/* * Copyright (c) 2013, 2018, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" #include "gc_implementation/shenandoah/shenandoahAsserts.hpp" #include "gc_implementation/shenandoah/shenandoahBarrierSet.hpp" #include "gc_implementation/shenandoah/shenandoahCollectorPolicy.hpp" #include "gc_implementation/shenandoah/shenandoahHeap.inline.hpp" #include "gc_implementation/shenandoah/shenandoahHeuristics.hpp" #include "runtime/interfaceSupport.hpp" #include "utilities/macros.hpp" #ifdef COMPILER1 #include "gc_implementation/shenandoah/shenandoahBarrierSetC1.hpp" #endif #ifdef COMPILER2 #include "gc_implementation/shenandoah/shenandoahBarrierSetC2.hpp" #endif #if defined(TARGET_ARCH_aarch64) #include "shenandoahBarrierSetAssembler_aarch64.hpp" #elif defined(TARGET_ARCH_x86) #include "shenandoahBarrierSetAssembler_x86.hpp" #else #include "shenandoahBarrierSetAssembler_stub.hpp" #endif template class ShenandoahUpdateRefsForOopClosure: public ExtendedOopClosure { private: ShenandoahHeap* _heap; ShenandoahBarrierSet* _bs; template inline void do_oop_work(T* p) { oop o; if (STOREVAL_EVAC_BARRIER) { o = _heap->evac_update_with_forwarded(p); if (!oopDesc::is_null(o)) { _bs->enqueue(o); } } else { _heap->maybe_update_with_forwarded(p); } } public: ShenandoahUpdateRefsForOopClosure() : _heap(ShenandoahHeap::heap()), _bs(ShenandoahBarrierSet::barrier_set()) { assert(UseShenandoahGC && ShenandoahCloneBarrier, "should be enabled"); } virtual void do_oop(oop* p) { do_oop_work(p); } virtual void do_oop(narrowOop* p) { do_oop_work(p); } }; ShenandoahBarrierSet::ShenandoahBarrierSet(ShenandoahHeap* heap) : BarrierSet(), _heap(heap), _bsasm(new ShenandoahBarrierSetAssembler()), _bsc1(COMPILER1_PRESENT(new ShenandoahBarrierSetC1()) NOT_COMPILER1(NULL)), _bsc2(COMPILER2_PRESENT(new ShenandoahBarrierSetC2()) NOT_COMPILER2(NULL)) { _kind = BarrierSet::ShenandoahBarrierSet; } ShenandoahBarrierSetAssembler* ShenandoahBarrierSet::bsasm() const { return _bsasm; } ShenandoahBarrierSetC1* ShenandoahBarrierSet::bsc1() const { return _bsc1; } ShenandoahBarrierSetC2* ShenandoahBarrierSet::bsc2() const { return _bsc2; } void ShenandoahBarrierSet::print_on(outputStream* st) const { st->print("ShenandoahBarrierSet"); } bool ShenandoahBarrierSet::is_a(BarrierSet::Name bsn) { return bsn == BarrierSet::ShenandoahBarrierSet; } bool ShenandoahBarrierSet::has_read_prim_array_opt() { return true; } bool ShenandoahBarrierSet::has_read_prim_barrier() { return false; } bool ShenandoahBarrierSet::has_read_ref_array_opt() { return true; } bool ShenandoahBarrierSet::has_read_ref_barrier() { return false; } bool ShenandoahBarrierSet::has_read_region_opt() { return true; } bool ShenandoahBarrierSet::has_write_prim_array_opt() { return true; } bool ShenandoahBarrierSet::has_write_prim_barrier() { return false; } bool ShenandoahBarrierSet::has_write_ref_array_opt() { return true; } bool ShenandoahBarrierSet::has_write_ref_barrier() { return true; } bool ShenandoahBarrierSet::has_write_ref_pre_barrier() { return true; } bool ShenandoahBarrierSet::has_write_region_opt() { return true; } bool ShenandoahBarrierSet::is_aligned(HeapWord* hw) { return true; } bool ShenandoahBarrierSet::read_prim_needs_barrier(HeapWord* hw, size_t s) { return false; } void ShenandoahBarrierSet::read_ref_field(void* v) { // tty->print_cr("read_ref_field: v = "PTR_FORMAT, v); // return *v; } template void ShenandoahBarrierSet::write_ref_array_loop(HeapWord* start, size_t count) { assert(UseShenandoahGC && ShenandoahCloneBarrier, "should be enabled"); ShenandoahUpdateRefsForOopClosure cl; T* dst = (T*) start; for (size_t i = 0; i < count; i++) { cl.do_oop(dst++); } } void ShenandoahBarrierSet::write_ref_array(HeapWord* start, size_t count) { assert(UseShenandoahGC, "should be enabled"); if (!ShenandoahCloneBarrier) return; if (!need_update_refs_barrier()) return; if (_heap->is_concurrent_traversal_in_progress()) { ShenandoahEvacOOMScope oom_evac_scope; if (UseCompressedOops) { write_ref_array_loop(start, count); } else { write_ref_array_loop(start, count); } } else { if (UseCompressedOops) { write_ref_array_loop(start, count); } else { write_ref_array_loop(start, count); } } } template void ShenandoahBarrierSet::write_ref_array_pre_work(T* dst, size_t count) { assert (UseShenandoahGC && ShenandoahSATBBarrier, "Should be enabled"); shenandoah_assert_not_in_cset_loc_except(dst, _heap->cancelled_gc()); if (! JavaThread::satb_mark_queue_set().is_active()) return; T* elem_ptr = dst; for (size_t i = 0; i < count; i++, elem_ptr++) { T heap_oop = oopDesc::load_heap_oop(elem_ptr); if (!oopDesc::is_null(heap_oop)) { enqueue(oopDesc::decode_heap_oop_not_null(heap_oop)); } } } void ShenandoahBarrierSet::write_ref_array_pre(oop* dst, int count, bool dest_uninitialized) { if (! dest_uninitialized && ShenandoahSATBBarrier) { write_ref_array_pre_work(dst, (size_t)count); } } void ShenandoahBarrierSet::write_ref_array_pre(narrowOop* dst, int count, bool dest_uninitialized) { if (! dest_uninitialized && ShenandoahSATBBarrier) { write_ref_array_pre_work(dst, (size_t)count); } } template inline void ShenandoahBarrierSet::inline_write_ref_field_pre(T* field, oop newVal) { newVal = load_reference_barrier(newVal); storeval_barrier(newVal); if (ShenandoahSATBBarrier) { T heap_oop = oopDesc::load_heap_oop(field); shenandoah_assert_not_in_cset_loc_except(field, ShenandoahHeap::heap()->cancelled_gc()); if (!oopDesc::is_null(heap_oop)) { ShenandoahBarrierSet::barrier_set()->enqueue(oopDesc::decode_heap_oop(heap_oop)); } } } // These are the more general virtual versions. void ShenandoahBarrierSet::write_ref_field_pre_work(oop* field, oop new_val) { inline_write_ref_field_pre(field, new_val); } void ShenandoahBarrierSet::write_ref_field_pre_work(narrowOop* field, oop new_val) { inline_write_ref_field_pre(field, new_val); } void ShenandoahBarrierSet::write_ref_field_work(void* v, oop o, bool release) { shenandoah_assert_not_in_cset_loc_except(v, _heap->cancelled_gc()); shenandoah_assert_not_forwarded_except (v, o, o == NULL || _heap->cancelled_gc() || !_heap->is_concurrent_mark_in_progress()); shenandoah_assert_not_in_cset_except (v, o, o == NULL || _heap->cancelled_gc() || !_heap->is_concurrent_mark_in_progress()); } void ShenandoahBarrierSet::write_region_work(MemRegion mr) { assert(UseShenandoahGC, "should be enabled"); if (!ShenandoahCloneBarrier) return; if (! need_update_refs_barrier()) return; // This is called for cloning an object (see jvm.cpp) after the clone // has been made. We are not interested in any 'previous value' because // it would be NULL in any case. But we *are* interested in any oop* // that potentially need to be updated. oop obj = oop(mr.start()); shenandoah_assert_correct(NULL, obj); if (_heap->is_concurrent_traversal_in_progress()) { ShenandoahEvacOOMScope oom_evac_scope; ShenandoahUpdateRefsForOopClosure cl; obj->oop_iterate(&cl); } else { ShenandoahUpdateRefsForOopClosure cl; obj->oop_iterate(&cl); } } oop ShenandoahBarrierSet::load_reference_barrier_not_null(oop obj) { assert(obj != NULL, ""); if (ShenandoahLoadRefBarrier && _heap->has_forwarded_objects()) { return load_reference_barrier_impl(obj); } else { return obj; } } oop ShenandoahBarrierSet::load_reference_barrier(oop obj) { if (obj != NULL) { return load_reference_barrier_not_null(obj); } else { return obj; } } oop ShenandoahBarrierSet::load_reference_barrier_mutator(oop obj) { assert(ShenandoahLoadRefBarrier, "should be enabled"); assert(_heap->is_gc_in_progress_mask(ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL), "evac should be in progress"); shenandoah_assert_in_cset(NULL, obj); oop fwd = resolve_forwarded_not_null(obj); if (obj == fwd) { ShenandoahEvacOOMScope oom_evac_scope; Thread* thread = Thread::current(); oop res_oop = _heap->evacuate_object(obj, thread); // Since we are already here and paid the price of getting through runtime call adapters // and acquiring oom-scope, it makes sense to try and evacuate more adjacent objects, // thus amortizing the overhead. For sparsely live heaps, scan costs easily dominate // total assist costs, and can introduce a lot of evacuation latency. This is why we // only scan for _nearest_ N objects, regardless if they are eligible for evac or not. // The scan itself should also avoid touching the non-marked objects below TAMS, because // their metadata (notably, klasses) may be incorrect already. size_t max = ShenandoahEvacAssist; if (max > 0) { // Traversal is special: it uses incomplete marking context, because it coalesces evac with mark. // Other code uses complete marking context, because evac happens after the mark. ShenandoahMarkingContext* ctx = _heap->is_concurrent_traversal_in_progress() ? _heap->marking_context() : _heap->complete_marking_context(); ShenandoahHeapRegion* r = _heap->heap_region_containing(obj); assert(r->is_cset(), "sanity"); HeapWord* cur = (HeapWord*)obj + obj->size(); size_t count = 0; while ((cur < r->top()) && ctx->is_marked(oop(cur)) && (count++ < max)) { oop cur_oop = oop(cur); if (cur_oop == resolve_forwarded_not_null(cur_oop)) { _heap->evacuate_object(cur_oop, thread); } cur = cur + cur_oop->size(); } } return res_oop; } return fwd; } oop ShenandoahBarrierSet::load_reference_barrier_impl(oop obj) { assert(ShenandoahLoadRefBarrier, "should be enabled"); if (!oopDesc::is_null(obj)) { bool evac_in_progress = _heap->is_gc_in_progress_mask(ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL); oop fwd = resolve_forwarded_not_null(obj); if (evac_in_progress && _heap->in_collection_set(obj) && obj == fwd) { Thread *t = Thread::current(); if (t->is_GC_task_thread()) { return _heap->evacuate_object(obj, t); } else { ShenandoahEvacOOMScope oom_evac_scope; return _heap->evacuate_object(obj, t); } } else { return fwd; } } else { return obj; } } void ShenandoahBarrierSet::storeval_barrier(oop obj) { if (ShenandoahStoreValEnqueueBarrier && !oopDesc::is_null(obj) && _heap->is_concurrent_traversal_in_progress()) { enqueue(obj); } } void ShenandoahBarrierSet::keep_alive_barrier(oop obj) { if (ShenandoahKeepAliveBarrier && _heap->is_concurrent_mark_in_progress()) { enqueue(obj); } } void ShenandoahBarrierSet::enqueue(oop obj) { shenandoah_assert_not_forwarded_if(NULL, obj, _heap->is_concurrent_traversal_in_progress()); // Filter marked objects before hitting the SATB queues. The same predicate would // be used by SATBMQ::filter to eliminate already marked objects downstream, but // filtering here helps to avoid wasteful SATB queueing work to begin with. if (!_heap->requires_marking(obj)) return; G1SATBCardTableModRefBS::enqueue(obj); } oop ShenandoahBarrierSet::atomic_compare_exchange_oop(oop exchange_value, volatile HeapWord *dest, oop compare_value) { if (UseCompressedOops) { // encode exchange and compare value from oop to T narrowOop val = oopDesc::encode_heap_oop(exchange_value); narrowOop cmp = oopDesc::encode_heap_oop(compare_value); narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp); // decode old from T to oop return oopDesc::decode_heap_oop(old); } else { return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value); } } oop ShenandoahBarrierSet::oop_atomic_cmpxchg_in_heap(oop new_value, volatile HeapWord* dest, oop compare_value) { oop expected; bool success; do { expected = compare_value; compare_value = atomic_compare_exchange_oop(new_value, dest, expected); success = (compare_value == expected); } while ((! success) && resolve_forwarded(compare_value) == resolve_forwarded(expected)); oop result = load_reference_barrier(compare_value); if (ShenandoahSATBBarrier && success && result != NULL) { enqueue(result); } if (new_value != NULL) { storeval_barrier(new_value); } return result; }