1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 class AbstractLockNode;
  38 class AddNode;
  39 class AddPNode;
  40 class AliasInfo;
  41 class AllocateArrayNode;
  42 class AllocateNode;
  43 class ArrayCopyNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CatchNode;
  55 class CatchProjNode;
  56 class CheckCastPPNode;
  57 class ClearArrayNode;
  58 class CmpNode;
  59 class CodeBuffer;
  60 class ConstraintCastNode;
  61 class ConNode;
  62 class CountedLoopNode;
  63 class CountedLoopEndNode;
  64 class DecodeNarrowPtrNode;
  65 class DecodeNNode;
  66 class DecodeNKlassNode;
  67 class EncodeNarrowPtrNode;
  68 class EncodePNode;
  69 class EncodePKlassNode;
  70 class FastLockNode;
  71 class FastUnlockNode;
  72 class IfNode;
  73 class IfFalseNode;
  74 class IfTrueNode;
  75 class InitializeNode;
  76 class JVMState;
  77 class JumpNode;
  78 class JumpProjNode;
  79 class LoadNode;
  80 class LoadStoreNode;
  81 class LockNode;
  82 class LoopNode;
  83 class MachBranchNode;
  84 class MachCallDynamicJavaNode;
  85 class MachCallJavaNode;
  86 class MachCallLeafNode;
  87 class MachCallNode;
  88 class MachCallRuntimeNode;
  89 class MachCallStaticJavaNode;
  90 class MachConstantBaseNode;
  91 class MachConstantNode;
  92 class MachGotoNode;
  93 class MachIfNode;
  94 class MachNode;
  95 class MachNullCheckNode;
  96 class MachProjNode;
  97 class MachReturnNode;
  98 class MachSafePointNode;
  99 class MachSpillCopyNode;
 100 class MachTempNode;
 101 class MachMergeNode;
 102 class Matcher;
 103 class MemBarNode;
 104 class MemBarStoreStoreNode;
 105 class MemNode;
 106 class MergeMemNode;
 107 class MulNode;
 108 class MultiNode;
 109 class MultiBranchNode;
 110 class NeverBranchNode;
 111 class Node;
 112 class Node_Array;
 113 class Node_List;
 114 class Node_Stack;
 115 class NullCheckNode;
 116 class OopMap;
 117 class ParmNode;
 118 class PCTableNode;
 119 class PhaseCCP;
 120 class PhaseGVN;
 121 class PhaseIterGVN;
 122 class PhaseRegAlloc;
 123 class PhaseTransform;
 124 class PhaseValues;
 125 class PhiNode;
 126 class Pipeline;
 127 class ProjNode;
 128 class RegMask;
 129 class RegionNode;
 130 class RootNode;
 131 class SafePointNode;
 132 class SafePointScalarObjectNode;
 133 class ShenandoahBarrierNode;
 134 class StartNode;
 135 class State;
 136 class StoreNode;
 137 class SubNode;
 138 class Type;
 139 class TypeNode;
 140 class UnlockNode;
 141 class VectorNode;
 142 class LoadVectorNode;
 143 class StoreVectorNode;
 144 class VectorSet;
 145 typedef void (*NFunc)(Node&,void*);
 146 extern "C" {
 147   typedef int (*C_sort_func_t)(const void *, const void *);
 148 }
 149 
 150 // The type of all node counts and indexes.
 151 // It must hold at least 16 bits, but must also be fast to load and store.
 152 // This type, if less than 32 bits, could limit the number of possible nodes.
 153 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 154 typedef unsigned int node_idx_t;
 155 
 156 
 157 #ifndef OPTO_DU_ITERATOR_ASSERT
 158 #ifdef ASSERT
 159 #define OPTO_DU_ITERATOR_ASSERT 1
 160 #else
 161 #define OPTO_DU_ITERATOR_ASSERT 0
 162 #endif
 163 #endif //OPTO_DU_ITERATOR_ASSERT
 164 
 165 #if OPTO_DU_ITERATOR_ASSERT
 166 class DUIterator;
 167 class DUIterator_Fast;
 168 class DUIterator_Last;
 169 #else
 170 typedef uint   DUIterator;
 171 typedef Node** DUIterator_Fast;
 172 typedef Node** DUIterator_Last;
 173 #endif
 174 
 175 // Node Sentinel
 176 #define NodeSentinel (Node*)-1
 177 
 178 // Unknown count frequency
 179 #define COUNT_UNKNOWN (-1.0f)
 180 
 181 //------------------------------Node-------------------------------------------
 182 // Nodes define actions in the program.  They create values, which have types.
 183 // They are both vertices in a directed graph and program primitives.  Nodes
 184 // are labeled; the label is the "opcode", the primitive function in the lambda
 185 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 186 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 187 // the Node's function.  These inputs also define a Type equation for the Node.
 188 // Solving these Type equations amounts to doing dataflow analysis.
 189 // Control and data are uniformly represented in the graph.  Finally, Nodes
 190 // have a unique dense integer index which is used to index into side arrays
 191 // whenever I have phase-specific information.
 192 
 193 class Node {
 194   friend class VMStructs;
 195 
 196   // Lots of restrictions on cloning Nodes
 197   Node(const Node&);            // not defined; linker error to use these
 198   Node &operator=(const Node &rhs);
 199 
 200 public:
 201   friend class Compile;
 202   #if OPTO_DU_ITERATOR_ASSERT
 203   friend class DUIterator_Common;
 204   friend class DUIterator;
 205   friend class DUIterator_Fast;
 206   friend class DUIterator_Last;
 207   #endif
 208 
 209   // Because Nodes come and go, I define an Arena of Node structures to pull
 210   // from.  This should allow fast access to node creation & deletion.  This
 211   // field is a local cache of a value defined in some "program fragment" for
 212   // which these Nodes are just a part of.
 213 
 214   inline void* operator new(size_t x) throw() {
 215     Compile* C = Compile::current();
 216     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 217 #ifdef ASSERT
 218     n->_in = (Node**)n; // magic cookie for assertion check
 219 #endif
 220     return (void*)n;
 221   }
 222 
 223   // Delete is a NOP
 224   void operator delete( void *ptr ) {}
 225   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 226   void destruct();
 227 
 228   // Create a new Node.  Required is the number is of inputs required for
 229   // semantic correctness.
 230   Node( uint required );
 231 
 232   // Create a new Node with given input edges.
 233   // This version requires use of the "edge-count" new.
 234   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 235   Node( Node *n0 );
 236   Node( Node *n0, Node *n1 );
 237   Node( Node *n0, Node *n1, Node *n2 );
 238   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 239   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 240   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 241   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 242             Node *n4, Node *n5, Node *n6 );
 243 
 244   // Clone an inherited Node given only the base Node type.
 245   Node* clone() const;
 246 
 247   // Clone a Node, immediately supplying one or two new edges.
 248   // The first and second arguments, if non-null, replace in(1) and in(2),
 249   // respectively.
 250   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 251     Node* nn = clone();
 252     if (in1 != NULL)  nn->set_req(1, in1);
 253     if (in2 != NULL)  nn->set_req(2, in2);
 254     return nn;
 255   }
 256 
 257 private:
 258   // Shared setup for the above constructors.
 259   // Handles all interactions with Compile::current.
 260   // Puts initial values in all Node fields except _idx.
 261   // Returns the initial value for _idx, which cannot
 262   // be initialized by assignment.
 263   inline int Init(int req);
 264 
 265 //----------------- input edge handling
 266 protected:
 267   friend class PhaseCFG;        // Access to address of _in array elements
 268   Node **_in;                   // Array of use-def references to Nodes
 269   Node **_out;                  // Array of def-use references to Nodes
 270 
 271   // Input edges are split into two categories.  Required edges are required
 272   // for semantic correctness; order is important and NULLs are allowed.
 273   // Precedence edges are used to help determine execution order and are
 274   // added, e.g., for scheduling purposes.  They are unordered and not
 275   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 276   // are required, from _cnt to _max-1 are precedence edges.
 277   node_idx_t _cnt;              // Total number of required Node inputs.
 278 
 279   node_idx_t _max;              // Actual length of input array.
 280 
 281   // Output edges are an unordered list of def-use edges which exactly
 282   // correspond to required input edges which point from other nodes
 283   // to this one.  Thus the count of the output edges is the number of
 284   // users of this node.
 285   node_idx_t _outcnt;           // Total number of Node outputs.
 286 
 287   node_idx_t _outmax;           // Actual length of output array.
 288 
 289   // Grow the actual input array to the next larger power-of-2 bigger than len.
 290   void grow( uint len );
 291   // Grow the output array to the next larger power-of-2 bigger than len.
 292   void out_grow( uint len );
 293 
 294  public:
 295   // Each Node is assigned a unique small/dense number.  This number is used
 296   // to index into auxiliary arrays of data and bitvectors.
 297   // It is declared const to defend against inadvertant assignment,
 298   // since it is used by clients as a naked field.
 299   const node_idx_t _idx;
 300 
 301   // Get the (read-only) number of input edges
 302   uint req() const { return _cnt; }
 303   uint len() const { return _max; }
 304   // Get the (read-only) number of output edges
 305   uint outcnt() const { return _outcnt; }
 306 
 307 #if OPTO_DU_ITERATOR_ASSERT
 308   // Iterate over the out-edges of this node.  Deletions are illegal.
 309   inline DUIterator outs() const;
 310   // Use this when the out array might have changed to suppress asserts.
 311   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 312   // Does the node have an out at this position?  (Used for iteration.)
 313   inline bool has_out(DUIterator& i) const;
 314   inline Node*    out(DUIterator& i) const;
 315   // Iterate over the out-edges of this node.  All changes are illegal.
 316   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 317   inline Node*    fast_out(DUIterator_Fast& i) const;
 318   // Iterate over the out-edges of this node, deleting one at a time.
 319   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 320   inline Node*    last_out(DUIterator_Last& i) const;
 321   // The inline bodies of all these methods are after the iterator definitions.
 322 #else
 323   // Iterate over the out-edges of this node.  Deletions are illegal.
 324   // This iteration uses integral indexes, to decouple from array reallocations.
 325   DUIterator outs() const  { return 0; }
 326   // Use this when the out array might have changed to suppress asserts.
 327   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 328 
 329   // Reference to the i'th output Node.  Error if out of bounds.
 330   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 331   // Does the node have an out at this position?  (Used for iteration.)
 332   bool has_out(DUIterator i) const { return i < _outcnt; }
 333 
 334   // Iterate over the out-edges of this node.  All changes are illegal.
 335   // This iteration uses a pointer internal to the out array.
 336   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 337     Node** out = _out;
 338     // Assign a limit pointer to the reference argument:
 339     max = out + (ptrdiff_t)_outcnt;
 340     // Return the base pointer:
 341     return out;
 342   }
 343   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 344   // Iterate over the out-edges of this node, deleting one at a time.
 345   // This iteration uses a pointer internal to the out array.
 346   DUIterator_Last last_outs(DUIterator_Last& min) const {
 347     Node** out = _out;
 348     // Assign a limit pointer to the reference argument:
 349     min = out;
 350     // Return the pointer to the start of the iteration:
 351     return out + (ptrdiff_t)_outcnt - 1;
 352   }
 353   Node*    last_out(DUIterator_Last i) const  { return *i; }
 354 #endif
 355 
 356   // Reference to the i'th input Node.  Error if out of bounds.
 357   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
 358   // Reference to the i'th input Node.  NULL if out of bounds.
 359   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 360   // Reference to the i'th output Node.  Error if out of bounds.
 361   // Use this accessor sparingly.  We are going trying to use iterators instead.
 362   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 363   // Return the unique out edge.
 364   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 365   // Delete out edge at position 'i' by moving last out edge to position 'i'
 366   void  raw_del_out(uint i) {
 367     assert(i < _outcnt,"oob");
 368     assert(_outcnt > 0,"oob");
 369     #if OPTO_DU_ITERATOR_ASSERT
 370     // Record that a change happened here.
 371     debug_only(_last_del = _out[i]; ++_del_tick);
 372     #endif
 373     _out[i] = _out[--_outcnt];
 374     // Smash the old edge so it can't be used accidentally.
 375     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 376   }
 377 
 378 #ifdef ASSERT
 379   bool is_dead() const;
 380 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 381 #endif
 382   // Check whether node has become unreachable
 383   bool is_unreachable(PhaseIterGVN &igvn) const;
 384 
 385   // Set a required input edge, also updates corresponding output edge
 386   void add_req( Node *n ); // Append a NEW required input
 387   void add_req( Node *n0, Node *n1 ) {
 388     add_req(n0); add_req(n1); }
 389   void add_req( Node *n0, Node *n1, Node *n2 ) {
 390     add_req(n0); add_req(n1); add_req(n2); }
 391   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 392   void del_req( uint idx ); // Delete required edge & compact
 393   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 394   void ins_req( uint i, Node *n ); // Insert a NEW required input
 395   void set_req( uint i, Node *n ) {
 396     assert( is_not_dead(n), "can not use dead node");
 397     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
 398     assert( !VerifyHashTableKeys || _hash_lock == 0,
 399             "remove node from hash table before modifying it");
 400     Node** p = &_in[i];    // cache this._in, across the del_out call
 401     if (*p != NULL)  (*p)->del_out((Node *)this);
 402     (*p) = n;
 403     if (n != NULL)      n->add_out((Node *)this);
 404     Compile::current()->record_modified_node(this);
 405   }
 406   // Light version of set_req() to init inputs after node creation.
 407   void init_req( uint i, Node *n ) {
 408     assert( i == 0 && this == n ||
 409             is_not_dead(n), "can not use dead node");
 410     assert( i < _cnt, "oob");
 411     assert( !VerifyHashTableKeys || _hash_lock == 0,
 412             "remove node from hash table before modifying it");
 413     assert( _in[i] == NULL, "sanity");
 414     _in[i] = n;
 415     if (n != NULL)      n->add_out((Node *)this);
 416     Compile::current()->record_modified_node(this);
 417   }
 418   // Find first occurrence of n among my edges:
 419   int find_edge(Node* n);
 420   int replace_edge(Node* old, Node* neww);
 421   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 422   // NULL out all inputs to eliminate incoming Def-Use edges.
 423   // Return the number of edges between 'n' and 'this'
 424   int  disconnect_inputs(Node *n, Compile *c);
 425 
 426   // Quickly, return true if and only if I am Compile::current()->top().
 427   bool is_top() const {
 428     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 429     return (_out == NULL);
 430   }
 431   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 432   void setup_is_top();
 433 
 434   // Strip away casting.  (It is depth-limited.)
 435   Node* uncast() const;
 436   // Return whether two Nodes are equivalent, after stripping casting.
 437   bool eqv_uncast(const Node* n) const {
 438     return (this->uncast() == n->uncast());
 439   }
 440 
 441   // Find out of current node that matches opcode.
 442   Node* find_out_with(int opcode);
 443   // Return true if the current node has an out that matches opcode.
 444   bool has_out_with(int opcode);
 445   // Return true if the current node has an out that matches any of the opcodes.
 446   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 447 
 448 private:
 449   static Node* uncast_helper(const Node* n);
 450 
 451   // Add an output edge to the end of the list
 452   void add_out( Node *n ) {
 453     if (is_top())  return;
 454     if( _outcnt == _outmax ) out_grow(_outcnt);
 455     _out[_outcnt++] = n;
 456   }
 457   // Delete an output edge
 458   void del_out( Node *n ) {
 459     if (is_top())  return;
 460     Node** outp = &_out[_outcnt];
 461     // Find and remove n
 462     do {
 463       assert(outp > _out, "Missing Def-Use edge");
 464     } while (*--outp != n);
 465     *outp = _out[--_outcnt];
 466     // Smash the old edge so it can't be used accidentally.
 467     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 468     // Record that a change happened here.
 469     #if OPTO_DU_ITERATOR_ASSERT
 470     debug_only(_last_del = n; ++_del_tick);
 471     #endif
 472   }
 473 
 474 public:
 475   // Globally replace this node by a given new node, updating all uses.
 476   void replace_by(Node* new_node);
 477   // Globally replace this node by a given new node, updating all uses
 478   // and cutting input edges of old node.
 479   void subsume_by(Node* new_node, Compile* c) {
 480     replace_by(new_node);
 481     disconnect_inputs(NULL, c);
 482   }
 483   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 484   // Find the one non-null required input.  RegionNode only
 485   Node *nonnull_req() const;
 486   // Add or remove precedence edges
 487   void add_prec( Node *n );
 488   void rm_prec( uint i );
 489   void set_prec( uint i, Node *n ) {
 490     assert( is_not_dead(n), "can not use dead node");
 491     assert( i >= _cnt, "not a precedence edge");
 492     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 493     _in[i] = n;
 494     if (n != NULL) n->add_out((Node *)this);
 495   }
 496   // Set this node's index, used by cisc_version to replace current node
 497   void set_idx(uint new_idx) {
 498     const node_idx_t* ref = &_idx;
 499     *(node_idx_t*)ref = new_idx;
 500   }
 501   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 502   void swap_edges(uint i1, uint i2) {
 503     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 504     // Def-Use info is unchanged
 505     Node* n1 = in(i1);
 506     Node* n2 = in(i2);
 507     _in[i1] = n2;
 508     _in[i2] = n1;
 509     // If this node is in the hash table, make sure it doesn't need a rehash.
 510     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 511   }
 512 
 513   // Iterators over input Nodes for a Node X are written as:
 514   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 515   // NOTE: Required edges can contain embedded NULL pointers.
 516 
 517 //----------------- Other Node Properties
 518 
 519   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 520   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 521   //
 522   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 523   // the type of the node the ID represents; another subset of an ID's bits are reserved
 524   // for the superclasses of the node represented by the ID.
 525   //
 526   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 527   // returns false. A.is_A() returns true.
 528   //
 529   // If two classes, A and B, have the same superclass, a different bit of A's class id
 530   // is reserved for A's type than for B's type. That bit is specified by the third
 531   // parameter in the macro DEFINE_CLASS_ID.
 532   //
 533   // By convention, classes with deeper hierarchy are declared first. Moreover,
 534   // classes with the same hierarchy depth are sorted by usage frequency.
 535   //
 536   // The query method masks the bits to cut off bits of subclasses and then compares
 537   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 538   //
 539   //  Class_MachCall=30, ClassMask_MachCall=31
 540   // 12               8               4               0
 541   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 542   //                                  |   |   |   |
 543   //                                  |   |   |   Bit_Mach=2
 544   //                                  |   |   Bit_MachReturn=4
 545   //                                  |   Bit_MachSafePoint=8
 546   //                                  Bit_MachCall=16
 547   //
 548   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 549   // 12               8               4               0
 550   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 551   //                              |   |   |
 552   //                              |   |   Bit_Region=8
 553   //                              |   Bit_Loop=16
 554   //                              Bit_CountedLoop=32
 555 
 556   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 557   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 558   Class_##cl = Class_##supcl + Bit_##cl , \
 559   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 560 
 561   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 562   // so that it's values fits into 16 bits.
 563   enum NodeClasses {
 564     Bit_Node   = 0x0000,
 565     Class_Node = 0x0000,
 566     ClassMask_Node = 0xFFFF,
 567 
 568     DEFINE_CLASS_ID(Multi, Node, 0)
 569       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 570         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 571           DEFINE_CLASS_ID(CallJava,         Call, 0)
 572             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 573             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 574           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 575             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 576           DEFINE_CLASS_ID(Allocate,         Call, 2)
 577             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 578           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 579             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 580             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 581           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 582       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 583         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 584           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 585           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 586         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 587           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 588         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 589       DEFINE_CLASS_ID(Start,       Multi, 2)
 590       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 591         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 592         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 593 
 594     DEFINE_CLASS_ID(Mach,  Node, 1)
 595       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 596         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 597           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 598             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 599               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 600               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 601             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 602               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 603       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 604         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 605         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 606         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 607       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 608       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 609       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 610       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 611       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 612 
 613     DEFINE_CLASS_ID(Type,  Node, 2)
 614       DEFINE_CLASS_ID(Phi,   Type, 0)
 615       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 616       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 617       DEFINE_CLASS_ID(CMove, Type, 3)
 618       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 619       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 620         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 621         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 622       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 623         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 624         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 625       DEFINE_CLASS_ID(ShenandoahBarrier, Type, 7)
 626 
 627     DEFINE_CLASS_ID(Proj,  Node, 3)
 628       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 629       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 630       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 631       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 632       DEFINE_CLASS_ID(Parm,      Proj, 4)
 633       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 634 
 635     DEFINE_CLASS_ID(Mem,   Node, 4)
 636       DEFINE_CLASS_ID(Load,  Mem, 0)
 637         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 638       DEFINE_CLASS_ID(Store, Mem, 1)
 639         DEFINE_CLASS_ID(StoreVector, Store, 0)
 640       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 641 
 642     DEFINE_CLASS_ID(Region, Node, 5)
 643       DEFINE_CLASS_ID(Loop, Region, 0)
 644         DEFINE_CLASS_ID(Root,        Loop, 0)
 645         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 646 
 647     DEFINE_CLASS_ID(Sub,   Node, 6)
 648       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 649         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 650         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 651 
 652     DEFINE_CLASS_ID(MergeMem, Node, 7)
 653     DEFINE_CLASS_ID(Bool,     Node, 8)
 654     DEFINE_CLASS_ID(AddP,     Node, 9)
 655     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 656     DEFINE_CLASS_ID(Add,      Node, 11)
 657     DEFINE_CLASS_ID(Mul,      Node, 12)
 658     DEFINE_CLASS_ID(Vector,   Node, 13)
 659     DEFINE_CLASS_ID(ClearArray, Node, 14)
 660 
 661     _max_classes  = ClassMask_ClearArray
 662   };
 663   #undef DEFINE_CLASS_ID
 664 
 665   // Flags are sorted by usage frequency.
 666   enum NodeFlags {
 667     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 668     Flag_rematerialize               = Flag_is_Copy << 1,
 669     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 670     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 671     Flag_is_Con                      = Flag_is_macro << 1,
 672     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 673     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 674     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 675     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 676     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 677     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 678     Flag_is_reduction                = Flag_has_call << 1,
 679     Flag_is_expensive                = Flag_is_reduction << 1,
 680     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 681   };
 682 
 683 private:
 684   jushort _class_id;
 685   jushort _flags;
 686 
 687 protected:
 688   // These methods should be called from constructors only.
 689   void init_class_id(jushort c) {
 690     assert(c <= _max_classes, "invalid node class");
 691     _class_id = c; // cast out const
 692   }
 693   void init_flags(jushort fl) {
 694     assert(fl <= _max_flags, "invalid node flag");
 695     _flags |= fl;
 696   }
 697   void clear_flag(jushort fl) {
 698     assert(fl <= _max_flags, "invalid node flag");
 699     _flags &= ~fl;
 700   }
 701 
 702 public:
 703   const jushort class_id() const { return _class_id; }
 704 
 705   const jushort flags() const { return _flags; }
 706 
 707   void add_flag(jushort fl) { init_flags(fl); }
 708 
 709   void remove_flag(jushort fl) { clear_flag(fl); }
 710 
 711   // Return a dense integer opcode number
 712   virtual int Opcode() const;
 713 
 714   // Virtual inherited Node size
 715   virtual uint size_of() const;
 716 
 717   // Other interesting Node properties
 718   #define DEFINE_CLASS_QUERY(type)                           \
 719   bool is_##type() const {                                   \
 720     return ((_class_id & ClassMask_##type) == Class_##type); \
 721   }                                                          \
 722   type##Node *as_##type() const {                            \
 723     assert(is_##type(), "invalid node class");               \
 724     return (type##Node*)this;                                \
 725   }                                                          \
 726   type##Node* isa_##type() const {                           \
 727     return (is_##type()) ? as_##type() : NULL;               \
 728   }
 729 
 730   DEFINE_CLASS_QUERY(AbstractLock)
 731   DEFINE_CLASS_QUERY(Add)
 732   DEFINE_CLASS_QUERY(AddP)
 733   DEFINE_CLASS_QUERY(Allocate)
 734   DEFINE_CLASS_QUERY(AllocateArray)
 735   DEFINE_CLASS_QUERY(ArrayCopy)
 736   DEFINE_CLASS_QUERY(Bool)
 737   DEFINE_CLASS_QUERY(BoxLock)
 738   DEFINE_CLASS_QUERY(Call)
 739   DEFINE_CLASS_QUERY(CallDynamicJava)
 740   DEFINE_CLASS_QUERY(CallJava)
 741   DEFINE_CLASS_QUERY(CallLeaf)
 742   DEFINE_CLASS_QUERY(CallRuntime)
 743   DEFINE_CLASS_QUERY(CallStaticJava)
 744   DEFINE_CLASS_QUERY(Catch)
 745   DEFINE_CLASS_QUERY(CatchProj)
 746   DEFINE_CLASS_QUERY(CheckCastPP)
 747   DEFINE_CLASS_QUERY(ConstraintCast)
 748   DEFINE_CLASS_QUERY(ClearArray)
 749   DEFINE_CLASS_QUERY(CMove)
 750   DEFINE_CLASS_QUERY(Cmp)
 751   DEFINE_CLASS_QUERY(CountedLoop)
 752   DEFINE_CLASS_QUERY(CountedLoopEnd)
 753   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 754   DEFINE_CLASS_QUERY(DecodeN)
 755   DEFINE_CLASS_QUERY(DecodeNKlass)
 756   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 757   DEFINE_CLASS_QUERY(EncodeP)
 758   DEFINE_CLASS_QUERY(EncodePKlass)
 759   DEFINE_CLASS_QUERY(FastLock)
 760   DEFINE_CLASS_QUERY(FastUnlock)
 761   DEFINE_CLASS_QUERY(If)
 762   DEFINE_CLASS_QUERY(IfFalse)
 763   DEFINE_CLASS_QUERY(IfTrue)
 764   DEFINE_CLASS_QUERY(Initialize)
 765   DEFINE_CLASS_QUERY(Jump)
 766   DEFINE_CLASS_QUERY(JumpProj)
 767   DEFINE_CLASS_QUERY(Load)
 768   DEFINE_CLASS_QUERY(LoadStore)
 769   DEFINE_CLASS_QUERY(Lock)
 770   DEFINE_CLASS_QUERY(Loop)
 771   DEFINE_CLASS_QUERY(Mach)
 772   DEFINE_CLASS_QUERY(MachBranch)
 773   DEFINE_CLASS_QUERY(MachCall)
 774   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 775   DEFINE_CLASS_QUERY(MachCallJava)
 776   DEFINE_CLASS_QUERY(MachCallLeaf)
 777   DEFINE_CLASS_QUERY(MachCallRuntime)
 778   DEFINE_CLASS_QUERY(MachCallStaticJava)
 779   DEFINE_CLASS_QUERY(MachConstantBase)
 780   DEFINE_CLASS_QUERY(MachConstant)
 781   DEFINE_CLASS_QUERY(MachGoto)
 782   DEFINE_CLASS_QUERY(MachIf)
 783   DEFINE_CLASS_QUERY(MachNullCheck)
 784   DEFINE_CLASS_QUERY(MachProj)
 785   DEFINE_CLASS_QUERY(MachReturn)
 786   DEFINE_CLASS_QUERY(MachSafePoint)
 787   DEFINE_CLASS_QUERY(MachSpillCopy)
 788   DEFINE_CLASS_QUERY(MachTemp)
 789   DEFINE_CLASS_QUERY(MachMerge)
 790   DEFINE_CLASS_QUERY(Mem)
 791   DEFINE_CLASS_QUERY(MemBar)
 792   DEFINE_CLASS_QUERY(MemBarStoreStore)
 793   DEFINE_CLASS_QUERY(MergeMem)
 794   DEFINE_CLASS_QUERY(Mul)
 795   DEFINE_CLASS_QUERY(Multi)
 796   DEFINE_CLASS_QUERY(MultiBranch)
 797   DEFINE_CLASS_QUERY(Parm)
 798   DEFINE_CLASS_QUERY(PCTable)
 799   DEFINE_CLASS_QUERY(Phi)
 800   DEFINE_CLASS_QUERY(Proj)
 801   DEFINE_CLASS_QUERY(Region)
 802   DEFINE_CLASS_QUERY(Root)
 803   DEFINE_CLASS_QUERY(SafePoint)
 804   DEFINE_CLASS_QUERY(SafePointScalarObject)
 805   DEFINE_CLASS_QUERY(ShenandoahBarrier)
 806   DEFINE_CLASS_QUERY(Start)
 807   DEFINE_CLASS_QUERY(Store)
 808   DEFINE_CLASS_QUERY(Sub)
 809   DEFINE_CLASS_QUERY(Type)
 810   DEFINE_CLASS_QUERY(Vector)
 811   DEFINE_CLASS_QUERY(LoadVector)
 812   DEFINE_CLASS_QUERY(StoreVector)
 813   DEFINE_CLASS_QUERY(Unlock)
 814 
 815   #undef DEFINE_CLASS_QUERY
 816 
 817   // duplicate of is_MachSpillCopy()
 818   bool is_SpillCopy () const {
 819     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 820   }
 821 
 822   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 823   // The data node which is safe to leave in dead loop during IGVN optimization.
 824   bool is_dead_loop_safe() const {
 825     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 826            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 827             (!is_Proj() || !in(0)->is_Allocate()));
 828   }
 829 
 830   // is_Copy() returns copied edge index (0 or 1)
 831   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 832 
 833   virtual bool is_CFG() const { return false; }
 834 
 835   // If this node is control-dependent on a test, can it be
 836   // rerouted to a dominating equivalent test?  This is usually
 837   // true of non-CFG nodes, but can be false for operations which
 838   // depend for their correct sequencing on more than one test.
 839   // (In that case, hoisting to a dominating test may silently
 840   // skip some other important test.)
 841   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 842 
 843   // When building basic blocks, I need to have a notion of block beginning
 844   // Nodes, next block selector Nodes (block enders), and next block
 845   // projections.  These calls need to work on their machine equivalents.  The
 846   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 847   bool is_block_start() const {
 848     if ( is_Region() )
 849       return this == (const Node*)in(0);
 850     else
 851       return is_Start();
 852   }
 853 
 854   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 855   // Goto and Return.  This call also returns the block ending Node.
 856   virtual const Node *is_block_proj() const;
 857 
 858   // The node is a "macro" node which needs to be expanded before matching
 859   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 860   // The node is expensive: the best control is set during loop opts
 861   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 862 
 863   // An arithmetic node which accumulates a data in a loop.
 864   // It must have the loop's phi as input and provide a def to the phi.
 865   bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
 866 
 867 //----------------- Optimization
 868 
 869   // Get the worst-case Type output for this Node.
 870   virtual const class Type *bottom_type() const;
 871 
 872   // If we find a better type for a node, try to record it permanently.
 873   // Return true if this node actually changed.
 874   // Be sure to do the hash_delete game in the "rehash" variant.
 875   void raise_bottom_type(const Type* new_type);
 876 
 877   // Get the address type with which this node uses and/or defs memory,
 878   // or NULL if none.  The address type is conservatively wide.
 879   // Returns non-null for calls, membars, loads, stores, etc.
 880   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 881   virtual const class TypePtr *adr_type() const { return NULL; }
 882 
 883   // Return an existing node which computes the same function as this node.
 884   // The optimistic combined algorithm requires this to return a Node which
 885   // is a small number of steps away (e.g., one of my inputs).
 886   virtual Node *Identity( PhaseTransform *phase );
 887 
 888   // Return the set of values this Node can take on at runtime.
 889   virtual const Type *Value( PhaseTransform *phase ) const;
 890 
 891   // Return a node which is more "ideal" than the current node.
 892   // The invariants on this call are subtle.  If in doubt, read the
 893   // treatise in node.cpp above the default implemention AND TEST WITH
 894   // +VerifyIterativeGVN!
 895   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 896 
 897   // Some nodes have specific Ideal subgraph transformations only if they are
 898   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 899   // for the transformations to happen.
 900   bool has_special_unique_user() const;
 901 
 902   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 903   Node* find_exact_control(Node* ctrl);
 904 
 905   // Check if 'this' node dominates or equal to 'sub'.
 906   bool dominates(Node* sub, Node_List &nlist);
 907 
 908 protected:
 909   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 910 public:
 911 
 912   // See if there is valid pipeline info
 913   static  const Pipeline *pipeline_class();
 914   virtual const Pipeline *pipeline() const;
 915 
 916   // Compute the latency from the def to this instruction of the ith input node
 917   uint latency(uint i);
 918 
 919   // Hash & compare functions, for pessimistic value numbering
 920 
 921   // If the hash function returns the special sentinel value NO_HASH,
 922   // the node is guaranteed never to compare equal to any other node.
 923   // If we accidentally generate a hash with value NO_HASH the node
 924   // won't go into the table and we'll lose a little optimization.
 925   enum { NO_HASH = 0 };
 926   virtual uint hash() const;
 927   virtual uint cmp( const Node &n ) const;
 928 
 929   // Operation appears to be iteratively computed (such as an induction variable)
 930   // It is possible for this operation to return false for a loop-varying
 931   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 932   bool is_iteratively_computed();
 933 
 934   // Determine if a node is Counted loop induction variable.
 935   // The method is defined in loopnode.cpp.
 936   const Node* is_loop_iv() const;
 937 
 938   // Return a node with opcode "opc" and same inputs as "this" if one can
 939   // be found; Otherwise return NULL;
 940   Node* find_similar(int opc);
 941 
 942   // Return the unique control out if only one. Null if none or more than one.
 943   Node* unique_ctrl_out() const;
 944 
 945   // Set control or add control as precedence edge
 946   void ensure_control_or_add_prec(Node* c);
 947 
 948 //----------------- Code Generation
 949 
 950   // Ideal register class for Matching.  Zero means unmatched instruction
 951   // (these are cloned instead of converted to machine nodes).
 952   virtual uint ideal_reg() const;
 953 
 954   static const uint NotAMachineReg;   // must be > max. machine register
 955 
 956   // Do we Match on this edge index or not?  Generally false for Control
 957   // and true for everything else.  Weird for calls & returns.
 958   virtual uint match_edge(uint idx) const;
 959 
 960   // Register class output is returned in
 961   virtual const RegMask &out_RegMask() const;
 962   // Register class input is expected in
 963   virtual const RegMask &in_RegMask(uint) const;
 964   // Should we clone rather than spill this instruction?
 965   bool rematerialize() const;
 966 
 967   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 968   virtual JVMState* jvms() const;
 969 
 970   // Print as assembly
 971   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 972   // Emit bytes starting at parameter 'ptr'
 973   // Bump 'ptr' by the number of output bytes
 974   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 975   // Size of instruction in bytes
 976   virtual uint size(PhaseRegAlloc *ra_) const;
 977 
 978   // Convenience function to extract an integer constant from a node.
 979   // If it is not an integer constant (either Con, CastII, or Mach),
 980   // return value_if_unknown.
 981   jint find_int_con(jint value_if_unknown) const {
 982     const TypeInt* t = find_int_type();
 983     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 984   }
 985   // Return the constant, knowing it is an integer constant already
 986   jint get_int() const {
 987     const TypeInt* t = find_int_type();
 988     guarantee(t != NULL, "must be con");
 989     return t->get_con();
 990   }
 991   // Here's where the work is done.  Can produce non-constant int types too.
 992   const TypeInt* find_int_type() const;
 993 
 994   // Same thing for long (and intptr_t, via type.hpp):
 995   jlong get_long() const {
 996     const TypeLong* t = find_long_type();
 997     guarantee(t != NULL, "must be con");
 998     return t->get_con();
 999   }
1000   jlong find_long_con(jint value_if_unknown) const {
1001     const TypeLong* t = find_long_type();
1002     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1003   }
1004   const TypeLong* find_long_type() const;
1005 
1006   const TypePtr* get_ptr_type() const;
1007 
1008   // These guys are called by code generated by ADLC:
1009   intptr_t get_ptr() const;
1010   intptr_t get_narrowcon() const;
1011   jdouble getd() const;
1012   jfloat getf() const;
1013 
1014   // Nodes which are pinned into basic blocks
1015   virtual bool pinned() const { return false; }
1016 
1017   // Nodes which use memory without consuming it, hence need antidependences
1018   // More specifically, needs_anti_dependence_check returns true iff the node
1019   // (a) does a load, and (b) does not perform a store (except perhaps to a
1020   // stack slot or some other unaliased location).
1021   bool needs_anti_dependence_check() const;
1022 
1023   // Return which operand this instruction may cisc-spill. In other words,
1024   // return operand position that can convert from reg to memory access
1025   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1026   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1027 
1028 //----------------- Graph walking
1029 public:
1030   // Walk and apply member functions recursively.
1031   // Supplied (this) pointer is root.
1032   void walk(NFunc pre, NFunc post, void *env);
1033   static void nop(Node &, void*); // Dummy empty function
1034   static void packregion( Node &n, void* );
1035 private:
1036   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1037 
1038 //----------------- Printing, etc
1039 public:
1040 #ifndef PRODUCT
1041   Node* find(int idx) const;         // Search the graph for the given idx.
1042   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1043   void dump() const { dump("\n"); }  // Print this node.
1044   void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1045   void dump(int depth) const;        // Print this node, recursively to depth d
1046   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1047   void dump_comp() const;            // Print this node in compact representation.
1048   // Print this node in compact representation.
1049   void dump_comp(const char* suffix, outputStream *st = tty) const;
1050   virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1051   virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1052   virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
1053   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1054   // Print compact per-node info
1055   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1056   void dump_related() const;             // Print related nodes (depends on node at hand).
1057   // Print related nodes up to given depths for input and output nodes.
1058   void dump_related(uint d_in, uint d_out) const;
1059   void dump_related_compact() const;     // Print related nodes in compact representation.
1060   // Collect related nodes.
1061   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1062   // Collect nodes starting from this node, explicitly including/excluding control and data links.
1063   void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1064 
1065   // Node collectors, to be used in implementations of Node::rel().
1066   // Collect the entire data input graph. Include control inputs if requested.
1067   void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1068   // Collect the entire control input graph. Include data inputs if requested.
1069   void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1070   // Collect the entire output graph until hitting and including control nodes.
1071   void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1072 
1073   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1074   void verify() const;               // Check Def-Use info for my subgraph
1075   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1076 
1077   // This call defines a class-unique string used to identify class instances
1078   virtual const char *Name() const;
1079 
1080   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1081   // RegMask Print Functions
1082   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1083   void dump_out_regmask() { out_RegMask().dump(); }
1084   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1085   void fast_dump() const {
1086     tty->print("%4d: %-17s", _idx, Name());
1087     for (uint i = 0; i < len(); i++)
1088       if (in(i))
1089         tty->print(" %4d", in(i)->_idx);
1090       else
1091         tty->print(" NULL");
1092     tty->print("\n");
1093   }
1094 #endif
1095 #ifdef ASSERT
1096   void verify_construction();
1097   bool verify_jvms(const JVMState* jvms) const;
1098   int  _debug_idx;                     // Unique value assigned to every node.
1099   int   debug_idx() const              { return _debug_idx; }
1100   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1101 
1102   Node* _debug_orig;                   // Original version of this, if any.
1103   Node*  debug_orig() const            { return _debug_orig; }
1104   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1105 
1106   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1107   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1108   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1109 
1110   static void init_NodeProperty();
1111 
1112   #if OPTO_DU_ITERATOR_ASSERT
1113   const Node* _last_del;               // The last deleted node.
1114   uint        _del_tick;               // Bumped when a deletion happens..
1115   #endif
1116 #endif
1117 };
1118 
1119 
1120 #ifndef PRODUCT
1121 
1122 // Used in debugging code to avoid walking across dead or uninitialized edges.
1123 inline bool NotANode(const Node* n) {
1124   if (n == NULL)                   return true;
1125   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1126   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1127   return false;
1128 }
1129 
1130 #endif
1131 
1132 
1133 //-----------------------------------------------------------------------------
1134 // Iterators over DU info, and associated Node functions.
1135 
1136 #if OPTO_DU_ITERATOR_ASSERT
1137 
1138 // Common code for assertion checking on DU iterators.
1139 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1140 #ifdef ASSERT
1141  protected:
1142   bool         _vdui;               // cached value of VerifyDUIterators
1143   const Node*  _node;               // the node containing the _out array
1144   uint         _outcnt;             // cached node->_outcnt
1145   uint         _del_tick;           // cached node->_del_tick
1146   Node*        _last;               // last value produced by the iterator
1147 
1148   void sample(const Node* node);    // used by c'tor to set up for verifies
1149   void verify(const Node* node, bool at_end_ok = false);
1150   void verify_resync();
1151   void reset(const DUIterator_Common& that);
1152 
1153 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1154   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1155 #else
1156   #define I_VDUI_ONLY(i,x) { }
1157 #endif //ASSERT
1158 };
1159 
1160 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1161 
1162 // Default DU iterator.  Allows appends onto the out array.
1163 // Allows deletion from the out array only at the current point.
1164 // Usage:
1165 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1166 //    Node* y = x->out(i);
1167 //    ...
1168 //  }
1169 // Compiles in product mode to a unsigned integer index, which indexes
1170 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1171 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1172 // before continuing the loop.  You must delete only the last-produced
1173 // edge.  You must delete only a single copy of the last-produced edge,
1174 // or else you must delete all copies at once (the first time the edge
1175 // is produced by the iterator).
1176 class DUIterator : public DUIterator_Common {
1177   friend class Node;
1178 
1179   // This is the index which provides the product-mode behavior.
1180   // Whatever the product-mode version of the system does to the
1181   // DUI index is done to this index.  All other fields in
1182   // this class are used only for assertion checking.
1183   uint         _idx;
1184 
1185   #ifdef ASSERT
1186   uint         _refresh_tick;    // Records the refresh activity.
1187 
1188   void sample(const Node* node); // Initialize _refresh_tick etc.
1189   void verify(const Node* node, bool at_end_ok = false);
1190   void verify_increment();       // Verify an increment operation.
1191   void verify_resync();          // Verify that we can back up over a deletion.
1192   void verify_finish();          // Verify that the loop terminated properly.
1193   void refresh();                // Resample verification info.
1194   void reset(const DUIterator& that);  // Resample after assignment.
1195   #endif
1196 
1197   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1198     { _idx = 0;                         debug_only(sample(node)); }
1199 
1200  public:
1201   // initialize to garbage; clear _vdui to disable asserts
1202   DUIterator()
1203     { /*initialize to garbage*/         debug_only(_vdui = false); }
1204 
1205   void operator++(int dummy_to_specify_postfix_op)
1206     { _idx++;                           VDUI_ONLY(verify_increment()); }
1207 
1208   void operator--()
1209     { VDUI_ONLY(verify_resync());       --_idx; }
1210 
1211   ~DUIterator()
1212     { VDUI_ONLY(verify_finish()); }
1213 
1214   void operator=(const DUIterator& that)
1215     { _idx = that._idx;                 debug_only(reset(that)); }
1216 };
1217 
1218 DUIterator Node::outs() const
1219   { return DUIterator(this, 0); }
1220 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1221   { I_VDUI_ONLY(i, i.refresh());        return i; }
1222 bool Node::has_out(DUIterator& i) const
1223   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1224 Node*    Node::out(DUIterator& i) const
1225   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1226 
1227 
1228 // Faster DU iterator.  Disallows insertions into the out array.
1229 // Allows deletion from the out array only at the current point.
1230 // Usage:
1231 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1232 //    Node* y = x->fast_out(i);
1233 //    ...
1234 //  }
1235 // Compiles in product mode to raw Node** pointer arithmetic, with
1236 // no reloading of pointers from the original node x.  If you delete,
1237 // you must perform "--i; --imax" just before continuing the loop.
1238 // If you delete multiple copies of the same edge, you must decrement
1239 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1240 class DUIterator_Fast : public DUIterator_Common {
1241   friend class Node;
1242   friend class DUIterator_Last;
1243 
1244   // This is the pointer which provides the product-mode behavior.
1245   // Whatever the product-mode version of the system does to the
1246   // DUI pointer is done to this pointer.  All other fields in
1247   // this class are used only for assertion checking.
1248   Node**       _outp;
1249 
1250   #ifdef ASSERT
1251   void verify(const Node* node, bool at_end_ok = false);
1252   void verify_limit();
1253   void verify_resync();
1254   void verify_relimit(uint n);
1255   void reset(const DUIterator_Fast& that);
1256   #endif
1257 
1258   // Note:  offset must be signed, since -1 is sometimes passed
1259   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1260     { _outp = node->_out + offset;      debug_only(sample(node)); }
1261 
1262  public:
1263   // initialize to garbage; clear _vdui to disable asserts
1264   DUIterator_Fast()
1265     { /*initialize to garbage*/         debug_only(_vdui = false); }
1266 
1267   void operator++(int dummy_to_specify_postfix_op)
1268     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1269 
1270   void operator--()
1271     { VDUI_ONLY(verify_resync());       --_outp; }
1272 
1273   void operator-=(uint n)   // applied to the limit only
1274     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1275 
1276   bool operator<(DUIterator_Fast& limit) {
1277     I_VDUI_ONLY(*this, this->verify(_node, true));
1278     I_VDUI_ONLY(limit, limit.verify_limit());
1279     return _outp < limit._outp;
1280   }
1281 
1282   void operator=(const DUIterator_Fast& that)
1283     { _outp = that._outp;               debug_only(reset(that)); }
1284 };
1285 
1286 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1287   // Assign a limit pointer to the reference argument:
1288   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1289   // Return the base pointer:
1290   return DUIterator_Fast(this, 0);
1291 }
1292 Node* Node::fast_out(DUIterator_Fast& i) const {
1293   I_VDUI_ONLY(i, i.verify(this));
1294   return debug_only(i._last=) *i._outp;
1295 }
1296 
1297 
1298 // Faster DU iterator.  Requires each successive edge to be removed.
1299 // Does not allow insertion of any edges.
1300 // Usage:
1301 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1302 //    Node* y = x->last_out(i);
1303 //    ...
1304 //  }
1305 // Compiles in product mode to raw Node** pointer arithmetic, with
1306 // no reloading of pointers from the original node x.
1307 class DUIterator_Last : private DUIterator_Fast {
1308   friend class Node;
1309 
1310   #ifdef ASSERT
1311   void verify(const Node* node, bool at_end_ok = false);
1312   void verify_limit();
1313   void verify_step(uint num_edges);
1314   #endif
1315 
1316   // Note:  offset must be signed, since -1 is sometimes passed
1317   DUIterator_Last(const Node* node, ptrdiff_t offset)
1318     : DUIterator_Fast(node, offset) { }
1319 
1320   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1321   void operator<(int)                              {} // do not use
1322 
1323  public:
1324   DUIterator_Last() { }
1325   // initialize to garbage
1326 
1327   void operator--()
1328     { _outp--;              VDUI_ONLY(verify_step(1));  }
1329 
1330   void operator-=(uint n)
1331     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1332 
1333   bool operator>=(DUIterator_Last& limit) {
1334     I_VDUI_ONLY(*this, this->verify(_node, true));
1335     I_VDUI_ONLY(limit, limit.verify_limit());
1336     return _outp >= limit._outp;
1337   }
1338 
1339   void operator=(const DUIterator_Last& that)
1340     { DUIterator_Fast::operator=(that); }
1341 };
1342 
1343 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1344   // Assign a limit pointer to the reference argument:
1345   imin = DUIterator_Last(this, 0);
1346   // Return the initial pointer:
1347   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1348 }
1349 Node* Node::last_out(DUIterator_Last& i) const {
1350   I_VDUI_ONLY(i, i.verify(this));
1351   return debug_only(i._last=) *i._outp;
1352 }
1353 
1354 #endif //OPTO_DU_ITERATOR_ASSERT
1355 
1356 #undef I_VDUI_ONLY
1357 #undef VDUI_ONLY
1358 
1359 // An Iterator that truly follows the iterator pattern.  Doesn't
1360 // support deletion but could be made to.
1361 //
1362 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1363 //     Node* m = i.get();
1364 //
1365 class SimpleDUIterator : public StackObj {
1366  private:
1367   Node* node;
1368   DUIterator_Fast i;
1369   DUIterator_Fast imax;
1370  public:
1371   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1372   bool has_next() { return i < imax; }
1373   void next() { i++; }
1374   Node* get() { return node->fast_out(i); }
1375 };
1376 
1377 
1378 //-----------------------------------------------------------------------------
1379 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1380 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1381 // Note that the constructor just zeros things, and since I use Arena
1382 // allocation I do not need a destructor to reclaim storage.
1383 class Node_Array : public ResourceObj {
1384   friend class VMStructs;
1385 protected:
1386   Arena *_a;                    // Arena to allocate in
1387   uint   _max;
1388   Node **_nodes;
1389   void   grow( uint i );        // Grow array node to fit
1390 public:
1391   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1392     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1393     for( int i = 0; i < OptoNodeListSize; i++ ) {
1394       _nodes[i] = NULL;
1395     }
1396   }
1397 
1398   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1399   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1400   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1401   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1402   Node **adr() { return _nodes; }
1403   // Extend the mapping: index i maps to Node *n.
1404   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1405   void insert( uint i, Node *n );
1406   void remove( uint i );        // Remove, preserving order
1407   void sort( C_sort_func_t func);
1408   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1409   void clear();                 // Set all entries to NULL, keep storage
1410   uint Size() const { return _max; }
1411   void dump() const;
1412 };
1413 
1414 class Node_List : public Node_Array {
1415   friend class VMStructs;
1416   uint _cnt;
1417 public:
1418   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1419   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1420   bool contains(const Node* n) const {
1421     for (uint e = 0; e < size(); e++) {
1422       if (at(e) == n) return true;
1423     }
1424     return false;
1425   }
1426   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1427   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1428   void push( Node *b ) { map(_cnt++,b); }
1429   void yank( Node *n );         // Find and remove
1430   Node *pop() { return _nodes[--_cnt]; }
1431   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1432   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1433   uint size() const { return _cnt; }
1434   void dump() const;
1435 };
1436 
1437 //------------------------------Unique_Node_List-------------------------------
1438 class Unique_Node_List : public Node_List {
1439   friend class VMStructs;
1440   VectorSet _in_worklist;
1441   uint _clock_index;            // Index in list where to pop from next
1442 public:
1443   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1444   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1445 
1446   void remove( Node *n );
1447   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1448   VectorSet &member_set(){ return _in_worklist; }
1449 
1450   void push( Node *b ) {
1451     if( !_in_worklist.test_set(b->_idx) )
1452       Node_List::push(b);
1453   }
1454   Node *pop() {
1455     if( _clock_index >= size() ) _clock_index = 0;
1456     Node *b = at(_clock_index);
1457     map( _clock_index, Node_List::pop());
1458     if (size() != 0) _clock_index++; // Always start from 0
1459     _in_worklist >>= b->_idx;
1460     return b;
1461   }
1462   Node *remove( uint i ) {
1463     Node *b = Node_List::at(i);
1464     _in_worklist >>= b->_idx;
1465     map(i,Node_List::pop());
1466     return b;
1467   }
1468   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1469   void  clear() {
1470     _in_worklist.Clear();        // Discards storage but grows automatically
1471     Node_List::clear();
1472     _clock_index = 0;
1473   }
1474 
1475   // Used after parsing to remove useless nodes before Iterative GVN
1476   void remove_useless_nodes(VectorSet &useful);
1477 
1478 #ifndef PRODUCT
1479   void print_set() const { _in_worklist.print(); }
1480 #endif
1481 };
1482 
1483 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1484 inline void Compile::record_for_igvn(Node* n) {
1485   _for_igvn->push(n);
1486 }
1487 
1488 //------------------------------Node_Stack-------------------------------------
1489 class Node_Stack {
1490   friend class VMStructs;
1491 protected:
1492   struct INode {
1493     Node *node; // Processed node
1494     uint  indx; // Index of next node's child
1495   };
1496   INode *_inode_top; // tos, stack grows up
1497   INode *_inode_max; // End of _inodes == _inodes + _max
1498   INode *_inodes;    // Array storage for the stack
1499   Arena *_a;         // Arena to allocate in
1500   void grow();
1501 public:
1502   Node_Stack(int size) {
1503     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1504     _a = Thread::current()->resource_area();
1505     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1506     _inode_max = _inodes + max;
1507     _inode_top = _inodes - 1; // stack is empty
1508   }
1509 
1510   Node_Stack(Arena *a, int size) : _a(a) {
1511     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1512     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1513     _inode_max = _inodes + max;
1514     _inode_top = _inodes - 1; // stack is empty
1515   }
1516 
1517   void pop() {
1518     assert(_inode_top >= _inodes, "node stack underflow");
1519     --_inode_top;
1520   }
1521   void push(Node *n, uint i) {
1522     ++_inode_top;
1523     if (_inode_top >= _inode_max) grow();
1524     INode *top = _inode_top; // optimization
1525     top->node = n;
1526     top->indx = i;
1527   }
1528   Node *node() const {
1529     return _inode_top->node;
1530   }
1531   Node* node_at(uint i) const {
1532     assert(_inodes + i <= _inode_top, "in range");
1533     return _inodes[i].node;
1534   }
1535   uint index() const {
1536     return _inode_top->indx;
1537   }
1538   uint index_at(uint i) const {
1539     assert(_inodes + i <= _inode_top, "in range");
1540     return _inodes[i].indx;
1541   }
1542   void set_node(Node *n) {
1543     _inode_top->node = n;
1544   }
1545   void set_index(uint i) {
1546     _inode_top->indx = i;
1547   }
1548   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1549   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1550   bool is_nonempty() const { return (_inode_top >= _inodes); }
1551   bool is_empty() const { return (_inode_top < _inodes); }
1552   void clear() { _inode_top = _inodes - 1; } // retain storage
1553 
1554   // Node_Stack is used to map nodes.
1555   Node* find(uint idx) const;
1556 };
1557 
1558 
1559 //-----------------------------Node_Notes--------------------------------------
1560 // Debugging or profiling annotations loosely and sparsely associated
1561 // with some nodes.  See Compile::node_notes_at for the accessor.
1562 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1563   friend class VMStructs;
1564   JVMState* _jvms;
1565 
1566 public:
1567   Node_Notes(JVMState* jvms = NULL) {
1568     _jvms = jvms;
1569   }
1570 
1571   JVMState* jvms()            { return _jvms; }
1572   void  set_jvms(JVMState* x) {        _jvms = x; }
1573 
1574   // True if there is nothing here.
1575   bool is_clear() {
1576     return (_jvms == NULL);
1577   }
1578 
1579   // Make there be nothing here.
1580   void clear() {
1581     _jvms = NULL;
1582   }
1583 
1584   // Make a new, clean node notes.
1585   static Node_Notes* make(Compile* C) {
1586     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1587     nn->clear();
1588     return nn;
1589   }
1590 
1591   Node_Notes* clone(Compile* C) {
1592     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1593     (*nn) = (*this);
1594     return nn;
1595   }
1596 
1597   // Absorb any information from source.
1598   bool update_from(Node_Notes* source) {
1599     bool changed = false;
1600     if (source != NULL) {
1601       if (source->jvms() != NULL) {
1602         set_jvms(source->jvms());
1603         changed = true;
1604       }
1605     }
1606     return changed;
1607   }
1608 };
1609 
1610 // Inlined accessors for Compile::node_nodes that require the preceding class:
1611 inline Node_Notes*
1612 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1613                            int idx, bool can_grow) {
1614   assert(idx >= 0, "oob");
1615   int block_idx = (idx >> _log2_node_notes_block_size);
1616   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1617   if (grow_by >= 0) {
1618     if (!can_grow)  return NULL;
1619     grow_node_notes(arr, grow_by + 1);
1620   }
1621   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1622   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1623 }
1624 
1625 inline bool
1626 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1627   if (value == NULL || value->is_clear())
1628     return false;  // nothing to write => write nothing
1629   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1630   assert(loc != NULL, "");
1631   return loc->update_from(value);
1632 }
1633 
1634 
1635 //------------------------------TypeNode---------------------------------------
1636 // Node with a Type constant.
1637 class TypeNode : public Node {
1638 protected:
1639   virtual uint hash() const;    // Check the type
1640   virtual uint cmp( const Node &n ) const;
1641   virtual uint size_of() const; // Size is bigger
1642   const Type* const _type;
1643 public:
1644   void set_type(const Type* t) {
1645     assert(t != NULL, "sanity");
1646     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1647     *(const Type**)&_type = t;   // cast away const-ness
1648     // If this node is in the hash table, make sure it doesn't need a rehash.
1649     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1650   }
1651   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1652   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1653     init_class_id(Class_Type);
1654   }
1655   virtual const Type *Value( PhaseTransform *phase ) const;
1656   virtual const Type *bottom_type() const;
1657   virtual       uint  ideal_reg() const;
1658 #ifndef PRODUCT
1659   virtual void dump_spec(outputStream *st) const;
1660   virtual void dump_compact_spec(outputStream *st) const;
1661 #endif
1662 };
1663 
1664 #endif // SHARE_VM_OPTO_NODE_HPP