1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/biasedLocking.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/interfaceSupport.hpp"
  33 #include "runtime/mutexLocker.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/objectMonitor.inline.hpp"
  36 #include "runtime/osThread.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 #include "utilities/dtrace.hpp"
  41 #include "utilities/events.hpp"
  42 #include "utilities/preserveException.hpp"
  43 #ifdef TARGET_OS_FAMILY_linux
  44 # include "os_linux.inline.hpp"
  45 #endif
  46 #ifdef TARGET_OS_FAMILY_solaris
  47 # include "os_solaris.inline.hpp"
  48 #endif
  49 #ifdef TARGET_OS_FAMILY_windows
  50 # include "os_windows.inline.hpp"
  51 #endif
  52 #ifdef TARGET_OS_FAMILY_bsd
  53 # include "os_bsd.inline.hpp"
  54 #endif
  55 
  56 #if defined(__GNUC__) && !defined(PPC64)
  57   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  58   #define ATTR __attribute__((noinline))
  59 #else
  60   #define ATTR
  61 #endif
  62 
  63 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  64 
  65 // The "core" versions of monitor enter and exit reside in this file.
  66 // The interpreter and compilers contain specialized transliterated
  67 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  68 // for instance.  If you make changes here, make sure to modify the
  69 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  70 //
  71 //
  72 // -----------------------------------------------------------------------------
  73 
  74 #ifdef DTRACE_ENABLED
  75 
  76 // Only bother with this argument setup if dtrace is available
  77 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  78 
  79 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  80   char* bytes = NULL;                                                      \
  81   int len = 0;                                                             \
  82   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  83   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  84   if (klassname != NULL) {                                                 \
  85     bytes = (char*)klassname->bytes();                                     \
  86     len = klassname->utf8_length();                                        \
  87   }
  88 
  89 #ifndef USDT2
  90 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
  91   jlong, uintptr_t, char*, int, long);
  92 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
  93   jlong, uintptr_t, char*, int);
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  96   {                                                                        \
  97     if (DTraceMonitorProbes) {                                            \
  98       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  99       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
 100                        (monitor), bytes, len, (millis));                   \
 101     }                                                                      \
 102   }
 103 
 104 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 105   {                                                                        \
 106     if (DTraceMonitorProbes) {                                            \
 107       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 108       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 109                        (uintptr_t)(monitor), bytes, len);                  \
 110     }                                                                      \
 111   }
 112 
 113 #else /* USDT2 */
 114 
 115 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 116   {                                                                        \
 117     if (DTraceMonitorProbes) {                                            \
 118       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 119       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 120                            (uintptr_t)(monitor), bytes, len, (millis));  \
 121     }                                                                      \
 122   }
 123 
 124 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 125 
 126 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 127   {                                                                        \
 128     if (DTraceMonitorProbes) {                                            \
 129       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 130       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 131                        (uintptr_t)(monitor), bytes, len);                  \
 132     }                                                                      \
 133   }
 134 
 135 #endif /* USDT2 */
 136 #else //  ndef DTRACE_ENABLED
 137 
 138 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 139 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 140 
 141 #endif // ndef DTRACE_ENABLED
 142 
 143 // This exists only as a workaround of dtrace bug 6254741
 144 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 145   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 146   return 0;
 147 }
 148 
 149 #define NINFLATIONLOCKS 256
 150 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
 151 
 152 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
 153 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
 154 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
 155 int ObjectSynchronizer::gOmInUseCount = 0;
 156 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
 157 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
 158 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
 159 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 160 
 161 // -----------------------------------------------------------------------------
 162 //  Fast Monitor Enter/Exit
 163 // This the fast monitor enter. The interpreter and compiler use
 164 // some assembly copies of this code. Make sure update those code
 165 // if the following function is changed. The implementation is
 166 // extremely sensitive to race condition. Be careful.
 167 
 168 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
 169  if (UseBiasedLocking) {
 170     if (!SafepointSynchronize::is_at_safepoint()) {
 171       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 172       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 173         return;
 174       }
 175     } else {
 176       assert(!attempt_rebias, "can not rebias toward VM thread");
 177       BiasedLocking::revoke_at_safepoint(obj);
 178     }
 179     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 180  }
 181 
 182  slow_enter (obj, lock, THREAD) ;
 183 }
 184 
 185 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 186   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
 187   // if displaced header is null, the previous enter is recursive enter, no-op
 188   markOop dhw = lock->displaced_header();
 189   markOop mark ;
 190   if (dhw == NULL) {
 191      // Recursive stack-lock.
 192      // Diagnostics -- Could be: stack-locked, inflating, inflated.
 193      mark = object->mark() ;
 194      assert (!mark->is_neutral(), "invariant") ;
 195      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
 196         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
 197      }
 198      if (mark->has_monitor()) {
 199         ObjectMonitor * m = mark->monitor() ;
 200         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
 201         assert(m->is_entered(THREAD), "invariant") ;
 202      }
 203      return ;
 204   }
 205 
 206   mark = object->mark() ;
 207 
 208   // If the object is stack-locked by the current thread, try to
 209   // swing the displaced header from the box back to the mark.
 210   if (mark == (markOop) lock) {
 211      assert (dhw->is_neutral(), "invariant") ;
 212      if (object->cas_set_mark(dhw, mark) == mark) {
 213         TEVENT (fast_exit: release stacklock) ;
 214         return;
 215      }
 216   }
 217 
 218   ObjectSynchronizer::inflate(THREAD, object)->exit (true, THREAD) ;
 219 }
 220 
 221 // -----------------------------------------------------------------------------
 222 // Interpreter/Compiler Slow Case
 223 // This routine is used to handle interpreter/compiler slow case
 224 // We don't need to use fast path here, because it must have been
 225 // failed in the interpreter/compiler code.
 226 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 227   markOop mark = obj->mark();
 228   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 229 
 230   if (mark->is_neutral()) {
 231     // Anticipate successful CAS -- the ST of the displaced mark must
 232     // be visible <= the ST performed by the CAS.
 233     lock->set_displaced_header(mark);
 234     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 235       TEVENT (slow_enter: release stacklock) ;
 236       return ;
 237     }
 238     // Fall through to inflate() ...
 239   } else
 240   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 241     assert(lock != mark->locker(), "must not re-lock the same lock");
 242     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 243     lock->set_displaced_header(NULL);
 244     return;
 245   }
 246 
 247 #if 0
 248   // The following optimization isn't particularly useful.
 249   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
 250     lock->set_displaced_header (NULL) ;
 251     return ;
 252   }
 253 #endif
 254 
 255   // The object header will never be displaced to this lock,
 256   // so it does not matter what the value is, except that it
 257   // must be non-zero to avoid looking like a re-entrant lock,
 258   // and must not look locked either.
 259   lock->set_displaced_header(markOopDesc::unused_mark());
 260   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 261 }
 262 
 263 // This routine is used to handle interpreter/compiler slow case
 264 // We don't need to use fast path here, because it must have
 265 // failed in the interpreter/compiler code. Simply use the heavy
 266 // weight monitor should be ok, unless someone find otherwise.
 267 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 268   fast_exit (object, lock, THREAD) ;
 269 }
 270 
 271 // -----------------------------------------------------------------------------
 272 // Class Loader  support to workaround deadlocks on the class loader lock objects
 273 // Also used by GC
 274 // complete_exit()/reenter() are used to wait on a nested lock
 275 // i.e. to give up an outer lock completely and then re-enter
 276 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 277 //  1) complete_exit lock1 - saving recursion count
 278 //  2) wait on lock2
 279 //  3) when notified on lock2, unlock lock2
 280 //  4) reenter lock1 with original recursion count
 281 //  5) lock lock2
 282 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 283 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 284   TEVENT (complete_exit) ;
 285   if (UseBiasedLocking) {
 286     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 287     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 288   }
 289 
 290   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 291 
 292   return monitor->complete_exit(THREAD);
 293 }
 294 
 295 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 296 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 297   TEVENT (reenter) ;
 298   if (UseBiasedLocking) {
 299     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 300     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 301   }
 302 
 303   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 304 
 305   monitor->reenter(recursion, THREAD);
 306 }
 307 // -----------------------------------------------------------------------------
 308 // JNI locks on java objects
 309 // NOTE: must use heavy weight monitor to handle jni monitor enter
 310 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
 311   // the current locking is from JNI instead of Java code
 312   TEVENT (jni_enter) ;
 313   if (UseBiasedLocking) {
 314     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 315     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 316   }
 317   THREAD->set_current_pending_monitor_is_from_java(false);
 318   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 319   THREAD->set_current_pending_monitor_is_from_java(true);
 320 }
 321 
 322 // NOTE: must use heavy weight monitor to handle jni monitor enter
 323 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
 324   if (UseBiasedLocking) {
 325     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 326     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 327   }
 328 
 329   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
 330   return monitor->try_enter(THREAD);
 331 }
 332 
 333 
 334 // NOTE: must use heavy weight monitor to handle jni monitor exit
 335 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 336   TEVENT (jni_exit) ;
 337   if (UseBiasedLocking) {
 338     Handle h_obj(THREAD, obj);
 339     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 340     obj = h_obj();
 341   }
 342   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 343 
 344   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
 345   // If this thread has locked the object, exit the monitor.  Note:  can't use
 346   // monitor->check(CHECK); must exit even if an exception is pending.
 347   if (monitor->check(THREAD)) {
 348      monitor->exit(true, THREAD);
 349   }
 350 }
 351 
 352 // -----------------------------------------------------------------------------
 353 // Internal VM locks on java objects
 354 // standard constructor, allows locking failures
 355 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 356   _dolock = doLock;
 357   _thread = thread;
 358   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 359   _obj = obj;
 360 
 361   if (_dolock) {
 362     TEVENT (ObjectLocker) ;
 363 
 364     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 365   }
 366 }
 367 
 368 ObjectLocker::~ObjectLocker() {
 369   if (_dolock) {
 370     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 371   }
 372 }
 373 
 374 
 375 // -----------------------------------------------------------------------------
 376 //  Wait/Notify/NotifyAll
 377 // NOTE: must use heavy weight monitor to handle wait()
 378 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 379   if (UseBiasedLocking) {
 380     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 381     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 382   }
 383   if (millis < 0) {
 384     TEVENT (wait - throw IAX) ;
 385     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 386   }
 387   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 388   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 389   monitor->wait(millis, true, THREAD);
 390 
 391   /* This dummy call is in place to get around dtrace bug 6254741.  Once
 392      that's fixed we can uncomment the following line and remove the call */
 393   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 394   dtrace_waited_probe(monitor, obj, THREAD);
 395 }
 396 
 397 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
 398   if (UseBiasedLocking) {
 399     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 400     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 401   }
 402   if (millis < 0) {
 403     TEVENT (wait - throw IAX) ;
 404     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 405   }
 406   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
 407 }
 408 
 409 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 410  if (UseBiasedLocking) {
 411     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 412     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 413   }
 414 
 415   markOop mark = obj->mark();
 416   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 417     return;
 418   }
 419   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
 420 }
 421 
 422 // NOTE: see comment of notify()
 423 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 424   if (UseBiasedLocking) {
 425     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 426     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 427   }
 428 
 429   markOop mark = obj->mark();
 430   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 431     return;
 432   }
 433   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
 434 }
 435 
 436 // -----------------------------------------------------------------------------
 437 // Hash Code handling
 438 //
 439 // Performance concern:
 440 // OrderAccess::storestore() calls release() which at one time stored 0
 441 // into the global volatile OrderAccess::dummy variable. This store was
 442 // unnecessary for correctness. Many threads storing into a common location
 443 // causes considerable cache migration or "sloshing" on large SMP systems.
 444 // As such, I avoided using OrderAccess::storestore(). In some cases
 445 // OrderAccess::fence() -- which incurs local latency on the executing
 446 // processor -- is a better choice as it scales on SMP systems.
 447 //
 448 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 449 // a discussion of coherency costs. Note that all our current reference
 450 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 451 // x64, and SPARC.
 452 //
 453 // As a general policy we use "volatile" to control compiler-based reordering
 454 // and explicit fences (barriers) to control for architectural reordering
 455 // performed by the CPU(s) or platform.
 456 
 457 struct SharedGlobals {
 458     // These are highly shared mostly-read variables.
 459     // To avoid false-sharing they need to be the sole occupants of a $ line.
 460     double padPrefix [8];
 461     volatile int stwRandom ;
 462     volatile int stwCycle ;
 463 
 464     // Hot RW variables -- Sequester to avoid false-sharing
 465     double padSuffix [16];
 466     volatile int hcSequence ;
 467     double padFinal [8] ;
 468 } ;
 469 
 470 static SharedGlobals GVars ;
 471 static int MonitorScavengeThreshold = 1000000 ;
 472 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
 473 
 474 static markOop ReadStableMark (oop obj) {
 475   markOop mark = obj->mark() ;
 476   if (!mark->is_being_inflated()) {
 477     return mark ;       // normal fast-path return
 478   }
 479 
 480   int its = 0 ;
 481   for (;;) {
 482     markOop mark = obj->mark() ;
 483     if (!mark->is_being_inflated()) {
 484       return mark ;    // normal fast-path return
 485     }
 486 
 487     // The object is being inflated by some other thread.
 488     // The caller of ReadStableMark() must wait for inflation to complete.
 489     // Avoid live-lock
 490     // TODO: consider calling SafepointSynchronize::do_call_back() while
 491     // spinning to see if there's a safepoint pending.  If so, immediately
 492     // yielding or blocking would be appropriate.  Avoid spinning while
 493     // there is a safepoint pending.
 494     // TODO: add inflation contention performance counters.
 495     // TODO: restrict the aggregate number of spinners.
 496 
 497     ++its ;
 498     if (its > 10000 || !os::is_MP()) {
 499        if (its & 1) {
 500          os::NakedYield() ;
 501          TEVENT (Inflate: INFLATING - yield) ;
 502        } else {
 503          // Note that the following code attenuates the livelock problem but is not
 504          // a complete remedy.  A more complete solution would require that the inflating
 505          // thread hold the associated inflation lock.  The following code simply restricts
 506          // the number of spinners to at most one.  We'll have N-2 threads blocked
 507          // on the inflationlock, 1 thread holding the inflation lock and using
 508          // a yield/park strategy, and 1 thread in the midst of inflation.
 509          // A more refined approach would be to change the encoding of INFLATING
 510          // to allow encapsulation of a native thread pointer.  Threads waiting for
 511          // inflation to complete would use CAS to push themselves onto a singly linked
 512          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 513          // and calling park().  When inflation was complete the thread that accomplished inflation
 514          // would detach the list and set the markword to inflated with a single CAS and
 515          // then for each thread on the list, set the flag and unpark() the thread.
 516          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 517          // wakes at most one thread whereas we need to wake the entire list.
 518          int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1) ;
 519          int YieldThenBlock = 0 ;
 520          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
 521          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
 522          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
 523          while (obj->mark() == markOopDesc::INFLATING()) {
 524            // Beware: NakedYield() is advisory and has almost no effect on some platforms
 525            // so we periodically call Self->_ParkEvent->park(1).
 526            // We use a mixed spin/yield/block mechanism.
 527            if ((YieldThenBlock++) >= 16) {
 528               Thread::current()->_ParkEvent->park(1) ;
 529            } else {
 530               os::NakedYield() ;
 531            }
 532          }
 533          Thread::muxRelease (InflationLocks + ix ) ;
 534          TEVENT (Inflate: INFLATING - yield/park) ;
 535        }
 536     } else {
 537        SpinPause() ;       // SMP-polite spinning
 538     }
 539   }
 540 }
 541 
 542 // hashCode() generation :
 543 //
 544 // Possibilities:
 545 // * MD5Digest of {obj,stwRandom}
 546 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 547 // * A DES- or AES-style SBox[] mechanism
 548 // * One of the Phi-based schemes, such as:
 549 //   2654435761 = 2^32 * Phi (golden ratio)
 550 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 551 // * A variation of Marsaglia's shift-xor RNG scheme.
 552 // * (obj ^ stwRandom) is appealing, but can result
 553 //   in undesirable regularity in the hashCode values of adjacent objects
 554 //   (objects allocated back-to-back, in particular).  This could potentially
 555 //   result in hashtable collisions and reduced hashtable efficiency.
 556 //   There are simple ways to "diffuse" the middle address bits over the
 557 //   generated hashCode values:
 558 //
 559 
 560 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 561   intptr_t value = 0 ;
 562   if (hashCode == 0) {
 563      // This form uses an unguarded global Park-Miller RNG,
 564      // so it's possible for two threads to race and generate the same RNG.
 565      // On MP system we'll have lots of RW access to a global, so the
 566      // mechanism induces lots of coherency traffic.
 567      value = os::random() ;
 568   } else
 569   if (hashCode == 1) {
 570      // This variation has the property of being stable (idempotent)
 571      // between STW operations.  This can be useful in some of the 1-0
 572      // synchronization schemes.
 573      intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ;
 574      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
 575   } else
 576   if (hashCode == 2) {
 577      value = 1 ;            // for sensitivity testing
 578   } else
 579   if (hashCode == 3) {
 580      value = ++GVars.hcSequence ;
 581   } else
 582   if (hashCode == 4) {
 583      value = cast_from_oop<intptr_t>(obj) ;
 584   } else {
 585      // Marsaglia's xor-shift scheme with thread-specific state
 586      // This is probably the best overall implementation -- we'll
 587      // likely make this the default in future releases.
 588      unsigned t = Self->_hashStateX ;
 589      t ^= (t << 11) ;
 590      Self->_hashStateX = Self->_hashStateY ;
 591      Self->_hashStateY = Self->_hashStateZ ;
 592      Self->_hashStateZ = Self->_hashStateW ;
 593      unsigned v = Self->_hashStateW ;
 594      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
 595      Self->_hashStateW = v ;
 596      value = v ;
 597   }
 598 
 599   value &= markOopDesc::hash_mask;
 600   if (value == 0) value = 0xBAD ;
 601   assert (value != markOopDesc::no_hash, "invariant") ;
 602   TEVENT (hashCode: GENERATE) ;
 603   return value;
 604 }
 605 //
 606 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
 607   if (UseBiasedLocking) {
 608     // NOTE: many places throughout the JVM do not expect a safepoint
 609     // to be taken here, in particular most operations on perm gen
 610     // objects. However, we only ever bias Java instances and all of
 611     // the call sites of identity_hash that might revoke biases have
 612     // been checked to make sure they can handle a safepoint. The
 613     // added check of the bias pattern is to avoid useless calls to
 614     // thread-local storage.
 615     if (obj->mark()->has_bias_pattern()) {
 616       // Box and unbox the raw reference just in case we cause a STW safepoint.
 617       Handle hobj (Self, obj) ;
 618       // Relaxing assertion for bug 6320749.
 619       assert (Universe::verify_in_progress() ||
 620               !SafepointSynchronize::is_at_safepoint(),
 621              "biases should not be seen by VM thread here");
 622       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 623       obj = hobj() ;
 624       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 625     }
 626   }
 627 
 628   // hashCode() is a heap mutator ...
 629   // Relaxing assertion for bug 6320749.
 630   assert (Universe::verify_in_progress() ||
 631           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
 632   assert (Universe::verify_in_progress() ||
 633           Self->is_Java_thread() , "invariant") ;
 634   assert (Universe::verify_in_progress() ||
 635          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 636 
 637   ObjectMonitor* monitor = NULL;
 638   markOop temp, test;
 639   intptr_t hash;
 640   markOop mark = ReadStableMark (obj);
 641 
 642   // object should remain ineligible for biased locking
 643   assert (!mark->has_bias_pattern(), "invariant") ;
 644 
 645   if (mark->is_neutral()) {
 646     hash = mark->hash();              // this is a normal header
 647     if (hash) {                       // if it has hash, just return it
 648       return hash;
 649     }
 650     hash = get_next_hash(Self, obj);  // allocate a new hash code
 651     temp = mark->copy_set_hash(hash); // merge the hash code into header
 652     // use (machine word version) atomic operation to install the hash
 653     test = obj->cas_set_mark(temp, mark);
 654     if (test == mark) {
 655       return hash;
 656     }
 657     // If atomic operation failed, we must inflate the header
 658     // into heavy weight monitor. We could add more code here
 659     // for fast path, but it does not worth the complexity.
 660   } else if (mark->has_monitor()) {
 661     monitor = mark->monitor();
 662     temp = monitor->header();
 663     assert (temp->is_neutral(), "invariant") ;
 664     hash = temp->hash();
 665     if (hash) {
 666       return hash;
 667     }
 668     // Skip to the following code to reduce code size
 669   } else if (Self->is_lock_owned((address)mark->locker())) {
 670     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 671     assert (temp->is_neutral(), "invariant") ;
 672     hash = temp->hash();              // by current thread, check if the displaced
 673     if (hash) {                       // header contains hash code
 674       return hash;
 675     }
 676     // WARNING:
 677     //   The displaced header is strictly immutable.
 678     // It can NOT be changed in ANY cases. So we have
 679     // to inflate the header into heavyweight monitor
 680     // even the current thread owns the lock. The reason
 681     // is the BasicLock (stack slot) will be asynchronously
 682     // read by other threads during the inflate() function.
 683     // Any change to stack may not propagate to other threads
 684     // correctly.
 685   }
 686 
 687   // Inflate the monitor to set hash code
 688   monitor = ObjectSynchronizer::inflate(Self, obj);
 689   // Load displaced header and check it has hash code
 690   mark = monitor->header();
 691   assert (mark->is_neutral(), "invariant") ;
 692   hash = mark->hash();
 693   if (hash == 0) {
 694     hash = get_next_hash(Self, obj);
 695     temp = mark->copy_set_hash(hash); // merge hash code into header
 696     assert (temp->is_neutral(), "invariant") ;
 697     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 698     if (test != mark) {
 699       // The only update to the header in the monitor (outside GC)
 700       // is install the hash code. If someone add new usage of
 701       // displaced header, please update this code
 702       hash = test->hash();
 703       assert (test->is_neutral(), "invariant") ;
 704       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
 705     }
 706   }
 707   // We finally get the hash
 708   return hash;
 709 }
 710 
 711 // Deprecated -- use FastHashCode() instead.
 712 
 713 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 714   return FastHashCode (Thread::current(), obj()) ;
 715 }
 716 
 717 
 718 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 719                                                    Handle h_obj) {
 720   if (UseBiasedLocking) {
 721     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 722     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 723   }
 724 
 725   assert(thread == JavaThread::current(), "Can only be called on current thread");
 726   oop obj = h_obj();
 727 
 728   markOop mark = ReadStableMark (obj) ;
 729 
 730   // Uncontended case, header points to stack
 731   if (mark->has_locker()) {
 732     return thread->is_lock_owned((address)mark->locker());
 733   }
 734   // Contended case, header points to ObjectMonitor (tagged pointer)
 735   if (mark->has_monitor()) {
 736     ObjectMonitor* monitor = mark->monitor();
 737     return monitor->is_entered(thread) != 0 ;
 738   }
 739   // Unlocked case, header in place
 740   assert(mark->is_neutral(), "sanity check");
 741   return false;
 742 }
 743 
 744 // Be aware of this method could revoke bias of the lock object.
 745 // This method querys the ownership of the lock handle specified by 'h_obj'.
 746 // If the current thread owns the lock, it returns owner_self. If no
 747 // thread owns the lock, it returns owner_none. Otherwise, it will return
 748 // ower_other.
 749 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 750 (JavaThread *self, Handle h_obj) {
 751   // The caller must beware this method can revoke bias, and
 752   // revocation can result in a safepoint.
 753   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 754   assert (self->thread_state() != _thread_blocked , "invariant") ;
 755 
 756   // Possible mark states: neutral, biased, stack-locked, inflated
 757 
 758   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 759     // CASE: biased
 760     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 761     assert(!h_obj->mark()->has_bias_pattern(),
 762            "biases should be revoked by now");
 763   }
 764 
 765   assert(self == JavaThread::current(), "Can only be called on current thread");
 766   oop obj = h_obj();
 767   markOop mark = ReadStableMark (obj) ;
 768 
 769   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 770   if (mark->has_locker()) {
 771     return self->is_lock_owned((address)mark->locker()) ?
 772       owner_self : owner_other;
 773   }
 774 
 775   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 776   // The Object:ObjectMonitor relationship is stable as long as we're
 777   // not at a safepoint.
 778   if (mark->has_monitor()) {
 779     void * owner = mark->monitor()->_owner ;
 780     if (owner == NULL) return owner_none ;
 781     return (owner == self ||
 782             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 783   }
 784 
 785   // CASE: neutral
 786   assert(mark->is_neutral(), "sanity check");
 787   return owner_none ;           // it's unlocked
 788 }
 789 
 790 // FIXME: jvmti should call this
 791 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 792   if (UseBiasedLocking) {
 793     if (SafepointSynchronize::is_at_safepoint()) {
 794       BiasedLocking::revoke_at_safepoint(h_obj);
 795     } else {
 796       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 797     }
 798     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 799   }
 800 
 801   oop obj = h_obj();
 802   address owner = NULL;
 803 
 804   markOop mark = ReadStableMark (obj) ;
 805 
 806   // Uncontended case, header points to stack
 807   if (mark->has_locker()) {
 808     owner = (address) mark->locker();
 809   }
 810 
 811   // Contended case, header points to ObjectMonitor (tagged pointer)
 812   if (mark->has_monitor()) {
 813     ObjectMonitor* monitor = mark->monitor();
 814     assert(monitor != NULL, "monitor should be non-null");
 815     owner = (address) monitor->owner();
 816   }
 817 
 818   if (owner != NULL) {
 819     // owning_thread_from_monitor_owner() may also return NULL here
 820     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 821   }
 822 
 823   // Unlocked case, header in place
 824   // Cannot have assertion since this object may have been
 825   // locked by another thread when reaching here.
 826   // assert(mark->is_neutral(), "sanity check");
 827 
 828   return NULL;
 829 }
 830 // Visitors ...
 831 
 832 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 833   ObjectMonitor* block = gBlockList;
 834   ObjectMonitor* mid;
 835   while (block) {
 836     assert(block->object() == CHAINMARKER, "must be a block header");
 837     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 838       mid = block + i;
 839       oop object = (oop) mid->object();
 840       if (object != NULL) {
 841         closure->do_monitor(mid);
 842       }
 843     }
 844     block = (ObjectMonitor*) block->FreeNext;
 845   }
 846 }
 847 
 848 // Get the next block in the block list.
 849 static inline ObjectMonitor* next(ObjectMonitor* block) {
 850   assert(block->object() == CHAINMARKER, "must be a block header");
 851   block = block->FreeNext ;
 852   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 853   return block;
 854 }
 855 
 856 
 857 void ObjectSynchronizer::oops_do(OopClosure* f) {
 858   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 859   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
 860     assert(block->object() == CHAINMARKER, "must be a block header");
 861     for (int i = 1; i < _BLOCKSIZE; i++) {
 862       ObjectMonitor* mid = &block[i];
 863       if (mid->object() != NULL) {
 864         f->do_oop((oop*)mid->object_addr());
 865       }
 866     }
 867   }
 868 }
 869 
 870 
 871 // -----------------------------------------------------------------------------
 872 // ObjectMonitor Lifecycle
 873 // -----------------------
 874 // Inflation unlinks monitors from the global gFreeList and
 875 // associates them with objects.  Deflation -- which occurs at
 876 // STW-time -- disassociates idle monitors from objects.  Such
 877 // scavenged monitors are returned to the gFreeList.
 878 //
 879 // The global list is protected by ListLock.  All the critical sections
 880 // are short and operate in constant-time.
 881 //
 882 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 883 //
 884 // Lifecycle:
 885 // --   unassigned and on the global free list
 886 // --   unassigned and on a thread's private omFreeList
 887 // --   assigned to an object.  The object is inflated and the mark refers
 888 //      to the objectmonitor.
 889 //
 890 
 891 
 892 // Constraining monitor pool growth via MonitorBound ...
 893 //
 894 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 895 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 896 // an inordinate number of monitors in circulation.
 897 // To avoid that scenario we can artificially induce a STW safepoint
 898 // if the pool appears to be growing past some reasonable bound.
 899 // Generally we favor time in space-time tradeoffs, but as there's no
 900 // natural back-pressure on the # of extant monitors we need to impose some
 901 // type of limit.  Beware that if MonitorBound is set to too low a value
 902 // we could just loop. In addition, if MonitorBound is set to a low value
 903 // we'll incur more safepoints, which are harmful to performance.
 904 // See also: GuaranteedSafepointInterval
 905 //
 906 // The current implementation uses asynchronous VM operations.
 907 //
 908 
 909 static void InduceScavenge (Thread * Self, const char * Whence) {
 910   // Induce STW safepoint to trim monitors
 911   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
 912   // More precisely, trigger an asynchronous STW safepoint as the number
 913   // of active monitors passes the specified threshold.
 914   // TODO: assert thread state is reasonable
 915 
 916   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
 917     if (ObjectMonitor::Knob_Verbose) {
 918       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 919       ::fflush(stdout) ;
 920     }
 921     // Induce a 'null' safepoint to scavenge monitors
 922     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
 923     // to the VMthread and have a lifespan longer than that of this activation record.
 924     // The VMThread will delete the op when completed.
 925     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
 926 
 927     if (ObjectMonitor::Knob_Verbose) {
 928       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 929       ::fflush(stdout) ;
 930     }
 931   }
 932 }
 933 /* Too slow for general assert or debug
 934 void ObjectSynchronizer::verifyInUse (Thread *Self) {
 935    ObjectMonitor* mid;
 936    int inusetally = 0;
 937    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
 938      inusetally ++;
 939    }
 940    assert(inusetally == Self->omInUseCount, "inuse count off");
 941 
 942    int freetally = 0;
 943    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
 944      freetally ++;
 945    }
 946    assert(freetally == Self->omFreeCount, "free count off");
 947 }
 948 */
 949 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
 950     // A large MAXPRIVATE value reduces both list lock contention
 951     // and list coherency traffic, but also tends to increase the
 952     // number of objectMonitors in circulation as well as the STW
 953     // scavenge costs.  As usual, we lean toward time in space-time
 954     // tradeoffs.
 955     const int MAXPRIVATE = 1024 ;
 956     for (;;) {
 957         ObjectMonitor * m ;
 958 
 959         // 1: try to allocate from the thread's local omFreeList.
 960         // Threads will attempt to allocate first from their local list, then
 961         // from the global list, and only after those attempts fail will the thread
 962         // attempt to instantiate new monitors.   Thread-local free lists take
 963         // heat off the ListLock and improve allocation latency, as well as reducing
 964         // coherency traffic on the shared global list.
 965         m = Self->omFreeList ;
 966         if (m != NULL) {
 967            Self->omFreeList = m->FreeNext ;
 968            Self->omFreeCount -- ;
 969            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
 970            guarantee (m->object() == NULL, "invariant") ;
 971            if (MonitorInUseLists) {
 972              m->FreeNext = Self->omInUseList;
 973              Self->omInUseList = m;
 974              Self->omInUseCount ++;
 975              // verifyInUse(Self);
 976            } else {
 977              m->FreeNext = NULL;
 978            }
 979            return m ;
 980         }
 981 
 982         // 2: try to allocate from the global gFreeList
 983         // CONSIDER: use muxTry() instead of muxAcquire().
 984         // If the muxTry() fails then drop immediately into case 3.
 985         // If we're using thread-local free lists then try
 986         // to reprovision the caller's free list.
 987         if (gFreeList != NULL) {
 988             // Reprovision the thread's omFreeList.
 989             // Use bulk transfers to reduce the allocation rate and heat
 990             // on various locks.
 991             Thread::muxAcquire (&ListLock, "omAlloc") ;
 992             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
 993                 MonitorFreeCount --;
 994                 ObjectMonitor * take = gFreeList ;
 995                 gFreeList = take->FreeNext ;
 996                 guarantee (take->object() == NULL, "invariant") ;
 997                 guarantee (!take->is_busy(), "invariant") ;
 998                 take->Recycle() ;
 999                 omRelease (Self, take, false) ;
1000             }
1001             Thread::muxRelease (&ListLock) ;
1002             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
1003             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
1004             TEVENT (omFirst - reprovision) ;
1005 
1006             const int mx = MonitorBound ;
1007             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
1008               // We can't safely induce a STW safepoint from omAlloc() as our thread
1009               // state may not be appropriate for such activities and callers may hold
1010               // naked oops, so instead we defer the action.
1011               InduceScavenge (Self, "omAlloc") ;
1012             }
1013             continue;
1014         }
1015 
1016         // 3: allocate a block of new ObjectMonitors
1017         // Both the local and global free lists are empty -- resort to malloc().
1018         // In the current implementation objectMonitors are TSM - immortal.
1019         assert (_BLOCKSIZE > 1, "invariant") ;
1020         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
1021 
1022         // NOTE: (almost) no way to recover if allocation failed.
1023         // We might be able to induce a STW safepoint and scavenge enough
1024         // objectMonitors to permit progress.
1025         if (temp == NULL) {
1026             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), OOM_MALLOC_ERROR,
1027                                    "Allocate ObjectMonitors");
1028         }
1029 
1030         // Format the block.
1031         // initialize the linked list, each monitor points to its next
1032         // forming the single linked free list, the very first monitor
1033         // will points to next block, which forms the block list.
1034         // The trick of using the 1st element in the block as gBlockList
1035         // linkage should be reconsidered.  A better implementation would
1036         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1037 
1038         for (int i = 1; i < _BLOCKSIZE ; i++) {
1039            temp[i].FreeNext = &temp[i+1];
1040         }
1041 
1042         // terminate the last monitor as the end of list
1043         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
1044 
1045         // Element [0] is reserved for global list linkage
1046         temp[0].set_object(CHAINMARKER);
1047 
1048         // Consider carving out this thread's current request from the
1049         // block in hand.  This avoids some lock traffic and redundant
1050         // list activity.
1051 
1052         // Acquire the ListLock to manipulate BlockList and FreeList.
1053         // An Oyama-Taura-Yonezawa scheme might be more efficient.
1054         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
1055         MonitorPopulation += _BLOCKSIZE-1;
1056         MonitorFreeCount += _BLOCKSIZE-1;
1057 
1058         // Add the new block to the list of extant blocks (gBlockList).
1059         // The very first objectMonitor in a block is reserved and dedicated.
1060         // It serves as blocklist "next" linkage.
1061         temp[0].FreeNext = gBlockList;
1062         gBlockList = temp;
1063 
1064         // Add the new string of objectMonitors to the global free list
1065         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
1066         gFreeList = temp + 1;
1067         Thread::muxRelease (&ListLock) ;
1068         TEVENT (Allocate block of monitors) ;
1069     }
1070 }
1071 
1072 // Place "m" on the caller's private per-thread omFreeList.
1073 // In practice there's no need to clamp or limit the number of
1074 // monitors on a thread's omFreeList as the only time we'll call
1075 // omRelease is to return a monitor to the free list after a CAS
1076 // attempt failed.  This doesn't allow unbounded #s of monitors to
1077 // accumulate on a thread's free list.
1078 //
1079 
1080 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
1081     guarantee (m->object() == NULL, "invariant") ;
1082 
1083     // Remove from omInUseList
1084     if (MonitorInUseLists && fromPerThreadAlloc) {
1085       ObjectMonitor* curmidinuse = NULL;
1086       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
1087        if (m == mid) {
1088          // extract from per-thread in-use-list
1089          if (mid == Self->omInUseList) {
1090            Self->omInUseList = mid->FreeNext;
1091          } else if (curmidinuse != NULL) {
1092            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1093          }
1094          Self->omInUseCount --;
1095          // verifyInUse(Self);
1096          break;
1097        } else {
1098          curmidinuse = mid;
1099          mid = mid->FreeNext;
1100       }
1101     }
1102   }
1103 
1104   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
1105   m->FreeNext = Self->omFreeList ;
1106   Self->omFreeList = m ;
1107   Self->omFreeCount ++ ;
1108 }
1109 
1110 // Return the monitors of a moribund thread's local free list to
1111 // the global free list.  Typically a thread calls omFlush() when
1112 // it's dying.  We could also consider having the VM thread steal
1113 // monitors from threads that have not run java code over a few
1114 // consecutive STW safepoints.  Relatedly, we might decay
1115 // omFreeProvision at STW safepoints.
1116 //
1117 // Also return the monitors of a moribund thread"s omInUseList to
1118 // a global gOmInUseList under the global list lock so these
1119 // will continue to be scanned.
1120 //
1121 // We currently call omFlush() from the Thread:: dtor _after the thread
1122 // has been excised from the thread list and is no longer a mutator.
1123 // That means that omFlush() can run concurrently with a safepoint and
1124 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
1125 // be a better choice as we could safely reason that that the JVM is
1126 // not at a safepoint at the time of the call, and thus there could
1127 // be not inopportune interleavings between omFlush() and the scavenge
1128 // operator.
1129 
1130 void ObjectSynchronizer::omFlush (Thread * Self) {
1131     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
1132     Self->omFreeList = NULL ;
1133     ObjectMonitor * Tail = NULL ;
1134     int Tally = 0;
1135     if (List != NULL) {
1136       ObjectMonitor * s ;
1137       for (s = List ; s != NULL ; s = s->FreeNext) {
1138           Tally ++ ;
1139           Tail = s ;
1140           guarantee (s->object() == NULL, "invariant") ;
1141           guarantee (!s->is_busy(), "invariant") ;
1142           s->set_owner (NULL) ;   // redundant but good hygiene
1143           TEVENT (omFlush - Move one) ;
1144       }
1145       guarantee (Tail != NULL && List != NULL, "invariant") ;
1146     }
1147 
1148     ObjectMonitor * InUseList = Self->omInUseList;
1149     ObjectMonitor * InUseTail = NULL ;
1150     int InUseTally = 0;
1151     if (InUseList != NULL) {
1152       Self->omInUseList = NULL;
1153       ObjectMonitor *curom;
1154       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
1155         InUseTail = curom;
1156         InUseTally++;
1157       }
1158 // TODO debug
1159       assert(Self->omInUseCount == InUseTally, "inuse count off");
1160       Self->omInUseCount = 0;
1161       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
1162     }
1163 
1164     Thread::muxAcquire (&ListLock, "omFlush") ;
1165     if (Tail != NULL) {
1166       Tail->FreeNext = gFreeList ;
1167       gFreeList = List ;
1168       MonitorFreeCount += Tally;
1169     }
1170 
1171     if (InUseTail != NULL) {
1172       InUseTail->FreeNext = gOmInUseList;
1173       gOmInUseList = InUseList;
1174       gOmInUseCount += InUseTally;
1175     }
1176 
1177     Thread::muxRelease (&ListLock) ;
1178     TEVENT (omFlush) ;
1179 }
1180 
1181 // Fast path code shared by multiple functions
1182 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1183   markOop mark = obj->mark();
1184   if (mark->has_monitor()) {
1185     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1186     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1187     return mark->monitor();
1188   }
1189   return ObjectSynchronizer::inflate(Thread::current(), obj);
1190 }
1191 
1192 
1193 // Note that we could encounter some performance loss through false-sharing as
1194 // multiple locks occupy the same $ line.  Padding might be appropriate.
1195 
1196 
1197 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
1198   // Inflate mutates the heap ...
1199   // Relaxing assertion for bug 6320749.
1200   assert (Universe::verify_in_progress() ||
1201           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
1202 
1203   for (;;) {
1204       const markOop mark = object->mark() ;
1205       assert (!mark->has_bias_pattern(), "invariant") ;
1206 
1207       // The mark can be in one of the following states:
1208       // *  Inflated     - just return
1209       // *  Stack-locked - coerce it to inflated
1210       // *  INFLATING    - busy wait for conversion to complete
1211       // *  Neutral      - aggressively inflate the object.
1212       // *  BIASED       - Illegal.  We should never see this
1213 
1214       // CASE: inflated
1215       if (mark->has_monitor()) {
1216           ObjectMonitor * inf = mark->monitor() ;
1217           assert (inf->header()->is_neutral(), "invariant");
1218           assert ((oop) inf->object() == object, "invariant") ;
1219           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1220           return inf ;
1221       }
1222 
1223       // CASE: inflation in progress - inflating over a stack-lock.
1224       // Some other thread is converting from stack-locked to inflated.
1225       // Only that thread can complete inflation -- other threads must wait.
1226       // The INFLATING value is transient.
1227       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1228       // We could always eliminate polling by parking the thread on some auxiliary list.
1229       if (mark == markOopDesc::INFLATING()) {
1230          TEVENT (Inflate: spin while INFLATING) ;
1231          ReadStableMark(object) ;
1232          continue ;
1233       }
1234 
1235       // CASE: stack-locked
1236       // Could be stack-locked either by this thread or by some other thread.
1237       //
1238       // Note that we allocate the objectmonitor speculatively, _before_ attempting
1239       // to install INFLATING into the mark word.  We originally installed INFLATING,
1240       // allocated the objectmonitor, and then finally STed the address of the
1241       // objectmonitor into the mark.  This was correct, but artificially lengthened
1242       // the interval in which INFLATED appeared in the mark, thus increasing
1243       // the odds of inflation contention.
1244       //
1245       // We now use per-thread private objectmonitor free lists.
1246       // These list are reprovisioned from the global free list outside the
1247       // critical INFLATING...ST interval.  A thread can transfer
1248       // multiple objectmonitors en-mass from the global free list to its local free list.
1249       // This reduces coherency traffic and lock contention on the global free list.
1250       // Using such local free lists, it doesn't matter if the omAlloc() call appears
1251       // before or after the CAS(INFLATING) operation.
1252       // See the comments in omAlloc().
1253 
1254       if (mark->has_locker()) {
1255           ObjectMonitor * m = omAlloc (Self) ;
1256           // Optimistically prepare the objectmonitor - anticipate successful CAS
1257           // We do this before the CAS in order to minimize the length of time
1258           // in which INFLATING appears in the mark.
1259           m->Recycle();
1260           m->_Responsible  = NULL ;
1261           m->OwnerIsThread = 0 ;
1262           m->_recursions   = 0 ;
1263           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
1264 
1265           markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1266           if (cmp != mark) {
1267              omRelease (Self, m, true) ;
1268              continue ;       // Interference -- just retry
1269           }
1270 
1271           // We've successfully installed INFLATING (0) into the mark-word.
1272           // This is the only case where 0 will appear in a mark-work.
1273           // Only the singular thread that successfully swings the mark-word
1274           // to 0 can perform (or more precisely, complete) inflation.
1275           //
1276           // Why do we CAS a 0 into the mark-word instead of just CASing the
1277           // mark-word from the stack-locked value directly to the new inflated state?
1278           // Consider what happens when a thread unlocks a stack-locked object.
1279           // It attempts to use CAS to swing the displaced header value from the
1280           // on-stack basiclock back into the object header.  Recall also that the
1281           // header value (hashcode, etc) can reside in (a) the object header, or
1282           // (b) a displaced header associated with the stack-lock, or (c) a displaced
1283           // header in an objectMonitor.  The inflate() routine must copy the header
1284           // value from the basiclock on the owner's stack to the objectMonitor, all
1285           // the while preserving the hashCode stability invariants.  If the owner
1286           // decides to release the lock while the value is 0, the unlock will fail
1287           // and control will eventually pass from slow_exit() to inflate.  The owner
1288           // will then spin, waiting for the 0 value to disappear.   Put another way,
1289           // the 0 causes the owner to stall if the owner happens to try to
1290           // drop the lock (restoring the header from the basiclock to the object)
1291           // while inflation is in-progress.  This protocol avoids races that might
1292           // would otherwise permit hashCode values to change or "flicker" for an object.
1293           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1294           // 0 serves as a "BUSY" inflate-in-progress indicator.
1295 
1296 
1297           // fetch the displaced mark from the owner's stack.
1298           // The owner can't die or unwind past the lock while our INFLATING
1299           // object is in the mark.  Furthermore the owner can't complete
1300           // an unlock on the object, either.
1301           markOop dmw = mark->displaced_mark_helper() ;
1302           assert (dmw->is_neutral(), "invariant") ;
1303 
1304           // Setup monitor fields to proper values -- prepare the monitor
1305           m->set_header(dmw) ;
1306 
1307           // Optimization: if the mark->locker stack address is associated
1308           // with this thread we could simply set m->_owner = Self and
1309           // m->OwnerIsThread = 1. Note that a thread can inflate an object
1310           // that it has stack-locked -- as might happen in wait() -- directly
1311           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1312           m->set_owner(mark->locker());
1313           m->set_object(object);
1314           // TODO-FIXME: assert BasicLock->dhw != 0.
1315 
1316           // Must preserve store ordering. The monitor state must
1317           // be stable at the time of publishing the monitor address.
1318           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
1319           object->release_set_mark(markOopDesc::encode(m));
1320 
1321           // Hopefully the performance counters are allocated on distinct cache lines
1322           // to avoid false sharing on MP systems ...
1323           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1324           TEVENT(Inflate: overwrite stacklock) ;
1325           if (TraceMonitorInflation) {
1326             if (object->is_instance()) {
1327               ResourceMark rm;
1328               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1329                 (void *) object, (intptr_t) object->mark(),
1330                 object->klass()->external_name());
1331             }
1332           }
1333           return m ;
1334       }
1335 
1336       // CASE: neutral
1337       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1338       // If we know we're inflating for entry it's better to inflate by swinging a
1339       // pre-locked objectMonitor pointer into the object header.   A successful
1340       // CAS inflates the object *and* confers ownership to the inflating thread.
1341       // In the current implementation we use a 2-step mechanism where we CAS()
1342       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1343       // An inflateTry() method that we could call from fast_enter() and slow_enter()
1344       // would be useful.
1345 
1346       assert (mark->is_neutral(), "invariant");
1347       ObjectMonitor * m = omAlloc (Self) ;
1348       // prepare m for installation - set monitor to initial state
1349       m->Recycle();
1350       m->set_header(mark);
1351       m->set_owner(NULL);
1352       m->set_object(object);
1353       m->OwnerIsThread = 1 ;
1354       m->_recursions   = 0 ;
1355       m->_Responsible  = NULL ;
1356       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
1357 
1358       if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1359           m->set_object (NULL) ;
1360           m->set_owner  (NULL) ;
1361           m->OwnerIsThread = 0 ;
1362           m->Recycle() ;
1363           omRelease (Self, m, true) ;
1364           m = NULL ;
1365           continue ;
1366           // interference - the markword changed - just retry.
1367           // The state-transitions are one-way, so there's no chance of
1368           // live-lock -- "Inflated" is an absorbing state.
1369       }
1370 
1371       // Hopefully the performance counters are allocated on distinct
1372       // cache lines to avoid false sharing on MP systems ...
1373       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1374       TEVENT(Inflate: overwrite neutral) ;
1375       if (TraceMonitorInflation) {
1376         if (object->is_instance()) {
1377           ResourceMark rm;
1378           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1379             (void *) object, (intptr_t) object->mark(),
1380             object->klass()->external_name());
1381         }
1382       }
1383       return m ;
1384   }
1385 }
1386 
1387 // Note that we could encounter some performance loss through false-sharing as
1388 // multiple locks occupy the same $ line.  Padding might be appropriate.
1389 
1390 
1391 // Deflate_idle_monitors() is called at all safepoints, immediately
1392 // after all mutators are stopped, but before any objects have moved.
1393 // It traverses the list of known monitors, deflating where possible.
1394 // The scavenged monitor are returned to the monitor free list.
1395 //
1396 // Beware that we scavenge at *every* stop-the-world point.
1397 // Having a large number of monitors in-circulation negatively
1398 // impacts the performance of some applications (e.g., PointBase).
1399 // Broadly, we want to minimize the # of monitors in circulation.
1400 //
1401 // We have added a flag, MonitorInUseLists, which creates a list
1402 // of active monitors for each thread. deflate_idle_monitors()
1403 // only scans the per-thread inuse lists. omAlloc() puts all
1404 // assigned monitors on the per-thread list. deflate_idle_monitors()
1405 // returns the non-busy monitors to the global free list.
1406 // When a thread dies, omFlush() adds the list of active monitors for
1407 // that thread to a global gOmInUseList acquiring the
1408 // global list lock. deflate_idle_monitors() acquires the global
1409 // list lock to scan for non-busy monitors to the global free list.
1410 // An alternative could have used a single global inuse list. The
1411 // downside would have been the additional cost of acquiring the global list lock
1412 // for every omAlloc().
1413 //
1414 // Perversely, the heap size -- and thus the STW safepoint rate --
1415 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1416 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1417 // This is an unfortunate aspect of this design.
1418 //
1419 
1420 enum ManifestConstants {
1421     ClearResponsibleAtSTW   = 0,
1422     MaximumRecheckInterval  = 1000
1423 } ;
1424 
1425 // Deflate a single monitor if not in use
1426 // Return true if deflated, false if in use
1427 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1428                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1429   bool deflated;
1430   // Normal case ... The monitor is associated with obj.
1431   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
1432   guarantee (mid == obj->mark()->monitor(), "invariant");
1433   guarantee (mid->header()->is_neutral(), "invariant");
1434 
1435   if (mid->is_busy()) {
1436      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
1437      deflated = false;
1438   } else {
1439      // Deflate the monitor if it is no longer being used
1440      // It's idle - scavenge and return to the global free list
1441      // plain old deflation ...
1442      TEVENT (deflate_idle_monitors - scavenge1) ;
1443      if (TraceMonitorInflation) {
1444        if (obj->is_instance()) {
1445          ResourceMark rm;
1446            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1447                 (void *) obj, (intptr_t) obj->mark(), obj->klass()->external_name());
1448        }
1449      }
1450 
1451      // Restore the header back to obj
1452      obj->release_set_mark(mid->header());
1453      mid->clear();
1454 
1455      assert (mid->object() == NULL, "invariant") ;
1456 
1457      // Move the object to the working free list defined by FreeHead,FreeTail.
1458      if (*FreeHeadp == NULL) *FreeHeadp = mid;
1459      if (*FreeTailp != NULL) {
1460        ObjectMonitor * prevtail = *FreeTailp;
1461        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
1462        prevtail->FreeNext = mid;
1463       }
1464      *FreeTailp = mid;
1465      deflated = true;
1466   }
1467   return deflated;
1468 }
1469 
1470 // Caller acquires ListLock
1471 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
1472                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1473   ObjectMonitor* mid;
1474   ObjectMonitor* next;
1475   ObjectMonitor* curmidinuse = NULL;
1476   int deflatedcount = 0;
1477 
1478   for (mid = *listheadp; mid != NULL; ) {
1479      oop obj = (oop) mid->object();
1480      bool deflated = false;
1481      if (obj != NULL) {
1482        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
1483      }
1484      if (deflated) {
1485        // extract from per-thread in-use-list
1486        if (mid == *listheadp) {
1487          *listheadp = mid->FreeNext;
1488        } else if (curmidinuse != NULL) {
1489          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1490        }
1491        next = mid->FreeNext;
1492        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
1493        mid = next;
1494        deflatedcount++;
1495      } else {
1496        curmidinuse = mid;
1497        mid = mid->FreeNext;
1498     }
1499   }
1500   return deflatedcount;
1501 }
1502 
1503 void ObjectSynchronizer::deflate_idle_monitors() {
1504   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1505   int nInuse = 0 ;              // currently associated with objects
1506   int nInCirculation = 0 ;      // extant
1507   int nScavenged = 0 ;          // reclaimed
1508   bool deflated = false;
1509 
1510   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
1511   ObjectMonitor * FreeTail = NULL ;
1512 
1513   TEVENT (deflate_idle_monitors) ;
1514   // Prevent omFlush from changing mids in Thread dtor's during deflation
1515   // And in case the vm thread is acquiring a lock during a safepoint
1516   // See e.g. 6320749
1517   Thread::muxAcquire (&ListLock, "scavenge - return") ;
1518 
1519   if (MonitorInUseLists) {
1520     int inUse = 0;
1521     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1522       nInCirculation+= cur->omInUseCount;
1523       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
1524       cur->omInUseCount-= deflatedcount;
1525       // verifyInUse(cur);
1526       nScavenged += deflatedcount;
1527       nInuse += cur->omInUseCount;
1528      }
1529 
1530    // For moribund threads, scan gOmInUseList
1531    if (gOmInUseList) {
1532      nInCirculation += gOmInUseCount;
1533      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
1534      gOmInUseCount-= deflatedcount;
1535      nScavenged += deflatedcount;
1536      nInuse += gOmInUseCount;
1537     }
1538 
1539   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
1540   // Iterate over all extant monitors - Scavenge all idle monitors.
1541     assert(block->object() == CHAINMARKER, "must be a block header");
1542     nInCirculation += _BLOCKSIZE ;
1543     for (int i = 1 ; i < _BLOCKSIZE; i++) {
1544       ObjectMonitor* mid = &block[i];
1545       oop obj = (oop) mid->object();
1546 
1547       if (obj == NULL) {
1548         // The monitor is not associated with an object.
1549         // The monitor should either be a thread-specific private
1550         // free list or the global free list.
1551         // obj == NULL IMPLIES mid->is_busy() == 0
1552         guarantee (!mid->is_busy(), "invariant") ;
1553         continue ;
1554       }
1555       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
1556 
1557       if (deflated) {
1558         mid->FreeNext = NULL ;
1559         nScavenged ++ ;
1560       } else {
1561         nInuse ++;
1562       }
1563     }
1564   }
1565 
1566   MonitorFreeCount += nScavenged;
1567 
1568   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
1569 
1570   if (ObjectMonitor::Knob_Verbose) {
1571     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
1572         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1573         MonitorPopulation, MonitorFreeCount) ;
1574     ::fflush(stdout) ;
1575   }
1576 
1577   ForceMonitorScavenge = 0;    // Reset
1578 
1579   // Move the scavenged monitors back to the global free list.
1580   if (FreeHead != NULL) {
1581      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
1582      assert (FreeTail->FreeNext == NULL, "invariant") ;
1583      // constant-time list splice - prepend scavenged segment to gFreeList
1584      FreeTail->FreeNext = gFreeList ;
1585      gFreeList = FreeHead ;
1586   }
1587   Thread::muxRelease (&ListLock) ;
1588 
1589   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
1590   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
1591 
1592   // TODO: Add objectMonitor leak detection.
1593   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1594   GVars.stwRandom = os::random() ;
1595   GVars.stwCycle ++ ;
1596 }
1597 
1598 // Monitor cleanup on JavaThread::exit
1599 
1600 // Iterate through monitor cache and attempt to release thread's monitors
1601 // Gives up on a particular monitor if an exception occurs, but continues
1602 // the overall iteration, swallowing the exception.
1603 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1604 private:
1605   TRAPS;
1606 
1607 public:
1608   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1609   void do_monitor(ObjectMonitor* mid) {
1610     if (mid->owner() == THREAD) {
1611       (void)mid->complete_exit(CHECK);
1612     }
1613   }
1614 };
1615 
1616 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1617 // ignored.  This is meant to be called during JNI thread detach which assumes
1618 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1619 // Scanning the extant monitor list can be time consuming.
1620 // A simple optimization is to add a per-thread flag that indicates a thread
1621 // called jni_monitorenter() during its lifetime.
1622 //
1623 // Instead of No_Savepoint_Verifier it might be cheaper to
1624 // use an idiom of the form:
1625 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1626 //   <code that must not run at safepoint>
1627 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1628 // Since the tests are extremely cheap we could leave them enabled
1629 // for normal product builds.
1630 
1631 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1632   assert(THREAD == JavaThread::current(), "must be current Java thread");
1633   No_Safepoint_Verifier nsv ;
1634   ReleaseJavaMonitorsClosure rjmc(THREAD);
1635   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
1636   ObjectSynchronizer::monitors_iterate(&rjmc);
1637   Thread::muxRelease(&ListLock);
1638   THREAD->clear_pending_exception();
1639 }
1640 
1641 //------------------------------------------------------------------------------
1642 // Debugging code
1643 
1644 void ObjectSynchronizer::sanity_checks(const bool verbose,
1645                                        const uint cache_line_size,
1646                                        int *error_cnt_ptr,
1647                                        int *warning_cnt_ptr) {
1648   u_char *addr_begin      = (u_char*)&GVars;
1649   u_char *addr_stwRandom  = (u_char*)&GVars.stwRandom;
1650   u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
1651 
1652   if (verbose) {
1653     tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
1654                   sizeof(SharedGlobals));
1655   }
1656 
1657   uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
1658   if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
1659 
1660   uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
1661   if (verbose) {
1662     tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
1663   }
1664 
1665   if (cache_line_size != 0) {
1666     // We were able to determine the L1 data cache line size so
1667     // do some cache line specific sanity checks
1668 
1669     if (offset_stwRandom < cache_line_size) {
1670       tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
1671                     "to the struct beginning than a cache line which permits "
1672                     "false sharing.");
1673       (*warning_cnt_ptr)++;
1674     }
1675 
1676     if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
1677       tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
1678                     "SharedGlobals.hcSequence fields are closer than a cache "
1679                     "line which permits false sharing.");
1680       (*warning_cnt_ptr)++;
1681     }
1682 
1683     if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
1684       tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
1685                     "to the struct end than a cache line which permits false "
1686                     "sharing.");
1687       (*warning_cnt_ptr)++;
1688     }
1689   }
1690 }
1691 
1692 #ifndef PRODUCT
1693 
1694 // Verify all monitors in the monitor cache, the verification is weak.
1695 void ObjectSynchronizer::verify() {
1696   ObjectMonitor* block = gBlockList;
1697   ObjectMonitor* mid;
1698   while (block) {
1699     assert(block->object() == CHAINMARKER, "must be a block header");
1700     for (int i = 1; i < _BLOCKSIZE; i++) {
1701       mid = block + i;
1702       oop object = (oop) mid->object();
1703       if (object != NULL) {
1704         mid->verify();
1705       }
1706     }
1707     block = (ObjectMonitor*) block->FreeNext;
1708   }
1709 }
1710 
1711 // Check if monitor belongs to the monitor cache
1712 // The list is grow-only so it's *relatively* safe to traverse
1713 // the list of extant blocks without taking a lock.
1714 
1715 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1716   ObjectMonitor* block = gBlockList;
1717 
1718   while (block) {
1719     assert(block->object() == CHAINMARKER, "must be a block header");
1720     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
1721       address mon = (address) monitor;
1722       address blk = (address) block;
1723       size_t diff = mon - blk;
1724       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
1725       return 1;
1726     }
1727     block = (ObjectMonitor*) block->FreeNext;
1728   }
1729   return 0;
1730 }
1731 
1732 #endif