1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcLocker.inline.hpp"
  35 #include "gc/shared/workgroup.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "interpreter/linkResolver.hpp"
  38 #include "interpreter/oopMapCache.hpp"
  39 #include "jvmtifiles/jvmtiEnv.hpp"
  40 #include "memory/metaspaceShared.hpp"
  41 #include "memory/oopFactory.hpp"
  42 #include "memory/universe.inline.hpp"
  43 #include "oops/instanceKlass.hpp"
  44 #include "oops/objArrayOop.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/symbol.hpp"
  47 #include "oops/verifyOopClosure.hpp"
  48 #include "prims/jvm_misc.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/jvmtiThreadState.hpp"
  51 #include "prims/privilegedStack.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.inline.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/commandLineFlagConstraintList.hpp"
  56 #include "runtime/commandLineFlagRangeList.hpp"
  57 #include "runtime/deoptimization.hpp"
  58 #include "runtime/fprofiler.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/globals.hpp"
  61 #include "runtime/init.hpp"
  62 #include "runtime/interfaceSupport.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/jniPeriodicChecker.hpp"
  66 #include "runtime/memprofiler.hpp"
  67 #include "runtime/mutexLocker.hpp"
  68 #include "runtime/objectMonitor.hpp"
  69 #include "runtime/orderAccess.inline.hpp"
  70 #include "runtime/osThread.hpp"
  71 #include "runtime/safepoint.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/statSampler.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/sweeper.hpp"
  76 #include "runtime/task.hpp"
  77 #include "runtime/thread.inline.hpp"
  78 #include "runtime/threadCritical.hpp"
  79 #include "runtime/threadLocalStorage.hpp"
  80 #include "runtime/vframe.hpp"
  81 #include "runtime/vframeArray.hpp"
  82 #include "runtime/vframe_hp.hpp"
  83 #include "runtime/vmThread.hpp"
  84 #include "runtime/vm_operations.hpp"
  85 #include "runtime/vm_version.hpp"
  86 #include "services/attachListener.hpp"
  87 #include "services/management.hpp"
  88 #include "services/memTracker.hpp"
  89 #include "services/threadService.hpp"
  90 #include "trace/traceMacros.hpp"
  91 #include "trace/tracing.hpp"
  92 #include "utilities/defaultStream.hpp"
  93 #include "utilities/dtrace.hpp"
  94 #include "utilities/events.hpp"
  95 #include "utilities/macros.hpp"
  96 #include "utilities/preserveException.hpp"
  97 #if INCLUDE_ALL_GCS
  98 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
  99 #include "gc/cms/concurrentMarkSweepThread.hpp"
 100 #include "gc/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc/parallel/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #ifdef COMPILER1
 104 #include "c1/c1_Compiler.hpp"
 105 #endif
 106 #ifdef COMPILER2
 107 #include "opto/c2compiler.hpp"
 108 #include "opto/idealGraphPrinter.hpp"
 109 #endif
 110 #if INCLUDE_RTM_OPT
 111 #include "runtime/rtmLocking.hpp"
 112 #endif
 113 
 114 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 115 
 116 #ifdef DTRACE_ENABLED
 117 
 118 // Only bother with this argument setup if dtrace is available
 119 
 120   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 121   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 122 
 123   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 124     {                                                                      \
 125       ResourceMark rm(this);                                               \
 126       int len = 0;                                                         \
 127       const char* name = (javathread)->get_thread_name();                  \
 128       len = strlen(name);                                                  \
 129       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 130         (char *) name, len,                                                \
 131         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 132         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 133         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 134     }
 135 
 136 #else //  ndef DTRACE_ENABLED
 137 
 138   #define DTRACE_THREAD_PROBE(probe, javathread)
 139 
 140 #endif // ndef DTRACE_ENABLED
 141 
 142 
 143 // Class hierarchy
 144 // - Thread
 145 //   - VMThread
 146 //   - WatcherThread
 147 //   - ConcurrentMarkSweepThread
 148 //   - JavaThread
 149 //     - CompilerThread
 150 
 151 // ======= Thread ========
 152 // Support for forcing alignment of thread objects for biased locking
 153 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 154   if (UseBiasedLocking) {
 155     const int alignment = markOopDesc::biased_lock_alignment;
 156     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 157     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 158                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 159                                                          AllocFailStrategy::RETURN_NULL);
 160     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 161     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 162            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 163            "JavaThread alignment code overflowed allocated storage");
 164     if (TraceBiasedLocking) {
 165       if (aligned_addr != real_malloc_addr) {
 166         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 167                       real_malloc_addr, aligned_addr);
 168       }
 169     }
 170     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 171     return aligned_addr;
 172   } else {
 173     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 174                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 175   }
 176 }
 177 
 178 void Thread::operator delete(void* p) {
 179   if (UseBiasedLocking) {
 180     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 181     FreeHeap(real_malloc_addr);
 182   } else {
 183     FreeHeap(p);
 184   }
 185 }
 186 
 187 
 188 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 189 // JavaThread
 190 
 191 
 192 Thread::Thread() {
 193   // stack and get_thread
 194   set_stack_base(NULL);
 195   set_stack_size(0);
 196   set_self_raw_id(0);
 197   set_lgrp_id(-1);
 198   DEBUG_ONLY(clear_suspendible_thread();)
 199 
 200   // allocated data structures
 201   set_osthread(NULL);
 202   set_resource_area(new (mtThread)ResourceArea());
 203   DEBUG_ONLY(_current_resource_mark = NULL;)
 204   set_handle_area(new (mtThread) HandleArea(NULL));
 205   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 206   set_active_handles(NULL);
 207   set_free_handle_block(NULL);
 208   set_last_handle_mark(NULL);
 209 
 210   // This initial value ==> never claimed.
 211   _oops_do_parity = 0;
 212 
 213   // the handle mark links itself to last_handle_mark
 214   new HandleMark(this);
 215 
 216   // plain initialization
 217   debug_only(_owned_locks = NULL;)
 218   debug_only(_allow_allocation_count = 0;)
 219   NOT_PRODUCT(_allow_safepoint_count = 0;)
 220   NOT_PRODUCT(_skip_gcalot = false;)
 221   _jvmti_env_iteration_count = 0;
 222   set_allocated_bytes(0);
 223   _vm_operation_started_count = 0;
 224   _vm_operation_completed_count = 0;
 225   _current_pending_monitor = NULL;
 226   _current_pending_monitor_is_from_java = true;
 227   _current_waiting_monitor = NULL;
 228   _num_nested_signal = 0;
 229   omFreeList = NULL;
 230   omFreeCount = 0;
 231   omFreeProvision = 32;
 232   omInUseList = NULL;
 233   omInUseCount = 0;
 234 
 235 #ifdef ASSERT
 236   _visited_for_critical_count = false;
 237 #endif
 238 
 239   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 240                          Monitor::_safepoint_check_sometimes);
 241   _suspend_flags = 0;
 242 
 243   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 244   _hashStateX = os::random();
 245   _hashStateY = 842502087;
 246   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 247   _hashStateW = 273326509;
 248 
 249   _OnTrap   = 0;
 250   _schedctl = NULL;
 251   _Stalled  = 0;
 252   _TypeTag  = 0x2BAD;
 253 
 254   // Many of the following fields are effectively final - immutable
 255   // Note that nascent threads can't use the Native Monitor-Mutex
 256   // construct until the _MutexEvent is initialized ...
 257   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 258   // we might instead use a stack of ParkEvents that we could provision on-demand.
 259   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 260   // and ::Release()
 261   _ParkEvent   = ParkEvent::Allocate(this);
 262   _SleepEvent  = ParkEvent::Allocate(this);
 263   _MutexEvent  = ParkEvent::Allocate(this);
 264   _MuxEvent    = ParkEvent::Allocate(this);
 265 
 266   _evacuating = false;
 267 
 268 #ifdef CHECK_UNHANDLED_OOPS
 269   if (CheckUnhandledOops) {
 270     _unhandled_oops = new UnhandledOops(this);
 271   }
 272 #endif // CHECK_UNHANDLED_OOPS
 273 #ifdef ASSERT
 274   if (UseBiasedLocking) {
 275     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 276     assert(this == _real_malloc_address ||
 277            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 278            "bug in forced alignment of thread objects");
 279   }
 280 #endif // ASSERT
 281 }
 282 
 283 // Non-inlined version to be used where thread.inline.hpp shouldn't be included.
 284 Thread* Thread::current_noinline() {
 285   return Thread::current();
 286 }
 287 
 288 void Thread::initialize_thread_local_storage() {
 289   // Note: Make sure this method only calls
 290   // non-blocking operations. Otherwise, it might not work
 291   // with the thread-startup/safepoint interaction.
 292 
 293   // During Java thread startup, safepoint code should allow this
 294   // method to complete because it may need to allocate memory to
 295   // store information for the new thread.
 296 
 297   // initialize structure dependent on thread local storage
 298   ThreadLocalStorage::set_thread(this);
 299 }
 300 
 301 void Thread::record_stack_base_and_size() {
 302   set_stack_base(os::current_stack_base());
 303   set_stack_size(os::current_stack_size());
 304   if (is_Java_thread()) {
 305     ((JavaThread*) this)->set_stack_overflow_limit();
 306   }
 307   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 308   // in initialize_thread(). Without the adjustment, stack size is
 309   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 310   // So far, only Solaris has real implementation of initialize_thread().
 311   //
 312   // set up any platform-specific state.
 313   os::initialize_thread(this);
 314 
 315 #if INCLUDE_NMT
 316   // record thread's native stack, stack grows downward
 317   address stack_low_addr = stack_base() - stack_size();
 318   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 319 #endif // INCLUDE_NMT
 320 }
 321 
 322 
 323 Thread::~Thread() {
 324   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 325   ObjectSynchronizer::omFlush(this);
 326 
 327   EVENT_THREAD_DESTRUCT(this);
 328 
 329   // stack_base can be NULL if the thread is never started or exited before
 330   // record_stack_base_and_size called. Although, we would like to ensure
 331   // that all started threads do call record_stack_base_and_size(), there is
 332   // not proper way to enforce that.
 333 #if INCLUDE_NMT
 334   if (_stack_base != NULL) {
 335     address low_stack_addr = stack_base() - stack_size();
 336     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 337 #ifdef ASSERT
 338     set_stack_base(NULL);
 339 #endif
 340   }
 341 #endif // INCLUDE_NMT
 342 
 343   // deallocate data structures
 344   delete resource_area();
 345   // since the handle marks are using the handle area, we have to deallocated the root
 346   // handle mark before deallocating the thread's handle area,
 347   assert(last_handle_mark() != NULL, "check we have an element");
 348   delete last_handle_mark();
 349   assert(last_handle_mark() == NULL, "check we have reached the end");
 350 
 351   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 352   // We NULL out the fields for good hygiene.
 353   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 354   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 355   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 356   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 357 
 358   delete handle_area();
 359   delete metadata_handles();
 360 
 361   // osthread() can be NULL, if creation of thread failed.
 362   if (osthread() != NULL) os::free_thread(osthread());
 363 
 364   delete _SR_lock;
 365 
 366   // clear thread local storage if the Thread is deleting itself
 367   if (this == Thread::current()) {
 368     ThreadLocalStorage::set_thread(NULL);
 369   } else {
 370     // In the case where we're not the current thread, invalidate all the
 371     // caches in case some code tries to get the current thread or the
 372     // thread that was destroyed, and gets stale information.
 373     ThreadLocalStorage::invalidate_all();
 374   }
 375   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 376 }
 377 
 378 // NOTE: dummy function for assertion purpose.
 379 void Thread::run() {
 380   ShouldNotReachHere();
 381 }
 382 
 383 #ifdef ASSERT
 384 // Private method to check for dangling thread pointer
 385 void check_for_dangling_thread_pointer(Thread *thread) {
 386   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 387          "possibility of dangling Thread pointer");
 388 }
 389 #endif
 390 
 391 ThreadPriority Thread::get_priority(const Thread* const thread) {
 392   ThreadPriority priority;
 393   // Can return an error!
 394   (void)os::get_priority(thread, priority);
 395   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 396   return priority;
 397 }
 398 
 399 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 400   debug_only(check_for_dangling_thread_pointer(thread);)
 401   // Can return an error!
 402   (void)os::set_priority(thread, priority);
 403 }
 404 
 405 
 406 void Thread::start(Thread* thread) {
 407   // Start is different from resume in that its safety is guaranteed by context or
 408   // being called from a Java method synchronized on the Thread object.
 409   if (!DisableStartThread) {
 410     if (thread->is_Java_thread()) {
 411       // Initialize the thread state to RUNNABLE before starting this thread.
 412       // Can not set it after the thread started because we do not know the
 413       // exact thread state at that time. It could be in MONITOR_WAIT or
 414       // in SLEEPING or some other state.
 415       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 416                                           java_lang_Thread::RUNNABLE);
 417     }
 418     os::start_thread(thread);
 419   }
 420 }
 421 
 422 // Enqueue a VM_Operation to do the job for us - sometime later
 423 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 424   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 425   VMThread::execute(vm_stop);
 426 }
 427 
 428 
 429 // Check if an external suspend request has completed (or has been
 430 // cancelled). Returns true if the thread is externally suspended and
 431 // false otherwise.
 432 //
 433 // The bits parameter returns information about the code path through
 434 // the routine. Useful for debugging:
 435 //
 436 // set in is_ext_suspend_completed():
 437 // 0x00000001 - routine was entered
 438 // 0x00000010 - routine return false at end
 439 // 0x00000100 - thread exited (return false)
 440 // 0x00000200 - suspend request cancelled (return false)
 441 // 0x00000400 - thread suspended (return true)
 442 // 0x00001000 - thread is in a suspend equivalent state (return true)
 443 // 0x00002000 - thread is native and walkable (return true)
 444 // 0x00004000 - thread is native_trans and walkable (needed retry)
 445 //
 446 // set in wait_for_ext_suspend_completion():
 447 // 0x00010000 - routine was entered
 448 // 0x00020000 - suspend request cancelled before loop (return false)
 449 // 0x00040000 - thread suspended before loop (return true)
 450 // 0x00080000 - suspend request cancelled in loop (return false)
 451 // 0x00100000 - thread suspended in loop (return true)
 452 // 0x00200000 - suspend not completed during retry loop (return false)
 453 
 454 // Helper class for tracing suspend wait debug bits.
 455 //
 456 // 0x00000100 indicates that the target thread exited before it could
 457 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 458 // 0x00080000 each indicate a cancelled suspend request so they don't
 459 // count as wait failures either.
 460 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 461 
 462 class TraceSuspendDebugBits : public StackObj {
 463  private:
 464   JavaThread * jt;
 465   bool         is_wait;
 466   bool         called_by_wait;  // meaningful when !is_wait
 467   uint32_t *   bits;
 468 
 469  public:
 470   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 471                         uint32_t *_bits) {
 472     jt             = _jt;
 473     is_wait        = _is_wait;
 474     called_by_wait = _called_by_wait;
 475     bits           = _bits;
 476   }
 477 
 478   ~TraceSuspendDebugBits() {
 479     if (!is_wait) {
 480 #if 1
 481       // By default, don't trace bits for is_ext_suspend_completed() calls.
 482       // That trace is very chatty.
 483       return;
 484 #else
 485       if (!called_by_wait) {
 486         // If tracing for is_ext_suspend_completed() is enabled, then only
 487         // trace calls to it from wait_for_ext_suspend_completion()
 488         return;
 489       }
 490 #endif
 491     }
 492 
 493     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 494       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 495         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 496         ResourceMark rm;
 497 
 498         tty->print_cr(
 499                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 500                       jt->get_thread_name(), *bits);
 501 
 502         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 503       }
 504     }
 505   }
 506 };
 507 #undef DEBUG_FALSE_BITS
 508 
 509 
 510 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 511                                           uint32_t *bits) {
 512   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 513 
 514   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 515   bool do_trans_retry;           // flag to force the retry
 516 
 517   *bits |= 0x00000001;
 518 
 519   do {
 520     do_trans_retry = false;
 521 
 522     if (is_exiting()) {
 523       // Thread is in the process of exiting. This is always checked
 524       // first to reduce the risk of dereferencing a freed JavaThread.
 525       *bits |= 0x00000100;
 526       return false;
 527     }
 528 
 529     if (!is_external_suspend()) {
 530       // Suspend request is cancelled. This is always checked before
 531       // is_ext_suspended() to reduce the risk of a rogue resume
 532       // confusing the thread that made the suspend request.
 533       *bits |= 0x00000200;
 534       return false;
 535     }
 536 
 537     if (is_ext_suspended()) {
 538       // thread is suspended
 539       *bits |= 0x00000400;
 540       return true;
 541     }
 542 
 543     // Now that we no longer do hard suspends of threads running
 544     // native code, the target thread can be changing thread state
 545     // while we are in this routine:
 546     //
 547     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 548     //
 549     // We save a copy of the thread state as observed at this moment
 550     // and make our decision about suspend completeness based on the
 551     // copy. This closes the race where the thread state is seen as
 552     // _thread_in_native_trans in the if-thread_blocked check, but is
 553     // seen as _thread_blocked in if-thread_in_native_trans check.
 554     JavaThreadState save_state = thread_state();
 555 
 556     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 557       // If the thread's state is _thread_blocked and this blocking
 558       // condition is known to be equivalent to a suspend, then we can
 559       // consider the thread to be externally suspended. This means that
 560       // the code that sets _thread_blocked has been modified to do
 561       // self-suspension if the blocking condition releases. We also
 562       // used to check for CONDVAR_WAIT here, but that is now covered by
 563       // the _thread_blocked with self-suspension check.
 564       //
 565       // Return true since we wouldn't be here unless there was still an
 566       // external suspend request.
 567       *bits |= 0x00001000;
 568       return true;
 569     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 570       // Threads running native code will self-suspend on native==>VM/Java
 571       // transitions. If its stack is walkable (should always be the case
 572       // unless this function is called before the actual java_suspend()
 573       // call), then the wait is done.
 574       *bits |= 0x00002000;
 575       return true;
 576     } else if (!called_by_wait && !did_trans_retry &&
 577                save_state == _thread_in_native_trans &&
 578                frame_anchor()->walkable()) {
 579       // The thread is transitioning from thread_in_native to another
 580       // thread state. check_safepoint_and_suspend_for_native_trans()
 581       // will force the thread to self-suspend. If it hasn't gotten
 582       // there yet we may have caught the thread in-between the native
 583       // code check above and the self-suspend. Lucky us. If we were
 584       // called by wait_for_ext_suspend_completion(), then it
 585       // will be doing the retries so we don't have to.
 586       //
 587       // Since we use the saved thread state in the if-statement above,
 588       // there is a chance that the thread has already transitioned to
 589       // _thread_blocked by the time we get here. In that case, we will
 590       // make a single unnecessary pass through the logic below. This
 591       // doesn't hurt anything since we still do the trans retry.
 592 
 593       *bits |= 0x00004000;
 594 
 595       // Once the thread leaves thread_in_native_trans for another
 596       // thread state, we break out of this retry loop. We shouldn't
 597       // need this flag to prevent us from getting back here, but
 598       // sometimes paranoia is good.
 599       did_trans_retry = true;
 600 
 601       // We wait for the thread to transition to a more usable state.
 602       for (int i = 1; i <= SuspendRetryCount; i++) {
 603         // We used to do an "os::yield_all(i)" call here with the intention
 604         // that yielding would increase on each retry. However, the parameter
 605         // is ignored on Linux which means the yield didn't scale up. Waiting
 606         // on the SR_lock below provides a much more predictable scale up for
 607         // the delay. It also provides a simple/direct point to check for any
 608         // safepoint requests from the VMThread
 609 
 610         // temporarily drops SR_lock while doing wait with safepoint check
 611         // (if we're a JavaThread - the WatcherThread can also call this)
 612         // and increase delay with each retry
 613         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 614 
 615         // check the actual thread state instead of what we saved above
 616         if (thread_state() != _thread_in_native_trans) {
 617           // the thread has transitioned to another thread state so
 618           // try all the checks (except this one) one more time.
 619           do_trans_retry = true;
 620           break;
 621         }
 622       } // end retry loop
 623 
 624 
 625     }
 626   } while (do_trans_retry);
 627 
 628   *bits |= 0x00000010;
 629   return false;
 630 }
 631 
 632 // Wait for an external suspend request to complete (or be cancelled).
 633 // Returns true if the thread is externally suspended and false otherwise.
 634 //
 635 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 636                                                  uint32_t *bits) {
 637   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 638                              false /* !called_by_wait */, bits);
 639 
 640   // local flag copies to minimize SR_lock hold time
 641   bool is_suspended;
 642   bool pending;
 643   uint32_t reset_bits;
 644 
 645   // set a marker so is_ext_suspend_completed() knows we are the caller
 646   *bits |= 0x00010000;
 647 
 648   // We use reset_bits to reinitialize the bits value at the top of
 649   // each retry loop. This allows the caller to make use of any
 650   // unused bits for their own marking purposes.
 651   reset_bits = *bits;
 652 
 653   {
 654     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 655     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 656                                             delay, bits);
 657     pending = is_external_suspend();
 658   }
 659   // must release SR_lock to allow suspension to complete
 660 
 661   if (!pending) {
 662     // A cancelled suspend request is the only false return from
 663     // is_ext_suspend_completed() that keeps us from entering the
 664     // retry loop.
 665     *bits |= 0x00020000;
 666     return false;
 667   }
 668 
 669   if (is_suspended) {
 670     *bits |= 0x00040000;
 671     return true;
 672   }
 673 
 674   for (int i = 1; i <= retries; i++) {
 675     *bits = reset_bits;  // reinit to only track last retry
 676 
 677     // We used to do an "os::yield_all(i)" call here with the intention
 678     // that yielding would increase on each retry. However, the parameter
 679     // is ignored on Linux which means the yield didn't scale up. Waiting
 680     // on the SR_lock below provides a much more predictable scale up for
 681     // the delay. It also provides a simple/direct point to check for any
 682     // safepoint requests from the VMThread
 683 
 684     {
 685       MutexLocker ml(SR_lock());
 686       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 687       // can also call this)  and increase delay with each retry
 688       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 689 
 690       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 691                                               delay, bits);
 692 
 693       // It is possible for the external suspend request to be cancelled
 694       // (by a resume) before the actual suspend operation is completed.
 695       // Refresh our local copy to see if we still need to wait.
 696       pending = is_external_suspend();
 697     }
 698 
 699     if (!pending) {
 700       // A cancelled suspend request is the only false return from
 701       // is_ext_suspend_completed() that keeps us from staying in the
 702       // retry loop.
 703       *bits |= 0x00080000;
 704       return false;
 705     }
 706 
 707     if (is_suspended) {
 708       *bits |= 0x00100000;
 709       return true;
 710     }
 711   } // end retry loop
 712 
 713   // thread did not suspend after all our retries
 714   *bits |= 0x00200000;
 715   return false;
 716 }
 717 
 718 #ifndef PRODUCT
 719 void JavaThread::record_jump(address target, address instr, const char* file,
 720                              int line) {
 721 
 722   // This should not need to be atomic as the only way for simultaneous
 723   // updates is via interrupts. Even then this should be rare or non-existent
 724   // and we don't care that much anyway.
 725 
 726   int index = _jmp_ring_index;
 727   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 728   _jmp_ring[index]._target = (intptr_t) target;
 729   _jmp_ring[index]._instruction = (intptr_t) instr;
 730   _jmp_ring[index]._file = file;
 731   _jmp_ring[index]._line = line;
 732 }
 733 #endif // PRODUCT
 734 
 735 // Called by flat profiler
 736 // Callers have already called wait_for_ext_suspend_completion
 737 // The assertion for that is currently too complex to put here:
 738 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 739   bool gotframe = false;
 740   // self suspension saves needed state.
 741   if (has_last_Java_frame() && _anchor.walkable()) {
 742     *_fr = pd_last_frame();
 743     gotframe = true;
 744   }
 745   return gotframe;
 746 }
 747 
 748 void Thread::interrupt(Thread* thread) {
 749   debug_only(check_for_dangling_thread_pointer(thread);)
 750   os::interrupt(thread);
 751 }
 752 
 753 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 754   debug_only(check_for_dangling_thread_pointer(thread);)
 755   // Note:  If clear_interrupted==false, this simply fetches and
 756   // returns the value of the field osthread()->interrupted().
 757   return os::is_interrupted(thread, clear_interrupted);
 758 }
 759 
 760 
 761 // GC Support
 762 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 763   jint thread_parity = _oops_do_parity;
 764   if (thread_parity != strong_roots_parity) {
 765     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 766     if (res == thread_parity) {
 767       return true;
 768     } else {
 769       guarantee(res == strong_roots_parity, "Or else what?");
 770       return false;
 771     }
 772   }
 773   return false;
 774 }
 775 
 776 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 777   active_handles()->oops_do(f);
 778   // Do oop for ThreadShadow
 779   f->do_oop((oop*)&_pending_exception);
 780   handle_area()->oops_do(f);
 781 }
 782 
 783 void Thread::nmethods_do(CodeBlobClosure* cf) {
 784   // no nmethods in a generic thread...
 785 }
 786 
 787 void Thread::metadata_handles_do(void f(Metadata*)) {
 788   // Only walk the Handles in Thread.
 789   if (metadata_handles() != NULL) {
 790     for (int i = 0; i< metadata_handles()->length(); i++) {
 791       f(metadata_handles()->at(i));
 792     }
 793   }
 794 }
 795 
 796 void Thread::print_on(outputStream* st) const {
 797   // get_priority assumes osthread initialized
 798   if (osthread() != NULL) {
 799     int os_prio;
 800     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 801       st->print("os_prio=%d ", os_prio);
 802     }
 803     st->print("tid=" INTPTR_FORMAT " ", this);
 804     ext().print_on(st);
 805     osthread()->print_on(st);
 806   }
 807   debug_only(if (WizardMode) print_owned_locks_on(st);)
 808 }
 809 
 810 // Thread::print_on_error() is called by fatal error handler. Don't use
 811 // any lock or allocate memory.
 812 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 813   if (is_VM_thread())                 st->print("VMThread");
 814   else if (is_Compiler_thread())      st->print("CompilerThread");
 815   else if (is_Java_thread())          st->print("JavaThread");
 816   else if (is_GC_task_thread())       st->print("GCTaskThread");
 817   else if (is_Watcher_thread())       st->print("WatcherThread");
 818   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 819   else                                st->print("Thread");
 820 
 821   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 822             _stack_base - _stack_size, _stack_base);
 823 
 824   if (osthread()) {
 825     st->print(" [id=%d]", osthread()->thread_id());
 826   }
 827 }
 828 
 829 #ifdef ASSERT
 830 void Thread::print_owned_locks_on(outputStream* st) const {
 831   Monitor *cur = _owned_locks;
 832   if (cur == NULL) {
 833     st->print(" (no locks) ");
 834   } else {
 835     st->print_cr(" Locks owned:");
 836     while (cur) {
 837       cur->print_on(st);
 838       cur = cur->next();
 839     }
 840   }
 841 }
 842 
 843 static int ref_use_count  = 0;
 844 
 845 bool Thread::owns_locks_but_compiled_lock() const {
 846   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 847     if (cur != Compile_lock) return true;
 848   }
 849   return false;
 850 }
 851 
 852 
 853 #endif
 854 
 855 #ifndef PRODUCT
 856 
 857 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 858 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 859 // no threads which allow_vm_block's are held
 860 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 861   // Check if current thread is allowed to block at a safepoint
 862   if (!(_allow_safepoint_count == 0)) {
 863     fatal("Possible safepoint reached by thread that does not allow it");
 864   }
 865   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 866     fatal("LEAF method calling lock?");
 867   }
 868 
 869 #ifdef ASSERT
 870   if (potential_vm_operation && is_Java_thread()
 871       && !Universe::is_bootstrapping()) {
 872     // Make sure we do not hold any locks that the VM thread also uses.
 873     // This could potentially lead to deadlocks
 874     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 875       // Threads_lock is special, since the safepoint synchronization will not start before this is
 876       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 877       // since it is used to transfer control between JavaThreads and the VMThread
 878       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 879       if ((cur->allow_vm_block() &&
 880            cur != Threads_lock &&
 881            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 882            cur != VMOperationRequest_lock &&
 883            cur != VMOperationQueue_lock) ||
 884            cur->rank() == Mutex::special) {
 885         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 886       }
 887     }
 888   }
 889 
 890   if (GCALotAtAllSafepoints) {
 891     // We could enter a safepoint here and thus have a gc
 892     InterfaceSupport::check_gc_alot();
 893   }
 894 #endif
 895 }
 896 #endif
 897 
 898 bool Thread::is_in_stack(address adr) const {
 899   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 900   address end = os::current_stack_pointer();
 901   // Allow non Java threads to call this without stack_base
 902   if (_stack_base == NULL) return true;
 903   if (stack_base() >= adr && adr >= end) return true;
 904 
 905   return false;
 906 }
 907 
 908 
 909 bool Thread::is_in_usable_stack(address adr) const {
 910   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 911   size_t usable_stack_size = _stack_size - stack_guard_size;
 912 
 913   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 914 }
 915 
 916 
 917 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 918 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 919 // used for compilation in the future. If that change is made, the need for these methods
 920 // should be revisited, and they should be removed if possible.
 921 
 922 bool Thread::is_lock_owned(address adr) const {
 923   return on_local_stack(adr);
 924 }
 925 
 926 bool Thread::set_as_starting_thread() {
 927   // NOTE: this must be called inside the main thread.
 928   return os::create_main_thread((JavaThread*)this);
 929 }
 930 
 931 static void initialize_class(Symbol* class_name, TRAPS) {
 932   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 933   InstanceKlass::cast(klass)->initialize(CHECK);
 934 }
 935 
 936 
 937 // Creates the initial ThreadGroup
 938 static Handle create_initial_thread_group(TRAPS) {
 939   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 940   instanceKlassHandle klass (THREAD, k);
 941 
 942   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 943   {
 944     JavaValue result(T_VOID);
 945     JavaCalls::call_special(&result,
 946                             system_instance,
 947                             klass,
 948                             vmSymbols::object_initializer_name(),
 949                             vmSymbols::void_method_signature(),
 950                             CHECK_NH);
 951   }
 952   Universe::set_system_thread_group(system_instance());
 953 
 954   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 955   {
 956     JavaValue result(T_VOID);
 957     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 958     JavaCalls::call_special(&result,
 959                             main_instance,
 960                             klass,
 961                             vmSymbols::object_initializer_name(),
 962                             vmSymbols::threadgroup_string_void_signature(),
 963                             system_instance,
 964                             string,
 965                             CHECK_NH);
 966   }
 967   return main_instance;
 968 }
 969 
 970 // Creates the initial Thread
 971 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 972                                  TRAPS) {
 973   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 974   instanceKlassHandle klass (THREAD, k);
 975   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 976 
 977   java_lang_Thread::set_thread(thread_oop(), thread);
 978   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 979   thread->set_threadObj(thread_oop());
 980 
 981   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 982 
 983   JavaValue result(T_VOID);
 984   JavaCalls::call_special(&result, thread_oop,
 985                           klass,
 986                           vmSymbols::object_initializer_name(),
 987                           vmSymbols::threadgroup_string_void_signature(),
 988                           thread_group,
 989                           string,
 990                           CHECK_NULL);
 991   return thread_oop();
 992 }
 993 
 994 static void call_initializeSystemClass(TRAPS) {
 995   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 996   instanceKlassHandle klass (THREAD, k);
 997 
 998   JavaValue result(T_VOID);
 999   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1000                          vmSymbols::void_method_signature(), CHECK);
1001 }
1002 
1003 char java_runtime_name[128] = "";
1004 char java_runtime_version[128] = "";
1005 
1006 // extract the JRE name from sun.misc.Version.java_runtime_name
1007 static const char* get_java_runtime_name(TRAPS) {
1008   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1009                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1010   fieldDescriptor fd;
1011   bool found = k != NULL &&
1012                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1013                                                         vmSymbols::string_signature(), &fd);
1014   if (found) {
1015     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1016     if (name_oop == NULL) {
1017       return NULL;
1018     }
1019     const char* name = java_lang_String::as_utf8_string(name_oop,
1020                                                         java_runtime_name,
1021                                                         sizeof(java_runtime_name));
1022     return name;
1023   } else {
1024     return NULL;
1025   }
1026 }
1027 
1028 // extract the JRE version from sun.misc.Version.java_runtime_version
1029 static const char* get_java_runtime_version(TRAPS) {
1030   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1031                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1032   fieldDescriptor fd;
1033   bool found = k != NULL &&
1034                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1035                                                         vmSymbols::string_signature(), &fd);
1036   if (found) {
1037     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1038     if (name_oop == NULL) {
1039       return NULL;
1040     }
1041     const char* name = java_lang_String::as_utf8_string(name_oop,
1042                                                         java_runtime_version,
1043                                                         sizeof(java_runtime_version));
1044     return name;
1045   } else {
1046     return NULL;
1047   }
1048 }
1049 
1050 // General purpose hook into Java code, run once when the VM is initialized.
1051 // The Java library method itself may be changed independently from the VM.
1052 static void call_postVMInitHook(TRAPS) {
1053   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1054   instanceKlassHandle klass (THREAD, k);
1055   if (klass.not_null()) {
1056     JavaValue result(T_VOID);
1057     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1058                            vmSymbols::void_method_signature(),
1059                            CHECK);
1060   }
1061 }
1062 
1063 static void reset_vm_info_property(TRAPS) {
1064   // the vm info string
1065   ResourceMark rm(THREAD);
1066   const char *vm_info = VM_Version::vm_info_string();
1067 
1068   // java.lang.System class
1069   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1070   instanceKlassHandle klass (THREAD, k);
1071 
1072   // setProperty arguments
1073   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1074   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1075 
1076   // return value
1077   JavaValue r(T_OBJECT);
1078 
1079   // public static String setProperty(String key, String value);
1080   JavaCalls::call_static(&r,
1081                          klass,
1082                          vmSymbols::setProperty_name(),
1083                          vmSymbols::string_string_string_signature(),
1084                          key_str,
1085                          value_str,
1086                          CHECK);
1087 }
1088 
1089 
1090 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1091                                     bool daemon, TRAPS) {
1092   assert(thread_group.not_null(), "thread group should be specified");
1093   assert(threadObj() == NULL, "should only create Java thread object once");
1094 
1095   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1096   instanceKlassHandle klass (THREAD, k);
1097   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1098 
1099   java_lang_Thread::set_thread(thread_oop(), this);
1100   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1101   set_threadObj(thread_oop());
1102 
1103   JavaValue result(T_VOID);
1104   if (thread_name != NULL) {
1105     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1106     // Thread gets assigned specified name and null target
1107     JavaCalls::call_special(&result,
1108                             thread_oop,
1109                             klass,
1110                             vmSymbols::object_initializer_name(),
1111                             vmSymbols::threadgroup_string_void_signature(),
1112                             thread_group, // Argument 1
1113                             name,         // Argument 2
1114                             THREAD);
1115   } else {
1116     // Thread gets assigned name "Thread-nnn" and null target
1117     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1118     JavaCalls::call_special(&result,
1119                             thread_oop,
1120                             klass,
1121                             vmSymbols::object_initializer_name(),
1122                             vmSymbols::threadgroup_runnable_void_signature(),
1123                             thread_group, // Argument 1
1124                             Handle(),     // Argument 2
1125                             THREAD);
1126   }
1127 
1128 
1129   if (daemon) {
1130     java_lang_Thread::set_daemon(thread_oop());
1131   }
1132 
1133   if (HAS_PENDING_EXCEPTION) {
1134     return;
1135   }
1136 
1137   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1138   Handle threadObj(THREAD, this->threadObj());
1139 
1140   JavaCalls::call_special(&result,
1141                           thread_group,
1142                           group,
1143                           vmSymbols::add_method_name(),
1144                           vmSymbols::thread_void_signature(),
1145                           threadObj,          // Arg 1
1146                           THREAD);
1147 }
1148 
1149 // NamedThread --  non-JavaThread subclasses with multiple
1150 // uniquely named instances should derive from this.
1151 NamedThread::NamedThread() : Thread() {
1152   _name = NULL;
1153   _processed_thread = NULL;
1154 }
1155 
1156 NamedThread::~NamedThread() {
1157   if (_name != NULL) {
1158     FREE_C_HEAP_ARRAY(char, _name);
1159     _name = NULL;
1160   }
1161 }
1162 
1163 void NamedThread::set_name(const char* format, ...) {
1164   guarantee(_name == NULL, "Only get to set name once.");
1165   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1166   guarantee(_name != NULL, "alloc failure");
1167   va_list ap;
1168   va_start(ap, format);
1169   jio_vsnprintf(_name, max_name_len, format, ap);
1170   va_end(ap);
1171 }
1172 
1173 void NamedThread::initialize_named_thread() {
1174   set_native_thread_name(name());
1175 }
1176 
1177 void NamedThread::print_on(outputStream* st) const {
1178   st->print("\"%s\" ", name());
1179   Thread::print_on(st);
1180   st->cr();
1181 }
1182 
1183 
1184 // ======= WatcherThread ========
1185 
1186 // The watcher thread exists to simulate timer interrupts.  It should
1187 // be replaced by an abstraction over whatever native support for
1188 // timer interrupts exists on the platform.
1189 
1190 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1191 bool WatcherThread::_startable = false;
1192 volatile bool  WatcherThread::_should_terminate = false;
1193 
1194 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1195   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1196   if (os::create_thread(this, os::watcher_thread)) {
1197     _watcher_thread = this;
1198 
1199     // Set the watcher thread to the highest OS priority which should not be
1200     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1201     // is created. The only normal thread using this priority is the reference
1202     // handler thread, which runs for very short intervals only.
1203     // If the VMThread's priority is not lower than the WatcherThread profiling
1204     // will be inaccurate.
1205     os::set_priority(this, MaxPriority);
1206     if (!DisableStartThread) {
1207       os::start_thread(this);
1208     }
1209   }
1210 }
1211 
1212 int WatcherThread::sleep() const {
1213   // The WatcherThread does not participate in the safepoint protocol
1214   // for the PeriodicTask_lock because it is not a JavaThread.
1215   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1216 
1217   if (_should_terminate) {
1218     // check for termination before we do any housekeeping or wait
1219     return 0;  // we did not sleep.
1220   }
1221 
1222   // remaining will be zero if there are no tasks,
1223   // causing the WatcherThread to sleep until a task is
1224   // enrolled
1225   int remaining = PeriodicTask::time_to_wait();
1226   int time_slept = 0;
1227 
1228   // we expect this to timeout - we only ever get unparked when
1229   // we should terminate or when a new task has been enrolled
1230   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1231 
1232   jlong time_before_loop = os::javaTimeNanos();
1233 
1234   while (true) {
1235     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1236                                             remaining);
1237     jlong now = os::javaTimeNanos();
1238 
1239     if (remaining == 0) {
1240       // if we didn't have any tasks we could have waited for a long time
1241       // consider the time_slept zero and reset time_before_loop
1242       time_slept = 0;
1243       time_before_loop = now;
1244     } else {
1245       // need to recalculate since we might have new tasks in _tasks
1246       time_slept = (int) ((now - time_before_loop) / 1000000);
1247     }
1248 
1249     // Change to task list or spurious wakeup of some kind
1250     if (timedout || _should_terminate) {
1251       break;
1252     }
1253 
1254     remaining = PeriodicTask::time_to_wait();
1255     if (remaining == 0) {
1256       // Last task was just disenrolled so loop around and wait until
1257       // another task gets enrolled
1258       continue;
1259     }
1260 
1261     remaining -= time_slept;
1262     if (remaining <= 0) {
1263       break;
1264     }
1265   }
1266 
1267   return time_slept;
1268 }
1269 
1270 void WatcherThread::run() {
1271   assert(this == watcher_thread(), "just checking");
1272 
1273   this->record_stack_base_and_size();
1274   this->initialize_thread_local_storage();
1275   this->set_native_thread_name(this->name());
1276   this->set_active_handles(JNIHandleBlock::allocate_block());
1277   while (true) {
1278     assert(watcher_thread() == Thread::current(), "thread consistency check");
1279     assert(watcher_thread() == this, "thread consistency check");
1280 
1281     // Calculate how long it'll be until the next PeriodicTask work
1282     // should be done, and sleep that amount of time.
1283     int time_waited = sleep();
1284 
1285     if (is_error_reported()) {
1286       // A fatal error has happened, the error handler(VMError::report_and_die)
1287       // should abort JVM after creating an error log file. However in some
1288       // rare cases, the error handler itself might deadlock. Here we try to
1289       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1290       //
1291       // This code is in WatcherThread because WatcherThread wakes up
1292       // periodically so the fatal error handler doesn't need to do anything;
1293       // also because the WatcherThread is less likely to crash than other
1294       // threads.
1295 
1296       for (;;) {
1297         if (!ShowMessageBoxOnError
1298             && (OnError == NULL || OnError[0] == '\0')
1299             && Arguments::abort_hook() == NULL) {
1300           os::sleep(this, ErrorLogTimeout * 60 * 1000, false);
1301           fdStream err(defaultStream::output_fd());
1302           err.print_raw_cr("# [ timer expired, abort... ]");
1303           // skip atexit/vm_exit/vm_abort hooks
1304           os::die();
1305         }
1306 
1307         // Wake up 5 seconds later, the fatal handler may reset OnError or
1308         // ShowMessageBoxOnError when it is ready to abort.
1309         os::sleep(this, 5 * 1000, false);
1310       }
1311     }
1312 
1313     if (_should_terminate) {
1314       // check for termination before posting the next tick
1315       break;
1316     }
1317 
1318     PeriodicTask::real_time_tick(time_waited);
1319   }
1320 
1321   // Signal that it is terminated
1322   {
1323     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1324     _watcher_thread = NULL;
1325     Terminator_lock->notify();
1326   }
1327 
1328   // Thread destructor usually does this..
1329   ThreadLocalStorage::set_thread(NULL);
1330 }
1331 
1332 void WatcherThread::start() {
1333   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1334 
1335   if (watcher_thread() == NULL && _startable) {
1336     _should_terminate = false;
1337     // Create the single instance of WatcherThread
1338     new WatcherThread();
1339   }
1340 }
1341 
1342 void WatcherThread::make_startable() {
1343   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1344   _startable = true;
1345 }
1346 
1347 void WatcherThread::stop() {
1348   {
1349     // Follow normal safepoint aware lock enter protocol since the
1350     // WatcherThread is stopped by another JavaThread.
1351     MutexLocker ml(PeriodicTask_lock);
1352     _should_terminate = true;
1353 
1354     WatcherThread* watcher = watcher_thread();
1355     if (watcher != NULL) {
1356       // unpark the WatcherThread so it can see that it should terminate
1357       watcher->unpark();
1358     }
1359   }
1360 
1361   MutexLocker mu(Terminator_lock);
1362 
1363   while (watcher_thread() != NULL) {
1364     // This wait should make safepoint checks, wait without a timeout,
1365     // and wait as a suspend-equivalent condition.
1366     //
1367     // Note: If the FlatProfiler is running, then this thread is waiting
1368     // for the WatcherThread to terminate and the WatcherThread, via the
1369     // FlatProfiler task, is waiting for the external suspend request on
1370     // this thread to complete. wait_for_ext_suspend_completion() will
1371     // eventually timeout, but that takes time. Making this wait a
1372     // suspend-equivalent condition solves that timeout problem.
1373     //
1374     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1375                           Mutex::_as_suspend_equivalent_flag);
1376   }
1377 }
1378 
1379 void WatcherThread::unpark() {
1380   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1381   PeriodicTask_lock->notify();
1382 }
1383 
1384 void WatcherThread::print_on(outputStream* st) const {
1385   st->print("\"%s\" ", name());
1386   Thread::print_on(st);
1387   st->cr();
1388 }
1389 
1390 // ======= JavaThread ========
1391 
1392 // A JavaThread is a normal Java thread
1393 
1394 void JavaThread::initialize() {
1395   // Initialize fields
1396 
1397   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1398   set_claimed_par_id(UINT_MAX);
1399 
1400   set_saved_exception_pc(NULL);
1401   set_threadObj(NULL);
1402   _anchor.clear();
1403   set_entry_point(NULL);
1404   set_jni_functions(jni_functions());
1405   set_callee_target(NULL);
1406   set_vm_result(NULL);
1407   set_vm_result_2(NULL);
1408   set_vframe_array_head(NULL);
1409   set_vframe_array_last(NULL);
1410   set_deferred_locals(NULL);
1411   set_deopt_mark(NULL);
1412   set_deopt_nmethod(NULL);
1413   clear_must_deopt_id();
1414   set_monitor_chunks(NULL);
1415   set_next(NULL);
1416   set_thread_state(_thread_new);
1417   _terminated = _not_terminated;
1418   _privileged_stack_top = NULL;
1419   _array_for_gc = NULL;
1420   _suspend_equivalent = false;
1421   _in_deopt_handler = 0;
1422   _doing_unsafe_access = false;
1423   _stack_guard_state = stack_guard_unused;
1424   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1425   _exception_pc  = 0;
1426   _exception_handler_pc = 0;
1427   _is_method_handle_return = 0;
1428   _jvmti_thread_state= NULL;
1429   _should_post_on_exceptions_flag = JNI_FALSE;
1430   _jvmti_get_loaded_classes_closure = NULL;
1431   _interp_only_mode    = 0;
1432   _special_runtime_exit_condition = _no_async_condition;
1433   _pending_async_exception = NULL;
1434   _thread_stat = NULL;
1435   _thread_stat = new ThreadStatistics();
1436   _blocked_on_compilation = false;
1437   _jni_active_critical = 0;
1438   _pending_jni_exception_check_fn = NULL;
1439   _do_not_unlock_if_synchronized = false;
1440   _cached_monitor_info = NULL;
1441   _parker = Parker::Allocate(this);
1442 
1443 #ifndef PRODUCT
1444   _jmp_ring_index = 0;
1445   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1446     record_jump(NULL, NULL, NULL, 0);
1447   }
1448 #endif // PRODUCT
1449 
1450   set_thread_profiler(NULL);
1451   if (FlatProfiler::is_active()) {
1452     // This is where we would decide to either give each thread it's own profiler
1453     // or use one global one from FlatProfiler,
1454     // or up to some count of the number of profiled threads, etc.
1455     ThreadProfiler* pp = new ThreadProfiler();
1456     pp->engage();
1457     set_thread_profiler(pp);
1458   }
1459 
1460   // Setup safepoint state info for this thread
1461   ThreadSafepointState::create(this);
1462 
1463   debug_only(_java_call_counter = 0);
1464 
1465   // JVMTI PopFrame support
1466   _popframe_condition = popframe_inactive;
1467   _popframe_preserved_args = NULL;
1468   _popframe_preserved_args_size = 0;
1469   _frames_to_pop_failed_realloc = 0;
1470 
1471   pd_initialize();
1472 }
1473 
1474 #if INCLUDE_ALL_GCS
1475 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1476 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1477 bool JavaThread::_evacuation_in_progress_global = false;
1478 #endif // INCLUDE_ALL_GCS
1479 
1480 JavaThread::JavaThread(bool is_attaching_via_jni) :
1481                        Thread()
1482 #if INCLUDE_ALL_GCS
1483                        , _satb_mark_queue(&_satb_mark_queue_set),
1484                        _dirty_card_queue(&_dirty_card_queue_set),
1485                        _evacuation_in_progress(_evacuation_in_progress_global)
1486 #endif // INCLUDE_ALL_GCS
1487 {
1488   initialize();
1489   if (is_attaching_via_jni) {
1490     _jni_attach_state = _attaching_via_jni;
1491   } else {
1492     _jni_attach_state = _not_attaching_via_jni;
1493   }
1494   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1495 }
1496 
1497 bool JavaThread::reguard_stack(address cur_sp) {
1498   if (_stack_guard_state != stack_guard_yellow_disabled) {
1499     return true; // Stack already guarded or guard pages not needed.
1500   }
1501 
1502   if (register_stack_overflow()) {
1503     // For those architectures which have separate register and
1504     // memory stacks, we must check the register stack to see if
1505     // it has overflowed.
1506     return false;
1507   }
1508 
1509   // Java code never executes within the yellow zone: the latter is only
1510   // there to provoke an exception during stack banging.  If java code
1511   // is executing there, either StackShadowPages should be larger, or
1512   // some exception code in c1, c2 or the interpreter isn't unwinding
1513   // when it should.
1514   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1515 
1516   enable_stack_yellow_zone();
1517   return true;
1518 }
1519 
1520 bool JavaThread::reguard_stack(void) {
1521   return reguard_stack(os::current_stack_pointer());
1522 }
1523 
1524 
1525 void JavaThread::block_if_vm_exited() {
1526   if (_terminated == _vm_exited) {
1527     // _vm_exited is set at safepoint, and Threads_lock is never released
1528     // we will block here forever
1529     Threads_lock->lock_without_safepoint_check();
1530     ShouldNotReachHere();
1531   }
1532 }
1533 
1534 
1535 // Remove this ifdef when C1 is ported to the compiler interface.
1536 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1537 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1538 
1539 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1540                        Thread()
1541 #if INCLUDE_ALL_GCS
1542                        , _satb_mark_queue(&_satb_mark_queue_set),
1543                        _dirty_card_queue(&_dirty_card_queue_set),
1544                        _evacuation_in_progress(_evacuation_in_progress_global)
1545 #endif // INCLUDE_ALL_GCS
1546 {
1547   initialize();
1548   _jni_attach_state = _not_attaching_via_jni;
1549   set_entry_point(entry_point);
1550   // Create the native thread itself.
1551   // %note runtime_23
1552   os::ThreadType thr_type = os::java_thread;
1553   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1554                                                      os::java_thread;
1555   os::create_thread(this, thr_type, stack_sz);
1556   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1557   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1558   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1559   // the exception consists of creating the exception object & initializing it, initialization
1560   // will leave the VM via a JavaCall and then all locks must be unlocked).
1561   //
1562   // The thread is still suspended when we reach here. Thread must be explicit started
1563   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1564   // by calling Threads:add. The reason why this is not done here, is because the thread
1565   // object must be fully initialized (take a look at JVM_Start)
1566 }
1567 
1568 JavaThread::~JavaThread() {
1569 
1570   // JSR166 -- return the parker to the free list
1571   Parker::Release(_parker);
1572   _parker = NULL;
1573 
1574   // Free any remaining  previous UnrollBlock
1575   vframeArray* old_array = vframe_array_last();
1576 
1577   if (old_array != NULL) {
1578     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1579     old_array->set_unroll_block(NULL);
1580     delete old_info;
1581     delete old_array;
1582   }
1583 
1584   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1585   if (deferred != NULL) {
1586     // This can only happen if thread is destroyed before deoptimization occurs.
1587     assert(deferred->length() != 0, "empty array!");
1588     do {
1589       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1590       deferred->remove_at(0);
1591       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1592       delete dlv;
1593     } while (deferred->length() != 0);
1594     delete deferred;
1595   }
1596 
1597   // All Java related clean up happens in exit
1598   ThreadSafepointState::destroy(this);
1599   if (_thread_profiler != NULL) delete _thread_profiler;
1600   if (_thread_stat != NULL) delete _thread_stat;
1601 }
1602 
1603 
1604 // The first routine called by a new Java thread
1605 void JavaThread::run() {
1606   // initialize thread-local alloc buffer related fields
1607   this->initialize_tlab();
1608 
1609   // used to test validity of stack trace backs
1610   this->record_base_of_stack_pointer();
1611 
1612   // Record real stack base and size.
1613   this->record_stack_base_and_size();
1614 
1615   // Initialize thread local storage; set before calling MutexLocker
1616   this->initialize_thread_local_storage();
1617 
1618   this->create_stack_guard_pages();
1619 
1620   this->cache_global_variables();
1621 
1622   // Thread is now sufficient initialized to be handled by the safepoint code as being
1623   // in the VM. Change thread state from _thread_new to _thread_in_vm
1624   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1625 
1626   assert(JavaThread::current() == this, "sanity check");
1627   assert(!Thread::current()->owns_locks(), "sanity check");
1628 
1629   DTRACE_THREAD_PROBE(start, this);
1630 
1631   // This operation might block. We call that after all safepoint checks for a new thread has
1632   // been completed.
1633   this->set_active_handles(JNIHandleBlock::allocate_block());
1634 
1635   if (JvmtiExport::should_post_thread_life()) {
1636     JvmtiExport::post_thread_start(this);
1637   }
1638 
1639   EventThreadStart event;
1640   if (event.should_commit()) {
1641     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1642     event.commit();
1643   }
1644 
1645   // We call another function to do the rest so we are sure that the stack addresses used
1646   // from there will be lower than the stack base just computed
1647   thread_main_inner();
1648 
1649   // Note, thread is no longer valid at this point!
1650 }
1651 
1652 
1653 void JavaThread::thread_main_inner() {
1654   assert(JavaThread::current() == this, "sanity check");
1655   assert(this->threadObj() != NULL, "just checking");
1656 
1657   // Execute thread entry point unless this thread has a pending exception
1658   // or has been stopped before starting.
1659   // Note: Due to JVM_StopThread we can have pending exceptions already!
1660   if (!this->has_pending_exception() &&
1661       !java_lang_Thread::is_stillborn(this->threadObj())) {
1662     {
1663       ResourceMark rm(this);
1664       this->set_native_thread_name(this->get_thread_name());
1665     }
1666     HandleMark hm(this);
1667     this->entry_point()(this, this);
1668   }
1669 
1670   DTRACE_THREAD_PROBE(stop, this);
1671 
1672   this->exit(false);
1673   delete this;
1674 }
1675 
1676 
1677 static void ensure_join(JavaThread* thread) {
1678   // We do not need to grap the Threads_lock, since we are operating on ourself.
1679   Handle threadObj(thread, oopDesc::bs()->write_barrier(thread->threadObj()));
1680   assert(threadObj.not_null(), "java thread object must exist");
1681   ObjectLocker lock(threadObj, thread);
1682   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1683   thread->clear_pending_exception();
1684   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1685   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1686   // Clear the native thread instance - this makes isAlive return false and allows the join()
1687   // to complete once we've done the notify_all below
1688   java_lang_Thread::set_thread(threadObj(), NULL);
1689   lock.notify_all(thread);
1690   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1691   thread->clear_pending_exception();
1692 }
1693 
1694 
1695 // For any new cleanup additions, please check to see if they need to be applied to
1696 // cleanup_failed_attach_current_thread as well.
1697 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1698   assert(this == JavaThread::current(), "thread consistency check");
1699 
1700   HandleMark hm(this);
1701   Handle uncaught_exception(this, this->pending_exception());
1702   this->clear_pending_exception();
1703   Handle threadObj(this, this->threadObj());
1704   assert(threadObj.not_null(), "Java thread object should be created");
1705 
1706   if (get_thread_profiler() != NULL) {
1707     get_thread_profiler()->disengage();
1708     ResourceMark rm;
1709     get_thread_profiler()->print(get_thread_name());
1710   }
1711 
1712 
1713   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1714   {
1715     EXCEPTION_MARK;
1716 
1717     CLEAR_PENDING_EXCEPTION;
1718   }
1719   if (!destroy_vm) {
1720     if (uncaught_exception.not_null()) {
1721       EXCEPTION_MARK;
1722       // Call method Thread.dispatchUncaughtException().
1723       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1724       JavaValue result(T_VOID);
1725       JavaCalls::call_virtual(&result,
1726                               threadObj, thread_klass,
1727                               vmSymbols::dispatchUncaughtException_name(),
1728                               vmSymbols::throwable_void_signature(),
1729                               uncaught_exception,
1730                               THREAD);
1731       if (HAS_PENDING_EXCEPTION) {
1732         ResourceMark rm(this);
1733         jio_fprintf(defaultStream::error_stream(),
1734                     "\nException: %s thrown from the UncaughtExceptionHandler"
1735                     " in thread \"%s\"\n",
1736                     pending_exception()->klass()->external_name(),
1737                     get_thread_name());
1738         CLEAR_PENDING_EXCEPTION;
1739       }
1740     }
1741 
1742     // Called before the java thread exit since we want to read info
1743     // from java_lang_Thread object
1744     EventThreadEnd event;
1745     if (event.should_commit()) {
1746       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1747       event.commit();
1748     }
1749 
1750     // Call after last event on thread
1751     EVENT_THREAD_EXIT(this);
1752 
1753     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1754     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1755     // is deprecated anyhow.
1756     if (!is_Compiler_thread()) {
1757       int count = 3;
1758       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1759         EXCEPTION_MARK;
1760         JavaValue result(T_VOID);
1761         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1762         JavaCalls::call_virtual(&result,
1763                                 threadObj, thread_klass,
1764                                 vmSymbols::exit_method_name(),
1765                                 vmSymbols::void_method_signature(),
1766                                 THREAD);
1767         CLEAR_PENDING_EXCEPTION;
1768       }
1769     }
1770     // notify JVMTI
1771     if (JvmtiExport::should_post_thread_life()) {
1772       JvmtiExport::post_thread_end(this);
1773     }
1774 
1775     // We have notified the agents that we are exiting, before we go on,
1776     // we must check for a pending external suspend request and honor it
1777     // in order to not surprise the thread that made the suspend request.
1778     while (true) {
1779       {
1780         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1781         if (!is_external_suspend()) {
1782           set_terminated(_thread_exiting);
1783           ThreadService::current_thread_exiting(this);
1784           break;
1785         }
1786         // Implied else:
1787         // Things get a little tricky here. We have a pending external
1788         // suspend request, but we are holding the SR_lock so we
1789         // can't just self-suspend. So we temporarily drop the lock
1790         // and then self-suspend.
1791       }
1792 
1793       ThreadBlockInVM tbivm(this);
1794       java_suspend_self();
1795 
1796       // We're done with this suspend request, but we have to loop around
1797       // and check again. Eventually we will get SR_lock without a pending
1798       // external suspend request and will be able to mark ourselves as
1799       // exiting.
1800     }
1801     // no more external suspends are allowed at this point
1802   } else {
1803     // before_exit() has already posted JVMTI THREAD_END events
1804   }
1805 
1806   // Notify waiters on thread object. This has to be done after exit() is called
1807   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1808   // group should have the destroyed bit set before waiters are notified).
1809   ensure_join(this);
1810   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1811 
1812   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1813   // held by this thread must be released. The spec does not distinguish
1814   // between JNI-acquired and regular Java monitors. We can only see
1815   // regular Java monitors here if monitor enter-exit matching is broken.
1816   //
1817   // Optionally release any monitors for regular JavaThread exits. This
1818   // is provided as a work around for any bugs in monitor enter-exit
1819   // matching. This can be expensive so it is not enabled by default.
1820   // ObjectMonitor::Knob_ExitRelease is a superset of the
1821   // JNIDetachReleasesMonitors option.
1822   //
1823   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1824   // ObjectSynchronizer::release_monitors_owned_by_thread().
1825   if ((exit_type == jni_detach && JNIDetachReleasesMonitors) ||
1826       ObjectMonitor::Knob_ExitRelease) {
1827     // Sanity check even though JNI DetachCurrentThread() would have
1828     // returned JNI_ERR if there was a Java frame. JavaThread exit
1829     // should be done executing Java code by the time we get here.
1830     assert(!this->has_last_Java_frame(),
1831            "should not have a Java frame when detaching or exiting");
1832     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1833     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1834   }
1835 
1836   // These things needs to be done while we are still a Java Thread. Make sure that thread
1837   // is in a consistent state, in case GC happens
1838   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1839 
1840   if (active_handles() != NULL) {
1841     JNIHandleBlock* block = active_handles();
1842     set_active_handles(NULL);
1843     JNIHandleBlock::release_block(block);
1844   }
1845 
1846   if (free_handle_block() != NULL) {
1847     JNIHandleBlock* block = free_handle_block();
1848     set_free_handle_block(NULL);
1849     JNIHandleBlock::release_block(block);
1850   }
1851 
1852   // These have to be removed while this is still a valid thread.
1853   remove_stack_guard_pages();
1854 
1855   if (UseTLAB) {
1856     tlab().make_parsable(true);  // retire TLAB
1857   }
1858 
1859   if (JvmtiEnv::environments_might_exist()) {
1860     JvmtiExport::cleanup_thread(this);
1861   }
1862 
1863   // We must flush any deferred card marks before removing a thread from
1864   // the list of active threads.
1865   Universe::heap()->flush_deferred_store_barrier(this);
1866   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1867 
1868 #if INCLUDE_ALL_GCS
1869   // We must flush the G1-related buffers before removing a thread
1870   // from the list of active threads. We must do this after any deferred
1871   // card marks have been flushed (above) so that any entries that are
1872   // added to the thread's dirty card queue as a result are not lost.
1873   if (UseG1GC || UseShenandoahGC) {
1874     flush_barrier_queues();
1875   }
1876   if (UseShenandoahGC && UseTLAB) {
1877     gclab().make_parsable(true);
1878   }
1879 #endif // INCLUDE_ALL_GCS
1880 
1881   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1882   Threads::remove(this);
1883 }
1884 
1885 #if INCLUDE_ALL_GCS
1886 // Flush G1-related queues.
1887 void JavaThread::flush_barrier_queues() {
1888   satb_mark_queue().flush();
1889   dirty_card_queue().flush();
1890 }
1891 
1892 void JavaThread::initialize_queues() {
1893   assert(!SafepointSynchronize::is_at_safepoint(),
1894          "we should not be at a safepoint");
1895 
1896   ObjPtrQueue& satb_queue = satb_mark_queue();
1897   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1898   // The SATB queue should have been constructed with its active
1899   // field set to false.
1900   assert(!satb_queue.is_active(), "SATB queue should not be active");
1901   assert(satb_queue.is_empty(), "SATB queue should be empty");
1902   // If we are creating the thread during a marking cycle, we should
1903   // set the active field of the SATB queue to true.
1904   if (satb_queue_set.is_active()) {
1905     satb_queue.set_active(true);
1906   }
1907 
1908   DirtyCardQueue& dirty_queue = dirty_card_queue();
1909   // The dirty card queue should have been constructed with its
1910   // active field set to true.
1911   assert(dirty_queue.is_active(), "dirty card queue should be active");
1912 }
1913 
1914 bool JavaThread::evacuation_in_progress() const {
1915   return _evacuation_in_progress;
1916 }
1917 
1918 void JavaThread::set_evacuation_in_progress(bool in_prog) {
1919   _evacuation_in_progress = in_prog;
1920 }
1921 
1922 void JavaThread::set_evacuation_in_progress_all_threads(bool in_prog) {
1923   _evacuation_in_progress_global = in_prog;
1924   for (JavaThread* t = Threads::first(); t; t = t->next()) {
1925     t->set_evacuation_in_progress(in_prog);
1926   }
1927 }
1928 #endif // INCLUDE_ALL_GCS
1929 
1930 void JavaThread::cleanup_failed_attach_current_thread() {
1931   if (get_thread_profiler() != NULL) {
1932     get_thread_profiler()->disengage();
1933     ResourceMark rm;
1934     get_thread_profiler()->print(get_thread_name());
1935   }
1936 
1937   if (active_handles() != NULL) {
1938     JNIHandleBlock* block = active_handles();
1939     set_active_handles(NULL);
1940     JNIHandleBlock::release_block(block);
1941   }
1942 
1943   if (free_handle_block() != NULL) {
1944     JNIHandleBlock* block = free_handle_block();
1945     set_free_handle_block(NULL);
1946     JNIHandleBlock::release_block(block);
1947   }
1948 
1949   // These have to be removed while this is still a valid thread.
1950   remove_stack_guard_pages();
1951 
1952   if (UseTLAB) {
1953     tlab().make_parsable(true);  // retire TLAB, if any
1954   }
1955 
1956 #if INCLUDE_ALL_GCS
1957   if (UseG1GC || UseShenandoahGC) {
1958     flush_barrier_queues();
1959   }
1960   if (UseShenandoahGC && UseTLAB) {
1961     gclab().make_parsable(true);
1962   }
1963 #endif // INCLUDE_ALL_GCS
1964 
1965   Threads::remove(this);
1966   delete this;
1967 }
1968 
1969 
1970 
1971 
1972 JavaThread* JavaThread::active() {
1973   Thread* thread = ThreadLocalStorage::thread();
1974   assert(thread != NULL, "just checking");
1975   if (thread->is_Java_thread()) {
1976     return (JavaThread*) thread;
1977   } else {
1978     assert(thread->is_VM_thread(), "this must be a vm thread");
1979     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1980     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1981     assert(ret->is_Java_thread(), "must be a Java thread");
1982     return ret;
1983   }
1984 }
1985 
1986 bool JavaThread::is_lock_owned(address adr) const {
1987   if (Thread::is_lock_owned(adr)) return true;
1988 
1989   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1990     if (chunk->contains(adr)) return true;
1991   }
1992 
1993   return false;
1994 }
1995 
1996 
1997 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1998   chunk->set_next(monitor_chunks());
1999   set_monitor_chunks(chunk);
2000 }
2001 
2002 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2003   guarantee(monitor_chunks() != NULL, "must be non empty");
2004   if (monitor_chunks() == chunk) {
2005     set_monitor_chunks(chunk->next());
2006   } else {
2007     MonitorChunk* prev = monitor_chunks();
2008     while (prev->next() != chunk) prev = prev->next();
2009     prev->set_next(chunk->next());
2010   }
2011 }
2012 
2013 // JVM support.
2014 
2015 // Note: this function shouldn't block if it's called in
2016 // _thread_in_native_trans state (such as from
2017 // check_special_condition_for_native_trans()).
2018 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2019 
2020   if (has_last_Java_frame() && has_async_condition()) {
2021     // If we are at a polling page safepoint (not a poll return)
2022     // then we must defer async exception because live registers
2023     // will be clobbered by the exception path. Poll return is
2024     // ok because the call we a returning from already collides
2025     // with exception handling registers and so there is no issue.
2026     // (The exception handling path kills call result registers but
2027     //  this is ok since the exception kills the result anyway).
2028 
2029     if (is_at_poll_safepoint()) {
2030       // if the code we are returning to has deoptimized we must defer
2031       // the exception otherwise live registers get clobbered on the
2032       // exception path before deoptimization is able to retrieve them.
2033       //
2034       RegisterMap map(this, false);
2035       frame caller_fr = last_frame().sender(&map);
2036       assert(caller_fr.is_compiled_frame(), "what?");
2037       if (caller_fr.is_deoptimized_frame()) {
2038         if (TraceExceptions) {
2039           ResourceMark rm;
2040           tty->print_cr("deferred async exception at compiled safepoint");
2041         }
2042         return;
2043       }
2044     }
2045   }
2046 
2047   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2048   if (condition == _no_async_condition) {
2049     // Conditions have changed since has_special_runtime_exit_condition()
2050     // was called:
2051     // - if we were here only because of an external suspend request,
2052     //   then that was taken care of above (or cancelled) so we are done
2053     // - if we were here because of another async request, then it has
2054     //   been cleared between the has_special_runtime_exit_condition()
2055     //   and now so again we are done
2056     return;
2057   }
2058 
2059   // Check for pending async. exception
2060   if (_pending_async_exception != NULL) {
2061     // Only overwrite an already pending exception, if it is not a threadDeath.
2062     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2063 
2064       // We cannot call Exceptions::_throw(...) here because we cannot block
2065       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2066 
2067       if (TraceExceptions) {
2068         ResourceMark rm;
2069         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2070         if (has_last_Java_frame()) {
2071           frame f = last_frame();
2072           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2073         }
2074         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2075       }
2076       _pending_async_exception = NULL;
2077       clear_has_async_exception();
2078     }
2079   }
2080 
2081   if (check_unsafe_error &&
2082       condition == _async_unsafe_access_error && !has_pending_exception()) {
2083     condition = _no_async_condition;  // done
2084     switch (thread_state()) {
2085     case _thread_in_vm: {
2086       JavaThread* THREAD = this;
2087       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2088     }
2089     case _thread_in_native: {
2090       ThreadInVMfromNative tiv(this);
2091       JavaThread* THREAD = this;
2092       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2093     }
2094     case _thread_in_Java: {
2095       ThreadInVMfromJava tiv(this);
2096       JavaThread* THREAD = this;
2097       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2098     }
2099     default:
2100       ShouldNotReachHere();
2101     }
2102   }
2103 
2104   assert(condition == _no_async_condition || has_pending_exception() ||
2105          (!check_unsafe_error && condition == _async_unsafe_access_error),
2106          "must have handled the async condition, if no exception");
2107 }
2108 
2109 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2110   //
2111   // Check for pending external suspend. Internal suspend requests do
2112   // not use handle_special_runtime_exit_condition().
2113   // If JNIEnv proxies are allowed, don't self-suspend if the target
2114   // thread is not the current thread. In older versions of jdbx, jdbx
2115   // threads could call into the VM with another thread's JNIEnv so we
2116   // can be here operating on behalf of a suspended thread (4432884).
2117   bool do_self_suspend = is_external_suspend_with_lock();
2118   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2119     //
2120     // Because thread is external suspended the safepoint code will count
2121     // thread as at a safepoint. This can be odd because we can be here
2122     // as _thread_in_Java which would normally transition to _thread_blocked
2123     // at a safepoint. We would like to mark the thread as _thread_blocked
2124     // before calling java_suspend_self like all other callers of it but
2125     // we must then observe proper safepoint protocol. (We can't leave
2126     // _thread_blocked with a safepoint in progress). However we can be
2127     // here as _thread_in_native_trans so we can't use a normal transition
2128     // constructor/destructor pair because they assert on that type of
2129     // transition. We could do something like:
2130     //
2131     // JavaThreadState state = thread_state();
2132     // set_thread_state(_thread_in_vm);
2133     // {
2134     //   ThreadBlockInVM tbivm(this);
2135     //   java_suspend_self()
2136     // }
2137     // set_thread_state(_thread_in_vm_trans);
2138     // if (safepoint) block;
2139     // set_thread_state(state);
2140     //
2141     // but that is pretty messy. Instead we just go with the way the
2142     // code has worked before and note that this is the only path to
2143     // java_suspend_self that doesn't put the thread in _thread_blocked
2144     // mode.
2145 
2146     frame_anchor()->make_walkable(this);
2147     java_suspend_self();
2148 
2149     // We might be here for reasons in addition to the self-suspend request
2150     // so check for other async requests.
2151   }
2152 
2153   if (check_asyncs) {
2154     check_and_handle_async_exceptions();
2155   }
2156 }
2157 
2158 void JavaThread::send_thread_stop(oop java_throwable)  {
2159   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2160   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2161   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2162 
2163   // Do not throw asynchronous exceptions against the compiler thread
2164   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2165   if (is_Compiler_thread()) return;
2166 
2167   {
2168     // Actually throw the Throwable against the target Thread - however
2169     // only if there is no thread death exception installed already.
2170     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2171       // If the topmost frame is a runtime stub, then we are calling into
2172       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2173       // must deoptimize the caller before continuing, as the compiled  exception handler table
2174       // may not be valid
2175       if (has_last_Java_frame()) {
2176         frame f = last_frame();
2177         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2178           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2179           RegisterMap reg_map(this, UseBiasedLocking);
2180           frame compiled_frame = f.sender(&reg_map);
2181           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2182             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2183           }
2184         }
2185       }
2186 
2187       // Set async. pending exception in thread.
2188       set_pending_async_exception(java_throwable);
2189 
2190       if (TraceExceptions) {
2191         ResourceMark rm;
2192         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2193       }
2194       // for AbortVMOnException flag
2195       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2196     }
2197   }
2198 
2199 
2200   // Interrupt thread so it will wake up from a potential wait()
2201   Thread::interrupt(this);
2202 }
2203 
2204 // External suspension mechanism.
2205 //
2206 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2207 // to any VM_locks and it is at a transition
2208 // Self-suspension will happen on the transition out of the vm.
2209 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2210 //
2211 // Guarantees on return:
2212 //   + Target thread will not execute any new bytecode (that's why we need to
2213 //     force a safepoint)
2214 //   + Target thread will not enter any new monitors
2215 //
2216 void JavaThread::java_suspend() {
2217   { MutexLocker mu(Threads_lock);
2218     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2219       return;
2220     }
2221   }
2222 
2223   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2224     if (!is_external_suspend()) {
2225       // a racing resume has cancelled us; bail out now
2226       return;
2227     }
2228 
2229     // suspend is done
2230     uint32_t debug_bits = 0;
2231     // Warning: is_ext_suspend_completed() may temporarily drop the
2232     // SR_lock to allow the thread to reach a stable thread state if
2233     // it is currently in a transient thread state.
2234     if (is_ext_suspend_completed(false /* !called_by_wait */,
2235                                  SuspendRetryDelay, &debug_bits)) {
2236       return;
2237     }
2238   }
2239 
2240   VM_ForceSafepoint vm_suspend;
2241   VMThread::execute(&vm_suspend);
2242 }
2243 
2244 // Part II of external suspension.
2245 // A JavaThread self suspends when it detects a pending external suspend
2246 // request. This is usually on transitions. It is also done in places
2247 // where continuing to the next transition would surprise the caller,
2248 // e.g., monitor entry.
2249 //
2250 // Returns the number of times that the thread self-suspended.
2251 //
2252 // Note: DO NOT call java_suspend_self() when you just want to block current
2253 //       thread. java_suspend_self() is the second stage of cooperative
2254 //       suspension for external suspend requests and should only be used
2255 //       to complete an external suspend request.
2256 //
2257 int JavaThread::java_suspend_self() {
2258   int ret = 0;
2259 
2260   // we are in the process of exiting so don't suspend
2261   if (is_exiting()) {
2262     clear_external_suspend();
2263     return ret;
2264   }
2265 
2266   assert(_anchor.walkable() ||
2267          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2268          "must have walkable stack");
2269 
2270   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2271 
2272   assert(!this->is_ext_suspended(),
2273          "a thread trying to self-suspend should not already be suspended");
2274 
2275   if (this->is_suspend_equivalent()) {
2276     // If we are self-suspending as a result of the lifting of a
2277     // suspend equivalent condition, then the suspend_equivalent
2278     // flag is not cleared until we set the ext_suspended flag so
2279     // that wait_for_ext_suspend_completion() returns consistent
2280     // results.
2281     this->clear_suspend_equivalent();
2282   }
2283 
2284   // A racing resume may have cancelled us before we grabbed SR_lock
2285   // above. Or another external suspend request could be waiting for us
2286   // by the time we return from SR_lock()->wait(). The thread
2287   // that requested the suspension may already be trying to walk our
2288   // stack and if we return now, we can change the stack out from under
2289   // it. This would be a "bad thing (TM)" and cause the stack walker
2290   // to crash. We stay self-suspended until there are no more pending
2291   // external suspend requests.
2292   while (is_external_suspend()) {
2293     ret++;
2294     this->set_ext_suspended();
2295 
2296     // _ext_suspended flag is cleared by java_resume()
2297     while (is_ext_suspended()) {
2298       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2299     }
2300   }
2301 
2302   return ret;
2303 }
2304 
2305 #ifdef ASSERT
2306 // verify the JavaThread has not yet been published in the Threads::list, and
2307 // hence doesn't need protection from concurrent access at this stage
2308 void JavaThread::verify_not_published() {
2309   if (!Threads_lock->owned_by_self()) {
2310     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2311     assert(!Threads::includes(this),
2312            "java thread shouldn't have been published yet!");
2313   } else {
2314     assert(!Threads::includes(this),
2315            "java thread shouldn't have been published yet!");
2316   }
2317 }
2318 #endif
2319 
2320 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2321 // progress or when _suspend_flags is non-zero.
2322 // Current thread needs to self-suspend if there is a suspend request and/or
2323 // block if a safepoint is in progress.
2324 // Async exception ISN'T checked.
2325 // Note only the ThreadInVMfromNative transition can call this function
2326 // directly and when thread state is _thread_in_native_trans
2327 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2328   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2329 
2330   JavaThread *curJT = JavaThread::current();
2331   bool do_self_suspend = thread->is_external_suspend();
2332 
2333   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2334 
2335   // If JNIEnv proxies are allowed, don't self-suspend if the target
2336   // thread is not the current thread. In older versions of jdbx, jdbx
2337   // threads could call into the VM with another thread's JNIEnv so we
2338   // can be here operating on behalf of a suspended thread (4432884).
2339   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2340     JavaThreadState state = thread->thread_state();
2341 
2342     // We mark this thread_blocked state as a suspend-equivalent so
2343     // that a caller to is_ext_suspend_completed() won't be confused.
2344     // The suspend-equivalent state is cleared by java_suspend_self().
2345     thread->set_suspend_equivalent();
2346 
2347     // If the safepoint code sees the _thread_in_native_trans state, it will
2348     // wait until the thread changes to other thread state. There is no
2349     // guarantee on how soon we can obtain the SR_lock and complete the
2350     // self-suspend request. It would be a bad idea to let safepoint wait for
2351     // too long. Temporarily change the state to _thread_blocked to
2352     // let the VM thread know that this thread is ready for GC. The problem
2353     // of changing thread state is that safepoint could happen just after
2354     // java_suspend_self() returns after being resumed, and VM thread will
2355     // see the _thread_blocked state. We must check for safepoint
2356     // after restoring the state and make sure we won't leave while a safepoint
2357     // is in progress.
2358     thread->set_thread_state(_thread_blocked);
2359     thread->java_suspend_self();
2360     thread->set_thread_state(state);
2361     // Make sure new state is seen by VM thread
2362     if (os::is_MP()) {
2363       if (UseMembar) {
2364         // Force a fence between the write above and read below
2365         OrderAccess::fence();
2366       } else {
2367         // Must use this rather than serialization page in particular on Windows
2368         InterfaceSupport::serialize_memory(thread);
2369       }
2370     }
2371   }
2372 
2373   if (SafepointSynchronize::do_call_back()) {
2374     // If we are safepointing, then block the caller which may not be
2375     // the same as the target thread (see above).
2376     SafepointSynchronize::block(curJT);
2377   }
2378 
2379   if (thread->is_deopt_suspend()) {
2380     thread->clear_deopt_suspend();
2381     RegisterMap map(thread, false);
2382     frame f = thread->last_frame();
2383     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2384       f = f.sender(&map);
2385     }
2386     if (f.id() == thread->must_deopt_id()) {
2387       thread->clear_must_deopt_id();
2388       f.deoptimize(thread);
2389     } else {
2390       fatal("missed deoptimization!");
2391     }
2392   }
2393 }
2394 
2395 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2396 // progress or when _suspend_flags is non-zero.
2397 // Current thread needs to self-suspend if there is a suspend request and/or
2398 // block if a safepoint is in progress.
2399 // Also check for pending async exception (not including unsafe access error).
2400 // Note only the native==>VM/Java barriers can call this function and when
2401 // thread state is _thread_in_native_trans.
2402 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2403   check_safepoint_and_suspend_for_native_trans(thread);
2404 
2405   if (thread->has_async_exception()) {
2406     // We are in _thread_in_native_trans state, don't handle unsafe
2407     // access error since that may block.
2408     thread->check_and_handle_async_exceptions(false);
2409   }
2410 }
2411 
2412 // This is a variant of the normal
2413 // check_special_condition_for_native_trans with slightly different
2414 // semantics for use by critical native wrappers.  It does all the
2415 // normal checks but also performs the transition back into
2416 // thread_in_Java state.  This is required so that critical natives
2417 // can potentially block and perform a GC if they are the last thread
2418 // exiting the GC_locker.
2419 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2420   check_special_condition_for_native_trans(thread);
2421 
2422   // Finish the transition
2423   thread->set_thread_state(_thread_in_Java);
2424 
2425   if (thread->do_critical_native_unlock()) {
2426     ThreadInVMfromJavaNoAsyncException tiv(thread);
2427     GC_locker::unlock_critical(thread);
2428     thread->clear_critical_native_unlock();
2429   }
2430 }
2431 
2432 // We need to guarantee the Threads_lock here, since resumes are not
2433 // allowed during safepoint synchronization
2434 // Can only resume from an external suspension
2435 void JavaThread::java_resume() {
2436   assert_locked_or_safepoint(Threads_lock);
2437 
2438   // Sanity check: thread is gone, has started exiting or the thread
2439   // was not externally suspended.
2440   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2441     return;
2442   }
2443 
2444   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2445 
2446   clear_external_suspend();
2447 
2448   if (is_ext_suspended()) {
2449     clear_ext_suspended();
2450     SR_lock()->notify_all();
2451   }
2452 }
2453 
2454 void JavaThread::create_stack_guard_pages() {
2455   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2456   address low_addr = stack_base() - stack_size();
2457   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2458 
2459   int allocate = os::allocate_stack_guard_pages();
2460   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2461 
2462   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2463     warning("Attempt to allocate stack guard pages failed.");
2464     return;
2465   }
2466 
2467   if (os::guard_memory((char *) low_addr, len)) {
2468     _stack_guard_state = stack_guard_enabled;
2469   } else {
2470     warning("Attempt to protect stack guard pages failed.");
2471     if (os::uncommit_memory((char *) low_addr, len)) {
2472       warning("Attempt to deallocate stack guard pages failed.");
2473     }
2474   }
2475 }
2476 
2477 void JavaThread::remove_stack_guard_pages() {
2478   assert(Thread::current() == this, "from different thread");
2479   if (_stack_guard_state == stack_guard_unused) return;
2480   address low_addr = stack_base() - stack_size();
2481   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2482 
2483   if (os::allocate_stack_guard_pages()) {
2484     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2485       _stack_guard_state = stack_guard_unused;
2486     } else {
2487       warning("Attempt to deallocate stack guard pages failed.");
2488     }
2489   } else {
2490     if (_stack_guard_state == stack_guard_unused) return;
2491     if (os::unguard_memory((char *) low_addr, len)) {
2492       _stack_guard_state = stack_guard_unused;
2493     } else {
2494       warning("Attempt to unprotect stack guard pages failed.");
2495     }
2496   }
2497 }
2498 
2499 void JavaThread::enable_stack_yellow_zone() {
2500   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2501   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2502 
2503   // The base notation is from the stacks point of view, growing downward.
2504   // We need to adjust it to work correctly with guard_memory()
2505   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2506 
2507   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2508   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2509 
2510   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2511     _stack_guard_state = stack_guard_enabled;
2512   } else {
2513     warning("Attempt to guard stack yellow zone failed.");
2514   }
2515   enable_register_stack_guard();
2516 }
2517 
2518 void JavaThread::disable_stack_yellow_zone() {
2519   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2520   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2521 
2522   // Simply return if called for a thread that does not use guard pages.
2523   if (_stack_guard_state == stack_guard_unused) return;
2524 
2525   // The base notation is from the stacks point of view, growing downward.
2526   // We need to adjust it to work correctly with guard_memory()
2527   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2528 
2529   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2530     _stack_guard_state = stack_guard_yellow_disabled;
2531   } else {
2532     warning("Attempt to unguard stack yellow zone failed.");
2533   }
2534   disable_register_stack_guard();
2535 }
2536 
2537 void JavaThread::enable_stack_red_zone() {
2538   // The base notation is from the stacks point of view, growing downward.
2539   // We need to adjust it to work correctly with guard_memory()
2540   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2541   address base = stack_red_zone_base() - stack_red_zone_size();
2542 
2543   guarantee(base < stack_base(), "Error calculating stack red zone");
2544   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2545 
2546   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2547     warning("Attempt to guard stack red zone failed.");
2548   }
2549 }
2550 
2551 void JavaThread::disable_stack_red_zone() {
2552   // The base notation is from the stacks point of view, growing downward.
2553   // We need to adjust it to work correctly with guard_memory()
2554   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2555   address base = stack_red_zone_base() - stack_red_zone_size();
2556   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2557     warning("Attempt to unguard stack red zone failed.");
2558   }
2559 }
2560 
2561 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2562   // ignore is there is no stack
2563   if (!has_last_Java_frame()) return;
2564   // traverse the stack frames. Starts from top frame.
2565   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2566     frame* fr = fst.current();
2567     f(fr, fst.register_map());
2568   }
2569 }
2570 
2571 
2572 #ifndef PRODUCT
2573 // Deoptimization
2574 // Function for testing deoptimization
2575 void JavaThread::deoptimize() {
2576   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2577   StackFrameStream fst(this, UseBiasedLocking);
2578   bool deopt = false;           // Dump stack only if a deopt actually happens.
2579   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2580   // Iterate over all frames in the thread and deoptimize
2581   for (; !fst.is_done(); fst.next()) {
2582     if (fst.current()->can_be_deoptimized()) {
2583 
2584       if (only_at) {
2585         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2586         // consists of comma or carriage return separated numbers so
2587         // search for the current bci in that string.
2588         address pc = fst.current()->pc();
2589         nmethod* nm =  (nmethod*) fst.current()->cb();
2590         ScopeDesc* sd = nm->scope_desc_at(pc);
2591         char buffer[8];
2592         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2593         size_t len = strlen(buffer);
2594         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2595         while (found != NULL) {
2596           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2597               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2598             // Check that the bci found is bracketed by terminators.
2599             break;
2600           }
2601           found = strstr(found + 1, buffer);
2602         }
2603         if (!found) {
2604           continue;
2605         }
2606       }
2607 
2608       if (DebugDeoptimization && !deopt) {
2609         deopt = true; // One-time only print before deopt
2610         tty->print_cr("[BEFORE Deoptimization]");
2611         trace_frames();
2612         trace_stack();
2613       }
2614       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2615     }
2616   }
2617 
2618   if (DebugDeoptimization && deopt) {
2619     tty->print_cr("[AFTER Deoptimization]");
2620     trace_frames();
2621   }
2622 }
2623 
2624 
2625 // Make zombies
2626 void JavaThread::make_zombies() {
2627   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2628     if (fst.current()->can_be_deoptimized()) {
2629       // it is a Java nmethod
2630       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2631       nm->make_not_entrant();
2632     }
2633   }
2634 }
2635 #endif // PRODUCT
2636 
2637 
2638 void JavaThread::deoptimized_wrt_marked_nmethods() {
2639   if (!has_last_Java_frame()) return;
2640   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2641   StackFrameStream fst(this, UseBiasedLocking);
2642   for (; !fst.is_done(); fst.next()) {
2643     if (fst.current()->should_be_deoptimized()) {
2644       if (LogCompilation && xtty != NULL) {
2645         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2646         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2647                    this->name(), nm != NULL ? nm->compile_id() : -1);
2648       }
2649 
2650       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2651     }
2652   }
2653 }
2654 
2655 
2656 // If the caller is a NamedThread, then remember, in the current scope,
2657 // the given JavaThread in its _processed_thread field.
2658 class RememberProcessedThread: public StackObj {
2659   NamedThread* _cur_thr;
2660  public:
2661   RememberProcessedThread(JavaThread* jthr) {
2662     Thread* thread = Thread::current();
2663     if (thread->is_Named_thread()) {
2664       _cur_thr = (NamedThread *)thread;
2665       _cur_thr->set_processed_thread(jthr);
2666     } else {
2667       _cur_thr = NULL;
2668     }
2669   }
2670 
2671   ~RememberProcessedThread() {
2672     if (_cur_thr) {
2673       _cur_thr->set_processed_thread(NULL);
2674     }
2675   }
2676 };
2677 
2678 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2679   // Verify that the deferred card marks have been flushed.
2680   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2681 
2682   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2683   // since there may be more than one thread using each ThreadProfiler.
2684 
2685   // Traverse the GCHandles
2686   Thread::oops_do(f, cld_f, cf);
2687 
2688   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2689          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2690 
2691   if (has_last_Java_frame()) {
2692     // Record JavaThread to GC thread
2693     RememberProcessedThread rpt(this);
2694 
2695     // Traverse the privileged stack
2696     if (_privileged_stack_top != NULL) {
2697       _privileged_stack_top->oops_do(f);
2698     }
2699 
2700     // traverse the registered growable array
2701     if (_array_for_gc != NULL) {
2702       for (int index = 0; index < _array_for_gc->length(); index++) {
2703         f->do_oop(_array_for_gc->adr_at(index));
2704       }
2705     }
2706 
2707     // Traverse the monitor chunks
2708     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2709       chunk->oops_do(f);
2710     }
2711 
2712     // Traverse the execution stack
2713     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2714       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2715     }
2716   }
2717 
2718   // callee_target is never live across a gc point so NULL it here should
2719   // it still contain a methdOop.
2720 
2721   set_callee_target(NULL);
2722 
2723   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2724   // If we have deferred set_locals there might be oops waiting to be
2725   // written
2726   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2727   if (list != NULL) {
2728     for (int i = 0; i < list->length(); i++) {
2729       list->at(i)->oops_do(f);
2730     }
2731   }
2732 
2733   // Traverse instance variables at the end since the GC may be moving things
2734   // around using this function
2735   f->do_oop((oop*) &_threadObj);
2736   f->do_oop((oop*) &_vm_result);
2737   f->do_oop((oop*) &_exception_oop);
2738   f->do_oop((oop*) &_pending_async_exception);
2739 
2740   if (jvmti_thread_state() != NULL) {
2741     jvmti_thread_state()->oops_do(f);
2742   }
2743 }
2744 
2745 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2746   Thread::nmethods_do(cf);  // (super method is a no-op)
2747 
2748   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2749          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2750 
2751   if (has_last_Java_frame()) {
2752     // Traverse the execution stack
2753     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2754       fst.current()->nmethods_do(cf);
2755     }
2756   }
2757 }
2758 
2759 void JavaThread::metadata_do(void f(Metadata*)) {
2760   if (has_last_Java_frame()) {
2761     // Traverse the execution stack to call f() on the methods in the stack
2762     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2763       fst.current()->metadata_do(f);
2764     }
2765   } else if (is_Compiler_thread()) {
2766     // need to walk ciMetadata in current compile tasks to keep alive.
2767     CompilerThread* ct = (CompilerThread*)this;
2768     if (ct->env() != NULL) {
2769       ct->env()->metadata_do(f);
2770     }
2771     if (ct->task() != NULL) {
2772       ct->task()->metadata_do(f);
2773     }
2774   }
2775 }
2776 
2777 // Printing
2778 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2779   switch (_thread_state) {
2780   case _thread_uninitialized:     return "_thread_uninitialized";
2781   case _thread_new:               return "_thread_new";
2782   case _thread_new_trans:         return "_thread_new_trans";
2783   case _thread_in_native:         return "_thread_in_native";
2784   case _thread_in_native_trans:   return "_thread_in_native_trans";
2785   case _thread_in_vm:             return "_thread_in_vm";
2786   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2787   case _thread_in_Java:           return "_thread_in_Java";
2788   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2789   case _thread_blocked:           return "_thread_blocked";
2790   case _thread_blocked_trans:     return "_thread_blocked_trans";
2791   default:                        return "unknown thread state";
2792   }
2793 }
2794 
2795 #ifndef PRODUCT
2796 void JavaThread::print_thread_state_on(outputStream *st) const {
2797   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2798 };
2799 void JavaThread::print_thread_state() const {
2800   print_thread_state_on(tty);
2801 }
2802 #endif // PRODUCT
2803 
2804 // Called by Threads::print() for VM_PrintThreads operation
2805 void JavaThread::print_on(outputStream *st) const {
2806   st->print("\"%s\" ", get_thread_name());
2807   oop thread_oop = threadObj();
2808   if (thread_oop != NULL) {
2809     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2810     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2811     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2812   }
2813   Thread::print_on(st);
2814   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2815   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2816   if (thread_oop != NULL) {
2817     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2818   }
2819 #ifndef PRODUCT
2820   print_thread_state_on(st);
2821   _safepoint_state->print_on(st);
2822 #endif // PRODUCT
2823 }
2824 
2825 // Called by fatal error handler. The difference between this and
2826 // JavaThread::print() is that we can't grab lock or allocate memory.
2827 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2828   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2829   oop thread_obj = threadObj();
2830   if (thread_obj != NULL) {
2831     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2832   }
2833   st->print(" [");
2834   st->print("%s", _get_thread_state_name(_thread_state));
2835   if (osthread()) {
2836     st->print(", id=%d", osthread()->thread_id());
2837   }
2838   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2839             _stack_base - _stack_size, _stack_base);
2840   st->print("]");
2841   return;
2842 }
2843 
2844 // Verification
2845 
2846 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2847 
2848 void JavaThread::verify() {
2849   // Verify oops in the thread.
2850   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2851 
2852   // Verify the stack frames.
2853   frames_do(frame_verify);
2854 }
2855 
2856 // CR 6300358 (sub-CR 2137150)
2857 // Most callers of this method assume that it can't return NULL but a
2858 // thread may not have a name whilst it is in the process of attaching to
2859 // the VM - see CR 6412693, and there are places where a JavaThread can be
2860 // seen prior to having it's threadObj set (eg JNI attaching threads and
2861 // if vm exit occurs during initialization). These cases can all be accounted
2862 // for such that this method never returns NULL.
2863 const char* JavaThread::get_thread_name() const {
2864 #ifdef ASSERT
2865   // early safepoints can hit while current thread does not yet have TLS
2866   if (!SafepointSynchronize::is_at_safepoint()) {
2867     Thread *cur = Thread::current();
2868     if (!(cur->is_Java_thread() && cur == this)) {
2869       // Current JavaThreads are allowed to get their own name without
2870       // the Threads_lock.
2871       assert_locked_or_safepoint(Threads_lock);
2872     }
2873   }
2874 #endif // ASSERT
2875   return get_thread_name_string();
2876 }
2877 
2878 // Returns a non-NULL representation of this thread's name, or a suitable
2879 // descriptive string if there is no set name
2880 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2881   const char* name_str;
2882   oop thread_obj = threadObj();
2883   if (thread_obj != NULL) {
2884     oop name = java_lang_Thread::name(thread_obj);
2885     if (name != NULL) {
2886       if (buf == NULL) {
2887         name_str = java_lang_String::as_utf8_string(name);
2888       } else {
2889         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2890       }
2891     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2892       name_str = "<no-name - thread is attaching>";
2893     } else {
2894       name_str = Thread::name();
2895     }
2896   } else {
2897     name_str = Thread::name();
2898   }
2899   assert(name_str != NULL, "unexpected NULL thread name");
2900   return name_str;
2901 }
2902 
2903 
2904 const char* JavaThread::get_threadgroup_name() const {
2905   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2906   oop thread_obj = threadObj();
2907   if (thread_obj != NULL) {
2908     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2909     if (thread_group != NULL) {
2910       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2911       name = typeArrayOop(oopDesc::bs()->read_barrier(name));
2912       // ThreadGroup.name can be null
2913       if (name != NULL) {
2914         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2915         return str;
2916       }
2917     }
2918   }
2919   return NULL;
2920 }
2921 
2922 const char* JavaThread::get_parent_name() const {
2923   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2924   oop thread_obj = threadObj();
2925   if (thread_obj != NULL) {
2926     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2927     if (thread_group != NULL) {
2928       oop parent = java_lang_ThreadGroup::parent(thread_group);
2929       if (parent != NULL) {
2930         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2931         name = typeArrayOop(oopDesc::bs()->read_barrier(name));
2932         // ThreadGroup.name can be null
2933         if (name != NULL) {
2934           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2935           return str;
2936         }
2937       }
2938     }
2939   }
2940   return NULL;
2941 }
2942 
2943 ThreadPriority JavaThread::java_priority() const {
2944   oop thr_oop = threadObj();
2945   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2946   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2947   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2948   return priority;
2949 }
2950 
2951 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2952 
2953   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2954   // Link Java Thread object <-> C++ Thread
2955 
2956   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2957   // and put it into a new Handle.  The Handle "thread_oop" can then
2958   // be used to pass the C++ thread object to other methods.
2959 
2960   // Set the Java level thread object (jthread) field of the
2961   // new thread (a JavaThread *) to C++ thread object using the
2962   // "thread_oop" handle.
2963 
2964   // Set the thread field (a JavaThread *) of the
2965   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2966 
2967   Handle thread_oop(Thread::current(),
2968                     JNIHandles::resolve_non_null(jni_thread));
2969   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2970          "must be initialized");
2971   set_threadObj(thread_oop());
2972   java_lang_Thread::set_thread(thread_oop(), this);
2973 
2974   if (prio == NoPriority) {
2975     prio = java_lang_Thread::priority(thread_oop());
2976     assert(prio != NoPriority, "A valid priority should be present");
2977   }
2978 
2979   // Push the Java priority down to the native thread; needs Threads_lock
2980   Thread::set_priority(this, prio);
2981 
2982   prepare_ext();
2983 
2984   // Add the new thread to the Threads list and set it in motion.
2985   // We must have threads lock in order to call Threads::add.
2986   // It is crucial that we do not block before the thread is
2987   // added to the Threads list for if a GC happens, then the java_thread oop
2988   // will not be visited by GC.
2989   Threads::add(this);
2990 }
2991 
2992 oop JavaThread::current_park_blocker() {
2993   // Support for JSR-166 locks
2994   oop thread_oop = threadObj();
2995   if (thread_oop != NULL &&
2996       JDK_Version::current().supports_thread_park_blocker()) {
2997     return java_lang_Thread::park_blocker(thread_oop);
2998   }
2999   return NULL;
3000 }
3001 
3002 
3003 void JavaThread::print_stack_on(outputStream* st) {
3004   if (!has_last_Java_frame()) return;
3005   ResourceMark rm;
3006   HandleMark   hm;
3007 
3008   RegisterMap reg_map(this);
3009   vframe* start_vf = last_java_vframe(&reg_map);
3010   int count = 0;
3011   for (vframe* f = start_vf; f; f = f->sender()) {
3012     if (f->is_java_frame()) {
3013       javaVFrame* jvf = javaVFrame::cast(f);
3014       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3015 
3016       // Print out lock information
3017       if (JavaMonitorsInStackTrace) {
3018         jvf->print_lock_info_on(st, count);
3019       }
3020     } else {
3021       // Ignore non-Java frames
3022     }
3023 
3024     // Bail-out case for too deep stacks
3025     count++;
3026     if (MaxJavaStackTraceDepth == count) return;
3027   }
3028 }
3029 
3030 
3031 // JVMTI PopFrame support
3032 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3033   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3034   if (in_bytes(size_in_bytes) != 0) {
3035     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3036     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3037     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3038   }
3039 }
3040 
3041 void* JavaThread::popframe_preserved_args() {
3042   return _popframe_preserved_args;
3043 }
3044 
3045 ByteSize JavaThread::popframe_preserved_args_size() {
3046   return in_ByteSize(_popframe_preserved_args_size);
3047 }
3048 
3049 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3050   int sz = in_bytes(popframe_preserved_args_size());
3051   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3052   return in_WordSize(sz / wordSize);
3053 }
3054 
3055 void JavaThread::popframe_free_preserved_args() {
3056   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3057   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3058   _popframe_preserved_args = NULL;
3059   _popframe_preserved_args_size = 0;
3060 }
3061 
3062 #ifndef PRODUCT
3063 
3064 void JavaThread::trace_frames() {
3065   tty->print_cr("[Describe stack]");
3066   int frame_no = 1;
3067   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3068     tty->print("  %d. ", frame_no++);
3069     fst.current()->print_value_on(tty, this);
3070     tty->cr();
3071   }
3072 }
3073 
3074 class PrintAndVerifyOopClosure: public OopClosure {
3075  protected:
3076   template <class T> inline void do_oop_work(T* p) {
3077     oop obj = oopDesc::load_decode_heap_oop(p);
3078     if (obj == NULL) return;
3079     tty->print(INTPTR_FORMAT ": ", p);
3080     if (obj->is_oop_or_null()) {
3081       if (obj->is_objArray()) {
3082         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3083       } else {
3084         obj->print();
3085       }
3086     } else {
3087       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3088     }
3089     tty->cr();
3090   }
3091  public:
3092   virtual void do_oop(oop* p) { do_oop_work(p); }
3093   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3094 };
3095 
3096 
3097 static void oops_print(frame* f, const RegisterMap *map) {
3098   PrintAndVerifyOopClosure print;
3099   f->print_value();
3100   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3101 }
3102 
3103 // Print our all the locations that contain oops and whether they are
3104 // valid or not.  This useful when trying to find the oldest frame
3105 // where an oop has gone bad since the frame walk is from youngest to
3106 // oldest.
3107 void JavaThread::trace_oops() {
3108   tty->print_cr("[Trace oops]");
3109   frames_do(oops_print);
3110 }
3111 
3112 
3113 #ifdef ASSERT
3114 // Print or validate the layout of stack frames
3115 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3116   ResourceMark rm;
3117   PRESERVE_EXCEPTION_MARK;
3118   FrameValues values;
3119   int frame_no = 0;
3120   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3121     fst.current()->describe(values, ++frame_no);
3122     if (depth == frame_no) break;
3123   }
3124   if (validate_only) {
3125     values.validate();
3126   } else {
3127     tty->print_cr("[Describe stack layout]");
3128     values.print(this);
3129   }
3130 }
3131 #endif
3132 
3133 void JavaThread::trace_stack_from(vframe* start_vf) {
3134   ResourceMark rm;
3135   int vframe_no = 1;
3136   for (vframe* f = start_vf; f; f = f->sender()) {
3137     if (f->is_java_frame()) {
3138       javaVFrame::cast(f)->print_activation(vframe_no++);
3139     } else {
3140       f->print();
3141     }
3142     if (vframe_no > StackPrintLimit) {
3143       tty->print_cr("...<more frames>...");
3144       return;
3145     }
3146   }
3147 }
3148 
3149 
3150 void JavaThread::trace_stack() {
3151   if (!has_last_Java_frame()) return;
3152   ResourceMark rm;
3153   HandleMark   hm;
3154   RegisterMap reg_map(this);
3155   trace_stack_from(last_java_vframe(&reg_map));
3156 }
3157 
3158 
3159 #endif // PRODUCT
3160 
3161 
3162 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3163   assert(reg_map != NULL, "a map must be given");
3164   frame f = last_frame();
3165   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3166     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3167   }
3168   return NULL;
3169 }
3170 
3171 
3172 Klass* JavaThread::security_get_caller_class(int depth) {
3173   vframeStream vfst(this);
3174   vfst.security_get_caller_frame(depth);
3175   if (!vfst.at_end()) {
3176     return vfst.method()->method_holder();
3177   }
3178   return NULL;
3179 }
3180 
3181 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3182   assert(thread->is_Compiler_thread(), "must be compiler thread");
3183   CompileBroker::compiler_thread_loop();
3184 }
3185 
3186 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3187   NMethodSweeper::sweeper_loop();
3188 }
3189 
3190 // Create a CompilerThread
3191 CompilerThread::CompilerThread(CompileQueue* queue,
3192                                CompilerCounters* counters)
3193                                : JavaThread(&compiler_thread_entry) {
3194   _env   = NULL;
3195   _log   = NULL;
3196   _task  = NULL;
3197   _queue = queue;
3198   _counters = counters;
3199   _buffer_blob = NULL;
3200   _compiler = NULL;
3201 
3202 #ifndef PRODUCT
3203   _ideal_graph_printer = NULL;
3204 #endif
3205 }
3206 
3207 // Create sweeper thread
3208 CodeCacheSweeperThread::CodeCacheSweeperThread()
3209 : JavaThread(&sweeper_thread_entry) {
3210   _scanned_nmethod = NULL;
3211 }
3212 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3213   JavaThread::oops_do(f, cld_f, cf);
3214   if (_scanned_nmethod != NULL && cf != NULL) {
3215     // Safepoints can occur when the sweeper is scanning an nmethod so
3216     // process it here to make sure it isn't unloaded in the middle of
3217     // a scan.
3218     cf->do_code_blob(_scanned_nmethod);
3219   }
3220 }
3221 
3222 
3223 // ======= Threads ========
3224 
3225 // The Threads class links together all active threads, and provides
3226 // operations over all threads.  It is protected by its own Mutex
3227 // lock, which is also used in other contexts to protect thread
3228 // operations from having the thread being operated on from exiting
3229 // and going away unexpectedly (e.g., safepoint synchronization)
3230 
3231 JavaThread* Threads::_thread_list = NULL;
3232 int         Threads::_number_of_threads = 0;
3233 int         Threads::_number_of_non_daemon_threads = 0;
3234 int         Threads::_return_code = 0;
3235 int         Threads::_thread_claim_parity = 0;
3236 size_t      JavaThread::_stack_size_at_create = 0;
3237 #ifdef ASSERT
3238 bool        Threads::_vm_complete = false;
3239 #endif
3240 
3241 // All JavaThreads
3242 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3243 
3244 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3245 void Threads::threads_do(ThreadClosure* tc) {
3246   assert_locked_or_safepoint(Threads_lock);
3247   // ALL_JAVA_THREADS iterates through all JavaThreads
3248   ALL_JAVA_THREADS(p) {
3249     tc->do_thread(p);
3250   }
3251   // Someday we could have a table or list of all non-JavaThreads.
3252   // For now, just manually iterate through them.
3253   tc->do_thread(VMThread::vm_thread());
3254   Universe::heap()->gc_threads_do(tc);
3255   WatcherThread *wt = WatcherThread::watcher_thread();
3256   // Strictly speaking, the following NULL check isn't sufficient to make sure
3257   // the data for WatcherThread is still valid upon being examined. However,
3258   // considering that WatchThread terminates when the VM is on the way to
3259   // exit at safepoint, the chance of the above is extremely small. The right
3260   // way to prevent termination of WatcherThread would be to acquire
3261   // Terminator_lock, but we can't do that without violating the lock rank
3262   // checking in some cases.
3263   if (wt != NULL) {
3264     tc->do_thread(wt);
3265   }
3266 
3267   // If CompilerThreads ever become non-JavaThreads, add them here
3268 }
3269 
3270 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3271   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3272 
3273   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3274     create_vm_init_libraries();
3275   }
3276 
3277   initialize_class(vmSymbols::java_lang_String(), CHECK);
3278 
3279   // Initialize java_lang.System (needed before creating the thread)
3280   initialize_class(vmSymbols::java_lang_System(), CHECK);
3281   // The VM creates & returns objects of this class. Make sure it's initialized.
3282   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3283   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3284   Handle thread_group = create_initial_thread_group(CHECK);
3285   Universe::set_main_thread_group(thread_group());
3286   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3287   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3288   main_thread->set_threadObj(thread_object);
3289   // Set thread status to running since main thread has
3290   // been started and running.
3291   java_lang_Thread::set_thread_status(thread_object,
3292                                       java_lang_Thread::RUNNABLE);
3293 
3294   // The VM preresolves methods to these classes. Make sure that they get initialized
3295   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3296   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3297   call_initializeSystemClass(CHECK);
3298 
3299   // get the Java runtime name after java.lang.System is initialized
3300   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3301   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3302 
3303   // an instance of OutOfMemory exception has been allocated earlier
3304   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3305   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3306   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3307   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3308   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3309   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3310   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3311   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3312 }
3313 
3314 void Threads::initialize_jsr292_core_classes(TRAPS) {
3315   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3316   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3317   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3318 }
3319 
3320 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3321   extern void JDK_Version_init();
3322 
3323   // Preinitialize version info.
3324   VM_Version::early_initialize();
3325 
3326   // Check version
3327   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3328 
3329   // Initialize the output stream module
3330   ostream_init();
3331 
3332   // Process java launcher properties.
3333   Arguments::process_sun_java_launcher_properties(args);
3334 
3335   // Initialize the os module before using TLS
3336   os::init();
3337 
3338   // Initialize system properties.
3339   Arguments::init_system_properties();
3340 
3341   // So that JDK version can be used as a discriminator when parsing arguments
3342   JDK_Version_init();
3343 
3344   // Update/Initialize System properties after JDK version number is known
3345   Arguments::init_version_specific_system_properties();
3346 
3347   // Parse arguments
3348   jint parse_result = Arguments::parse(args);
3349   if (parse_result != JNI_OK) return parse_result;
3350 
3351   os::init_before_ergo();
3352 
3353   jint ergo_result = Arguments::apply_ergo();
3354   if (ergo_result != JNI_OK) return ergo_result;
3355 
3356   // Final check of all ranges after ergonomics which may change values.
3357   if (!CommandLineFlagRangeList::check_ranges()) {
3358     return JNI_EINVAL;
3359   }
3360 
3361   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3362   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3363   if (!constraint_result) {
3364     return JNI_EINVAL;
3365   }
3366 
3367   if (PauseAtStartup) {
3368     os::pause();
3369   }
3370 
3371   HOTSPOT_VM_INIT_BEGIN();
3372 
3373   // Record VM creation timing statistics
3374   TraceVmCreationTime create_vm_timer;
3375   create_vm_timer.start();
3376 
3377   // Timing (must come after argument parsing)
3378   TraceTime timer("Create VM", TraceStartupTime);
3379 
3380   // Initialize the os module after parsing the args
3381   jint os_init_2_result = os::init_2();
3382   if (os_init_2_result != JNI_OK) return os_init_2_result;
3383 
3384   jint adjust_after_os_result = Arguments::adjust_after_os();
3385   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3386 
3387   // initialize TLS
3388   ThreadLocalStorage::init();
3389 
3390   // Initialize output stream logging
3391   ostream_init_log();
3392 
3393   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3394   // Must be before create_vm_init_agents()
3395   if (Arguments::init_libraries_at_startup()) {
3396     convert_vm_init_libraries_to_agents();
3397   }
3398 
3399   // Launch -agentlib/-agentpath and converted -Xrun agents
3400   if (Arguments::init_agents_at_startup()) {
3401     create_vm_init_agents();
3402   }
3403 
3404   // Initialize Threads state
3405   _thread_list = NULL;
3406   _number_of_threads = 0;
3407   _number_of_non_daemon_threads = 0;
3408 
3409   // Initialize global data structures and create system classes in heap
3410   vm_init_globals();
3411 
3412   // Attach the main thread to this os thread
3413   JavaThread* main_thread = new JavaThread();
3414   main_thread->set_thread_state(_thread_in_vm);
3415   // must do this before set_active_handles and initialize_thread_local_storage
3416   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3417   // change the stack size recorded here to one based on the java thread
3418   // stacksize. This adjusted size is what is used to figure the placement
3419   // of the guard pages.
3420   main_thread->record_stack_base_and_size();
3421   main_thread->initialize_thread_local_storage();
3422 
3423   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3424 
3425   if (!main_thread->set_as_starting_thread()) {
3426     vm_shutdown_during_initialization(
3427                                       "Failed necessary internal allocation. Out of swap space");
3428     delete main_thread;
3429     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3430     return JNI_ENOMEM;
3431   }
3432 
3433   // Enable guard page *after* os::create_main_thread(), otherwise it would
3434   // crash Linux VM, see notes in os_linux.cpp.
3435   main_thread->create_stack_guard_pages();
3436 
3437   // Initialize Java-Level synchronization subsystem
3438   ObjectMonitor::Initialize();
3439 
3440   // Initialize global modules
3441   jint status = init_globals();
3442   if (status != JNI_OK) {
3443     delete main_thread;
3444     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3445     return status;
3446   }
3447 
3448   // Should be done after the heap is fully created
3449   main_thread->cache_global_variables();
3450 
3451   HandleMark hm;
3452 
3453   { MutexLocker mu(Threads_lock);
3454     Threads::add(main_thread);
3455   }
3456 
3457   // Any JVMTI raw monitors entered in onload will transition into
3458   // real raw monitor. VM is setup enough here for raw monitor enter.
3459   JvmtiExport::transition_pending_onload_raw_monitors();
3460 
3461   // Create the VMThread
3462   { TraceTime timer("Start VMThread", TraceStartupTime);
3463     VMThread::create();
3464     Thread* vmthread = VMThread::vm_thread();
3465 
3466     if (!os::create_thread(vmthread, os::vm_thread)) {
3467       vm_exit_during_initialization("Cannot create VM thread. "
3468                                     "Out of system resources.");
3469     }
3470 
3471     // Wait for the VM thread to become ready, and VMThread::run to initialize
3472     // Monitors can have spurious returns, must always check another state flag
3473     {
3474       MutexLocker ml(Notify_lock);
3475       os::start_thread(vmthread);
3476       while (vmthread->active_handles() == NULL) {
3477         Notify_lock->wait();
3478       }
3479     }
3480   }
3481 
3482   assert(Universe::is_fully_initialized(), "not initialized");
3483   if (VerifyDuringStartup) {
3484     // Make sure we're starting with a clean slate.
3485     VM_Verify verify_op;
3486     VMThread::execute(&verify_op);
3487   }
3488 
3489   Thread* THREAD = Thread::current();
3490 
3491   // At this point, the Universe is initialized, but we have not executed
3492   // any byte code.  Now is a good time (the only time) to dump out the
3493   // internal state of the JVM for sharing.
3494   if (DumpSharedSpaces) {
3495     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3496     ShouldNotReachHere();
3497   }
3498 
3499   // Always call even when there are not JVMTI environments yet, since environments
3500   // may be attached late and JVMTI must track phases of VM execution
3501   JvmtiExport::enter_start_phase();
3502 
3503   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3504   JvmtiExport::post_vm_start();
3505 
3506   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3507 
3508   // We need this for ClassDataSharing - the initial vm.info property is set
3509   // with the default value of CDS "sharing" which may be reset through
3510   // command line options.
3511   reset_vm_info_property(CHECK_JNI_ERR);
3512 
3513   quicken_jni_functions();
3514 
3515   // Must be run after init_ft which initializes ft_enabled
3516   if (TRACE_INITIALIZE() != JNI_OK) {
3517     vm_exit_during_initialization("Failed to initialize tracing backend");
3518   }
3519 
3520   // Set flag that basic initialization has completed. Used by exceptions and various
3521   // debug stuff, that does not work until all basic classes have been initialized.
3522   set_init_completed();
3523 
3524   Metaspace::post_initialize();
3525 
3526   HOTSPOT_VM_INIT_END();
3527 
3528   // record VM initialization completion time
3529 #if INCLUDE_MANAGEMENT
3530   Management::record_vm_init_completed();
3531 #endif // INCLUDE_MANAGEMENT
3532 
3533   // Compute system loader. Note that this has to occur after set_init_completed, since
3534   // valid exceptions may be thrown in the process.
3535   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3536   // set_init_completed has just been called, causing exceptions not to be shortcut
3537   // anymore. We call vm_exit_during_initialization directly instead.
3538   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3539 
3540 #if INCLUDE_ALL_GCS
3541   // Support for ConcurrentMarkSweep. This should be cleaned up
3542   // and better encapsulated. The ugly nested if test would go away
3543   // once things are properly refactored. XXX YSR
3544   if (UseConcMarkSweepGC || UseG1GC || UseShenandoahGC) {
3545     if (UseConcMarkSweepGC) {
3546       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3547     } else if (UseShenandoahGC) {
3548       ShenandoahConcurrentThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3549     } else {
3550       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3551     }
3552   }
3553 #endif // INCLUDE_ALL_GCS
3554 
3555   // Always call even when there are not JVMTI environments yet, since environments
3556   // may be attached late and JVMTI must track phases of VM execution
3557   JvmtiExport::enter_live_phase();
3558 
3559   // Signal Dispatcher needs to be started before VMInit event is posted
3560   os::signal_init();
3561 
3562   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3563   if (!DisableAttachMechanism) {
3564     AttachListener::vm_start();
3565     if (StartAttachListener || AttachListener::init_at_startup()) {
3566       AttachListener::init();
3567     }
3568   }
3569 
3570   // Launch -Xrun agents
3571   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3572   // back-end can launch with -Xdebug -Xrunjdwp.
3573   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3574     create_vm_init_libraries();
3575   }
3576 
3577   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3578   JvmtiExport::post_vm_initialized();
3579 
3580   if (TRACE_START() != JNI_OK) {
3581     vm_exit_during_initialization("Failed to start tracing backend.");
3582   }
3583 
3584   if (CleanChunkPoolAsync) {
3585     Chunk::start_chunk_pool_cleaner_task();
3586   }
3587 
3588   // initialize compiler(s)
3589 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3590   CompileBroker::compilation_init();
3591 #endif
3592 
3593   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3594   // It is done after compilers are initialized, because otherwise compilations of
3595   // signature polymorphic MH intrinsics can be missed
3596   // (see SystemDictionary::find_method_handle_intrinsic).
3597   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3598 
3599 #if INCLUDE_MANAGEMENT
3600   Management::initialize(THREAD);
3601 
3602   if (HAS_PENDING_EXCEPTION) {
3603     // management agent fails to start possibly due to
3604     // configuration problem and is responsible for printing
3605     // stack trace if appropriate. Simply exit VM.
3606     vm_exit(1);
3607   }
3608 #endif // INCLUDE_MANAGEMENT
3609 
3610   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3611   if (MemProfiling)                   MemProfiler::engage();
3612   StatSampler::engage();
3613   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3614 
3615   BiasedLocking::init();
3616 
3617 #if INCLUDE_RTM_OPT
3618   RTMLockingCounters::init();
3619 #endif
3620 
3621   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3622     call_postVMInitHook(THREAD);
3623     // The Java side of PostVMInitHook.run must deal with all
3624     // exceptions and provide means of diagnosis.
3625     if (HAS_PENDING_EXCEPTION) {
3626       CLEAR_PENDING_EXCEPTION;
3627     }
3628   }
3629 
3630   {
3631     MutexLocker ml(PeriodicTask_lock);
3632     // Make sure the WatcherThread can be started by WatcherThread::start()
3633     // or by dynamic enrollment.
3634     WatcherThread::make_startable();
3635     // Start up the WatcherThread if there are any periodic tasks
3636     // NOTE:  All PeriodicTasks should be registered by now. If they
3637     //   aren't, late joiners might appear to start slowly (we might
3638     //   take a while to process their first tick).
3639     if (PeriodicTask::num_tasks() > 0) {
3640       WatcherThread::start();
3641     }
3642   }
3643 
3644   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3645 
3646   create_vm_timer.end();
3647 #ifdef ASSERT
3648   _vm_complete = true;
3649 #endif
3650   return JNI_OK;
3651 }
3652 
3653 // type for the Agent_OnLoad and JVM_OnLoad entry points
3654 extern "C" {
3655   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3656 }
3657 // Find a command line agent library and return its entry point for
3658 //         -agentlib:  -agentpath:   -Xrun
3659 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3660 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3661                                     const char *on_load_symbols[],
3662                                     size_t num_symbol_entries) {
3663   OnLoadEntry_t on_load_entry = NULL;
3664   void *library = NULL;
3665 
3666   if (!agent->valid()) {
3667     char buffer[JVM_MAXPATHLEN];
3668     char ebuf[1024] = "";
3669     const char *name = agent->name();
3670     const char *msg = "Could not find agent library ";
3671 
3672     // First check to see if agent is statically linked into executable
3673     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3674       library = agent->os_lib();
3675     } else if (agent->is_absolute_path()) {
3676       library = os::dll_load(name, ebuf, sizeof ebuf);
3677       if (library == NULL) {
3678         const char *sub_msg = " in absolute path, with error: ";
3679         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3680         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3681         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3682         // If we can't find the agent, exit.
3683         vm_exit_during_initialization(buf, NULL);
3684         FREE_C_HEAP_ARRAY(char, buf);
3685       }
3686     } else {
3687       // Try to load the agent from the standard dll directory
3688       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3689                              name)) {
3690         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3691       }
3692       if (library == NULL) { // Try the local directory
3693         char ns[1] = {0};
3694         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3695           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3696         }
3697         if (library == NULL) {
3698           const char *sub_msg = " on the library path, with error: ";
3699           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3700           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3701           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3702           // If we can't find the agent, exit.
3703           vm_exit_during_initialization(buf, NULL);
3704           FREE_C_HEAP_ARRAY(char, buf);
3705         }
3706       }
3707     }
3708     agent->set_os_lib(library);
3709     agent->set_valid();
3710   }
3711 
3712   // Find the OnLoad function.
3713   on_load_entry =
3714     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3715                                                           false,
3716                                                           on_load_symbols,
3717                                                           num_symbol_entries));
3718   return on_load_entry;
3719 }
3720 
3721 // Find the JVM_OnLoad entry point
3722 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3723   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3724   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3725 }
3726 
3727 // Find the Agent_OnLoad entry point
3728 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3729   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3730   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3731 }
3732 
3733 // For backwards compatibility with -Xrun
3734 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3735 // treated like -agentpath:
3736 // Must be called before agent libraries are created
3737 void Threads::convert_vm_init_libraries_to_agents() {
3738   AgentLibrary* agent;
3739   AgentLibrary* next;
3740 
3741   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3742     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3743     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3744 
3745     // If there is an JVM_OnLoad function it will get called later,
3746     // otherwise see if there is an Agent_OnLoad
3747     if (on_load_entry == NULL) {
3748       on_load_entry = lookup_agent_on_load(agent);
3749       if (on_load_entry != NULL) {
3750         // switch it to the agent list -- so that Agent_OnLoad will be called,
3751         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3752         Arguments::convert_library_to_agent(agent);
3753       } else {
3754         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3755       }
3756     }
3757   }
3758 }
3759 
3760 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3761 // Invokes Agent_OnLoad
3762 // Called very early -- before JavaThreads exist
3763 void Threads::create_vm_init_agents() {
3764   extern struct JavaVM_ main_vm;
3765   AgentLibrary* agent;
3766 
3767   JvmtiExport::enter_onload_phase();
3768 
3769   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3770     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3771 
3772     if (on_load_entry != NULL) {
3773       // Invoke the Agent_OnLoad function
3774       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3775       if (err != JNI_OK) {
3776         vm_exit_during_initialization("agent library failed to init", agent->name());
3777       }
3778     } else {
3779       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3780     }
3781   }
3782   JvmtiExport::enter_primordial_phase();
3783 }
3784 
3785 extern "C" {
3786   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3787 }
3788 
3789 void Threads::shutdown_vm_agents() {
3790   // Send any Agent_OnUnload notifications
3791   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3792   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3793   extern struct JavaVM_ main_vm;
3794   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3795 
3796     // Find the Agent_OnUnload function.
3797     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3798                                                    os::find_agent_function(agent,
3799                                                    false,
3800                                                    on_unload_symbols,
3801                                                    num_symbol_entries));
3802 
3803     // Invoke the Agent_OnUnload function
3804     if (unload_entry != NULL) {
3805       JavaThread* thread = JavaThread::current();
3806       ThreadToNativeFromVM ttn(thread);
3807       HandleMark hm(thread);
3808       (*unload_entry)(&main_vm);
3809     }
3810   }
3811 }
3812 
3813 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3814 // Invokes JVM_OnLoad
3815 void Threads::create_vm_init_libraries() {
3816   extern struct JavaVM_ main_vm;
3817   AgentLibrary* agent;
3818 
3819   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3820     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3821 
3822     if (on_load_entry != NULL) {
3823       // Invoke the JVM_OnLoad function
3824       JavaThread* thread = JavaThread::current();
3825       ThreadToNativeFromVM ttn(thread);
3826       HandleMark hm(thread);
3827       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3828       if (err != JNI_OK) {
3829         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3830       }
3831     } else {
3832       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3833     }
3834   }
3835 }
3836 
3837 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3838   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3839 
3840   JavaThread* java_thread = NULL;
3841   // Sequential search for now.  Need to do better optimization later.
3842   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3843     oop tobj = thread->threadObj();
3844     if (!thread->is_exiting() &&
3845         tobj != NULL &&
3846         java_tid == java_lang_Thread::thread_id(tobj)) {
3847       java_thread = thread;
3848       break;
3849     }
3850   }
3851   return java_thread;
3852 }
3853 
3854 
3855 // Last thread running calls java.lang.Shutdown.shutdown()
3856 void JavaThread::invoke_shutdown_hooks() {
3857   HandleMark hm(this);
3858 
3859   // We could get here with a pending exception, if so clear it now.
3860   if (this->has_pending_exception()) {
3861     this->clear_pending_exception();
3862   }
3863 
3864   EXCEPTION_MARK;
3865   Klass* k =
3866     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3867                                       THREAD);
3868   if (k != NULL) {
3869     // SystemDictionary::resolve_or_null will return null if there was
3870     // an exception.  If we cannot load the Shutdown class, just don't
3871     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3872     // and finalizers (if runFinalizersOnExit is set) won't be run.
3873     // Note that if a shutdown hook was registered or runFinalizersOnExit
3874     // was called, the Shutdown class would have already been loaded
3875     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3876     instanceKlassHandle shutdown_klass (THREAD, k);
3877     JavaValue result(T_VOID);
3878     JavaCalls::call_static(&result,
3879                            shutdown_klass,
3880                            vmSymbols::shutdown_method_name(),
3881                            vmSymbols::void_method_signature(),
3882                            THREAD);
3883   }
3884   CLEAR_PENDING_EXCEPTION;
3885 }
3886 
3887 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3888 // the program falls off the end of main(). Another VM exit path is through
3889 // vm_exit() when the program calls System.exit() to return a value or when
3890 // there is a serious error in VM. The two shutdown paths are not exactly
3891 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3892 // and VM_Exit op at VM level.
3893 //
3894 // Shutdown sequence:
3895 //   + Shutdown native memory tracking if it is on
3896 //   + Wait until we are the last non-daemon thread to execute
3897 //     <-- every thing is still working at this moment -->
3898 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3899 //        shutdown hooks, run finalizers if finalization-on-exit
3900 //   + Call before_exit(), prepare for VM exit
3901 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3902 //        currently the only user of this mechanism is File.deleteOnExit())
3903 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3904 //        post thread end and vm death events to JVMTI,
3905 //        stop signal thread
3906 //   + Call JavaThread::exit(), it will:
3907 //      > release JNI handle blocks, remove stack guard pages
3908 //      > remove this thread from Threads list
3909 //     <-- no more Java code from this thread after this point -->
3910 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3911 //     the compiler threads at safepoint
3912 //     <-- do not use anything that could get blocked by Safepoint -->
3913 //   + Disable tracing at JNI/JVM barriers
3914 //   + Set _vm_exited flag for threads that are still running native code
3915 //   + Delete this thread
3916 //   + Call exit_globals()
3917 //      > deletes tty
3918 //      > deletes PerfMemory resources
3919 //   + Return to caller
3920 
3921 bool Threads::destroy_vm() {
3922   JavaThread* thread = JavaThread::current();
3923 
3924 #ifdef ASSERT
3925   _vm_complete = false;
3926 #endif
3927   // Wait until we are the last non-daemon thread to execute
3928   { MutexLocker nu(Threads_lock);
3929     while (Threads::number_of_non_daemon_threads() > 1)
3930       // This wait should make safepoint checks, wait without a timeout,
3931       // and wait as a suspend-equivalent condition.
3932       //
3933       // Note: If the FlatProfiler is running and this thread is waiting
3934       // for another non-daemon thread to finish, then the FlatProfiler
3935       // is waiting for the external suspend request on this thread to
3936       // complete. wait_for_ext_suspend_completion() will eventually
3937       // timeout, but that takes time. Making this wait a suspend-
3938       // equivalent condition solves that timeout problem.
3939       //
3940       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3941                          Mutex::_as_suspend_equivalent_flag);
3942   }
3943 
3944   // Hang forever on exit if we are reporting an error.
3945   if (ShowMessageBoxOnError && is_error_reported()) {
3946     os::infinite_sleep();
3947   }
3948   os::wait_for_keypress_at_exit();
3949 
3950   // run Java level shutdown hooks
3951   thread->invoke_shutdown_hooks();
3952 
3953   before_exit(thread);
3954 
3955   thread->exit(true);
3956 
3957   // Stop GC threads.
3958   Universe::heap()->shutdown();
3959 
3960   // Stop VM thread.
3961   {
3962     // 4945125 The vm thread comes to a safepoint during exit.
3963     // GC vm_operations can get caught at the safepoint, and the
3964     // heap is unparseable if they are caught. Grab the Heap_lock
3965     // to prevent this. The GC vm_operations will not be able to
3966     // queue until after the vm thread is dead. After this point,
3967     // we'll never emerge out of the safepoint before the VM exits.
3968 
3969     MutexLocker ml(Heap_lock);
3970 
3971     VMThread::wait_for_vm_thread_exit();
3972     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3973     VMThread::destroy();
3974   }
3975 
3976   // clean up ideal graph printers
3977 #if defined(COMPILER2) && !defined(PRODUCT)
3978   IdealGraphPrinter::clean_up();
3979 #endif
3980 
3981   // Now, all Java threads are gone except daemon threads. Daemon threads
3982   // running Java code or in VM are stopped by the Safepoint. However,
3983   // daemon threads executing native code are still running.  But they
3984   // will be stopped at native=>Java/VM barriers. Note that we can't
3985   // simply kill or suspend them, as it is inherently deadlock-prone.
3986 
3987 #ifndef PRODUCT
3988   // disable function tracing at JNI/JVM barriers
3989   TraceJNICalls = false;
3990   TraceJVMCalls = false;
3991   TraceRuntimeCalls = false;
3992 #endif
3993 
3994   VM_Exit::set_vm_exited();
3995 
3996   notify_vm_shutdown();
3997 
3998   delete thread;
3999 
4000   // exit_globals() will delete tty
4001   exit_globals();
4002 
4003   return true;
4004 }
4005 
4006 
4007 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4008   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4009   return is_supported_jni_version(version);
4010 }
4011 
4012 
4013 jboolean Threads::is_supported_jni_version(jint version) {
4014   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4015   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4016   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4017   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4018   return JNI_FALSE;
4019 }
4020 
4021 
4022 void Threads::add(JavaThread* p, bool force_daemon) {
4023   // The threads lock must be owned at this point
4024   assert_locked_or_safepoint(Threads_lock);
4025 
4026   // See the comment for this method in thread.hpp for its purpose and
4027   // why it is called here.
4028   p->initialize_queues();
4029   p->set_next(_thread_list);
4030   _thread_list = p;
4031   _number_of_threads++;
4032   oop threadObj = p->threadObj();
4033   bool daemon = true;
4034   // Bootstrapping problem: threadObj can be null for initial
4035   // JavaThread (or for threads attached via JNI)
4036   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4037     _number_of_non_daemon_threads++;
4038     daemon = false;
4039   }
4040 
4041   ThreadService::add_thread(p, daemon);
4042 
4043   // Possible GC point.
4044   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4045 }
4046 
4047 void Threads::remove(JavaThread* p) {
4048   // Extra scope needed for Thread_lock, so we can check
4049   // that we do not remove thread without safepoint code notice
4050   { MutexLocker ml(Threads_lock);
4051 
4052     assert(includes(p), "p must be present");
4053 
4054     JavaThread* current = _thread_list;
4055     JavaThread* prev    = NULL;
4056 
4057     while (current != p) {
4058       prev    = current;
4059       current = current->next();
4060     }
4061 
4062     if (prev) {
4063       prev->set_next(current->next());
4064     } else {
4065       _thread_list = p->next();
4066     }
4067     _number_of_threads--;
4068     oop threadObj = p->threadObj();
4069     bool daemon = true;
4070     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4071       _number_of_non_daemon_threads--;
4072       daemon = false;
4073 
4074       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4075       // on destroy_vm will wake up.
4076       if (number_of_non_daemon_threads() == 1) {
4077         Threads_lock->notify_all();
4078       }
4079     }
4080     ThreadService::remove_thread(p, daemon);
4081 
4082     // Make sure that safepoint code disregard this thread. This is needed since
4083     // the thread might mess around with locks after this point. This can cause it
4084     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4085     // of this thread since it is removed from the queue.
4086     p->set_terminated_value();
4087   } // unlock Threads_lock
4088 
4089   // Since Events::log uses a lock, we grab it outside the Threads_lock
4090   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4091 }
4092 
4093 // Threads_lock must be held when this is called (or must be called during a safepoint)
4094 bool Threads::includes(JavaThread* p) {
4095   assert(Threads_lock->is_locked(), "sanity check");
4096   ALL_JAVA_THREADS(q) {
4097     if (q == p) {
4098       return true;
4099     }
4100   }
4101   return false;
4102 }
4103 
4104 // Operations on the Threads list for GC.  These are not explicitly locked,
4105 // but the garbage collector must provide a safe context for them to run.
4106 // In particular, these things should never be called when the Threads_lock
4107 // is held by some other thread. (Note: the Safepoint abstraction also
4108 // uses the Threads_lock to guarantee this property. It also makes sure that
4109 // all threads gets blocked when exiting or starting).
4110 
4111 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4112   ALL_JAVA_THREADS(p) {
4113     p->oops_do(f, cld_f, cf);
4114   }
4115   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4116 }
4117 
4118 void Threads::change_thread_claim_parity() {
4119   // Set the new claim parity.
4120   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4121          "Not in range.");
4122   _thread_claim_parity++;
4123   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4124   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4125          "Not in range.");
4126 }
4127 
4128 #ifdef ASSERT
4129 void Threads::assert_all_threads_claimed() {
4130   ALL_JAVA_THREADS(p) {
4131     const int thread_parity = p->oops_do_parity();
4132     assert((thread_parity == _thread_claim_parity),
4133         err_msg("Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity));
4134   }
4135 }
4136 #endif // ASSERT
4137 
4138 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4139   int cp = Threads::thread_claim_parity();
4140   ALL_JAVA_THREADS(p) {
4141     if (p->claim_oops_do(is_par, cp)) {
4142       p->oops_do(f, cld_f, cf);
4143     }
4144   }
4145   VMThread* vmt = VMThread::vm_thread();
4146   if (vmt->claim_oops_do(is_par, cp)) {
4147     vmt->oops_do(f, cld_f, cf);
4148   }
4149 }
4150 
4151 #if INCLUDE_ALL_GCS
4152 // Used by ParallelScavenge
4153 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4154   ALL_JAVA_THREADS(p) {
4155     q->enqueue(new ThreadRootsTask(p));
4156   }
4157   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4158 }
4159 
4160 // Used by Parallel Old
4161 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4162   ALL_JAVA_THREADS(p) {
4163     q->enqueue(new ThreadRootsMarkingTask(p));
4164   }
4165   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4166 }
4167 #endif // INCLUDE_ALL_GCS
4168 
4169 void Threads::nmethods_do(CodeBlobClosure* cf) {
4170   ALL_JAVA_THREADS(p) {
4171     p->nmethods_do(cf);
4172   }
4173   VMThread::vm_thread()->nmethods_do(cf);
4174 }
4175 
4176 void Threads::metadata_do(void f(Metadata*)) {
4177   ALL_JAVA_THREADS(p) {
4178     p->metadata_do(f);
4179   }
4180 }
4181 
4182 class ThreadHandlesClosure : public ThreadClosure {
4183   void (*_f)(Metadata*);
4184  public:
4185   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4186   virtual void do_thread(Thread* thread) {
4187     thread->metadata_handles_do(_f);
4188   }
4189 };
4190 
4191 void Threads::metadata_handles_do(void f(Metadata*)) {
4192   // Only walk the Handles in Thread.
4193   ThreadHandlesClosure handles_closure(f);
4194   threads_do(&handles_closure);
4195 }
4196 
4197 void Threads::deoptimized_wrt_marked_nmethods() {
4198   ALL_JAVA_THREADS(p) {
4199     p->deoptimized_wrt_marked_nmethods();
4200   }
4201 }
4202 
4203 
4204 // Get count Java threads that are waiting to enter the specified monitor.
4205 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4206                                                          address monitor,
4207                                                          bool doLock) {
4208   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4209          "must grab Threads_lock or be at safepoint");
4210   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4211 
4212   int i = 0;
4213   {
4214     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4215     ALL_JAVA_THREADS(p) {
4216       if (p->is_Compiler_thread()) continue;
4217 
4218       address pending = (address)p->current_pending_monitor();
4219       if (pending == monitor) {             // found a match
4220         if (i < count) result->append(p);   // save the first count matches
4221         i++;
4222       }
4223     }
4224   }
4225   return result;
4226 }
4227 
4228 
4229 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4230                                                       bool doLock) {
4231   assert(doLock ||
4232          Threads_lock->owned_by_self() ||
4233          SafepointSynchronize::is_at_safepoint(),
4234          "must grab Threads_lock or be at safepoint");
4235 
4236   // NULL owner means not locked so we can skip the search
4237   if (owner == NULL) return NULL;
4238 
4239   {
4240     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4241     ALL_JAVA_THREADS(p) {
4242       // first, see if owner is the address of a Java thread
4243       if (owner == (address)p) return p;
4244     }
4245   }
4246   // Cannot assert on lack of success here since this function may be
4247   // used by code that is trying to report useful problem information
4248   // like deadlock detection.
4249   if (UseHeavyMonitors) return NULL;
4250 
4251   // If we didn't find a matching Java thread and we didn't force use of
4252   // heavyweight monitors, then the owner is the stack address of the
4253   // Lock Word in the owning Java thread's stack.
4254   //
4255   JavaThread* the_owner = NULL;
4256   {
4257     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4258     ALL_JAVA_THREADS(q) {
4259       if (q->is_lock_owned(owner)) {
4260         the_owner = q;
4261         break;
4262       }
4263     }
4264   }
4265   // cannot assert on lack of success here; see above comment
4266   return the_owner;
4267 }
4268 
4269 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4270 void Threads::print_on(outputStream* st, bool print_stacks,
4271                        bool internal_format, bool print_concurrent_locks) {
4272   char buf[32];
4273   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4274 
4275   st->print_cr("Full thread dump %s (%s %s):",
4276                Abstract_VM_Version::vm_name(),
4277                Abstract_VM_Version::vm_release(),
4278                Abstract_VM_Version::vm_info_string());
4279   st->cr();
4280 
4281 #if INCLUDE_SERVICES
4282   // Dump concurrent locks
4283   ConcurrentLocksDump concurrent_locks;
4284   if (print_concurrent_locks) {
4285     concurrent_locks.dump_at_safepoint();
4286   }
4287 #endif // INCLUDE_SERVICES
4288 
4289   ALL_JAVA_THREADS(p) {
4290     ResourceMark rm;
4291     p->print_on(st);
4292     if (print_stacks) {
4293       if (internal_format) {
4294         p->trace_stack();
4295       } else {
4296         p->print_stack_on(st);
4297       }
4298     }
4299     st->cr();
4300 #if INCLUDE_SERVICES
4301     if (print_concurrent_locks) {
4302       concurrent_locks.print_locks_on(p, st);
4303     }
4304 #endif // INCLUDE_SERVICES
4305   }
4306 
4307   VMThread::vm_thread()->print_on(st);
4308   st->cr();
4309   Universe::heap()->print_gc_threads_on(st);
4310   WatcherThread* wt = WatcherThread::watcher_thread();
4311   if (wt != NULL) {
4312     wt->print_on(st);
4313     st->cr();
4314   }
4315   CompileBroker::print_compiler_threads_on(st);
4316   st->flush();
4317 }
4318 
4319 // Threads::print_on_error() is called by fatal error handler. It's possible
4320 // that VM is not at safepoint and/or current thread is inside signal handler.
4321 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4322 // memory (even in resource area), it might deadlock the error handler.
4323 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4324                              int buflen) {
4325   bool found_current = false;
4326   st->print_cr("Java Threads: ( => current thread )");
4327   ALL_JAVA_THREADS(thread) {
4328     bool is_current = (current == thread);
4329     found_current = found_current || is_current;
4330 
4331     st->print("%s", is_current ? "=>" : "  ");
4332 
4333     st->print(PTR_FORMAT, thread);
4334     st->print(" ");
4335     thread->print_on_error(st, buf, buflen);
4336     st->cr();
4337   }
4338   st->cr();
4339 
4340   st->print_cr("Other Threads:");
4341   if (VMThread::vm_thread()) {
4342     bool is_current = (current == VMThread::vm_thread());
4343     found_current = found_current || is_current;
4344     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4345 
4346     st->print(PTR_FORMAT, VMThread::vm_thread());
4347     st->print(" ");
4348     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4349     st->cr();
4350   }
4351   WatcherThread* wt = WatcherThread::watcher_thread();
4352   if (wt != NULL) {
4353     bool is_current = (current == wt);
4354     found_current = found_current || is_current;
4355     st->print("%s", is_current ? "=>" : "  ");
4356 
4357     st->print(PTR_FORMAT, wt);
4358     st->print(" ");
4359     wt->print_on_error(st, buf, buflen);
4360     st->cr();
4361   }
4362   if (!found_current) {
4363     st->cr();
4364     st->print("=>" PTR_FORMAT " (exited) ", current);
4365     current->print_on_error(st, buf, buflen);
4366     st->cr();
4367   }
4368 }
4369 
4370 // Internal SpinLock and Mutex
4371 // Based on ParkEvent
4372 
4373 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4374 //
4375 // We employ SpinLocks _only for low-contention, fixed-length
4376 // short-duration critical sections where we're concerned
4377 // about native mutex_t or HotSpot Mutex:: latency.
4378 // The mux construct provides a spin-then-block mutual exclusion
4379 // mechanism.
4380 //
4381 // Testing has shown that contention on the ListLock guarding gFreeList
4382 // is common.  If we implement ListLock as a simple SpinLock it's common
4383 // for the JVM to devolve to yielding with little progress.  This is true
4384 // despite the fact that the critical sections protected by ListLock are
4385 // extremely short.
4386 //
4387 // TODO-FIXME: ListLock should be of type SpinLock.
4388 // We should make this a 1st-class type, integrated into the lock
4389 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4390 // should have sufficient padding to avoid false-sharing and excessive
4391 // cache-coherency traffic.
4392 
4393 
4394 typedef volatile int SpinLockT;
4395 
4396 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4397   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4398     return;   // normal fast-path return
4399   }
4400 
4401   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4402   TEVENT(SpinAcquire - ctx);
4403   int ctr = 0;
4404   int Yields = 0;
4405   for (;;) {
4406     while (*adr != 0) {
4407       ++ctr;
4408       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4409         if (Yields > 5) {
4410           os::naked_short_sleep(1);
4411         } else {
4412           os::naked_yield();
4413           ++Yields;
4414         }
4415       } else {
4416         SpinPause();
4417       }
4418     }
4419     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4420   }
4421 }
4422 
4423 void Thread::SpinRelease(volatile int * adr) {
4424   assert(*adr != 0, "invariant");
4425   OrderAccess::fence();      // guarantee at least release consistency.
4426   // Roach-motel semantics.
4427   // It's safe if subsequent LDs and STs float "up" into the critical section,
4428   // but prior LDs and STs within the critical section can't be allowed
4429   // to reorder or float past the ST that releases the lock.
4430   // Loads and stores in the critical section - which appear in program
4431   // order before the store that releases the lock - must also appear
4432   // before the store that releases the lock in memory visibility order.
4433   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4434   // the ST of 0 into the lock-word which releases the lock, so fence
4435   // more than covers this on all platforms.
4436   *adr = 0;
4437 }
4438 
4439 // muxAcquire and muxRelease:
4440 //
4441 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4442 //    The LSB of the word is set IFF the lock is held.
4443 //    The remainder of the word points to the head of a singly-linked list
4444 //    of threads blocked on the lock.
4445 //
4446 // *  The current implementation of muxAcquire-muxRelease uses its own
4447 //    dedicated Thread._MuxEvent instance.  If we're interested in
4448 //    minimizing the peak number of extant ParkEvent instances then
4449 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4450 //    as certain invariants were satisfied.  Specifically, care would need
4451 //    to be taken with regards to consuming unpark() "permits".
4452 //    A safe rule of thumb is that a thread would never call muxAcquire()
4453 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4454 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4455 //    consume an unpark() permit intended for monitorenter, for instance.
4456 //    One way around this would be to widen the restricted-range semaphore
4457 //    implemented in park().  Another alternative would be to provide
4458 //    multiple instances of the PlatformEvent() for each thread.  One
4459 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4460 //
4461 // *  Usage:
4462 //    -- Only as leaf locks
4463 //    -- for short-term locking only as muxAcquire does not perform
4464 //       thread state transitions.
4465 //
4466 // Alternatives:
4467 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4468 //    but with parking or spin-then-park instead of pure spinning.
4469 // *  Use Taura-Oyama-Yonenzawa locks.
4470 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4471 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4472 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4473 //    acquiring threads use timers (ParkTimed) to detect and recover from
4474 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4475 //    boundaries by using placement-new.
4476 // *  Augment MCS with advisory back-link fields maintained with CAS().
4477 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4478 //    The validity of the backlinks must be ratified before we trust the value.
4479 //    If the backlinks are invalid the exiting thread must back-track through the
4480 //    the forward links, which are always trustworthy.
4481 // *  Add a successor indication.  The LockWord is currently encoded as
4482 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4483 //    to provide the usual futile-wakeup optimization.
4484 //    See RTStt for details.
4485 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4486 //
4487 
4488 
4489 typedef volatile intptr_t MutexT;      // Mux Lock-word
4490 enum MuxBits { LOCKBIT = 1 };
4491 
4492 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4493   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4494   if (w == 0) return;
4495   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4496     return;
4497   }
4498 
4499   TEVENT(muxAcquire - Contention);
4500   ParkEvent * const Self = Thread::current()->_MuxEvent;
4501   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4502   for (;;) {
4503     int its = (os::is_MP() ? 100 : 0) + 1;
4504 
4505     // Optional spin phase: spin-then-park strategy
4506     while (--its >= 0) {
4507       w = *Lock;
4508       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4509         return;
4510       }
4511     }
4512 
4513     Self->reset();
4514     Self->OnList = intptr_t(Lock);
4515     // The following fence() isn't _strictly necessary as the subsequent
4516     // CAS() both serializes execution and ratifies the fetched *Lock value.
4517     OrderAccess::fence();
4518     for (;;) {
4519       w = *Lock;
4520       if ((w & LOCKBIT) == 0) {
4521         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4522           Self->OnList = 0;   // hygiene - allows stronger asserts
4523           return;
4524         }
4525         continue;      // Interference -- *Lock changed -- Just retry
4526       }
4527       assert(w & LOCKBIT, "invariant");
4528       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4529       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4530     }
4531 
4532     while (Self->OnList != 0) {
4533       Self->park();
4534     }
4535   }
4536 }
4537 
4538 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4539   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4540   if (w == 0) return;
4541   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4542     return;
4543   }
4544 
4545   TEVENT(muxAcquire - Contention);
4546   ParkEvent * ReleaseAfter = NULL;
4547   if (ev == NULL) {
4548     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4549   }
4550   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4551   for (;;) {
4552     guarantee(ev->OnList == 0, "invariant");
4553     int its = (os::is_MP() ? 100 : 0) + 1;
4554 
4555     // Optional spin phase: spin-then-park strategy
4556     while (--its >= 0) {
4557       w = *Lock;
4558       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4559         if (ReleaseAfter != NULL) {
4560           ParkEvent::Release(ReleaseAfter);
4561         }
4562         return;
4563       }
4564     }
4565 
4566     ev->reset();
4567     ev->OnList = intptr_t(Lock);
4568     // The following fence() isn't _strictly necessary as the subsequent
4569     // CAS() both serializes execution and ratifies the fetched *Lock value.
4570     OrderAccess::fence();
4571     for (;;) {
4572       w = *Lock;
4573       if ((w & LOCKBIT) == 0) {
4574         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4575           ev->OnList = 0;
4576           // We call ::Release while holding the outer lock, thus
4577           // artificially lengthening the critical section.
4578           // Consider deferring the ::Release() until the subsequent unlock(),
4579           // after we've dropped the outer lock.
4580           if (ReleaseAfter != NULL) {
4581             ParkEvent::Release(ReleaseAfter);
4582           }
4583           return;
4584         }
4585         continue;      // Interference -- *Lock changed -- Just retry
4586       }
4587       assert(w & LOCKBIT, "invariant");
4588       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4589       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4590     }
4591 
4592     while (ev->OnList != 0) {
4593       ev->park();
4594     }
4595   }
4596 }
4597 
4598 // Release() must extract a successor from the list and then wake that thread.
4599 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4600 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4601 // Release() would :
4602 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4603 // (B) Extract a successor from the private list "in-hand"
4604 // (C) attempt to CAS() the residual back into *Lock over null.
4605 //     If there were any newly arrived threads and the CAS() would fail.
4606 //     In that case Release() would detach the RATs, re-merge the list in-hand
4607 //     with the RATs and repeat as needed.  Alternately, Release() might
4608 //     detach and extract a successor, but then pass the residual list to the wakee.
4609 //     The wakee would be responsible for reattaching and remerging before it
4610 //     competed for the lock.
4611 //
4612 // Both "pop" and DMR are immune from ABA corruption -- there can be
4613 // multiple concurrent pushers, but only one popper or detacher.
4614 // This implementation pops from the head of the list.  This is unfair,
4615 // but tends to provide excellent throughput as hot threads remain hot.
4616 // (We wake recently run threads first).
4617 //
4618 // All paths through muxRelease() will execute a CAS.
4619 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4620 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4621 // executed within the critical section are complete and globally visible before the
4622 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4623 void Thread::muxRelease(volatile intptr_t * Lock)  {
4624   for (;;) {
4625     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4626     assert(w & LOCKBIT, "invariant");
4627     if (w == LOCKBIT) return;
4628     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4629     assert(List != NULL, "invariant");
4630     assert(List->OnList == intptr_t(Lock), "invariant");
4631     ParkEvent * const nxt = List->ListNext;
4632     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4633 
4634     // The following CAS() releases the lock and pops the head element.
4635     // The CAS() also ratifies the previously fetched lock-word value.
4636     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4637       continue;
4638     }
4639     List->OnList = 0;
4640     OrderAccess::fence();
4641     List->unpark();
4642     return;
4643   }
4644 }
4645 
4646 
4647 void Threads::verify() {
4648   ALL_JAVA_THREADS(p) {
4649     p->verify();
4650   }
4651   VMThread* thread = VMThread::vm_thread();
4652   if (thread != NULL) thread->verify();
4653 }