1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  38 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc/g1/heapRegion.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/collectedHeap.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "interpreter/linkResolver.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "opto/ad.hpp"
  50 #include "opto/addnode.hpp"
  51 #include "opto/callnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/graphKit.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/matcher.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/runtime.hpp"
  59 #include "opto/subnode.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/interfaceSupport.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/preserveException.hpp"
  73 
  74 
  75 // For debugging purposes:
  76 //  To force FullGCALot inside a runtime function, add the following two lines
  77 //
  78 //  Universe::release_fullgc_alot_dummy();
  79 //  MarkSweep::invoke(0, "Debugging");
  80 //
  81 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  82 
  83 
  84 
  85 
  86 // Compiled code entry points
  87 address OptoRuntime::_new_instance_Java                           = NULL;
  88 address OptoRuntime::_new_array_Java                              = NULL;
  89 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  90 address OptoRuntime::_multianewarray2_Java                        = NULL;
  91 address OptoRuntime::_multianewarray3_Java                        = NULL;
  92 address OptoRuntime::_multianewarray4_Java                        = NULL;
  93 address OptoRuntime::_multianewarray5_Java                        = NULL;
  94 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  95 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  96 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  97 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  98 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
  99 address OptoRuntime::_monitor_notify_Java                         = NULL;
 100 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 101 address OptoRuntime::_rethrow_Java                                = NULL;
 102 
 103 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 104 address OptoRuntime::_register_finalizer_Java                     = NULL;
 105 
 106 # ifdef ENABLE_ZAP_DEAD_LOCALS
 107 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 108 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 109 # endif
 110 
 111 ExceptionBlob* OptoRuntime::_exception_blob;
 112 
 113 // This should be called in an assertion at the start of OptoRuntime routines
 114 // which are entered from compiled code (all of them)
 115 #ifdef ASSERT
 116 static bool check_compiled_frame(JavaThread* thread) {
 117   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 118   RegisterMap map(thread, false);
 119   frame caller = thread->last_frame().sender(&map);
 120   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 121   return true;
 122 }
 123 #endif // ASSERT
 124 
 125 
 126 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 127   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 128   if (var == NULL) { return false; }
 129 
 130 bool OptoRuntime::generate(ciEnv* env) {
 131 
 132   generate_exception_blob();
 133 
 134   // Note: tls: Means fetching the return oop out of the thread-local storage
 135   //
 136   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 137   // -------------------------------------------------------------------------------------------------------------------------------
 138   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 139   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 140   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 141   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 143   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 144   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 145   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 146   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 147   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 148   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 149   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 150   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 151   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 152 
 153   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 154   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 155 
 156 # ifdef ENABLE_ZAP_DEAD_LOCALS
 157   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 158   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 159 # endif
 160   return true;
 161 }
 162 
 163 #undef gen
 164 
 165 
 166 // Helper method to do generation of RunTimeStub's
 167 address OptoRuntime::generate_stub( ciEnv* env,
 168                                     TypeFunc_generator gen, address C_function,
 169                                     const char *name, int is_fancy_jump,
 170                                     bool pass_tls,
 171                                     bool save_argument_registers,
 172                                     bool return_pc ) {
 173   ResourceMark rm;
 174   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 175   return  C.stub_entry_point();
 176 }
 177 
 178 const char* OptoRuntime::stub_name(address entry) {
 179 #ifndef PRODUCT
 180   CodeBlob* cb = CodeCache::find_blob(entry);
 181   RuntimeStub* rs =(RuntimeStub *)cb;
 182   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 183   return rs->name();
 184 #else
 185   // Fast implementation for product mode (maybe it should be inlined too)
 186   return "runtime stub";
 187 #endif
 188 }
 189 
 190 
 191 //=============================================================================
 192 // Opto compiler runtime routines
 193 //=============================================================================
 194 
 195 
 196 //=============================allocation======================================
 197 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 198 // and try allocation again.
 199 
 200 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 201   // After any safepoint, just before going back to compiled code,
 202   // we inform the GC that we will be doing initializing writes to
 203   // this object in the future without emitting card-marks, so
 204   // GC may take any compensating steps.
 205   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 206 
 207   oop new_obj = thread->vm_result();
 208   if (new_obj == NULL)  return;
 209 
 210   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 211          "compiler must check this first");
 212   // GC may decide to give back a safer copy of new_obj.
 213   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 214   thread->set_vm_result(new_obj);
 215 }
 216 
 217 // object allocation
 218 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 219   JRT_BLOCK;
 220 #ifndef PRODUCT
 221   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 222 #endif
 223   assert(check_compiled_frame(thread), "incorrect caller");
 224 
 225   // These checks are cheap to make and support reflective allocation.
 226   int lh = klass->layout_helper();
 227   if (Klass::layout_helper_needs_slow_path(lh)
 228       || !InstanceKlass::cast(klass)->is_initialized()) {
 229     KlassHandle kh(THREAD, klass);
 230     kh->check_valid_for_instantiation(false, THREAD);
 231     if (!HAS_PENDING_EXCEPTION) {
 232       InstanceKlass::cast(kh())->initialize(THREAD);
 233     }
 234     if (!HAS_PENDING_EXCEPTION) {
 235       klass = kh();
 236     } else {
 237       klass = NULL;
 238     }
 239   }
 240 
 241   if (klass != NULL) {
 242     // Scavenge and allocate an instance.
 243     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 244     thread->set_vm_result(result);
 245 
 246     // Pass oops back through thread local storage.  Our apparent type to Java
 247     // is that we return an oop, but we can block on exit from this routine and
 248     // a GC can trash the oop in C's return register.  The generated stub will
 249     // fetch the oop from TLS after any possible GC.
 250   }
 251 
 252   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 253   JRT_BLOCK_END;
 254 
 255   if (GraphKit::use_ReduceInitialCardMarks()) {
 256     // inform GC that we won't do card marks for initializing writes.
 257     new_store_pre_barrier(thread);
 258   }
 259 JRT_END
 260 
 261 
 262 // array allocation
 263 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 264   JRT_BLOCK;
 265 #ifndef PRODUCT
 266   SharedRuntime::_new_array_ctr++;            // new array requires GC
 267 #endif
 268   assert(check_compiled_frame(thread), "incorrect caller");
 269 
 270   // Scavenge and allocate an instance.
 271   oop result;
 272 
 273   if (array_type->oop_is_typeArray()) {
 274     // The oopFactory likes to work with the element type.
 275     // (We could bypass the oopFactory, since it doesn't add much value.)
 276     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 277     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 278   } else {
 279     // Although the oopFactory likes to work with the elem_type,
 280     // the compiler prefers the array_type, since it must already have
 281     // that latter value in hand for the fast path.
 282     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 283     result = oopFactory::new_objArray(elem_type, len, THREAD);
 284   }
 285 
 286   // Pass oops back through thread local storage.  Our apparent type to Java
 287   // is that we return an oop, but we can block on exit from this routine and
 288   // a GC can trash the oop in C's return register.  The generated stub will
 289   // fetch the oop from TLS after any possible GC.
 290   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 291   thread->set_vm_result(result);
 292   JRT_BLOCK_END;
 293 
 294   if (GraphKit::use_ReduceInitialCardMarks()) {
 295     // inform GC that we won't do card marks for initializing writes.
 296     new_store_pre_barrier(thread);
 297   }
 298 JRT_END
 299 
 300 // array allocation without zeroing
 301 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 302   JRT_BLOCK;
 303 #ifndef PRODUCT
 304   SharedRuntime::_new_array_ctr++;            // new array requires GC
 305 #endif
 306   assert(check_compiled_frame(thread), "incorrect caller");
 307 
 308   // Scavenge and allocate an instance.
 309   oop result;
 310 
 311   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 312   // The oopFactory likes to work with the element type.
 313   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 314   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 315 
 316   // Pass oops back through thread local storage.  Our apparent type to Java
 317   // is that we return an oop, but we can block on exit from this routine and
 318   // a GC can trash the oop in C's return register.  The generated stub will
 319   // fetch the oop from TLS after any possible GC.
 320   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 321   thread->set_vm_result(result);
 322   JRT_BLOCK_END;
 323 
 324   if (GraphKit::use_ReduceInitialCardMarks()) {
 325     // inform GC that we won't do card marks for initializing writes.
 326     new_store_pre_barrier(thread);
 327   }
 328 
 329   oop result = thread->vm_result();
 330   if ((len > 0) && (result != NULL) &&
 331       is_deoptimized_caller_frame(thread)) {
 332     // Zero array here if the caller is deoptimized.
 333     int size = ((typeArrayOop)result)->object_size();
 334     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 335     const size_t hs = arrayOopDesc::header_size(elem_type);
 336     // Align to next 8 bytes to avoid trashing arrays's length.
 337     const size_t aligned_hs = align_object_offset(hs);
 338     HeapWord* obj = (HeapWord*)result;
 339     if (aligned_hs > hs) {
 340       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 341     }
 342     // Optimized zeroing.
 343     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 344   }
 345 
 346 JRT_END
 347 
 348 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 349 
 350 // multianewarray for 2 dimensions
 351 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 352 #ifndef PRODUCT
 353   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 354 #endif
 355   assert(check_compiled_frame(thread), "incorrect caller");
 356   assert(elem_type->is_klass(), "not a class");
 357   jint dims[2];
 358   dims[0] = len1;
 359   dims[1] = len2;
 360   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 361   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 362   thread->set_vm_result(obj);
 363 JRT_END
 364 
 365 // multianewarray for 3 dimensions
 366 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 367 #ifndef PRODUCT
 368   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 369 #endif
 370   assert(check_compiled_frame(thread), "incorrect caller");
 371   assert(elem_type->is_klass(), "not a class");
 372   jint dims[3];
 373   dims[0] = len1;
 374   dims[1] = len2;
 375   dims[2] = len3;
 376   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 377   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 378   thread->set_vm_result(obj);
 379 JRT_END
 380 
 381 // multianewarray for 4 dimensions
 382 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 383 #ifndef PRODUCT
 384   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 385 #endif
 386   assert(check_compiled_frame(thread), "incorrect caller");
 387   assert(elem_type->is_klass(), "not a class");
 388   jint dims[4];
 389   dims[0] = len1;
 390   dims[1] = len2;
 391   dims[2] = len3;
 392   dims[3] = len4;
 393   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 394   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 395   thread->set_vm_result(obj);
 396 JRT_END
 397 
 398 // multianewarray for 5 dimensions
 399 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 400 #ifndef PRODUCT
 401   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 402 #endif
 403   assert(check_compiled_frame(thread), "incorrect caller");
 404   assert(elem_type->is_klass(), "not a class");
 405   jint dims[5];
 406   dims[0] = len1;
 407   dims[1] = len2;
 408   dims[2] = len3;
 409   dims[3] = len4;
 410   dims[4] = len5;
 411   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 412   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 413   thread->set_vm_result(obj);
 414 JRT_END
 415 
 416 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 417   assert(check_compiled_frame(thread), "incorrect caller");
 418   assert(elem_type->is_klass(), "not a class");
 419   assert(oop(dims)->is_typeArray(), "not an array");
 420 
 421   ResourceMark rm;
 422   jint len = dims->length();
 423   assert(len > 0, "Dimensions array should contain data");
 424   jint *j_dims = typeArrayOop(oopDesc::bs()->read_barrier(dims))->int_at_addr(0);
 425   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 426   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 427 
 428   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 429   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 430   thread->set_vm_result(obj);
 431 JRT_END
 432 
 433 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 434 
 435   // Very few notify/notifyAll operations find any threads on the waitset, so
 436   // the dominant fast-path is to simply return.
 437   // Relatedly, it's critical that notify/notifyAll be fast in order to
 438   // reduce lock hold times.
 439   obj = oopDesc::bs()->write_barrier(obj);
 440   if (!SafepointSynchronize::is_synchronizing()) {
 441     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 442       return;
 443     }
 444   }
 445 
 446   // This is the case the fast-path above isn't provisioned to handle.
 447   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 448   // (The fast-path is just a degenerate variant of the slow-path).
 449   // Perform the dreaded state transition and pass control into the slow-path.
 450   JRT_BLOCK;
 451   Handle h_obj(THREAD, obj);
 452   ObjectSynchronizer::notify(h_obj, CHECK);
 453   JRT_BLOCK_END;
 454 JRT_END
 455 
 456 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 457 
 458   obj = oopDesc::bs()->write_barrier(obj);
 459   if (!SafepointSynchronize::is_synchronizing() ) {
 460     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 461       return;
 462     }
 463   }
 464 
 465   // This is the case the fast-path above isn't provisioned to handle.
 466   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 467   // (The fast-path is just a degenerate variant of the slow-path).
 468   // Perform the dreaded state transition and pass control into the slow-path.
 469   JRT_BLOCK;
 470   Handle h_obj(THREAD, obj);
 471   ObjectSynchronizer::notifyall(h_obj, CHECK);
 472   JRT_BLOCK_END;
 473 JRT_END
 474 
 475 const TypeFunc *OptoRuntime::new_instance_Type() {
 476   // create input type (domain)
 477   const Type **fields = TypeTuple::fields(1);
 478   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 479   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 480 
 481   // create result type (range)
 482   fields = TypeTuple::fields(1);
 483   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 484 
 485   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 486 
 487   return TypeFunc::make(domain, range);
 488 }
 489 
 490 
 491 const TypeFunc *OptoRuntime::athrow_Type() {
 492   // create input type (domain)
 493   const Type **fields = TypeTuple::fields(1);
 494   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 495   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 496 
 497   // create result type (range)
 498   fields = TypeTuple::fields(0);
 499 
 500   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 501 
 502   return TypeFunc::make(domain, range);
 503 }
 504 
 505 
 506 const TypeFunc *OptoRuntime::new_array_Type() {
 507   // create input type (domain)
 508   const Type **fields = TypeTuple::fields(2);
 509   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 510   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 511   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 512 
 513   // create result type (range)
 514   fields = TypeTuple::fields(1);
 515   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 516 
 517   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 518 
 519   return TypeFunc::make(domain, range);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 523   // create input type (domain)
 524   const int nargs = ndim + 1;
 525   const Type **fields = TypeTuple::fields(nargs);
 526   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 527   for( int i = 1; i < nargs; i++ )
 528     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 529   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 530 
 531   // create result type (range)
 532   fields = TypeTuple::fields(1);
 533   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 534   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 535 
 536   return TypeFunc::make(domain, range);
 537 }
 538 
 539 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 540   return multianewarray_Type(2);
 541 }
 542 
 543 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 544   return multianewarray_Type(3);
 545 }
 546 
 547 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 548   return multianewarray_Type(4);
 549 }
 550 
 551 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 552   return multianewarray_Type(5);
 553 }
 554 
 555 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 556   // create input type (domain)
 557   const Type **fields = TypeTuple::fields(2);
 558   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 559   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 560   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 561 
 562   // create result type (range)
 563   fields = TypeTuple::fields(1);
 564   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 565   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 566 
 567   return TypeFunc::make(domain, range);
 568 }
 569 
 570 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 571   const Type **fields = TypeTuple::fields(2);
 572   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 573   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 574   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 575 
 576   // create result type (range)
 577   fields = TypeTuple::fields(0);
 578   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 579 
 580   return TypeFunc::make(domain, range);
 581 }
 582 
 583 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 584 
 585   const Type **fields = TypeTuple::fields(2);
 586   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 587   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 589 
 590   // create result type (range)
 591   fields = TypeTuple::fields(0);
 592   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 593 
 594   return TypeFunc::make(domain, range);
 595 }
 596 
 597 const TypeFunc *OptoRuntime::shenandoah_clone_barrier_Type() {
 598   const Type **fields = TypeTuple::fields(1);
 599   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 600   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 601 
 602   // create result type (range)
 603   fields = TypeTuple::fields(0);
 604   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 605 
 606   return TypeFunc::make(domain, range);
 607 }
 608 
 609 const TypeFunc *OptoRuntime::shenandoah_cas_obj_Type() {
 610   const Type **fields = TypeTuple::fields(3);
 611   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Address
 612   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;  // New value
 613   fields[TypeFunc::Parms+2] = TypeInstPtr::BOTTOM;  // Expected value
 614   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 615 
 616   // create result type (range)
 617   fields = TypeTuple::fields(1);
 618   fields[TypeFunc::Parms+0] = TypeInt::BOOL;
 619   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 620 
 621   return TypeFunc::make(domain, range);
 622 }
 623 
 624 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 625   // create input type (domain)
 626   const Type **fields = TypeTuple::fields(1);
 627   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 628   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 629 
 630   // create result type (range)
 631   fields = TypeTuple::fields(0);
 632   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 633 
 634   return TypeFunc::make(domain, range);
 635 }
 636 
 637 # ifdef ENABLE_ZAP_DEAD_LOCALS
 638 // Type used for stub generation for zap_dead_locals.
 639 // No inputs or outputs
 640 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 641   // create input type (domain)
 642   const Type **fields = TypeTuple::fields(0);
 643   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 644 
 645   // create result type (range)
 646   fields = TypeTuple::fields(0);
 647   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 648 
 649   return TypeFunc::make(domain,range);
 650 }
 651 # endif
 652 
 653 
 654 //-----------------------------------------------------------------------------
 655 // Monitor Handling
 656 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 657   // create input type (domain)
 658   const Type **fields = TypeTuple::fields(2);
 659   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 660   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 661   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 662 
 663   // create result type (range)
 664   fields = TypeTuple::fields(0);
 665 
 666   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 667 
 668   return TypeFunc::make(domain,range);
 669 }
 670 
 671 
 672 //-----------------------------------------------------------------------------
 673 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 674   // create input type (domain)
 675   const Type **fields = TypeTuple::fields(3);
 676   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 677   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 678   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 679   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 680 
 681   // create result type (range)
 682   fields = TypeTuple::fields(0);
 683 
 684   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 685 
 686   return TypeFunc::make(domain, range);
 687 }
 688 
 689 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 690   // create input type (domain)
 691   const Type **fields = TypeTuple::fields(1);
 692   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 693   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 694 
 695   // create result type (range)
 696   fields = TypeTuple::fields(0);
 697   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 698   return TypeFunc::make(domain, range);
 699 }
 700 
 701 const TypeFunc* OptoRuntime::flush_windows_Type() {
 702   // create input type (domain)
 703   const Type** fields = TypeTuple::fields(1);
 704   fields[TypeFunc::Parms+0] = NULL; // void
 705   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 706 
 707   // create result type
 708   fields = TypeTuple::fields(1);
 709   fields[TypeFunc::Parms+0] = NULL; // void
 710   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 711 
 712   return TypeFunc::make(domain, range);
 713 }
 714 
 715 const TypeFunc* OptoRuntime::l2f_Type() {
 716   // create input type (domain)
 717   const Type **fields = TypeTuple::fields(2);
 718   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 719   fields[TypeFunc::Parms+1] = Type::HALF;
 720   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 721 
 722   // create result type (range)
 723   fields = TypeTuple::fields(1);
 724   fields[TypeFunc::Parms+0] = Type::FLOAT;
 725   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 726 
 727   return TypeFunc::make(domain, range);
 728 }
 729 
 730 const TypeFunc* OptoRuntime::modf_Type() {
 731   const Type **fields = TypeTuple::fields(2);
 732   fields[TypeFunc::Parms+0] = Type::FLOAT;
 733   fields[TypeFunc::Parms+1] = Type::FLOAT;
 734   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 735 
 736   // create result type (range)
 737   fields = TypeTuple::fields(1);
 738   fields[TypeFunc::Parms+0] = Type::FLOAT;
 739 
 740   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 741 
 742   return TypeFunc::make(domain, range);
 743 }
 744 
 745 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 746   // create input type (domain)
 747   const Type **fields = TypeTuple::fields(2);
 748   // Symbol* name of class to be loaded
 749   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 750   fields[TypeFunc::Parms+1] = Type::HALF;
 751   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 752 
 753   // create result type (range)
 754   fields = TypeTuple::fields(2);
 755   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 756   fields[TypeFunc::Parms+1] = Type::HALF;
 757   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 758 
 759   return TypeFunc::make(domain, range);
 760 }
 761 
 762 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 763   const Type **fields = TypeTuple::fields(4);
 764   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 765   fields[TypeFunc::Parms+1] = Type::HALF;
 766   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 767   fields[TypeFunc::Parms+3] = Type::HALF;
 768   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 769 
 770   // create result type (range)
 771   fields = TypeTuple::fields(2);
 772   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 773   fields[TypeFunc::Parms+1] = Type::HALF;
 774   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 775 
 776   return TypeFunc::make(domain, range);
 777 }
 778 
 779 //-------------- currentTimeMillis, currentTimeNanos, etc
 780 
 781 const TypeFunc* OptoRuntime::void_long_Type() {
 782   // create input type (domain)
 783   const Type **fields = TypeTuple::fields(0);
 784   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 785 
 786   // create result type (range)
 787   fields = TypeTuple::fields(2);
 788   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 789   fields[TypeFunc::Parms+1] = Type::HALF;
 790   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 791 
 792   return TypeFunc::make(domain, range);
 793 }
 794 
 795 // arraycopy stub variations:
 796 enum ArrayCopyType {
 797   ac_fast,                      // void(ptr, ptr, size_t)
 798   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 799   ac_slow,                      // void(ptr, int, ptr, int, int)
 800   ac_generic                    //  int(ptr, int, ptr, int, int)
 801 };
 802 
 803 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 804   // create input type (domain)
 805   int num_args      = (act == ac_fast ? 3 : 5);
 806   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 807   int argcnt = num_args;
 808   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 809   const Type** fields = TypeTuple::fields(argcnt);
 810   int argp = TypeFunc::Parms;
 811   fields[argp++] = TypePtr::NOTNULL;    // src
 812   if (num_size_args == 0) {
 813     fields[argp++] = TypeInt::INT;      // src_pos
 814   }
 815   fields[argp++] = TypePtr::NOTNULL;    // dest
 816   if (num_size_args == 0) {
 817     fields[argp++] = TypeInt::INT;      // dest_pos
 818     fields[argp++] = TypeInt::INT;      // length
 819   }
 820   while (num_size_args-- > 0) {
 821     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 822     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 823   }
 824   if (act == ac_checkcast) {
 825     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 826   }
 827   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 828   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 829 
 830   // create result type if needed
 831   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 832   fields = TypeTuple::fields(1);
 833   if (retcnt == 0)
 834     fields[TypeFunc::Parms+0] = NULL; // void
 835   else
 836     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 837   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 838   return TypeFunc::make(domain, range);
 839 }
 840 
 841 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 842   // This signature is simple:  Two base pointers and a size_t.
 843   return make_arraycopy_Type(ac_fast);
 844 }
 845 
 846 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 847   // An extension of fast_arraycopy_Type which adds type checking.
 848   return make_arraycopy_Type(ac_checkcast);
 849 }
 850 
 851 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 852   // This signature is exactly the same as System.arraycopy.
 853   // There are no intptr_t (int/long) arguments.
 854   return make_arraycopy_Type(ac_slow);
 855 }
 856 
 857 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 858   // This signature is like System.arraycopy, except that it returns status.
 859   return make_arraycopy_Type(ac_generic);
 860 }
 861 
 862 
 863 const TypeFunc* OptoRuntime::array_fill_Type() {
 864   const Type** fields;
 865   int argp = TypeFunc::Parms;
 866   // create input type (domain): pointer, int, size_t
 867   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 868   fields[argp++] = TypePtr::NOTNULL;
 869   fields[argp++] = TypeInt::INT;
 870   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 871   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 872   const TypeTuple *domain = TypeTuple::make(argp, fields);
 873 
 874   // create result type
 875   fields = TypeTuple::fields(1);
 876   fields[TypeFunc::Parms+0] = NULL; // void
 877   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 878 
 879   return TypeFunc::make(domain, range);
 880 }
 881 
 882 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 883 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 884   // create input type (domain)
 885   int num_args      = 3;
 886   if (Matcher::pass_original_key_for_aes()) {
 887     num_args = 4;
 888   }
 889   int argcnt = num_args;
 890   const Type** fields = TypeTuple::fields(argcnt);
 891   int argp = TypeFunc::Parms;
 892   fields[argp++] = TypePtr::NOTNULL;    // src
 893   fields[argp++] = TypePtr::NOTNULL;    // dest
 894   fields[argp++] = TypePtr::NOTNULL;    // k array
 895   if (Matcher::pass_original_key_for_aes()) {
 896     fields[argp++] = TypePtr::NOTNULL;    // original k array
 897   }
 898   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 899   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 900 
 901   // no result type needed
 902   fields = TypeTuple::fields(1);
 903   fields[TypeFunc::Parms+0] = NULL; // void
 904   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 905   return TypeFunc::make(domain, range);
 906 }
 907 
 908 /**
 909  * int updateBytesCRC32(int crc, byte* b, int len)
 910  */
 911 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 912   // create input type (domain)
 913   int num_args      = 3;
 914   int argcnt = num_args;
 915   const Type** fields = TypeTuple::fields(argcnt);
 916   int argp = TypeFunc::Parms;
 917   fields[argp++] = TypeInt::INT;        // crc
 918   fields[argp++] = TypePtr::NOTNULL;    // src
 919   fields[argp++] = TypeInt::INT;        // len
 920   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 921   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 922 
 923   // result type needed
 924   fields = TypeTuple::fields(1);
 925   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 926   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 927   return TypeFunc::make(domain, range);
 928 }
 929 
 930 /**
 931  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 932  */
 933 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 934   // create input type (domain)
 935   int num_args      = 4;
 936   int argcnt = num_args;
 937   const Type** fields = TypeTuple::fields(argcnt);
 938   int argp = TypeFunc::Parms;
 939   fields[argp++] = TypeInt::INT;        // crc
 940   fields[argp++] = TypePtr::NOTNULL;    // buf
 941   fields[argp++] = TypeInt::INT;        // len
 942   fields[argp++] = TypePtr::NOTNULL;    // table
 943   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 944   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 945 
 946   // result type needed
 947   fields = TypeTuple::fields(1);
 948   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 949   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 950   return TypeFunc::make(domain, range);
 951 }
 952 
 953 /**
 954 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 955 */
 956 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 957   // create input type (domain)
 958   int num_args      = 3;
 959   int argcnt = num_args;
 960   const Type** fields = TypeTuple::fields(argcnt);
 961   int argp = TypeFunc::Parms;
 962   fields[argp++] = TypeInt::INT;        // crc
 963   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 964   fields[argp++] = TypeInt::INT;        // len
 965   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 966   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 967 
 968   // result type needed
 969   fields = TypeTuple::fields(1);
 970   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 971   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 972   return TypeFunc::make(domain, range);
 973 }
 974 
 975 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 976 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 977   // create input type (domain)
 978   int num_args      = 5;
 979   if (Matcher::pass_original_key_for_aes()) {
 980     num_args = 6;
 981   }
 982   int argcnt = num_args;
 983   const Type** fields = TypeTuple::fields(argcnt);
 984   int argp = TypeFunc::Parms;
 985   fields[argp++] = TypePtr::NOTNULL;    // src
 986   fields[argp++] = TypePtr::NOTNULL;    // dest
 987   fields[argp++] = TypePtr::NOTNULL;    // k array
 988   fields[argp++] = TypePtr::NOTNULL;    // r array
 989   fields[argp++] = TypeInt::INT;        // src len
 990   if (Matcher::pass_original_key_for_aes()) {
 991     fields[argp++] = TypePtr::NOTNULL;    // original k array
 992   }
 993   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 994   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 995 
 996   // returning cipher len (int)
 997   fields = TypeTuple::fields(1);
 998   fields[TypeFunc::Parms+0] = TypeInt::INT;
 999   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1000   return TypeFunc::make(domain, range);
1001 }
1002 
1003 /*
1004  * void implCompress(byte[] buf, int ofs)
1005  */
1006 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
1007   // create input type (domain)
1008   int num_args = 2;
1009   int argcnt = num_args;
1010   const Type** fields = TypeTuple::fields(argcnt);
1011   int argp = TypeFunc::Parms;
1012   fields[argp++] = TypePtr::NOTNULL; // buf
1013   fields[argp++] = TypePtr::NOTNULL; // state
1014   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1015   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1016 
1017   // no result type needed
1018   fields = TypeTuple::fields(1);
1019   fields[TypeFunc::Parms+0] = NULL; // void
1020   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1021   return TypeFunc::make(domain, range);
1022 }
1023 
1024 /*
1025  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1026  */
1027 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
1028   // create input type (domain)
1029   int num_args = 4;
1030   int argcnt = num_args;
1031   const Type** fields = TypeTuple::fields(argcnt);
1032   int argp = TypeFunc::Parms;
1033   fields[argp++] = TypePtr::NOTNULL; // buf
1034   fields[argp++] = TypePtr::NOTNULL; // state
1035   fields[argp++] = TypeInt::INT;     // ofs
1036   fields[argp++] = TypeInt::INT;     // limit
1037   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1038   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1039 
1040   // returning ofs (int)
1041   fields = TypeTuple::fields(1);
1042   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1043   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1044   return TypeFunc::make(domain, range);
1045 }
1046 
1047 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1048   // create input type (domain)
1049   int num_args      = 6;
1050   int argcnt = num_args;
1051   const Type** fields = TypeTuple::fields(argcnt);
1052   int argp = TypeFunc::Parms;
1053   fields[argp++] = TypePtr::NOTNULL;    // x
1054   fields[argp++] = TypeInt::INT;        // xlen
1055   fields[argp++] = TypePtr::NOTNULL;    // y
1056   fields[argp++] = TypeInt::INT;        // ylen
1057   fields[argp++] = TypePtr::NOTNULL;    // z
1058   fields[argp++] = TypeInt::INT;        // zlen
1059   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1060   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1061 
1062   // no result type needed
1063   fields = TypeTuple::fields(1);
1064   fields[TypeFunc::Parms+0] = NULL;
1065   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1066   return TypeFunc::make(domain, range);
1067 }
1068 
1069 const TypeFunc* OptoRuntime::squareToLen_Type() {
1070   // create input type (domain)
1071   int num_args      = 4;
1072   int argcnt = num_args;
1073   const Type** fields = TypeTuple::fields(argcnt);
1074   int argp = TypeFunc::Parms;
1075   fields[argp++] = TypePtr::NOTNULL;    // x
1076   fields[argp++] = TypeInt::INT;        // len
1077   fields[argp++] = TypePtr::NOTNULL;    // z
1078   fields[argp++] = TypeInt::INT;        // zlen
1079   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1080   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1081 
1082   // no result type needed
1083   fields = TypeTuple::fields(1);
1084   fields[TypeFunc::Parms+0] = NULL;
1085   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1086   return TypeFunc::make(domain, range);
1087 }
1088 
1089 // for mulAdd calls, 2 pointers and 3 ints, returning int
1090 const TypeFunc* OptoRuntime::mulAdd_Type() {
1091   // create input type (domain)
1092   int num_args      = 5;
1093   int argcnt = num_args;
1094   const Type** fields = TypeTuple::fields(argcnt);
1095   int argp = TypeFunc::Parms;
1096   fields[argp++] = TypePtr::NOTNULL;    // out
1097   fields[argp++] = TypePtr::NOTNULL;    // in
1098   fields[argp++] = TypeInt::INT;        // offset
1099   fields[argp++] = TypeInt::INT;        // len
1100   fields[argp++] = TypeInt::INT;        // k
1101   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1102   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1103 
1104   // returning carry (int)
1105   fields = TypeTuple::fields(1);
1106   fields[TypeFunc::Parms+0] = TypeInt::INT;
1107   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1108   return TypeFunc::make(domain, range);
1109 }
1110 
1111 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1112   // create input type (domain)
1113   int num_args      = 7;
1114   int argcnt = num_args;
1115   const Type** fields = TypeTuple::fields(argcnt);
1116   int argp = TypeFunc::Parms;
1117   fields[argp++] = TypePtr::NOTNULL;    // a
1118   fields[argp++] = TypePtr::NOTNULL;    // b
1119   fields[argp++] = TypePtr::NOTNULL;    // n
1120   fields[argp++] = TypeInt::INT;        // len
1121   fields[argp++] = TypeLong::LONG;      // inv
1122   fields[argp++] = Type::HALF;
1123   fields[argp++] = TypePtr::NOTNULL;    // result
1124   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1125   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1126 
1127   // result type needed
1128   fields = TypeTuple::fields(1);
1129   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1130 
1131   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1132   return TypeFunc::make(domain, range);
1133 }
1134 
1135 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1136   // create input type (domain)
1137   int num_args      = 6;
1138   int argcnt = num_args;
1139   const Type** fields = TypeTuple::fields(argcnt);
1140   int argp = TypeFunc::Parms;
1141   fields[argp++] = TypePtr::NOTNULL;    // a
1142   fields[argp++] = TypePtr::NOTNULL;    // n
1143   fields[argp++] = TypeInt::INT;        // len
1144   fields[argp++] = TypeLong::LONG;      // inv
1145   fields[argp++] = Type::HALF;
1146   fields[argp++] = TypePtr::NOTNULL;    // result
1147   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1148   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1149 
1150   // result type needed
1151   fields = TypeTuple::fields(1);
1152   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1153 
1154   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1155   return TypeFunc::make(domain, range);
1156 }
1157 
1158 // GHASH block processing
1159 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1160     int argcnt = 4;
1161 
1162     const Type** fields = TypeTuple::fields(argcnt);
1163     int argp = TypeFunc::Parms;
1164     fields[argp++] = TypePtr::NOTNULL;    // state
1165     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1166     fields[argp++] = TypePtr::NOTNULL;    // data
1167     fields[argp++] = TypeInt::INT;        // blocks
1168     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1169     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1170 
1171     // result type needed
1172     fields = TypeTuple::fields(1);
1173     fields[TypeFunc::Parms+0] = NULL; // void
1174     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1175     return TypeFunc::make(domain, range);
1176 }
1177 
1178 //------------- Interpreter state access for on stack replacement
1179 const TypeFunc* OptoRuntime::osr_end_Type() {
1180   // create input type (domain)
1181   const Type **fields = TypeTuple::fields(1);
1182   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1183   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1184 
1185   // create result type
1186   fields = TypeTuple::fields(1);
1187   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1188   fields[TypeFunc::Parms+0] = NULL; // void
1189   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1190   return TypeFunc::make(domain, range);
1191 }
1192 
1193 //-------------- methodData update helpers
1194 
1195 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1196   // create input type (domain)
1197   const Type **fields = TypeTuple::fields(2);
1198   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1199   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1200   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1201 
1202   // create result type
1203   fields = TypeTuple::fields(1);
1204   fields[TypeFunc::Parms+0] = NULL; // void
1205   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1206   return TypeFunc::make(domain,range);
1207 }
1208 
1209 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1210   if (receiver == NULL) return;
1211   Klass* receiver_klass = receiver->klass();
1212 
1213   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1214   int empty_row = -1;           // free row, if any is encountered
1215 
1216   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1217   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1218     // if (vc->receiver(row) == receiver_klass)
1219     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1220     intptr_t row_recv = *(mdp + receiver_off);
1221     if (row_recv == (intptr_t) receiver_klass) {
1222       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1223       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1224       *(mdp + count_off) += DataLayout::counter_increment;
1225       return;
1226     } else if (row_recv == 0) {
1227       // else if (vc->receiver(row) == NULL)
1228       empty_row = (int) row;
1229     }
1230   }
1231 
1232   if (empty_row != -1) {
1233     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1234     // vc->set_receiver(empty_row, receiver_klass);
1235     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1236     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1237     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1238     *(mdp + count_off) = DataLayout::counter_increment;
1239   } else {
1240     // Receiver did not match any saved receiver and there is no empty row for it.
1241     // Increment total counter to indicate polymorphic case.
1242     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1243     *count_p += DataLayout::counter_increment;
1244   }
1245 JRT_END
1246 
1247 //-------------------------------------------------------------------------------------
1248 // register policy
1249 
1250 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1251   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1252   switch (register_save_policy[reg]) {
1253     case 'C': return false; //SOC
1254     case 'E': return true ; //SOE
1255     case 'N': return false; //NS
1256     case 'A': return false; //AS
1257   }
1258   ShouldNotReachHere();
1259   return false;
1260 }
1261 
1262 //-----------------------------------------------------------------------
1263 // Exceptions
1264 //
1265 
1266 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1267 
1268 // The method is an entry that is always called by a C++ method not
1269 // directly from compiled code. Compiled code will call the C++ method following.
1270 // We can't allow async exception to be installed during  exception processing.
1271 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1272 
1273   // Do not confuse exception_oop with pending_exception. The exception_oop
1274   // is only used to pass arguments into the method. Not for general
1275   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1276   // the runtime stubs checks this on exit.
1277   assert(thread->exception_oop() != NULL, "exception oop is found");
1278   address handler_address = NULL;
1279 
1280   Handle exception(thread, thread->exception_oop());
1281   address pc = thread->exception_pc();
1282 
1283   // Clear out the exception oop and pc since looking up an
1284   // exception handler can cause class loading, which might throw an
1285   // exception and those fields are expected to be clear during
1286   // normal bytecode execution.
1287   thread->clear_exception_oop_and_pc();
1288 
1289   if (TraceExceptions) {
1290     trace_exception(exception(), pc, "");
1291   }
1292 
1293   // for AbortVMOnException flag
1294   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1295 
1296 #ifdef ASSERT
1297   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1298     // should throw an exception here
1299     ShouldNotReachHere();
1300   }
1301 #endif
1302 
1303   // new exception handling: this method is entered only from adapters
1304   // exceptions from compiled java methods are handled in compiled code
1305   // using rethrow node
1306 
1307   nm = CodeCache::find_nmethod(pc);
1308   assert(nm != NULL, "No NMethod found");
1309   if (nm->is_native_method()) {
1310     fatal("Native method should not have path to exception handling");
1311   } else {
1312     // we are switching to old paradigm: search for exception handler in caller_frame
1313     // instead in exception handler of caller_frame.sender()
1314 
1315     if (JvmtiExport::can_post_on_exceptions()) {
1316       // "Full-speed catching" is not necessary here,
1317       // since we're notifying the VM on every catch.
1318       // Force deoptimization and the rest of the lookup
1319       // will be fine.
1320       deoptimize_caller_frame(thread);
1321     }
1322 
1323     // Check the stack guard pages.  If enabled, look for handler in this frame;
1324     // otherwise, forcibly unwind the frame.
1325     //
1326     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1327     bool force_unwind = !thread->reguard_stack();
1328     bool deopting = false;
1329     if (nm->is_deopt_pc(pc)) {
1330       deopting = true;
1331       RegisterMap map(thread, false);
1332       frame deoptee = thread->last_frame().sender(&map);
1333       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1334       // Adjust the pc back to the original throwing pc
1335       pc = deoptee.pc();
1336     }
1337 
1338     // If we are forcing an unwind because of stack overflow then deopt is
1339     // irrelevant since we are throwing the frame away anyway.
1340 
1341     if (deopting && !force_unwind) {
1342       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1343     } else {
1344 
1345       handler_address =
1346         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1347 
1348       if (handler_address == NULL) {
1349         Handle original_exception(thread, exception());
1350         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1351         assert (handler_address != NULL, "must have compiled handler");
1352         // Update the exception cache only when the unwind was not forced
1353         // and there didn't happen another exception during the computation of the
1354         // compiled exception handler.
1355         if (!force_unwind && original_exception() == exception()) {
1356           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1357         }
1358       } else {
1359         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1360       }
1361     }
1362 
1363     thread->set_exception_pc(pc);
1364     thread->set_exception_handler_pc(handler_address);
1365 
1366     // Check if the exception PC is a MethodHandle call site.
1367     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1368   }
1369 
1370   // Restore correct return pc.  Was saved above.
1371   thread->set_exception_oop(exception());
1372   return handler_address;
1373 
1374 JRT_END
1375 
1376 // We are entering here from exception_blob
1377 // If there is a compiled exception handler in this method, we will continue there;
1378 // otherwise we will unwind the stack and continue at the caller of top frame method
1379 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1380 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1381 // we looked up the handler for has been deoptimized in the meantime. If it has been
1382 // we must not use the handler and instead return the deopt blob.
1383 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1384 //
1385 // We are in Java not VM and in debug mode we have a NoHandleMark
1386 //
1387 #ifndef PRODUCT
1388   SharedRuntime::_find_handler_ctr++;          // find exception handler
1389 #endif
1390   debug_only(NoHandleMark __hm;)
1391   nmethod* nm = NULL;
1392   address handler_address = NULL;
1393   {
1394     // Enter the VM
1395 
1396     ResetNoHandleMark rnhm;
1397     handler_address = handle_exception_C_helper(thread, nm);
1398   }
1399 
1400   // Back in java: Use no oops, DON'T safepoint
1401 
1402   // Now check to see if the handler we are returning is in a now
1403   // deoptimized frame
1404 
1405   if (nm != NULL) {
1406     RegisterMap map(thread, false);
1407     frame caller = thread->last_frame().sender(&map);
1408 #ifdef ASSERT
1409     assert(caller.is_compiled_frame(), "must be");
1410 #endif // ASSERT
1411     if (caller.is_deoptimized_frame()) {
1412       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1413     }
1414   }
1415   return handler_address;
1416 }
1417 
1418 //------------------------------rethrow----------------------------------------
1419 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1420 // is either throwing or rethrowing an exception.  The callee-save registers
1421 // have been restored, synchronized objects have been unlocked and the callee
1422 // stack frame has been removed.  The return address was passed in.
1423 // Exception oop is passed as the 1st argument.  This routine is then called
1424 // from the stub.  On exit, we know where to jump in the caller's code.
1425 // After this C code exits, the stub will pop his frame and end in a jump
1426 // (instead of a return).  We enter the caller's default handler.
1427 //
1428 // This must be JRT_LEAF:
1429 //     - caller will not change its state as we cannot block on exit,
1430 //       therefore raw_exception_handler_for_return_address is all it takes
1431 //       to handle deoptimized blobs
1432 //
1433 // However, there needs to be a safepoint check in the middle!  So compiled
1434 // safepoints are completely watertight.
1435 //
1436 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1437 //
1438 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1439 //
1440 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1441 #ifndef PRODUCT
1442   SharedRuntime::_rethrow_ctr++;               // count rethrows
1443 #endif
1444   assert (exception != NULL, "should have thrown a NULLPointerException");
1445 #ifdef ASSERT
1446   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1447     // should throw an exception here
1448     ShouldNotReachHere();
1449   }
1450 #endif
1451 
1452   thread->set_vm_result(exception);
1453   // Frame not compiled (handles deoptimization blob)
1454   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1455 }
1456 
1457 
1458 const TypeFunc *OptoRuntime::rethrow_Type() {
1459   // create input type (domain)
1460   const Type **fields = TypeTuple::fields(1);
1461   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1462   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1463 
1464   // create result type (range)
1465   fields = TypeTuple::fields(1);
1466   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1467   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1468 
1469   return TypeFunc::make(domain, range);
1470 }
1471 
1472 
1473 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1474   // Deoptimize the caller before continuing, as the compiled
1475   // exception handler table may not be valid.
1476   if (!StressCompiledExceptionHandlers && doit) {
1477     deoptimize_caller_frame(thread);
1478   }
1479 }
1480 
1481 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1482   // Called from within the owner thread, so no need for safepoint
1483   RegisterMap reg_map(thread);
1484   frame stub_frame = thread->last_frame();
1485   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1486   frame caller_frame = stub_frame.sender(&reg_map);
1487 
1488   // Deoptimize the caller frame.
1489   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1490 }
1491 
1492 
1493 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1494   // Called from within the owner thread, so no need for safepoint
1495   RegisterMap reg_map(thread);
1496   frame stub_frame = thread->last_frame();
1497   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1498   frame caller_frame = stub_frame.sender(&reg_map);
1499   return caller_frame.is_deoptimized_frame();
1500 }
1501 
1502 
1503 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1504   // create input type (domain)
1505   const Type **fields = TypeTuple::fields(1);
1506   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1507   // // The JavaThread* is passed to each routine as the last argument
1508   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1509   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1510 
1511   // create result type (range)
1512   fields = TypeTuple::fields(0);
1513 
1514   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1515 
1516   return TypeFunc::make(domain,range);
1517 }
1518 
1519 
1520 //-----------------------------------------------------------------------------
1521 // Dtrace support.  entry and exit probes have the same signature
1522 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1523   // create input type (domain)
1524   const Type **fields = TypeTuple::fields(2);
1525   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1526   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1527   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1528 
1529   // create result type (range)
1530   fields = TypeTuple::fields(0);
1531 
1532   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1533 
1534   return TypeFunc::make(domain,range);
1535 }
1536 
1537 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1538   // create input type (domain)
1539   const Type **fields = TypeTuple::fields(2);
1540   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1541   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1542 
1543   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1544 
1545   // create result type (range)
1546   fields = TypeTuple::fields(0);
1547 
1548   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1549 
1550   return TypeFunc::make(domain,range);
1551 }
1552 
1553 
1554 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1555   assert(obj->is_oop(), "must be a valid oop");
1556   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1557   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1558 JRT_END
1559 
1560 //-----------------------------------------------------------------------------
1561 
1562 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1563 
1564 //
1565 // dump the collected NamedCounters.
1566 //
1567 void OptoRuntime::print_named_counters() {
1568   int total_lock_count = 0;
1569   int eliminated_lock_count = 0;
1570 
1571   NamedCounter* c = _named_counters;
1572   while (c) {
1573     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1574       int count = c->count();
1575       if (count > 0) {
1576         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1577         if (Verbose) {
1578           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1579         }
1580         total_lock_count += count;
1581         if (eliminated) {
1582           eliminated_lock_count += count;
1583         }
1584       }
1585     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1586       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1587       if (blc->nonzero()) {
1588         tty->print_cr("%s", c->name());
1589         blc->print_on(tty);
1590       }
1591 #if INCLUDE_RTM_OPT
1592     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1593       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1594       if (rlc->nonzero()) {
1595         tty->print_cr("%s", c->name());
1596         rlc->print_on(tty);
1597       }
1598 #endif
1599     }
1600     c = c->next();
1601   }
1602   if (total_lock_count > 0) {
1603     tty->print_cr("dynamic locks: %d", total_lock_count);
1604     if (eliminated_lock_count) {
1605       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1606                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1607     }
1608   }
1609 }
1610 
1611 //
1612 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1613 //  name which consists of method@line for the inlining tree.
1614 //
1615 
1616 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1617   int max_depth = youngest_jvms->depth();
1618 
1619   // Visit scopes from youngest to oldest.
1620   bool first = true;
1621   stringStream st;
1622   for (int depth = max_depth; depth >= 1; depth--) {
1623     JVMState* jvms = youngest_jvms->of_depth(depth);
1624     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1625     if (!first) {
1626       st.print(" ");
1627     } else {
1628       first = false;
1629     }
1630     int bci = jvms->bci();
1631     if (bci < 0) bci = 0;
1632     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1633     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1634   }
1635   NamedCounter* c;
1636   if (tag == NamedCounter::BiasedLockingCounter) {
1637     c = new BiasedLockingNamedCounter(st.as_string());
1638   } else if (tag == NamedCounter::RTMLockingCounter) {
1639     c = new RTMLockingNamedCounter(st.as_string());
1640   } else {
1641     c = new NamedCounter(st.as_string(), tag);
1642   }
1643 
1644   // atomically add the new counter to the head of the list.  We only
1645   // add counters so this is safe.
1646   NamedCounter* head;
1647   do {
1648     c->set_next(NULL);
1649     head = _named_counters;
1650     c->set_next(head);
1651   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1652   return c;
1653 }
1654 
1655 //-----------------------------------------------------------------------------
1656 // Non-product code
1657 #ifndef PRODUCT
1658 
1659 int trace_exception_counter = 0;
1660 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1661   ttyLocker ttyl;
1662   trace_exception_counter++;
1663   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1664   exception_oop->print_value();
1665   tty->print(" in ");
1666   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1667   if (blob->is_nmethod()) {
1668     nmethod* nm = blob->as_nmethod_or_null();
1669     nm->method()->print_value();
1670   } else if (blob->is_runtime_stub()) {
1671     tty->print("<runtime-stub>");
1672   } else {
1673     tty->print("<unknown>");
1674   }
1675   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1676   tty->print_cr("]");
1677 }
1678 
1679 #endif  // PRODUCT
1680 
1681 
1682 # ifdef ENABLE_ZAP_DEAD_LOCALS
1683 // Called from call sites in compiled code with oop maps (actually safepoints)
1684 // Zaps dead locals in first java frame.
1685 // Is entry because may need to lock to generate oop maps
1686 // Currently, only used for compiler frames, but someday may be used
1687 // for interpreter frames, too.
1688 
1689 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1690 
1691 // avoid pointers to member funcs with these helpers
1692 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1693 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1694 
1695 
1696 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1697                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1698   assert(JavaThread::current() == thread, "is this needed?");
1699 
1700   if ( !ZapDeadCompiledLocals )  return;
1701 
1702   bool skip = false;
1703 
1704        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1705   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1706   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1707     warning("starting zapping after skipping");
1708 
1709        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1710   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1711   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1712     warning("about to zap last zap");
1713 
1714   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1715 
1716   if ( skip )  return;
1717 
1718   // find java frame and zap it
1719 
1720   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1721     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1722       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1723       return;
1724     }
1725   }
1726   warning("no frame found to zap in zap_dead_Java_locals_C");
1727 }
1728 
1729 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1730   zap_dead_java_or_native_locals(thread, is_java_frame);
1731 JRT_END
1732 
1733 // The following does not work because for one thing, the
1734 // thread state is wrong; it expects java, but it is native.
1735 // Also, the invariants in a native stub are different and
1736 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1737 // in there.
1738 // So for now, we do not zap in native stubs.
1739 
1740 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1741   zap_dead_java_or_native_locals(thread, is_native_frame);
1742 JRT_END
1743 
1744 # endif