1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/ad.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/runtime.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 
  36 // Optimization - Graph Style
  37 
  38 // Check whether val is not-null-decoded compressed oop,
  39 // i.e. will grab into the base of the heap if it represents NULL.
  40 static bool accesses_heap_base_zone(Node *val) {
  41   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
  42     if (val && val->is_Mach()) {
  43       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  44         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  45         // decode NULL to point to the heap base (Decode_NN).
  46         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  47           return true;
  48         }
  49       }
  50       // Must recognize load operation with Decode matched in memory operand.
  51       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  52       // returns true everywhere else. On PPC, no such memory operands
  53       // exist, therefore we did not yet implement a check for such operands.
  54       NOT_AIX(Unimplemented());
  55     }
  56   }
  57   return false;
  58 }
  59 
  60 static bool needs_explicit_null_check_for_read(Node *val) {
  61   // On some OSes (AIX) the page at address 0 is only write protected.
  62   // If so, only Store operations will trap.
  63   if (os::zero_page_read_protected()) {
  64     return false;  // Implicit null check will work.
  65   }
  66   // Also a read accessing the base of a heap-based compressed heap will trap.
  67   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  68       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  69     return false;
  70   }
  71 
  72   return true;
  73 }
  74 
  75 //------------------------------implicit_null_check----------------------------
  76 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  77 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  78 // I can generate a memory op if there is not one nearby.
  79 // The proj is the control projection for the not-null case.
  80 // The val is the pointer being checked for nullness or
  81 // decodeHeapOop_not_null node if it did not fold into address.
  82 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  83   // Assume if null check need for 0 offset then always needed
  84   // Intel solaris doesn't support any null checks yet and no
  85   // mechanism exists (yet) to set the switches at an os_cpu level
  86   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  87 
  88   // Make sure the ptr-is-null path appears to be uncommon!
  89   float f = block->end()->as_MachIf()->_prob;
  90   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  91   if( f > PROB_UNLIKELY_MAG(4) ) return;
  92 
  93   uint bidx = 0;                // Capture index of value into memop
  94   bool was_store;               // Memory op is a store op
  95 
  96   // Get the successor block for if the test ptr is non-null
  97   Block* not_null_block;  // this one goes with the proj
  98   Block* null_block;
  99   if (block->get_node(block->number_of_nodes()-1) == proj) {
 100     null_block     = block->_succs[0];
 101     not_null_block = block->_succs[1];
 102   } else {
 103     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 104     not_null_block = block->_succs[0];
 105     null_block     = block->_succs[1];
 106   }
 107   while (null_block->is_Empty() == Block::empty_with_goto) {
 108     null_block     = null_block->_succs[0];
 109   }
 110 
 111   // Search the exception block for an uncommon trap.
 112   // (See Parse::do_if and Parse::do_ifnull for the reason
 113   // we need an uncommon trap.  Briefly, we need a way to
 114   // detect failure of this optimization, as in 6366351.)
 115   {
 116     bool found_trap = false;
 117     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 118       Node* nn = null_block->get_node(i1);
 119       if (nn->is_MachCall() &&
 120           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 121         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 122         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 123           jint tr_con = trtype->is_int()->get_con();
 124           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 125           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 126           assert((int)reason < (int)BitsPerInt, "recode bit map");
 127           if (is_set_nth_bit(allowed_reasons, (int) reason)
 128               && action != Deoptimization::Action_none) {
 129             // This uncommon trap is sure to recompile, eventually.
 130             // When that happens, C->too_many_traps will prevent
 131             // this transformation from happening again.
 132             found_trap = true;
 133           }
 134         }
 135         break;
 136       }
 137     }
 138     if (!found_trap) {
 139       // We did not find an uncommon trap.
 140       return;
 141     }
 142   }
 143 
 144   // Check for decodeHeapOop_not_null node which did not fold into address
 145   bool is_decoden = ((intptr_t)val) & 1;
 146   val = (Node*)(((intptr_t)val) & ~1);
 147 
 148   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 149          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 150 
 151   // Search the successor block for a load or store who's base value is also
 152   // the tested value.  There may be several.
 153   Node_List *out = new Node_List(Thread::current()->resource_area());
 154   MachNode *best = NULL;        // Best found so far
 155   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 156     Node *m = val->out(i);
 157     if( !m->is_Mach() ) continue;
 158     MachNode *mach = m->as_Mach();
 159     was_store = false;
 160     int iop = mach->ideal_Opcode();
 161     switch( iop ) {
 162     case Op_LoadB:
 163     case Op_LoadUB:
 164     case Op_LoadUS:
 165     case Op_LoadD:
 166     case Op_LoadF:
 167     case Op_LoadI:
 168     case Op_LoadL:
 169     case Op_LoadP:
 170     case Op_LoadN:
 171     case Op_LoadS:
 172     case Op_LoadKlass:
 173     case Op_LoadNKlass:
 174     case Op_LoadRange:
 175     case Op_LoadD_unaligned:
 176     case Op_LoadL_unaligned:
 177     case Op_ShenandoahReadBarrier:
 178     case Op_ShenandoahWriteBarrier:
 179       assert(mach->in(2) == val, "should be address");
 180       break;
 181     case Op_StoreB:
 182     case Op_StoreC:
 183     case Op_StoreCM:
 184     case Op_StoreD:
 185     case Op_StoreF:
 186     case Op_StoreI:
 187     case Op_StoreL:
 188     case Op_StoreP:
 189     case Op_StoreN:
 190     case Op_StoreNKlass:
 191       was_store = true;         // Memory op is a store op
 192       // Stores will have their address in slot 2 (memory in slot 1).
 193       // If the value being nul-checked is in another slot, it means we
 194       // are storing the checked value, which does NOT check the value!
 195       if( mach->in(2) != val ) continue;
 196       break;                    // Found a memory op?
 197     case Op_StrComp:
 198     case Op_StrEquals:
 199     case Op_StrIndexOf:
 200     case Op_AryEq:
 201     case Op_EncodeISOArray:
 202       // Not a legit memory op for implicit null check regardless of
 203       // embedded loads
 204       continue;
 205     default:                    // Also check for embedded loads
 206       if( !mach->needs_anti_dependence_check() )
 207         continue;               // Not an memory op; skip it
 208       if( must_clone[iop] ) {
 209         // Do not move nodes which produce flags because
 210         // RA will try to clone it to place near branch and
 211         // it will cause recompilation, see clone_node().
 212         continue;
 213       }
 214       {
 215         // Check that value is used in memory address in
 216         // instructions with embedded load (CmpP val1,(val2+off)).
 217         Node* base;
 218         Node* index;
 219         const MachOper* oper = mach->memory_inputs(base, index);
 220         if (oper == NULL || oper == (MachOper*)-1) {
 221           continue;             // Not an memory op; skip it
 222         }
 223         if (val == base ||
 224             val == index && val->bottom_type()->isa_narrowoop()) {
 225           break;                // Found it
 226         } else {
 227           continue;             // Skip it
 228         }
 229       }
 230       break;
 231     }
 232 
 233     // On some OSes (AIX) the page at address 0 is only write protected.
 234     // If so, only Store operations will trap.
 235     // But a read accessing the base of a heap-based compressed heap will trap.
 236     if (!was_store && needs_explicit_null_check_for_read(val)) {
 237       continue;
 238     }
 239 
 240     // check if the offset is not too high for implicit exception
 241     {
 242       intptr_t offset = 0;
 243       const TypePtr *adr_type = NULL;  // Do not need this return value here
 244       const Node* base = mach->get_base_and_disp(offset, adr_type);
 245       if (base == NULL || base == NodeSentinel) {
 246         // Narrow oop address doesn't have base, only index
 247         if( val->bottom_type()->isa_narrowoop() &&
 248             MacroAssembler::needs_explicit_null_check(offset) )
 249           continue;             // Give up if offset is beyond page size
 250         // cannot reason about it; is probably not implicit null exception
 251       } else {
 252         const TypePtr* tptr;
 253         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 254                                   Universe::narrow_klass_shift() == 0)) {
 255           // 32-bits narrow oop can be the base of address expressions
 256           tptr = base->get_ptr_type();
 257         } else {
 258           // only regular oops are expected here
 259           tptr = base->bottom_type()->is_ptr();
 260         }
 261         // Give up if offset is not a compile-time constant
 262         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 263           continue;
 264         offset += tptr->_offset; // correct if base is offseted
 265         if( MacroAssembler::needs_explicit_null_check(offset) )
 266           continue;             // Give up is reference is beyond 4K page size
 267       }
 268     }
 269 
 270     // Check ctrl input to see if the null-check dominates the memory op
 271     Block *cb = get_block_for_node(mach);
 272     cb = cb->_idom;             // Always hoist at least 1 block
 273     if( !was_store ) {          // Stores can be hoisted only one block
 274       while( cb->_dom_depth > (block->_dom_depth + 1))
 275         cb = cb->_idom;         // Hoist loads as far as we want
 276       // The non-null-block should dominate the memory op, too. Live
 277       // range spilling will insert a spill in the non-null-block if it is
 278       // needs to spill the memory op for an implicit null check.
 279       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 280         if (cb != not_null_block) continue;
 281         cb = cb->_idom;
 282       }
 283     }
 284     if( cb != block ) continue;
 285 
 286     // Found a memory user; see if it can be hoisted to check-block
 287     uint vidx = 0;              // Capture index of value into memop
 288     uint j;
 289     for( j = mach->req()-1; j > 0; j-- ) {
 290       if( mach->in(j) == val ) {
 291         vidx = j;
 292         // Ignore DecodeN val which could be hoisted to where needed.
 293         if( is_decoden ) continue;
 294       }
 295       // Block of memory-op input
 296       Block *inb = get_block_for_node(mach->in(j));
 297       Block *b = block;          // Start from nul check
 298       while( b != inb && b->_dom_depth > inb->_dom_depth )
 299         b = b->_idom;           // search upwards for input
 300       // See if input dominates null check
 301       if( b != inb )
 302         break;
 303     }
 304     if( j > 0 )
 305       continue;
 306     Block *mb = get_block_for_node(mach);
 307     // Hoisting stores requires more checks for the anti-dependence case.
 308     // Give up hoisting if we have to move the store past any load.
 309     if( was_store ) {
 310       Block *b = mb;            // Start searching here for a local load
 311       // mach use (faulting) trying to hoist
 312       // n might be blocker to hoisting
 313       while( b != block ) {
 314         uint k;
 315         for( k = 1; k < b->number_of_nodes(); k++ ) {
 316           Node *n = b->get_node(k);
 317           if( n->needs_anti_dependence_check() &&
 318               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 319             break;              // Found anti-dependent load
 320         }
 321         if( k < b->number_of_nodes() )
 322           break;                // Found anti-dependent load
 323         // Make sure control does not do a merge (would have to check allpaths)
 324         if( b->num_preds() != 2 ) break;
 325         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 326       }
 327       if( b != block ) continue;
 328     }
 329 
 330     // Make sure this memory op is not already being used for a NullCheck
 331     Node *e = mb->end();
 332     if( e->is_MachNullCheck() && e->in(1) == mach )
 333       continue;                 // Already being used as a NULL check
 334 
 335     // Found a candidate!  Pick one with least dom depth - the highest
 336     // in the dom tree should be closest to the null check.
 337     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 338       best = mach;
 339       bidx = vidx;
 340     }
 341   }
 342   // No candidate!
 343   if (best == NULL) {
 344     return;
 345   }
 346 
 347   // ---- Found an implicit null check
 348   extern int implicit_null_checks;
 349   implicit_null_checks++;
 350 
 351   if( is_decoden ) {
 352     // Check if we need to hoist decodeHeapOop_not_null first.
 353     Block *valb = get_block_for_node(val);
 354     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 355       // Hoist it up to the end of the test block.
 356       valb->find_remove(val);
 357       block->add_inst(val);
 358       map_node_to_block(val, block);
 359       // DecodeN on x86 may kill flags. Check for flag-killing projections
 360       // that also need to be hoisted.
 361       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 362         Node* n = val->fast_out(j);
 363         if( n->is_MachProj() ) {
 364           get_block_for_node(n)->find_remove(n);
 365           block->add_inst(n);
 366           map_node_to_block(n, block);
 367         }
 368       }
 369     }
 370   }
 371   // Hoist the memory candidate up to the end of the test block.
 372   Block *old_block = get_block_for_node(best);
 373   old_block->find_remove(best);
 374   block->add_inst(best);
 375   map_node_to_block(best, block);
 376 
 377   // Move the control dependence
 378   if (best->in(0) && best->in(0) == old_block->head())
 379     best->set_req(0, block->head());
 380 
 381   // Check for flag-killing projections that also need to be hoisted
 382   // Should be DU safe because no edge updates.
 383   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 384     Node* n = best->fast_out(j);
 385     if( n->is_MachProj() || n->Opcode() == Op_ShenandoahWBMemProj) {
 386       get_block_for_node(n)->find_remove(n);
 387       block->add_inst(n);
 388       map_node_to_block(n, block);
 389     }
 390   }
 391 
 392   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 393   // One of two graph shapes got matched:
 394   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 395   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 396   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 397   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 398   // We need to flip the projections to keep the same semantics.
 399   if( proj->Opcode() == Op_IfTrue ) {
 400     // Swap order of projections in basic block to swap branch targets
 401     Node *tmp1 = block->get_node(block->end_idx()+1);
 402     Node *tmp2 = block->get_node(block->end_idx()+2);
 403     block->map_node(tmp2, block->end_idx()+1);
 404     block->map_node(tmp1, block->end_idx()+2);
 405     Node *tmp = new Node(C->top()); // Use not NULL input
 406     tmp1->replace_by(tmp);
 407     tmp2->replace_by(tmp1);
 408     tmp->replace_by(tmp2);
 409     tmp->destruct();
 410   }
 411 
 412   // Remove the existing null check; use a new implicit null check instead.
 413   // Since schedule-local needs precise def-use info, we need to correct
 414   // it as well.
 415   Node *old_tst = proj->in(0);
 416   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 417   block->map_node(nul_chk, block->end_idx());
 418   map_node_to_block(nul_chk, block);
 419   // Redirect users of old_test to nul_chk
 420   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 421     old_tst->last_out(i2)->set_req(0, nul_chk);
 422   // Clean-up any dead code
 423   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 424     Node* in = old_tst->in(i3);
 425     old_tst->set_req(i3, NULL);
 426     if (in->outcnt() == 0) {
 427       // Remove dead input node
 428       in->disconnect_inputs(NULL, C);
 429       block->find_remove(in);
 430     }
 431   }
 432 
 433   latency_from_uses(nul_chk);
 434   latency_from_uses(best);
 435 }
 436 
 437 
 438 //------------------------------select-----------------------------------------
 439 // Select a nice fellow from the worklist to schedule next. If there is only
 440 // one choice, then use it. Projections take top priority for correctness
 441 // reasons - if I see a projection, then it is next.  There are a number of
 442 // other special cases, for instructions that consume condition codes, et al.
 443 // These are chosen immediately. Some instructions are required to immediately
 444 // precede the last instruction in the block, and these are taken last. Of the
 445 // remaining cases (most), choose the instruction with the greatest latency
 446 // (that is, the most number of pseudo-cycles required to the end of the
 447 // routine). If there is a tie, choose the instruction with the most inputs.
 448 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
 449 
 450   // If only a single entry on the stack, use it
 451   uint cnt = worklist.size();
 452   if (cnt == 1) {
 453     Node *n = worklist[0];
 454     worklist.map(0,worklist.pop());
 455     return n;
 456   }
 457 
 458   uint choice  = 0; // Bigger is most important
 459   uint latency = 0; // Bigger is scheduled first
 460   uint score   = 0; // Bigger is better
 461   int idx = -1;     // Index in worklist
 462   int cand_cnt = 0; // Candidate count
 463 
 464   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 465     // Order in worklist is used to break ties.
 466     // See caller for how this is used to delay scheduling
 467     // of induction variable increments to after the other
 468     // uses of the phi are scheduled.
 469     Node *n = worklist[i];      // Get Node on worklist
 470 
 471     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 472     if( n->is_Proj() ||         // Projections always win
 473         n->Opcode()== Op_Con || // So does constant 'Top'
 474         iop == Op_CreateEx ||   // Create-exception must start block
 475         iop == Op_CheckCastPP
 476         ) {
 477       worklist.map(i,worklist.pop());
 478       return n;
 479     }
 480 
 481     // Final call in a block must be adjacent to 'catch'
 482     Node *e = block->end();
 483     if( e->is_Catch() && e->in(0)->in(0) == n )
 484       continue;
 485 
 486     // Memory op for an implicit null check has to be at the end of the block
 487     if( e->is_MachNullCheck() && e->in(1) == n )
 488       continue;
 489 
 490     // Schedule IV increment last.
 491     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
 492         e->in(1)->in(1) == n && n->is_iteratively_computed())
 493       continue;
 494 
 495     uint n_choice  = 2;
 496 
 497     // See if this instruction is consumed by a branch. If so, then (as the
 498     // branch is the last instruction in the basic block) force it to the
 499     // end of the basic block
 500     if ( must_clone[iop] ) {
 501       // See if any use is a branch
 502       bool found_machif = false;
 503 
 504       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 505         Node* use = n->fast_out(j);
 506 
 507         // The use is a conditional branch, make them adjacent
 508         if (use->is_MachIf() && get_block_for_node(use) == block) {
 509           found_machif = true;
 510           break;
 511         }
 512 
 513         // More than this instruction pending for successor to be ready,
 514         // don't choose this if other opportunities are ready
 515         if (ready_cnt.at(use->_idx) > 1)
 516           n_choice = 1;
 517       }
 518 
 519       // loop terminated, prefer not to use this instruction
 520       if (found_machif)
 521         continue;
 522     }
 523 
 524     // See if this has a predecessor that is "must_clone", i.e. sets the
 525     // condition code. If so, choose this first
 526     for (uint j = 0; j < n->req() ; j++) {
 527       Node *inn = n->in(j);
 528       if (inn) {
 529         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 530           n_choice = 3;
 531           break;
 532         }
 533       }
 534     }
 535 
 536     // MachTemps should be scheduled last so they are near their uses
 537     if (n->is_MachTemp()) {
 538       n_choice = 1;
 539     }
 540 
 541     uint n_latency = get_latency_for_node(n);
 542     uint n_score   = n->req();   // Many inputs get high score to break ties
 543 
 544     // Keep best latency found
 545     cand_cnt++;
 546     if (choice < n_choice ||
 547         (choice == n_choice &&
 548          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 549           (!StressLCM &&
 550            (latency < n_latency ||
 551             (latency == n_latency &&
 552              (score < n_score))))))) {
 553       choice  = n_choice;
 554       latency = n_latency;
 555       score   = n_score;
 556       idx     = i;               // Also keep index in worklist
 557     }
 558   } // End of for all ready nodes in worklist
 559 
 560   assert(idx >= 0, "index should be set");
 561   Node *n = worklist[(uint)idx];      // Get the winner
 562 
 563   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 564   return n;
 565 }
 566 
 567 
 568 //------------------------------set_next_call----------------------------------
 569 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 570   if( next_call.test_set(n->_idx) ) return;
 571   for( uint i=0; i<n->len(); i++ ) {
 572     Node *m = n->in(i);
 573     if( !m ) continue;  // must see all nodes in block that precede call
 574     if (get_block_for_node(m) == block) {
 575       set_next_call(block, m, next_call);
 576     }
 577   }
 578 }
 579 
 580 //------------------------------needed_for_next_call---------------------------
 581 // Set the flag 'next_call' for each Node that is needed for the next call to
 582 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 583 // next subroutine call get priority - basically it moves things NOT needed
 584 // for the next call till after the call.  This prevents me from trying to
 585 // carry lots of stuff live across a call.
 586 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 587   // Find the next control-defining Node in this block
 588   Node* call = NULL;
 589   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 590     Node* m = this_call->fast_out(i);
 591     if (get_block_for_node(m) == block && // Local-block user
 592         m != this_call &&       // Not self-start node
 593         m->is_MachCall()) {
 594       call = m;
 595       break;
 596     }
 597   }
 598   if (call == NULL)  return;    // No next call (e.g., block end is near)
 599   // Set next-call for all inputs to this call
 600   set_next_call(block, call, next_call);
 601 }
 602 
 603 //------------------------------add_call_kills-------------------------------------
 604 // helper function that adds caller save registers to MachProjNode
 605 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 606   // Fill in the kill mask for the call
 607   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 608     if( !regs.Member(r) ) {     // Not already defined by the call
 609       // Save-on-call register?
 610       if ((save_policy[r] == 'C') ||
 611           (save_policy[r] == 'A') ||
 612           ((save_policy[r] == 'E') && exclude_soe)) {
 613         proj->_rout.Insert(r);
 614       }
 615     }
 616   }
 617 }
 618 
 619 
 620 //------------------------------sched_call-------------------------------------
 621 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 622   RegMask regs;
 623 
 624   // Schedule all the users of the call right now.  All the users are
 625   // projection Nodes, so they must be scheduled next to the call.
 626   // Collect all the defined registers.
 627   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 628     Node* n = mcall->fast_out(i);
 629     assert( n->is_MachProj(), "" );
 630     int n_cnt = ready_cnt.at(n->_idx)-1;
 631     ready_cnt.at_put(n->_idx, n_cnt);
 632     assert( n_cnt == 0, "" );
 633     // Schedule next to call
 634     block->map_node(n, node_cnt++);
 635     // Collect defined registers
 636     regs.OR(n->out_RegMask());
 637     // Check for scheduling the next control-definer
 638     if( n->bottom_type() == Type::CONTROL )
 639       // Warm up next pile of heuristic bits
 640       needed_for_next_call(block, n, next_call);
 641 
 642     // Children of projections are now all ready
 643     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 644       Node* m = n->fast_out(j); // Get user
 645       if(get_block_for_node(m) != block) {
 646         continue;
 647       }
 648       if( m->is_Phi() ) continue;
 649       int m_cnt = ready_cnt.at(m->_idx)-1;
 650       ready_cnt.at_put(m->_idx, m_cnt);
 651       if( m_cnt == 0 )
 652         worklist.push(m);
 653     }
 654 
 655   }
 656 
 657   // Act as if the call defines the Frame Pointer.
 658   // Certainly the FP is alive and well after the call.
 659   regs.Insert(_matcher.c_frame_pointer());
 660 
 661   // Set all registers killed and not already defined by the call.
 662   uint r_cnt = mcall->tf()->range()->cnt();
 663   int op = mcall->ideal_Opcode();
 664   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 665   map_node_to_block(proj, block);
 666   block->insert_node(proj, node_cnt++);
 667 
 668   // Select the right register save policy.
 669   const char * save_policy;
 670   switch (op) {
 671     case Op_CallRuntime:
 672     case Op_CallLeaf:
 673     case Op_CallLeafNoFP:
 674       // Calling C code so use C calling convention
 675       save_policy = _matcher._c_reg_save_policy;
 676       break;
 677 
 678     case Op_CallStaticJava:
 679     case Op_CallDynamicJava:
 680       // Calling Java code so use Java calling convention
 681       save_policy = _matcher._register_save_policy;
 682       break;
 683 
 684     default:
 685       ShouldNotReachHere();
 686   }
 687 
 688   // When using CallRuntime mark SOE registers as killed by the call
 689   // so values that could show up in the RegisterMap aren't live in a
 690   // callee saved register since the register wouldn't know where to
 691   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 692   // have debug info on them.  Strictly speaking this only needs to be
 693   // done for oops since idealreg2debugmask takes care of debug info
 694   // references but there no way to handle oops differently than other
 695   // pointers as far as the kill mask goes.
 696   bool exclude_soe = op == Op_CallRuntime;
 697 
 698   // If the call is a MethodHandle invoke, we need to exclude the
 699   // register which is used to save the SP value over MH invokes from
 700   // the mask.  Otherwise this register could be used for
 701   // deoptimization information.
 702   if (op == Op_CallStaticJava) {
 703     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 704     if (mcallstaticjava->_method_handle_invoke)
 705       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 706   }
 707 
 708   add_call_kills(proj, regs, save_policy, exclude_soe);
 709 
 710   return node_cnt;
 711 }
 712 
 713 
 714 //------------------------------schedule_local---------------------------------
 715 // Topological sort within a block.  Someday become a real scheduler.
 716 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
 717   // Already "sorted" are the block start Node (as the first entry), and
 718   // the block-ending Node and any trailing control projections.  We leave
 719   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 720   // Node.  Everything else gets topo-sorted.
 721 
 722 #ifndef PRODUCT
 723     if (trace_opto_pipelining()) {
 724       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 725       for (uint i = 0;i < block->number_of_nodes(); i++) {
 726         tty->print("# ");
 727         block->get_node(i)->fast_dump();
 728       }
 729       tty->print_cr("#");
 730     }
 731 #endif
 732 
 733   // RootNode is already sorted
 734   if (block->number_of_nodes() == 1) {
 735     return true;
 736   }
 737 
 738   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 739   uint node_cnt = block->end_idx();
 740   uint phi_cnt = 1;
 741   uint i;
 742   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 743     Node *n = block->get_node(i);
 744     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 745         (n->is_Proj()  && n->in(0) == block->head()) ) {
 746       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 747       block->map_node(block->get_node(phi_cnt), i);
 748       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 749     } else {                    // All others
 750       // Count block-local inputs to 'n'
 751       uint cnt = n->len();      // Input count
 752       uint local = 0;
 753       for( uint j=0; j<cnt; j++ ) {
 754         Node *m = n->in(j);
 755         if( m && get_block_for_node(m) == block && !m->is_top() )
 756           local++;              // One more block-local input
 757       }
 758       ready_cnt.at_put(n->_idx, local); // Count em up
 759 
 760 #ifdef ASSERT
 761       if( UseConcMarkSweepGC || UseG1GC ) {
 762         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 763           // Check the precedence edges
 764           for (uint prec = n->req(); prec < n->len(); prec++) {
 765             Node* oop_store = n->in(prec);
 766             if (oop_store != NULL) {
 767               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 768             }
 769           }
 770         }
 771       }
 772 #endif
 773 
 774       // A few node types require changing a required edge to a precedence edge
 775       // before allocation.
 776       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 777           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 778            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 779         // MemBarAcquire could be created without Precedent edge.
 780         // del_req() replaces the specified edge with the last input edge
 781         // and then removes the last edge. If the specified edge > number of
 782         // edges the last edge will be moved outside of the input edges array
 783         // and the edge will be lost. This is why this code should be
 784         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 785         Node *x = n->in(TypeFunc::Parms);
 786         n->del_req(TypeFunc::Parms);
 787         n->add_prec(x);
 788       }
 789     }
 790   }
 791   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 792     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 793 
 794   // All the prescheduled guys do not hold back internal nodes
 795   uint i3;
 796   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 797     Node *n = block->get_node(i3);       // Get pre-scheduled
 798     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 799       Node* m = n->fast_out(j);
 800       if (get_block_for_node(m) == block) { // Local-block user
 801         int m_cnt = ready_cnt.at(m->_idx)-1;
 802         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 803       }
 804     }
 805   }
 806 
 807   Node_List delay;
 808   // Make a worklist
 809   Node_List worklist;
 810   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 811     Node *m = block->get_node(i4);
 812     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 813       if (m->is_iteratively_computed()) {
 814         // Push induction variable increments last to allow other uses
 815         // of the phi to be scheduled first. The select() method breaks
 816         // ties in scheduling by worklist order.
 817         delay.push(m);
 818       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 819         // Force the CreateEx to the top of the list so it's processed
 820         // first and ends up at the start of the block.
 821         worklist.insert(0, m);
 822       } else {
 823         worklist.push(m);         // Then on to worklist!
 824       }
 825     }
 826   }
 827   while (delay.size()) {
 828     Node* d = delay.pop();
 829     worklist.push(d);
 830   }
 831 
 832   // Warm up the 'next_call' heuristic bits
 833   needed_for_next_call(block, block->head(), next_call);
 834 
 835 #ifndef PRODUCT
 836     if (trace_opto_pipelining()) {
 837       for (uint j=0; j< block->number_of_nodes(); j++) {
 838         Node     *n = block->get_node(j);
 839         int     idx = n->_idx;
 840         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
 841         tty->print("latency:%3d  ", get_latency_for_node(n));
 842         tty->print("%4d: %s\n", idx, n->Name());
 843       }
 844     }
 845 #endif
 846 
 847   uint max_idx = (uint)ready_cnt.length();
 848   // Pull from worklist and schedule
 849   while( worklist.size() ) {    // Worklist is not ready
 850 
 851 #ifndef PRODUCT
 852     if (trace_opto_pipelining()) {
 853       tty->print("#   ready list:");
 854       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 855         Node *n = worklist[i];      // Get Node on worklist
 856         tty->print(" %d", n->_idx);
 857       }
 858       tty->cr();
 859     }
 860 #endif
 861 
 862     // Select and pop a ready guy from worklist
 863     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
 864     block->map_node(n, phi_cnt++);    // Schedule him next
 865 
 866 #ifndef PRODUCT
 867     if (trace_opto_pipelining()) {
 868       tty->print("#    select %d: %s", n->_idx, n->Name());
 869       tty->print(", latency:%d", get_latency_for_node(n));
 870       n->dump();
 871       if (Verbose) {
 872         tty->print("#   ready list:");
 873         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 874           Node *n = worklist[i];      // Get Node on worklist
 875           tty->print(" %d", n->_idx);
 876         }
 877         tty->cr();
 878       }
 879     }
 880 
 881 #endif
 882     if( n->is_MachCall() ) {
 883       MachCallNode *mcall = n->as_MachCall();
 884       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
 885       continue;
 886     }
 887 
 888     if (n->is_Mach() && n->as_Mach()->has_call()) {
 889       RegMask regs;
 890       regs.Insert(_matcher.c_frame_pointer());
 891       regs.OR(n->out_RegMask());
 892 
 893       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
 894       map_node_to_block(proj, block);
 895       block->insert_node(proj, phi_cnt++);
 896 
 897       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
 898     }
 899 
 900     // Children are now all ready
 901     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 902       Node* m = n->fast_out(i5); // Get user
 903       if (get_block_for_node(m) != block) {
 904         continue;
 905       }
 906       if( m->is_Phi() ) continue;
 907       if (m->_idx >= max_idx) { // new node, skip it
 908         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 909         continue;
 910       }
 911       int m_cnt = ready_cnt.at(m->_idx)-1;
 912       ready_cnt.at_put(m->_idx, m_cnt);
 913       if( m_cnt == 0 )
 914         worklist.push(m);
 915     }
 916   }
 917 
 918   if( phi_cnt != block->end_idx() ) {
 919     // did not schedule all.  Retry, Bailout, or Die
 920     if (C->subsume_loads() == true && !C->failing()) {
 921       // Retry with subsume_loads == false
 922       // If this is the first failure, the sentinel string will "stick"
 923       // to the Compile object, and the C2Compiler will see it and retry.
 924       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 925     }
 926     // assert( phi_cnt == end_idx(), "did not schedule all" );
 927     return false;
 928   }
 929 
 930 #ifndef PRODUCT
 931   if (trace_opto_pipelining()) {
 932     tty->print_cr("#");
 933     tty->print_cr("# after schedule_local");
 934     for (uint i = 0;i < block->number_of_nodes();i++) {
 935       tty->print("# ");
 936       block->get_node(i)->fast_dump();
 937     }
 938     tty->cr();
 939   }
 940 #endif
 941 
 942 
 943   return true;
 944 }
 945 
 946 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 947 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 948   for (uint l = 0; l < use->len(); l++) {
 949     if (use->in(l) == old_def) {
 950       if (l < use->req()) {
 951         use->set_req(l, new_def);
 952       } else {
 953         use->rm_prec(l);
 954         use->add_prec(new_def);
 955         l--;
 956       }
 957     }
 958   }
 959 }
 960 
 961 //------------------------------catch_cleanup_find_cloned_def------------------
 962 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
 963   assert( use_blk != def_blk, "Inter-block cleanup only");
 964 
 965   // The use is some block below the Catch.  Find and return the clone of the def
 966   // that dominates the use. If there is no clone in a dominating block, then
 967   // create a phi for the def in a dominating block.
 968 
 969   // Find which successor block dominates this use.  The successor
 970   // blocks must all be single-entry (from the Catch only; I will have
 971   // split blocks to make this so), hence they all dominate.
 972   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 973     use_blk = use_blk->_idom;
 974 
 975   // Find the successor
 976   Node *fixup = NULL;
 977 
 978   uint j;
 979   for( j = 0; j < def_blk->_num_succs; j++ )
 980     if( use_blk == def_blk->_succs[j] )
 981       break;
 982 
 983   if( j == def_blk->_num_succs ) {
 984     // Block at same level in dom-tree is not a successor.  It needs a
 985     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 986     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 987     for(uint k = 1; k < use_blk->num_preds(); k++) {
 988       Block* block = get_block_for_node(use_blk->pred(k));
 989       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
 990     }
 991 
 992     // Check to see if the use_blk already has an identical phi inserted.
 993     // If it exists, it will be at the first position since all uses of a
 994     // def are processed together.
 995     Node *phi = use_blk->get_node(1);
 996     if( phi->is_Phi() ) {
 997       fixup = phi;
 998       for (uint k = 1; k < use_blk->num_preds(); k++) {
 999         if (phi->in(k) != inputs[k]) {
1000           // Not a match
1001           fixup = NULL;
1002           break;
1003         }
1004       }
1005     }
1006 
1007     // If an existing PhiNode was not found, make a new one.
1008     if (fixup == NULL) {
1009       Node *new_phi = PhiNode::make(use_blk->head(), def);
1010       use_blk->insert_node(new_phi, 1);
1011       map_node_to_block(new_phi, use_blk);
1012       for (uint k = 1; k < use_blk->num_preds(); k++) {
1013         new_phi->set_req(k, inputs[k]);
1014       }
1015       fixup = new_phi;
1016     }
1017 
1018   } else {
1019     // Found the use just below the Catch.  Make it use the clone.
1020     fixup = use_blk->get_node(n_clone_idx);
1021   }
1022 
1023   return fixup;
1024 }
1025 
1026 //--------------------------catch_cleanup_intra_block--------------------------
1027 // Fix all input edges in use that reference "def".  The use is in the same
1028 // block as the def and both have been cloned in each successor block.
1029 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1030 
1031   // Both the use and def have been cloned. For each successor block,
1032   // get the clone of the use, and make its input the clone of the def
1033   // found in that block.
1034 
1035   uint use_idx = blk->find_node(use);
1036   uint offset_idx = use_idx - beg;
1037   for( uint k = 0; k < blk->_num_succs; k++ ) {
1038     // Get clone in each successor block
1039     Block *sb = blk->_succs[k];
1040     Node *clone = sb->get_node(offset_idx+1);
1041     assert( clone->Opcode() == use->Opcode(), "" );
1042 
1043     // Make use-clone reference the def-clone
1044     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1045   }
1046 }
1047 
1048 //------------------------------catch_cleanup_inter_block---------------------
1049 // Fix all input edges in use that reference "def".  The use is in a different
1050 // block than the def.
1051 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1052   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1053 
1054   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1055   catch_cleanup_fix_all_inputs(use, def, new_def);
1056 }
1057 
1058 //------------------------------call_catch_cleanup-----------------------------
1059 // If we inserted any instructions between a Call and his CatchNode,
1060 // clone the instructions on all paths below the Catch.
1061 void PhaseCFG::call_catch_cleanup(Block* block) {
1062 
1063   // End of region to clone
1064   uint end = block->end_idx();
1065   if( !block->get_node(end)->is_Catch() ) return;
1066   // Start of region to clone
1067   uint beg = end;
1068   while(!block->get_node(beg-1)->is_MachProj() ||
1069         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1070     beg--;
1071     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1072   }
1073   // Range of inserted instructions is [beg, end)
1074   if( beg == end ) return;
1075 
1076   // Clone along all Catch output paths.  Clone area between the 'beg' and
1077   // 'end' indices.
1078   for( uint i = 0; i < block->_num_succs; i++ ) {
1079     Block *sb = block->_succs[i];
1080     // Clone the entire area; ignoring the edge fixup for now.
1081     for( uint j = end; j > beg; j-- ) {
1082       // It is safe here to clone a node with anti_dependence
1083       // since clones dominate on each path.
1084       Node *clone = block->get_node(j-1)->clone();
1085       sb->insert_node(clone, 1);
1086       map_node_to_block(clone, sb);
1087     }
1088   }
1089 
1090 
1091   // Fixup edges.  Check the def-use info per cloned Node
1092   for(uint i2 = beg; i2 < end; i2++ ) {
1093     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1094     Node *n = block->get_node(i2);        // Node that got cloned
1095     // Need DU safe iterator because of edge manipulation in calls.
1096     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1097     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1098       out->push(n->fast_out(j1));
1099     }
1100     uint max = out->size();
1101     for (uint j = 0; j < max; j++) {// For all users
1102       Node *use = out->pop();
1103       Block *buse = get_block_for_node(use);
1104       if( use->is_Phi() ) {
1105         for( uint k = 1; k < use->req(); k++ )
1106           if( use->in(k) == n ) {
1107             Block* b = get_block_for_node(buse->pred(k));
1108             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1109             use->set_req(k, fixup);
1110           }
1111       } else {
1112         if (block == buse) {
1113           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1114         } else {
1115           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1116         }
1117       }
1118     } // End for all users
1119 
1120   } // End of for all Nodes in cloned area
1121 
1122   // Remove the now-dead cloned ops
1123   for(uint i3 = beg; i3 < end; i3++ ) {
1124     block->get_node(beg)->disconnect_inputs(NULL, C);
1125     block->remove_node(beg);
1126   }
1127 
1128   // If the successor blocks have a CreateEx node, move it back to the top
1129   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1130     Block *sb = block->_succs[i4];
1131     uint new_cnt = end - beg;
1132     // Remove any newly created, but dead, nodes.
1133     for( uint j = new_cnt; j > 0; j-- ) {
1134       Node *n = sb->get_node(j);
1135       if (n->outcnt() == 0 &&
1136           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1137         n->disconnect_inputs(NULL, C);
1138         sb->remove_node(j);
1139         new_cnt--;
1140       }
1141     }
1142     // If any newly created nodes remain, move the CreateEx node to the top
1143     if (new_cnt > 0) {
1144       Node *cex = sb->get_node(1+new_cnt);
1145       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1146         sb->remove_node(1+new_cnt);
1147         sb->insert_node(cex, 1);
1148       }
1149     }
1150   }
1151 }