1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/block.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/runtime.hpp"
  35 #include "opto/chaitin.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #if INCLUDE_SHENANDOAHGC
  38 #include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp"
  39 #endif
  40 
  41 // Optimization - Graph Style
  42 
  43 // Check whether val is not-null-decoded compressed oop,
  44 // i.e. will grab into the base of the heap if it represents NULL.
  45 static bool accesses_heap_base_zone(Node *val) {
  46   if (Universe::narrow_oop_base() != NULL) { // Implies UseCompressedOops.
  47     if (val && val->is_Mach()) {
  48       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  49         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  50         // decode NULL to point to the heap base (Decode_NN).
  51         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  52           return true;
  53         }
  54       }
  55       // Must recognize load operation with Decode matched in memory operand.
  56       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  57       // returns true everywhere else. On PPC, no such memory operands
  58       // exist, therefore we did not yet implement a check for such operands.
  59       NOT_AIX(Unimplemented());
  60     }
  61   }
  62   return false;
  63 }
  64 
  65 static bool needs_explicit_null_check_for_read(Node *val) {
  66   // On some OSes (AIX) the page at address 0 is only write protected.
  67   // If so, only Store operations will trap.
  68   if (os::zero_page_read_protected()) {
  69     return false;  // Implicit null check will work.
  70   }
  71   // Also a read accessing the base of a heap-based compressed heap will trap.
  72   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  73       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  74     return false;
  75   }
  76 
  77   return true;
  78 }
  79 
  80 //------------------------------implicit_null_check----------------------------
  81 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  82 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  83 // I can generate a memory op if there is not one nearby.
  84 // The proj is the control projection for the not-null case.
  85 // The val is the pointer being checked for nullness or
  86 // decodeHeapOop_not_null node if it did not fold into address.
  87 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  88   // Assume if null check need for 0 offset then always needed
  89   // Intel solaris doesn't support any null checks yet and no
  90   // mechanism exists (yet) to set the switches at an os_cpu level
  91   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  92 
  93   // Make sure the ptr-is-null path appears to be uncommon!
  94   float f = block->end()->as_MachIf()->_prob;
  95   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  96   if( f > PROB_UNLIKELY_MAG(4) ) return;
  97 
  98   uint bidx = 0;                // Capture index of value into memop
  99   bool was_store;               // Memory op is a store op
 100 
 101   // Get the successor block for if the test ptr is non-null
 102   Block* not_null_block;  // this one goes with the proj
 103   Block* null_block;
 104   if (block->get_node(block->number_of_nodes()-1) == proj) {
 105     null_block     = block->_succs[0];
 106     not_null_block = block->_succs[1];
 107   } else {
 108     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 109     not_null_block = block->_succs[0];
 110     null_block     = block->_succs[1];
 111   }
 112   while (null_block->is_Empty() == Block::empty_with_goto) {
 113     null_block     = null_block->_succs[0];
 114   }
 115 
 116   // Search the exception block for an uncommon trap.
 117   // (See Parse::do_if and Parse::do_ifnull for the reason
 118   // we need an uncommon trap.  Briefly, we need a way to
 119   // detect failure of this optimization, as in 6366351.)
 120   {
 121     bool found_trap = false;
 122     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 123       Node* nn = null_block->get_node(i1);
 124       if (nn->is_MachCall() &&
 125           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 126         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 127         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 128           jint tr_con = trtype->is_int()->get_con();
 129           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 130           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 131           assert((int)reason < (int)BitsPerInt, "recode bit map");
 132           if (is_set_nth_bit(allowed_reasons, (int) reason)
 133               && action != Deoptimization::Action_none) {
 134             // This uncommon trap is sure to recompile, eventually.
 135             // When that happens, C->too_many_traps will prevent
 136             // this transformation from happening again.
 137             found_trap = true;
 138           }
 139         }
 140         break;
 141       }
 142     }
 143     if (!found_trap) {
 144       // We did not find an uncommon trap.
 145       return;
 146     }
 147   }
 148 
 149   // Check for decodeHeapOop_not_null node which did not fold into address
 150   bool is_decoden = ((intptr_t)val) & 1;
 151   val = (Node*)(((intptr_t)val) & ~1);
 152 
 153   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 154          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 155 
 156   // Search the successor block for a load or store who's base value is also
 157   // the tested value.  There may be several.
 158   Node_List *out = new Node_List(Thread::current()->resource_area());
 159   MachNode *best = NULL;        // Best found so far
 160   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 161     Node *m = val->out(i);
 162     if( !m->is_Mach() ) continue;
 163     MachNode *mach = m->as_Mach();
 164     was_store = false;
 165     int iop = mach->ideal_Opcode();
 166     switch( iop ) {
 167     case Op_LoadB:
 168     case Op_LoadUB:
 169     case Op_LoadUS:
 170     case Op_LoadD:
 171     case Op_LoadF:
 172     case Op_LoadI:
 173     case Op_LoadL:
 174     case Op_LoadP:
 175     case Op_LoadBarrierSlowReg:
 176     case Op_LoadBarrierWeakSlowReg:
 177     case Op_LoadN:
 178     case Op_LoadS:
 179     case Op_LoadKlass:
 180     case Op_LoadNKlass:
 181     case Op_LoadRange:
 182     case Op_LoadD_unaligned:
 183     case Op_LoadL_unaligned:
 184     case Op_ShenandoahReadBarrier:
 185     case Op_ShenandoahWriteBarrier:
 186       assert(mach->in(2) == val, "should be address");
 187       break;
 188     case Op_StoreB:
 189     case Op_StoreC:
 190     case Op_StoreCM:
 191     case Op_StoreD:
 192     case Op_StoreF:
 193     case Op_StoreI:
 194     case Op_StoreL:
 195     case Op_StoreP:
 196     case Op_StoreN:
 197     case Op_StoreNKlass:
 198       was_store = true;         // Memory op is a store op
 199       // Stores will have their address in slot 2 (memory in slot 1).
 200       // If the value being nul-checked is in another slot, it means we
 201       // are storing the checked value, which does NOT check the value!
 202       if( mach->in(2) != val ) continue;
 203       break;                    // Found a memory op?
 204     case Op_StrComp:
 205     case Op_StrEquals:
 206     case Op_StrIndexOf:
 207     case Op_StrIndexOfChar:
 208     case Op_AryEq:
 209     case Op_StrInflatedCopy:
 210     case Op_StrCompressedCopy:
 211     case Op_EncodeISOArray:
 212     case Op_HasNegatives:
 213       // Not a legit memory op for implicit null check regardless of
 214       // embedded loads
 215       continue;
 216     default:                    // Also check for embedded loads
 217       if( !mach->needs_anti_dependence_check() )
 218         continue;               // Not an memory op; skip it
 219       if( must_clone[iop] ) {
 220         // Do not move nodes which produce flags because
 221         // RA will try to clone it to place near branch and
 222         // it will cause recompilation, see clone_node().
 223         continue;
 224       }
 225       {
 226         // Check that value is used in memory address in
 227         // instructions with embedded load (CmpP val1,(val2+off)).
 228         Node* base;
 229         Node* index;
 230         const MachOper* oper = mach->memory_inputs(base, index);
 231         if (oper == NULL || oper == (MachOper*)-1) {
 232           continue;             // Not an memory op; skip it
 233         }
 234         if (val == base ||
 235             (val == index && val->bottom_type()->isa_narrowoop())) {
 236           break;                // Found it
 237         } else {
 238           continue;             // Skip it
 239         }
 240       }
 241       break;
 242     }
 243 
 244     // On some OSes (AIX) the page at address 0 is only write protected.
 245     // If so, only Store operations will trap.
 246     // But a read accessing the base of a heap-based compressed heap will trap.
 247     if (!was_store && needs_explicit_null_check_for_read(val)) {
 248       continue;
 249     }
 250 
 251     // Check that node's control edge is not-null block's head or dominates it,
 252     // otherwise we can't hoist it because there are other control dependencies.
 253     Node* ctrl = mach->in(0);
 254     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
 255         get_block_for_node(ctrl)->dominates(not_null_block))) {
 256       continue;
 257     }
 258 
 259     // check if the offset is not too high for implicit exception
 260     {
 261       intptr_t offset = 0;
 262       const TypePtr *adr_type = NULL;  // Do not need this return value here
 263       const Node* base = mach->get_base_and_disp(offset, adr_type);
 264       if (base == NULL || base == NodeSentinel) {
 265         // Narrow oop address doesn't have base, only index.
 266         // Give up if offset is beyond page size or if heap base is not protected.
 267         if (val->bottom_type()->isa_narrowoop() &&
 268             (MacroAssembler::needs_explicit_null_check(offset) ||
 269              !Universe::narrow_oop_use_implicit_null_checks()))
 270           continue;
 271         // cannot reason about it; is probably not implicit null exception
 272       } else {
 273         const TypePtr* tptr;
 274         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 275                                   Universe::narrow_klass_shift() == 0)) {
 276           // 32-bits narrow oop can be the base of address expressions
 277           tptr = base->get_ptr_type();
 278         } else {
 279           // only regular oops are expected here
 280           tptr = base->bottom_type()->is_ptr();
 281         }
 282         // Give up if offset is not a compile-time constant.
 283         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 284           continue;
 285         offset += tptr->_offset; // correct if base is offseted
 286         // Give up if reference is beyond page size.
 287         if (MacroAssembler::needs_explicit_null_check(offset))
 288           continue;
 289         // Give up if base is a decode node and the heap base is not protected.
 290         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 291             !Universe::narrow_oop_use_implicit_null_checks())
 292           continue;
 293       }
 294     }
 295 
 296     // Check ctrl input to see if the null-check dominates the memory op
 297     Block *cb = get_block_for_node(mach);
 298     cb = cb->_idom;             // Always hoist at least 1 block
 299     if( !was_store ) {          // Stores can be hoisted only one block
 300       while( cb->_dom_depth > (block->_dom_depth + 1))
 301         cb = cb->_idom;         // Hoist loads as far as we want
 302       // The non-null-block should dominate the memory op, too. Live
 303       // range spilling will insert a spill in the non-null-block if it is
 304       // needs to spill the memory op for an implicit null check.
 305       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 306         if (cb != not_null_block) continue;
 307         cb = cb->_idom;
 308       }
 309     }
 310     if( cb != block ) continue;
 311 
 312     // Found a memory user; see if it can be hoisted to check-block
 313     uint vidx = 0;              // Capture index of value into memop
 314     uint j;
 315     for( j = mach->req()-1; j > 0; j-- ) {
 316       if( mach->in(j) == val ) {
 317         vidx = j;
 318         // Ignore DecodeN val which could be hoisted to where needed.
 319         if( is_decoden ) continue;
 320       }
 321       // Block of memory-op input
 322       Block *inb = get_block_for_node(mach->in(j));
 323       Block *b = block;          // Start from nul check
 324       while( b != inb && b->_dom_depth > inb->_dom_depth )
 325         b = b->_idom;           // search upwards for input
 326       // See if input dominates null check
 327       if( b != inb )
 328         break;
 329     }
 330     if( j > 0 )
 331       continue;
 332     Block *mb = get_block_for_node(mach);
 333     // Hoisting stores requires more checks for the anti-dependence case.
 334     // Give up hoisting if we have to move the store past any load.
 335     if( was_store ) {
 336       Block *b = mb;            // Start searching here for a local load
 337       // mach use (faulting) trying to hoist
 338       // n might be blocker to hoisting
 339       while( b != block ) {
 340         uint k;
 341         for( k = 1; k < b->number_of_nodes(); k++ ) {
 342           Node *n = b->get_node(k);
 343           if( n->needs_anti_dependence_check() &&
 344               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 345             break;              // Found anti-dependent load
 346         }
 347         if( k < b->number_of_nodes() )
 348           break;                // Found anti-dependent load
 349         // Make sure control does not do a merge (would have to check allpaths)
 350         if( b->num_preds() != 2 ) break;
 351         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 352       }
 353       if( b != block ) continue;
 354     }
 355 
 356     // Make sure this memory op is not already being used for a NullCheck
 357     Node *e = mb->end();
 358     if( e->is_MachNullCheck() && e->in(1) == mach )
 359       continue;                 // Already being used as a NULL check
 360 
 361     // Found a candidate!  Pick one with least dom depth - the highest
 362     // in the dom tree should be closest to the null check.
 363     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 364       best = mach;
 365       bidx = vidx;
 366     }
 367   }
 368   // No candidate!
 369   if (best == NULL) {
 370     return;
 371   }
 372 
 373   // ---- Found an implicit null check
 374 #ifndef PRODUCT
 375   extern int implicit_null_checks;
 376   implicit_null_checks++;
 377 #endif
 378 
 379   if( is_decoden ) {
 380     // Check if we need to hoist decodeHeapOop_not_null first.
 381     Block *valb = get_block_for_node(val);
 382     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 383       // Hoist it up to the end of the test block.
 384       valb->find_remove(val);
 385       block->add_inst(val);
 386       map_node_to_block(val, block);
 387       // DecodeN on x86 may kill flags. Check for flag-killing projections
 388       // that also need to be hoisted.
 389       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 390         Node* n = val->fast_out(j);
 391         if( n->is_MachProj() ) {
 392           get_block_for_node(n)->find_remove(n);
 393           block->add_inst(n);
 394           map_node_to_block(n, block);
 395         }
 396       }
 397     }
 398   }
 399   // Hoist the memory candidate up to the end of the test block.
 400   Block *old_block = get_block_for_node(best);
 401   old_block->find_remove(best);
 402   block->add_inst(best);
 403   map_node_to_block(best, block);
 404 
 405   // Move the control dependence if it is pinned to not-null block.
 406   // Don't change it in other cases: NULL or dominating control.
 407   if (best->in(0) == not_null_block->head()) {
 408     // Set it to control edge of null check.
 409     best->set_req(0, proj->in(0)->in(0));
 410   }
 411 
 412   // Check for flag-killing projections that also need to be hoisted
 413   // Should be DU safe because no edge updates.
 414   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 415     Node* n = best->fast_out(j);
 416     if( n->is_MachProj() || n->Opcode() == Op_ShenandoahWBMemProj) {
 417       get_block_for_node(n)->find_remove(n);
 418       block->add_inst(n);
 419       map_node_to_block(n, block);
 420     }
 421   }
 422 
 423   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 424   // One of two graph shapes got matched:
 425   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 426   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 427   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 428   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 429   // We need to flip the projections to keep the same semantics.
 430   if( proj->Opcode() == Op_IfTrue ) {
 431     // Swap order of projections in basic block to swap branch targets
 432     Node *tmp1 = block->get_node(block->end_idx()+1);
 433     Node *tmp2 = block->get_node(block->end_idx()+2);
 434     block->map_node(tmp2, block->end_idx()+1);
 435     block->map_node(tmp1, block->end_idx()+2);
 436     Node *tmp = new Node(C->top()); // Use not NULL input
 437     tmp1->replace_by(tmp);
 438     tmp2->replace_by(tmp1);
 439     tmp->replace_by(tmp2);
 440     tmp->destruct();
 441   }
 442 
 443   // Remove the existing null check; use a new implicit null check instead.
 444   // Since schedule-local needs precise def-use info, we need to correct
 445   // it as well.
 446   Node *old_tst = proj->in(0);
 447   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 448   block->map_node(nul_chk, block->end_idx());
 449   map_node_to_block(nul_chk, block);
 450   // Redirect users of old_test to nul_chk
 451   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 452     old_tst->last_out(i2)->set_req(0, nul_chk);
 453   // Clean-up any dead code
 454   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 455     Node* in = old_tst->in(i3);
 456     old_tst->set_req(i3, NULL);
 457     if (in->outcnt() == 0) {
 458       // Remove dead input node
 459       in->disconnect_inputs(NULL, C);
 460       block->find_remove(in);
 461     }
 462   }
 463 
 464   latency_from_uses(nul_chk);
 465   latency_from_uses(best);
 466 
 467   // insert anti-dependences to defs in this block
 468   if (! best->needs_anti_dependence_check()) {
 469     for (uint k = 1; k < block->number_of_nodes(); k++) {
 470       Node *n = block->get_node(k);
 471       if (n->needs_anti_dependence_check() &&
 472           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 473         // Found anti-dependent load
 474         insert_anti_dependences(block, n);
 475       }
 476     }
 477   }
 478 }
 479 
 480 
 481 //------------------------------select-----------------------------------------
 482 // Select a nice fellow from the worklist to schedule next. If there is only
 483 // one choice, then use it. Projections take top priority for correctness
 484 // reasons - if I see a projection, then it is next.  There are a number of
 485 // other special cases, for instructions that consume condition codes, et al.
 486 // These are chosen immediately. Some instructions are required to immediately
 487 // precede the last instruction in the block, and these are taken last. Of the
 488 // remaining cases (most), choose the instruction with the greatest latency
 489 // (that is, the most number of pseudo-cycles required to the end of the
 490 // routine). If there is a tie, choose the instruction with the most inputs.
 491 Node* PhaseCFG::select(
 492   Block* block,
 493   Node_List &worklist,
 494   GrowableArray<int> &ready_cnt,
 495   VectorSet &next_call,
 496   uint sched_slot,
 497   intptr_t* recalc_pressure_nodes) {
 498 
 499   // If only a single entry on the stack, use it
 500   uint cnt = worklist.size();
 501   if (cnt == 1) {
 502     Node *n = worklist[0];
 503     worklist.map(0,worklist.pop());
 504     return n;
 505   }
 506 
 507   uint choice  = 0; // Bigger is most important
 508   uint latency = 0; // Bigger is scheduled first
 509   uint score   = 0; // Bigger is better
 510   int idx = -1;     // Index in worklist
 511   int cand_cnt = 0; // Candidate count
 512   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 513 
 514   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 515     // Order in worklist is used to break ties.
 516     // See caller for how this is used to delay scheduling
 517     // of induction variable increments to after the other
 518     // uses of the phi are scheduled.
 519     Node *n = worklist[i];      // Get Node on worklist
 520 
 521     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 522     if( n->is_Proj() ||         // Projections always win
 523         n->Opcode()== Op_Con || // So does constant 'Top'
 524         iop == Op_CreateEx ||   // Create-exception must start block
 525         iop == Op_CheckCastPP
 526         ) {
 527       worklist.map(i,worklist.pop());
 528       return n;
 529     }
 530 
 531     // Final call in a block must be adjacent to 'catch'
 532     Node *e = block->end();
 533     if( e->is_Catch() && e->in(0)->in(0) == n )
 534       continue;
 535 
 536     // Memory op for an implicit null check has to be at the end of the block
 537     if( e->is_MachNullCheck() && e->in(1) == n )
 538       continue;
 539 
 540     // Schedule IV increment last.
 541     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 542       // Cmp might be matched into CountedLoopEnd node.
 543       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 544       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 545         continue;
 546       }
 547     }
 548 
 549     uint n_choice  = 2;
 550 
 551     // See if this instruction is consumed by a branch. If so, then (as the
 552     // branch is the last instruction in the basic block) force it to the
 553     // end of the basic block
 554     if ( must_clone[iop] ) {
 555       // See if any use is a branch
 556       bool found_machif = false;
 557 
 558       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 559         Node* use = n->fast_out(j);
 560 
 561         // The use is a conditional branch, make them adjacent
 562         if (use->is_MachIf() && get_block_for_node(use) == block) {
 563           found_machif = true;
 564           break;
 565         }
 566 
 567         // More than this instruction pending for successor to be ready,
 568         // don't choose this if other opportunities are ready
 569         if (ready_cnt.at(use->_idx) > 1)
 570           n_choice = 1;
 571       }
 572 
 573       // loop terminated, prefer not to use this instruction
 574       if (found_machif)
 575         continue;
 576     }
 577 
 578     // See if this has a predecessor that is "must_clone", i.e. sets the
 579     // condition code. If so, choose this first
 580     for (uint j = 0; j < n->req() ; j++) {
 581       Node *inn = n->in(j);
 582       if (inn) {
 583         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 584           n_choice = 3;
 585           break;
 586         }
 587       }
 588     }
 589 
 590     // MachTemps should be scheduled last so they are near their uses
 591     if (n->is_MachTemp()) {
 592       n_choice = 1;
 593     }
 594 
 595     uint n_latency = get_latency_for_node(n);
 596     uint n_score = n->req();   // Many inputs get high score to break ties
 597 
 598     if (OptoRegScheduling && block_size_threshold_ok) {
 599       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 600         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 601         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 602         // simulate the notion that we just picked this node to schedule
 603         n->add_flag(Node::Flag_is_scheduled);
 604         // now caculate its effect upon the graph if we did
 605         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 606         // return its state for finalize in case somebody else wins
 607         n->remove_flag(Node::Flag_is_scheduled);
 608         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 609         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 610         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 611         recalc_pressure_nodes[n->_idx] = int_pressure;
 612         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 613       }
 614 
 615       if (_scheduling_for_pressure) {
 616         latency = n_latency;
 617         if (n_choice != 3) {
 618           // Now evaluate each register pressure component based on threshold in the score.
 619           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 620           // on a single instruction, but we might see it shrink on both banks.
 621           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 622           // live ranges that terminate on this instruction.
 623           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 624             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 625             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 626           }
 627           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 628             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 629             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 630           }
 631         } else {
 632           // make sure we choose these candidates
 633           score = 0;
 634         }
 635       }
 636     }
 637 
 638     // Keep best latency found
 639     cand_cnt++;
 640     if (choice < n_choice ||
 641         (choice == n_choice &&
 642          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 643           (!StressLCM &&
 644            (latency < n_latency ||
 645             (latency == n_latency &&
 646              (score < n_score))))))) {
 647       choice  = n_choice;
 648       latency = n_latency;
 649       score   = n_score;
 650       idx     = i;               // Also keep index in worklist
 651     }
 652   } // End of for all ready nodes in worklist
 653 
 654   assert(idx >= 0, "index should be set");
 655   Node *n = worklist[(uint)idx];      // Get the winner
 656 
 657   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 658   return n;
 659 }
 660 
 661 //-------------------------adjust_register_pressure----------------------------
 662 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 663   PhaseLive* liveinfo = _regalloc->get_live();
 664   IndexSet* liveout = liveinfo->live(block);
 665   // first adjust the register pressure for the sources
 666   for (uint i = 1; i < n->req(); i++) {
 667     bool lrg_ends = false;
 668     Node *src_n = n->in(i);
 669     if (src_n == NULL) continue;
 670     if (!src_n->is_Mach()) continue;
 671     uint src = _regalloc->_lrg_map.find(src_n);
 672     if (src == 0) continue;
 673     LRG& lrg_src = _regalloc->lrgs(src);
 674     // detect if the live range ends or not
 675     if (liveout->member(src) == false) {
 676       lrg_ends = true;
 677       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 678         Node* m = src_n->fast_out(j); // Get user
 679         if (m == n) continue;
 680         if (!m->is_Mach()) continue;
 681         MachNode *mach = m->as_Mach();
 682         bool src_matches = false;
 683         int iop = mach->ideal_Opcode();
 684 
 685         switch (iop) {
 686         case Op_StoreB:
 687         case Op_StoreC:
 688         case Op_StoreCM:
 689         case Op_StoreD:
 690         case Op_StoreF:
 691         case Op_StoreI:
 692         case Op_StoreL:
 693         case Op_StoreP:
 694         case Op_StoreN:
 695         case Op_StoreVector:
 696         case Op_StoreNKlass:
 697           for (uint k = 1; k < m->req(); k++) {
 698             Node *in = m->in(k);
 699             if (in == src_n) {
 700               src_matches = true;
 701               break;
 702             }
 703           }
 704           break;
 705 
 706         default:
 707           src_matches = true;
 708           break;
 709         }
 710 
 711         // If we have a store as our use, ignore the non source operands
 712         if (src_matches == false) continue;
 713 
 714         // Mark every unscheduled use which is not n with a recalculation
 715         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 716           if (finalize_mode && !m->is_Phi()) {
 717             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 718           }
 719           lrg_ends = false;
 720         }
 721       }
 722     }
 723     // if none, this live range ends and we can adjust register pressure
 724     if (lrg_ends) {
 725       if (finalize_mode) {
 726         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 727       } else {
 728         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 729       }
 730     }
 731   }
 732 
 733   // now add the register pressure from the dest and evaluate which heuristic we should use:
 734   // 1.) The default, latency scheduling
 735   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 736   uint dst = _regalloc->_lrg_map.find(n);
 737   if (dst != 0) {
 738     LRG& lrg_dst = _regalloc->lrgs(dst);
 739     if (finalize_mode) {
 740       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 741       // check to see if we fall over the register pressure cliff here
 742       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 743         _scheduling_for_pressure = true;
 744       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 745         _scheduling_for_pressure = true;
 746       } else {
 747         // restore latency scheduling mode
 748         _scheduling_for_pressure = false;
 749       }
 750     } else {
 751       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 752     }
 753   }
 754 }
 755 
 756 //------------------------------set_next_call----------------------------------
 757 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 758   if( next_call.test_set(n->_idx) ) return;
 759   for( uint i=0; i<n->len(); i++ ) {
 760     Node *m = n->in(i);
 761     if( !m ) continue;  // must see all nodes in block that precede call
 762     if (get_block_for_node(m) == block) {
 763       set_next_call(block, m, next_call);
 764     }
 765   }
 766 }
 767 
 768 //------------------------------needed_for_next_call---------------------------
 769 // Set the flag 'next_call' for each Node that is needed for the next call to
 770 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 771 // next subroutine call get priority - basically it moves things NOT needed
 772 // for the next call till after the call.  This prevents me from trying to
 773 // carry lots of stuff live across a call.
 774 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 775   // Find the next control-defining Node in this block
 776   Node* call = NULL;
 777   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 778     Node* m = this_call->fast_out(i);
 779     if (get_block_for_node(m) == block && // Local-block user
 780         m != this_call &&       // Not self-start node
 781         m->is_MachCall()) {
 782       call = m;
 783       break;
 784     }
 785   }
 786   if (call == NULL)  return;    // No next call (e.g., block end is near)
 787   // Set next-call for all inputs to this call
 788   set_next_call(block, call, next_call);
 789 }
 790 
 791 //------------------------------add_call_kills-------------------------------------
 792 // helper function that adds caller save registers to MachProjNode
 793 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe, bool exclude_fp) {
 794   // Fill in the kill mask for the call
 795   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 796     if (exclude_fp && (register_save_type[r] == Op_RegF || register_save_type[r] == Op_RegD)) {
 797       continue;
 798     }
 799     if( !regs.Member(r) ) {     // Not already defined by the call
 800       // Save-on-call register?
 801       if ((save_policy[r] == 'C') ||
 802           (save_policy[r] == 'A') ||
 803           ((save_policy[r] == 'E') && exclude_soe)) {
 804         proj->_rout.Insert(r);
 805       }
 806     }
 807   }
 808 }
 809 
 810 
 811 //------------------------------sched_call-------------------------------------
 812 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 813   RegMask regs;
 814 
 815   // Schedule all the users of the call right now.  All the users are
 816   // projection Nodes, so they must be scheduled next to the call.
 817   // Collect all the defined registers.
 818   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 819     Node* n = mcall->fast_out(i);
 820     assert( n->is_MachProj(), "" );
 821     int n_cnt = ready_cnt.at(n->_idx)-1;
 822     ready_cnt.at_put(n->_idx, n_cnt);
 823     assert( n_cnt == 0, "" );
 824     // Schedule next to call
 825     block->map_node(n, node_cnt++);
 826     // Collect defined registers
 827     regs.OR(n->out_RegMask());
 828     // Check for scheduling the next control-definer
 829     if( n->bottom_type() == Type::CONTROL )
 830       // Warm up next pile of heuristic bits
 831       needed_for_next_call(block, n, next_call);
 832 
 833     // Children of projections are now all ready
 834     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 835       Node* m = n->fast_out(j); // Get user
 836       if(get_block_for_node(m) != block) {
 837         continue;
 838       }
 839       if( m->is_Phi() ) continue;
 840       int m_cnt = ready_cnt.at(m->_idx) - 1;
 841       ready_cnt.at_put(m->_idx, m_cnt);
 842       if( m_cnt == 0 )
 843         worklist.push(m);
 844     }
 845 
 846   }
 847 
 848   // Act as if the call defines the Frame Pointer.
 849   // Certainly the FP is alive and well after the call.
 850   regs.Insert(_matcher.c_frame_pointer());
 851 
 852   // Set all registers killed and not already defined by the call.
 853   uint r_cnt = mcall->tf()->range()->cnt();
 854   int op = mcall->ideal_Opcode();
 855   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 856   map_node_to_block(proj, block);
 857   block->insert_node(proj, node_cnt++);
 858 
 859   // Select the right register save policy.
 860   const char *save_policy = NULL;
 861   switch (op) {
 862     case Op_CallRuntime:
 863     case Op_CallLeaf:
 864     case Op_CallLeafNoFP:
 865       // Calling C code so use C calling convention
 866       save_policy = _matcher._c_reg_save_policy;
 867       break;
 868 
 869     case Op_CallStaticJava:
 870     case Op_CallDynamicJava:
 871       // Calling Java code so use Java calling convention
 872       save_policy = _matcher._register_save_policy;
 873       break;
 874 
 875     default:
 876       ShouldNotReachHere();
 877   }
 878 
 879   // When using CallRuntime mark SOE registers as killed by the call
 880   // so values that could show up in the RegisterMap aren't live in a
 881   // callee saved register since the register wouldn't know where to
 882   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 883   // have debug info on them.  Strictly speaking this only needs to be
 884   // done for oops since idealreg2debugmask takes care of debug info
 885   // references but there no way to handle oops differently than other
 886   // pointers as far as the kill mask goes.
 887   bool exclude_soe = op == Op_CallRuntime;
 888 
 889   // If the call is a MethodHandle invoke, we need to exclude the
 890   // register which is used to save the SP value over MH invokes from
 891   // the mask.  Otherwise this register could be used for
 892   // deoptimization information.
 893   if (op == Op_CallStaticJava) {
 894     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 895     if (mcallstaticjava->_method_handle_invoke)
 896       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 897   }
 898 
 899 #if INCLUDE_SHENANDOAHGC
 900   if (UseShenandoahGC && mcall->entry_point() == ShenandoahBarrierSetAssembler::shenandoah_wb_C()) {
 901     assert(op == Op_CallLeafNoFP, "shenandoah_wb_C should be called with Op_CallLeafNoFP");
 902     add_call_kills(proj, regs, save_policy, exclude_soe, true);
 903   } else
 904 #endif
 905     add_call_kills(proj, regs, save_policy, exclude_soe, false);
 906 
 907   return node_cnt;
 908 }
 909 
 910 void PhaseCFG::push_ready_nodes(Node* n, Node* m, Block* block, GrowableArray<int>& ready_cnt, Node_List& worklist, uint max_idx, int c) {
 911   if (get_block_for_node(m) != block) {
 912     return;
 913   }
 914   if (m->is_Phi()) {
 915     return;
 916   }
 917   if (m->_idx >= max_idx) { // new node, skip it
 918     assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 919     return;
 920   }
 921   int m_cnt = ready_cnt.at(m->_idx) - c;
 922   ready_cnt.at_put(m->_idx, m_cnt);
 923   if (m_cnt == 0) {
 924     worklist.push(m);
 925   }
 926 }
 927 
 928 //------------------------------schedule_local---------------------------------
 929 // Topological sort within a block.  Someday become a real scheduler.
 930 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 931   // Already "sorted" are the block start Node (as the first entry), and
 932   // the block-ending Node and any trailing control projections.  We leave
 933   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 934   // Node.  Everything else gets topo-sorted.
 935 
 936 #ifndef PRODUCT
 937     if (trace_opto_pipelining()) {
 938       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 939       for (uint i = 0;i < block->number_of_nodes(); i++) {
 940         tty->print("# ");
 941         block->get_node(i)->fast_dump();
 942       }
 943       tty->print_cr("#");
 944     }
 945 #endif
 946 
 947   // RootNode is already sorted
 948   if (block->number_of_nodes() == 1) {
 949     return true;
 950   }
 951 
 952   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 953 
 954   // We track the uses of local definitions as input dependences so that
 955   // we know when a given instruction is avialable to be scheduled.
 956   uint i;
 957   if (OptoRegScheduling && block_size_threshold_ok) {
 958     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 959       Node *n = block->get_node(i);
 960       n->remove_flag(Node::Flag_is_scheduled);
 961       if (!n->is_Phi()) {
 962         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 963       }
 964     }
 965   } else {
 966 #ifdef ASSERT
 967     for (i = 1; i < block->number_of_nodes(); i++) {
 968       Node *n = block->get_node(i);
 969       assert(!n->is_scheduled(), "shouldn't be scheduled yet");
 970     }
 971 #endif
 972   }
 973 
 974   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 975   uint node_cnt = block->end_idx();
 976   uint phi_cnt = 1;
 977   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 978     Node *n = block->get_node(i);
 979     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 980         (n->is_Proj()  && n->in(0) == block->head()) ) {
 981       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 982       block->map_node(block->get_node(phi_cnt), i);
 983       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 984       // mark n as scheduled
 985       n->add_flag(Node::Flag_is_scheduled);
 986     } else {                    // All others
 987       // Count block-local inputs to 'n'
 988       uint cnt = n->len();      // Input count
 989       uint local = 0;
 990       for( uint j=0; j<cnt; j++ ) {
 991         Node *m = n->in(j);
 992         if( m && get_block_for_node(m) == block && !m->is_top() )
 993           local++;              // One more block-local input
 994       }
 995       ready_cnt.at_put(n->_idx, local); // Count em up
 996 
 997 #ifdef ASSERT
 998       if( UseConcMarkSweepGC || UseG1GC ) {
 999         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
1000           // Check the precedence edges
1001           for (uint prec = n->req(); prec < n->len(); prec++) {
1002             Node* oop_store = n->in(prec);
1003             if (oop_store != NULL) {
1004               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
1005             }
1006           }
1007         }
1008       }
1009 #endif
1010 
1011       // A few node types require changing a required edge to a precedence edge
1012       // before allocation.
1013       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
1014           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
1015            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
1016         // MemBarAcquire could be created without Precedent edge.
1017         // del_req() replaces the specified edge with the last input edge
1018         // and then removes the last edge. If the specified edge > number of
1019         // edges the last edge will be moved outside of the input edges array
1020         // and the edge will be lost. This is why this code should be
1021         // executed only when Precedent (== TypeFunc::Parms) edge is present.
1022         Node *x = n->in(TypeFunc::Parms);
1023         if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1024           // Old edge to node within same block will get removed, but no precedence
1025           // edge will get added because it already exists. Update ready count.
1026           int cnt = ready_cnt.at(n->_idx);
1027           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1028           ready_cnt.at_put(n->_idx, cnt-1);
1029         }
1030         n->del_req(TypeFunc::Parms);
1031         n->add_prec(x);
1032       }
1033     }
1034   }
1035   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1036     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1037 
1038   // All the prescheduled guys do not hold back internal nodes
1039   uint i3;
1040   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1041     Node *n = block->get_node(i3);       // Get pre-scheduled
1042     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1043       Node* m = n->fast_out(j);
1044       if (get_block_for_node(m) == block) { // Local-block user
1045         int m_cnt = ready_cnt.at(m->_idx)-1;
1046         // mark m as scheduled
1047         if (m_cnt < 0) {
1048           m->add_flag(Node::Flag_is_scheduled);
1049         }
1050         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1051       }
1052     }
1053   }
1054 
1055   Node_List delay;
1056   // Make a worklist
1057   Node_List worklist;
1058   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1059     Node *m = block->get_node(i4);
1060     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1061       if (m->is_iteratively_computed()) {
1062         // Push induction variable increments last to allow other uses
1063         // of the phi to be scheduled first. The select() method breaks
1064         // ties in scheduling by worklist order.
1065         delay.push(m);
1066       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1067         // Force the CreateEx to the top of the list so it's processed
1068         // first and ends up at the start of the block.
1069         worklist.insert(0, m);
1070       } else {
1071         worklist.push(m);         // Then on to worklist!
1072       }
1073     }
1074   }
1075   while (delay.size()) {
1076     Node* d = delay.pop();
1077     worklist.push(d);
1078   }
1079 
1080   if (OptoRegScheduling && block_size_threshold_ok) {
1081     // To stage register pressure calculations we need to examine the live set variables
1082     // breaking them up by register class to compartmentalize the calculations.
1083     uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1084     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1085     _regalloc->_sched_float_pressure.init(float_pressure);
1086     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1087     _regalloc->_scratch_float_pressure.init(float_pressure);
1088 
1089     _regalloc->compute_entry_block_pressure(block);
1090   }
1091 
1092   // Warm up the 'next_call' heuristic bits
1093   needed_for_next_call(block, block->head(), next_call);
1094 
1095 #ifndef PRODUCT
1096     if (trace_opto_pipelining()) {
1097       for (uint j=0; j< block->number_of_nodes(); j++) {
1098         Node     *n = block->get_node(j);
1099         int     idx = n->_idx;
1100         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1101         tty->print("latency:%3d  ", get_latency_for_node(n));
1102         tty->print("%4d: %s\n", idx, n->Name());
1103       }
1104     }
1105 #endif
1106 
1107   uint max_idx = (uint)ready_cnt.length();
1108   // Pull from worklist and schedule
1109   while( worklist.size() ) {    // Worklist is not ready
1110 
1111 #ifndef PRODUCT
1112     if (trace_opto_pipelining()) {
1113       tty->print("#   ready list:");
1114       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1115         Node *n = worklist[i];      // Get Node on worklist
1116         tty->print(" %d", n->_idx);
1117       }
1118       tty->cr();
1119     }
1120 #endif
1121 
1122     // Select and pop a ready guy from worklist
1123     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1124     block->map_node(n, phi_cnt++);    // Schedule him next
1125 
1126     n->add_flag(Node::Flag_is_scheduled);
1127 
1128     if (OptoRegScheduling && block_size_threshold_ok) {
1129       // Now adjust the resister pressure with the node we selected
1130       if (!n->is_Phi()) {
1131         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1132       }
1133     }
1134 
1135 #ifndef PRODUCT
1136     if (trace_opto_pipelining()) {
1137       tty->print("#    select %d: %s", n->_idx, n->Name());
1138       tty->print(", latency:%d", get_latency_for_node(n));
1139       n->dump();
1140       if (Verbose) {
1141         tty->print("#   ready list:");
1142         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1143           Node *n = worklist[i];      // Get Node on worklist
1144           tty->print(" %d", n->_idx);
1145         }
1146         tty->cr();
1147       }
1148     }
1149 
1150 #endif
1151     if( n->is_MachCall() ) {
1152       MachCallNode *mcall = n->as_MachCall();
1153       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1154       continue;
1155     }
1156 
1157     if (n->is_Mach() && n->as_Mach()->has_call()) {
1158       RegMask regs;
1159       regs.Insert(_matcher.c_frame_pointer());
1160       regs.OR(n->out_RegMask());
1161 
1162       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1163       map_node_to_block(proj, block);
1164       block->insert_node(proj, phi_cnt++);
1165 
1166       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false, false);
1167     }
1168 
1169     // Children are now all ready
1170     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1171       Node* m = n->fast_out(i5); // Get user
1172       push_ready_nodes(n, m, block, ready_cnt, worklist, max_idx, 1);
1173     }
1174 
1175 #if INCLUDE_SHENANDOAHGC
1176     replace_uses_with_shenandoah_barrier(n, block, worklist, ready_cnt, max_idx, phi_cnt);
1177 #endif
1178   }
1179 
1180   if( phi_cnt != block->end_idx() ) {
1181     // did not schedule all.  Retry, Bailout, or Die
1182     if (C->subsume_loads() == true && !C->failing()) {
1183       // Retry with subsume_loads == false
1184       // If this is the first failure, the sentinel string will "stick"
1185       // to the Compile object, and the C2Compiler will see it and retry.
1186       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1187     } else {
1188       assert(false, "graph should be schedulable");
1189     }
1190     // assert( phi_cnt == end_idx(), "did not schedule all" );
1191     return false;
1192   }
1193 
1194   if (OptoRegScheduling && block_size_threshold_ok) {
1195     _regalloc->compute_exit_block_pressure(block);
1196     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1197     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1198   }
1199 
1200 #ifndef PRODUCT
1201   if (trace_opto_pipelining()) {
1202     tty->print_cr("#");
1203     tty->print_cr("# after schedule_local");
1204     for (uint i = 0;i < block->number_of_nodes();i++) {
1205       tty->print("# ");
1206       block->get_node(i)->fast_dump();
1207     }
1208     tty->print_cr("# ");
1209 
1210     if (OptoRegScheduling && block_size_threshold_ok) {
1211       tty->print_cr("# pressure info : %d", block->_pre_order);
1212       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1213       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1214     }
1215     tty->cr();
1216   }
1217 #endif
1218 
1219   return true;
1220 }
1221 
1222 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1223 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1224   for (uint l = 0; l < use->len(); l++) {
1225     if (use->in(l) == old_def) {
1226       if (l < use->req()) {
1227         use->set_req(l, new_def);
1228       } else {
1229         use->rm_prec(l);
1230         use->add_prec(new_def);
1231         l--;
1232       }
1233     }
1234   }
1235 }
1236 
1237 //------------------------------catch_cleanup_find_cloned_def------------------
1238 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1239   assert( use_blk != def_blk, "Inter-block cleanup only");
1240 
1241   // The use is some block below the Catch.  Find and return the clone of the def
1242   // that dominates the use. If there is no clone in a dominating block, then
1243   // create a phi for the def in a dominating block.
1244 
1245   // Find which successor block dominates this use.  The successor
1246   // blocks must all be single-entry (from the Catch only; I will have
1247   // split blocks to make this so), hence they all dominate.
1248   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1249     use_blk = use_blk->_idom;
1250 
1251   // Find the successor
1252   Node *fixup = NULL;
1253 
1254   uint j;
1255   for( j = 0; j < def_blk->_num_succs; j++ )
1256     if( use_blk == def_blk->_succs[j] )
1257       break;
1258 
1259   if( j == def_blk->_num_succs ) {
1260     // Block at same level in dom-tree is not a successor.  It needs a
1261     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1262     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1263     for(uint k = 1; k < use_blk->num_preds(); k++) {
1264       Block* block = get_block_for_node(use_blk->pred(k));
1265       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1266     }
1267 
1268     // Check to see if the use_blk already has an identical phi inserted.
1269     // If it exists, it will be at the first position since all uses of a
1270     // def are processed together.
1271     Node *phi = use_blk->get_node(1);
1272     if( phi->is_Phi() ) {
1273       fixup = phi;
1274       for (uint k = 1; k < use_blk->num_preds(); k++) {
1275         if (phi->in(k) != inputs[k]) {
1276           // Not a match
1277           fixup = NULL;
1278           break;
1279         }
1280       }
1281     }
1282 
1283     // If an existing PhiNode was not found, make a new one.
1284     if (fixup == NULL) {
1285       Node *new_phi = PhiNode::make(use_blk->head(), def);
1286       use_blk->insert_node(new_phi, 1);
1287       map_node_to_block(new_phi, use_blk);
1288       for (uint k = 1; k < use_blk->num_preds(); k++) {
1289         new_phi->set_req(k, inputs[k]);
1290       }
1291       fixup = new_phi;
1292     }
1293 
1294   } else {
1295     // Found the use just below the Catch.  Make it use the clone.
1296     fixup = use_blk->get_node(n_clone_idx);
1297   }
1298 
1299   return fixup;
1300 }
1301 
1302 //--------------------------catch_cleanup_intra_block--------------------------
1303 // Fix all input edges in use that reference "def".  The use is in the same
1304 // block as the def and both have been cloned in each successor block.
1305 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1306 
1307   // Both the use and def have been cloned. For each successor block,
1308   // get the clone of the use, and make its input the clone of the def
1309   // found in that block.
1310 
1311   uint use_idx = blk->find_node(use);
1312   uint offset_idx = use_idx - beg;
1313   for( uint k = 0; k < blk->_num_succs; k++ ) {
1314     // Get clone in each successor block
1315     Block *sb = blk->_succs[k];
1316     Node *clone = sb->get_node(offset_idx+1);
1317     assert( clone->Opcode() == use->Opcode(), "" );
1318 
1319     // Make use-clone reference the def-clone
1320     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1321   }
1322 }
1323 
1324 //------------------------------catch_cleanup_inter_block---------------------
1325 // Fix all input edges in use that reference "def".  The use is in a different
1326 // block than the def.
1327 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1328   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1329 
1330   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1331   catch_cleanup_fix_all_inputs(use, def, new_def);
1332 }
1333 
1334 //------------------------------call_catch_cleanup-----------------------------
1335 // If we inserted any instructions between a Call and his CatchNode,
1336 // clone the instructions on all paths below the Catch.
1337 void PhaseCFG::call_catch_cleanup(Block* block) {
1338 
1339   // End of region to clone
1340   uint end = block->end_idx();
1341   if( !block->get_node(end)->is_Catch() ) return;
1342   // Start of region to clone
1343   uint beg = end;
1344   while(!block->get_node(beg-1)->is_MachProj() ||
1345         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1346     beg--;
1347     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1348   }
1349   // Range of inserted instructions is [beg, end)
1350   if( beg == end ) return;
1351 
1352   // Clone along all Catch output paths.  Clone area between the 'beg' and
1353   // 'end' indices.
1354   for( uint i = 0; i < block->_num_succs; i++ ) {
1355     Block *sb = block->_succs[i];
1356     // Clone the entire area; ignoring the edge fixup for now.
1357     for( uint j = end; j > beg; j-- ) {
1358       Node *clone = block->get_node(j-1)->clone();
1359       sb->insert_node(clone, 1);
1360       map_node_to_block(clone, sb);
1361       if (clone->needs_anti_dependence_check()) {
1362         insert_anti_dependences(sb, clone);
1363       }
1364     }
1365   }
1366 
1367 
1368   // Fixup edges.  Check the def-use info per cloned Node
1369   for(uint i2 = beg; i2 < end; i2++ ) {
1370     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1371     Node *n = block->get_node(i2);        // Node that got cloned
1372     // Need DU safe iterator because of edge manipulation in calls.
1373     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1374     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1375       out->push(n->fast_out(j1));
1376     }
1377     uint max = out->size();
1378     for (uint j = 0; j < max; j++) {// For all users
1379       Node *use = out->pop();
1380       Block *buse = get_block_for_node(use);
1381       if( use->is_Phi() ) {
1382         for( uint k = 1; k < use->req(); k++ )
1383           if( use->in(k) == n ) {
1384             Block* b = get_block_for_node(buse->pred(k));
1385             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1386             use->set_req(k, fixup);
1387           }
1388       } else {
1389         if (block == buse) {
1390           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1391         } else {
1392           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1393         }
1394       }
1395     } // End for all users
1396 
1397   } // End of for all Nodes in cloned area
1398 
1399   // Remove the now-dead cloned ops
1400   for(uint i3 = beg; i3 < end; i3++ ) {
1401     block->get_node(beg)->disconnect_inputs(NULL, C);
1402     block->remove_node(beg);
1403   }
1404 
1405   // If the successor blocks have a CreateEx node, move it back to the top
1406   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1407     Block *sb = block->_succs[i4];
1408     uint new_cnt = end - beg;
1409     // Remove any newly created, but dead, nodes.
1410     for( uint j = new_cnt; j > 0; j-- ) {
1411       Node *n = sb->get_node(j);
1412       if (n->outcnt() == 0 &&
1413           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1414         n->disconnect_inputs(NULL, C);
1415         sb->remove_node(j);
1416         new_cnt--;
1417       }
1418     }
1419     // If any newly created nodes remain, move the CreateEx node to the top
1420     if (new_cnt > 0) {
1421       Node *cex = sb->get_node(1+new_cnt);
1422       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1423         sb->remove_node(1+new_cnt);
1424         sb->insert_node(cex, 1);
1425       }
1426     }
1427   }
1428 }