1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_SPACE_HPP
  26 #define SHARE_VM_GC_SHARED_SPACE_HPP
  27 
  28 #include "gc/shared/blockOffsetTable.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/watermark.hpp"
  31 #include "gc/shared/workgroup.hpp"
  32 #include "memory/allocation.hpp"
  33 #include "memory/iterator.hpp"
  34 #include "memory/memRegion.hpp"
  35 #include "oops/markOop.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "utilities/macros.hpp"
  38 
  39 // A space is an abstraction for the "storage units" backing
  40 // up the generation abstraction. It includes specific
  41 // implementations for keeping track of free and used space,
  42 // for iterating over objects and free blocks, etc.
  43 
  44 // Forward decls.
  45 class Space;
  46 class BlockOffsetArray;
  47 class BlockOffsetArrayContigSpace;
  48 class Generation;
  49 class CompactibleSpace;
  50 class BlockOffsetTable;
  51 class GenRemSet;
  52 class CardTableRS;
  53 class DirtyCardToOopClosure;
  54 
  55 // A Space describes a heap area. Class Space is an abstract
  56 // base class.
  57 //
  58 // Space supports allocation, size computation and GC support is provided.
  59 //
  60 // Invariant: bottom() and end() are on page_size boundaries and
  61 // bottom() <= top() <= end()
  62 // top() is inclusive and end() is exclusive.
  63 
  64 class Space: public CHeapObj<mtGC> {
  65   friend class VMStructs;
  66  protected:
  67   HeapWord* _bottom;
  68   HeapWord* _end;
  69 
  70   // Used in support of save_marks()
  71   HeapWord* _saved_mark_word;
  72 
  73   // A sequential tasks done structure. This supports
  74   // parallel GC, where we have threads dynamically
  75   // claiming sub-tasks from a larger parallel task.
  76   SequentialSubTasksDone _par_seq_tasks;
  77 
  78   Space():
  79     _bottom(NULL), _end(NULL) { }
  80 
  81  public:
  82   // Accessors
  83   HeapWord* bottom() const         { return _bottom; }
  84   HeapWord* end() const            { return _end;    }
  85   virtual void set_bottom(HeapWord* value) { _bottom = value; }
  86   virtual void set_end(HeapWord* value)    { _end = value; }
  87 
  88   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
  89 
  90   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
  91 
  92   // Returns true if this object has been allocated since a
  93   // generation's "save_marks" call.
  94   virtual bool obj_allocated_since_save_marks(const oop obj) const {
  95     return (HeapWord*)obj >= saved_mark_word();
  96   }
  97 
  98   virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
  99     return NULL;
 100   }
 101 
 102   // Returns a subregion of the space containing only the allocated objects in
 103   // the space.
 104   virtual MemRegion used_region() const = 0;
 105 
 106   // Returns a region that is guaranteed to contain (at least) all objects
 107   // allocated at the time of the last call to "save_marks".  If the space
 108   // initializes its DirtyCardToOopClosure's specifying the "contig" option
 109   // (that is, if the space is contiguous), then this region must contain only
 110   // such objects: the memregion will be from the bottom of the region to the
 111   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
 112   // the space must distinguish between objects in the region allocated before
 113   // and after the call to save marks.
 114   MemRegion used_region_at_save_marks() const {
 115     return MemRegion(bottom(), saved_mark_word());
 116   }
 117 
 118   // Initialization.
 119   // "initialize" should be called once on a space, before it is used for
 120   // any purpose.  The "mr" arguments gives the bounds of the space, and
 121   // the "clear_space" argument should be true unless the memory in "mr" is
 122   // known to be zeroed.
 123   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 124 
 125   // The "clear" method must be called on a region that may have
 126   // had allocation performed in it, but is now to be considered empty.
 127   virtual void clear(bool mangle_space);
 128 
 129   // For detecting GC bugs.  Should only be called at GC boundaries, since
 130   // some unused space may be used as scratch space during GC's.
 131   // We also call this when expanding a space to satisfy an allocation
 132   // request. See bug #4668531
 133   virtual void mangle_unused_area() = 0;
 134   virtual void mangle_unused_area_complete() = 0;
 135 
 136   // Testers
 137   bool is_empty() const              { return used() == 0; }
 138   bool not_empty() const             { return used() > 0; }
 139 
 140   // Returns true iff the given the space contains the
 141   // given address as part of an allocated object. For
 142   // certain kinds of spaces, this might be a potentially
 143   // expensive operation. To prevent performance problems
 144   // on account of its inadvertent use in product jvm's,
 145   // we restrict its use to assertion checks only.
 146   bool is_in(const void* p) const {
 147     return used_region().contains(p);
 148   }
 149 
 150   // Returns true iff the given reserved memory of the space contains the
 151   // given address.
 152   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
 153 
 154   // Returns true iff the given block is not allocated.
 155   virtual bool is_free_block(const HeapWord* p) const = 0;
 156 
 157   // Test whether p is double-aligned
 158   static bool is_aligned(void* p) {
 159     return ((intptr_t)p & (sizeof(double)-1)) == 0;
 160   }
 161 
 162   // Size computations.  Sizes are in bytes.
 163   size_t capacity()     const { return byte_size(bottom(), end()); }
 164   virtual size_t used() const = 0;
 165   virtual size_t free() const = 0;
 166 
 167   // Iterate over all the ref-containing fields of all objects in the
 168   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
 169   // applications of the closure are not included in the iteration.
 170   virtual void oop_iterate(ExtendedOopClosure* cl);
 171 
 172   // Iterate over all objects in the space, calling "cl.do_object" on
 173   // each.  Objects allocated by applications of the closure are not
 174   // included in the iteration.
 175   virtual void object_iterate(ObjectClosure* blk) = 0;
 176   // Similar to object_iterate() except only iterates over
 177   // objects whose internal references point to objects in the space.
 178   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
 179 
 180   // Create and return a new dirty card to oop closure. Can be
 181   // overridden to return the appropriate type of closure
 182   // depending on the type of space in which the closure will
 183   // operate. ResourceArea allocated.
 184   virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 185                                              CardTableModRefBS::PrecisionStyle precision,
 186                                              HeapWord* boundary,
 187                                              bool parallel);
 188 
 189   // If "p" is in the space, returns the address of the start of the
 190   // "block" that contains "p".  We say "block" instead of "object" since
 191   // some heaps may not pack objects densely; a chunk may either be an
 192   // object or a non-object.  If "p" is not in the space, return NULL.
 193   virtual HeapWord* block_start_const(const void* p) const = 0;
 194 
 195   // The non-const version may have benevolent side effects on the data
 196   // structure supporting these calls, possibly speeding up future calls.
 197   // The default implementation, however, is simply to call the const
 198   // version.
 199   virtual HeapWord* block_start(const void* p);
 200 
 201   // Requires "addr" to be the start of a chunk, and returns its size.
 202   // "addr + size" is required to be the start of a new chunk, or the end
 203   // of the active area of the heap.
 204   virtual size_t block_size(const HeapWord* addr) const = 0;
 205 
 206   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 207   // the block is an object.
 208   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 209 
 210   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 211   // the block is an object and the object is alive.
 212   virtual bool obj_is_alive(const HeapWord* addr) const;
 213 
 214   // Allocation (return NULL if full).  Assumes the caller has established
 215   // mutually exclusive access to the space.
 216   virtual HeapWord* allocate(size_t word_size) = 0;
 217 
 218   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 219   virtual HeapWord* par_allocate(size_t word_size) = 0;
 220 
 221   // Mark-sweep-compact support: all spaces can update pointers to objects
 222   // moving as a part of compaction.
 223   virtual void adjust_pointers() = 0;
 224 
 225   // PrintHeapAtGC support
 226   virtual void print() const;
 227   virtual void print_on(outputStream* st) const;
 228   virtual void print_short() const;
 229   virtual void print_short_on(outputStream* st) const;
 230 
 231 
 232   // Accessor for parallel sequential tasks.
 233   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
 234 
 235   // IF "this" is a ContiguousSpace, return it, else return NULL.
 236   virtual ContiguousSpace* toContiguousSpace() {
 237     return NULL;
 238   }
 239 
 240   // Debugging
 241   virtual void verify() const = 0;
 242 };
 243 
 244 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
 245 // OopClosure to (the addresses of) all the ref-containing fields that could
 246 // be modified by virtue of the given MemRegion being dirty. (Note that
 247 // because of the imprecise nature of the write barrier, this may iterate
 248 // over oops beyond the region.)
 249 // This base type for dirty card to oop closures handles memory regions
 250 // in non-contiguous spaces with no boundaries, and should be sub-classed
 251 // to support other space types. See ContiguousDCTOC for a sub-class
 252 // that works with ContiguousSpaces.
 253 
 254 class DirtyCardToOopClosure: public MemRegionClosureRO {
 255 protected:
 256   ExtendedOopClosure* _cl;
 257   Space* _sp;
 258   CardTableModRefBS::PrecisionStyle _precision;
 259   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
 260                                 // pointing below boundary.
 261   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
 262                                 // a downwards traversal; this is the
 263                                 // lowest location already done (or,
 264                                 // alternatively, the lowest address that
 265                                 // shouldn't be done again.  NULL means infinity.)
 266   NOT_PRODUCT(HeapWord* _last_bottom;)
 267   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
 268 
 269   // Get the actual top of the area on which the closure will
 270   // operate, given where the top is assumed to be (the end of the
 271   // memory region passed to do_MemRegion) and where the object
 272   // at the top is assumed to start. For example, an object may
 273   // start at the top but actually extend past the assumed top,
 274   // in which case the top becomes the end of the object.
 275   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 276 
 277   // Walk the given memory region from bottom to (actual) top
 278   // looking for objects and applying the oop closure (_cl) to
 279   // them. The base implementation of this treats the area as
 280   // blocks, where a block may or may not be an object. Sub-
 281   // classes should override this to provide more accurate
 282   // or possibly more efficient walking.
 283   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
 284 
 285 public:
 286   DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
 287                         CardTableModRefBS::PrecisionStyle precision,
 288                         HeapWord* boundary) :
 289     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
 290     _min_done(NULL) {
 291     NOT_PRODUCT(_last_bottom = NULL);
 292     NOT_PRODUCT(_last_explicit_min_done = NULL);
 293   }
 294 
 295   void do_MemRegion(MemRegion mr);
 296 
 297   void set_min_done(HeapWord* min_done) {
 298     _min_done = min_done;
 299     NOT_PRODUCT(_last_explicit_min_done = _min_done);
 300   }
 301 #ifndef PRODUCT
 302   void set_last_bottom(HeapWord* last_bottom) {
 303     _last_bottom = last_bottom;
 304   }
 305 #endif
 306 };
 307 
 308 // A structure to represent a point at which objects are being copied
 309 // during compaction.
 310 class CompactPoint : public StackObj {
 311 public:
 312   Generation* gen;
 313   CompactibleSpace* space;
 314   HeapWord* threshold;
 315 
 316   CompactPoint(Generation* g = NULL) :
 317     gen(g), space(NULL), threshold(0) {}
 318 };
 319 
 320 // A space that supports compaction operations.  This is usually, but not
 321 // necessarily, a space that is normally contiguous.  But, for example, a
 322 // free-list-based space whose normal collection is a mark-sweep without
 323 // compaction could still support compaction in full GC's.
 324 //
 325 // The compaction operations are implemented by the
 326 // scan_and_{adjust_pointers,compact,forward} function templates.
 327 // The following are, non-virtual, auxiliary functions used by these function templates:
 328 // - scan_limit()
 329 // - scanned_block_is_obj()
 330 // - scanned_block_size()
 331 // - adjust_obj_size()
 332 // - obj_size()
 333 // These functions are to be used exclusively by the scan_and_* function templates,
 334 // and must be defined for all (non-abstract) subclasses of CompactibleSpace.
 335 //
 336 // NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
 337 // in any of the auxiliary functions must also override the corresponding
 338 // prepare_for_compaction/adjust_pointers/compact functions using them.
 339 // If not, such changes will not be used or have no effect on the compaction operations.
 340 //
 341 // This translates to the following dependencies:
 342 // Overrides/definitions of
 343 //  - scan_limit
 344 //  - scanned_block_is_obj
 345 //  - scanned_block_size
 346 // require override/definition of prepare_for_compaction().
 347 // Similar dependencies exist between
 348 //  - adjust_obj_size  and adjust_pointers()
 349 //  - obj_size         and compact().
 350 //
 351 // Additionally, this also means that changes to block_size() or block_is_obj() that
 352 // should be effective during the compaction operations must provide a corresponding
 353 // definition of scanned_block_size/scanned_block_is_obj respectively.
 354 class CompactibleSpace: public Space {
 355   friend class VMStructs;
 356   friend class CompactibleFreeListSpace;
 357 private:
 358   HeapWord* _compaction_top;
 359   CompactibleSpace* _next_compaction_space;
 360 
 361   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
 362   inline size_t adjust_obj_size(size_t size) const {
 363     return size;
 364   }
 365 
 366   inline size_t obj_size(const HeapWord* addr) const {
 367     return oop(addr)->size();
 368   }
 369 
 370 public:
 371   CompactibleSpace() :
 372    _compaction_top(NULL), _next_compaction_space(NULL) {}
 373 
 374   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 375   virtual void clear(bool mangle_space);
 376 
 377   // Used temporarily during a compaction phase to hold the value
 378   // top should have when compaction is complete.
 379   HeapWord* compaction_top() const { return _compaction_top;    }
 380 
 381   void set_compaction_top(HeapWord* value) {
 382     assert(value == NULL || (value >= bottom() && value <= end()),
 383       "should point inside space");
 384     _compaction_top = value;
 385   }
 386 
 387   // Perform operations on the space needed after a compaction
 388   // has been performed.
 389   virtual void reset_after_compaction() = 0;
 390 
 391   // Returns the next space (in the current generation) to be compacted in
 392   // the global compaction order.  Also is used to select the next
 393   // space into which to compact.
 394 
 395   virtual CompactibleSpace* next_compaction_space() const {
 396     return _next_compaction_space;
 397   }
 398 
 399   void set_next_compaction_space(CompactibleSpace* csp) {
 400     _next_compaction_space = csp;
 401   }
 402 
 403   // MarkSweep support phase2
 404 
 405   // Start the process of compaction of the current space: compute
 406   // post-compaction addresses, and insert forwarding pointers.  The fields
 407   // "cp->gen" and "cp->compaction_space" are the generation and space into
 408   // which we are currently compacting.  This call updates "cp" as necessary,
 409   // and leaves the "compaction_top" of the final value of
 410   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
 411   // this phase as if the final copy had occurred; if so, "cp->threshold"
 412   // indicates when the next such action should be taken.
 413   virtual void prepare_for_compaction(CompactPoint* cp) = 0;
 414   // MarkSweep support phase3
 415   virtual void adjust_pointers();
 416   // MarkSweep support phase4
 417   virtual void compact();
 418 
 419   // The maximum percentage of objects that can be dead in the compacted
 420   // live part of a compacted space ("deadwood" support.)
 421   virtual size_t allowed_dead_ratio() const { return 0; };
 422 
 423   // Some contiguous spaces may maintain some data structures that should
 424   // be updated whenever an allocation crosses a boundary.  This function
 425   // returns the first such boundary.
 426   // (The default implementation returns the end of the space, so the
 427   // boundary is never crossed.)
 428   virtual HeapWord* initialize_threshold() { return end(); }
 429 
 430   // "q" is an object of the given "size" that should be forwarded;
 431   // "cp" names the generation ("gen") and containing "this" (which must
 432   // also equal "cp->space").  "compact_top" is where in "this" the
 433   // next object should be forwarded to.  If there is room in "this" for
 434   // the object, insert an appropriate forwarding pointer in "q".
 435   // If not, go to the next compaction space (there must
 436   // be one, since compaction must succeed -- we go to the first space of
 437   // the previous generation if necessary, updating "cp"), reset compact_top
 438   // and then forward.  In either case, returns the new value of "compact_top".
 439   // If the forwarding crosses "cp->threshold", invokes the "cross_threshold"
 440   // function of the then-current compaction space, and updates "cp->threshold
 441   // accordingly".
 442   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
 443                     HeapWord* compact_top);
 444 
 445   // Return a size with adjustments as required of the space.
 446   virtual size_t adjust_object_size_v(size_t size) const { return size; }
 447 
 448 protected:
 449   // Used during compaction.
 450   HeapWord* _first_dead;
 451   HeapWord* _end_of_live;
 452 
 453   // Minimum size of a free block.
 454   virtual size_t minimum_free_block_size() const { return 0; }
 455 
 456   // This the function is invoked when an allocation of an object covering
 457   // "start" to "end occurs crosses the threshold; returns the next
 458   // threshold.  (The default implementation does nothing.)
 459   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
 460     return end();
 461   }
 462 
 463   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
 464   // free block of the given "word_len", and that "q", were it an object,
 465   // would not move if forwarded.  If the size allows, fill the free
 466   // block with an object, to prevent excessive compaction.  Returns "true"
 467   // iff the free region was made deadspace, and modifies
 468   // "allowed_deadspace_words" to reflect the number of available deadspace
 469   // words remaining after this operation.
 470   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
 471                         size_t word_len);
 472 
 473   // Below are template functions for scan_and_* algorithms (avoiding virtual calls).
 474   // The space argument should be a subclass of CompactibleSpace, implementing
 475   // scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
 476   // and possibly also overriding obj_size(), and adjust_obj_size().
 477   // These functions should avoid virtual calls whenever possible.
 478 
 479   // Frequently calls adjust_obj_size().
 480   template <class SpaceType>
 481   static inline void scan_and_adjust_pointers(SpaceType* space);
 482 
 483   // Frequently calls obj_size().
 484   template <class SpaceType>
 485   static inline void scan_and_compact(SpaceType* space);
 486 
 487   // Frequently calls scanned_block_is_obj() and scanned_block_size().
 488   // Requires the scan_limit() function.
 489   template <class SpaceType>
 490   static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
 491 };
 492 
 493 class GenSpaceMangler;
 494 
 495 // A space in which the free area is contiguous.  It therefore supports
 496 // faster allocation, and compaction.
 497 class ContiguousSpace: public CompactibleSpace {
 498   friend class VMStructs;
 499   // Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
 500   template <typename SpaceType>
 501   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 502 
 503  private:
 504   // Auxiliary functions for scan_and_forward support.
 505   // See comments for CompactibleSpace for more information.
 506   inline HeapWord* scan_limit() const {
 507     return top();
 508   }
 509 
 510   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 511     return true; // Always true, since scan_limit is top
 512   }
 513 
 514   inline size_t scanned_block_size(const HeapWord* addr) const {
 515     return oop(addr)->size();
 516   }
 517 
 518  protected:
 519   HeapWord* _top;
 520   HeapWord* _concurrent_iteration_safe_limit;
 521   // A helper for mangling the unused area of the space in debug builds.
 522   GenSpaceMangler* _mangler;
 523 
 524   GenSpaceMangler* mangler() { return _mangler; }
 525 
 526   // Allocation helpers (return NULL if full).
 527   inline HeapWord* allocate_impl(size_t word_size);
 528   inline HeapWord* par_allocate_impl(size_t word_size);
 529 
 530  public:
 531   ContiguousSpace();
 532   ~ContiguousSpace();
 533 
 534   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 535   virtual void clear(bool mangle_space);
 536 
 537   // Accessors
 538   HeapWord* top() const            { return _top;    }
 539   void set_top(HeapWord* value)    { _top = value; }
 540 
 541   void set_saved_mark()            { _saved_mark_word = top();    }
 542   void reset_saved_mark()          { _saved_mark_word = bottom(); }
 543 
 544   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
 545   WaterMark top_mark()        { return WaterMark(this, top()); }
 546   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
 547   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
 548 
 549   // In debug mode mangle (write it with a particular bit
 550   // pattern) the unused part of a space.
 551 
 552   // Used to save the an address in a space for later use during mangling.
 553   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
 554   // Used to save the space's current top for later use during mangling.
 555   void set_top_for_allocations() PRODUCT_RETURN;
 556 
 557   // Mangle regions in the space from the current top up to the
 558   // previously mangled part of the space.
 559   void mangle_unused_area() PRODUCT_RETURN;
 560   // Mangle [top, end)
 561   void mangle_unused_area_complete() PRODUCT_RETURN;
 562 
 563   // Do some sparse checking on the area that should have been mangled.
 564   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
 565   // Check the complete area that should have been mangled.
 566   // This code may be NULL depending on the macro DEBUG_MANGLING.
 567   void check_mangled_unused_area_complete() PRODUCT_RETURN;
 568 
 569   // Size computations: sizes in bytes.
 570   size_t capacity() const        { return byte_size(bottom(), end()); }
 571   size_t used() const            { return byte_size(bottom(), top()); }
 572   size_t free() const            { return byte_size(top(),    end()); }
 573 
 574   virtual bool is_free_block(const HeapWord* p) const;
 575 
 576   // In a contiguous space we have a more obvious bound on what parts
 577   // contain objects.
 578   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 579 
 580   // Allocation (return NULL if full)
 581   virtual HeapWord* allocate(size_t word_size);
 582   virtual HeapWord* par_allocate(size_t word_size);
 583   HeapWord* allocate_aligned(size_t word_size);
 584 
 585   // Iteration
 586   void oop_iterate(ExtendedOopClosure* cl);
 587   void object_iterate(ObjectClosure* blk);
 588   // For contiguous spaces this method will iterate safely over objects
 589   // in the space (i.e., between bottom and top) when at a safepoint.
 590   void safe_object_iterate(ObjectClosure* blk);
 591 
 592   // Iterate over as many initialized objects in the space as possible,
 593   // calling "cl.do_object_careful" on each. Return NULL if all objects
 594   // in the space (at the start of the iteration) were iterated over.
 595   // Return an address indicating the extent of the iteration in the
 596   // event that the iteration had to return because of finding an
 597   // uninitialized object in the space, or if the closure "cl"
 598   // signaled early termination.
 599   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
 600   HeapWord* concurrent_iteration_safe_limit() {
 601     assert(_concurrent_iteration_safe_limit <= top(),
 602            "_concurrent_iteration_safe_limit update missed");
 603     return _concurrent_iteration_safe_limit;
 604   }
 605   // changes the safe limit, all objects from bottom() to the new
 606   // limit should be properly initialized
 607   void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
 608     assert(new_limit <= top(), "uninitialized objects in the safe range");
 609     _concurrent_iteration_safe_limit = new_limit;
 610   }
 611 
 612 
 613 #if INCLUDE_ALL_GCS
 614   // In support of parallel oop_iterate.
 615   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
 616     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
 617 
 618     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
 619   #undef ContigSpace_PAR_OOP_ITERATE_DECL
 620 #endif // INCLUDE_ALL_GCS
 621 
 622   // Compaction support
 623   virtual void reset_after_compaction() {
 624     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
 625     set_top(compaction_top());
 626     // set new iteration safe limit
 627     set_concurrent_iteration_safe_limit(compaction_top());
 628   }
 629 
 630   // Override.
 631   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 632                                      CardTableModRefBS::PrecisionStyle precision,
 633                                      HeapWord* boundary,
 634                                      bool parallel);
 635 
 636   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 637   // starting with the _saved_mark_word, which was noted during a generation's
 638   // save_marks and is required to denote the head of an object.
 639   // Fields in objects allocated by applications of the closure
 640   // *are* included in the iteration.
 641   // Updates _saved_mark_word to point to just after the last object
 642   // iterated over.
 643 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 644   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 645 
 646   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
 647 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
 648 
 649   // Same as object_iterate, but starting from "mark", which is required
 650   // to denote the start of an object.  Objects allocated by
 651   // applications of the closure *are* included in the iteration.
 652   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
 653 
 654   // Very inefficient implementation.
 655   virtual HeapWord* block_start_const(const void* p) const;
 656   size_t block_size(const HeapWord* p) const;
 657   // If a block is in the allocated area, it is an object.
 658   bool block_is_obj(const HeapWord* p) const { return p < top(); }
 659 
 660   // Addresses for inlined allocation
 661   HeapWord** top_addr() { return &_top; }
 662   HeapWord** end_addr() { return &_end; }
 663 
 664   // Overrides for more efficient compaction support.
 665   void prepare_for_compaction(CompactPoint* cp);
 666 
 667   // PrintHeapAtGC support.
 668   virtual void print_on(outputStream* st) const;
 669 
 670   // Checked dynamic downcasts.
 671   virtual ContiguousSpace* toContiguousSpace() {
 672     return this;
 673   }
 674 
 675   // Debugging
 676   virtual void verify() const;
 677 
 678   // Used to increase collection frequency.  "factor" of 0 means entire
 679   // space.
 680   void allocate_temporary_filler(int factor);
 681 };
 682 
 683 
 684 // A dirty card to oop closure that does filtering.
 685 // It knows how to filter out objects that are outside of the _boundary.
 686 class Filtering_DCTOC : public DirtyCardToOopClosure {
 687 protected:
 688   // Override.
 689   void walk_mem_region(MemRegion mr,
 690                        HeapWord* bottom, HeapWord* top);
 691 
 692   // Walk the given memory region, from bottom to top, applying
 693   // the given oop closure to (possibly) all objects found. The
 694   // given oop closure may or may not be the same as the oop
 695   // closure with which this closure was created, as it may
 696   // be a filtering closure which makes use of the _boundary.
 697   // We offer two signatures, so the FilteringClosure static type is
 698   // apparent.
 699   virtual void walk_mem_region_with_cl(MemRegion mr,
 700                                        HeapWord* bottom, HeapWord* top,
 701                                        ExtendedOopClosure* cl) = 0;
 702   virtual void walk_mem_region_with_cl(MemRegion mr,
 703                                        HeapWord* bottom, HeapWord* top,
 704                                        FilteringClosure* cl) = 0;
 705 
 706 public:
 707   Filtering_DCTOC(Space* sp, ExtendedOopClosure* cl,
 708                   CardTableModRefBS::PrecisionStyle precision,
 709                   HeapWord* boundary) :
 710     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
 711 };
 712 
 713 // A dirty card to oop closure for contiguous spaces
 714 // (ContiguousSpace and sub-classes).
 715 // It is a FilteringClosure, as defined above, and it knows:
 716 //
 717 // 1. That the actual top of any area in a memory region
 718 //    contained by the space is bounded by the end of the contiguous
 719 //    region of the space.
 720 // 2. That the space is really made up of objects and not just
 721 //    blocks.
 722 
 723 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
 724 protected:
 725   // Overrides.
 726   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 727 
 728   virtual void walk_mem_region_with_cl(MemRegion mr,
 729                                        HeapWord* bottom, HeapWord* top,
 730                                        ExtendedOopClosure* cl);
 731   virtual void walk_mem_region_with_cl(MemRegion mr,
 732                                        HeapWord* bottom, HeapWord* top,
 733                                        FilteringClosure* cl);
 734 
 735 public:
 736   ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
 737                        CardTableModRefBS::PrecisionStyle precision,
 738                        HeapWord* boundary) :
 739     Filtering_DCTOC(sp, cl, precision, boundary)
 740   {}
 741 };
 742 
 743 // A ContigSpace that Supports an efficient "block_start" operation via
 744 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
 745 // other spaces.)  This is the abstract base class for old generation
 746 // (tenured) spaces.
 747 
 748 class OffsetTableContigSpace: public ContiguousSpace {
 749   friend class VMStructs;
 750  protected:
 751   BlockOffsetArrayContigSpace _offsets;
 752   Mutex _par_alloc_lock;
 753 
 754  public:
 755   // Constructor
 756   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 757                          MemRegion mr);
 758 
 759   void set_bottom(HeapWord* value);
 760   void set_end(HeapWord* value);
 761 
 762   void clear(bool mangle_space);
 763 
 764   inline HeapWord* block_start_const(const void* p) const;
 765 
 766   // Add offset table update.
 767   virtual inline HeapWord* allocate(size_t word_size);
 768   inline HeapWord* par_allocate(size_t word_size);
 769 
 770   // MarkSweep support phase3
 771   virtual HeapWord* initialize_threshold();
 772   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 773 
 774   virtual void print_on(outputStream* st) const;
 775 
 776   // Debugging
 777   void verify() const;
 778 };
 779 
 780 
 781 // Class TenuredSpace is used by TenuredGeneration
 782 
 783 class TenuredSpace: public OffsetTableContigSpace {
 784   friend class VMStructs;
 785  protected:
 786   // Mark sweep support
 787   size_t allowed_dead_ratio() const;
 788  public:
 789   // Constructor
 790   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
 791                MemRegion mr) :
 792     OffsetTableContigSpace(sharedOffsetArray, mr) {}
 793 };
 794 #endif // SHARE_VM_GC_SHARED_SPACE_HPP