply fn to each oop in the mark stack, up to the bound recorded
 164   // via one of the above "note" functions.  The mark stack must not
 165   // be modified while iterating.
 166   template<typename Fn> void iterate(Fn fn);
 167 };
 168 
 169 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
 170 private:
 171 #ifndef PRODUCT
 172   uintx _num_remaining;
 173   bool _force;
 174 #endif // !defined(PRODUCT)
 175 
 176 public:
 177   void init() PRODUCT_RETURN;
 178   void update() PRODUCT_RETURN;
 179   bool should_force() PRODUCT_RETURN_( return false; );
 180 };
 181 
 182 // this will enable a variety of different statistics per GC task
 183 #define _MARKING_STATS_       0
 184 // this will enable the higher verbose levels
 185 #define _MARKING_VERBOSE_     0
 186 
 187 #if _MARKING_STATS_
 188 #define statsOnly(statement)  \
 189 do {                          \
 190   statement ;                 \
 191 } while (0)
 192 #else // _MARKING_STATS_
 193 #define statsOnly(statement)  \
 194 do {                          \
 195 } while (0)
 196 #endif // _MARKING_STATS_
 197 
 198 typedef enum {
 199   no_verbose  = 0,   // verbose turned off
 200   stats_verbose,     // only prints stats at the end of marking
 201   low_verbose,       // low verbose, mostly per region and per major event
 202   medium_verbose,    // a bit more detailed than low
 203   high_verbose       // per object verbose
 204 } CMVerboseLevel;
 205 
 206 class YoungList;
 207 
 208 // Root Regions are regions that are not empty at the beginning of a
 209 // marking cycle and which we might collect during an evacuation pause
 210 // while the cycle is active. Given that, during evacuation pauses, we
 211 // do not copy objects that are explicitly marked, what we have to do
 212 // for the root regions is to scan them and mark all objects reachable
 213 // from them. According to the SATB assumptions, we only need to visit
 214 // each object once during marking. So, as long as we finish this scan
 215 // before the next evacuation pause, we can copy the objects from the
 216 // root regions without having to mark them or do anything else to them.
 217 //
 218 // Currently, we only support root region scanning once (at the start
 219 // of the marking cycle) and the root regions are all the survivor
 220 // regions populated during the initial-mark pause.
 221 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
 222 private:
 223   YoungList*           _young_list;
 224   ConcurrentMark*      _cm;
 225 
 226   volatile bool        _scan_in_progress;
 227   volatile bool        _should_abort;
 228   HeapRegion* volatile _next_survivor;
 229 
 230 public:
 231   CMRootRegions();
 232   // We actually do most of the initialization in this method.
 233   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
 234 
 235   // Reset the claiming / scanning of the root regions.
 236   void prepare_for_scan();
 237 
 238   // Forces get_next() to return NULL so that the iteration aborts early.
 239   void abort() { _should_abort = true; }
 240 
 241   // Return true if the CM thread are actively scanning root regions,
 242   // false otherwise.
 243   bool scan_in_progress() { return _scan_in_progress; }
 244 
 245   // Claim the next root region to scan atomically, or return NULL if
 246   // all have been claimed.
 247   HeapRegion* claim_next();
 248 
 249   // Flag that we're done with root region scanning and notify anyone
 250   // who's waiting on it. If aborted is false, assume that all regions
 251   // have been claimed.
 252   void scan_finished();
 253 
 254   // If CM threads are still scanning root regions, wait until they
 255   // are done. Return true if we had to wait, false otherwise.
 256   bool wait_until_scan_finished();
 257 };
 258 
 259 class ConcurrentMarkThread;
 260 
 261 class ConcurrentMark: public CHeapObj<mtGC> {
 262   friend class CMMarkStack;
 263   friend class ConcurrentMarkThread;
 264   friend class CMTask;
 265   friend class CMBitMapClosure;
 266   friend class CMRemarkTask;
 267   friend class CMConcurrentMarkingTask;
 268   friend class G1ParNoteEndTask;
 269   friend class CalcLiveObjectsClosure;
 270   friend class G1CMRefProcTaskProxy;
 271   friend class G1CMRefProcTaskExecutor;
 272   friend class G1CMKeepAliveAndDrainClosure;
 273   friend class G1CMDrainMarkingStackClosure;
 274 
 275 protected:
 276   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 277   G1CollectedHeap*      _g1h;        // The heap
 278   uint                  _parallel_marking_threads; // The number of marking
 279                                                    // threads we're using
 280   uint                  _max_parallel_marking_threads; // Max number of marking
 281                                                        // threads we'll ever use
 282   double                _sleep_factor; // How much we have to sleep, with
 283                                        // respect to the work we just did, to
 284                                        // meet the marking overhead goal
 285   double                _marking_task_overhead; // Marking target overhead for
 286                                                 // a single task
 287 
 288   // Same as the two above, but for the cleanup task
 289   double                _cleanup_sleep_factor;
 290   double                _cleanup_task_overhead;
 291 
 292   FreeRegionList        _cleanup_list;
 293 
 294   // Concurrent marking support structures
 295   G1CMBitMap                _markBitMap1;
 296   G1CMBitMap                _markBitMap2;
 297   CMBitMapRO*             _prevMarkBitMap; // Completed mark bitmap
 298   CMBitMap*               _nextMarkBitMap; // Under-construction mark bitmap
 299 
 300   BitMap                  _region_bm;
 301   BitMap                  _card_bm;
 302 
 303   // Heap bounds
 304   HeapWord*               _heap_start;
 305   HeapWord*               _heap_end;
 306 
 307   // Root region tracking and claiming
 308   CMRootRegions           _root_regions;
 309 
 310   // For gray objects
 311   CMMarkStack             _markStack; // Grey objects behind global finger
 312   HeapWord* volatile      _finger;  // The global finger, region aligned,
 313                                     // always points to the end of the
 314                                     // last claimed region
 315 
 316   // Marking tasks
 317   uint                    _max_worker_id;// Maximum worker id
 318   uint                    _active_tasks; // Task num currently active
 319   CMTask**                _tasks;        // Task queue array (max_worker_id len)
 320   CMTaskQueueSet*         _task_queues;  // Task queue set
 321   ParallelTaskTerminator  _terminator;   // For termination
 322 
 323   // Two sync barriers that are used to synchronize tasks when an
 324   // overflow occurs. The algorithm is the following. All tasks enter
 325   // the first one to ensure that they have all stopped manipulating
 326   // the global data structures. After they exit it, they re-initialize
 327   // their data structures and task 0 re-initializes the global data
 328   // structures. Then, they enter the second sync barrier. This
 329   // ensure, that no task starts doing work before all data
 330   // structures (local and global) have been re-initialized. When they
 331   // exit it, they are free to start working again.
 332   WorkGangBarrierSync     _first_overflow_barrier_sync;
 333   WorkGangBarrierSync     _second_overflow_barrier_sync;
 334 
 335   // This is set by any task, when an overflow on the global data
 336   // structures is detected
 337   volatile bool           _has_overflown;
 338   // True: marking is concurrent, false: we're in remark
 339   volatile bool           _concurrent;
 340   // Set at the end of a Full GC so that marking aborts
 341   volatile bool           _has_aborted;
 342   GCId                    _aborted_gc_id;
 343 
 344   // Used when remark aborts due to an overflow to indicate that
 345   // another concurrent marking phase should start
 346   volatile bool           _restart_for_overflow;
 347 
 348   // This is true from the very start of concurrent marking until the
 349   // point when all the tasks complete their work. It is really used
 350   // to determine the points between the end of concurrent marking and
 351   // time of remark.
 352   volatile bool           _concurrent_marking_in_progress;
 353 
 354   // Verbose level
 355   CMVerboseLevel          _verbose_level;
 356 
 357   // All of these times are in ms
 358   NumberSeq _init_times;
 359   NumberSeq _remark_times;
 360   NumberSeq _remark_mark_times;
 361   NumberSeq _remark_weak_ref_times;
 362   NumberSeq _cleanup_times;
 363   double    _total_counting_time;
 364   double    _total_rs_scrub_time;
 365 
 366   double*   _accum_task_vtime;   // Accumulated task vtime
 367 
 368   WorkGang* _parallel_workers;
 369 
 370   ForceOverflowSettings _force_overflow_conc;
 371   ForceOverflowSettings _force_overflow_stw;
 372 
 373   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 374   void weakRefsWork(bool clear_all_soft_refs);
 375 
 376   void swapMarkBitMaps();
 377 
 378   // It resets the global marking data structures, as well as the
 379   // task local ones; should be called during initial mark.
 380   void reset();
 381 
 382   // Resets all the marking data structures. Called when we have to restart
 383   // marking or when marking completes (via set_non_marking_state below).
 384   void reset_marking_state(bool clear_overflow = true);
 385 
 386   // We do this after we're done with marking so that the marking data
 387   // structures are initialized to a sensible and predictable state.
 388   void set_non_marking_state();
 389 
 390   // Called to indicate how many threads are currently active.
 391   void set_concurrency(uint active_tasks);
 392 
 393   // It should be called to indicate which phase we're in (concurrent
 394   // mark or remark) and how many threads are currently active.
 395   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 396 
 397   // Prints all gathered CM-related statistics
 398   void print_stats();
 399 
 400   bool cleanup_list_is_empty() {
 401     return _cleanup_list.is_empty();
 402   }
 403 
 404   // Accessor methods
 405   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 406   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 407   double sleep_factor()                     { return _sleep_factor; }
 408   double marking_task_overhead()            { return _marking_task_overhead;}
 409   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
 410   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
 411 
 412   HeapWord*               finger()          { return _finger;   }
 413   bool                    concurrent()      { return _concurrent; }
 414   uint                    active_tasks()    { return _active_tasks; }
 415   ParallelTaskTerminator* terminator()      { return &_terminator; }
 416 
 417   // It claims the next available region to be scanned by a marking
 418   // task/thread. It might return NULL if the next region is empty or
 419   // we have run out of regions. In the latter case, out_of_regions()
 420   // determines whether we've really run out of regions or the task
 421   // should call claim_region() again. This might seem a bit
 422   // awkward. Originally, the code was written so that claim_region()
 423   // either successfully returned with a non-empty region or there
 424   // were no more regions to be claimed. The problem with this was
 425   // that, in certain circumstances, it iterated over large chunks of
 426   // the heap finding only empty regions and, while it was working, it
 427   // was preventing the calling task to call its regular clock
 428   // method. So, this way, each task will spend very little time in
 429   // claim_region() and is allowed to call the regular clock method
 430   // frequently.
 431   HeapRegion* claim_region(uint worker_id);
 432 
 433   // It determines whether we've run out of regions to scan. Note that
 434   // the finger can point past the heap end in case the heap was expanded
 435   // to satisfy an allocation without doing a GC. This is fine, because all
 436   // objects in those regions will be considered live anyway because of
 437   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 438   bool        out_of_regions() { return _finger >= _heap_end; }
 439 
 440   // Returns the task with the given id
 441   CMTask* task(int id) {
 442     assert(0 <= id && id < (int) _active_tasks,
 443            "task id not within active bounds");
 444     return _tasks[id];
 445   }
 446 
 447   // Returns the task queue with the given id
 448   CMTaskQueue* task_queue(int id) {
 449     assert(0 <= id && id < (int) _active_tasks,
 450            "task queue id not within active bounds");
 451     return (CMTaskQueue*) _task_queues->queue(id);
 452   }
 453 
 454   // Returns the task queue set
 455   CMTaskQueueSet* task_queues()  { return _task_queues; }
 456 
 457   // Access / manipulation of the overflow flag which is set to
 458   // indicate that the global stack has overflown
 459   bool has_overflown()           { return _has_overflown; }
 460   void set_has_overflown()       { _has_overflown = true; }
 461   void clear_has_overflown()     { _has_overflown = false; }
 462   bool restart_for_overflow()    { return _restart_for_overflow; }
 463 
 464   // Methods to enter the two overflow sync barriers
 465   void enter_first_sync_barrier(uint worker_id);
 466   void enter_second_sync_barrier(uint worker_id);
 467 
 468   ForceOverflowSettings* force_overflow_conc() {
 469     return &_force_overflow_conc;
 470   }
 471 
 472   ForceOverflowSettings* force_overflow_stw() {
 473     return &_force_overflow_stw;
 474   }
 475 
 476   ForceOverflowSettings* force_overflow() {
 477     if (concurrent()) {
 478       return force_overflow_conc();
 479     } else {
 480       return force_overflow_stw();
 481     }
 482   }
 483 
 484   // Live Data Counting data structures...
 485   // These data structures are initialized at the start of
 486   // marking. They are written to while marking is active.
 487   // They are aggregated during remark; the aggregated values
 488   // are then used to populate the _region_bm, _card_bm, and
 489   // the total live bytes, which are then subsequently updated
 490   // during cleanup.
 491 
 492   // An array of bitmaps (one bit map per task). Each bitmap
 493   // is used to record the cards spanned by the live objects
 494   // marked by that task/worker.
 495   BitMap*  _count_card_bitmaps;
 496 
 497   // Used to record the number of marked live bytes
 498   // (for each region, by worker thread).
 499   size_t** _count_marked_bytes;
 500 
 501   // Card index of the bottom of the G1 heap. Used for biasing indices into
 502   // the card bitmaps.
 503   intptr_t _heap_bottom_card_num;
 504 
 505   // Set to true when initialization is complete
 506   bool _completed_initialization;
 507 
 508 public:
 509   // Manipulation of the global mark stack.
 510   // The push and pop operations are used by tasks for transfers
 511   // between task-local queues and the global mark stack, and use
 512   // locking for concurrency safety.
 513   bool mark_stack_push(oop* arr, int n) {
 514     _markStack.par_push_arr(arr, n);
 515     if (_markStack.overflow()) {
 516       set_has_overflown();
 517       return false;
 518     }
 519     return true;
 520   }
 521   void mark_stack_pop(oop* arr, int max, int* n) {
 522     _markStack.par_pop_arr(arr, max, n);
 523   }
 524   size_t mark_stack_size()                { return _markStack.size(); }
 525   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 526   bool mark_stack_overflow()              { return _markStack.overflow(); }
 527   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 528 
 529   CMRootRegions* root_regions() { return &_root_regions; }
 530 
 531   bool concurrent_marking_in_progress() {
 532     return _concurrent_marking_in_progress;
 533   }
 534   void set_concurrent_marking_in_progress() {
 535     _concurrent_marking_in_progress = true;
 536   }
 537   void clear_concurrent_marking_in_progress() {
 538     _concurrent_marking_in_progress = false;
 539   }
 540 
 541   void update_accum_task_vtime(int i, double vtime) {
 542     _accum_task_vtime[i] += vtime;
 543   }
 544 
 545   double all_task_accum_vtime() {
 546     double ret = 0.0;
 547     for (uint i = 0; i < _max_worker_id; ++i)
 548       ret += _accum_task_vtime[i];
 549     return ret;
 550   }
 551 
 552   // Attempts to steal an object from the task queues of other tasks
 553   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 554 
 555   ConcurrentMark(G1CollectedHeap* g1h,
 556                  G1RegionToSpaceMapper* prev_bitmap_storage,
 557                  G1RegionToSpaceMapper* next_bitmap_storage);
 558   ~ConcurrentMark();
 559 
 560   ConcurrentMarkThread* cmThread() { return _cmThread; }
 561 
 562   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 563   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 564 
 565   // Returns the number of GC threads to be used in a concurrent
 566   // phase based on the number of GC threads being used in a STW
 567   // phase.
 568   uint scale_parallel_threads(uint n_par_threads);
 569 
 570   // Calculates the number of GC threads to be used in a concurrent phase.
 571   uint calc_parallel_marking_threads();
 572 
 573   // The following three are interaction between CM and
 574   // G1CollectedHeap
 575 
 576   // This notifies CM that a root during initial-mark needs to be
 577   // grayed. It is MT-safe. word_size is the size of the object in
 578   // words. It is passed explicitly as sometimes we cannot calculate
 579   // it from the given object because it might be in an inconsistent
 580   // state (e.g., in to-space and being copied). So the caller is
 581   // responsible for dealing with this issue (e.g., get the size from
 582   // the from-space image when the to-space image might be
 583   // inconsistent) and always passing the size. hr is the region that
 584   // contains the object and it's passed optionally from callers who
 585   // might already have it (no point in recalculating it).
 586   inline void grayRoot(oop obj,
 587                        size_t word_size,
 588                        uint worker_id,
 589                        HeapRegion* hr = NULL);
 590 
 591   // It iterates over the heap and for each object it comes across it
 592   // will dump the contents of its reference fields, as well as
 593   // liveness information for the object and its referents. The dump
 594   // will be written to a file with the following name:
 595   // G1PrintReachableBaseFile + "." + str.
 596   // vo decides whether the prev (vo == UsePrevMarking), the next
 597   // (vo == UseNextMarking) marking information, or the mark word
 598   // (vo == UseMarkWord) will be used to determine the liveness of
 599   // each object / referent.
 600   // If all is true, all objects in the heap will be dumped, otherwise
 601   // only the live ones. In the dump the following symbols / breviations
 602   // are used:
 603   //   M : an explicitly live object (its bitmap bit is set)
 604   //   > : an implicitly live object (over tams)
 605   //   O : an object outside the G1 heap (typically: in the perm gen)
 606   //   NOT : a reference field whose referent is not live
 607   //   AND MARKED : indicates that an object is both explicitly and
 608   //   implicitly live (it should be one or the other, not both)
 609   void print_reachable(const char* str,
 610                        VerifyOption vo,
 611                        bool all) PRODUCT_RETURN;
 612 
 613   // Clear the next marking bitmap (will be called concurrently).
 614   void clearNextBitmap();
 615 
 616   // Return whether the next mark bitmap has no marks set. To be used for assertions
 617   // only. Will not yield to pause requests.
 618   bool nextMarkBitmapIsClear();
 619 
 620   // These two do the work that needs to be done before and after the
 621   // initial root checkpoint. Since this checkpoint can be done at two
 622   // different points (i.e. an explicit pause or piggy-backed on a
 623   // young collection), then it's nice to be able to easily share the
 624   // pre/post code. It might be the case that we can put everything in
 625   // the post method. TP
 626   void checkpointRootsInitialPre();
 627   void checkpointRootsInitialPost();
 628 
 629   // Scan all the root regions and mark everything reachable from
 630   // them.
 631   void scanRootRegions();
 632 
 633   // Scan a single root region and mark everything reachable from it.
 634   void scanRootRegion(HeapRegion* hr, uint worker_id);
 635 
 636   // Do concurrent phase of marking, to a tentative transitive closure.
 637   void markFromRoots();
 638 
 639   void checkpointRootsFinal(bool clear_all_soft_refs);
 640   void checkpointRootsFinalWork();
 641   void cleanup();
 642   void completeCleanup();
 643 
 644   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 645   // this carefully!
 646   inline void markPrev(oop p);
 647 
 648   // Clears marks for all objects in the given range, for the prev or
 649   // next bitmaps.  NB: the previous bitmap is usually
 650   // read-only, so use this carefully!
 651   void clearRangePrevBitmap(MemRegion mr);
 652   void clearRangeNextBitmap(MemRegion mr);
 653 
 654   // Notify data structures that a GC has started.
 655   void note_start_of_gc() {
 656     _markStack.note_start_of_gc();
 657   }
 658 
 659   // Notify data structures that a GC is finished.
 660   void note_end_of_gc() {
 661     _markStack.note_end_of_gc();
 662   }
 663 
 664   // Verify that there are no CSet oops on the stacks (taskqueues /
 665   // global mark stack) and fingers (global / per-task).
 666   // If marking is not in progress, it's a no-op.
 667   void verify_no_cset_oops() PRODUCT_RETURN;
 668 
 669   bool isPrevMarked(oop p) const {
 670     assert(p != NULL && p->is_oop(), "expected an oop");
 671     HeapWord* addr = (HeapWord*)p;
 672     assert(addr >= _prevMarkBitMap->startWord() ||
 673            addr < _prevMarkBitMap->endWord(), "in a region");
 674 
 675     return _prevMarkBitMap->isMarked(addr);
 676   }
 677 
 678   inline bool do_yield_check(uint worker_i = 0);
 679 
 680   // Called to abort the marking cycle after a Full GC takes place.
 681   void abort();
 682 
 683   bool has_aborted()      { return _has_aborted; }
 684 
 685   const GCId& concurrent_gc_id();
 686 
 687   // This prints the global/local fingers. It is used for debugging.
 688   NOT_PRODUCT(void print_finger();)
 689 
 690   void print_summary_info();
 691 
 692   void print_worker_threads_on(outputStream* st) const;
 693 
 694   void print_on_error(outputStream* st) const;
 695 
 696   // The following indicate whether a given verbose level has been
 697   // set. Notice that anything above stats is conditional to
 698   // _MARKING_VERBOSE_ having been set to 1
 699   bool verbose_stats() {
 700     return _verbose_level >= stats_verbose;
 701   }
 702   bool verbose_low() {
 703     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
 704   }
 705   bool verbose_medium() {
 706     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
 707   }
 708   bool verbose_high() {
 709     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
 710   }
 711 
 712   // Liveness counting
 713 
 714   // Utility routine to set an exclusive range of cards on the given
 715   // card liveness bitmap
 716   inline void set_card_bitmap_range(BitMap* card_bm,
 717                                     BitMap::idx_t start_idx,
 718                                     BitMap::idx_t end_idx,
 719                                     bool is_par);
 720 
 721   // Returns the card number of the bottom of the G1 heap.
 722   // Used in biasing indices into accounting card bitmaps.
 723   intptr_t heap_bottom_card_num() const {
 724     return _heap_bottom_card_num;
 725   }
 726 
 727   // Returns the card bitmap for a given task or worker id.
 728   BitMap* count_card_bitmap_for(uint worker_id) {
 729     assert(worker_id < _max_worker_id, "oob");
 730     assert(_count_card_bitmaps != NULL, "uninitialized");
 731     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 732     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 733     return task_card_bm;
 734   }
 735 
 736   // Returns the array containing the marked bytes for each region,
 737   // for the given worker or task id.
 738   size_t* count_marked_bytes_array_for(uint worker_id) {
 739     assert(worker_id < _max_worker_id, "oob");
 740     assert(_count_marked_bytes != NULL, "uninitialized");
 741     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 742     assert(marked_bytes_array != NULL, "uninitialized");
 743     return marked_bytes_array;
 744   }
 745 
 746   // Returns the index in the liveness accounting card table bitmap
 747   // for the given address
 748   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 749 
 750   // Counts the size of the given memory region in the the given
 751   // marked_bytes array slot for the given HeapRegion.
 752   // Sets the bits in the given card bitmap that are associated with the
 753   // cards that are spanned by the memory region.
 754   inline void count_region(MemRegion mr,
 755                            HeapRegion* hr,
 756                            size_t* marked_bytes_array,
 757                            BitMap* task_card_bm);
 758 
 759   // Counts the given memory region in the task/worker counting
 760   // data structures for the given worker id.
 761   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
 762 
 763   // Counts the given object in the given task/worker counting
 764   // data structures.
 765   inline void count_object(oop obj,
 766                            HeapRegion* hr,
 767                            size_t* marked_bytes_array,
 768                            BitMap* task_card_bm);
 769 
 770   // Attempts to mark the given object and, if successful, counts
 771   // the object in the given task/worker counting structures.
 772   inline bool par_mark_and_count(oop obj,
 773                                  HeapRegion* hr,
 774                                  size_t* marked_bytes_array,
 775                                  BitMap* task_card_bm);
 776 
 777   // Attempts to mark the given object and, if successful, counts
 778   // the object in the task/worker counting structures for the
 779   // given worker id.
 780   inline bool par_mark_and_count(oop obj,
 781                                  size_t word_size,
 782                                  HeapRegion* hr,
 783                                  uint worker_id);
 784 
 785   // Returns true if initialization was successfully completed.
 786   bool completed_initialization() const {
 787     return _completed_initialization;
 788   }
 789 
 790 protected:
 791   // Clear all the per-task bitmaps and arrays used to store the
 792   // counting data.
 793   void clear_all_count_data();
 794 
 795   // Aggregates the counting data for each worker/task
 796   // that was constructed while marking. Also sets
 797   // the amount of marked bytes for each region and
 798   // the top at concurrent mark count.
 799   void aggregate_count_data();
 800 
 801   // Verification routine
 802   void verify_count_data();
 803 };
 804 
 805 // A class representing a marking task.
 806 class CMTask : public TerminatorTerminator {
 807 private:
 808   enum PrivateConstants {
 809     // the regular clock call is called once the scanned words reaches
 810     // this limit
 811     words_scanned_period          = 12*1024,
 812     // the regular clock call is called once the number of visited
 813     // references reaches this limit
 814     refs_reached_period           = 384,
 815     // initial value for the hash seed, used in the work stealing code
 816     init_hash_seed                = 17,
 817     // how many entries will be transferred between global stack and
 818     // local queues
 819     global_stack_transfer_size    = 16
 820   };
 821 
 822   uint                        _worker_id;
 823   G1CollectedHeap*            _g1h;
 824   ConcurrentMark*             _cm;
 825   CMBitMap*                   _nextMarkBitMap;
 826   // the task queue of this task
 827   CMTaskQueue*                _task_queue;
 828 private:
 829   // the task queue set---needed for stealing
 830   CMTaskQueueSet*             _task_queues;
 831   // indicates whether the task has been claimed---this is only  for
 832   // debugging purposes
 833   bool                        _claimed;
 834 
 835   // number of calls to this task
 836   int                         _calls;
 837 
 838   // when the virtual timer reaches this time, the marking step should
 839   // exit
 840   double                      _time_target_ms;
 841   // the start time of the current marking step
 842   double                      _start_time_ms;
 843 
 844   // the oop closure used for iterations over oops
 845   G1CMOopClosure*             _cm_oop_closure;
 846 
 847   // the region this task is scanning, NULL if we're not scanning any
 848   HeapRegion*                 _curr_region;
 849   // the local finger of this task, NULL if we're not scanning a region
 850   HeapWord*                   _finger;
 851   // limit of the region this task is scanning, NULL if we're not scanning one
 852   HeapWord*                   _region_limit;
 853 
 854   // the number of words this task has scanned
 855   size_t                      _words_scanned;
 856   // When _words_scanned reaches this limit, the regular clock is
 857   // called. Notice that this might be decreased under certain
 858   // circumstances (i.e. when we believe that we did an expensive
 859   // operation).
 860   size_t                      _words_scanned_limit;
 861   // the initial value of _words_scanned_limit (i.e. what it was
 862   // before it was decreased).
 863   size_t                      _real_words_scanned_limit;
 864 
 865   // the number of references this task has visited
 866   size_t                      _refs_reached;
 867   // When _refs_reached reaches this limit, the regular clock is
 868   // called. Notice this this might be decreased under certain
 869   // circumstances (i.e. when we believe that we did an expensive
 870   // operation).
 871   size_t                      _refs_reached_limit;
 872   // the initial value of _refs_reached_limit (i.e. what it was before
 873   // it was decreased).
 874   size_t                      _real_refs_reached_limit;
 875 
 876   // used by the work stealing stuff
 877   int                         _hash_seed;
 878   // if this is true, then the task has aborted for some reason
 879   bool                        _has_aborted;
 880   // set when the task aborts because it has met its time quota
 881   bool                        _has_timed_out;
 882   // true when we're draining SATB buffers; this avoids the task
 883   // aborting due to SATB buffers being available (as we're already
 884   // dealing with them)
 885   bool                        _draining_satb_buffers;
 886 
 887   // number sequence of past step times
 888   NumberSeq                   _step_times_ms;
 889   // elapsed time of this task
 890   double                      _elapsed_time_ms;
 891   // termination time of this task
 892   double                      _termination_time_ms;
 893   // when this task got into the termination protocol
 894   double                      _termination_start_time_ms;
 895 
 896   // true when the task is during a concurrent phase, false when it is
 897   // in the remark phase (so, in the latter case, we do not have to
 898   // check all the things that we have to check during the concurrent
 899   // phase, i.e. SATB buffer availability...)
 900   bool                        _concurrent;
 901 
 902   TruncatedSeq                _marking_step_diffs_ms;
 903 
 904   // Counting data structures. Embedding the task's marked_bytes_array
 905   // and card bitmap into the actual task saves having to go through
 906   // the ConcurrentMark object.
 907   size_t*                     _marked_bytes_array;
 908   BitMap*                     _card_bm;
 909 
 910   // LOTS of statistics related with this task
 911 #if _MARKING_STATS_
 912   NumberSeq                   _all_clock_intervals_ms;
 913   double                      _interval_start_time_ms;
 914 
 915   size_t                      _aborted;
 916   size_t                      _aborted_overflow;
 917   size_t                      _aborted_cm_aborted;
 918   size_t                      _aborted_yield;
 919   size_t                      _aborted_timed_out;
 920   size_t                      _aborted_satb;
 921   size_t                      _aborted_termination;
 922 
 923   size_t                      _steal_attempts;
 924   size_t                      _steals;
 925 
 926   size_t                      _clock_due_to_marking;
 927   size_t                      _clock_due_to_scanning;
 928 
 929   size_t                      _local_pushes;
 930   size_t                      _local_pops;
 931   size_t                      _local_max_size;
 932   size_t                      _objs_scanned;
 933 
 934   size_t                      _global_pushes;
 935   size_t                      _global_pops;
 936   size_t                      _global_max_size;
 937 
 938   size_t                      _global_transfers_to;
 939   size_t                      _global_transfers_from;
 940 
 941   size_t                      _regions_claimed;
 942   size_t                      _objs_found_on_bitmap;
 943 
 944   size_t                      _satb_buffers_processed;
 945 #endif // _MARKING_STATS_
 946 
 947   // it updates the local fields after this task has claimed
 948   // a new region to scan
 949   void setup_for_region(HeapRegion* hr);
 950   // it brings up-to-date the limit of the region
 951   void update_region_limit();
 952 
 953   // called when either the words scanned or the refs visited limit
 954   // has been reached
 955   void reached_limit();
 956   // recalculates the words scanned and refs visited limits
 957   void recalculate_limits();
 958   // decreases the words scanned and refs visited limits when we reach
 959   // an expensive operation
 960   void decrease_limits();
 961   // it checks whether the words scanned or refs visited reached their
 962   // respective limit and calls reached_limit() if they have
 963   void check_limits() {
 964     if (_words_scanned >= _words_scanned_limit ||
 965         _refs_reached >= _refs_reached_limit) {
 966       reached_limit();
 967     }
 968   }
 969   // this is supposed to be called regularly during a marking step as
 970   // it checks a bunch of conditions that might cause the marking step
 971   // to abort
 972   void regular_clock_call();
 973   bool concurrent() { return _concurrent; }
 974 
 975   // Test whether obj might have already been passed over by the
 976   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 977   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 978 
 979   template<bool scan> void process_grey_object(oop obj);
 980 
 981 public:
 982   // It resets the task; it should be called right at the beginning of
 983   // a marking phase.
 984   void reset(CMBitMap* _nextMarkBitMap);
 985   // it clears all the fields that correspond to a claimed region.
 986   void clear_region_fields();
 987 
 988   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 989 
 990   // The main method of this class which performs a marking step
 991   // trying not to exceed the given duration. However, it might exit
 992   // prematurely, according to some conditions (i.e. SATB buffers are
 993   // available for processing).
 994   void do_marking_step(double target_ms,
 995                        bool do_termination,
 996                        bool is_serial);
 997 
 998   // These two calls start and stop the timer
 999   void record_start_time() {
1000     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1001   }
1002   void record_end_time() {
1003     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1004   }
1005 
1006   // returns the worker ID associated with this task.
1007   uint worker_id() { return _worker_id; }
1008 
1009   // From TerminatorTerminator. It determines whether this task should
1010   // exit the termination protocol after it's entered it.
1011   virtual bool should_exit_termination();
1012 
1013   // Resets the local region fields after a task has finished scanning a
1014   // region; or when they have become stale as a result of the region
1015   // being evacuated.
1016   void giveup_current_region();
1017 
1018   HeapWord* finger()            { return _finger; }
1019 
1020   bool has_aborted()            { return _has_aborted; }
1021   void set_has_aborted()        { _has_aborted = true; }
1022   void clear_has_aborted()      { _has_aborted = false; }
1023   bool has_timed_out()          { return _has_timed_out; }
1024   bool claimed()                { return _claimed; }
1025 
1026   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
1027 
1028   // Increment the number of references this task has visited.
1029   void increment_refs_reached() { ++_refs_reached; }
1030 
1031   // Grey the object by marking it.  If not already marked, push it on
1032   // the local queue if below the finger.
1033   // Precondition: obj is in region.
1034   // Precondition: obj is below region's NTAMS.
1035   inline void make_reference_grey(oop obj, HeapRegion* region);
1036 
1037   // Grey the object (by calling make_grey_reference) if required,
1038   // e.g. obj is below its containing region's NTAMS.
1039   // Precondition: obj is a valid heap object.
1040   inline void deal_with_reference(oop obj);
1041 
1042   // It scans an object and visits its children.
1043   inline void scan_object(oop obj);
1044 
1045   // It pushes an object on the local queue.
1046   inline void push(oop obj);
1047 
1048   // These two move entries to/from the global stack.
1049   void move_entries_to_global_stack();
1050   void get_entries_from_global_stack();
1051 
1052   // It pops and scans objects from the local queue. If partially is
1053   // true, then it stops when the queue size is of a given limit. If
1054   // partially is false, then it stops when the queue is empty.
1055   void drain_local_queue(bool partially);
1056   // It moves entries from the global stack to the local queue and
1057   // drains the local queue. If partially is true, then it stops when
1058   // both the global stack and the local queue reach a given size. If
1059   // partially if false, it tries to empty them totally.
1060   void drain_global_stack(bool partially);
1061   // It keeps picking SATB buffers and processing them until no SATB
1062   // buffers are available.
1063   void drain_satb_buffers();
1064 
1065   // moves the local finger to a new location
1066   inline void move_finger_to(HeapWord* new_finger) {
1067     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1068     _finger = new_finger;
1069   }
1070 
1071   CMTask(uint worker_id,
1072          ConcurrentMark *cm,
1073          size_t* marked_bytes,
1074          BitMap* card_bm,
1075          CMTaskQueue* task_queue,
1076          CMTaskQueueSet* task_queues);
1077 
1078   // it prints statistics associated with this task
1079   void print_stats();
1080 
1081 #if _MARKING_STATS_
1082   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1083 #endif // _MARKING_STATS_
1084 };
1085 
1086 // Class that's used to to print out per-region liveness
1087 // information. It's currently used at the end of marking and also
1088 // after we sort the old regions at the end of the cleanup operation.
1089 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
1090 private:
1091   outputStream* _out;
1092 
1093   // Accumulators for these values.
1094   size_t _total_used_bytes;
1095   size_t _total_capacity_bytes;
1096   size_t _total_prev_live_bytes;
1097   size_t _total_next_live_bytes;
1098 
1099   // These are set up when we come across a "stars humongous" region
1100   // (as this is where most of this information is stored, not in the
1101   // subsequent "continues humongous" regions). After that, for every
1102   // region in a given humongous region series we deduce the right
1103   // values for it by simply subtracting the appropriate amount from
1104   // these fields. All these values should reach 0 after we've visited
1105   // the last region in the series.
1106   size_t _hum_used_bytes;
1107   size_t _hum_capacity_bytes;
1108   size_t _hum_prev_live_bytes;
1109   size_t _hum_next_live_bytes;
1110 
1111   // Accumulator for the remembered set size
1112   size_t _total_remset_bytes;
1113 
1114   // Accumulator for strong code roots memory size
1115   size_t _total_strong_code_roots_bytes;
1116 
1117   static double perc(size_t val, size_t total) {
1118     if (total == 0) {
1119       return 0.0;
1120     } else {
1121       return 100.0 * ((double) val / (double) total);
1122     }
1123   }
1124 
1125   static double bytes_to_mb(size_t val) {
1126     return (double) val / (double) M;
1127   }
1128 
1129   // See the .cpp file.
1130   size_t get_hum_bytes(size_t* hum_bytes);
1131   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1132                      size_t* prev_live_bytes, size_t* next_live_bytes);
1133 
1134 public:
1135   // The header and footer are printed in the constructor and
1136   // destructor respectively.
1137   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
1138   virtual bool doHeapRegion(HeapRegion* r);
1139   ~G1PrintRegionLivenessInfoClosure();
1140 };
1141 
1142 #endif // SHARE_VM_GC_G1_CONCURRENTMARK_HPP