1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc/g1/heapRegion.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/cardTableModRefBS.hpp"
  31 #include "gc/shared/collectedHeap.hpp"
  32 #include "gc/shenandoah/brooksPointer.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/graphKit.hpp"
  37 #include "opto/idealKit.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/opaquenode.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/shenandoahSupport.hpp"
  46 #include "runtime/deoptimization.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 
  49 //----------------------------GraphKit-----------------------------------------
  50 // Main utility constructor.
  51 GraphKit::GraphKit(JVMState* jvms)
  52   : Phase(Phase::Parser),
  53     _env(C->env()),
  54     _gvn(*C->initial_gvn())
  55 {
  56   _exceptions = jvms->map()->next_exception();
  57   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  58   set_jvms(jvms);
  59 }
  60 
  61 // Private constructor for parser.
  62 GraphKit::GraphKit()
  63   : Phase(Phase::Parser),
  64     _env(C->env()),
  65     _gvn(*C->initial_gvn())
  66 {
  67   _exceptions = NULL;
  68   set_map(NULL);
  69   debug_only(_sp = -99);
  70   debug_only(set_bci(-99));
  71 }
  72 
  73 
  74 
  75 //---------------------------clean_stack---------------------------------------
  76 // Clear away rubbish from the stack area of the JVM state.
  77 // This destroys any arguments that may be waiting on the stack.
  78 void GraphKit::clean_stack(int from_sp) {
  79   SafePointNode* map      = this->map();
  80   JVMState*      jvms     = this->jvms();
  81   int            stk_size = jvms->stk_size();
  82   int            stkoff   = jvms->stkoff();
  83   Node*          top      = this->top();
  84   for (int i = from_sp; i < stk_size; i++) {
  85     if (map->in(stkoff + i) != top) {
  86       map->set_req(stkoff + i, top);
  87     }
  88   }
  89 }
  90 
  91 
  92 //--------------------------------sync_jvms-----------------------------------
  93 // Make sure our current jvms agrees with our parse state.
  94 JVMState* GraphKit::sync_jvms() const {
  95   JVMState* jvms = this->jvms();
  96   jvms->set_bci(bci());       // Record the new bci in the JVMState
  97   jvms->set_sp(sp());         // Record the new sp in the JVMState
  98   assert(jvms_in_sync(), "jvms is now in sync");
  99   return jvms;
 100 }
 101 
 102 //--------------------------------sync_jvms_for_reexecute---------------------
 103 // Make sure our current jvms agrees with our parse state.  This version
 104 // uses the reexecute_sp for reexecuting bytecodes.
 105 JVMState* GraphKit::sync_jvms_for_reexecute() {
 106   JVMState* jvms = this->jvms();
 107   jvms->set_bci(bci());          // Record the new bci in the JVMState
 108   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 109   return jvms;
 110 }
 111 
 112 #ifdef ASSERT
 113 bool GraphKit::jvms_in_sync() const {
 114   Parse* parse = is_Parse();
 115   if (parse == NULL) {
 116     if (bci() !=      jvms()->bci())          return false;
 117     if (sp()  != (int)jvms()->sp())           return false;
 118     return true;
 119   }
 120   if (jvms()->method() != parse->method())    return false;
 121   if (jvms()->bci()    != parse->bci())       return false;
 122   int jvms_sp = jvms()->sp();
 123   if (jvms_sp          != parse->sp())        return false;
 124   int jvms_depth = jvms()->depth();
 125   if (jvms_depth       != parse->depth())     return false;
 126   return true;
 127 }
 128 
 129 // Local helper checks for special internal merge points
 130 // used to accumulate and merge exception states.
 131 // They are marked by the region's in(0) edge being the map itself.
 132 // Such merge points must never "escape" into the parser at large,
 133 // until they have been handed to gvn.transform.
 134 static bool is_hidden_merge(Node* reg) {
 135   if (reg == NULL)  return false;
 136   if (reg->is_Phi()) {
 137     reg = reg->in(0);
 138     if (reg == NULL)  return false;
 139   }
 140   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 141 }
 142 
 143 void GraphKit::verify_map() const {
 144   if (map() == NULL)  return;  // null map is OK
 145   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 146   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 147   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 148 }
 149 
 150 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 151   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 152   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 153 }
 154 #endif
 155 
 156 //---------------------------stop_and_kill_map---------------------------------
 157 // Set _map to NULL, signalling a stop to further bytecode execution.
 158 // First smash the current map's control to a constant, to mark it dead.
 159 void GraphKit::stop_and_kill_map() {
 160   SafePointNode* dead_map = stop();
 161   if (dead_map != NULL) {
 162     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 163     assert(dead_map->is_killed(), "must be so marked");
 164   }
 165 }
 166 
 167 
 168 //--------------------------------stopped--------------------------------------
 169 // Tell if _map is NULL, or control is top.
 170 bool GraphKit::stopped() {
 171   if (map() == NULL)           return true;
 172   else if (control() == top()) return true;
 173   else                         return false;
 174 }
 175 
 176 
 177 //-----------------------------has_ex_handler----------------------------------
 178 // Tell if this method or any caller method has exception handlers.
 179 bool GraphKit::has_ex_handler() {
 180   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 181     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 182       return true;
 183     }
 184   }
 185   return false;
 186 }
 187 
 188 //------------------------------save_ex_oop------------------------------------
 189 // Save an exception without blowing stack contents or other JVM state.
 190 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 191   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 192   ex_map->add_req(ex_oop);
 193   debug_only(verify_exception_state(ex_map));
 194 }
 195 
 196 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 197   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 198   Node* ex_oop = ex_map->in(ex_map->req()-1);
 199   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 200   return ex_oop;
 201 }
 202 
 203 //-----------------------------saved_ex_oop------------------------------------
 204 // Recover a saved exception from its map.
 205 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 206   return common_saved_ex_oop(ex_map, false);
 207 }
 208 
 209 //--------------------------clear_saved_ex_oop---------------------------------
 210 // Erase a previously saved exception from its map.
 211 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 212   return common_saved_ex_oop(ex_map, true);
 213 }
 214 
 215 #ifdef ASSERT
 216 //---------------------------has_saved_ex_oop----------------------------------
 217 // Erase a previously saved exception from its map.
 218 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 219   return ex_map->req() == ex_map->jvms()->endoff()+1;
 220 }
 221 #endif
 222 
 223 //-------------------------make_exception_state--------------------------------
 224 // Turn the current JVM state into an exception state, appending the ex_oop.
 225 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 226   sync_jvms();
 227   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 228   set_saved_ex_oop(ex_map, ex_oop);
 229   return ex_map;
 230 }
 231 
 232 
 233 //--------------------------add_exception_state--------------------------------
 234 // Add an exception to my list of exceptions.
 235 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 236   if (ex_map == NULL || ex_map->control() == top()) {
 237     return;
 238   }
 239 #ifdef ASSERT
 240   verify_exception_state(ex_map);
 241   if (has_exceptions()) {
 242     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 243   }
 244 #endif
 245 
 246   // If there is already an exception of exactly this type, merge with it.
 247   // In particular, null-checks and other low-level exceptions common up here.
 248   Node*       ex_oop  = saved_ex_oop(ex_map);
 249   const Type* ex_type = _gvn.type(ex_oop);
 250   if (ex_oop == top()) {
 251     // No action needed.
 252     return;
 253   }
 254   assert(ex_type->isa_instptr(), "exception must be an instance");
 255   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 256     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 257     // We check sp also because call bytecodes can generate exceptions
 258     // both before and after arguments are popped!
 259     if (ex_type2 == ex_type
 260         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 261       combine_exception_states(ex_map, e2);
 262       return;
 263     }
 264   }
 265 
 266   // No pre-existing exception of the same type.  Chain it on the list.
 267   push_exception_state(ex_map);
 268 }
 269 
 270 //-----------------------add_exception_states_from-----------------------------
 271 void GraphKit::add_exception_states_from(JVMState* jvms) {
 272   SafePointNode* ex_map = jvms->map()->next_exception();
 273   if (ex_map != NULL) {
 274     jvms->map()->set_next_exception(NULL);
 275     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 276       next_map = ex_map->next_exception();
 277       ex_map->set_next_exception(NULL);
 278       add_exception_state(ex_map);
 279     }
 280   }
 281 }
 282 
 283 //-----------------------transfer_exceptions_into_jvms-------------------------
 284 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 285   if (map() == NULL) {
 286     // We need a JVMS to carry the exceptions, but the map has gone away.
 287     // Create a scratch JVMS, cloned from any of the exception states...
 288     if (has_exceptions()) {
 289       _map = _exceptions;
 290       _map = clone_map();
 291       _map->set_next_exception(NULL);
 292       clear_saved_ex_oop(_map);
 293       debug_only(verify_map());
 294     } else {
 295       // ...or created from scratch
 296       JVMState* jvms = new (C) JVMState(_method, NULL);
 297       jvms->set_bci(_bci);
 298       jvms->set_sp(_sp);
 299       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 300       set_jvms(jvms);
 301       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 302       set_all_memory(top());
 303       while (map()->req() < jvms->endoff())  map()->add_req(top());
 304     }
 305     // (This is a kludge, in case you didn't notice.)
 306     set_control(top());
 307   }
 308   JVMState* jvms = sync_jvms();
 309   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 310   jvms->map()->set_next_exception(_exceptions);
 311   _exceptions = NULL;   // done with this set of exceptions
 312   return jvms;
 313 }
 314 
 315 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 316   assert(is_hidden_merge(dstphi), "must be a special merge node");
 317   assert(is_hidden_merge(srcphi), "must be a special merge node");
 318   uint limit = srcphi->req();
 319   for (uint i = PhiNode::Input; i < limit; i++) {
 320     dstphi->add_req(srcphi->in(i));
 321   }
 322 }
 323 static inline void add_one_req(Node* dstphi, Node* src) {
 324   assert(is_hidden_merge(dstphi), "must be a special merge node");
 325   assert(!is_hidden_merge(src), "must not be a special merge node");
 326   dstphi->add_req(src);
 327 }
 328 
 329 //-----------------------combine_exception_states------------------------------
 330 // This helper function combines exception states by building phis on a
 331 // specially marked state-merging region.  These regions and phis are
 332 // untransformed, and can build up gradually.  The region is marked by
 333 // having a control input of its exception map, rather than NULL.  Such
 334 // regions do not appear except in this function, and in use_exception_state.
 335 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 336   if (failing())  return;  // dying anyway...
 337   JVMState* ex_jvms = ex_map->_jvms;
 338   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 339   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 340   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 341   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 342   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 343   assert(ex_map->req() == phi_map->req(), "matching maps");
 344   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 345   Node*         hidden_merge_mark = root();
 346   Node*         region  = phi_map->control();
 347   MergeMemNode* phi_mem = phi_map->merged_memory();
 348   MergeMemNode* ex_mem  = ex_map->merged_memory();
 349   if (region->in(0) != hidden_merge_mark) {
 350     // The control input is not (yet) a specially-marked region in phi_map.
 351     // Make it so, and build some phis.
 352     region = new RegionNode(2);
 353     _gvn.set_type(region, Type::CONTROL);
 354     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 355     region->init_req(1, phi_map->control());
 356     phi_map->set_control(region);
 357     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 358     record_for_igvn(io_phi);
 359     _gvn.set_type(io_phi, Type::ABIO);
 360     phi_map->set_i_o(io_phi);
 361     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 362       Node* m = mms.memory();
 363       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 364       record_for_igvn(m_phi);
 365       _gvn.set_type(m_phi, Type::MEMORY);
 366       mms.set_memory(m_phi);
 367     }
 368   }
 369 
 370   // Either or both of phi_map and ex_map might already be converted into phis.
 371   Node* ex_control = ex_map->control();
 372   // if there is special marking on ex_map also, we add multiple edges from src
 373   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 374   // how wide was the destination phi_map, originally?
 375   uint orig_width = region->req();
 376 
 377   if (add_multiple) {
 378     add_n_reqs(region, ex_control);
 379     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 380   } else {
 381     // ex_map has no merges, so we just add single edges everywhere
 382     add_one_req(region, ex_control);
 383     add_one_req(phi_map->i_o(), ex_map->i_o());
 384   }
 385   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 386     if (mms.is_empty()) {
 387       // get a copy of the base memory, and patch some inputs into it
 388       const TypePtr* adr_type = mms.adr_type(C);
 389       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 390       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 391       mms.set_memory(phi);
 392       // Prepare to append interesting stuff onto the newly sliced phi:
 393       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 394     }
 395     // Append stuff from ex_map:
 396     if (add_multiple) {
 397       add_n_reqs(mms.memory(), mms.memory2());
 398     } else {
 399       add_one_req(mms.memory(), mms.memory2());
 400     }
 401   }
 402   uint limit = ex_map->req();
 403   for (uint i = TypeFunc::Parms; i < limit; i++) {
 404     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 405     if (i == tos)  i = ex_jvms->monoff();
 406     Node* src = ex_map->in(i);
 407     Node* dst = phi_map->in(i);
 408     if (src != dst) {
 409       PhiNode* phi;
 410       if (dst->in(0) != region) {
 411         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 412         record_for_igvn(phi);
 413         _gvn.set_type(phi, phi->type());
 414         phi_map->set_req(i, dst);
 415         // Prepare to append interesting stuff onto the new phi:
 416         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 417       } else {
 418         assert(dst->is_Phi(), "nobody else uses a hidden region");
 419         phi = dst->as_Phi();
 420       }
 421       if (add_multiple && src->in(0) == ex_control) {
 422         // Both are phis.
 423         add_n_reqs(dst, src);
 424       } else {
 425         while (dst->req() < region->req())  add_one_req(dst, src);
 426       }
 427       const Type* srctype = _gvn.type(src);
 428       if (phi->type() != srctype) {
 429         const Type* dsttype = phi->type()->meet_speculative(srctype);
 430         if (phi->type() != dsttype) {
 431           phi->set_type(dsttype);
 432           _gvn.set_type(phi, dsttype);
 433         }
 434       }
 435     }
 436   }
 437   phi_map->merge_replaced_nodes_with(ex_map);
 438 }
 439 
 440 //--------------------------use_exception_state--------------------------------
 441 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 442   if (failing()) { stop(); return top(); }
 443   Node* region = phi_map->control();
 444   Node* hidden_merge_mark = root();
 445   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 446   Node* ex_oop = clear_saved_ex_oop(phi_map);
 447   if (region->in(0) == hidden_merge_mark) {
 448     // Special marking for internal ex-states.  Process the phis now.
 449     region->set_req(0, region);  // now it's an ordinary region
 450     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 451     // Note: Setting the jvms also sets the bci and sp.
 452     set_control(_gvn.transform(region));
 453     uint tos = jvms()->stkoff() + sp();
 454     for (uint i = 1; i < tos; i++) {
 455       Node* x = phi_map->in(i);
 456       if (x->in(0) == region) {
 457         assert(x->is_Phi(), "expected a special phi");
 458         phi_map->set_req(i, _gvn.transform(x));
 459       }
 460     }
 461     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 462       Node* x = mms.memory();
 463       if (x->in(0) == region) {
 464         assert(x->is_Phi(), "nobody else uses a hidden region");
 465         mms.set_memory(_gvn.transform(x));
 466       }
 467     }
 468     if (ex_oop->in(0) == region) {
 469       assert(ex_oop->is_Phi(), "expected a special phi");
 470       ex_oop = _gvn.transform(ex_oop);
 471     }
 472   } else {
 473     set_jvms(phi_map->jvms());
 474   }
 475 
 476   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 477   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 478   return ex_oop;
 479 }
 480 
 481 //---------------------------------java_bc-------------------------------------
 482 Bytecodes::Code GraphKit::java_bc() const {
 483   ciMethod* method = this->method();
 484   int       bci    = this->bci();
 485   if (method != NULL && bci != InvocationEntryBci)
 486     return method->java_code_at_bci(bci);
 487   else
 488     return Bytecodes::_illegal;
 489 }
 490 
 491 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 492                                                           bool must_throw) {
 493     // if the exception capability is set, then we will generate code
 494     // to check the JavaThread.should_post_on_exceptions flag to see
 495     // if we actually need to report exception events (for this
 496     // thread).  If we don't need to report exception events, we will
 497     // take the normal fast path provided by add_exception_events.  If
 498     // exception event reporting is enabled for this thread, we will
 499     // take the uncommon_trap in the BuildCutout below.
 500 
 501     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 502     Node* jthread = _gvn.transform(new ThreadLocalNode());
 503     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 504     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 505 
 506     // Test the should_post_on_exceptions_flag vs. 0
 507     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 508     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 509 
 510     // Branch to slow_path if should_post_on_exceptions_flag was true
 511     { BuildCutout unless(this, tst, PROB_MAX);
 512       // Do not try anything fancy if we're notifying the VM on every throw.
 513       // Cf. case Bytecodes::_athrow in parse2.cpp.
 514       uncommon_trap(reason, Deoptimization::Action_none,
 515                     (ciKlass*)NULL, (char*)NULL, must_throw);
 516     }
 517 
 518 }
 519 
 520 //------------------------------builtin_throw----------------------------------
 521 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 522   bool must_throw = true;
 523 
 524   if (env()->jvmti_can_post_on_exceptions()) {
 525     // check if we must post exception events, take uncommon trap if so
 526     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 527     // here if should_post_on_exceptions is false
 528     // continue on with the normal codegen
 529   }
 530 
 531   // If this particular condition has not yet happened at this
 532   // bytecode, then use the uncommon trap mechanism, and allow for
 533   // a future recompilation if several traps occur here.
 534   // If the throw is hot, try to use a more complicated inline mechanism
 535   // which keeps execution inside the compiled code.
 536   bool treat_throw_as_hot = false;
 537   ciMethodData* md = method()->method_data();
 538 
 539   if (ProfileTraps) {
 540     if (too_many_traps(reason)) {
 541       treat_throw_as_hot = true;
 542     }
 543     // (If there is no MDO at all, assume it is early in
 544     // execution, and that any deopts are part of the
 545     // startup transient, and don't need to be remembered.)
 546 
 547     // Also, if there is a local exception handler, treat all throws
 548     // as hot if there has been at least one in this method.
 549     if (C->trap_count(reason) != 0
 550         && method()->method_data()->trap_count(reason) != 0
 551         && has_ex_handler()) {
 552         treat_throw_as_hot = true;
 553     }
 554   }
 555 
 556   // If this throw happens frequently, an uncommon trap might cause
 557   // a performance pothole.  If there is a local exception handler,
 558   // and if this particular bytecode appears to be deoptimizing often,
 559   // let us handle the throw inline, with a preconstructed instance.
 560   // Note:   If the deopt count has blown up, the uncommon trap
 561   // runtime is going to flush this nmethod, not matter what.
 562   if (treat_throw_as_hot
 563       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 564     // If the throw is local, we use a pre-existing instance and
 565     // punt on the backtrace.  This would lead to a missing backtrace
 566     // (a repeat of 4292742) if the backtrace object is ever asked
 567     // for its backtrace.
 568     // Fixing this remaining case of 4292742 requires some flavor of
 569     // escape analysis.  Leave that for the future.
 570     ciInstance* ex_obj = NULL;
 571     switch (reason) {
 572     case Deoptimization::Reason_null_check:
 573       ex_obj = env()->NullPointerException_instance();
 574       break;
 575     case Deoptimization::Reason_div0_check:
 576       ex_obj = env()->ArithmeticException_instance();
 577       break;
 578     case Deoptimization::Reason_range_check:
 579       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 580       break;
 581     case Deoptimization::Reason_class_check:
 582       if (java_bc() == Bytecodes::_aastore) {
 583         ex_obj = env()->ArrayStoreException_instance();
 584       } else {
 585         ex_obj = env()->ClassCastException_instance();
 586       }
 587       break;
 588     }
 589     if (failing()) { stop(); return; }  // exception allocation might fail
 590     if (ex_obj != NULL) {
 591       // Cheat with a preallocated exception object.
 592       if (C->log() != NULL)
 593         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 594                        Deoptimization::trap_reason_name(reason));
 595       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 596       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 597 
 598       // Clear the detail message of the preallocated exception object.
 599       // Weblogic sometimes mutates the detail message of exceptions
 600       // using reflection.
 601       int offset = java_lang_Throwable::get_detailMessage_offset();
 602       const TypePtr* adr_typ = ex_con->add_offset(offset);
 603 
 604       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 605       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 606       // Conservatively release stores of object references.
 607       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 608 
 609       add_exception_state(make_exception_state(ex_node));
 610       return;
 611     }
 612   }
 613 
 614   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 615   // It won't be much cheaper than bailing to the interp., since we'll
 616   // have to pass up all the debug-info, and the runtime will have to
 617   // create the stack trace.
 618 
 619   // Usual case:  Bail to interpreter.
 620   // Reserve the right to recompile if we haven't seen anything yet.
 621 
 622   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 623   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 624   if (treat_throw_as_hot
 625       && (method()->method_data()->trap_recompiled_at(bci(), m)
 626           || C->too_many_traps(reason))) {
 627     // We cannot afford to take more traps here.  Suffer in the interpreter.
 628     if (C->log() != NULL)
 629       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 630                      Deoptimization::trap_reason_name(reason),
 631                      C->trap_count(reason));
 632     action = Deoptimization::Action_none;
 633   }
 634 
 635   // "must_throw" prunes the JVM state to include only the stack, if there
 636   // are no local exception handlers.  This should cut down on register
 637   // allocation time and code size, by drastically reducing the number
 638   // of in-edges on the call to the uncommon trap.
 639 
 640   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 641 }
 642 
 643 
 644 //----------------------------PreserveJVMState---------------------------------
 645 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 646   debug_only(kit->verify_map());
 647   _kit    = kit;
 648   _map    = kit->map();   // preserve the map
 649   _sp     = kit->sp();
 650   kit->set_map(clone_map ? kit->clone_map() : NULL);
 651 #ifdef ASSERT
 652   _bci    = kit->bci();
 653   Parse* parser = kit->is_Parse();
 654   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 655   _block  = block;
 656 #endif
 657 }
 658 PreserveJVMState::~PreserveJVMState() {
 659   GraphKit* kit = _kit;
 660 #ifdef ASSERT
 661   assert(kit->bci() == _bci, "bci must not shift");
 662   Parse* parser = kit->is_Parse();
 663   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 664   assert(block == _block,    "block must not shift");
 665 #endif
 666   kit->set_map(_map);
 667   kit->set_sp(_sp);
 668 }
 669 
 670 
 671 //-----------------------------BuildCutout-------------------------------------
 672 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 673   : PreserveJVMState(kit)
 674 {
 675   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 676   SafePointNode* outer_map = _map;   // preserved map is caller's
 677   SafePointNode* inner_map = kit->map();
 678   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 679   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 680   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 681 }
 682 BuildCutout::~BuildCutout() {
 683   GraphKit* kit = _kit;
 684   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 685 }
 686 
 687 //---------------------------PreserveReexecuteState----------------------------
 688 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 689   assert(!kit->stopped(), "must call stopped() before");
 690   _kit    =    kit;
 691   _sp     =    kit->sp();
 692   _reexecute = kit->jvms()->_reexecute;
 693 }
 694 PreserveReexecuteState::~PreserveReexecuteState() {
 695   if (_kit->stopped()) return;
 696   _kit->jvms()->_reexecute = _reexecute;
 697   _kit->set_sp(_sp);
 698 }
 699 
 700 //------------------------------clone_map--------------------------------------
 701 // Implementation of PreserveJVMState
 702 //
 703 // Only clone_map(...) here. If this function is only used in the
 704 // PreserveJVMState class we may want to get rid of this extra
 705 // function eventually and do it all there.
 706 
 707 SafePointNode* GraphKit::clone_map() {
 708   if (map() == NULL)  return NULL;
 709 
 710   // Clone the memory edge first
 711   Node* mem = MergeMemNode::make(map()->memory());
 712   gvn().set_type_bottom(mem);
 713 
 714   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 715   JVMState* jvms = this->jvms();
 716   JVMState* clonejvms = jvms->clone_shallow(C);
 717   clonemap->set_memory(mem);
 718   clonemap->set_jvms(clonejvms);
 719   clonejvms->set_map(clonemap);
 720   record_for_igvn(clonemap);
 721   gvn().set_type_bottom(clonemap);
 722   return clonemap;
 723 }
 724 
 725 
 726 //-----------------------------set_map_clone-----------------------------------
 727 void GraphKit::set_map_clone(SafePointNode* m) {
 728   _map = m;
 729   _map = clone_map();
 730   _map->set_next_exception(NULL);
 731   debug_only(verify_map());
 732 }
 733 
 734 
 735 //----------------------------kill_dead_locals---------------------------------
 736 // Detect any locals which are known to be dead, and force them to top.
 737 void GraphKit::kill_dead_locals() {
 738   // Consult the liveness information for the locals.  If any
 739   // of them are unused, then they can be replaced by top().  This
 740   // should help register allocation time and cut down on the size
 741   // of the deoptimization information.
 742 
 743   // This call is made from many of the bytecode handling
 744   // subroutines called from the Big Switch in do_one_bytecode.
 745   // Every bytecode which might include a slow path is responsible
 746   // for killing its dead locals.  The more consistent we
 747   // are about killing deads, the fewer useless phis will be
 748   // constructed for them at various merge points.
 749 
 750   // bci can be -1 (InvocationEntryBci).  We return the entry
 751   // liveness for the method.
 752 
 753   if (method() == NULL || method()->code_size() == 0) {
 754     // We are building a graph for a call to a native method.
 755     // All locals are live.
 756     return;
 757   }
 758 
 759   ResourceMark rm;
 760 
 761   // Consult the liveness information for the locals.  If any
 762   // of them are unused, then they can be replaced by top().  This
 763   // should help register allocation time and cut down on the size
 764   // of the deoptimization information.
 765   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 766 
 767   int len = (int)live_locals.size();
 768   assert(len <= jvms()->loc_size(), "too many live locals");
 769   for (int local = 0; local < len; local++) {
 770     if (!live_locals.at(local)) {
 771       set_local(local, top());
 772     }
 773   }
 774 }
 775 
 776 #ifdef ASSERT
 777 //-------------------------dead_locals_are_killed------------------------------
 778 // Return true if all dead locals are set to top in the map.
 779 // Used to assert "clean" debug info at various points.
 780 bool GraphKit::dead_locals_are_killed() {
 781   if (method() == NULL || method()->code_size() == 0) {
 782     // No locals need to be dead, so all is as it should be.
 783     return true;
 784   }
 785 
 786   // Make sure somebody called kill_dead_locals upstream.
 787   ResourceMark rm;
 788   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 789     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 790     SafePointNode* map = jvms->map();
 791     ciMethod* method = jvms->method();
 792     int       bci    = jvms->bci();
 793     if (jvms == this->jvms()) {
 794       bci = this->bci();  // it might not yet be synched
 795     }
 796     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 797     int len = (int)live_locals.size();
 798     if (!live_locals.is_valid() || len == 0)
 799       // This method is trivial, or is poisoned by a breakpoint.
 800       return true;
 801     assert(len == jvms->loc_size(), "live map consistent with locals map");
 802     for (int local = 0; local < len; local++) {
 803       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 804         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 805           tty->print_cr("Zombie local %d: ", local);
 806           jvms->dump();
 807         }
 808         return false;
 809       }
 810     }
 811   }
 812   return true;
 813 }
 814 
 815 #endif //ASSERT
 816 
 817 // Helper function for enforcing certain bytecodes to reexecute if
 818 // deoptimization happens
 819 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 820   ciMethod* cur_method = jvms->method();
 821   int       cur_bci   = jvms->bci();
 822   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 823     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 824     return Interpreter::bytecode_should_reexecute(code) ||
 825            is_anewarray && code == Bytecodes::_multianewarray;
 826     // Reexecute _multianewarray bytecode which was replaced with
 827     // sequence of [a]newarray. See Parse::do_multianewarray().
 828     //
 829     // Note: interpreter should not have it set since this optimization
 830     // is limited by dimensions and guarded by flag so in some cases
 831     // multianewarray() runtime calls will be generated and
 832     // the bytecode should not be reexecutes (stack will not be reset).
 833   } else
 834     return false;
 835 }
 836 
 837 // Helper function for adding JVMState and debug information to node
 838 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 839   // Add the safepoint edges to the call (or other safepoint).
 840 
 841   // Make sure dead locals are set to top.  This
 842   // should help register allocation time and cut down on the size
 843   // of the deoptimization information.
 844   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 845 
 846   // Walk the inline list to fill in the correct set of JVMState's
 847   // Also fill in the associated edges for each JVMState.
 848 
 849   // If the bytecode needs to be reexecuted we need to put
 850   // the arguments back on the stack.
 851   const bool should_reexecute = jvms()->should_reexecute();
 852   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 853 
 854   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 855   // undefined if the bci is different.  This is normal for Parse but it
 856   // should not happen for LibraryCallKit because only one bci is processed.
 857   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 858          "in LibraryCallKit the reexecute bit should not change");
 859 
 860   // If we are guaranteed to throw, we can prune everything but the
 861   // input to the current bytecode.
 862   bool can_prune_locals = false;
 863   uint stack_slots_not_pruned = 0;
 864   int inputs = 0, depth = 0;
 865   if (must_throw) {
 866     assert(method() == youngest_jvms->method(), "sanity");
 867     if (compute_stack_effects(inputs, depth)) {
 868       can_prune_locals = true;
 869       stack_slots_not_pruned = inputs;
 870     }
 871   }
 872 
 873   if (env()->should_retain_local_variables()) {
 874     // At any safepoint, this method can get breakpointed, which would
 875     // then require an immediate deoptimization.
 876     can_prune_locals = false;  // do not prune locals
 877     stack_slots_not_pruned = 0;
 878   }
 879 
 880   // do not scribble on the input jvms
 881   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 882   call->set_jvms(out_jvms); // Start jvms list for call node
 883 
 884   // For a known set of bytecodes, the interpreter should reexecute them if
 885   // deoptimization happens. We set the reexecute state for them here
 886   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 887       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 888     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 889   }
 890 
 891   // Presize the call:
 892   DEBUG_ONLY(uint non_debug_edges = call->req());
 893   call->add_req_batch(top(), youngest_jvms->debug_depth());
 894   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 895 
 896   // Set up edges so that the call looks like this:
 897   //  Call [state:] ctl io mem fptr retadr
 898   //       [parms:] parm0 ... parmN
 899   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 900   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 901   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 902   // Note that caller debug info precedes callee debug info.
 903 
 904   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 905   uint debug_ptr = call->req();
 906 
 907   // Loop over the map input edges associated with jvms, add them
 908   // to the call node, & reset all offsets to match call node array.
 909   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 910     uint debug_end   = debug_ptr;
 911     uint debug_start = debug_ptr - in_jvms->debug_size();
 912     debug_ptr = debug_start;  // back up the ptr
 913 
 914     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 915     uint j, k, l;
 916     SafePointNode* in_map = in_jvms->map();
 917     out_jvms->set_map(call);
 918 
 919     if (can_prune_locals) {
 920       assert(in_jvms->method() == out_jvms->method(), "sanity");
 921       // If the current throw can reach an exception handler in this JVMS,
 922       // then we must keep everything live that can reach that handler.
 923       // As a quick and dirty approximation, we look for any handlers at all.
 924       if (in_jvms->method()->has_exception_handlers()) {
 925         can_prune_locals = false;
 926       }
 927     }
 928 
 929     // Add the Locals
 930     k = in_jvms->locoff();
 931     l = in_jvms->loc_size();
 932     out_jvms->set_locoff(p);
 933     if (!can_prune_locals) {
 934       for (j = 0; j < l; j++)
 935         call->set_req(p++, in_map->in(k+j));
 936     } else {
 937       p += l;  // already set to top above by add_req_batch
 938     }
 939 
 940     // Add the Expression Stack
 941     k = in_jvms->stkoff();
 942     l = in_jvms->sp();
 943     out_jvms->set_stkoff(p);
 944     if (!can_prune_locals) {
 945       for (j = 0; j < l; j++)
 946         call->set_req(p++, in_map->in(k+j));
 947     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 948       // Divide stack into {S0,...,S1}, where S0 is set to top.
 949       uint s1 = stack_slots_not_pruned;
 950       stack_slots_not_pruned = 0;  // for next iteration
 951       if (s1 > l)  s1 = l;
 952       uint s0 = l - s1;
 953       p += s0;  // skip the tops preinstalled by add_req_batch
 954       for (j = s0; j < l; j++)
 955         call->set_req(p++, in_map->in(k+j));
 956     } else {
 957       p += l;  // already set to top above by add_req_batch
 958     }
 959 
 960     // Add the Monitors
 961     k = in_jvms->monoff();
 962     l = in_jvms->mon_size();
 963     out_jvms->set_monoff(p);
 964     for (j = 0; j < l; j++)
 965       call->set_req(p++, in_map->in(k+j));
 966 
 967     // Copy any scalar object fields.
 968     k = in_jvms->scloff();
 969     l = in_jvms->scl_size();
 970     out_jvms->set_scloff(p);
 971     for (j = 0; j < l; j++)
 972       call->set_req(p++, in_map->in(k+j));
 973 
 974     // Finish the new jvms.
 975     out_jvms->set_endoff(p);
 976 
 977     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 978     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 979     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 980     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 981     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 982     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 983 
 984     // Update the two tail pointers in parallel.
 985     out_jvms = out_jvms->caller();
 986     in_jvms  = in_jvms->caller();
 987   }
 988 
 989   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 990 
 991   // Test the correctness of JVMState::debug_xxx accessors:
 992   assert(call->jvms()->debug_start() == non_debug_edges, "");
 993   assert(call->jvms()->debug_end()   == call->req(), "");
 994   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 995 }
 996 
 997 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 998   Bytecodes::Code code = java_bc();
 999   if (code == Bytecodes::_wide) {
1000     code = method()->java_code_at_bci(bci() + 1);
1001   }
1002 
1003   BasicType rtype = T_ILLEGAL;
1004   int       rsize = 0;
1005 
1006   if (code != Bytecodes::_illegal) {
1007     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1008     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1009     if (rtype < T_CONFLICT)
1010       rsize = type2size[rtype];
1011   }
1012 
1013   switch (code) {
1014   case Bytecodes::_illegal:
1015     return false;
1016 
1017   case Bytecodes::_ldc:
1018   case Bytecodes::_ldc_w:
1019   case Bytecodes::_ldc2_w:
1020     inputs = 0;
1021     break;
1022 
1023   case Bytecodes::_dup:         inputs = 1;  break;
1024   case Bytecodes::_dup_x1:      inputs = 2;  break;
1025   case Bytecodes::_dup_x2:      inputs = 3;  break;
1026   case Bytecodes::_dup2:        inputs = 2;  break;
1027   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1028   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1029   case Bytecodes::_swap:        inputs = 2;  break;
1030   case Bytecodes::_arraylength: inputs = 1;  break;
1031 
1032   case Bytecodes::_getstatic:
1033   case Bytecodes::_putstatic:
1034   case Bytecodes::_getfield:
1035   case Bytecodes::_putfield:
1036     {
1037       bool ignored_will_link;
1038       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1039       int      size  = field->type()->size();
1040       bool is_get = (depth >= 0), is_static = (depth & 1);
1041       inputs = (is_static ? 0 : 1);
1042       if (is_get) {
1043         depth = size - inputs;
1044       } else {
1045         inputs += size;        // putxxx pops the value from the stack
1046         depth = - inputs;
1047       }
1048     }
1049     break;
1050 
1051   case Bytecodes::_invokevirtual:
1052   case Bytecodes::_invokespecial:
1053   case Bytecodes::_invokestatic:
1054   case Bytecodes::_invokedynamic:
1055   case Bytecodes::_invokeinterface:
1056     {
1057       bool ignored_will_link;
1058       ciSignature* declared_signature = NULL;
1059       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1060       assert(declared_signature != NULL, "cannot be null");
1061       inputs   = declared_signature->arg_size_for_bc(code);
1062       int size = declared_signature->return_type()->size();
1063       depth = size - inputs;
1064     }
1065     break;
1066 
1067   case Bytecodes::_multianewarray:
1068     {
1069       ciBytecodeStream iter(method());
1070       iter.reset_to_bci(bci());
1071       iter.next();
1072       inputs = iter.get_dimensions();
1073       assert(rsize == 1, "");
1074       depth = rsize - inputs;
1075     }
1076     break;
1077 
1078   case Bytecodes::_ireturn:
1079   case Bytecodes::_lreturn:
1080   case Bytecodes::_freturn:
1081   case Bytecodes::_dreturn:
1082   case Bytecodes::_areturn:
1083     assert(rsize = -depth, "");
1084     inputs = rsize;
1085     break;
1086 
1087   case Bytecodes::_jsr:
1088   case Bytecodes::_jsr_w:
1089     inputs = 0;
1090     depth  = 1;                  // S.B. depth=1, not zero
1091     break;
1092 
1093   default:
1094     // bytecode produces a typed result
1095     inputs = rsize - depth;
1096     assert(inputs >= 0, "");
1097     break;
1098   }
1099 
1100 #ifdef ASSERT
1101   // spot check
1102   int outputs = depth + inputs;
1103   assert(outputs >= 0, "sanity");
1104   switch (code) {
1105   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1106   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1107   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1108   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1109   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1110   }
1111 #endif //ASSERT
1112 
1113   return true;
1114 }
1115 
1116 
1117 
1118 //------------------------------basic_plus_adr---------------------------------
1119 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1120   // short-circuit a common case
1121   if (offset == intcon(0))  return ptr;
1122   return _gvn.transform( new AddPNode(base, ptr, offset) );
1123 }
1124 
1125 Node* GraphKit::ConvI2L(Node* offset) {
1126   // short-circuit a common case
1127   jint offset_con = find_int_con(offset, Type::OffsetBot);
1128   if (offset_con != Type::OffsetBot) {
1129     return longcon((jlong) offset_con);
1130   }
1131   return _gvn.transform( new ConvI2LNode(offset));
1132 }
1133 
1134 Node* GraphKit::ConvI2UL(Node* offset) {
1135   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1136   if (offset_con != (juint) Type::OffsetBot) {
1137     return longcon((julong) offset_con);
1138   }
1139   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1140   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1141   return _gvn.transform( new AndLNode(conv, mask) );
1142 }
1143 
1144 Node* GraphKit::ConvL2I(Node* offset) {
1145   // short-circuit a common case
1146   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1147   if (offset_con != (jlong)Type::OffsetBot) {
1148     return intcon((int) offset_con);
1149   }
1150   return _gvn.transform( new ConvL2INode(offset));
1151 }
1152 
1153 //-------------------------load_object_klass-----------------------------------
1154 Node* GraphKit::load_object_klass(Node* obj) {
1155   // Special-case a fresh allocation to avoid building nodes:
1156   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1157   if (akls != NULL)  return akls;
1158   if (ShenandoahVerifyReadsToFromSpace) {
1159     obj = shenandoah_read_barrier(obj);
1160   }
1161   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1162   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1163 }
1164 
1165 //-------------------------load_array_length-----------------------------------
1166 Node* GraphKit::load_array_length(Node* array) {
1167   // Special-case a fresh allocation to avoid building nodes:
1168   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1169   Node *alen;
1170   if (alloc == NULL) {
1171     if (ShenandoahVerifyReadsToFromSpace) {
1172       array = shenandoah_read_barrier(array);
1173     }
1174 
1175     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1176     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1177   } else {
1178     alen = alloc->Ideal_length();
1179     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1180     if (ccast != alen) {
1181       alen = _gvn.transform(ccast);
1182     }
1183   }
1184   return alen;
1185 }
1186 
1187 //------------------------------do_null_check----------------------------------
1188 // Helper function to do a NULL pointer check.  Returned value is
1189 // the incoming address with NULL casted away.  You are allowed to use the
1190 // not-null value only if you are control dependent on the test.
1191 extern int explicit_null_checks_inserted,
1192            explicit_null_checks_elided;
1193 Node* GraphKit::null_check_common(Node* value, BasicType type,
1194                                   // optional arguments for variations:
1195                                   bool assert_null,
1196                                   Node* *null_control,
1197                                   bool speculative) {
1198   assert(!assert_null || null_control == NULL, "not both at once");
1199   if (stopped())  return top();
1200   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1201     // For some performance testing, we may wish to suppress null checking.
1202     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1203     return value;
1204   }
1205   explicit_null_checks_inserted++;
1206 
1207   // Construct NULL check
1208   Node *chk = NULL;
1209   switch(type) {
1210     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1211     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1212     case T_ARRAY  : // fall through
1213       type = T_OBJECT;  // simplify further tests
1214     case T_OBJECT : {
1215       const Type *t = _gvn.type( value );
1216 
1217       const TypeOopPtr* tp = t->isa_oopptr();
1218       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1219           // Only for do_null_check, not any of its siblings:
1220           && !assert_null && null_control == NULL) {
1221         // Usually, any field access or invocation on an unloaded oop type
1222         // will simply fail to link, since the statically linked class is
1223         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1224         // the static class is loaded but the sharper oop type is not.
1225         // Rather than checking for this obscure case in lots of places,
1226         // we simply observe that a null check on an unloaded class
1227         // will always be followed by a nonsense operation, so we
1228         // can just issue the uncommon trap here.
1229         // Our access to the unloaded class will only be correct
1230         // after it has been loaded and initialized, which requires
1231         // a trip through the interpreter.
1232 #ifndef PRODUCT
1233         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1234 #endif
1235         uncommon_trap(Deoptimization::Reason_unloaded,
1236                       Deoptimization::Action_reinterpret,
1237                       tp->klass(), "!loaded");
1238         return top();
1239       }
1240 
1241       if (assert_null) {
1242         // See if the type is contained in NULL_PTR.
1243         // If so, then the value is already null.
1244         if (t->higher_equal(TypePtr::NULL_PTR)) {
1245           explicit_null_checks_elided++;
1246           return value;           // Elided null assert quickly!
1247         }
1248       } else {
1249         // See if mixing in the NULL pointer changes type.
1250         // If so, then the NULL pointer was not allowed in the original
1251         // type.  In other words, "value" was not-null.
1252         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1253           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1254           explicit_null_checks_elided++;
1255           return value;           // Elided null check quickly!
1256         }
1257       }
1258       chk = new CmpPNode( value, null() );
1259       break;
1260     }
1261 
1262     default:
1263       fatal(err_msg_res("unexpected type: %s", type2name(type)));
1264   }
1265   assert(chk != NULL, "sanity check");
1266   chk = _gvn.transform(chk);
1267 
1268   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1269   BoolNode *btst = new BoolNode( chk, btest);
1270   Node   *tst = _gvn.transform( btst );
1271 
1272   //-----------
1273   // if peephole optimizations occurred, a prior test existed.
1274   // If a prior test existed, maybe it dominates as we can avoid this test.
1275   if (tst != btst && type == T_OBJECT) {
1276     // At this point we want to scan up the CFG to see if we can
1277     // find an identical test (and so avoid this test altogether).
1278     Node *cfg = control();
1279     int depth = 0;
1280     while( depth < 16 ) {       // Limit search depth for speed
1281       if( cfg->Opcode() == Op_IfTrue &&
1282           cfg->in(0)->in(1) == tst ) {
1283         // Found prior test.  Use "cast_not_null" to construct an identical
1284         // CastPP (and hence hash to) as already exists for the prior test.
1285         // Return that casted value.
1286         if (assert_null) {
1287           replace_in_map(value, null());
1288           return null();  // do not issue the redundant test
1289         }
1290         Node *oldcontrol = control();
1291         set_control(cfg);
1292         Node *res = cast_not_null(value);
1293         set_control(oldcontrol);
1294         explicit_null_checks_elided++;
1295         return res;
1296       }
1297       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1298       if (cfg == NULL)  break;  // Quit at region nodes
1299       depth++;
1300     }
1301   }
1302 
1303   //-----------
1304   // Branch to failure if null
1305   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1306   Deoptimization::DeoptReason reason;
1307   if (assert_null) {
1308     reason = Deoptimization::Reason_null_assert;
1309   } else if (type == T_OBJECT) {
1310     reason = Deoptimization::reason_null_check(speculative);
1311   } else {
1312     reason = Deoptimization::Reason_div0_check;
1313   }
1314   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1315   // ciMethodData::has_trap_at will return a conservative -1 if any
1316   // must-be-null assertion has failed.  This could cause performance
1317   // problems for a method after its first do_null_assert failure.
1318   // Consider using 'Reason_class_check' instead?
1319 
1320   // To cause an implicit null check, we set the not-null probability
1321   // to the maximum (PROB_MAX).  For an explicit check the probability
1322   // is set to a smaller value.
1323   if (null_control != NULL || too_many_traps(reason)) {
1324     // probability is less likely
1325     ok_prob =  PROB_LIKELY_MAG(3);
1326   } else if (!assert_null &&
1327              (ImplicitNullCheckThreshold > 0) &&
1328              method() != NULL &&
1329              (method()->method_data()->trap_count(reason)
1330               >= (uint)ImplicitNullCheckThreshold)) {
1331     ok_prob =  PROB_LIKELY_MAG(3);
1332   }
1333 
1334   if (null_control != NULL) {
1335     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1336     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1337     set_control(      _gvn.transform( new IfTrueNode(iff)));
1338     if (null_true == top())
1339       explicit_null_checks_elided++;
1340     (*null_control) = null_true;
1341   } else {
1342     BuildCutout unless(this, tst, ok_prob);
1343     // Check for optimizer eliding test at parse time
1344     if (stopped()) {
1345       // Failure not possible; do not bother making uncommon trap.
1346       explicit_null_checks_elided++;
1347     } else if (assert_null) {
1348       uncommon_trap(reason,
1349                     Deoptimization::Action_make_not_entrant,
1350                     NULL, "assert_null");
1351     } else {
1352       replace_in_map(value, zerocon(type));
1353       builtin_throw(reason);
1354     }
1355   }
1356 
1357   // Must throw exception, fall-thru not possible?
1358   if (stopped()) {
1359     return top();               // No result
1360   }
1361 
1362   if (assert_null) {
1363     // Cast obj to null on this path.
1364     replace_in_map(value, zerocon(type));
1365     return zerocon(type);
1366   }
1367 
1368   // Cast obj to not-null on this path, if there is no null_control.
1369   // (If there is a null_control, a non-null value may come back to haunt us.)
1370   if (type == T_OBJECT) {
1371     Node* cast = cast_not_null(value, false);
1372     if (null_control == NULL || (*null_control) == top())
1373       replace_in_map(value, cast);
1374     value = cast;
1375   }
1376 
1377   return value;
1378 }
1379 
1380 
1381 //------------------------------cast_not_null----------------------------------
1382 // Cast obj to not-null on this path
1383 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1384   const Type *t = _gvn.type(obj);
1385   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1386   // Object is already not-null?
1387   if( t == t_not_null ) return obj;
1388 
1389   Node *cast = new CastPPNode(obj,t_not_null);
1390   cast->init_req(0, control());
1391   cast = _gvn.transform( cast );
1392 
1393   // Scan for instances of 'obj' in the current JVM mapping.
1394   // These instances are known to be not-null after the test.
1395   if (do_replace_in_map)
1396     replace_in_map(obj, cast);
1397 
1398   return cast;                  // Return casted value
1399 }
1400 
1401 
1402 //--------------------------replace_in_map-------------------------------------
1403 void GraphKit::replace_in_map(Node* old, Node* neww) {
1404   if (old == neww) {
1405     return;
1406   }
1407 
1408   map()->replace_edge(old, neww);
1409 
1410   // Note: This operation potentially replaces any edge
1411   // on the map.  This includes locals, stack, and monitors
1412   // of the current (innermost) JVM state.
1413 
1414   // don't let inconsistent types from profiling escape this
1415   // method
1416 
1417   const Type* told = _gvn.type(old);
1418   const Type* tnew = _gvn.type(neww);
1419 
1420   if (!tnew->higher_equal(told)) {
1421     return;
1422   }
1423 
1424   map()->record_replaced_node(old, neww);
1425 }
1426 
1427 
1428 //=============================================================================
1429 //--------------------------------memory---------------------------------------
1430 Node* GraphKit::memory(uint alias_idx) {
1431   MergeMemNode* mem = merged_memory();
1432   Node* p = mem->memory_at(alias_idx);
1433   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1434   return p;
1435 }
1436 
1437 //-----------------------------reset_memory------------------------------------
1438 Node* GraphKit::reset_memory() {
1439   Node* mem = map()->memory();
1440   // do not use this node for any more parsing!
1441   debug_only( map()->set_memory((Node*)NULL) );
1442   return _gvn.transform( mem );
1443 }
1444 
1445 //------------------------------set_all_memory---------------------------------
1446 void GraphKit::set_all_memory(Node* newmem) {
1447   Node* mergemem = MergeMemNode::make(newmem);
1448   gvn().set_type_bottom(mergemem);
1449   map()->set_memory(mergemem);
1450 }
1451 
1452 //------------------------------set_all_memory_call----------------------------
1453 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1454   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1455   set_all_memory(newmem);
1456 }
1457 
1458 //=============================================================================
1459 //
1460 // parser factory methods for MemNodes
1461 //
1462 // These are layered on top of the factory methods in LoadNode and StoreNode,
1463 // and integrate with the parser's memory state and _gvn engine.
1464 //
1465 
1466 // factory methods in "int adr_idx"
1467 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1468                           int adr_idx,
1469                           MemNode::MemOrd mo, LoadNode::ControlDependency control_dependency, bool require_atomic_access) {
1470   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1471   const TypePtr* adr_type = NULL; // debug-mode-only argument
1472   debug_only(adr_type = C->get_adr_type(adr_idx));
1473   Node* mem = memory(adr_idx);
1474   Node* ld;
1475   if (require_atomic_access && bt == T_LONG) {
1476     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency);
1477   } else if (require_atomic_access && bt == T_DOUBLE) {
1478     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency);
1479   } else {
1480     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency);
1481   }
1482   ld = _gvn.transform(ld);
1483   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1484     // Improve graph before escape analysis and boxing elimination.
1485     record_for_igvn(ld);
1486   }
1487   return ld;
1488 }
1489 
1490 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1491                                 int adr_idx,
1492                                 MemNode::MemOrd mo,
1493                                 bool require_atomic_access) {
1494   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1495   const TypePtr* adr_type = NULL;
1496   debug_only(adr_type = C->get_adr_type(adr_idx));
1497   Node *mem = memory(adr_idx);
1498   Node* st;
1499   if (require_atomic_access && bt == T_LONG) {
1500     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1501   } else if (require_atomic_access && bt == T_DOUBLE) {
1502     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1503   } else {
1504     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1505   }
1506   st = _gvn.transform(st);
1507   set_memory(st, adr_idx);
1508   // Back-to-back stores can only remove intermediate store with DU info
1509   // so push on worklist for optimizer.
1510   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1511     record_for_igvn(st);
1512 
1513   return st;
1514 }
1515 
1516 
1517 void GraphKit::pre_barrier(bool do_load,
1518                            Node* ctl,
1519                            Node* obj,
1520                            Node* adr,
1521                            uint  adr_idx,
1522                            Node* val,
1523                            const TypeOopPtr* val_type,
1524                            Node* pre_val,
1525                            BasicType bt) {
1526 
1527   BarrierSet* bs = Universe::heap()->barrier_set();
1528   set_control(ctl);
1529   switch (bs->kind()) {
1530     case BarrierSet::G1SATBCTLogging:
1531     case BarrierSet::ShenandoahBarrierSet:
1532       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1533       break;
1534 
1535     case BarrierSet::CardTableForRS:
1536     case BarrierSet::CardTableExtension:
1537     case BarrierSet::ModRef:
1538       break;
1539 
1540     default      :
1541       ShouldNotReachHere();
1542 
1543   }
1544 }
1545 
1546 bool GraphKit::can_move_pre_barrier() const {
1547   BarrierSet* bs = Universe::heap()->barrier_set();
1548   switch (bs->kind()) {
1549     case BarrierSet::G1SATBCTLogging:
1550     case BarrierSet::ShenandoahBarrierSet:
1551       return true; // Can move it if no safepoint
1552 
1553     case BarrierSet::CardTableForRS:
1554     case BarrierSet::CardTableExtension:
1555     case BarrierSet::ModRef:
1556       return true; // There is no pre-barrier
1557 
1558     default      :
1559       ShouldNotReachHere();
1560   }
1561   return false;
1562 }
1563 
1564 void GraphKit::post_barrier(Node* ctl,
1565                             Node* store,
1566                             Node* obj,
1567                             Node* adr,
1568                             uint  adr_idx,
1569                             Node* val,
1570                             BasicType bt,
1571                             bool use_precise) {
1572   BarrierSet* bs = Universe::heap()->barrier_set();
1573   set_control(ctl);
1574   switch (bs->kind()) {
1575     case BarrierSet::G1SATBCTLogging:
1576       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1577       break;
1578 
1579     case BarrierSet::CardTableForRS:
1580     case BarrierSet::CardTableExtension:
1581       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1582       break;
1583 
1584     case BarrierSet::ModRef:
1585     case BarrierSet::ShenandoahBarrierSet:
1586       break;
1587 
1588     default      :
1589       ShouldNotReachHere();
1590 
1591   }
1592 }
1593 
1594 Node* GraphKit::store_oop(Node* ctl,
1595                           Node* obj,
1596                           Node* adr,
1597                           const TypePtr* adr_type,
1598                           Node* val,
1599                           const TypeOopPtr* val_type,
1600                           BasicType bt,
1601                           bool use_precise,
1602                           MemNode::MemOrd mo) {
1603   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1604   // could be delayed during Parse (for example, in adjust_map_after_if()).
1605   // Execute transformation here to avoid barrier generation in such case.
1606   if (_gvn.type(val) == TypePtr::NULL_PTR)
1607     val = _gvn.makecon(TypePtr::NULL_PTR);
1608 
1609   set_control(ctl);
1610   if (stopped()) return top(); // Dead path ?
1611 
1612   assert(bt == T_OBJECT, "sanity");
1613   assert(val != NULL, "not dead path");
1614   uint adr_idx = C->get_alias_index(adr_type);
1615   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1616 
1617   pre_barrier(true /* do_load */,
1618               control(), obj, adr, adr_idx, val, val_type,
1619               NULL /* pre_val */,
1620               bt);
1621 
1622   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo);
1623   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1624   return store;
1625 }
1626 
1627 // Could be an array or object we don't know at compile time (unsafe ref.)
1628 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1629                              Node* obj,   // containing obj
1630                              Node* adr,  // actual adress to store val at
1631                              const TypePtr* adr_type,
1632                              Node* val,
1633                              BasicType bt,
1634                              MemNode::MemOrd mo) {
1635   Compile::AliasType* at = C->alias_type(adr_type);
1636   const TypeOopPtr* val_type = NULL;
1637   if (adr_type->isa_instptr()) {
1638     if (at->field() != NULL) {
1639       // known field.  This code is a copy of the do_put_xxx logic.
1640       ciField* field = at->field();
1641       if (!field->type()->is_loaded()) {
1642         val_type = TypeInstPtr::BOTTOM;
1643       } else {
1644         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1645       }
1646     }
1647   } else if (adr_type->isa_aryptr()) {
1648     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1649   }
1650   if (val_type == NULL) {
1651     val_type = TypeInstPtr::BOTTOM;
1652   }
1653   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo);
1654 }
1655 
1656 
1657 //-------------------------array_element_address-------------------------
1658 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1659                                       const TypeInt* sizetype) {
1660   uint shift  = exact_log2(type2aelembytes(elembt));
1661   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1662 
1663   // short-circuit a common case (saves lots of confusing waste motion)
1664   jint idx_con = find_int_con(idx, -1);
1665   if (idx_con >= 0) {
1666     intptr_t offset = header + ((intptr_t)idx_con << shift);
1667     return basic_plus_adr(ary, offset);
1668   }
1669 
1670   // must be correct type for alignment purposes
1671   Node* base  = basic_plus_adr(ary, header);
1672   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype);
1673   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1674   return basic_plus_adr(ary, base, scale);
1675 }
1676 
1677 //-------------------------load_array_element-------------------------
1678 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1679   const Type* elemtype = arytype->elem();
1680   BasicType elembt = elemtype->array_element_basic_type();
1681   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1682   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1683   return ld;
1684 }
1685 
1686 //-------------------------set_arguments_for_java_call-------------------------
1687 // Arguments (pre-popped from the stack) are taken from the JVMS.
1688 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1689   // Add the call arguments:
1690   uint nargs = call->method()->arg_size();
1691   for (uint i = 0; i < nargs; i++) {
1692     Node* arg = argument(i);
1693     if (ShenandoahVerifyReadsToFromSpace && call->is_CallDynamicJava() && i == 0) {
1694       arg = shenandoah_read_barrier(arg);
1695     }
1696     call->init_req(i + TypeFunc::Parms, arg);
1697   }
1698 }
1699 
1700 //---------------------------set_edges_for_java_call---------------------------
1701 // Connect a newly created call into the current JVMS.
1702 // A return value node (if any) is returned from set_edges_for_java_call.
1703 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1704 
1705   // Add the predefined inputs:
1706   call->init_req( TypeFunc::Control, control() );
1707   call->init_req( TypeFunc::I_O    , i_o() );
1708   call->init_req( TypeFunc::Memory , reset_memory() );
1709   call->init_req( TypeFunc::FramePtr, frameptr() );
1710   call->init_req( TypeFunc::ReturnAdr, top() );
1711 
1712   add_safepoint_edges(call, must_throw);
1713 
1714   Node* xcall = _gvn.transform(call);
1715 
1716   if (xcall == top()) {
1717     set_control(top());
1718     return;
1719   }
1720   assert(xcall == call, "call identity is stable");
1721 
1722   // Re-use the current map to produce the result.
1723 
1724   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1725   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1726   set_all_memory_call(xcall, separate_io_proj);
1727 
1728   //return xcall;   // no need, caller already has it
1729 }
1730 
1731 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1732   if (stopped())  return top();  // maybe the call folded up?
1733 
1734   // Capture the return value, if any.
1735   Node* ret;
1736   if (call->method() == NULL ||
1737       call->method()->return_type()->basic_type() == T_VOID)
1738         ret = top();
1739   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1740 
1741   // Note:  Since any out-of-line call can produce an exception,
1742   // we always insert an I_O projection from the call into the result.
1743 
1744   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1745 
1746   if (separate_io_proj) {
1747     // The caller requested separate projections be used by the fall
1748     // through and exceptional paths, so replace the projections for
1749     // the fall through path.
1750     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1751     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1752   }
1753   return ret;
1754 }
1755 
1756 //--------------------set_predefined_input_for_runtime_call--------------------
1757 // Reading and setting the memory state is way conservative here.
1758 // The real problem is that I am not doing real Type analysis on memory,
1759 // so I cannot distinguish card mark stores from other stores.  Across a GC
1760 // point the Store Barrier and the card mark memory has to agree.  I cannot
1761 // have a card mark store and its barrier split across the GC point from
1762 // either above or below.  Here I get that to happen by reading ALL of memory.
1763 // A better answer would be to separate out card marks from other memory.
1764 // For now, return the input memory state, so that it can be reused
1765 // after the call, if this call has restricted memory effects.
1766 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1767   // Set fixed predefined input arguments
1768   Node* memory = reset_memory();
1769   call->init_req( TypeFunc::Control,   control()  );
1770   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1771   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1772   call->init_req( TypeFunc::FramePtr,  frameptr() );
1773   call->init_req( TypeFunc::ReturnAdr, top()      );
1774   return memory;
1775 }
1776 
1777 //-------------------set_predefined_output_for_runtime_call--------------------
1778 // Set control and memory (not i_o) from the call.
1779 // If keep_mem is not NULL, use it for the output state,
1780 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1781 // If hook_mem is NULL, this call produces no memory effects at all.
1782 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1783 // then only that memory slice is taken from the call.
1784 // In the last case, we must put an appropriate memory barrier before
1785 // the call, so as to create the correct anti-dependencies on loads
1786 // preceding the call.
1787 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1788                                                       Node* keep_mem,
1789                                                       const TypePtr* hook_mem) {
1790   // no i/o
1791   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1792   if (keep_mem) {
1793     // First clone the existing memory state
1794     set_all_memory(keep_mem);
1795     if (hook_mem != NULL) {
1796       // Make memory for the call
1797       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1798       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1799       // We also use hook_mem to extract specific effects from arraycopy stubs.
1800       set_memory(mem, hook_mem);
1801     }
1802     // ...else the call has NO memory effects.
1803 
1804     // Make sure the call advertises its memory effects precisely.
1805     // This lets us build accurate anti-dependences in gcm.cpp.
1806     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1807            "call node must be constructed correctly");
1808   } else {
1809     assert(hook_mem == NULL, "");
1810     // This is not a "slow path" call; all memory comes from the call.
1811     set_all_memory_call(call);
1812   }
1813 }
1814 
1815 
1816 // Replace the call with the current state of the kit.
1817 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1818   JVMState* ejvms = NULL;
1819   if (has_exceptions()) {
1820     ejvms = transfer_exceptions_into_jvms();
1821   }
1822 
1823   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1824   ReplacedNodes replaced_nodes_exception;
1825   Node* ex_ctl = top();
1826 
1827   SafePointNode* final_state = stop();
1828 
1829   // Find all the needed outputs of this call
1830   CallProjections callprojs;
1831   call->extract_projections(&callprojs, true);
1832 
1833   Node* init_mem = call->in(TypeFunc::Memory);
1834   Node* final_mem = final_state->in(TypeFunc::Memory);
1835   Node* final_ctl = final_state->in(TypeFunc::Control);
1836   Node* final_io = final_state->in(TypeFunc::I_O);
1837 
1838   // Replace all the old call edges with the edges from the inlining result
1839   if (callprojs.fallthrough_catchproj != NULL) {
1840     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1841   }
1842   if (callprojs.fallthrough_memproj != NULL) {
1843     if (final_mem->is_MergeMem()) {
1844       // Parser's exits MergeMem was not transformed but may be optimized
1845       final_mem = _gvn.transform(final_mem);
1846     }
1847     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1848   }
1849   if (callprojs.fallthrough_ioproj != NULL) {
1850     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1851   }
1852 
1853   // Replace the result with the new result if it exists and is used
1854   if (callprojs.resproj != NULL && result != NULL) {
1855     C->gvn_replace_by(callprojs.resproj, result);
1856   }
1857 
1858   if (ejvms == NULL) {
1859     // No exception edges to simply kill off those paths
1860     if (callprojs.catchall_catchproj != NULL) {
1861       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1862     }
1863     if (callprojs.catchall_memproj != NULL) {
1864       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1865     }
1866     if (callprojs.catchall_ioproj != NULL) {
1867       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1868     }
1869     // Replace the old exception object with top
1870     if (callprojs.exobj != NULL) {
1871       C->gvn_replace_by(callprojs.exobj, C->top());
1872     }
1873   } else {
1874     GraphKit ekit(ejvms);
1875 
1876     // Load my combined exception state into the kit, with all phis transformed:
1877     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1878     replaced_nodes_exception = ex_map->replaced_nodes();
1879 
1880     Node* ex_oop = ekit.use_exception_state(ex_map);
1881 
1882     if (callprojs.catchall_catchproj != NULL) {
1883       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1884       ex_ctl = ekit.control();
1885     }
1886     if (callprojs.catchall_memproj != NULL) {
1887       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1888     }
1889     if (callprojs.catchall_ioproj != NULL) {
1890       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1891     }
1892 
1893     // Replace the old exception object with the newly created one
1894     if (callprojs.exobj != NULL) {
1895       C->gvn_replace_by(callprojs.exobj, ex_oop);
1896     }
1897   }
1898 
1899   // Disconnect the call from the graph
1900   call->disconnect_inputs(NULL, C);
1901   C->gvn_replace_by(call, C->top());
1902 
1903   // Clean up any MergeMems that feed other MergeMems since the
1904   // optimizer doesn't like that.
1905   if (final_mem->is_MergeMem()) {
1906     Node_List wl;
1907     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1908       Node* m = i.get();
1909       if (m->is_MergeMem() && !wl.contains(m)) {
1910         wl.push(m);
1911       }
1912     }
1913     while (wl.size()  > 0) {
1914       _gvn.transform(wl.pop());
1915     }
1916   }
1917 
1918   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1919     replaced_nodes.apply(C, final_ctl);
1920   }
1921   if (!ex_ctl->is_top() && do_replaced_nodes) {
1922     replaced_nodes_exception.apply(C, ex_ctl);
1923   }
1924 }
1925 
1926 
1927 //------------------------------increment_counter------------------------------
1928 // for statistics: increment a VM counter by 1
1929 
1930 void GraphKit::increment_counter(address counter_addr) {
1931   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1932   increment_counter(adr1);
1933 }
1934 
1935 void GraphKit::increment_counter(Node* counter_addr) {
1936   int adr_type = Compile::AliasIdxRaw;
1937   Node* ctrl = control();
1938   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1939   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1940   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1941 }
1942 
1943 
1944 //------------------------------uncommon_trap----------------------------------
1945 // Bail out to the interpreter in mid-method.  Implemented by calling the
1946 // uncommon_trap blob.  This helper function inserts a runtime call with the
1947 // right debug info.
1948 void GraphKit::uncommon_trap(int trap_request,
1949                              ciKlass* klass, const char* comment,
1950                              bool must_throw,
1951                              bool keep_exact_action) {
1952   if (failing())  stop();
1953   if (stopped())  return; // trap reachable?
1954 
1955   // Note:  If ProfileTraps is true, and if a deopt. actually
1956   // occurs here, the runtime will make sure an MDO exists.  There is
1957   // no need to call method()->ensure_method_data() at this point.
1958 
1959   // Set the stack pointer to the right value for reexecution:
1960   set_sp(reexecute_sp());
1961 
1962 #ifdef ASSERT
1963   if (!must_throw) {
1964     // Make sure the stack has at least enough depth to execute
1965     // the current bytecode.
1966     int inputs, ignored_depth;
1967     if (compute_stack_effects(inputs, ignored_depth)) {
1968       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1969              Bytecodes::name(java_bc()), sp(), inputs));
1970     }
1971   }
1972 #endif
1973 
1974   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1975   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1976 
1977   switch (action) {
1978   case Deoptimization::Action_maybe_recompile:
1979   case Deoptimization::Action_reinterpret:
1980     // Temporary fix for 6529811 to allow virtual calls to be sure they
1981     // get the chance to go from mono->bi->mega
1982     if (!keep_exact_action &&
1983         Deoptimization::trap_request_index(trap_request) < 0 &&
1984         too_many_recompiles(reason)) {
1985       // This BCI is causing too many recompilations.
1986       if (C->log() != NULL) {
1987         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
1988                 Deoptimization::trap_reason_name(reason),
1989                 Deoptimization::trap_action_name(action));
1990       }
1991       action = Deoptimization::Action_none;
1992       trap_request = Deoptimization::make_trap_request(reason, action);
1993     } else {
1994       C->set_trap_can_recompile(true);
1995     }
1996     break;
1997   case Deoptimization::Action_make_not_entrant:
1998     C->set_trap_can_recompile(true);
1999     break;
2000 #ifdef ASSERT
2001   case Deoptimization::Action_none:
2002   case Deoptimization::Action_make_not_compilable:
2003     break;
2004   default:
2005     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
2006     break;
2007 #endif
2008   }
2009 
2010   if (TraceOptoParse) {
2011     char buf[100];
2012     tty->print_cr("Uncommon trap %s at bci:%d",
2013                   Deoptimization::format_trap_request(buf, sizeof(buf),
2014                                                       trap_request), bci());
2015   }
2016 
2017   CompileLog* log = C->log();
2018   if (log != NULL) {
2019     int kid = (klass == NULL)? -1: log->identify(klass);
2020     log->begin_elem("uncommon_trap bci='%d'", bci());
2021     char buf[100];
2022     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2023                                                           trap_request));
2024     if (kid >= 0)         log->print(" klass='%d'", kid);
2025     if (comment != NULL)  log->print(" comment='%s'", comment);
2026     log->end_elem();
2027   }
2028 
2029   // Make sure any guarding test views this path as very unlikely
2030   Node *i0 = control()->in(0);
2031   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2032     IfNode *iff = i0->as_If();
2033     float f = iff->_prob;   // Get prob
2034     if (control()->Opcode() == Op_IfTrue) {
2035       if (f > PROB_UNLIKELY_MAG(4))
2036         iff->_prob = PROB_MIN;
2037     } else {
2038       if (f < PROB_LIKELY_MAG(4))
2039         iff->_prob = PROB_MAX;
2040     }
2041   }
2042 
2043   // Clear out dead values from the debug info.
2044   kill_dead_locals();
2045 
2046   // Now insert the uncommon trap subroutine call
2047   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2048   const TypePtr* no_memory_effects = NULL;
2049   // Pass the index of the class to be loaded
2050   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2051                                  (must_throw ? RC_MUST_THROW : 0),
2052                                  OptoRuntime::uncommon_trap_Type(),
2053                                  call_addr, "uncommon_trap", no_memory_effects,
2054                                  intcon(trap_request));
2055   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2056          "must extract request correctly from the graph");
2057   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2058 
2059   call->set_req(TypeFunc::ReturnAdr, returnadr());
2060   // The debug info is the only real input to this call.
2061 
2062   // Halt-and-catch fire here.  The above call should never return!
2063   HaltNode* halt = new HaltNode(control(), frameptr());
2064   _gvn.set_type_bottom(halt);
2065   root()->add_req(halt);
2066 
2067   stop_and_kill_map();
2068 }
2069 
2070 
2071 //--------------------------just_allocated_object------------------------------
2072 // Report the object that was just allocated.
2073 // It must be the case that there are no intervening safepoints.
2074 // We use this to determine if an object is so "fresh" that
2075 // it does not require card marks.
2076 Node* GraphKit::just_allocated_object(Node* current_control) {
2077   if (C->recent_alloc_ctl() == current_control)
2078     return C->recent_alloc_obj();
2079   return NULL;
2080 }
2081 
2082 
2083 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2084   // (Note:  TypeFunc::make has a cache that makes this fast.)
2085   const TypeFunc* tf    = TypeFunc::make(dest_method);
2086   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2087   for (int j = 0; j < nargs; j++) {
2088     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2089     if( targ->basic_type() == T_DOUBLE ) {
2090       // If any parameters are doubles, they must be rounded before
2091       // the call, dstore_rounding does gvn.transform
2092       Node *arg = argument(j);
2093       arg = dstore_rounding(arg);
2094       set_argument(j, arg);
2095     }
2096   }
2097 }
2098 
2099 /**
2100  * Record profiling data exact_kls for Node n with the type system so
2101  * that it can propagate it (speculation)
2102  *
2103  * @param n          node that the type applies to
2104  * @param exact_kls  type from profiling
2105  * @param maybe_null did profiling see null?
2106  *
2107  * @return           node with improved type
2108  */
2109 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null) {
2110   const Type* current_type = _gvn.type(n);
2111   assert(UseTypeSpeculation, "type speculation must be on");
2112 
2113   const TypePtr* speculative = current_type->speculative();
2114 
2115   // Should the klass from the profile be recorded in the speculative type?
2116   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2117     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2118     const TypeOopPtr* xtype = tklass->as_instance_type();
2119     assert(xtype->klass_is_exact(), "Should be exact");
2120     // Any reason to believe n is not null (from this profiling or a previous one)?
2121     const TypePtr* ptr = (maybe_null && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2122     // record the new speculative type's depth
2123     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2124     speculative = speculative->with_inline_depth(jvms()->depth());
2125   } else if (current_type->would_improve_ptr(maybe_null)) {
2126     // Profiling report that null was never seen so we can change the
2127     // speculative type to non null ptr.
2128     assert(!maybe_null, "nothing to improve");
2129     if (speculative == NULL) {
2130       speculative = TypePtr::NOTNULL;
2131     } else {
2132       const TypePtr* ptr = TypePtr::NOTNULL;
2133       speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2134     }
2135   }
2136 
2137   if (speculative != current_type->speculative()) {
2138     // Build a type with a speculative type (what we think we know
2139     // about the type but will need a guard when we use it)
2140     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2141     // We're changing the type, we need a new CheckCast node to carry
2142     // the new type. The new type depends on the control: what
2143     // profiling tells us is only valid from here as far as we can
2144     // tell.
2145     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2146     cast = _gvn.transform(cast);
2147     replace_in_map(n, cast);
2148     n = cast;
2149   }
2150 
2151   return n;
2152 }
2153 
2154 /**
2155  * Record profiling data from receiver profiling at an invoke with the
2156  * type system so that it can propagate it (speculation)
2157  *
2158  * @param n  receiver node
2159  *
2160  * @return   node with improved type
2161  */
2162 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2163   if (!UseTypeSpeculation) {
2164     return n;
2165   }
2166   ciKlass* exact_kls = profile_has_unique_klass();
2167   bool maybe_null = true;
2168   if (java_bc() == Bytecodes::_checkcast ||
2169       java_bc() == Bytecodes::_instanceof ||
2170       java_bc() == Bytecodes::_aastore) {
2171     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2172     bool maybe_null = data == NULL ? true : data->as_BitData()->null_seen();
2173   }
2174   return record_profile_for_speculation(n, exact_kls, maybe_null);
2175   return n;
2176 }
2177 
2178 /**
2179  * Record profiling data from argument profiling at an invoke with the
2180  * type system so that it can propagate it (speculation)
2181  *
2182  * @param dest_method  target method for the call
2183  * @param bc           what invoke bytecode is this?
2184  */
2185 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2186   if (!UseTypeSpeculation) {
2187     return;
2188   }
2189   const TypeFunc* tf    = TypeFunc::make(dest_method);
2190   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2191   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2192   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2193     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2194     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2195       bool maybe_null = true;
2196       ciKlass* better_type = NULL;
2197       if (method()->argument_profiled_type(bci(), i, better_type, maybe_null)) {
2198         record_profile_for_speculation(argument(j), better_type, maybe_null);
2199       }
2200       i++;
2201     }
2202   }
2203 }
2204 
2205 /**
2206  * Record profiling data from parameter profiling at an invoke with
2207  * the type system so that it can propagate it (speculation)
2208  */
2209 void GraphKit::record_profiled_parameters_for_speculation() {
2210   if (!UseTypeSpeculation) {
2211     return;
2212   }
2213   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2214     if (_gvn.type(local(i))->isa_oopptr()) {
2215       bool maybe_null = true;
2216       ciKlass* better_type = NULL;
2217       if (method()->parameter_profiled_type(j, better_type, maybe_null)) {
2218         record_profile_for_speculation(local(i), better_type, maybe_null);
2219       }
2220       j++;
2221     }
2222   }
2223 }
2224 
2225 /**
2226  * Record profiling data from return value profiling at an invoke with
2227  * the type system so that it can propagate it (speculation)
2228  */
2229 void GraphKit::record_profiled_return_for_speculation() {
2230   if (!UseTypeSpeculation) {
2231     return;
2232   }
2233   bool maybe_null = true;
2234   ciKlass* better_type = NULL;
2235   if (method()->return_profiled_type(bci(), better_type, maybe_null)) {
2236     // If profiling reports a single type for the return value,
2237     // feed it to the type system so it can propagate it as a
2238     // speculative type
2239     record_profile_for_speculation(stack(sp()-1), better_type, maybe_null);
2240   }
2241 }
2242 
2243 void GraphKit::round_double_result(ciMethod* dest_method) {
2244   // A non-strict method may return a double value which has an extended
2245   // exponent, but this must not be visible in a caller which is 'strict'
2246   // If a strict caller invokes a non-strict callee, round a double result
2247 
2248   BasicType result_type = dest_method->return_type()->basic_type();
2249   assert( method() != NULL, "must have caller context");
2250   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2251     // Destination method's return value is on top of stack
2252     // dstore_rounding() does gvn.transform
2253     Node *result = pop_pair();
2254     result = dstore_rounding(result);
2255     push_pair(result);
2256   }
2257 }
2258 
2259 // rounding for strict float precision conformance
2260 Node* GraphKit::precision_rounding(Node* n) {
2261   return UseStrictFP && _method->flags().is_strict()
2262     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2263     ? _gvn.transform( new RoundFloatNode(0, n) )
2264     : n;
2265 }
2266 
2267 // rounding for strict double precision conformance
2268 Node* GraphKit::dprecision_rounding(Node *n) {
2269   return UseStrictFP && _method->flags().is_strict()
2270     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2271     ? _gvn.transform( new RoundDoubleNode(0, n) )
2272     : n;
2273 }
2274 
2275 // rounding for non-strict double stores
2276 Node* GraphKit::dstore_rounding(Node* n) {
2277   return Matcher::strict_fp_requires_explicit_rounding
2278     && UseSSE <= 1
2279     ? _gvn.transform( new RoundDoubleNode(0, n) )
2280     : n;
2281 }
2282 
2283 //=============================================================================
2284 // Generate a fast path/slow path idiom.  Graph looks like:
2285 // [foo] indicates that 'foo' is a parameter
2286 //
2287 //              [in]     NULL
2288 //                 \    /
2289 //                  CmpP
2290 //                  Bool ne
2291 //                   If
2292 //                  /  \
2293 //              True    False-<2>
2294 //              / |
2295 //             /  cast_not_null
2296 //           Load  |    |   ^
2297 //        [fast_test]   |   |
2298 // gvn to   opt_test    |   |
2299 //          /    \      |  <1>
2300 //      True     False  |
2301 //        |         \\  |
2302 //   [slow_call]     \[fast_result]
2303 //    Ctl   Val       \      \
2304 //     |               \      \
2305 //    Catch       <1>   \      \
2306 //   /    \        ^     \      \
2307 //  Ex    No_Ex    |      \      \
2308 //  |       \   \  |       \ <2>  \
2309 //  ...      \  [slow_res] |  |    \   [null_result]
2310 //            \         \--+--+---  |  |
2311 //             \           | /    \ | /
2312 //              --------Region     Phi
2313 //
2314 //=============================================================================
2315 // Code is structured as a series of driver functions all called 'do_XXX' that
2316 // call a set of helper functions.  Helper functions first, then drivers.
2317 
2318 //------------------------------null_check_oop---------------------------------
2319 // Null check oop.  Set null-path control into Region in slot 3.
2320 // Make a cast-not-nullness use the other not-null control.  Return cast.
2321 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2322                                bool never_see_null,
2323                                bool safe_for_replace,
2324                                bool speculative) {
2325   // Initial NULL check taken path
2326   (*null_control) = top();
2327   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2328 
2329   // Generate uncommon_trap:
2330   if (never_see_null && (*null_control) != top()) {
2331     // If we see an unexpected null at a check-cast we record it and force a
2332     // recompile; the offending check-cast will be compiled to handle NULLs.
2333     // If we see more than one offending BCI, then all checkcasts in the
2334     // method will be compiled to handle NULLs.
2335     PreserveJVMState pjvms(this);
2336     set_control(*null_control);
2337     replace_in_map(value, null());
2338     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2339     uncommon_trap(reason,
2340                   Deoptimization::Action_make_not_entrant);
2341     (*null_control) = top();    // NULL path is dead
2342   }
2343   if ((*null_control) == top() && safe_for_replace) {
2344     replace_in_map(value, cast);
2345   }
2346 
2347   // Cast away null-ness on the result
2348   return cast;
2349 }
2350 
2351 //------------------------------opt_iff----------------------------------------
2352 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2353 // Return slow-path control.
2354 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2355   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2356 
2357   // Fast path taken; set region slot 2
2358   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2359   region->init_req(2,fast_taken); // Capture fast-control
2360 
2361   // Fast path not-taken, i.e. slow path
2362   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2363   return slow_taken;
2364 }
2365 
2366 //-----------------------------make_runtime_call-------------------------------
2367 Node* GraphKit::make_runtime_call(int flags,
2368                                   const TypeFunc* call_type, address call_addr,
2369                                   const char* call_name,
2370                                   const TypePtr* adr_type,
2371                                   // The following parms are all optional.
2372                                   // The first NULL ends the list.
2373                                   Node* parm0, Node* parm1,
2374                                   Node* parm2, Node* parm3,
2375                                   Node* parm4, Node* parm5,
2376                                   Node* parm6, Node* parm7) {
2377   // Slow-path call
2378   bool is_leaf = !(flags & RC_NO_LEAF);
2379   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2380   if (call_name == NULL) {
2381     assert(!is_leaf, "must supply name for leaf");
2382     call_name = OptoRuntime::stub_name(call_addr);
2383   }
2384   CallNode* call;
2385   if (!is_leaf) {
2386     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2387                                            bci(), adr_type);
2388   } else if (flags & RC_NO_FP) {
2389     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2390   } else {
2391     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2392   }
2393 
2394   // The following is similar to set_edges_for_java_call,
2395   // except that the memory effects of the call are restricted to AliasIdxRaw.
2396 
2397   // Slow path call has no side-effects, uses few values
2398   bool wide_in  = !(flags & RC_NARROW_MEM);
2399   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2400 
2401   Node* prev_mem = NULL;
2402   if (wide_in) {
2403     prev_mem = set_predefined_input_for_runtime_call(call);
2404   } else {
2405     assert(!wide_out, "narrow in => narrow out");
2406     Node* narrow_mem = memory(adr_type);
2407     prev_mem = reset_memory();
2408     map()->set_memory(narrow_mem);
2409     set_predefined_input_for_runtime_call(call);
2410   }
2411 
2412   // Hook each parm in order.  Stop looking at the first NULL.
2413   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2414   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2415   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2416   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2417   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2418   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2419   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2420   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2421     /* close each nested if ===> */  } } } } } } } }
2422   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2423 
2424   if (!is_leaf) {
2425     // Non-leaves can block and take safepoints:
2426     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2427   }
2428   // Non-leaves can throw exceptions:
2429   if (has_io) {
2430     call->set_req(TypeFunc::I_O, i_o());
2431   }
2432 
2433   if (flags & RC_UNCOMMON) {
2434     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2435     // (An "if" probability corresponds roughly to an unconditional count.
2436     // Sort of.)
2437     call->set_cnt(PROB_UNLIKELY_MAG(4));
2438   }
2439 
2440   Node* c = _gvn.transform(call);
2441   assert(c == call, "cannot disappear");
2442 
2443   if (wide_out) {
2444     // Slow path call has full side-effects.
2445     set_predefined_output_for_runtime_call(call);
2446   } else {
2447     // Slow path call has few side-effects, and/or sets few values.
2448     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2449   }
2450 
2451   if (has_io) {
2452     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2453   }
2454   return call;
2455 
2456 }
2457 
2458 //------------------------------merge_memory-----------------------------------
2459 // Merge memory from one path into the current memory state.
2460 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2461   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2462     Node* old_slice = mms.force_memory();
2463     Node* new_slice = mms.memory2();
2464     if (old_slice != new_slice) {
2465       PhiNode* phi;
2466       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2467         if (mms.is_empty()) {
2468           // clone base memory Phi's inputs for this memory slice
2469           assert(old_slice == mms.base_memory(), "sanity");
2470           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2471           _gvn.set_type(phi, Type::MEMORY);
2472           for (uint i = 1; i < phi->req(); i++) {
2473             phi->init_req(i, old_slice->in(i));
2474           }
2475         } else {
2476           phi = old_slice->as_Phi(); // Phi was generated already
2477         }
2478       } else {
2479         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2480         _gvn.set_type(phi, Type::MEMORY);
2481       }
2482       phi->set_req(new_path, new_slice);
2483       mms.set_memory(phi);
2484     }
2485   }
2486 }
2487 
2488 //------------------------------make_slow_call_ex------------------------------
2489 // Make the exception handler hookups for the slow call
2490 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2491   if (stopped())  return;
2492 
2493   // Make a catch node with just two handlers:  fall-through and catch-all
2494   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2495   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2496   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2497   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2498 
2499   { PreserveJVMState pjvms(this);
2500     set_control(excp);
2501     set_i_o(i_o);
2502 
2503     if (excp != top()) {
2504       if (deoptimize) {
2505         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2506         uncommon_trap(Deoptimization::Reason_unhandled,
2507                       Deoptimization::Action_none);
2508       } else {
2509         // Create an exception state also.
2510         // Use an exact type if the caller has specified a specific exception.
2511         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2512         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2513         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2514       }
2515     }
2516   }
2517 
2518   // Get the no-exception control from the CatchNode.
2519   set_control(norm);
2520 }
2521 
2522 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2523   Node* cmp = NULL;
2524   switch(bt) {
2525   case T_INT: cmp = new CmpINode(in1, in2); break;
2526   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2527   default: fatal(err_msg("unexpected comparison type %s", type2name(bt)));
2528   }
2529   gvn->transform(cmp);
2530   Node* bol = gvn->transform(new BoolNode(cmp, test));
2531   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2532   gvn->transform(iff);
2533   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2534   return iff;
2535 }
2536 
2537 
2538 //-------------------------------gen_subtype_check-----------------------------
2539 // Generate a subtyping check.  Takes as input the subtype and supertype.
2540 // Returns 2 values: sets the default control() to the true path and returns
2541 // the false path.  Only reads invariant memory; sets no (visible) memory.
2542 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2543 // but that's not exposed to the optimizer.  This call also doesn't take in an
2544 // Object; if you wish to check an Object you need to load the Object's class
2545 // prior to coming here.
2546 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2547   Compile* C = gvn->C;
2548 
2549   if ((*ctrl)->is_top()) {
2550     return C->top();
2551   }
2552 
2553   // Fast check for identical types, perhaps identical constants.
2554   // The types can even be identical non-constants, in cases
2555   // involving Array.newInstance, Object.clone, etc.
2556   if (subklass == superklass)
2557     return C->top();             // false path is dead; no test needed.
2558 
2559   if (gvn->type(superklass)->singleton()) {
2560     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2561     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2562 
2563     // In the common case of an exact superklass, try to fold up the
2564     // test before generating code.  You may ask, why not just generate
2565     // the code and then let it fold up?  The answer is that the generated
2566     // code will necessarily include null checks, which do not always
2567     // completely fold away.  If they are also needless, then they turn
2568     // into a performance loss.  Example:
2569     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2570     // Here, the type of 'fa' is often exact, so the store check
2571     // of fa[1]=x will fold up, without testing the nullness of x.
2572     switch (C->static_subtype_check(superk, subk)) {
2573     case Compile::SSC_always_false:
2574       {
2575         Node* always_fail = *ctrl;
2576         *ctrl = gvn->C->top();
2577         return always_fail;
2578       }
2579     case Compile::SSC_always_true:
2580       return C->top();
2581     case Compile::SSC_easy_test:
2582       {
2583         // Just do a direct pointer compare and be done.
2584         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2585         *ctrl = gvn->transform(new IfTrueNode(iff));
2586         return gvn->transform(new IfFalseNode(iff));
2587       }
2588     case Compile::SSC_full_test:
2589       break;
2590     default:
2591       ShouldNotReachHere();
2592     }
2593   }
2594 
2595   // %%% Possible further optimization:  Even if the superklass is not exact,
2596   // if the subklass is the unique subtype of the superklass, the check
2597   // will always succeed.  We could leave a dependency behind to ensure this.
2598 
2599   // First load the super-klass's check-offset
2600   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2601   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2602   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2603   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2604   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2605 
2606   // Load from the sub-klass's super-class display list, or a 1-word cache of
2607   // the secondary superclass list, or a failing value with a sentinel offset
2608   // if the super-klass is an interface or exceptionally deep in the Java
2609   // hierarchy and we have to scan the secondary superclass list the hard way.
2610   // Worst-case type is a little odd: NULL is allowed as a result (usually
2611   // klass loads can never produce a NULL).
2612   Node *chk_off_X = chk_off;
2613 #ifdef _LP64
2614   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2615 #endif
2616   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2617   // For some types like interfaces the following loadKlass is from a 1-word
2618   // cache which is mutable so can't use immutable memory.  Other
2619   // types load from the super-class display table which is immutable.
2620   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2621   Node *kmem = might_be_cache ? m : C->immutable_memory();
2622   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2623 
2624   // Compile speed common case: ARE a subtype and we canNOT fail
2625   if( superklass == nkls )
2626     return C->top();             // false path is dead; no test needed.
2627 
2628   // See if we get an immediate positive hit.  Happens roughly 83% of the
2629   // time.  Test to see if the value loaded just previously from the subklass
2630   // is exactly the superklass.
2631   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2632   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2633   *ctrl = gvn->transform(new IfFalseNode(iff1));
2634 
2635   // Compile speed common case: Check for being deterministic right now.  If
2636   // chk_off is a constant and not equal to cacheoff then we are NOT a
2637   // subklass.  In this case we need exactly the 1 test above and we can
2638   // return those results immediately.
2639   if (!might_be_cache) {
2640     Node* not_subtype_ctrl = *ctrl;
2641     *ctrl = iftrue1; // We need exactly the 1 test above
2642     return not_subtype_ctrl;
2643   }
2644 
2645   // Gather the various success & failures here
2646   RegionNode *r_ok_subtype = new RegionNode(4);
2647   gvn->record_for_igvn(r_ok_subtype);
2648   RegionNode *r_not_subtype = new RegionNode(3);
2649   gvn->record_for_igvn(r_not_subtype);
2650 
2651   r_ok_subtype->init_req(1, iftrue1);
2652 
2653   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2654   // is roughly 63% of the remaining cases).  Test to see if the loaded
2655   // check-offset points into the subklass display list or the 1-element
2656   // cache.  If it points to the display (and NOT the cache) and the display
2657   // missed then it's not a subtype.
2658   Node *cacheoff = gvn->intcon(cacheoff_con);
2659   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2660   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2661   *ctrl = gvn->transform(new IfFalseNode(iff2));
2662 
2663   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2664   // No performance impact (too rare) but allows sharing of secondary arrays
2665   // which has some footprint reduction.
2666   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2667   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2668   *ctrl = gvn->transform(new IfFalseNode(iff3));
2669 
2670   // -- Roads not taken here: --
2671   // We could also have chosen to perform the self-check at the beginning
2672   // of this code sequence, as the assembler does.  This would not pay off
2673   // the same way, since the optimizer, unlike the assembler, can perform
2674   // static type analysis to fold away many successful self-checks.
2675   // Non-foldable self checks work better here in second position, because
2676   // the initial primary superclass check subsumes a self-check for most
2677   // types.  An exception would be a secondary type like array-of-interface,
2678   // which does not appear in its own primary supertype display.
2679   // Finally, we could have chosen to move the self-check into the
2680   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2681   // dependent manner.  But it is worthwhile to have the check here,
2682   // where it can be perhaps be optimized.  The cost in code space is
2683   // small (register compare, branch).
2684 
2685   // Now do a linear scan of the secondary super-klass array.  Again, no real
2686   // performance impact (too rare) but it's gotta be done.
2687   // Since the code is rarely used, there is no penalty for moving it
2688   // out of line, and it can only improve I-cache density.
2689   // The decision to inline or out-of-line this final check is platform
2690   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2691   Node* psc = gvn->transform(
2692     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2693 
2694   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2695   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2696   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2697 
2698   // Return false path; set default control to true path.
2699   *ctrl = gvn->transform(r_ok_subtype);
2700   return gvn->transform(r_not_subtype);
2701 }
2702 
2703 // Profile-driven exact type check:
2704 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2705                                     float prob,
2706                                     Node* *casted_receiver) {
2707   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2708   Node* recv_klass = load_object_klass(receiver);
2709   Node* want_klass = makecon(tklass);
2710   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2711   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2712   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2713   set_control( _gvn.transform( new IfTrueNode (iff) ));
2714   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2715 
2716   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2717   assert(recv_xtype->klass_is_exact(), "");
2718 
2719   // Subsume downstream occurrences of receiver with a cast to
2720   // recv_xtype, since now we know what the type will be.
2721   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2722   (*casted_receiver) = _gvn.transform(cast);
2723   // (User must make the replace_in_map call.)
2724 
2725   return fail;
2726 }
2727 
2728 
2729 //------------------------------seems_never_null-------------------------------
2730 // Use null_seen information if it is available from the profile.
2731 // If we see an unexpected null at a type check we record it and force a
2732 // recompile; the offending check will be recompiled to handle NULLs.
2733 // If we see several offending BCIs, then all checks in the
2734 // method will be recompiled.
2735 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2736   speculating = !_gvn.type(obj)->speculative_maybe_null();
2737   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2738   if (UncommonNullCast               // Cutout for this technique
2739       && obj != null()               // And not the -Xcomp stupid case?
2740       && !too_many_traps(reason)
2741       ) {
2742     if (speculating) {
2743       return true;
2744     }
2745     if (data == NULL)
2746       // Edge case:  no mature data.  Be optimistic here.
2747       return true;
2748     // If the profile has not seen a null, assume it won't happen.
2749     assert(java_bc() == Bytecodes::_checkcast ||
2750            java_bc() == Bytecodes::_instanceof ||
2751            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2752     return !data->as_BitData()->null_seen();
2753   }
2754   speculating = false;
2755   return false;
2756 }
2757 
2758 //------------------------maybe_cast_profiled_receiver-------------------------
2759 // If the profile has seen exactly one type, narrow to exactly that type.
2760 // Subsequent type checks will always fold up.
2761 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2762                                              ciKlass* require_klass,
2763                                              ciKlass* spec_klass,
2764                                              bool safe_for_replace) {
2765   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2766 
2767   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2768 
2769   // Make sure we haven't already deoptimized from this tactic.
2770   if (too_many_traps(reason) || too_many_recompiles(reason))
2771     return NULL;
2772 
2773   // (No, this isn't a call, but it's enough like a virtual call
2774   // to use the same ciMethod accessor to get the profile info...)
2775   // If we have a speculative type use it instead of profiling (which
2776   // may not help us)
2777   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2778   if (exact_kls != NULL) {// no cast failures here
2779     if (require_klass == NULL ||
2780         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2781       // If we narrow the type to match what the type profile sees or
2782       // the speculative type, we can then remove the rest of the
2783       // cast.
2784       // This is a win, even if the exact_kls is very specific,
2785       // because downstream operations, such as method calls,
2786       // will often benefit from the sharper type.
2787       Node* exact_obj = not_null_obj; // will get updated in place...
2788       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2789                                             &exact_obj);
2790       { PreserveJVMState pjvms(this);
2791         set_control(slow_ctl);
2792         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2793       }
2794       if (safe_for_replace) {
2795         replace_in_map(not_null_obj, exact_obj);
2796       }
2797       return exact_obj;
2798     }
2799     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2800   }
2801 
2802   return NULL;
2803 }
2804 
2805 /**
2806  * Cast obj to type and emit guard unless we had too many traps here
2807  * already
2808  *
2809  * @param obj       node being casted
2810  * @param type      type to cast the node to
2811  * @param not_null  true if we know node cannot be null
2812  */
2813 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2814                                         ciKlass* type,
2815                                         bool not_null) {
2816   if (stopped()) {
2817     return obj;
2818   }
2819 
2820   // type == NULL if profiling tells us this object is always null
2821   if (type != NULL) {
2822     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2823     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2824 
2825     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2826         !too_many_traps(class_reason) &&
2827         !too_many_recompiles(class_reason)) {
2828       Node* not_null_obj = NULL;
2829       // not_null is true if we know the object is not null and
2830       // there's no need for a null check
2831       if (!not_null) {
2832         Node* null_ctl = top();
2833         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2834         assert(null_ctl->is_top(), "no null control here");
2835       } else {
2836         not_null_obj = obj;
2837       }
2838 
2839       Node* exact_obj = not_null_obj;
2840       ciKlass* exact_kls = type;
2841       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2842                                             &exact_obj);
2843       {
2844         PreserveJVMState pjvms(this);
2845         set_control(slow_ctl);
2846         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2847       }
2848       replace_in_map(not_null_obj, exact_obj);
2849       obj = exact_obj;
2850     }
2851   } else {
2852     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2853         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2854       Node* exact_obj = null_assert(obj);
2855       replace_in_map(obj, exact_obj);
2856       obj = exact_obj;
2857     }
2858   }
2859   return obj;
2860 }
2861 
2862 //-------------------------------gen_instanceof--------------------------------
2863 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2864 // and the reflective instance-of call.
2865 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2866   kill_dead_locals();           // Benefit all the uncommon traps
2867   assert( !stopped(), "dead parse path should be checked in callers" );
2868   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2869          "must check for not-null not-dead klass in callers");
2870 
2871   // Make the merge point
2872   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2873   RegionNode* region = new RegionNode(PATH_LIMIT);
2874   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2875   C->set_has_split_ifs(true); // Has chance for split-if optimization
2876 
2877   ciProfileData* data = NULL;
2878   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2879     data = method()->method_data()->bci_to_data(bci());
2880   }
2881   bool speculative_not_null = false;
2882   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2883                          && seems_never_null(obj, data, speculative_not_null));
2884 
2885   // Null check; get casted pointer; set region slot 3
2886   Node* null_ctl = top();
2887   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2888 
2889   // If not_null_obj is dead, only null-path is taken
2890   if (stopped()) {              // Doing instance-of on a NULL?
2891     set_control(null_ctl);
2892     return intcon(0);
2893   }
2894   region->init_req(_null_path, null_ctl);
2895   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2896   if (null_ctl == top()) {
2897     // Do this eagerly, so that pattern matches like is_diamond_phi
2898     // will work even during parsing.
2899     assert(_null_path == PATH_LIMIT-1, "delete last");
2900     region->del_req(_null_path);
2901     phi   ->del_req(_null_path);
2902   }
2903 
2904   // Do we know the type check always succeed?
2905   bool known_statically = false;
2906   if (_gvn.type(superklass)->singleton()) {
2907     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2908     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2909     if (subk != NULL && subk->is_loaded()) {
2910       int static_res = C->static_subtype_check(superk, subk);
2911       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2912     }
2913   }
2914 
2915   if (known_statically && UseTypeSpeculation) {
2916     // If we know the type check always succeeds then we don't use the
2917     // profiling data at this bytecode. Don't lose it, feed it to the
2918     // type system as a speculative type.
2919     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2920   } else {
2921     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2922     // We may not have profiling here or it may not help us. If we
2923     // have a speculative type use it to perform an exact cast.
2924     ciKlass* spec_obj_type = obj_type->speculative_type();
2925     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2926       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2927       if (stopped()) {            // Profile disagrees with this path.
2928         set_control(null_ctl);    // Null is the only remaining possibility.
2929         return intcon(0);
2930       }
2931       if (cast_obj != NULL) {
2932         not_null_obj = cast_obj;
2933       }
2934     }
2935   }
2936 
2937   if (ShenandoahVerifyReadsToFromSpace) {
2938     not_null_obj = shenandoah_read_barrier(not_null_obj);
2939   }
2940 
2941   // Load the object's klass
2942   Node* obj_klass = load_object_klass(not_null_obj);
2943 
2944   // Generate the subtype check
2945   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2946 
2947   // Plug in the success path to the general merge in slot 1.
2948   region->init_req(_obj_path, control());
2949   phi   ->init_req(_obj_path, intcon(1));
2950 
2951   // Plug in the failing path to the general merge in slot 2.
2952   region->init_req(_fail_path, not_subtype_ctrl);
2953   phi   ->init_req(_fail_path, intcon(0));
2954 
2955   // Return final merged results
2956   set_control( _gvn.transform(region) );
2957   record_for_igvn(region);
2958   return _gvn.transform(phi);
2959 }
2960 
2961 //-------------------------------gen_checkcast---------------------------------
2962 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2963 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2964 // uncommon-trap paths work.  Adjust stack after this call.
2965 // If failure_control is supplied and not null, it is filled in with
2966 // the control edge for the cast failure.  Otherwise, an appropriate
2967 // uncommon trap or exception is thrown.
2968 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2969                               Node* *failure_control) {
2970   kill_dead_locals();           // Benefit all the uncommon traps
2971   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2972   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2973 
2974   // Fast cutout:  Check the case that the cast is vacuously true.
2975   // This detects the common cases where the test will short-circuit
2976   // away completely.  We do this before we perform the null check,
2977   // because if the test is going to turn into zero code, we don't
2978   // want a residual null check left around.  (Causes a slowdown,
2979   // for example, in some objArray manipulations, such as a[i]=a[j].)
2980   if (tk->singleton()) {
2981     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2982     if (objtp != NULL && objtp->klass() != NULL) {
2983       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
2984       case Compile::SSC_always_true:
2985         // If we know the type check always succeed then we don't use
2986         // the profiling data at this bytecode. Don't lose it, feed it
2987         // to the type system as a speculative type.
2988         return record_profiled_receiver_for_speculation(obj);
2989       case Compile::SSC_always_false:
2990         // It needs a null check because a null will *pass* the cast check.
2991         // A non-null value will always produce an exception.
2992         return null_assert(obj);
2993       }
2994     }
2995   }
2996 
2997   ciProfileData* data = NULL;
2998   bool safe_for_replace = false;
2999   if (failure_control == NULL) {        // use MDO in regular case only
3000     assert(java_bc() == Bytecodes::_aastore ||
3001            java_bc() == Bytecodes::_checkcast,
3002            "interpreter profiles type checks only for these BCs");
3003     data = method()->method_data()->bci_to_data(bci());
3004     safe_for_replace = true;
3005   }
3006 
3007   // Make the merge point
3008   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3009   RegionNode* region = new RegionNode(PATH_LIMIT);
3010   Node*       phi    = new PhiNode(region, toop);
3011   C->set_has_split_ifs(true); // Has chance for split-if optimization
3012 
3013   // Use null-cast information if it is available
3014   bool speculative_not_null = false;
3015   bool never_see_null = ((failure_control == NULL)  // regular case only
3016                          && seems_never_null(obj, data, speculative_not_null));
3017 
3018   // Null check; get casted pointer; set region slot 3
3019   Node* null_ctl = top();
3020   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3021 
3022   if (ShenandoahVerifyReadsToFromSpace) {
3023     not_null_obj = shenandoah_read_barrier(not_null_obj);
3024   }
3025 
3026   // If not_null_obj is dead, only null-path is taken
3027   if (stopped()) {              // Doing instance-of on a NULL?
3028     set_control(null_ctl);
3029     return null();
3030   }
3031   region->init_req(_null_path, null_ctl);
3032   phi   ->init_req(_null_path, null());  // Set null path value
3033   if (null_ctl == top()) {
3034     // Do this eagerly, so that pattern matches like is_diamond_phi
3035     // will work even during parsing.
3036     assert(_null_path == PATH_LIMIT-1, "delete last");
3037     region->del_req(_null_path);
3038     phi   ->del_req(_null_path);
3039   }
3040 
3041   Node* cast_obj = NULL;
3042   if (tk->klass_is_exact()) {
3043     // The following optimization tries to statically cast the speculative type of the object
3044     // (for example obtained during profiling) to the type of the superklass and then do a
3045     // dynamic check that the type of the object is what we expect. To work correctly
3046     // for checkcast and aastore the type of superklass should be exact.
3047     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3048     // We may not have profiling here or it may not help us. If we have
3049     // a speculative type use it to perform an exact cast.
3050     ciKlass* spec_obj_type = obj_type->speculative_type();
3051     if (spec_obj_type != NULL || data != NULL) {
3052       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3053       if (cast_obj != NULL) {
3054         if (failure_control != NULL) // failure is now impossible
3055           (*failure_control) = top();
3056         // adjust the type of the phi to the exact klass:
3057         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3058       }
3059     }
3060   }
3061 
3062   if (cast_obj == NULL) {
3063     // Load the object's klass
3064     Node* obj_klass = load_object_klass(not_null_obj);
3065 
3066     // Generate the subtype check
3067     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3068 
3069     // Plug in success path into the merge
3070     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3071     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3072     if (failure_control == NULL) {
3073       if (not_subtype_ctrl != top()) { // If failure is possible
3074         PreserveJVMState pjvms(this);
3075         set_control(not_subtype_ctrl);
3076         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3077       }
3078     } else {
3079       (*failure_control) = not_subtype_ctrl;
3080     }
3081   }
3082 
3083   region->init_req(_obj_path, control());
3084   phi   ->init_req(_obj_path, cast_obj);
3085 
3086   // A merge of NULL or Casted-NotNull obj
3087   Node* res = _gvn.transform(phi);
3088 
3089   // Note I do NOT always 'replace_in_map(obj,result)' here.
3090   //  if( tk->klass()->can_be_primary_super()  )
3091     // This means that if I successfully store an Object into an array-of-String
3092     // I 'forget' that the Object is really now known to be a String.  I have to
3093     // do this because we don't have true union types for interfaces - if I store
3094     // a Baz into an array-of-Interface and then tell the optimizer it's an
3095     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3096     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3097   //  replace_in_map( obj, res );
3098 
3099   // Return final merged results
3100   set_control( _gvn.transform(region) );
3101   record_for_igvn(region);
3102   return res;
3103 }
3104 
3105 //------------------------------next_monitor-----------------------------------
3106 // What number should be given to the next monitor?
3107 int GraphKit::next_monitor() {
3108   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3109   int next = current + C->sync_stack_slots();
3110   // Keep the toplevel high water mark current:
3111   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3112   return current;
3113 }
3114 
3115 //------------------------------insert_mem_bar---------------------------------
3116 // Memory barrier to avoid floating things around
3117 // The membar serves as a pinch point between both control and all memory slices.
3118 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3119   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3120   mb->init_req(TypeFunc::Control, control());
3121   mb->init_req(TypeFunc::Memory,  reset_memory());
3122   Node* membar = _gvn.transform(mb);
3123   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3124   set_all_memory_call(membar);
3125   return membar;
3126 }
3127 
3128 //-------------------------insert_mem_bar_volatile----------------------------
3129 // Memory barrier to avoid floating things around
3130 // The membar serves as a pinch point between both control and memory(alias_idx).
3131 // If you want to make a pinch point on all memory slices, do not use this
3132 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3133 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3134   // When Parse::do_put_xxx updates a volatile field, it appends a series
3135   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3136   // The first membar is on the same memory slice as the field store opcode.
3137   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3138   // All the other membars (for other volatile slices, including AliasIdxBot,
3139   // which stands for all unknown volatile slices) are control-dependent
3140   // on the first membar.  This prevents later volatile loads or stores
3141   // from sliding up past the just-emitted store.
3142 
3143   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3144   mb->set_req(TypeFunc::Control,control());
3145   if (alias_idx == Compile::AliasIdxBot) {
3146     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3147   } else {
3148     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3149     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3150   }
3151   Node* membar = _gvn.transform(mb);
3152   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3153   if (alias_idx == Compile::AliasIdxBot) {
3154     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3155   } else {
3156     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3157   }
3158   return membar;
3159 }
3160 
3161 //------------------------------shared_lock------------------------------------
3162 // Emit locking code.
3163 FastLockNode* GraphKit::shared_lock(Node* obj) {
3164   // bci is either a monitorenter bc or InvocationEntryBci
3165   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3166   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3167 
3168   if( !GenerateSynchronizationCode )
3169     return NULL;                // Not locking things?
3170   if (stopped())                // Dead monitor?
3171     return NULL;
3172 
3173   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3174 
3175   obj = shenandoah_write_barrier(obj);
3176 
3177   // Box the stack location
3178   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3179   Node* mem = reset_memory();
3180 
3181   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3182   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3183     // Create the counters for this fast lock.
3184     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3185   }
3186 
3187   // Create the rtm counters for this fast lock if needed.
3188   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3189 
3190   // Add monitor to debug info for the slow path.  If we block inside the
3191   // slow path and de-opt, we need the monitor hanging around
3192   map()->push_monitor( flock );
3193 
3194   const TypeFunc *tf = LockNode::lock_type();
3195   LockNode *lock = new LockNode(C, tf);
3196 
3197   lock->init_req( TypeFunc::Control, control() );
3198   lock->init_req( TypeFunc::Memory , mem );
3199   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3200   lock->init_req( TypeFunc::FramePtr, frameptr() );
3201   lock->init_req( TypeFunc::ReturnAdr, top() );
3202 
3203   lock->init_req(TypeFunc::Parms + 0, obj);
3204   lock->init_req(TypeFunc::Parms + 1, box);
3205   lock->init_req(TypeFunc::Parms + 2, flock);
3206   add_safepoint_edges(lock);
3207 
3208   lock = _gvn.transform( lock )->as_Lock();
3209 
3210   // lock has no side-effects, sets few values
3211   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3212 
3213   insert_mem_bar(Op_MemBarAcquireLock);
3214 
3215   // Add this to the worklist so that the lock can be eliminated
3216   record_for_igvn(lock);
3217 
3218 #ifndef PRODUCT
3219   if (PrintLockStatistics) {
3220     // Update the counter for this lock.  Don't bother using an atomic
3221     // operation since we don't require absolute accuracy.
3222     lock->create_lock_counter(map()->jvms());
3223     increment_counter(lock->counter()->addr());
3224   }
3225 #endif
3226 
3227   return flock;
3228 }
3229 
3230 
3231 //------------------------------shared_unlock----------------------------------
3232 // Emit unlocking code.
3233 void GraphKit::shared_unlock(Node* box, Node* obj) {
3234   // bci is either a monitorenter bc or InvocationEntryBci
3235   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3236   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3237 
3238   if( !GenerateSynchronizationCode )
3239     return;
3240   if (stopped()) {               // Dead monitor?
3241     map()->pop_monitor();        // Kill monitor from debug info
3242     return;
3243   }
3244 
3245   // Memory barrier to avoid floating things down past the locked region
3246   insert_mem_bar(Op_MemBarReleaseLock);
3247 
3248   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3249   UnlockNode *unlock = new UnlockNode(C, tf);
3250 #ifdef ASSERT
3251   unlock->set_dbg_jvms(sync_jvms());
3252 #endif
3253   uint raw_idx = Compile::AliasIdxRaw;
3254   unlock->init_req( TypeFunc::Control, control() );
3255   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3256   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3257   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3258   unlock->init_req( TypeFunc::ReturnAdr, top() );
3259 
3260   unlock->init_req(TypeFunc::Parms + 0, obj);
3261   unlock->init_req(TypeFunc::Parms + 1, box);
3262   unlock = _gvn.transform(unlock)->as_Unlock();
3263 
3264   Node* mem = reset_memory();
3265 
3266   // unlock has no side-effects, sets few values
3267   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3268 
3269   // Kill monitor from debug info
3270   map()->pop_monitor( );
3271 }
3272 
3273 //-------------------------------get_layout_helper-----------------------------
3274 // If the given klass is a constant or known to be an array,
3275 // fetch the constant layout helper value into constant_value
3276 // and return (Node*)NULL.  Otherwise, load the non-constant
3277 // layout helper value, and return the node which represents it.
3278 // This two-faced routine is useful because allocation sites
3279 // almost always feature constant types.
3280 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3281   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3282   if (!StressReflectiveCode && inst_klass != NULL) {
3283     ciKlass* klass = inst_klass->klass();
3284     bool    xklass = inst_klass->klass_is_exact();
3285     if (xklass || klass->is_array_klass()) {
3286       jint lhelper = klass->layout_helper();
3287       if (lhelper != Klass::_lh_neutral_value) {
3288         constant_value = lhelper;
3289         return (Node*) NULL;
3290       }
3291     }
3292   }
3293   constant_value = Klass::_lh_neutral_value;  // put in a known value
3294   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3295   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3296 }
3297 
3298 // We just put in an allocate/initialize with a big raw-memory effect.
3299 // Hook selected additional alias categories on the initialization.
3300 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3301                                 MergeMemNode* init_in_merge,
3302                                 Node* init_out_raw) {
3303   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3304   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3305 
3306   Node* prevmem = kit.memory(alias_idx);
3307   init_in_merge->set_memory_at(alias_idx, prevmem);
3308   kit.set_memory(init_out_raw, alias_idx);
3309 }
3310 
3311 //---------------------------set_output_for_allocation-------------------------
3312 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3313                                           const TypeOopPtr* oop_type,
3314                                           bool deoptimize_on_exception) {
3315   int rawidx = Compile::AliasIdxRaw;
3316   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3317   add_safepoint_edges(alloc);
3318   Node* allocx = _gvn.transform(alloc);
3319   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3320   // create memory projection for i_o
3321   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3322   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3323 
3324   // create a memory projection as for the normal control path
3325   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3326   set_memory(malloc, rawidx);
3327 
3328   // a normal slow-call doesn't change i_o, but an allocation does
3329   // we create a separate i_o projection for the normal control path
3330   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3331   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3332 
3333   // put in an initialization barrier
3334   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3335                                                  rawoop)->as_Initialize();
3336   assert(alloc->initialization() == init,  "2-way macro link must work");
3337   assert(init ->allocation()     == alloc, "2-way macro link must work");
3338   {
3339     // Extract memory strands which may participate in the new object's
3340     // initialization, and source them from the new InitializeNode.
3341     // This will allow us to observe initializations when they occur,
3342     // and link them properly (as a group) to the InitializeNode.
3343     assert(init->in(InitializeNode::Memory) == malloc, "");
3344     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3345     init->set_req(InitializeNode::Memory, minit_in);
3346     record_for_igvn(minit_in); // fold it up later, if possible
3347     Node* minit_out = memory(rawidx);
3348     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3349     if (oop_type->isa_aryptr()) {
3350       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3351       int            elemidx  = C->get_alias_index(telemref);
3352       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3353     } else if (oop_type->isa_instptr()) {
3354       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3355       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3356         ciField* field = ik->nonstatic_field_at(i);
3357         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3358           continue;  // do not bother to track really large numbers of fields
3359         // Find (or create) the alias category for this field:
3360         int fieldidx = C->alias_type(field)->index();
3361         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3362       }
3363     }
3364   }
3365 
3366   // Cast raw oop to the real thing...
3367   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3368   javaoop = _gvn.transform(javaoop);
3369   C->set_recent_alloc(control(), javaoop);
3370   assert(just_allocated_object(control()) == javaoop, "just allocated");
3371 
3372 #ifdef ASSERT
3373   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3374     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3375            "Ideal_allocation works");
3376     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3377            "Ideal_allocation works");
3378     if (alloc->is_AllocateArray()) {
3379       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3380              "Ideal_allocation works");
3381       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3382              "Ideal_allocation works");
3383     } else {
3384       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3385     }
3386   }
3387 #endif //ASSERT
3388 
3389   return javaoop;
3390 }
3391 
3392 //---------------------------new_instance--------------------------------------
3393 // This routine takes a klass_node which may be constant (for a static type)
3394 // or may be non-constant (for reflective code).  It will work equally well
3395 // for either, and the graph will fold nicely if the optimizer later reduces
3396 // the type to a constant.
3397 // The optional arguments are for specialized use by intrinsics:
3398 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3399 //  - If 'return_size_val', report the the total object size to the caller.
3400 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3401 Node* GraphKit::new_instance(Node* klass_node,
3402                              Node* extra_slow_test,
3403                              Node* *return_size_val,
3404                              bool deoptimize_on_exception) {
3405   // Compute size in doublewords
3406   // The size is always an integral number of doublewords, represented
3407   // as a positive bytewise size stored in the klass's layout_helper.
3408   // The layout_helper also encodes (in a low bit) the need for a slow path.
3409   jint  layout_con = Klass::_lh_neutral_value;
3410   Node* layout_val = get_layout_helper(klass_node, layout_con);
3411   int   layout_is_con = (layout_val == NULL);
3412 
3413   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3414   // Generate the initial go-slow test.  It's either ALWAYS (return a
3415   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3416   // case) a computed value derived from the layout_helper.
3417   Node* initial_slow_test = NULL;
3418   if (layout_is_con) {
3419     assert(!StressReflectiveCode, "stress mode does not use these paths");
3420     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3421     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3422 
3423   } else {   // reflective case
3424     // This reflective path is used by Unsafe.allocateInstance.
3425     // (It may be stress-tested by specifying StressReflectiveCode.)
3426     // Basically, we want to get into the VM is there's an illegal argument.
3427     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3428     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3429     if (extra_slow_test != intcon(0)) {
3430       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3431     }
3432     // (Macro-expander will further convert this to a Bool, if necessary.)
3433   }
3434 
3435   // Find the size in bytes.  This is easy; it's the layout_helper.
3436   // The size value must be valid even if the slow path is taken.
3437   Node* size = NULL;
3438   if (layout_is_con) {
3439     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3440   } else {   // reflective case
3441     // This reflective path is used by clone and Unsafe.allocateInstance.
3442     size = ConvI2X(layout_val);
3443 
3444     // Clear the low bits to extract layout_helper_size_in_bytes:
3445     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3446     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3447     size = _gvn.transform( new AndXNode(size, mask) );
3448   }
3449   if (return_size_val != NULL) {
3450     (*return_size_val) = size;
3451   }
3452 
3453   // This is a precise notnull oop of the klass.
3454   // (Actually, it need not be precise if this is a reflective allocation.)
3455   // It's what we cast the result to.
3456   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3457   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3458   const TypeOopPtr* oop_type = tklass->as_instance_type();
3459 
3460   // Now generate allocation code
3461 
3462   // The entire memory state is needed for slow path of the allocation
3463   // since GC and deoptimization can happened.
3464   Node *mem = reset_memory();
3465   set_all_memory(mem); // Create new memory state
3466 
3467   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3468                                          control(), mem, i_o(),
3469                                          size, klass_node,
3470                                          initial_slow_test);
3471 
3472   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3473 }
3474 
3475 //-------------------------------new_array-------------------------------------
3476 // helper for both newarray and anewarray
3477 // The 'length' parameter is (obviously) the length of the array.
3478 // See comments on new_instance for the meaning of the other arguments.
3479 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3480                           Node* length,         // number of array elements
3481                           int   nargs,          // number of arguments to push back for uncommon trap
3482                           Node* *return_size_val,
3483                           bool deoptimize_on_exception) {
3484   jint  layout_con = Klass::_lh_neutral_value;
3485   Node* layout_val = get_layout_helper(klass_node, layout_con);
3486   int   layout_is_con = (layout_val == NULL);
3487 
3488   if (!layout_is_con && !StressReflectiveCode &&
3489       !too_many_traps(Deoptimization::Reason_class_check)) {
3490     // This is a reflective array creation site.
3491     // Optimistically assume that it is a subtype of Object[],
3492     // so that we can fold up all the address arithmetic.
3493     layout_con = Klass::array_layout_helper(T_OBJECT);
3494     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3495     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3496     { BuildCutout unless(this, bol_lh, PROB_MAX);
3497       inc_sp(nargs);
3498       uncommon_trap(Deoptimization::Reason_class_check,
3499                     Deoptimization::Action_maybe_recompile);
3500     }
3501     layout_val = NULL;
3502     layout_is_con = true;
3503   }
3504 
3505   // Generate the initial go-slow test.  Make sure we do not overflow
3506   // if length is huge (near 2Gig) or negative!  We do not need
3507   // exact double-words here, just a close approximation of needed
3508   // double-words.  We can't add any offset or rounding bits, lest we
3509   // take a size -1 of bytes and make it positive.  Use an unsigned
3510   // compare, so negative sizes look hugely positive.
3511   int fast_size_limit = FastAllocateSizeLimit;
3512   if (layout_is_con) {
3513     assert(!StressReflectiveCode, "stress mode does not use these paths");
3514     // Increase the size limit if we have exact knowledge of array type.
3515     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3516     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3517   }
3518 
3519   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3520   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3521   if (initial_slow_test->is_Bool()) {
3522     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3523     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3524   }
3525 
3526   // --- Size Computation ---
3527   // array_size = round_to_heap(array_header + (length << elem_shift));
3528   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3529   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3530   // The rounding mask is strength-reduced, if possible.
3531   int round_mask = MinObjAlignmentInBytes - 1;
3532   Node* header_size = NULL;
3533   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3534   // (T_BYTE has the weakest alignment and size restrictions...)
3535   if (layout_is_con) {
3536     int       hsize  = Klass::layout_helper_header_size(layout_con);
3537     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3538     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3539     if ((round_mask & ~right_n_bits(eshift)) == 0)
3540       round_mask = 0;  // strength-reduce it if it goes away completely
3541     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3542     assert(header_size_min <= hsize, "generic minimum is smallest");
3543     header_size_min = hsize;
3544     header_size = intcon(hsize + round_mask);
3545   } else {
3546     Node* hss   = intcon(Klass::_lh_header_size_shift);
3547     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3548     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3549     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3550     Node* mask  = intcon(round_mask);
3551     header_size = _gvn.transform( new AddINode(hsize, mask) );
3552   }
3553 
3554   Node* elem_shift = NULL;
3555   if (layout_is_con) {
3556     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3557     if (eshift != 0)
3558       elem_shift = intcon(eshift);
3559   } else {
3560     // There is no need to mask or shift this value.
3561     // The semantics of LShiftINode include an implicit mask to 0x1F.
3562     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3563     elem_shift = layout_val;
3564   }
3565 
3566   // Transition to native address size for all offset calculations:
3567   Node* lengthx = ConvI2X(length);
3568   Node* headerx = ConvI2X(header_size);
3569 #ifdef _LP64
3570   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3571     if (tllen != NULL && tllen->_lo < 0) {
3572       // Add a manual constraint to a positive range.  Cf. array_element_address.
3573       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3574       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3575       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3576       lengthx = _gvn.transform( new ConvI2LNode(length, tlcon));
3577     }
3578   }
3579 #endif
3580 
3581   // Combine header size (plus rounding) and body size.  Then round down.
3582   // This computation cannot overflow, because it is used only in two
3583   // places, one where the length is sharply limited, and the other
3584   // after a successful allocation.
3585   Node* abody = lengthx;
3586   if (elem_shift != NULL)
3587     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3588   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3589   if (round_mask != 0) {
3590     Node* mask = MakeConX(~round_mask);
3591     size       = _gvn.transform( new AndXNode(size, mask) );
3592   }
3593   // else if round_mask == 0, the size computation is self-rounding
3594 
3595   if (return_size_val != NULL) {
3596     // This is the size
3597     (*return_size_val) = size;
3598   }
3599 
3600   // Now generate allocation code
3601 
3602   // The entire memory state is needed for slow path of the allocation
3603   // since GC and deoptimization can happened.
3604   Node *mem = reset_memory();
3605   set_all_memory(mem); // Create new memory state
3606 
3607   // Create the AllocateArrayNode and its result projections
3608   AllocateArrayNode* alloc
3609     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3610                             control(), mem, i_o(),
3611                             size, klass_node,
3612                             initial_slow_test,
3613                             length);
3614 
3615   // Cast to correct type.  Note that the klass_node may be constant or not,
3616   // and in the latter case the actual array type will be inexact also.
3617   // (This happens via a non-constant argument to inline_native_newArray.)
3618   // In any case, the value of klass_node provides the desired array type.
3619   const TypeInt* length_type = _gvn.find_int_type(length);
3620   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3621   if (ary_type->isa_aryptr() && length_type != NULL) {
3622     // Try to get a better type than POS for the size
3623     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3624   }
3625 
3626   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3627 
3628   // Cast length on remaining path to be as narrow as possible
3629   if (map()->find_edge(length) >= 0) {
3630     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3631     if (ccast != length) {
3632       _gvn.set_type_bottom(ccast);
3633       record_for_igvn(ccast);
3634       replace_in_map(length, ccast);
3635     }
3636   }
3637 
3638   return javaoop;
3639 }
3640 
3641 // The following "Ideal_foo" functions are placed here because they recognize
3642 // the graph shapes created by the functions immediately above.
3643 
3644 //---------------------------Ideal_allocation----------------------------------
3645 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3646 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3647   if (ptr == NULL) {     // reduce dumb test in callers
3648     return NULL;
3649   }
3650 
3651   // Attempt to see through Shenandoah barriers.
3652   ptr = ShenandoahBarrierNode::skip_through_barrier(ptr);
3653 
3654   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3655     ptr = ptr->in(1);
3656     if (ptr == NULL) return NULL;
3657   }
3658   // Return NULL for allocations with several casts:
3659   //   j.l.reflect.Array.newInstance(jobject, jint)
3660   //   Object.clone()
3661   // to keep more precise type from last cast.
3662   if (ptr->is_Proj()) {
3663     Node* allo = ptr->in(0);
3664     if (allo != NULL && allo->is_Allocate()) {
3665       return allo->as_Allocate();
3666     }
3667   }
3668   // Report failure to match.
3669   return NULL;
3670 }
3671 
3672 // Fancy version which also strips off an offset (and reports it to caller).
3673 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3674                                              intptr_t& offset) {
3675   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3676   if (base == NULL)  return NULL;
3677   return Ideal_allocation(base, phase);
3678 }
3679 
3680 // Trace Initialize <- Proj[Parm] <- Allocate
3681 AllocateNode* InitializeNode::allocation() {
3682   Node* rawoop = in(InitializeNode::RawAddress);
3683   if (rawoop->is_Proj()) {
3684     Node* alloc = rawoop->in(0);
3685     if (alloc->is_Allocate()) {
3686       return alloc->as_Allocate();
3687     }
3688   }
3689   return NULL;
3690 }
3691 
3692 // Trace Allocate -> Proj[Parm] -> Initialize
3693 InitializeNode* AllocateNode::initialization() {
3694   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3695   if (rawoop == NULL)  return NULL;
3696   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3697     Node* init = rawoop->fast_out(i);
3698     if (init->is_Initialize()) {
3699       assert(init->as_Initialize()->allocation() == this, "2-way link");
3700       return init->as_Initialize();
3701     }
3702   }
3703   return NULL;
3704 }
3705 
3706 //----------------------------- loop predicates ---------------------------
3707 
3708 //------------------------------add_predicate_impl----------------------------
3709 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3710   // Too many traps seen?
3711   if (too_many_traps(reason)) {
3712 #ifdef ASSERT
3713     if (TraceLoopPredicate) {
3714       int tc = C->trap_count(reason);
3715       tty->print("too many traps=%s tcount=%d in ",
3716                     Deoptimization::trap_reason_name(reason), tc);
3717       method()->print(); // which method has too many predicate traps
3718       tty->cr();
3719     }
3720 #endif
3721     // We cannot afford to take more traps here,
3722     // do not generate predicate.
3723     return;
3724   }
3725 
3726   Node *cont    = _gvn.intcon(1);
3727   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3728   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3729   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3730   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3731   C->add_predicate_opaq(opq);
3732   {
3733     PreserveJVMState pjvms(this);
3734     set_control(iffalse);
3735     inc_sp(nargs);
3736     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3737   }
3738   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3739   set_control(iftrue);
3740 }
3741 
3742 //------------------------------add_predicate---------------------------------
3743 void GraphKit::add_predicate(int nargs) {
3744   if (UseLoopPredicate) {
3745     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3746   }
3747   // loop's limit check predicate should be near the loop.
3748   if (LoopLimitCheck) {
3749     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3750   }
3751 }
3752 
3753 //----------------------------- store barriers ----------------------------
3754 #define __ ideal.
3755 
3756 void GraphKit::sync_kit(IdealKit& ideal) {
3757   set_all_memory(__ merged_memory());
3758   set_i_o(__ i_o());
3759   set_control(__ ctrl());
3760 }
3761 
3762 void GraphKit::final_sync(IdealKit& ideal) {
3763   // Final sync IdealKit and graphKit.
3764   sync_kit(ideal);
3765 }
3766 
3767 Node* GraphKit::byte_map_base_node() {
3768   // Get base of card map
3769   CardTableModRefBS* ct =
3770     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3771   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code");
3772   if (ct->byte_map_base != NULL) {
3773     return makecon(TypeRawPtr::make((address)ct->byte_map_base));
3774   } else {
3775     return null();
3776   }
3777 }
3778 
3779 // vanilla/CMS post barrier
3780 // Insert a write-barrier store.  This is to let generational GC work; we have
3781 // to flag all oop-stores before the next GC point.
3782 void GraphKit::write_barrier_post(Node* oop_store,
3783                                   Node* obj,
3784                                   Node* adr,
3785                                   uint  adr_idx,
3786                                   Node* val,
3787                                   bool use_precise) {
3788   // No store check needed if we're storing a NULL or an old object
3789   // (latter case is probably a string constant). The concurrent
3790   // mark sweep garbage collector, however, needs to have all nonNull
3791   // oop updates flagged via card-marks.
3792   if (val != NULL && val->is_Con()) {
3793     // must be either an oop or NULL
3794     const Type* t = val->bottom_type();
3795     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3796       // stores of null never (?) need barriers
3797       return;
3798   }
3799 
3800   if (use_ReduceInitialCardMarks()
3801       && obj == just_allocated_object(control())) {
3802     // We can skip marks on a freshly-allocated object in Eden.
3803     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3804     // That routine informs GC to take appropriate compensating steps,
3805     // upon a slow-path allocation, so as to make this card-mark
3806     // elision safe.
3807     return;
3808   }
3809 
3810   if (!use_precise) {
3811     // All card marks for a (non-array) instance are in one place:
3812     adr = obj;
3813   }
3814   // (Else it's an array (or unknown), and we want more precise card marks.)
3815   assert(adr != NULL, "");
3816 
3817   IdealKit ideal(this, true);
3818 
3819   // Convert the pointer to an int prior to doing math on it
3820   Node* cast = __ CastPX(__ ctrl(), adr);
3821 
3822   // Divide by card size
3823   assert(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableModRef),
3824          "Only one we handle so far.");
3825   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3826 
3827   // Combine card table base and card offset
3828   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3829 
3830   // Get the alias_index for raw card-mark memory
3831   int adr_type = Compile::AliasIdxRaw;
3832   Node*   zero = __ ConI(0); // Dirty card value
3833   BasicType bt = T_BYTE;
3834 
3835   if (UseConcMarkSweepGC && UseCondCardMark) {
3836     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
3837     __ sync_kit(this);
3838   }
3839 
3840   if (UseCondCardMark) {
3841     // The classic GC reference write barrier is typically implemented
3842     // as a store into the global card mark table.  Unfortunately
3843     // unconditional stores can result in false sharing and excessive
3844     // coherence traffic as well as false transactional aborts.
3845     // UseCondCardMark enables MP "polite" conditional card mark
3846     // stores.  In theory we could relax the load from ctrl() to
3847     // no_ctrl, but that doesn't buy much latitude.
3848     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3849     __ if_then(card_val, BoolTest::ne, zero);
3850   }
3851 
3852   // Smash zero into card
3853   if( !UseConcMarkSweepGC ) {
3854     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered);
3855   } else {
3856     // Specialized path for CM store barrier
3857     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3858   }
3859 
3860   if (UseCondCardMark) {
3861     __ end_if();
3862   }
3863 
3864   // Final sync IdealKit and GraphKit.
3865   final_sync(ideal);
3866 }
3867 /*
3868  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
3869  * required by SATB to make sure all objects live at the start of the
3870  * marking are kept alive, all reference updates need to any previous
3871  * reference stored before writing.
3872  *
3873  * If the previous value is NULL there is no need to save the old value.
3874  * References that are NULL are filtered during runtime by the barrier
3875  * code to avoid unnecessary queuing.
3876  *
3877  * However in the case of newly allocated objects it might be possible to
3878  * prove that the reference about to be overwritten is NULL during compile
3879  * time and avoid adding the barrier code completely.
3880  *
3881  * The compiler needs to determine that the object in which a field is about
3882  * to be written is newly allocated, and that no prior store to the same field
3883  * has happened since the allocation.
3884  *
3885  * Returns true if the pre-barrier can be removed
3886  */
3887 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr,
3888                                          BasicType bt, uint adr_idx) {
3889   intptr_t offset = 0;
3890   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
3891   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
3892 
3893   if (offset == Type::OffsetBot) {
3894     return false; // cannot unalias unless there are precise offsets
3895   }
3896 
3897   if (alloc == NULL) {
3898     return false; // No allocation found
3899   }
3900 
3901   intptr_t size_in_bytes = type2aelembytes(bt);
3902 
3903   Node* mem = memory(adr_idx); // start searching here...
3904 
3905   for (int cnt = 0; cnt < 50; cnt++) {
3906 
3907     if (mem->is_Store()) {
3908 
3909       Node* st_adr = mem->in(MemNode::Address);
3910       intptr_t st_offset = 0;
3911       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
3912 
3913       if (st_base == NULL) {
3914         break; // inscrutable pointer
3915       }
3916 
3917       // Break we have found a store with same base and offset as ours so break
3918       if (st_base == base && st_offset == offset) {
3919         break;
3920       }
3921 
3922       if (st_offset != offset && st_offset != Type::OffsetBot) {
3923         const int MAX_STORE = BytesPerLong;
3924         if (st_offset >= offset + size_in_bytes ||
3925             st_offset <= offset - MAX_STORE ||
3926             st_offset <= offset - mem->as_Store()->memory_size()) {
3927           // Success:  The offsets are provably independent.
3928           // (You may ask, why not just test st_offset != offset and be done?
3929           // The answer is that stores of different sizes can co-exist
3930           // in the same sequence of RawMem effects.  We sometimes initialize
3931           // a whole 'tile' of array elements with a single jint or jlong.)
3932           mem = mem->in(MemNode::Memory);
3933           continue; // advance through independent store memory
3934         }
3935       }
3936 
3937       if (st_base != base
3938           && MemNode::detect_ptr_independence(base, alloc, st_base,
3939                                               AllocateNode::Ideal_allocation(st_base, phase),
3940                                               phase)) {
3941         // Success:  The bases are provably independent.
3942         mem = mem->in(MemNode::Memory);
3943         continue; // advance through independent store memory
3944       }
3945     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
3946 
3947       InitializeNode* st_init = mem->in(0)->as_Initialize();
3948       AllocateNode* st_alloc = st_init->allocation();
3949 
3950       // Make sure that we are looking at the same allocation site.
3951       // The alloc variable is guaranteed to not be null here from earlier check.
3952       if (alloc == st_alloc) {
3953         // Check that the initialization is storing NULL so that no previous store
3954         // has been moved up and directly write a reference
3955         Node* captured_store = st_init->find_captured_store(offset,
3956                                                             type2aelembytes(T_OBJECT),
3957                                                             phase);
3958         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
3959           return true;
3960         }
3961       }
3962     }
3963 
3964     // Unless there is an explicit 'continue', we must bail out here,
3965     // because 'mem' is an inscrutable memory state (e.g., a call).
3966     break;
3967   }
3968 
3969   return false;
3970 }
3971 
3972 // G1 pre/post barriers
3973 void GraphKit::g1_write_barrier_pre(bool do_load,
3974                                     Node* obj,
3975                                     Node* adr,
3976                                     uint alias_idx,
3977                                     Node* val,
3978                                     const TypeOopPtr* val_type,
3979                                     Node* pre_val,
3980                                     BasicType bt) {
3981 
3982   // Some sanity checks
3983   // Note: val is unused in this routine.
3984 
3985   if (do_load) {
3986     // We need to generate the load of the previous value
3987     assert(obj != NULL, "must have a base");
3988     assert(adr != NULL, "where are loading from?");
3989     assert(pre_val == NULL, "loaded already?");
3990     assert(val_type != NULL, "need a type");
3991 
3992     if (use_ReduceInitialCardMarks()
3993         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
3994       return;
3995     }
3996 
3997   } else {
3998     // In this case both val_type and alias_idx are unused.
3999     assert(pre_val != NULL, "must be loaded already");
4000     // Nothing to be done if pre_val is null.
4001     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
4002     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4003   }
4004   assert(bt == T_OBJECT, "or we shouldn't be here");
4005 
4006   IdealKit ideal(this, true);
4007 
4008   Node* tls = __ thread(); // ThreadLocalStorage
4009 
4010   Node* no_ctrl = NULL;
4011   Node* no_base = __ top();
4012   Node* zero  = __ ConI(0);
4013   Node* zeroX = __ ConX(0);
4014 
4015   float likely  = PROB_LIKELY(0.999);
4016   float unlikely  = PROB_UNLIKELY(0.999);
4017 
4018   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4019   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
4020 
4021   // Offsets into the thread
4022   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4023                                           PtrQueue::byte_offset_of_active());
4024   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4025                                           PtrQueue::byte_offset_of_index());
4026   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4027                                           PtrQueue::byte_offset_of_buf());
4028 
4029   // Now the actual pointers into the thread
4030   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4031   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4032   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4033 
4034   // Now some of the values
4035   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4036 
4037   // if (!marking)
4038   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4039     BasicType index_bt = TypeX_X->basic_type();
4040     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
4041     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4042 
4043     if (do_load) {
4044       // load original value
4045       // alias_idx correct??
4046       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4047     }
4048 
4049     // if (pre_val != NULL)
4050     __ if_then(pre_val, BoolTest::ne, null()); {
4051       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4052 
4053       // is the queue for this thread full?
4054       __ if_then(index, BoolTest::ne, zeroX, likely); {
4055 
4056         // decrement the index
4057         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4058 
4059         // Now get the buffer location we will log the previous value into and store it
4060         Node *log_addr = __ AddP(no_base, buffer, next_index);
4061         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4062         // update the index
4063         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4064 
4065       } __ else_(); {
4066 
4067         // logging buffer is full, call the runtime
4068         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4069         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4070       } __ end_if();  // (!index)
4071     } __ end_if();  // (pre_val != NULL)
4072   } __ end_if();  // (!marking)
4073 
4074   // Final sync IdealKit and GraphKit.
4075   final_sync(ideal);
4076 }
4077 
4078 /*
4079  * G1 similar to any GC with a Young Generation requires a way to keep track of
4080  * references from Old Generation to Young Generation to make sure all live
4081  * objects are found. G1 also requires to keep track of object references
4082  * between different regions to enable evacuation of old regions, which is done
4083  * as part of mixed collections. References are tracked in remembered sets and
4084  * is continuously updated as reference are written to with the help of the
4085  * post-barrier.
4086  *
4087  * To reduce the number of updates to the remembered set the post-barrier
4088  * filters updates to fields in objects located in the Young Generation,
4089  * the same region as the reference, when the NULL is being written or
4090  * if the card is already marked as dirty by an earlier write.
4091  *
4092  * Under certain circumstances it is possible to avoid generating the
4093  * post-barrier completely if it is possible during compile time to prove
4094  * the object is newly allocated and that no safepoint exists between the
4095  * allocation and the store.
4096  *
4097  * In the case of slow allocation the allocation code must handle the barrier
4098  * as part of the allocation in the case the allocated object is not located
4099  * in the nursery, this would happen for humongous objects. This is similar to
4100  * how CMS is required to handle this case, see the comments for the method
4101  * CollectedHeap::new_store_pre_barrier and OptoRuntime::new_store_pre_barrier.
4102  * A deferred card mark is required for these objects and handled in the above
4103  * mentioned methods.
4104  *
4105  * Returns true if the post barrier can be removed
4106  */
4107 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store,
4108                                           Node* adr) {
4109   intptr_t      offset = 0;
4110   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
4111   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
4112 
4113   if (offset == Type::OffsetBot) {
4114     return false; // cannot unalias unless there are precise offsets
4115   }
4116 
4117   if (alloc == NULL) {
4118      return false; // No allocation found
4119   }
4120 
4121   // Start search from Store node
4122   Node* mem = store->in(MemNode::Control);
4123   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4124 
4125     InitializeNode* st_init = mem->in(0)->as_Initialize();
4126     AllocateNode*  st_alloc = st_init->allocation();
4127 
4128     // Make sure we are looking at the same allocation
4129     if (alloc == st_alloc) {
4130       return true;
4131     }
4132   }
4133 
4134   return false;
4135 }
4136 
4137 //
4138 // Update the card table and add card address to the queue
4139 //
4140 void GraphKit::g1_mark_card(IdealKit& ideal,
4141                             Node* card_adr,
4142                             Node* oop_store,
4143                             uint oop_alias_idx,
4144                             Node* index,
4145                             Node* index_adr,
4146                             Node* buffer,
4147                             const TypeFunc* tf) {
4148 
4149   Node* zero  = __ ConI(0);
4150   Node* zeroX = __ ConX(0);
4151   Node* no_base = __ top();
4152   BasicType card_bt = T_BYTE;
4153   // Smash zero into card. MUST BE ORDERED WRT TO STORE
4154   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
4155 
4156   //  Now do the queue work
4157   __ if_then(index, BoolTest::ne, zeroX); {
4158 
4159     Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4160     Node* log_addr = __ AddP(no_base, buffer, next_index);
4161 
4162     // Order, see storeCM.
4163     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4164     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4165 
4166   } __ else_(); {
4167     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4168   } __ end_if();
4169 
4170 }
4171 
4172 void GraphKit::g1_write_barrier_post(Node* oop_store,
4173                                      Node* obj,
4174                                      Node* adr,
4175                                      uint alias_idx,
4176                                      Node* val,
4177                                      BasicType bt,
4178                                      bool use_precise) {
4179   // If we are writing a NULL then we need no post barrier
4180 
4181   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4182     // Must be NULL
4183     const Type* t = val->bottom_type();
4184     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4185     // No post barrier if writing NULLx
4186     return;
4187   }
4188 
4189   if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) {
4190     // We can skip marks on a freshly-allocated object in Eden.
4191     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
4192     // That routine informs GC to take appropriate compensating steps,
4193     // upon a slow-path allocation, so as to make this card-mark
4194     // elision safe.
4195     return;
4196   }
4197 
4198   if (use_ReduceInitialCardMarks()
4199       && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) {
4200     return;
4201   }
4202 
4203   if (!use_precise) {
4204     // All card marks for a (non-array) instance are in one place:
4205     adr = obj;
4206   }
4207   // (Else it's an array (or unknown), and we want more precise card marks.)
4208   assert(adr != NULL, "");
4209 
4210   IdealKit ideal(this, true);
4211 
4212   Node* tls = __ thread(); // ThreadLocalStorage
4213 
4214   Node* no_base = __ top();
4215   float likely  = PROB_LIKELY(0.999);
4216   float unlikely  = PROB_UNLIKELY(0.999);
4217   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
4218   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
4219   Node* zeroX = __ ConX(0);
4220 
4221   // Get the alias_index for raw card-mark memory
4222   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4223 
4224   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4225 
4226   // Offsets into the thread
4227   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4228                                      PtrQueue::byte_offset_of_index());
4229   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4230                                      PtrQueue::byte_offset_of_buf());
4231 
4232   // Pointers into the thread
4233 
4234   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4235   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4236 
4237   // Now some values
4238   // Use ctrl to avoid hoisting these values past a safepoint, which could
4239   // potentially reset these fields in the JavaThread.
4240   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4241   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4242 
4243   // Convert the store obj pointer to an int prior to doing math on it
4244   // Must use ctrl to prevent "integerized oop" existing across safepoint
4245   Node* cast =  __ CastPX(__ ctrl(), adr);
4246 
4247   // Divide pointer by card size
4248   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4249 
4250   // Combine card table base and card offset
4251   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4252 
4253   // If we know the value being stored does it cross regions?
4254 
4255   if (val != NULL) {
4256     // Does the store cause us to cross regions?
4257 
4258     // Should be able to do an unsigned compare of region_size instead of
4259     // and extra shift. Do we have an unsigned compare??
4260     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4261     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4262 
4263     // if (xor_res == 0) same region so skip
4264     __ if_then(xor_res, BoolTest::ne, zeroX); {
4265 
4266       // No barrier if we are storing a NULL
4267       __ if_then(val, BoolTest::ne, null(), unlikely); {
4268 
4269         // Ok must mark the card if not already dirty
4270 
4271         // load the original value of the card
4272         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4273 
4274         __ if_then(card_val, BoolTest::ne, young_card); {
4275           sync_kit(ideal);
4276           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4277           insert_mem_bar(Op_MemBarVolatile, oop_store);
4278           __ sync_kit(this);
4279 
4280           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4281           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4282             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4283           } __ end_if();
4284         } __ end_if();
4285       } __ end_if();
4286     } __ end_if();
4287   } else {
4288     // Object.clone() instrinsic uses this path.
4289     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4290   }
4291 
4292   // Final sync IdealKit and GraphKit.
4293   final_sync(ideal);
4294 }
4295 #undef __
4296 
4297 
4298 
4299 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
4300   if (java_lang_String::has_offset_field()) {
4301     int offset_offset = java_lang_String::offset_offset_in_bytes();
4302     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4303                                                        false, NULL, 0);
4304     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4305     int offset_field_idx = C->get_alias_index(offset_field_type);
4306 
4307     str = shenandoah_read_barrier(str);
4308 
4309     return make_load(ctrl,
4310                      basic_plus_adr(str, str, offset_offset),
4311                      TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
4312   } else {
4313     return intcon(0);
4314   }
4315 }
4316 
4317 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4318   if (java_lang_String::has_count_field()) {
4319     int count_offset = java_lang_String::count_offset_in_bytes();
4320     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4321                                                        false, NULL, 0);
4322     const TypePtr* count_field_type = string_type->add_offset(count_offset);
4323     int count_field_idx = C->get_alias_index(count_field_type);
4324 
4325     str = shenandoah_read_barrier(str);
4326 
4327     return make_load(ctrl,
4328                      basic_plus_adr(str, str, count_offset),
4329                      TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
4330   } else {
4331     return load_array_length(load_String_value(ctrl, str));
4332   }
4333 }
4334 
4335 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4336   int value_offset = java_lang_String::value_offset_in_bytes();
4337   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4338                                                      false, NULL, 0);
4339   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4340   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
4341                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
4342                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
4343   int value_field_idx = C->get_alias_index(value_field_type);
4344 
4345   str = shenandoah_read_barrier(str);
4346 
4347   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4348                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4349   // String.value field is known to be @Stable.
4350   if (UseImplicitStableValues) {
4351     load = cast_array_to_stable(load, value_type);
4352   }
4353   return load;
4354 }
4355 
4356 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
4357   int offset_offset = java_lang_String::offset_offset_in_bytes();
4358   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4359                                                      false, NULL, 0);
4360   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4361   int offset_field_idx = C->get_alias_index(offset_field_type);
4362 
4363   str = shenandoah_write_barrier(str);
4364 
4365   store_to_memory(control(), basic_plus_adr(str, offset_offset),
4366                   value, T_INT, offset_field_idx, MemNode::unordered);
4367 }
4368 
4369 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4370   int value_offset = java_lang_String::value_offset_in_bytes();
4371   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4372                                                      false, NULL, 0);
4373   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4374 
4375   str = shenandoah_write_barrier(str);
4376   value = shenandoah_read_barrier_nomem(value);
4377 
4378   store_oop_to_object(control(), str,  basic_plus_adr(str, value_offset), value_field_type,
4379       value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
4380 }
4381 
4382 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
4383   int count_offset = java_lang_String::count_offset_in_bytes();
4384   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4385                                                      false, NULL, 0);
4386   const TypePtr* count_field_type = string_type->add_offset(count_offset);
4387   int count_field_idx = C->get_alias_index(count_field_type);
4388 
4389   str = shenandoah_write_barrier(str);
4390 
4391   store_to_memory(control(), basic_plus_adr(str, count_offset),
4392                   value, T_INT, count_field_idx, MemNode::unordered);
4393 }
4394 
4395 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4396   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4397   // assumption of CCP analysis.
4398   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4399 }
4400 
4401 Node* GraphKit::shenandoah_read_barrier(Node* obj) {
4402   return shenandoah_read_barrier_impl(obj, false, true);
4403 }
4404 
4405 Node* GraphKit::shenandoah_read_barrier_nomem(Node* obj) {
4406   return shenandoah_read_barrier_impl(obj, false, false);
4407 }
4408 
4409 Node* GraphKit::shenandoah_read_barrier_impl(Node* obj, bool use_ctrl, bool use_mem) {
4410 
4411   if (UseShenandoahGC && ShenandoahReadBarrier) {
4412     const Type* obj_type = obj->bottom_type();
4413     if (obj_type->higher_equal(TypePtr::NULL_PTR)) {
4414       return obj;
4415     }
4416     const TypePtr* adr_type = obj_type->is_ptr()->add_offset(BrooksPointer::BYTE_OFFSET);
4417     Node* mem = use_mem ? memory(adr_type) : immutable_memory();
4418 
4419     if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, mem)) {
4420       // We know it is null, no barrier needed.
4421       return obj;
4422     }
4423 
4424 
4425     if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) {
4426 
4427       // We don't know if it's null or not. Need null-check.
4428       enum { _not_null_path = 1, _null_path, PATH_LIMIT };
4429       RegionNode* region = new RegionNode(PATH_LIMIT);
4430       Node*       phi    = new PhiNode(region, obj_type);
4431       Node* null_ctrl = top();
4432       Node* not_null_obj = null_check_oop(obj, &null_ctrl);
4433 
4434       region->init_req(_null_path, null_ctrl);
4435       phi   ->init_req(_null_path, obj);
4436 
4437       Node* ctrl = use_ctrl ? control() : NULL;
4438       ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, not_null_obj);
4439       Node* n = _gvn.transform(rb);
4440 
4441       region->init_req(_not_null_path, control());
4442       phi   ->init_req(_not_null_path, n);
4443 
4444       set_control(_gvn.transform(region));
4445       record_for_igvn(region);
4446       return _gvn.transform(phi);
4447 
4448     } else {
4449       // We know it is not null. Simple barrier is sufficient.
4450       Node* ctrl = use_ctrl ? control() : NULL;
4451       ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, obj);
4452       Node* n = _gvn.transform(rb);
4453       record_for_igvn(n);
4454       return n;
4455     }
4456 
4457   } else {
4458     return obj;
4459   }
4460 }
4461 
4462 Node* GraphKit::shenandoah_write_barrier(Node* obj) {
4463 
4464   if (UseShenandoahGC && ShenandoahWriteBarrier) {
4465 
4466     if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, NULL)) {
4467       return obj;
4468     }
4469     const Type* obj_type = obj->bottom_type();
4470     const TypePtr* adr_type = obj_type->is_ptr()->add_offset(BrooksPointer::BYTE_OFFSET);
4471     if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) {
4472       // We don't know if it's null or not. Need null-check.
4473       enum { _not_null_path = 1, _null_path, PATH_LIMIT };
4474       RegionNode* region = new RegionNode(PATH_LIMIT);
4475       Node*       phi    = new PhiNode(region, obj_type);
4476       Node*    memphi    = PhiNode::make(region, memory(adr_type), Type::MEMORY, C->alias_type(adr_type)->adr_type());
4477 
4478       Node* prev_mem = memory(adr_type);
4479       Node* null_ctrl = top();
4480       Node* not_null_obj = null_check_oop(obj, &null_ctrl);
4481 
4482       region->init_req(_null_path, null_ctrl);
4483       phi   ->init_req(_null_path, null());
4484       memphi->init_req(_null_path, prev_mem);
4485 
4486       ShenandoahWriteBarrierNode* wb = new ShenandoahWriteBarrierNode(NULL, memory(adr_type), not_null_obj);
4487       Node* n = _gvn.transform(wb);
4488       if (n == wb) { // New barrier needs memory projection.
4489         Node* proj = _gvn.transform(new ShenandoahWBMemProjNode(n));
4490         set_memory(proj, adr_type);
4491       }
4492 
4493       region->init_req(_not_null_path, control());
4494       phi   ->init_req(_not_null_path, n);
4495       memphi->init_req(_not_null_path, memory(adr_type));
4496 
4497       set_control(_gvn.transform(region));
4498       record_for_igvn(region);
4499       set_memory(_gvn.transform(memphi), adr_type);
4500 
4501       Node* res_val = _gvn.transform(phi);
4502       // replace_in_map(obj, res_val);
4503       return res_val;
4504     } else {
4505       // We know it is not null. Simple barrier is sufficient.
4506       ShenandoahWriteBarrierNode* wb = new ShenandoahWriteBarrierNode(NULL, memory(adr_type), obj);
4507       Node* n = _gvn.transform(wb);
4508       if (n == wb) {
4509         Node* proj = _gvn.transform(new ShenandoahWBMemProjNode(wb));
4510         set_memory(proj, adr_type);
4511       }
4512       // replace_in_map(obj, n);
4513       record_for_igvn(n);
4514       return n;
4515     }
4516 
4517   } else {
4518     return obj;
4519   }
4520 }
4521 
4522 /**
4523  * We need barriers on acmp (and similar instructions that compare two
4524  * oops) to avoid false negatives. If it compares a from-space and a to-space
4525  * copy of an object, a regular acmp would return false, even though both are
4526  * the same. The acmp barrier compares the two objects, and when they are
4527  * *not equal* it does a read-barrier on both, and compares them again. When it
4528  * failed because of different copies of the object, we know that the object
4529  * must already have been evacuated (and therefore doesn't require a write-barrier).
4530  */
4531 void GraphKit::shenandoah_acmp_barrier(Node*& a, Node*& b) {
4532   if (UseShenandoahGC) {
4533     const Type* a_type = a->bottom_type();
4534     const Type* b_type = b->bottom_type();
4535     if (a_type->higher_equal(TypePtr::NULL_PTR) || b_type->higher_equal(TypePtr::NULL_PTR)) {
4536       // We know one arg is gonna be null. No need for barriers.
4537       return;
4538     }
4539     if (a_type->is_oopptr()->const_oop() != NULL && b_type->is_oopptr()->const_oop() != NULL ) {
4540       // We know one arg is inlined constant. No need for barriers.
4541       return;
4542     }
4543     if (a->Opcode() == Op_ShenandoahWriteBarrier && b->Opcode() == Op_ShenandoahWriteBarrier) {
4544       // We know one arg is already write-barrier'd. No need for barriers.
4545       return;
4546     }
4547     if (AllocateNode::Ideal_allocation(a, &_gvn) != NULL || AllocateNode::Ideal_allocation(b, &_gvn) != NULL) {
4548       // We know one arg is already in to-space. No need for barriers.
4549       return;
4550     }
4551 
4552     enum { _equal = 1, _not_equal, PATH_LIMIT };
4553     RegionNode* region = new RegionNode(PATH_LIMIT);
4554     PhiNode* phiA = PhiNode::make(region, a);
4555     PhiNode* phiB = PhiNode::make(region, b);
4556 
4557     Node* cmp = _gvn.transform(new CmpPNode(b, a));
4558     Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
4559 
4560     // TODO: Use profiling data.
4561     IfNode* iff = create_and_map_if(control(), tst, PROB_FAIR, COUNT_UNKNOWN);
4562     Node* iftrue = _gvn.transform(new IfTrueNode(iff));
4563     Node* iffalse = _gvn.transform(new IfFalseNode(iff));
4564 
4565     // Equal path: Use original values.
4566     region->init_req(_equal, iftrue);
4567     phiA->init_req(_equal, a);
4568     phiB->init_req(_equal, b);
4569 
4570     // Unequal path: retry after read barriers.
4571     set_control(iffalse);
4572     a = shenandoah_read_barrier_impl(a, true, true);
4573     b = shenandoah_read_barrier_impl(b, true, true);
4574 
4575     region->init_req(_not_equal, control());
4576     phiA->init_req(_not_equal, a);
4577     phiB->init_req(_not_equal, b);
4578 
4579     set_control(_gvn.transform(region));
4580     record_for_igvn(region);
4581 
4582     a = _gvn.transform(phiA);
4583     b = _gvn.transform(phiB);
4584   }
4585 }