1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shenandoah/brooksPointer.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/compile.hpp"
  36 #include "opto/escape.hpp"
  37 #include "opto/phaseX.hpp"
  38 #include "opto/movenode.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/shenandoahSupport.hpp"
  41 
  42 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  43   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  44   _in_worklist(C->comp_arena()),
  45   _next_pidx(0),
  46   _collecting(true),
  47   _verify(false),
  48   _compile(C),
  49   _igvn(igvn),
  50   _node_map(C->comp_arena()) {
  51   // Add unknown java object.
  52   add_java_object(C->top(), PointsToNode::GlobalEscape);
  53   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  54   // Add ConP(#NULL) and ConN(#NULL) nodes.
  55   Node* oop_null = igvn->zerocon(T_OBJECT);
  56   assert(oop_null->_idx < nodes_size(), "should be created already");
  57   add_java_object(oop_null, PointsToNode::NoEscape);
  58   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  59   if (UseCompressedOops) {
  60     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  61     assert(noop_null->_idx < nodes_size(), "should be created already");
  62     map_ideal_node(noop_null, null_obj);
  63   }
  64   _pcmp_neq = NULL; // Should be initialized
  65   _pcmp_eq  = NULL;
  66 }
  67 
  68 bool ConnectionGraph::has_candidates(Compile *C) {
  69   // EA brings benefits only when the code has allocations and/or locks which
  70   // are represented by ideal Macro nodes.
  71   int cnt = C->macro_count();
  72   for (int i = 0; i < cnt; i++) {
  73     Node *n = C->macro_node(i);
  74     if (n->is_Allocate())
  75       return true;
  76     if (n->is_Lock()) {
  77       Node* obj = n->as_Lock()->obj_node()->uncast();
  78       if (!(obj->is_Parm() || obj->is_Con()))
  79         return true;
  80     }
  81     if (n->is_CallStaticJava() &&
  82         n->as_CallStaticJava()->is_boxing_method()) {
  83       return true;
  84     }
  85   }
  86   return false;
  87 }
  88 
  89 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  90   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  91   ResourceMark rm;
  92 
  93   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  94   // to create space for them in ConnectionGraph::_nodes[].
  95   Node* oop_null = igvn->zerocon(T_OBJECT);
  96   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  97   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  98   // Perform escape analysis
  99   if (congraph->compute_escape()) {
 100     // There are non escaping objects.
 101     C->set_congraph(congraph);
 102   }
 103   // Cleanup.
 104   if (oop_null->outcnt() == 0)
 105     igvn->hash_delete(oop_null);
 106   if (noop_null->outcnt() == 0)
 107     igvn->hash_delete(noop_null);
 108 }
 109 
 110 bool ConnectionGraph::compute_escape() {
 111   Compile* C = _compile;
 112   PhaseGVN* igvn = _igvn;
 113 
 114   // Worklists used by EA.
 115   Unique_Node_List delayed_worklist;
 116   GrowableArray<Node*> alloc_worklist;
 117   GrowableArray<Node*> ptr_cmp_worklist;
 118   GrowableArray<Node*> storestore_worklist;
 119   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 120   GrowableArray<PointsToNode*>   ptnodes_worklist;
 121   GrowableArray<JavaObjectNode*> java_objects_worklist;
 122   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 123   GrowableArray<FieldNode*>      oop_fields_worklist;
 124   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 125 
 126   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 127 
 128   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 129   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 130   // Initialize worklist
 131   if (C->root() != NULL) {
 132     ideal_nodes.push(C->root());
 133   }
 134   // Processed ideal nodes are unique on ideal_nodes list
 135   // but several ideal nodes are mapped to the phantom_obj.
 136   // To avoid duplicated entries on the following worklists
 137   // add the phantom_obj only once to them.
 138   ptnodes_worklist.append(phantom_obj);
 139   java_objects_worklist.append(phantom_obj);
 140   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 141     Node* n = ideal_nodes.at(next);
 142     // Create PointsTo nodes and add them to Connection Graph. Called
 143     // only once per ideal node since ideal_nodes is Unique_Node list.
 144     add_node_to_connection_graph(n, &delayed_worklist);
 145     PointsToNode* ptn = ptnode_adr(n->_idx);
 146     if (ptn != NULL && ptn != phantom_obj) {
 147       ptnodes_worklist.append(ptn);
 148       if (ptn->is_JavaObject()) {
 149         java_objects_worklist.append(ptn->as_JavaObject());
 150         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 151             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 152           // Only allocations and java static calls results are interesting.
 153           non_escaped_worklist.append(ptn->as_JavaObject());
 154         }
 155       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 156         oop_fields_worklist.append(ptn->as_Field());
 157       }
 158     }
 159     if (n->is_MergeMem()) {
 160       // Collect all MergeMem nodes to add memory slices for
 161       // scalar replaceable objects in split_unique_types().
 162       _mergemem_worklist.append(n->as_MergeMem());
 163     } else if (OptimizePtrCompare && n->is_Cmp() &&
 164                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 165       // Collect compare pointers nodes.
 166       ptr_cmp_worklist.append(n);
 167     } else if (n->is_MemBarStoreStore()) {
 168       // Collect all MemBarStoreStore nodes so that depending on the
 169       // escape status of the associated Allocate node some of them
 170       // may be eliminated.
 171       storestore_worklist.append(n);
 172     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 173                (n->req() > MemBarNode::Precedent)) {
 174       record_for_optimizer(n);
 175 #ifdef ASSERT
 176     } else if (n->is_AddP()) {
 177       // Collect address nodes for graph verification.
 178       addp_worklist.append(n);
 179 #endif
 180     } else if (n->is_ArrayCopy()) {
 181       // Keep a list of ArrayCopy nodes so if one of its input is non
 182       // escaping, we can record a unique type
 183       arraycopy_worklist.append(n->as_ArrayCopy());
 184     }
 185     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 186       Node* m = n->fast_out(i);   // Get user
 187       ideal_nodes.push(m);
 188     }
 189   }
 190   if (non_escaped_worklist.length() == 0) {
 191     _collecting = false;
 192     return false; // Nothing to do.
 193   }
 194   // Add final simple edges to graph.
 195   while(delayed_worklist.size() > 0) {
 196     Node* n = delayed_worklist.pop();
 197     add_final_edges(n);
 198   }
 199   int ptnodes_length = ptnodes_worklist.length();
 200 
 201 #ifdef ASSERT
 202   if (VerifyConnectionGraph) {
 203     // Verify that no new simple edges could be created and all
 204     // local vars has edges.
 205     _verify = true;
 206     for (int next = 0; next < ptnodes_length; ++next) {
 207       PointsToNode* ptn = ptnodes_worklist.at(next);
 208       add_final_edges(ptn->ideal_node());
 209       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 210         ptn->dump();
 211         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 212       }
 213     }
 214     _verify = false;
 215   }
 216 #endif
 217   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 218   // processing, calls to CI to resolve symbols (types, fields, methods)
 219   // referenced in bytecode. During symbol resolution VM may throw
 220   // an exception which CI cleans and converts to compilation failure.
 221   if (C->failing())  return false;
 222 
 223   // 2. Finish Graph construction by propagating references to all
 224   //    java objects through graph.
 225   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 226                                  java_objects_worklist, oop_fields_worklist)) {
 227     // All objects escaped or hit time or iterations limits.
 228     _collecting = false;
 229     return false;
 230   }
 231 
 232   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 233   //    scalar replaceable allocations on alloc_worklist for processing
 234   //    in split_unique_types().
 235   int non_escaped_length = non_escaped_worklist.length();
 236   for (int next = 0; next < non_escaped_length; next++) {
 237     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 238     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 239     Node* n = ptn->ideal_node();
 240     if (n->is_Allocate()) {
 241       n->as_Allocate()->_is_non_escaping = noescape;
 242     }
 243     if (n->is_CallStaticJava()) {
 244       n->as_CallStaticJava()->_is_non_escaping = noescape;
 245     }
 246     if (noescape && ptn->scalar_replaceable()) {
 247       adjust_scalar_replaceable_state(ptn);
 248       if (ptn->scalar_replaceable()) {
 249         alloc_worklist.append(ptn->ideal_node());
 250       }
 251     }
 252   }
 253 
 254 #ifdef ASSERT
 255   if (VerifyConnectionGraph) {
 256     // Verify that graph is complete - no new edges could be added or needed.
 257     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 258                             java_objects_worklist, addp_worklist);
 259   }
 260   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 261   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 262          null_obj->edge_count() == 0 &&
 263          !null_obj->arraycopy_src() &&
 264          !null_obj->arraycopy_dst(), "sanity");
 265 #endif
 266 
 267   _collecting = false;
 268 
 269   } // TracePhase t3("connectionGraph")
 270 
 271   // 4. Optimize ideal graph based on EA information.
 272   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 273   if (has_non_escaping_obj) {
 274     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 275   }
 276 
 277 #ifndef PRODUCT
 278   if (PrintEscapeAnalysis) {
 279     dump(ptnodes_worklist); // Dump ConnectionGraph
 280   }
 281 #endif
 282 
 283   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 284 #ifdef ASSERT
 285   if (VerifyConnectionGraph) {
 286     int alloc_length = alloc_worklist.length();
 287     for (int next = 0; next < alloc_length; ++next) {
 288       Node* n = alloc_worklist.at(next);
 289       PointsToNode* ptn = ptnode_adr(n->_idx);
 290       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 291     }
 292   }
 293 #endif
 294 
 295   // 5. Separate memory graph for scalar replaceable allcations.
 296   if (has_scalar_replaceable_candidates &&
 297       C->AliasLevel() >= 3 && EliminateAllocations) {
 298     // Now use the escape information to create unique types for
 299     // scalar replaceable objects.
 300     split_unique_types(alloc_worklist, arraycopy_worklist);
 301     if (C->failing())  return false;
 302     C->print_method(PHASE_AFTER_EA, 2);
 303 
 304 #ifdef ASSERT
 305   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 306     tty->print("=== No allocations eliminated for ");
 307     C->method()->print_short_name();
 308     if(!EliminateAllocations) {
 309       tty->print(" since EliminateAllocations is off ===");
 310     } else if(!has_scalar_replaceable_candidates) {
 311       tty->print(" since there are no scalar replaceable candidates ===");
 312     } else if(C->AliasLevel() < 3) {
 313       tty->print(" since AliasLevel < 3 ===");
 314     }
 315     tty->cr();
 316 #endif
 317   }
 318   return has_non_escaping_obj;
 319 }
 320 
 321 // Utility function for nodes that load an object
 322 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 323   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 324   // ThreadLocal has RawPtr type.
 325   const Type* t = _igvn->type(n);
 326   if (t->make_ptr() != NULL) {
 327     Node* adr = n->in(MemNode::Address);
 328 #ifdef ASSERT
 329     if (!adr->is_AddP()) {
 330       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 331     } else {
 332       assert((ptnode_adr(adr->_idx) == NULL ||
 333               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 334     }
 335 #endif
 336     add_local_var_and_edge(n, PointsToNode::NoEscape,
 337                            adr, delayed_worklist);
 338   }
 339 }
 340 
 341 // Populate Connection Graph with PointsTo nodes and create simple
 342 // connection graph edges.
 343 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 344   assert(!_verify, "this method should not be called for verification");
 345   PhaseGVN* igvn = _igvn;
 346   uint n_idx = n->_idx;
 347   PointsToNode* n_ptn = ptnode_adr(n_idx);
 348   if (n_ptn != NULL)
 349     return; // No need to redefine PointsTo node during first iteration.
 350 
 351   if (n->is_Call()) {
 352     // Arguments to allocation and locking don't escape.
 353     if (n->is_AbstractLock()) {
 354       // Put Lock and Unlock nodes on IGVN worklist to process them during
 355       // first IGVN optimization when escape information is still available.
 356       record_for_optimizer(n);
 357     } else if (n->is_Allocate()) {
 358       add_call_node(n->as_Call());
 359       record_for_optimizer(n);
 360     } else {
 361       if (n->is_CallStaticJava()) {
 362         const char* name = n->as_CallStaticJava()->_name;
 363         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 364           return; // Skip uncommon traps
 365       }
 366       // Don't mark as processed since call's arguments have to be processed.
 367       delayed_worklist->push(n);
 368       // Check if a call returns an object.
 369       if ((n->as_Call()->returns_pointer() &&
 370            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 371           (n->is_CallStaticJava() &&
 372            n->as_CallStaticJava()->is_boxing_method())) {
 373         add_call_node(n->as_Call());
 374       }
 375     }
 376     return;
 377   }
 378   // Put this check here to process call arguments since some call nodes
 379   // point to phantom_obj.
 380   if (n_ptn == phantom_obj || n_ptn == null_obj)
 381     return; // Skip predefined nodes.
 382 
 383   int opcode = n->Opcode();
 384   switch (opcode) {
 385     case Op_AddP: {
 386       Node* base = get_addp_base(n);
 387       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 388       // Field nodes are created for all field types. They are used in
 389       // adjust_scalar_replaceable_state() and split_unique_types().
 390       // Note, non-oop fields will have only base edges in Connection
 391       // Graph because such fields are not used for oop loads and stores.
 392       int offset = address_offset(n, igvn);
 393       add_field(n, PointsToNode::NoEscape, offset);
 394       if (ptn_base == NULL) {
 395         delayed_worklist->push(n); // Process it later.
 396       } else {
 397         n_ptn = ptnode_adr(n_idx);
 398         add_base(n_ptn->as_Field(), ptn_base);
 399       }
 400       break;
 401     }
 402     case Op_CastX2P: {
 403       map_ideal_node(n, phantom_obj);
 404       break;
 405     }
 406     case Op_CastPP:
 407     case Op_CheckCastPP:
 408     case Op_EncodeP:
 409     case Op_DecodeN:
 410     case Op_EncodePKlass:
 411     case Op_DecodeNKlass: {
 412       add_local_var_and_edge(n, PointsToNode::NoEscape,
 413                              n->in(1), delayed_worklist);
 414       break;
 415     }
 416     case Op_CMoveP: {
 417       add_local_var(n, PointsToNode::NoEscape);
 418       // Do not add edges during first iteration because some could be
 419       // not defined yet.
 420       delayed_worklist->push(n);
 421       break;
 422     }
 423     case Op_ConP:
 424     case Op_ConN:
 425     case Op_ConNKlass: {
 426       // assume all oop constants globally escape except for null
 427       PointsToNode::EscapeState es;
 428       const Type* t = igvn->type(n);
 429       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 430         es = PointsToNode::NoEscape;
 431       } else {
 432         es = PointsToNode::GlobalEscape;
 433       }
 434       add_java_object(n, es);
 435       break;
 436     }
 437     case Op_CreateEx: {
 438       // assume that all exception objects globally escape
 439       map_ideal_node(n, phantom_obj);
 440       break;
 441     }
 442     case Op_LoadKlass:
 443     case Op_LoadNKlass: {
 444       // Unknown class is loaded
 445       map_ideal_node(n, phantom_obj);
 446       break;
 447     }
 448     case Op_LoadP:
 449     case Op_LoadN:
 450     case Op_LoadPLocked: {
 451       add_objload_to_connection_graph(n, delayed_worklist);
 452       break;
 453     }
 454     case Op_Parm: {
 455       map_ideal_node(n, phantom_obj);
 456       break;
 457     }
 458     case Op_PartialSubtypeCheck: {
 459       // Produces Null or notNull and is used in only in CmpP so
 460       // phantom_obj could be used.
 461       map_ideal_node(n, phantom_obj); // Result is unknown
 462       break;
 463     }
 464     case Op_Phi: {
 465       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 466       // ThreadLocal has RawPtr type.
 467       const Type* t = n->as_Phi()->type();
 468       if (t->make_ptr() != NULL) {
 469         add_local_var(n, PointsToNode::NoEscape);
 470         // Do not add edges during first iteration because some could be
 471         // not defined yet.
 472         delayed_worklist->push(n);
 473       }
 474       break;
 475     }
 476     case Op_Proj: {
 477       // we are only interested in the oop result projection from a call
 478       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 479           n->in(0)->as_Call()->returns_pointer()) {
 480         add_local_var_and_edge(n, PointsToNode::NoEscape,
 481                                n->in(0), delayed_worklist);
 482       }
 483       break;
 484     }
 485     case Op_Rethrow: // Exception object escapes
 486     case Op_Return: {
 487       if (n->req() > TypeFunc::Parms &&
 488           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 489         // Treat Return value as LocalVar with GlobalEscape escape state.
 490         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 491                                n->in(TypeFunc::Parms), delayed_worklist);
 492       }
 493       break;
 494     }
 495     case Op_GetAndSetP:
 496     case Op_GetAndSetN: {
 497       add_objload_to_connection_graph(n, delayed_worklist);
 498       // fallthrough
 499     }
 500     case Op_StoreP:
 501     case Op_StoreN:
 502     case Op_StoreNKlass:
 503     case Op_StorePConditional:
 504     case Op_CompareAndSwapP:
 505     case Op_CompareAndSwapN: {
 506       Node* adr = n->in(MemNode::Address);
 507       const Type *adr_type = igvn->type(adr);
 508       adr_type = adr_type->make_ptr();
 509       if (adr_type == NULL) {
 510         break; // skip dead nodes
 511       }
 512       if (adr_type->isa_oopptr() ||
 513           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 514                         (adr_type == TypeRawPtr::NOTNULL &&
 515                          adr->in(AddPNode::Address)->is_Proj() &&
 516                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 517         delayed_worklist->push(n); // Process it later.
 518 #ifdef ASSERT
 519         assert(adr->is_AddP(), "expecting an AddP");
 520         if (adr_type == TypeRawPtr::NOTNULL) {
 521           // Verify a raw address for a store captured by Initialize node.
 522           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 523           assert(offs != Type::OffsetBot, "offset must be a constant");
 524         }
 525 #endif
 526       } else {
 527         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 528         if (adr->is_BoxLock())
 529           break;
 530         // Stored value escapes in unsafe access.
 531         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 532           // Pointer stores in G1 barriers looks like unsafe access.
 533           // Ignore such stores to be able scalar replace non-escaping
 534           // allocations.
 535           if ((UseG1GC || UseShenandoahGC) && adr->is_AddP()) {
 536             Node* base = get_addp_base(adr);
 537             if (base->Opcode() == Op_LoadP &&
 538                 base->in(MemNode::Address)->is_AddP()) {
 539               adr = base->in(MemNode::Address);
 540               Node* tls = get_addp_base(adr);
 541               if (tls->Opcode() == Op_ThreadLocal) {
 542                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 543                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 544                                      PtrQueue::byte_offset_of_buf())) {
 545                   break; // G1 pre barrier previous oop value store.
 546                 }
 547                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 548                                      PtrQueue::byte_offset_of_buf())) {
 549                   break; // G1 post barrier card address store.
 550                 }
 551               }
 552             }
 553           }
 554           delayed_worklist->push(n); // Process unsafe access later.
 555           break;
 556         }
 557 #ifdef ASSERT
 558         n->dump(1);
 559         assert(false, "not unsafe or G1 barrier raw StoreP");
 560 #endif
 561       }
 562       break;
 563     }
 564     case Op_AryEq:
 565     case Op_StrComp:
 566     case Op_StrEquals:
 567     case Op_StrIndexOf:
 568     case Op_EncodeISOArray: {
 569       add_local_var(n, PointsToNode::ArgEscape);
 570       delayed_worklist->push(n); // Process it later.
 571       break;
 572     }
 573     case Op_ThreadLocal: {
 574       add_java_object(n, PointsToNode::ArgEscape);
 575       break;
 576     }
 577     case Op_ShenandoahReadBarrier:
 578     case Op_ShenandoahWriteBarrier:
 579       // Barriers 'pass through' its arguments. I.e. what goes in, comes out.
 580       // It doesn't escape.
 581       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), delayed_worklist);
 582       break;
 583     default:
 584       ; // Do nothing for nodes not related to EA.
 585   }
 586   return;
 587 }
 588 
 589 #ifdef ASSERT
 590 #define ELSE_FAIL(name)                               \
 591       /* Should not be called for not pointer type. */  \
 592       n->dump(1);                                       \
 593       assert(false, name);                              \
 594       break;
 595 #else
 596 #define ELSE_FAIL(name) \
 597       break;
 598 #endif
 599 
 600 // Add final simple edges to graph.
 601 void ConnectionGraph::add_final_edges(Node *n) {
 602   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 603 #ifdef ASSERT
 604   if (_verify && n_ptn->is_JavaObject())
 605     return; // This method does not change graph for JavaObject.
 606 #endif
 607 
 608   if (n->is_Call()) {
 609     process_call_arguments(n->as_Call());
 610     return;
 611   }
 612   assert(n->is_Store() || n->is_LoadStore() ||
 613          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 614          "node should be registered already");
 615   int opcode = n->Opcode();
 616   switch (opcode) {
 617     case Op_AddP: {
 618       Node* base = get_addp_base(n);
 619       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 620       assert(ptn_base != NULL, "field's base should be registered");
 621       add_base(n_ptn->as_Field(), ptn_base);
 622       break;
 623     }
 624     case Op_CastPP:
 625     case Op_CheckCastPP:
 626     case Op_EncodeP:
 627     case Op_DecodeN:
 628     case Op_EncodePKlass:
 629     case Op_DecodeNKlass: {
 630       add_local_var_and_edge(n, PointsToNode::NoEscape,
 631                              n->in(1), NULL);
 632       break;
 633     }
 634     case Op_CMoveP: {
 635       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 636         Node* in = n->in(i);
 637         if (in == NULL)
 638           continue;  // ignore NULL
 639         Node* uncast_in = in->uncast();
 640         if (uncast_in->is_top() || uncast_in == n)
 641           continue;  // ignore top or inputs which go back this node
 642         PointsToNode* ptn = ptnode_adr(in->_idx);
 643         assert(ptn != NULL, "node should be registered");
 644         add_edge(n_ptn, ptn);
 645       }
 646       break;
 647     }
 648     case Op_LoadP:
 649     case Op_LoadN:
 650     case Op_LoadPLocked: {
 651       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 652       // ThreadLocal has RawPtr type.
 653       const Type* t = _igvn->type(n);
 654       if (t->make_ptr() != NULL) {
 655         Node* adr = n->in(MemNode::Address);
 656         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 657         break;
 658       }
 659       ELSE_FAIL("Op_LoadP");
 660     }
 661     case Op_Phi: {
 662       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 663       // ThreadLocal has RawPtr type.
 664       const Type* t = n->as_Phi()->type();
 665       if (t->make_ptr() != NULL) {
 666         for (uint i = 1; i < n->req(); i++) {
 667           Node* in = n->in(i);
 668           if (in == NULL)
 669             continue;  // ignore NULL
 670           Node* uncast_in = in->uncast();
 671           if (uncast_in->is_top() || uncast_in == n)
 672             continue;  // ignore top or inputs which go back this node
 673           PointsToNode* ptn = ptnode_adr(in->_idx);
 674           assert(ptn != NULL, "node should be registered");
 675           add_edge(n_ptn, ptn);
 676         }
 677         break;
 678       }
 679       ELSE_FAIL("Op_Phi");
 680     }
 681     case Op_Proj: {
 682       // we are only interested in the oop result projection from a call
 683       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 684           n->in(0)->as_Call()->returns_pointer()) {
 685         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 686         break;
 687       }
 688       ELSE_FAIL("Op_Proj");
 689     }
 690     case Op_Rethrow: // Exception object escapes
 691     case Op_Return: {
 692       if (n->req() > TypeFunc::Parms &&
 693           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 694         // Treat Return value as LocalVar with GlobalEscape escape state.
 695         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 696                                n->in(TypeFunc::Parms), NULL);
 697         break;
 698       }
 699       ELSE_FAIL("Op_Return");
 700     }
 701     case Op_StoreP:
 702     case Op_StoreN:
 703     case Op_StoreNKlass:
 704     case Op_StorePConditional:
 705     case Op_CompareAndSwapP:
 706     case Op_CompareAndSwapN:
 707     case Op_GetAndSetP:
 708     case Op_GetAndSetN: {
 709       Node* adr = n->in(MemNode::Address);
 710       const Type *adr_type = _igvn->type(adr);
 711       adr_type = adr_type->make_ptr();
 712 #ifdef ASSERT
 713       if (adr_type == NULL) {
 714         n->dump(1);
 715         assert(adr_type != NULL, "dead node should not be on list");
 716         break;
 717       }
 718 #endif
 719       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 720         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 721       }
 722       if (adr_type->isa_oopptr() ||
 723           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 724                         (adr_type == TypeRawPtr::NOTNULL &&
 725                          adr->in(AddPNode::Address)->is_Proj() &&
 726                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 727         // Point Address to Value
 728         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 729         assert(adr_ptn != NULL &&
 730                adr_ptn->as_Field()->is_oop(), "node should be registered");
 731         Node *val = n->in(MemNode::ValueIn);
 732         PointsToNode* ptn = ptnode_adr(val->_idx);
 733         assert(ptn != NULL, "node should be registered");
 734         add_edge(adr_ptn, ptn);
 735         break;
 736       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 737         // Stored value escapes in unsafe access.
 738         Node *val = n->in(MemNode::ValueIn);
 739         PointsToNode* ptn = ptnode_adr(val->_idx);
 740         assert(ptn != NULL, "node should be registered");
 741         set_escape_state(ptn, PointsToNode::GlobalEscape);
 742         // Add edge to object for unsafe access with offset.
 743         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 744         assert(adr_ptn != NULL, "node should be registered");
 745         if (adr_ptn->is_Field()) {
 746           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 747           add_edge(adr_ptn, ptn);
 748         }
 749         break;
 750       }
 751       ELSE_FAIL("Op_StoreP");
 752     }
 753     case Op_AryEq:
 754     case Op_StrComp:
 755     case Op_StrEquals:
 756     case Op_StrIndexOf:
 757     case Op_EncodeISOArray: {
 758       // char[] arrays passed to string intrinsic do not escape but
 759       // they are not scalar replaceable. Adjust escape state for them.
 760       // Start from in(2) edge since in(1) is memory edge.
 761       for (uint i = 2; i < n->req(); i++) {
 762         Node* adr = n->in(i);
 763         const Type* at = _igvn->type(adr);
 764         if (!adr->is_top() && at->isa_ptr()) {
 765           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 766                  at->isa_ptr() != NULL, "expecting a pointer");
 767           if (adr->is_AddP()) {
 768             adr = get_addp_base(adr);
 769           }
 770           PointsToNode* ptn = ptnode_adr(adr->_idx);
 771           assert(ptn != NULL, "node should be registered");
 772           add_edge(n_ptn, ptn);
 773         }
 774       }
 775       break;
 776     }
 777     case Op_ShenandoahReadBarrier:
 778     case Op_ShenandoahWriteBarrier:
 779       // Barriers 'pass through' its arguments. I.e. what goes in, comes out.
 780       // It doesn't escape.
 781       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahBarrierNode::ValueIn), NULL);
 782       break;
 783     default: {
 784       // This method should be called only for EA specific nodes which may
 785       // miss some edges when they were created.
 786 #ifdef ASSERT
 787       n->dump(1);
 788 #endif
 789       guarantee(false, "unknown node");
 790     }
 791   }
 792   return;
 793 }
 794 
 795 void ConnectionGraph::add_call_node(CallNode* call) {
 796   assert(call->returns_pointer(), "only for call which returns pointer");
 797   uint call_idx = call->_idx;
 798   if (call->is_Allocate()) {
 799     Node* k = call->in(AllocateNode::KlassNode);
 800     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 801     assert(kt != NULL, "TypeKlassPtr  required.");
 802     ciKlass* cik = kt->klass();
 803     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 804     bool scalar_replaceable = true;
 805     if (call->is_AllocateArray()) {
 806       if (!cik->is_array_klass()) { // StressReflectiveCode
 807         es = PointsToNode::GlobalEscape;
 808       } else {
 809         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 810         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 811           // Not scalar replaceable if the length is not constant or too big.
 812           scalar_replaceable = false;
 813         }
 814       }
 815     } else {  // Allocate instance
 816       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 817           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 818          !cik->is_instance_klass() || // StressReflectiveCode
 819           cik->as_instance_klass()->has_finalizer()) {
 820         es = PointsToNode::GlobalEscape;
 821       }
 822     }
 823     add_java_object(call, es);
 824     PointsToNode* ptn = ptnode_adr(call_idx);
 825     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 826       ptn->set_scalar_replaceable(false);
 827     }
 828   } else if (call->is_CallStaticJava()) {
 829     // Call nodes could be different types:
 830     //
 831     // 1. CallDynamicJavaNode (what happened during call is unknown):
 832     //
 833     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 834     //
 835     //    - all oop arguments are escaping globally;
 836     //
 837     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 838     //
 839     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 840     //
 841     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 842     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 843     //      during call is returned;
 844     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 845     //      which are returned and does not escape during call;
 846     //
 847     //    - oop arguments escaping status is defined by bytecode analysis;
 848     //
 849     // For a static call, we know exactly what method is being called.
 850     // Use bytecode estimator to record whether the call's return value escapes.
 851     ciMethod* meth = call->as_CallJava()->method();
 852     if (meth == NULL) {
 853       const char* name = call->as_CallStaticJava()->_name;
 854       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 855       // Returns a newly allocated unescaped object.
 856       add_java_object(call, PointsToNode::NoEscape);
 857       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 858     } else if (meth->is_boxing_method()) {
 859       // Returns boxing object
 860       PointsToNode::EscapeState es;
 861       vmIntrinsics::ID intr = meth->intrinsic_id();
 862       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 863         // It does not escape if object is always allocated.
 864         es = PointsToNode::NoEscape;
 865       } else {
 866         // It escapes globally if object could be loaded from cache.
 867         es = PointsToNode::GlobalEscape;
 868       }
 869       add_java_object(call, es);
 870     } else {
 871       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 872       call_analyzer->copy_dependencies(_compile->dependencies());
 873       if (call_analyzer->is_return_allocated()) {
 874         // Returns a newly allocated unescaped object, simply
 875         // update dependency information.
 876         // Mark it as NoEscape so that objects referenced by
 877         // it's fields will be marked as NoEscape at least.
 878         add_java_object(call, PointsToNode::NoEscape);
 879         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 880       } else {
 881         // Determine whether any arguments are returned.
 882         const TypeTuple* d = call->tf()->domain();
 883         bool ret_arg = false;
 884         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 885           if (d->field_at(i)->isa_ptr() != NULL &&
 886               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 887             ret_arg = true;
 888             break;
 889           }
 890         }
 891         if (ret_arg) {
 892           add_local_var(call, PointsToNode::ArgEscape);
 893         } else {
 894           // Returns unknown object.
 895           map_ideal_node(call, phantom_obj);
 896         }
 897       }
 898     }
 899   } else {
 900     // An other type of call, assume the worst case:
 901     // returned value is unknown and globally escapes.
 902     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 903     map_ideal_node(call, phantom_obj);
 904   }
 905 }
 906 
 907 void ConnectionGraph::process_call_arguments(CallNode *call) {
 908     bool is_arraycopy = false;
 909     switch (call->Opcode()) {
 910 #ifdef ASSERT
 911     case Op_Allocate:
 912     case Op_AllocateArray:
 913     case Op_Lock:
 914     case Op_Unlock:
 915       assert(false, "should be done already");
 916       break;
 917 #endif
 918     case Op_ArrayCopy:
 919     case Op_CallLeafNoFP:
 920       // Most array copies are ArrayCopy nodes at this point but there
 921       // are still a few direct calls to the copy subroutines (See
 922       // PhaseStringOpts::copy_string())
 923       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 924         call->as_CallLeaf()->is_call_to_arraycopystub();
 925       // fall through
 926     case Op_CallLeaf: {
 927       // Stub calls, objects do not escape but they are not scale replaceable.
 928       // Adjust escape state for outgoing arguments.
 929       const TypeTuple * d = call->tf()->domain();
 930       bool src_has_oops = false;
 931       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 932         const Type* at = d->field_at(i);
 933         Node *arg = call->in(i);
 934         if (arg == NULL) {
 935           continue;
 936         }
 937         const Type *aat = _igvn->type(arg);
 938         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 939           continue;
 940         if (arg->is_AddP()) {
 941           //
 942           // The inline_native_clone() case when the arraycopy stub is called
 943           // after the allocation before Initialize and CheckCastPP nodes.
 944           // Or normal arraycopy for object arrays case.
 945           //
 946           // Set AddP's base (Allocate) as not scalar replaceable since
 947           // pointer to the base (with offset) is passed as argument.
 948           //
 949           arg = get_addp_base(arg);
 950         }
 951         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 952         assert(arg_ptn != NULL, "should be registered");
 953         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 954         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 955           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 956                  aat->isa_ptr() != NULL, "expecting an Ptr");
 957           bool arg_has_oops = aat->isa_oopptr() &&
 958                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 959                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 960           if (i == TypeFunc::Parms) {
 961             src_has_oops = arg_has_oops;
 962           }
 963           //
 964           // src or dst could be j.l.Object when other is basic type array:
 965           //
 966           //   arraycopy(char[],0,Object*,0,size);
 967           //   arraycopy(Object*,0,char[],0,size);
 968           //
 969           // Don't add edges in such cases.
 970           //
 971           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 972                                        arg_has_oops && (i > TypeFunc::Parms);
 973 #ifdef ASSERT
 974           if (!(is_arraycopy ||
 975                 (call->as_CallLeaf()->_name != NULL &&
 976                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 977                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 978                   strcmp(call->as_CallLeaf()->_name, "shenandoah_clone_barrier")  == 0 ||
 979                   strcmp(call->as_CallLeaf()->_name, "shenandoah_cas_obj")  == 0 ||
 980                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 981                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 982                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 983                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 984                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 985                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 986                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0)
 999                  ))) {
1000             call->dump();
1001             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
1002           }
1003 #endif
1004           // Always process arraycopy's destination object since
1005           // we need to add all possible edges to references in
1006           // source object.
1007           if (arg_esc >= PointsToNode::ArgEscape &&
1008               !arg_is_arraycopy_dest) {
1009             continue;
1010           }
1011           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1012           if (call->is_ArrayCopy()) {
1013             ArrayCopyNode* ac = call->as_ArrayCopy();
1014             if (ac->is_clonebasic() ||
1015                 ac->is_arraycopy_validated() ||
1016                 ac->is_copyof_validated() ||
1017                 ac->is_copyofrange_validated()) {
1018               es = PointsToNode::NoEscape;
1019             }
1020           }
1021           set_escape_state(arg_ptn, es);
1022           if (arg_is_arraycopy_dest) {
1023             Node* src = call->in(TypeFunc::Parms);
1024             if (src->is_AddP()) {
1025               src = get_addp_base(src);
1026             }
1027             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1028             assert(src_ptn != NULL, "should be registered");
1029             if (arg_ptn != src_ptn) {
1030               // Special arraycopy edge:
1031               // A destination object's field can't have the source object
1032               // as base since objects escape states are not related.
1033               // Only escape state of destination object's fields affects
1034               // escape state of fields in source object.
1035               add_arraycopy(call, es, src_ptn, arg_ptn);
1036             }
1037           }
1038         }
1039       }
1040       break;
1041     }
1042     case Op_CallStaticJava: {
1043       // For a static call, we know exactly what method is being called.
1044       // Use bytecode estimator to record the call's escape affects
1045 #ifdef ASSERT
1046       const char* name = call->as_CallStaticJava()->_name;
1047       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1048 #endif
1049       ciMethod* meth = call->as_CallJava()->method();
1050       if ((meth != NULL) && meth->is_boxing_method()) {
1051         break; // Boxing methods do not modify any oops.
1052       }
1053       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1054       // fall-through if not a Java method or no analyzer information
1055       if (call_analyzer != NULL) {
1056         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1057         const TypeTuple* d = call->tf()->domain();
1058         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1059           const Type* at = d->field_at(i);
1060           int k = i - TypeFunc::Parms;
1061           Node* arg = call->in(i);
1062           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1063           if (at->isa_ptr() != NULL &&
1064               call_analyzer->is_arg_returned(k)) {
1065             // The call returns arguments.
1066             if (call_ptn != NULL) { // Is call's result used?
1067               assert(call_ptn->is_LocalVar(), "node should be registered");
1068               assert(arg_ptn != NULL, "node should be registered");
1069               add_edge(call_ptn, arg_ptn);
1070             }
1071           }
1072           if (at->isa_oopptr() != NULL &&
1073               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1074             if (!call_analyzer->is_arg_stack(k)) {
1075               // The argument global escapes
1076               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1077             } else {
1078               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1079               if (!call_analyzer->is_arg_local(k)) {
1080                 // The argument itself doesn't escape, but any fields might
1081                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1082               }
1083             }
1084           }
1085         }
1086         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1087           // The call returns arguments.
1088           assert(call_ptn->edge_count() > 0, "sanity");
1089           if (!call_analyzer->is_return_local()) {
1090             // Returns also unknown object.
1091             add_edge(call_ptn, phantom_obj);
1092           }
1093         }
1094         break;
1095       }
1096     }
1097     default: {
1098       // Fall-through here if not a Java method or no analyzer information
1099       // or some other type of call, assume the worst case: all arguments
1100       // globally escape.
1101       const TypeTuple* d = call->tf()->domain();
1102       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1103         const Type* at = d->field_at(i);
1104         if (at->isa_oopptr() != NULL) {
1105           Node* arg = call->in(i);
1106           if (arg->is_AddP()) {
1107             arg = get_addp_base(arg);
1108           }
1109           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1110           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1111         }
1112       }
1113     }
1114   }
1115 }
1116 
1117 
1118 // Finish Graph construction.
1119 bool ConnectionGraph::complete_connection_graph(
1120                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1121                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1122                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1123                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1124   // Normally only 1-3 passes needed to build Connection Graph depending
1125   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1126   // Set limit to 20 to catch situation when something did go wrong and
1127   // bailout Escape Analysis.
1128   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1129 #define CG_BUILD_ITER_LIMIT 20
1130 
1131   // Propagate GlobalEscape and ArgEscape escape states and check that
1132   // we still have non-escaping objects. The method pushs on _worklist
1133   // Field nodes which reference phantom_object.
1134   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1135     return false; // Nothing to do.
1136   }
1137   // Now propagate references to all JavaObject nodes.
1138   int java_objects_length = java_objects_worklist.length();
1139   elapsedTimer time;
1140   bool timeout = false;
1141   int new_edges = 1;
1142   int iterations = 0;
1143   do {
1144     while ((new_edges > 0) &&
1145            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1146       double start_time = time.seconds();
1147       time.start();
1148       new_edges = 0;
1149       // Propagate references to phantom_object for nodes pushed on _worklist
1150       // by find_non_escaped_objects() and find_field_value().
1151       new_edges += add_java_object_edges(phantom_obj, false);
1152       for (int next = 0; next < java_objects_length; ++next) {
1153         JavaObjectNode* ptn = java_objects_worklist.at(next);
1154         new_edges += add_java_object_edges(ptn, true);
1155 
1156 #define SAMPLE_SIZE 4
1157         if ((next % SAMPLE_SIZE) == 0) {
1158           // Each 4 iterations calculate how much time it will take
1159           // to complete graph construction.
1160           time.stop();
1161           // Poll for requests from shutdown mechanism to quiesce compiler
1162           // because Connection graph construction may take long time.
1163           CompileBroker::maybe_block();
1164           double stop_time = time.seconds();
1165           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1166           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1167           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1168             timeout = true;
1169             break; // Timeout
1170           }
1171           start_time = stop_time;
1172           time.start();
1173         }
1174 #undef SAMPLE_SIZE
1175 
1176       }
1177       if (timeout) break;
1178       if (new_edges > 0) {
1179         // Update escape states on each iteration if graph was updated.
1180         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1181           return false; // Nothing to do.
1182         }
1183       }
1184       time.stop();
1185       if (time.seconds() >= EscapeAnalysisTimeout) {
1186         timeout = true;
1187         break;
1188       }
1189     }
1190     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1191       time.start();
1192       // Find fields which have unknown value.
1193       int fields_length = oop_fields_worklist.length();
1194       for (int next = 0; next < fields_length; next++) {
1195         FieldNode* field = oop_fields_worklist.at(next);
1196         if (field->edge_count() == 0) {
1197           new_edges += find_field_value(field);
1198           // This code may added new edges to phantom_object.
1199           // Need an other cycle to propagate references to phantom_object.
1200         }
1201       }
1202       time.stop();
1203       if (time.seconds() >= EscapeAnalysisTimeout) {
1204         timeout = true;
1205         break;
1206       }
1207     } else {
1208       new_edges = 0; // Bailout
1209     }
1210   } while (new_edges > 0);
1211 
1212   // Bailout if passed limits.
1213   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1214     Compile* C = _compile;
1215     if (C->log() != NULL) {
1216       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1217       C->log()->text("%s", timeout ? "time" : "iterations");
1218       C->log()->end_elem(" limit'");
1219     }
1220     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1221            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1222     // Possible infinite build_connection_graph loop,
1223     // bailout (no changes to ideal graph were made).
1224     return false;
1225   }
1226 #ifdef ASSERT
1227   if (Verbose && PrintEscapeAnalysis) {
1228     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1229                   iterations, nodes_size(), ptnodes_worklist.length());
1230   }
1231 #endif
1232 
1233 #undef CG_BUILD_ITER_LIMIT
1234 
1235   // Find fields initialized by NULL for non-escaping Allocations.
1236   int non_escaped_length = non_escaped_worklist.length();
1237   for (int next = 0; next < non_escaped_length; next++) {
1238     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1239     PointsToNode::EscapeState es = ptn->escape_state();
1240     assert(es <= PointsToNode::ArgEscape, "sanity");
1241     if (es == PointsToNode::NoEscape) {
1242       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1243         // Adding references to NULL object does not change escape states
1244         // since it does not escape. Also no fields are added to NULL object.
1245         add_java_object_edges(null_obj, false);
1246       }
1247     }
1248     Node* n = ptn->ideal_node();
1249     if (n->is_Allocate()) {
1250       // The object allocated by this Allocate node will never be
1251       // seen by an other thread. Mark it so that when it is
1252       // expanded no MemBarStoreStore is added.
1253       InitializeNode* ini = n->as_Allocate()->initialization();
1254       if (ini != NULL)
1255         ini->set_does_not_escape();
1256     }
1257   }
1258   return true; // Finished graph construction.
1259 }
1260 
1261 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1262 // and check that we still have non-escaping java objects.
1263 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1264                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1265   GrowableArray<PointsToNode*> escape_worklist;
1266   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1267   int ptnodes_length = ptnodes_worklist.length();
1268   for (int next = 0; next < ptnodes_length; ++next) {
1269     PointsToNode* ptn = ptnodes_worklist.at(next);
1270     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1271         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1272       escape_worklist.push(ptn);
1273     }
1274   }
1275   // Set escape states to referenced nodes (edges list).
1276   while (escape_worklist.length() > 0) {
1277     PointsToNode* ptn = escape_worklist.pop();
1278     PointsToNode::EscapeState es  = ptn->escape_state();
1279     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1280     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1281         es >= PointsToNode::ArgEscape) {
1282       // GlobalEscape or ArgEscape state of field means it has unknown value.
1283       if (add_edge(ptn, phantom_obj)) {
1284         // New edge was added
1285         add_field_uses_to_worklist(ptn->as_Field());
1286       }
1287     }
1288     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1289       PointsToNode* e = i.get();
1290       if (e->is_Arraycopy()) {
1291         assert(ptn->arraycopy_dst(), "sanity");
1292         // Propagate only fields escape state through arraycopy edge.
1293         if (e->fields_escape_state() < field_es) {
1294           set_fields_escape_state(e, field_es);
1295           escape_worklist.push(e);
1296         }
1297       } else if (es >= field_es) {
1298         // fields_escape_state is also set to 'es' if it is less than 'es'.
1299         if (e->escape_state() < es) {
1300           set_escape_state(e, es);
1301           escape_worklist.push(e);
1302         }
1303       } else {
1304         // Propagate field escape state.
1305         bool es_changed = false;
1306         if (e->fields_escape_state() < field_es) {
1307           set_fields_escape_state(e, field_es);
1308           es_changed = true;
1309         }
1310         if ((e->escape_state() < field_es) &&
1311             e->is_Field() && ptn->is_JavaObject() &&
1312             e->as_Field()->is_oop()) {
1313           // Change escape state of referenced fields.
1314           set_escape_state(e, field_es);
1315           es_changed = true;
1316         } else if (e->escape_state() < es) {
1317           set_escape_state(e, es);
1318           es_changed = true;
1319         }
1320         if (es_changed) {
1321           escape_worklist.push(e);
1322         }
1323       }
1324     }
1325   }
1326   // Remove escaped objects from non_escaped list.
1327   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1328     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1329     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1330       non_escaped_worklist.delete_at(next);
1331     }
1332     if (ptn->escape_state() == PointsToNode::NoEscape) {
1333       // Find fields in non-escaped allocations which have unknown value.
1334       find_init_values(ptn, phantom_obj, NULL);
1335     }
1336   }
1337   return (non_escaped_worklist.length() > 0);
1338 }
1339 
1340 // Add all references to JavaObject node by walking over all uses.
1341 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1342   int new_edges = 0;
1343   if (populate_worklist) {
1344     // Populate _worklist by uses of jobj's uses.
1345     for (UseIterator i(jobj); i.has_next(); i.next()) {
1346       PointsToNode* use = i.get();
1347       if (use->is_Arraycopy())
1348         continue;
1349       add_uses_to_worklist(use);
1350       if (use->is_Field() && use->as_Field()->is_oop()) {
1351         // Put on worklist all field's uses (loads) and
1352         // related field nodes (same base and offset).
1353         add_field_uses_to_worklist(use->as_Field());
1354       }
1355     }
1356   }
1357   for (int l = 0; l < _worklist.length(); l++) {
1358     PointsToNode* use = _worklist.at(l);
1359     if (PointsToNode::is_base_use(use)) {
1360       // Add reference from jobj to field and from field to jobj (field's base).
1361       use = PointsToNode::get_use_node(use)->as_Field();
1362       if (add_base(use->as_Field(), jobj)) {
1363         new_edges++;
1364       }
1365       continue;
1366     }
1367     assert(!use->is_JavaObject(), "sanity");
1368     if (use->is_Arraycopy()) {
1369       if (jobj == null_obj) // NULL object does not have field edges
1370         continue;
1371       // Added edge from Arraycopy node to arraycopy's source java object
1372       if (add_edge(use, jobj)) {
1373         jobj->set_arraycopy_src();
1374         new_edges++;
1375       }
1376       // and stop here.
1377       continue;
1378     }
1379     if (!add_edge(use, jobj))
1380       continue; // No new edge added, there was such edge already.
1381     new_edges++;
1382     if (use->is_LocalVar()) {
1383       add_uses_to_worklist(use);
1384       if (use->arraycopy_dst()) {
1385         for (EdgeIterator i(use); i.has_next(); i.next()) {
1386           PointsToNode* e = i.get();
1387           if (e->is_Arraycopy()) {
1388             if (jobj == null_obj) // NULL object does not have field edges
1389               continue;
1390             // Add edge from arraycopy's destination java object to Arraycopy node.
1391             if (add_edge(jobj, e)) {
1392               new_edges++;
1393               jobj->set_arraycopy_dst();
1394             }
1395           }
1396         }
1397       }
1398     } else {
1399       // Added new edge to stored in field values.
1400       // Put on worklist all field's uses (loads) and
1401       // related field nodes (same base and offset).
1402       add_field_uses_to_worklist(use->as_Field());
1403     }
1404   }
1405   _worklist.clear();
1406   _in_worklist.Reset();
1407   return new_edges;
1408 }
1409 
1410 // Put on worklist all related field nodes.
1411 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1412   assert(field->is_oop(), "sanity");
1413   int offset = field->offset();
1414   add_uses_to_worklist(field);
1415   // Loop over all bases of this field and push on worklist Field nodes
1416   // with the same offset and base (since they may reference the same field).
1417   for (BaseIterator i(field); i.has_next(); i.next()) {
1418     PointsToNode* base = i.get();
1419     add_fields_to_worklist(field, base);
1420     // Check if the base was source object of arraycopy and go over arraycopy's
1421     // destination objects since values stored to a field of source object are
1422     // accessable by uses (loads) of fields of destination objects.
1423     if (base->arraycopy_src()) {
1424       for (UseIterator j(base); j.has_next(); j.next()) {
1425         PointsToNode* arycp = j.get();
1426         if (arycp->is_Arraycopy()) {
1427           for (UseIterator k(arycp); k.has_next(); k.next()) {
1428             PointsToNode* abase = k.get();
1429             if (abase->arraycopy_dst() && abase != base) {
1430               // Look for the same arraycopy reference.
1431               add_fields_to_worklist(field, abase);
1432             }
1433           }
1434         }
1435       }
1436     }
1437   }
1438 }
1439 
1440 // Put on worklist all related field nodes.
1441 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1442   int offset = field->offset();
1443   if (base->is_LocalVar()) {
1444     for (UseIterator j(base); j.has_next(); j.next()) {
1445       PointsToNode* f = j.get();
1446       if (PointsToNode::is_base_use(f)) { // Field
1447         f = PointsToNode::get_use_node(f);
1448         if (f == field || !f->as_Field()->is_oop())
1449           continue;
1450         int offs = f->as_Field()->offset();
1451         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1452           add_to_worklist(f);
1453         }
1454       }
1455     }
1456   } else {
1457     assert(base->is_JavaObject(), "sanity");
1458     if (// Skip phantom_object since it is only used to indicate that
1459         // this field's content globally escapes.
1460         (base != phantom_obj) &&
1461         // NULL object node does not have fields.
1462         (base != null_obj)) {
1463       for (EdgeIterator i(base); i.has_next(); i.next()) {
1464         PointsToNode* f = i.get();
1465         // Skip arraycopy edge since store to destination object field
1466         // does not update value in source object field.
1467         if (f->is_Arraycopy()) {
1468           assert(base->arraycopy_dst(), "sanity");
1469           continue;
1470         }
1471         if (f == field || !f->as_Field()->is_oop())
1472           continue;
1473         int offs = f->as_Field()->offset();
1474         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1475           add_to_worklist(f);
1476         }
1477       }
1478     }
1479   }
1480 }
1481 
1482 // Find fields which have unknown value.
1483 int ConnectionGraph::find_field_value(FieldNode* field) {
1484   // Escaped fields should have init value already.
1485   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1486   int new_edges = 0;
1487   for (BaseIterator i(field); i.has_next(); i.next()) {
1488     PointsToNode* base = i.get();
1489     if (base->is_JavaObject()) {
1490       // Skip Allocate's fields which will be processed later.
1491       if (base->ideal_node()->is_Allocate())
1492         return 0;
1493       assert(base == null_obj, "only NULL ptr base expected here");
1494     }
1495   }
1496   if (add_edge(field, phantom_obj)) {
1497     // New edge was added
1498     new_edges++;
1499     add_field_uses_to_worklist(field);
1500   }
1501   return new_edges;
1502 }
1503 
1504 // Find fields initializing values for allocations.
1505 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1506   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1507   int new_edges = 0;
1508   Node* alloc = pta->ideal_node();
1509   if (init_val == phantom_obj) {
1510     // Do nothing for Allocate nodes since its fields values are
1511     // "known" unless they are initialized by arraycopy/clone.
1512     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1513       return 0;
1514     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1515 #ifdef ASSERT
1516     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1517       const char* name = alloc->as_CallStaticJava()->_name;
1518       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1519     }
1520 #endif
1521     // Non-escaped allocation returned from Java or runtime call have
1522     // unknown values in fields.
1523     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1524       PointsToNode* field = i.get();
1525       if (field->is_Field() && field->as_Field()->is_oop()) {
1526         if (add_edge(field, phantom_obj)) {
1527           // New edge was added
1528           new_edges++;
1529           add_field_uses_to_worklist(field->as_Field());
1530         }
1531       }
1532     }
1533     return new_edges;
1534   }
1535   assert(init_val == null_obj, "sanity");
1536   // Do nothing for Call nodes since its fields values are unknown.
1537   if (!alloc->is_Allocate())
1538     return 0;
1539 
1540   InitializeNode* ini = alloc->as_Allocate()->initialization();
1541   bool visited_bottom_offset = false;
1542   GrowableArray<int> offsets_worklist;
1543 
1544   // Check if an oop field's initializing value is recorded and add
1545   // a corresponding NULL if field's value if it is not recorded.
1546   // Connection Graph does not record a default initialization by NULL
1547   // captured by Initialize node.
1548   //
1549   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1550     PointsToNode* field = i.get(); // Field (AddP)
1551     if (!field->is_Field() || !field->as_Field()->is_oop())
1552       continue; // Not oop field
1553     int offset = field->as_Field()->offset();
1554     if (offset == Type::OffsetBot) {
1555       if (!visited_bottom_offset) {
1556         // OffsetBot is used to reference array's element,
1557         // always add reference to NULL to all Field nodes since we don't
1558         // known which element is referenced.
1559         if (add_edge(field, null_obj)) {
1560           // New edge was added
1561           new_edges++;
1562           add_field_uses_to_worklist(field->as_Field());
1563           visited_bottom_offset = true;
1564         }
1565       }
1566     } else {
1567       // Check only oop fields.
1568       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1569       if (adr_type->isa_rawptr()) {
1570 #ifdef ASSERT
1571         // Raw pointers are used for initializing stores so skip it
1572         // since it should be recorded already
1573         Node* base = get_addp_base(field->ideal_node());
1574         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1575                (base->in(0) == alloc),"unexpected pointer type");
1576 #endif
1577         continue;
1578       }
1579       if (!offsets_worklist.contains(offset)) {
1580         offsets_worklist.append(offset);
1581         Node* value = NULL;
1582         if (ini != NULL) {
1583           // StoreP::memory_type() == T_ADDRESS
1584           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1585           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1586           // Make sure initializing store has the same type as this AddP.
1587           // This AddP may reference non existing field because it is on a
1588           // dead branch of bimorphic call which is not eliminated yet.
1589           if (store != NULL && store->is_Store() &&
1590               store->as_Store()->memory_type() == ft) {
1591             value = store->in(MemNode::ValueIn);
1592 #ifdef ASSERT
1593             if (VerifyConnectionGraph) {
1594               // Verify that AddP already points to all objects the value points to.
1595               PointsToNode* val = ptnode_adr(value->_idx);
1596               assert((val != NULL), "should be processed already");
1597               PointsToNode* missed_obj = NULL;
1598               if (val->is_JavaObject()) {
1599                 if (!field->points_to(val->as_JavaObject())) {
1600                   missed_obj = val;
1601                 }
1602               } else {
1603                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1604                   tty->print_cr("----------init store has invalid value -----");
1605                   store->dump();
1606                   val->dump();
1607                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1608                 }
1609                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1610                   PointsToNode* obj = j.get();
1611                   if (obj->is_JavaObject()) {
1612                     if (!field->points_to(obj->as_JavaObject())) {
1613                       missed_obj = obj;
1614                       break;
1615                     }
1616                   }
1617                 }
1618               }
1619               if (missed_obj != NULL) {
1620                 tty->print_cr("----------field---------------------------------");
1621                 field->dump();
1622                 tty->print_cr("----------missed referernce to object-----------");
1623                 missed_obj->dump();
1624                 tty->print_cr("----------object referernced by init store -----");
1625                 store->dump();
1626                 val->dump();
1627                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1628               }
1629             }
1630 #endif
1631           } else {
1632             // There could be initializing stores which follow allocation.
1633             // For example, a volatile field store is not collected
1634             // by Initialize node.
1635             //
1636             // Need to check for dependent loads to separate such stores from
1637             // stores which follow loads. For now, add initial value NULL so
1638             // that compare pointers optimization works correctly.
1639           }
1640         }
1641         if (value == NULL) {
1642           // A field's initializing value was not recorded. Add NULL.
1643           if (add_edge(field, null_obj)) {
1644             // New edge was added
1645             new_edges++;
1646             add_field_uses_to_worklist(field->as_Field());
1647           }
1648         }
1649       }
1650     }
1651   }
1652   return new_edges;
1653 }
1654 
1655 // Adjust scalar_replaceable state after Connection Graph is built.
1656 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1657   // Search for non-escaping objects which are not scalar replaceable
1658   // and mark them to propagate the state to referenced objects.
1659 
1660   // 1. An object is not scalar replaceable if the field into which it is
1661   // stored has unknown offset (stored into unknown element of an array).
1662   //
1663   for (UseIterator i(jobj); i.has_next(); i.next()) {
1664     PointsToNode* use = i.get();
1665     if (use->is_Arraycopy()) {
1666       continue;
1667     }
1668     if (use->is_Field()) {
1669       FieldNode* field = use->as_Field();
1670       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1671       if (field->offset() == Type::OffsetBot) {
1672         jobj->set_scalar_replaceable(false);
1673         return;
1674       }
1675       // 2. An object is not scalar replaceable if the field into which it is
1676       // stored has multiple bases one of which is null.
1677       if (field->base_count() > 1) {
1678         for (BaseIterator i(field); i.has_next(); i.next()) {
1679           PointsToNode* base = i.get();
1680           if (base == null_obj) {
1681             jobj->set_scalar_replaceable(false);
1682             return;
1683           }
1684         }
1685       }
1686     }
1687     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1688     // 3. An object is not scalar replaceable if it is merged with other objects.
1689     for (EdgeIterator j(use); j.has_next(); j.next()) {
1690       PointsToNode* ptn = j.get();
1691       if (ptn->is_JavaObject() && ptn != jobj) {
1692         // Mark all objects.
1693         jobj->set_scalar_replaceable(false);
1694          ptn->set_scalar_replaceable(false);
1695       }
1696     }
1697     if (!jobj->scalar_replaceable()) {
1698       return;
1699     }
1700   }
1701 
1702   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1703     if (j.get()->is_Arraycopy()) {
1704       continue;
1705     }
1706 
1707     // Non-escaping object node should point only to field nodes.
1708     FieldNode* field = j.get()->as_Field();
1709     int offset = field->as_Field()->offset();
1710 
1711     // 4. An object is not scalar replaceable if it has a field with unknown
1712     // offset (array's element is accessed in loop).
1713     if (offset == Type::OffsetBot) {
1714       jobj->set_scalar_replaceable(false);
1715       return;
1716     }
1717     // 5. Currently an object is not scalar replaceable if a LoadStore node
1718     // access its field since the field value is unknown after it.
1719     //
1720     Node* n = field->ideal_node();
1721     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1722       if (n->fast_out(i)->is_LoadStore()) {
1723         jobj->set_scalar_replaceable(false);
1724         return;
1725       }
1726     }
1727 
1728     // 6. Or the address may point to more then one object. This may produce
1729     // the false positive result (set not scalar replaceable)
1730     // since the flow-insensitive escape analysis can't separate
1731     // the case when stores overwrite the field's value from the case
1732     // when stores happened on different control branches.
1733     //
1734     // Note: it will disable scalar replacement in some cases:
1735     //
1736     //    Point p[] = new Point[1];
1737     //    p[0] = new Point(); // Will be not scalar replaced
1738     //
1739     // but it will save us from incorrect optimizations in next cases:
1740     //
1741     //    Point p[] = new Point[1];
1742     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1743     //
1744     if (field->base_count() > 1) {
1745       for (BaseIterator i(field); i.has_next(); i.next()) {
1746         PointsToNode* base = i.get();
1747         // Don't take into account LocalVar nodes which
1748         // may point to only one object which should be also
1749         // this field's base by now.
1750         if (base->is_JavaObject() && base != jobj) {
1751           // Mark all bases.
1752           jobj->set_scalar_replaceable(false);
1753           base->set_scalar_replaceable(false);
1754         }
1755       }
1756     }
1757   }
1758 }
1759 
1760 #ifdef ASSERT
1761 void ConnectionGraph::verify_connection_graph(
1762                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1763                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1764                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1765                          GrowableArray<Node*>& addp_worklist) {
1766   // Verify that graph is complete - no new edges could be added.
1767   int java_objects_length = java_objects_worklist.length();
1768   int non_escaped_length  = non_escaped_worklist.length();
1769   int new_edges = 0;
1770   for (int next = 0; next < java_objects_length; ++next) {
1771     JavaObjectNode* ptn = java_objects_worklist.at(next);
1772     new_edges += add_java_object_edges(ptn, true);
1773   }
1774   assert(new_edges == 0, "graph was not complete");
1775   // Verify that escape state is final.
1776   int length = non_escaped_worklist.length();
1777   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1778   assert((non_escaped_length == non_escaped_worklist.length()) &&
1779          (non_escaped_length == length) &&
1780          (_worklist.length() == 0), "escape state was not final");
1781 
1782   // Verify fields information.
1783   int addp_length = addp_worklist.length();
1784   for (int next = 0; next < addp_length; ++next ) {
1785     Node* n = addp_worklist.at(next);
1786     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1787     if (field->is_oop()) {
1788       // Verify that field has all bases
1789       Node* base = get_addp_base(n);
1790       PointsToNode* ptn = ptnode_adr(base->_idx);
1791       if (ptn->is_JavaObject()) {
1792         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1793       } else {
1794         assert(ptn->is_LocalVar(), "sanity");
1795         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1796           PointsToNode* e = i.get();
1797           if (e->is_JavaObject()) {
1798             assert(field->has_base(e->as_JavaObject()), "sanity");
1799           }
1800         }
1801       }
1802       // Verify that all fields have initializing values.
1803       if (field->edge_count() == 0) {
1804         tty->print_cr("----------field does not have references----------");
1805         field->dump();
1806         for (BaseIterator i(field); i.has_next(); i.next()) {
1807           PointsToNode* base = i.get();
1808           tty->print_cr("----------field has next base---------------------");
1809           base->dump();
1810           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1811             tty->print_cr("----------base has fields-------------------------");
1812             for (EdgeIterator j(base); j.has_next(); j.next()) {
1813               j.get()->dump();
1814             }
1815             tty->print_cr("----------base has references---------------------");
1816             for (UseIterator j(base); j.has_next(); j.next()) {
1817               j.get()->dump();
1818             }
1819           }
1820         }
1821         for (UseIterator i(field); i.has_next(); i.next()) {
1822           i.get()->dump();
1823         }
1824         assert(field->edge_count() > 0, "sanity");
1825       }
1826     }
1827   }
1828 }
1829 #endif
1830 
1831 // Optimize ideal graph.
1832 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1833                                            GrowableArray<Node*>& storestore_worklist) {
1834   Compile* C = _compile;
1835   PhaseIterGVN* igvn = _igvn;
1836   if (EliminateLocks) {
1837     // Mark locks before changing ideal graph.
1838     int cnt = C->macro_count();
1839     for( int i=0; i < cnt; i++ ) {
1840       Node *n = C->macro_node(i);
1841       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1842         AbstractLockNode* alock = n->as_AbstractLock();
1843         if (!alock->is_non_esc_obj()) {
1844           if (not_global_escape(alock->obj_node())) {
1845             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1846             // The lock could be marked eliminated by lock coarsening
1847             // code during first IGVN before EA. Replace coarsened flag
1848             // to eliminate all associated locks/unlocks.
1849 #ifdef ASSERT
1850             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1851 #endif
1852             alock->set_non_esc_obj();
1853           }
1854         }
1855       }
1856     }
1857   }
1858 
1859   if (OptimizePtrCompare) {
1860     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1861     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1862     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1863     // Optimize objects compare.
1864     while (ptr_cmp_worklist.length() != 0) {
1865       Node *n = ptr_cmp_worklist.pop();
1866       Node *res = optimize_ptr_compare(n);
1867       if (res != NULL) {
1868 #ifndef PRODUCT
1869         if (PrintOptimizePtrCompare) {
1870           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1871           if (Verbose) {
1872             n->dump(1);
1873           }
1874         }
1875 #endif
1876         igvn->replace_node(n, res);
1877       }
1878     }
1879     // cleanup
1880     if (_pcmp_neq->outcnt() == 0)
1881       igvn->hash_delete(_pcmp_neq);
1882     if (_pcmp_eq->outcnt()  == 0)
1883       igvn->hash_delete(_pcmp_eq);
1884   }
1885 
1886   // For MemBarStoreStore nodes added in library_call.cpp, check
1887   // escape status of associated AllocateNode and optimize out
1888   // MemBarStoreStore node if the allocated object never escapes.
1889   while (storestore_worklist.length() != 0) {
1890     Node *n = storestore_worklist.pop();
1891     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1892     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1893     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1894     if (not_global_escape(alloc)) {
1895       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1896       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1897       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1898       igvn->register_new_node_with_optimizer(mb);
1899       igvn->replace_node(storestore, mb);
1900     }
1901   }
1902 }
1903 
1904 // Optimize objects compare.
1905 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1906   assert(OptimizePtrCompare, "sanity");
1907   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1908   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1909   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1910   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1911   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1912   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1913 
1914   // Check simple cases first.
1915   if (jobj1 != NULL) {
1916     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1917       if (jobj1 == jobj2) {
1918         // Comparing the same not escaping object.
1919         return _pcmp_eq;
1920       }
1921       Node* obj = jobj1->ideal_node();
1922       // Comparing not escaping allocation.
1923       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1924           !ptn2->points_to(jobj1)) {
1925         return _pcmp_neq; // This includes nullness check.
1926       }
1927     }
1928   }
1929   if (jobj2 != NULL) {
1930     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1931       Node* obj = jobj2->ideal_node();
1932       // Comparing not escaping allocation.
1933       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1934           !ptn1->points_to(jobj2)) {
1935         return _pcmp_neq; // This includes nullness check.
1936       }
1937     }
1938   }
1939   if (jobj1 != NULL && jobj1 != phantom_obj &&
1940       jobj2 != NULL && jobj2 != phantom_obj &&
1941       jobj1->ideal_node()->is_Con() &&
1942       jobj2->ideal_node()->is_Con()) {
1943     // Klass or String constants compare. Need to be careful with
1944     // compressed pointers - compare types of ConN and ConP instead of nodes.
1945     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1946     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1947     if (t1->make_ptr() == t2->make_ptr()) {
1948       return _pcmp_eq;
1949     } else {
1950       return _pcmp_neq;
1951     }
1952   }
1953   if (ptn1->meet(ptn2)) {
1954     return NULL; // Sets are not disjoint
1955   }
1956 
1957   // Sets are disjoint.
1958   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1959   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1960   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1961   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1962   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1963       set2_has_unknown_ptr && set1_has_null_ptr) {
1964     // Check nullness of unknown object.
1965     return NULL;
1966   }
1967 
1968   // Disjointness by itself is not sufficient since
1969   // alias analysis is not complete for escaped objects.
1970   // Disjoint sets are definitely unrelated only when
1971   // at least one set has only not escaping allocations.
1972   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1973     if (ptn1->non_escaping_allocation()) {
1974       return _pcmp_neq;
1975     }
1976   }
1977   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1978     if (ptn2->non_escaping_allocation()) {
1979       return _pcmp_neq;
1980     }
1981   }
1982   return NULL;
1983 }
1984 
1985 // Connection Graph constuction functions.
1986 
1987 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1988   PointsToNode* ptadr = _nodes.at(n->_idx);
1989   if (ptadr != NULL) {
1990     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1991     return;
1992   }
1993   Compile* C = _compile;
1994   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1995   _nodes.at_put(n->_idx, ptadr);
1996 }
1997 
1998 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1999   PointsToNode* ptadr = _nodes.at(n->_idx);
2000   if (ptadr != NULL) {
2001     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2002     return;
2003   }
2004   Compile* C = _compile;
2005   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2006   _nodes.at_put(n->_idx, ptadr);
2007 }
2008 
2009 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2010   PointsToNode* ptadr = _nodes.at(n->_idx);
2011   if (ptadr != NULL) {
2012     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2013     return;
2014   }
2015   bool unsafe = false;
2016   bool is_oop = is_oop_field(n, offset, &unsafe);
2017   if (unsafe) {
2018     es = PointsToNode::GlobalEscape;
2019   }
2020   Compile* C = _compile;
2021   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2022   _nodes.at_put(n->_idx, field);
2023 }
2024 
2025 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2026                                     PointsToNode* src, PointsToNode* dst) {
2027   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2028   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2029   PointsToNode* ptadr = _nodes.at(n->_idx);
2030   if (ptadr != NULL) {
2031     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2032     return;
2033   }
2034   Compile* C = _compile;
2035   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2036   _nodes.at_put(n->_idx, ptadr);
2037   // Add edge from arraycopy node to source object.
2038   (void)add_edge(ptadr, src);
2039   src->set_arraycopy_src();
2040   // Add edge from destination object to arraycopy node.
2041   (void)add_edge(dst, ptadr);
2042   dst->set_arraycopy_dst();
2043 }
2044 
2045 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2046   const Type* adr_type = n->as_AddP()->bottom_type();
2047   BasicType bt = T_INT;
2048   if (offset == Type::OffsetBot) {
2049     // Check only oop fields.
2050     if (!adr_type->isa_aryptr() ||
2051         (adr_type->isa_aryptr()->klass() == NULL) ||
2052          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2053       // OffsetBot is used to reference array's element. Ignore first AddP.
2054       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2055         bt = T_OBJECT;
2056       }
2057     }
2058   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2059     if (adr_type->isa_instptr()) {
2060       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2061       if (field != NULL) {
2062         bt = field->layout_type();
2063       } else {
2064         // Check for unsafe oop field access
2065         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2066           bt = T_OBJECT;
2067           (*unsafe) = true;
2068         }
2069       }
2070     } else if (adr_type->isa_aryptr()) {
2071       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2072         // Ignore array length load.
2073       } else if (UseShenandoahGC && offset == BrooksPointer::BYTE_OFFSET) {
2074         // Shenandoah read barrier.
2075         bt = T_ARRAY;
2076       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2077         // Ignore first AddP.
2078       } else {
2079         const Type* elemtype = adr_type->isa_aryptr()->elem();
2080         bt = elemtype->array_element_basic_type();
2081       }
2082     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2083       // Allocation initialization, ThreadLocal field access, unsafe access
2084       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2085         bt = T_OBJECT;
2086       }
2087     }
2088   }
2089   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2090 }
2091 
2092 // Returns unique pointed java object or NULL.
2093 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2094   assert(!_collecting, "should not call when contructed graph");
2095   // If the node was created after the escape computation we can't answer.
2096   uint idx = n->_idx;
2097   if (idx >= nodes_size()) {
2098     return NULL;
2099   }
2100   PointsToNode* ptn = ptnode_adr(idx);
2101   if (ptn->is_JavaObject()) {
2102     return ptn->as_JavaObject();
2103   }
2104   assert(ptn->is_LocalVar(), "sanity");
2105   // Check all java objects it points to.
2106   JavaObjectNode* jobj = NULL;
2107   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2108     PointsToNode* e = i.get();
2109     if (e->is_JavaObject()) {
2110       if (jobj == NULL) {
2111         jobj = e->as_JavaObject();
2112       } else if (jobj != e) {
2113         return NULL;
2114       }
2115     }
2116   }
2117   return jobj;
2118 }
2119 
2120 // Return true if this node points only to non-escaping allocations.
2121 bool PointsToNode::non_escaping_allocation() {
2122   if (is_JavaObject()) {
2123     Node* n = ideal_node();
2124     if (n->is_Allocate() || n->is_CallStaticJava()) {
2125       return (escape_state() == PointsToNode::NoEscape);
2126     } else {
2127       return false;
2128     }
2129   }
2130   assert(is_LocalVar(), "sanity");
2131   // Check all java objects it points to.
2132   for (EdgeIterator i(this); i.has_next(); i.next()) {
2133     PointsToNode* e = i.get();
2134     if (e->is_JavaObject()) {
2135       Node* n = e->ideal_node();
2136       if ((e->escape_state() != PointsToNode::NoEscape) ||
2137           !(n->is_Allocate() || n->is_CallStaticJava())) {
2138         return false;
2139       }
2140     }
2141   }
2142   return true;
2143 }
2144 
2145 // Return true if we know the node does not escape globally.
2146 bool ConnectionGraph::not_global_escape(Node *n) {
2147   assert(!_collecting, "should not call during graph construction");
2148   // If the node was created after the escape computation we can't answer.
2149   uint idx = n->_idx;
2150   if (idx >= nodes_size()) {
2151     return false;
2152   }
2153   PointsToNode* ptn = ptnode_adr(idx);
2154   PointsToNode::EscapeState es = ptn->escape_state();
2155   // If we have already computed a value, return it.
2156   if (es >= PointsToNode::GlobalEscape)
2157     return false;
2158   if (ptn->is_JavaObject()) {
2159     return true; // (es < PointsToNode::GlobalEscape);
2160   }
2161   assert(ptn->is_LocalVar(), "sanity");
2162   // Check all java objects it points to.
2163   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2164     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2165       return false;
2166   }
2167   return true;
2168 }
2169 
2170 
2171 // Helper functions
2172 
2173 // Return true if this node points to specified node or nodes it points to.
2174 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2175   if (is_JavaObject()) {
2176     return (this == ptn);
2177   }
2178   assert(is_LocalVar() || is_Field(), "sanity");
2179   for (EdgeIterator i(this); i.has_next(); i.next()) {
2180     if (i.get() == ptn)
2181       return true;
2182   }
2183   return false;
2184 }
2185 
2186 // Return true if one node points to an other.
2187 bool PointsToNode::meet(PointsToNode* ptn) {
2188   if (this == ptn) {
2189     return true;
2190   } else if (ptn->is_JavaObject()) {
2191     return this->points_to(ptn->as_JavaObject());
2192   } else if (this->is_JavaObject()) {
2193     return ptn->points_to(this->as_JavaObject());
2194   }
2195   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2196   int ptn_count =  ptn->edge_count();
2197   for (EdgeIterator i(this); i.has_next(); i.next()) {
2198     PointsToNode* this_e = i.get();
2199     for (int j = 0; j < ptn_count; j++) {
2200       if (this_e == ptn->edge(j))
2201         return true;
2202     }
2203   }
2204   return false;
2205 }
2206 
2207 #ifdef ASSERT
2208 // Return true if bases point to this java object.
2209 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2210   for (BaseIterator i(this); i.has_next(); i.next()) {
2211     if (i.get() == jobj)
2212       return true;
2213   }
2214   return false;
2215 }
2216 #endif
2217 
2218 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2219   const Type *adr_type = phase->type(adr);
2220   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2221       adr->in(AddPNode::Address)->is_Proj() &&
2222       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2223     // We are computing a raw address for a store captured by an Initialize
2224     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2225     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2226     assert(offs != Type::OffsetBot ||
2227            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2228            "offset must be a constant or it is initialization of array");
2229     return offs;
2230   }
2231   const TypePtr *t_ptr = adr_type->isa_ptr();
2232   assert(t_ptr != NULL, "must be a pointer type");
2233   return t_ptr->offset();
2234 }
2235 
2236 Node* ConnectionGraph::get_addp_base(Node *addp) {
2237   assert(addp->is_AddP(), "must be AddP");
2238   //
2239   // AddP cases for Base and Address inputs:
2240   // case #1. Direct object's field reference:
2241   //     Allocate
2242   //       |
2243   //     Proj #5 ( oop result )
2244   //       |
2245   //     CheckCastPP (cast to instance type)
2246   //      | |
2247   //     AddP  ( base == address )
2248   //
2249   // case #2. Indirect object's field reference:
2250   //      Phi
2251   //       |
2252   //     CastPP (cast to instance type)
2253   //      | |
2254   //     AddP  ( base == address )
2255   //
2256   // case #3. Raw object's field reference for Initialize node:
2257   //      Allocate
2258   //        |
2259   //      Proj #5 ( oop result )
2260   //  top   |
2261   //     \  |
2262   //     AddP  ( base == top )
2263   //
2264   // case #4. Array's element reference:
2265   //   {CheckCastPP | CastPP}
2266   //     |  | |
2267   //     |  AddP ( array's element offset )
2268   //     |  |
2269   //     AddP ( array's offset )
2270   //
2271   // case #5. Raw object's field reference for arraycopy stub call:
2272   //          The inline_native_clone() case when the arraycopy stub is called
2273   //          after the allocation before Initialize and CheckCastPP nodes.
2274   //      Allocate
2275   //        |
2276   //      Proj #5 ( oop result )
2277   //       | |
2278   //       AddP  ( base == address )
2279   //
2280   // case #6. Constant Pool, ThreadLocal, CastX2P or
2281   //          Raw object's field reference:
2282   //      {ConP, ThreadLocal, CastX2P, raw Load}
2283   //  top   |
2284   //     \  |
2285   //     AddP  ( base == top )
2286   //
2287   // case #7. Klass's field reference.
2288   //      LoadKlass
2289   //       | |
2290   //       AddP  ( base == address )
2291   //
2292   // case #8. narrow Klass's field reference.
2293   //      LoadNKlass
2294   //       |
2295   //      DecodeN
2296   //       | |
2297   //       AddP  ( base == address )
2298   //
2299   Node *base = addp->in(AddPNode::Base);
2300   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2301     base = addp->in(AddPNode::Address);
2302     while (base->is_AddP()) {
2303       // Case #6 (unsafe access) may have several chained AddP nodes.
2304       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2305       base = base->in(AddPNode::Address);
2306     }
2307     Node* uncast_base = base->uncast();
2308     int opcode = uncast_base->Opcode();
2309     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2310            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2311            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2312            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2313   }
2314   return base;
2315 }
2316 
2317 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2318   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2319   Node* addp2 = addp->raw_out(0);
2320   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2321       addp2->in(AddPNode::Base) == n &&
2322       addp2->in(AddPNode::Address) == addp) {
2323     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2324     //
2325     // Find array's offset to push it on worklist first and
2326     // as result process an array's element offset first (pushed second)
2327     // to avoid CastPP for the array's offset.
2328     // Otherwise the inserted CastPP (LocalVar) will point to what
2329     // the AddP (Field) points to. Which would be wrong since
2330     // the algorithm expects the CastPP has the same point as
2331     // as AddP's base CheckCastPP (LocalVar).
2332     //
2333     //    ArrayAllocation
2334     //     |
2335     //    CheckCastPP
2336     //     |
2337     //    memProj (from ArrayAllocation CheckCastPP)
2338     //     |  ||
2339     //     |  ||   Int (element index)
2340     //     |  ||    |   ConI (log(element size))
2341     //     |  ||    |   /
2342     //     |  ||   LShift
2343     //     |  ||  /
2344     //     |  AddP (array's element offset)
2345     //     |  |
2346     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2347     //     | / /
2348     //     AddP (array's offset)
2349     //      |
2350     //     Load/Store (memory operation on array's element)
2351     //
2352     return addp2;
2353   }
2354   return NULL;
2355 }
2356 
2357 //
2358 // Adjust the type and inputs of an AddP which computes the
2359 // address of a field of an instance
2360 //
2361 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2362   PhaseGVN* igvn = _igvn;
2363   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2364   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2365   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2366   if (t == NULL) {
2367     // We are computing a raw address for a store captured by an Initialize
2368     // compute an appropriate address type (cases #3 and #5).
2369     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2370     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2371     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2372     assert(offs != Type::OffsetBot, "offset must be a constant");
2373     t = base_t->add_offset(offs)->is_oopptr();
2374   }
2375   int inst_id =  base_t->instance_id();
2376   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2377                              "old type must be non-instance or match new type");
2378 
2379   // The type 't' could be subclass of 'base_t'.
2380   // As result t->offset() could be large then base_t's size and it will
2381   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2382   // constructor verifies correctness of the offset.
2383   //
2384   // It could happened on subclass's branch (from the type profiling
2385   // inlining) which was not eliminated during parsing since the exactness
2386   // of the allocation type was not propagated to the subclass type check.
2387   //
2388   // Or the type 't' could be not related to 'base_t' at all.
2389   // It could happened when CHA type is different from MDO type on a dead path
2390   // (for example, from instanceof check) which is not collapsed during parsing.
2391   //
2392   // Do nothing for such AddP node and don't process its users since
2393   // this code branch will go away.
2394   //
2395   if (!t->is_known_instance() &&
2396       !base_t->klass()->is_subtype_of(t->klass())) {
2397      return false; // bail out
2398   }
2399   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2400   // Do NOT remove the next line: ensure a new alias index is allocated
2401   // for the instance type. Note: C++ will not remove it since the call
2402   // has side effect.
2403   int alias_idx = _compile->get_alias_index(tinst);
2404   igvn->set_type(addp, tinst);
2405   // record the allocation in the node map
2406   set_map(addp, get_map(base->_idx));
2407   // Set addp's Base and Address to 'base'.
2408   Node *abase = addp->in(AddPNode::Base);
2409   Node *adr   = addp->in(AddPNode::Address);
2410   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2411       adr->in(0)->_idx == (uint)inst_id) {
2412     // Skip AddP cases #3 and #5.
2413   } else {
2414     assert(!abase->is_top(), "sanity"); // AddP case #3
2415     if (abase != base) {
2416       igvn->hash_delete(addp);
2417       addp->set_req(AddPNode::Base, base);
2418       if (abase == adr) {
2419         addp->set_req(AddPNode::Address, base);
2420       } else {
2421         // AddP case #4 (adr is array's element offset AddP node)
2422 #ifdef ASSERT
2423         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2424         assert(adr->is_AddP() && atype != NULL &&
2425                atype->instance_id() == inst_id, "array's element offset should be processed first");
2426 #endif
2427       }
2428       igvn->hash_insert(addp);
2429     }
2430   }
2431   // Put on IGVN worklist since at least addp's type was changed above.
2432   record_for_optimizer(addp);
2433   return true;
2434 }
2435 
2436 //
2437 // Create a new version of orig_phi if necessary. Returns either the newly
2438 // created phi or an existing phi.  Sets create_new to indicate whether a new
2439 // phi was created.  Cache the last newly created phi in the node map.
2440 //
2441 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2442   Compile *C = _compile;
2443   PhaseGVN* igvn = _igvn;
2444   new_created = false;
2445   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2446   // nothing to do if orig_phi is bottom memory or matches alias_idx
2447   if (phi_alias_idx == alias_idx) {
2448     return orig_phi;
2449   }
2450   // Have we recently created a Phi for this alias index?
2451   PhiNode *result = get_map_phi(orig_phi->_idx);
2452   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2453     return result;
2454   }
2455   // Previous check may fail when the same wide memory Phi was split into Phis
2456   // for different memory slices. Search all Phis for this region.
2457   if (result != NULL) {
2458     Node* region = orig_phi->in(0);
2459     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2460       Node* phi = region->fast_out(i);
2461       if (phi->is_Phi() &&
2462           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2463         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2464         return phi->as_Phi();
2465       }
2466     }
2467   }
2468   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2469     if (C->do_escape_analysis() == true && !C->failing()) {
2470       // Retry compilation without escape analysis.
2471       // If this is the first failure, the sentinel string will "stick"
2472       // to the Compile object, and the C2Compiler will see it and retry.
2473       C->record_failure(C2Compiler::retry_no_escape_analysis());
2474     }
2475     return NULL;
2476   }
2477   orig_phi_worklist.append_if_missing(orig_phi);
2478   const TypePtr *atype = C->get_adr_type(alias_idx);
2479   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2480   C->copy_node_notes_to(result, orig_phi);
2481   igvn->set_type(result, result->bottom_type());
2482   record_for_optimizer(result);
2483   set_map(orig_phi, result);
2484   new_created = true;
2485   return result;
2486 }
2487 
2488 //
2489 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2490 // specified alias index.
2491 //
2492 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2493   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2494   Compile *C = _compile;
2495   PhaseGVN* igvn = _igvn;
2496   bool new_phi_created;
2497   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2498   if (!new_phi_created) {
2499     return result;
2500   }
2501   GrowableArray<PhiNode *>  phi_list;
2502   GrowableArray<uint>  cur_input;
2503   PhiNode *phi = orig_phi;
2504   uint idx = 1;
2505   bool finished = false;
2506   while(!finished) {
2507     while (idx < phi->req()) {
2508       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2509       if (mem != NULL && mem->is_Phi()) {
2510         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2511         if (new_phi_created) {
2512           // found an phi for which we created a new split, push current one on worklist and begin
2513           // processing new one
2514           phi_list.push(phi);
2515           cur_input.push(idx);
2516           phi = mem->as_Phi();
2517           result = newphi;
2518           idx = 1;
2519           continue;
2520         } else {
2521           mem = newphi;
2522         }
2523       }
2524       if (C->failing()) {
2525         return NULL;
2526       }
2527       result->set_req(idx++, mem);
2528     }
2529 #ifdef ASSERT
2530     // verify that the new Phi has an input for each input of the original
2531     assert( phi->req() == result->req(), "must have same number of inputs.");
2532     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2533 #endif
2534     // Check if all new phi's inputs have specified alias index.
2535     // Otherwise use old phi.
2536     for (uint i = 1; i < phi->req(); i++) {
2537       Node* in = result->in(i);
2538       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2539     }
2540     // we have finished processing a Phi, see if there are any more to do
2541     finished = (phi_list.length() == 0 );
2542     if (!finished) {
2543       phi = phi_list.pop();
2544       idx = cur_input.pop();
2545       PhiNode *prev_result = get_map_phi(phi->_idx);
2546       prev_result->set_req(idx++, result);
2547       result = prev_result;
2548     }
2549   }
2550   return result;
2551 }
2552 
2553 //
2554 // The next methods are derived from methods in MemNode.
2555 //
2556 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2557   Node *mem = mmem;
2558   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2559   // means an array I have not precisely typed yet.  Do not do any
2560   // alias stuff with it any time soon.
2561   if (toop->base() != Type::AnyPtr &&
2562       !(toop->klass() != NULL &&
2563         toop->klass()->is_java_lang_Object() &&
2564         toop->offset() == Type::OffsetBot)) {
2565     mem = mmem->memory_at(alias_idx);
2566     // Update input if it is progress over what we have now
2567   }
2568   return mem;
2569 }
2570 
2571 //
2572 // Move memory users to their memory slices.
2573 //
2574 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2575   Compile* C = _compile;
2576   PhaseGVN* igvn = _igvn;
2577   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2578   assert(tp != NULL, "ptr type");
2579   int alias_idx = C->get_alias_index(tp);
2580   int general_idx = C->get_general_index(alias_idx);
2581 
2582   // Move users first
2583   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2584     Node* use = n->fast_out(i);
2585     if (use->is_MergeMem()) {
2586       MergeMemNode* mmem = use->as_MergeMem();
2587       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2588       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2589         continue; // Nothing to do
2590       }
2591       // Replace previous general reference to mem node.
2592       uint orig_uniq = C->unique();
2593       Node* m = find_inst_mem(n, general_idx, orig_phis);
2594       assert(orig_uniq == C->unique(), "no new nodes");
2595       mmem->set_memory_at(general_idx, m);
2596       --imax;
2597       --i;
2598     } else if (use->is_MemBar()) {
2599       assert(!use->is_Initialize(), "initializing stores should not be moved");
2600       if (use->req() > MemBarNode::Precedent &&
2601           use->in(MemBarNode::Precedent) == n) {
2602         // Don't move related membars.
2603         record_for_optimizer(use);
2604         continue;
2605       }
2606       tp = use->as_MemBar()->adr_type()->isa_ptr();
2607       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2608           alias_idx == general_idx) {
2609         continue; // Nothing to do
2610       }
2611       // Move to general memory slice.
2612       uint orig_uniq = C->unique();
2613       Node* m = find_inst_mem(n, general_idx, orig_phis);
2614       assert(orig_uniq == C->unique(), "no new nodes");
2615       igvn->hash_delete(use);
2616       imax -= use->replace_edge(n, m);
2617       igvn->hash_insert(use);
2618       record_for_optimizer(use);
2619       --i;
2620 #ifdef ASSERT
2621     } else if (use->is_Mem()) {
2622       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2623         // Don't move related cardmark.
2624         continue;
2625       }
2626       // Memory nodes should have new memory input.
2627       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2628       assert(tp != NULL, "ptr type");
2629       int idx = C->get_alias_index(tp);
2630       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2631              "Following memory nodes should have new memory input or be on the same memory slice");
2632     } else if (use->is_Phi()) {
2633       // Phi nodes should be split and moved already.
2634       tp = use->as_Phi()->adr_type()->isa_ptr();
2635       assert(tp != NULL, "ptr type");
2636       int idx = C->get_alias_index(tp);
2637       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2638     } else {
2639       use->dump();
2640       assert(false, "should not be here");
2641 #endif
2642     }
2643   }
2644 }
2645 
2646 //
2647 // Search memory chain of "mem" to find a MemNode whose address
2648 // is the specified alias index.
2649 //
2650 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2651   if (orig_mem == NULL)
2652     return orig_mem;
2653   Compile* C = _compile;
2654   PhaseGVN* igvn = _igvn;
2655   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2656   bool is_instance = (toop != NULL) && toop->is_known_instance();
2657   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2658   Node *prev = NULL;
2659   Node *result = orig_mem;
2660   while (prev != result) {
2661     prev = result;
2662     if (result == start_mem)
2663       break;  // hit one of our sentinels
2664     if (result->is_Mem()) {
2665       const Type *at = igvn->type(result->in(MemNode::Address));
2666       if (at == Type::TOP)
2667         break; // Dead
2668       assert (at->isa_ptr() != NULL, "pointer type required.");
2669       int idx = C->get_alias_index(at->is_ptr());
2670       if (idx == alias_idx)
2671         break; // Found
2672       if (!is_instance && (at->isa_oopptr() == NULL ||
2673                            !at->is_oopptr()->is_known_instance())) {
2674         break; // Do not skip store to general memory slice.
2675       }
2676       result = result->in(MemNode::Memory);
2677     }
2678     if (!is_instance)
2679       continue;  // don't search further for non-instance types
2680     // skip over a call which does not affect this memory slice
2681     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2682       Node *proj_in = result->in(0);
2683       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2684         break;  // hit one of our sentinels
2685       } else if (proj_in->is_Call()) {
2686         // ArrayCopy node processed here as well
2687         CallNode *call = proj_in->as_Call();
2688         if (!call->may_modify(toop, igvn)) {
2689           result = call->in(TypeFunc::Memory);
2690         }
2691       } else if (proj_in->is_Initialize()) {
2692         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2693         // Stop if this is the initialization for the object instance which
2694         // which contains this memory slice, otherwise skip over it.
2695         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2696           result = proj_in->in(TypeFunc::Memory);
2697         }
2698       } else if (proj_in->is_MemBar()) {
2699         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2700             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2701             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2702           // clone
2703           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2704           if (ac->may_modify(toop, igvn)) {
2705             break;
2706           }
2707         }
2708         result = proj_in->in(TypeFunc::Memory);
2709       }
2710     } else if (result->is_MergeMem()) {
2711       MergeMemNode *mmem = result->as_MergeMem();
2712       result = step_through_mergemem(mmem, alias_idx, toop);
2713       if (result == mmem->base_memory()) {
2714         // Didn't find instance memory, search through general slice recursively.
2715         result = mmem->memory_at(C->get_general_index(alias_idx));
2716         result = find_inst_mem(result, alias_idx, orig_phis);
2717         if (C->failing()) {
2718           return NULL;
2719         }
2720         mmem->set_memory_at(alias_idx, result);
2721       }
2722     } else if (result->is_Phi() &&
2723                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2724       Node *un = result->as_Phi()->unique_input(igvn);
2725       if (un != NULL) {
2726         orig_phis.append_if_missing(result->as_Phi());
2727         result = un;
2728       } else {
2729         break;
2730       }
2731     } else if (result->is_ClearArray()) {
2732       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2733         // Can not bypass initialization of the instance
2734         // we are looking for.
2735         break;
2736       }
2737       // Otherwise skip it (the call updated 'result' value).
2738     } else if (result->Opcode() == Op_SCMemProj) {
2739       Node* mem = result->in(0);
2740       Node* adr = NULL;
2741       if (mem->is_LoadStore()) {
2742         adr = mem->in(MemNode::Address);
2743       } else {
2744         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2745         adr = mem->in(3); // Memory edge corresponds to destination array
2746       }
2747       const Type *at = igvn->type(adr);
2748       if (at != Type::TOP) {
2749         assert (at->isa_ptr() != NULL, "pointer type required.");
2750         int idx = C->get_alias_index(at->is_ptr());
2751         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2752         break;
2753       }
2754       result = mem->in(MemNode::Memory);
2755     }
2756   }
2757   if (result->is_Phi()) {
2758     PhiNode *mphi = result->as_Phi();
2759     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2760     const TypePtr *t = mphi->adr_type();
2761     if (!is_instance) {
2762       // Push all non-instance Phis on the orig_phis worklist to update inputs
2763       // during Phase 4 if needed.
2764       orig_phis.append_if_missing(mphi);
2765     } else if (C->get_alias_index(t) != alias_idx) {
2766       // Create a new Phi with the specified alias index type.
2767       result = split_memory_phi(mphi, alias_idx, orig_phis);
2768     }
2769   }
2770   // the result is either MemNode, PhiNode, InitializeNode.
2771   return result;
2772 }
2773 
2774 //
2775 //  Convert the types of unescaped object to instance types where possible,
2776 //  propagate the new type information through the graph, and update memory
2777 //  edges and MergeMem inputs to reflect the new type.
2778 //
2779 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2780 //  The processing is done in 4 phases:
2781 //
2782 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2783 //            types for the CheckCastPP for allocations where possible.
2784 //            Propagate the new types through users as follows:
2785 //               casts and Phi:  push users on alloc_worklist
2786 //               AddP:  cast Base and Address inputs to the instance type
2787 //                      push any AddP users on alloc_worklist and push any memnode
2788 //                      users onto memnode_worklist.
2789 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2790 //            search the Memory chain for a store with the appropriate type
2791 //            address type.  If a Phi is found, create a new version with
2792 //            the appropriate memory slices from each of the Phi inputs.
2793 //            For stores, process the users as follows:
2794 //               MemNode:  push on memnode_worklist
2795 //               MergeMem: push on mergemem_worklist
2796 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2797 //            moving the first node encountered of each  instance type to the
2798 //            the input corresponding to its alias index.
2799 //            appropriate memory slice.
2800 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2801 //
2802 // In the following example, the CheckCastPP nodes are the cast of allocation
2803 // results and the allocation of node 29 is unescaped and eligible to be an
2804 // instance type.
2805 //
2806 // We start with:
2807 //
2808 //     7 Parm #memory
2809 //    10  ConI  "12"
2810 //    19  CheckCastPP   "Foo"
2811 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2812 //    29  CheckCastPP   "Foo"
2813 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2814 //
2815 //    40  StoreP  25   7  20   ... alias_index=4
2816 //    50  StoreP  35  40  30   ... alias_index=4
2817 //    60  StoreP  45  50  20   ... alias_index=4
2818 //    70  LoadP    _  60  30   ... alias_index=4
2819 //    80  Phi     75  50  60   Memory alias_index=4
2820 //    90  LoadP    _  80  30   ... alias_index=4
2821 //   100  LoadP    _  80  20   ... alias_index=4
2822 //
2823 //
2824 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2825 // and creating a new alias index for node 30.  This gives:
2826 //
2827 //     7 Parm #memory
2828 //    10  ConI  "12"
2829 //    19  CheckCastPP   "Foo"
2830 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2831 //    29  CheckCastPP   "Foo"  iid=24
2832 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2833 //
2834 //    40  StoreP  25   7  20   ... alias_index=4
2835 //    50  StoreP  35  40  30   ... alias_index=6
2836 //    60  StoreP  45  50  20   ... alias_index=4
2837 //    70  LoadP    _  60  30   ... alias_index=6
2838 //    80  Phi     75  50  60   Memory alias_index=4
2839 //    90  LoadP    _  80  30   ... alias_index=6
2840 //   100  LoadP    _  80  20   ... alias_index=4
2841 //
2842 // In phase 2, new memory inputs are computed for the loads and stores,
2843 // And a new version of the phi is created.  In phase 4, the inputs to
2844 // node 80 are updated and then the memory nodes are updated with the
2845 // values computed in phase 2.  This results in:
2846 //
2847 //     7 Parm #memory
2848 //    10  ConI  "12"
2849 //    19  CheckCastPP   "Foo"
2850 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2851 //    29  CheckCastPP   "Foo"  iid=24
2852 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2853 //
2854 //    40  StoreP  25  7   20   ... alias_index=4
2855 //    50  StoreP  35  7   30   ... alias_index=6
2856 //    60  StoreP  45  40  20   ... alias_index=4
2857 //    70  LoadP    _  50  30   ... alias_index=6
2858 //    80  Phi     75  40  60   Memory alias_index=4
2859 //   120  Phi     75  50  50   Memory alias_index=6
2860 //    90  LoadP    _ 120  30   ... alias_index=6
2861 //   100  LoadP    _  80  20   ... alias_index=4
2862 //
2863 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2864   GrowableArray<Node *>  memnode_worklist;
2865   GrowableArray<PhiNode *>  orig_phis;
2866   PhaseIterGVN  *igvn = _igvn;
2867   uint new_index_start = (uint) _compile->num_alias_types();
2868   Arena* arena = Thread::current()->resource_area();
2869   VectorSet visited(arena);
2870   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2871   uint unique_old = _compile->unique();
2872 
2873   //  Phase 1:  Process possible allocations from alloc_worklist.
2874   //  Create instance types for the CheckCastPP for allocations where possible.
2875   //
2876   // (Note: don't forget to change the order of the second AddP node on
2877   //  the alloc_worklist if the order of the worklist processing is changed,
2878   //  see the comment in find_second_addp().)
2879   //
2880   while (alloc_worklist.length() != 0) {
2881     Node *n = alloc_worklist.pop();
2882     uint ni = n->_idx;
2883     if (n->is_Call()) {
2884       CallNode *alloc = n->as_Call();
2885       // copy escape information to call node
2886       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2887       PointsToNode::EscapeState es = ptn->escape_state();
2888       // We have an allocation or call which returns a Java object,
2889       // see if it is unescaped.
2890       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2891         continue;
2892       // Find CheckCastPP for the allocate or for the return value of a call
2893       n = alloc->result_cast();
2894       if (n == NULL) {            // No uses except Initialize node
2895         if (alloc->is_Allocate()) {
2896           // Set the scalar_replaceable flag for allocation
2897           // so it could be eliminated if it has no uses.
2898           alloc->as_Allocate()->_is_scalar_replaceable = true;
2899         }
2900         if (alloc->is_CallStaticJava()) {
2901           // Set the scalar_replaceable flag for boxing method
2902           // so it could be eliminated if it has no uses.
2903           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2904         }
2905         continue;
2906       }
2907       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2908         assert(!alloc->is_Allocate(), "allocation should have unique type");
2909         continue;
2910       }
2911 
2912       // The inline code for Object.clone() casts the allocation result to
2913       // java.lang.Object and then to the actual type of the allocated
2914       // object. Detect this case and use the second cast.
2915       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2916       // the allocation result is cast to java.lang.Object and then
2917       // to the actual Array type.
2918       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2919           && (alloc->is_AllocateArray() ||
2920               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2921         Node *cast2 = NULL;
2922         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2923           Node *use = n->fast_out(i);
2924           if (use->is_CheckCastPP()) {
2925             cast2 = use;
2926             break;
2927           }
2928         }
2929         if (cast2 != NULL) {
2930           n = cast2;
2931         } else {
2932           // Non-scalar replaceable if the allocation type is unknown statically
2933           // (reflection allocation), the object can't be restored during
2934           // deoptimization without precise type.
2935           continue;
2936         }
2937       }
2938 
2939       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2940       if (t == NULL)
2941         continue;  // not a TypeOopPtr
2942       if (!t->klass_is_exact())
2943         continue; // not an unique type
2944 
2945       if (alloc->is_Allocate()) {
2946         // Set the scalar_replaceable flag for allocation
2947         // so it could be eliminated.
2948         alloc->as_Allocate()->_is_scalar_replaceable = true;
2949       }
2950       if (alloc->is_CallStaticJava()) {
2951         // Set the scalar_replaceable flag for boxing method
2952         // so it could be eliminated.
2953         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2954       }
2955       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2956       // in order for an object to be scalar-replaceable, it must be:
2957       //   - a direct allocation (not a call returning an object)
2958       //   - non-escaping
2959       //   - eligible to be a unique type
2960       //   - not determined to be ineligible by escape analysis
2961       set_map(alloc, n);
2962       set_map(n, alloc);
2963       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2964       igvn->hash_delete(n);
2965       igvn->set_type(n,  tinst);
2966       n->raise_bottom_type(tinst);
2967       igvn->hash_insert(n);
2968       record_for_optimizer(n);
2969       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2970 
2971         // First, put on the worklist all Field edges from Connection Graph
2972         // which is more accurate than putting immediate users from Ideal Graph.
2973         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2974           PointsToNode* tgt = e.get();
2975           if (tgt->is_Arraycopy()) {
2976             continue;
2977           }
2978           Node* use = tgt->ideal_node();
2979           assert(tgt->is_Field() && use->is_AddP(),
2980                  "only AddP nodes are Field edges in CG");
2981           if (use->outcnt() > 0) { // Don't process dead nodes
2982             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2983             if (addp2 != NULL) {
2984               assert(alloc->is_AllocateArray(),"array allocation was expected");
2985               alloc_worklist.append_if_missing(addp2);
2986             }
2987             alloc_worklist.append_if_missing(use);
2988           }
2989         }
2990 
2991         // An allocation may have an Initialize which has raw stores. Scan
2992         // the users of the raw allocation result and push AddP users
2993         // on alloc_worklist.
2994         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2995         assert (raw_result != NULL, "must have an allocation result");
2996         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2997           Node *use = raw_result->fast_out(i);
2998           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2999             Node* addp2 = find_second_addp(use, raw_result);
3000             if (addp2 != NULL) {
3001               assert(alloc->is_AllocateArray(),"array allocation was expected");
3002               alloc_worklist.append_if_missing(addp2);
3003             }
3004             alloc_worklist.append_if_missing(use);
3005           } else if (use->is_MemBar()) {
3006             memnode_worklist.append_if_missing(use);
3007           }
3008         }
3009       }
3010     } else if (n->is_AddP()) {
3011       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3012       if (jobj == NULL || jobj == phantom_obj) {
3013 #ifdef ASSERT
3014         ptnode_adr(get_addp_base(n)->_idx)->dump();
3015         ptnode_adr(n->_idx)->dump();
3016         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3017 #endif
3018         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3019         return;
3020       }
3021       Node *base = get_map(jobj->idx());  // CheckCastPP node
3022       if (!split_AddP(n, base)) continue; // wrong type from dead path
3023     } else if (n->is_Phi() ||
3024                n->is_CheckCastPP() ||
3025                n->is_EncodeP() ||
3026                n->is_DecodeN() ||
3027                n->is_ShenandoahBarrier() ||
3028                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3029       if (visited.test_set(n->_idx)) {
3030         assert(n->is_Phi(), "loops only through Phi's");
3031         continue;  // already processed
3032       }
3033       JavaObjectNode* jobj = unique_java_object(n);
3034       if (jobj == NULL || jobj == phantom_obj) {
3035 #ifdef ASSERT
3036         ptnode_adr(n->_idx)->dump();
3037         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3038 #endif
3039         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3040         return;
3041       } else {
3042         Node *val = get_map(jobj->idx());   // CheckCastPP node
3043         TypeNode *tn = n->as_Type();
3044         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3045         assert(tinst != NULL && tinst->is_known_instance() &&
3046                tinst->instance_id() == jobj->idx() , "instance type expected.");
3047 
3048         const Type *tn_type = igvn->type(tn);
3049         const TypeOopPtr *tn_t;
3050         if (tn_type->isa_narrowoop()) {
3051           tn_t = tn_type->make_ptr()->isa_oopptr();
3052         } else {
3053           tn_t = tn_type->isa_oopptr();
3054         }
3055         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3056           if (tn_type->isa_narrowoop()) {
3057             tn_type = tinst->make_narrowoop();
3058           } else {
3059             tn_type = tinst;
3060           }
3061           igvn->hash_delete(tn);
3062           igvn->set_type(tn, tn_type);
3063           tn->set_type(tn_type);
3064           igvn->hash_insert(tn);
3065           record_for_optimizer(n);
3066         } else {
3067           assert(tn_type == TypePtr::NULL_PTR ||
3068                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3069                  "unexpected type");
3070           continue; // Skip dead path with different type
3071         }
3072       }
3073     } else {
3074       debug_only(n->dump();)
3075       assert(false, "EA: unexpected node");
3076       continue;
3077     }
3078     // push allocation's users on appropriate worklist
3079     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3080       Node *use = n->fast_out(i);
3081       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3082         // Load/store to instance's field
3083         memnode_worklist.append_if_missing(use);
3084       } else if (use->is_MemBar()) {
3085         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3086           memnode_worklist.append_if_missing(use);
3087         }
3088       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3089         Node* addp2 = find_second_addp(use, n);
3090         if (addp2 != NULL) {
3091           alloc_worklist.append_if_missing(addp2);
3092         }
3093         alloc_worklist.append_if_missing(use);
3094       } else if (use->is_Phi() ||
3095                  use->is_CheckCastPP() ||
3096                  use->is_EncodeNarrowPtr() ||
3097                  use->is_DecodeNarrowPtr() ||
3098                  use->is_ShenandoahBarrier() ||
3099                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3100         alloc_worklist.append_if_missing(use);
3101 #ifdef ASSERT
3102       } else if (use->is_Mem()) {
3103         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3104       } else if (use->is_MergeMem()) {
3105         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3106       } else if (use->is_SafePoint()) {
3107         // Look for MergeMem nodes for calls which reference unique allocation
3108         // (through CheckCastPP nodes) even for debug info.
3109         Node* m = use->in(TypeFunc::Memory);
3110         if (m->is_MergeMem()) {
3111           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3112         }
3113       } else if (use->Opcode() == Op_EncodeISOArray) {
3114         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3115           // EncodeISOArray overwrites destination array
3116           memnode_worklist.append_if_missing(use);
3117         }
3118       } else {
3119         uint op = use->Opcode();
3120         if (!(op == Op_CmpP || op == Op_Conv2B ||
3121               op == Op_CastP2X || op == Op_StoreCM ||
3122               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3123               op == Op_StrEquals || op == Op_StrIndexOf ||
3124               op == Op_ShenandoahWBMemProj)) {
3125           n->dump();
3126           use->dump();
3127           assert(false, "EA: missing allocation reference path");
3128         }
3129 #endif
3130       }
3131     }
3132 
3133   }
3134 
3135   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3136   // type, record it in the ArrayCopy node so we know what memory this
3137   // node uses/modified.
3138   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3139     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3140     Node* dest = ac->in(ArrayCopyNode::Dest);
3141     if (dest->is_AddP()) {
3142       dest = get_addp_base(dest);
3143     }
3144     JavaObjectNode* jobj = unique_java_object(dest);
3145     if (jobj != NULL) {
3146       Node *base = get_map(jobj->idx());
3147       if (base != NULL) {
3148         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3149         ac->_dest_type = base_t;
3150       }
3151     }
3152     Node* src = ac->in(ArrayCopyNode::Src);
3153     if (src->is_AddP()) {
3154       src = get_addp_base(src);
3155     }
3156     jobj = unique_java_object(src);
3157     if (jobj != NULL) {
3158       Node* base = get_map(jobj->idx());
3159       if (base != NULL) {
3160         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3161         ac->_src_type = base_t;
3162       }
3163     }
3164   }
3165 
3166   // New alias types were created in split_AddP().
3167   uint new_index_end = (uint) _compile->num_alias_types();
3168   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3169 
3170   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3171   //            compute new values for Memory inputs  (the Memory inputs are not
3172   //            actually updated until phase 4.)
3173   if (memnode_worklist.length() == 0)
3174     return;  // nothing to do
3175   while (memnode_worklist.length() != 0) {
3176     Node *n = memnode_worklist.pop();
3177     if (visited.test_set(n->_idx))
3178       continue;
3179     if (n->is_Phi() || n->is_ClearArray()) {
3180       // we don't need to do anything, but the users must be pushed
3181     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3182       // we don't need to do anything, but the users must be pushed
3183       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3184       if (n == NULL)
3185         continue;
3186     } else if (n->Opcode() == Op_EncodeISOArray) {
3187       // get the memory projection
3188       n = n->find_out_with(Op_SCMemProj);
3189       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3190     } else {
3191       assert(n->is_Mem(), "memory node required.");
3192       Node *addr = n->in(MemNode::Address);
3193       const Type *addr_t = igvn->type(addr);
3194       if (addr_t == Type::TOP)
3195         continue;
3196       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3197       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3198       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3199       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3200       if (_compile->failing()) {
3201         return;
3202       }
3203       if (mem != n->in(MemNode::Memory)) {
3204         // We delay the memory edge update since we need old one in
3205         // MergeMem code below when instances memory slices are separated.
3206         set_map(n, mem);
3207       }
3208       if (n->is_Load()) {
3209         continue;  // don't push users
3210       } else if (n->is_LoadStore()) {
3211         // get the memory projection
3212         n = n->find_out_with(Op_SCMemProj);
3213         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3214       }
3215     }
3216     // push user on appropriate worklist
3217     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3218       Node *use = n->fast_out(i);
3219       if (use->is_Phi() || use->is_ClearArray()) {
3220         memnode_worklist.append_if_missing(use);
3221       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3222         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3223           continue;
3224         memnode_worklist.append_if_missing(use);
3225       } else if (use->is_MemBar()) {
3226         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3227           memnode_worklist.append_if_missing(use);
3228         }
3229 #ifdef ASSERT
3230       } else if(use->is_Mem()) {
3231         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3232       } else if (use->is_MergeMem()) {
3233         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3234       } else if (use->Opcode() == Op_EncodeISOArray) {
3235         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3236           // EncodeISOArray overwrites destination array
3237           memnode_worklist.append_if_missing(use);
3238         }
3239       } else {
3240         uint op = use->Opcode();
3241         if (!(op == Op_StoreCM ||
3242               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3243                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3244               op == Op_AryEq || op == Op_StrComp ||
3245               op == Op_StrEquals || op == Op_StrIndexOf)) {
3246           n->dump();
3247           use->dump();
3248           assert(false, "EA: missing memory path");
3249         }
3250 #endif
3251       }
3252     }
3253   }
3254 
3255   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3256   //            Walk each memory slice moving the first node encountered of each
3257   //            instance type to the the input corresponding to its alias index.
3258   uint length = _mergemem_worklist.length();
3259   for( uint next = 0; next < length; ++next ) {
3260     MergeMemNode* nmm = _mergemem_worklist.at(next);
3261     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3262     // Note: we don't want to use MergeMemStream here because we only want to
3263     // scan inputs which exist at the start, not ones we add during processing.
3264     // Note 2: MergeMem may already contains instance memory slices added
3265     // during find_inst_mem() call when memory nodes were processed above.
3266     igvn->hash_delete(nmm);
3267     uint nslices = MIN2(nmm->req(), new_index_start);
3268     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3269       Node* mem = nmm->in(i);
3270       Node* cur = NULL;
3271       if (mem == NULL || mem->is_top())
3272         continue;
3273       // First, update mergemem by moving memory nodes to corresponding slices
3274       // if their type became more precise since this mergemem was created.
3275       while (mem->is_Mem()) {
3276         const Type *at = igvn->type(mem->in(MemNode::Address));
3277         if (at != Type::TOP) {
3278           assert (at->isa_ptr() != NULL, "pointer type required.");
3279           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3280           if (idx == i) {
3281             if (cur == NULL)
3282               cur = mem;
3283           } else {
3284             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3285               nmm->set_memory_at(idx, mem);
3286             }
3287           }
3288         }
3289         mem = mem->in(MemNode::Memory);
3290       }
3291       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3292       // Find any instance of the current type if we haven't encountered
3293       // already a memory slice of the instance along the memory chain.
3294       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3295         if((uint)_compile->get_general_index(ni) == i) {
3296           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3297           if (nmm->is_empty_memory(m)) {
3298             Node* result = find_inst_mem(mem, ni, orig_phis);
3299             if (_compile->failing()) {
3300               return;
3301             }
3302             nmm->set_memory_at(ni, result);
3303           }
3304         }
3305       }
3306     }
3307     // Find the rest of instances values
3308     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3309       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3310       Node* result = step_through_mergemem(nmm, ni, tinst);
3311       if (result == nmm->base_memory()) {
3312         // Didn't find instance memory, search through general slice recursively.
3313         result = nmm->memory_at(_compile->get_general_index(ni));
3314         result = find_inst_mem(result, ni, orig_phis);
3315         if (_compile->failing()) {
3316           return;
3317         }
3318         nmm->set_memory_at(ni, result);
3319       }
3320     }
3321     igvn->hash_insert(nmm);
3322     record_for_optimizer(nmm);
3323   }
3324 
3325   //  Phase 4:  Update the inputs of non-instance memory Phis and
3326   //            the Memory input of memnodes
3327   // First update the inputs of any non-instance Phi's from
3328   // which we split out an instance Phi.  Note we don't have
3329   // to recursively process Phi's encounted on the input memory
3330   // chains as is done in split_memory_phi() since they  will
3331   // also be processed here.
3332   for (int j = 0; j < orig_phis.length(); j++) {
3333     PhiNode *phi = orig_phis.at(j);
3334     int alias_idx = _compile->get_alias_index(phi->adr_type());
3335     igvn->hash_delete(phi);
3336     for (uint i = 1; i < phi->req(); i++) {
3337       Node *mem = phi->in(i);
3338       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3339       if (_compile->failing()) {
3340         return;
3341       }
3342       if (mem != new_mem) {
3343         phi->set_req(i, new_mem);
3344       }
3345     }
3346     igvn->hash_insert(phi);
3347     record_for_optimizer(phi);
3348   }
3349 
3350   // Update the memory inputs of MemNodes with the value we computed
3351   // in Phase 2 and move stores memory users to corresponding memory slices.
3352   // Disable memory split verification code until the fix for 6984348.
3353   // Currently it produces false negative results since it does not cover all cases.
3354 #if 0 // ifdef ASSERT
3355   visited.Reset();
3356   Node_Stack old_mems(arena, _compile->unique() >> 2);
3357 #endif
3358   for (uint i = 0; i < ideal_nodes.size(); i++) {
3359     Node*    n = ideal_nodes.at(i);
3360     Node* nmem = get_map(n->_idx);
3361     assert(nmem != NULL, "sanity");
3362     if (n->is_Mem()) {
3363 #if 0 // ifdef ASSERT
3364       Node* old_mem = n->in(MemNode::Memory);
3365       if (!visited.test_set(old_mem->_idx)) {
3366         old_mems.push(old_mem, old_mem->outcnt());
3367       }
3368 #endif
3369       assert(n->in(MemNode::Memory) != nmem, "sanity");
3370       if (!n->is_Load()) {
3371         // Move memory users of a store first.
3372         move_inst_mem(n, orig_phis);
3373       }
3374       // Now update memory input
3375       igvn->hash_delete(n);
3376       n->set_req(MemNode::Memory, nmem);
3377       igvn->hash_insert(n);
3378       record_for_optimizer(n);
3379     } else {
3380       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3381              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3382     }
3383   }
3384 #if 0 // ifdef ASSERT
3385   // Verify that memory was split correctly
3386   while (old_mems.is_nonempty()) {
3387     Node* old_mem = old_mems.node();
3388     uint  old_cnt = old_mems.index();
3389     old_mems.pop();
3390     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3391   }
3392 #endif
3393 }
3394 
3395 #ifndef PRODUCT
3396 static const char *node_type_names[] = {
3397   "UnknownType",
3398   "JavaObject",
3399   "LocalVar",
3400   "Field",
3401   "Arraycopy"
3402 };
3403 
3404 static const char *esc_names[] = {
3405   "UnknownEscape",
3406   "NoEscape",
3407   "ArgEscape",
3408   "GlobalEscape"
3409 };
3410 
3411 void PointsToNode::dump(bool print_state) const {
3412   NodeType nt = node_type();
3413   tty->print("%s ", node_type_names[(int) nt]);
3414   if (print_state) {
3415     EscapeState es = escape_state();
3416     EscapeState fields_es = fields_escape_state();
3417     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3418     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3419       tty->print("NSR ");
3420   }
3421   if (is_Field()) {
3422     FieldNode* f = (FieldNode*)this;
3423     if (f->is_oop())
3424       tty->print("oop ");
3425     if (f->offset() > 0)
3426       tty->print("+%d ", f->offset());
3427     tty->print("(");
3428     for (BaseIterator i(f); i.has_next(); i.next()) {
3429       PointsToNode* b = i.get();
3430       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3431     }
3432     tty->print(" )");
3433   }
3434   tty->print("[");
3435   for (EdgeIterator i(this); i.has_next(); i.next()) {
3436     PointsToNode* e = i.get();
3437     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3438   }
3439   tty->print(" [");
3440   for (UseIterator i(this); i.has_next(); i.next()) {
3441     PointsToNode* u = i.get();
3442     bool is_base = false;
3443     if (PointsToNode::is_base_use(u)) {
3444       is_base = true;
3445       u = PointsToNode::get_use_node(u)->as_Field();
3446     }
3447     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3448   }
3449   tty->print(" ]]  ");
3450   if (_node == NULL)
3451     tty->print_cr("<null>");
3452   else
3453     _node->dump();
3454 }
3455 
3456 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3457   bool first = true;
3458   int ptnodes_length = ptnodes_worklist.length();
3459   for (int i = 0; i < ptnodes_length; i++) {
3460     PointsToNode *ptn = ptnodes_worklist.at(i);
3461     if (ptn == NULL || !ptn->is_JavaObject())
3462       continue;
3463     PointsToNode::EscapeState es = ptn->escape_state();
3464     if ((es != PointsToNode::NoEscape) && !Verbose) {
3465       continue;
3466     }
3467     Node* n = ptn->ideal_node();
3468     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3469                              n->as_CallStaticJava()->is_boxing_method())) {
3470       if (first) {
3471         tty->cr();
3472         tty->print("======== Connection graph for ");
3473         _compile->method()->print_short_name();
3474         tty->cr();
3475         first = false;
3476       }
3477       ptn->dump();
3478       // Print all locals and fields which reference this allocation
3479       for (UseIterator j(ptn); j.has_next(); j.next()) {
3480         PointsToNode* use = j.get();
3481         if (use->is_LocalVar()) {
3482           use->dump(Verbose);
3483         } else if (Verbose) {
3484           use->dump();
3485         }
3486       }
3487       tty->cr();
3488     }
3489   }
3490 }
3491 #endif