1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/block.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/runtime.hpp"
  35 #include "opto/chaitin.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 
  38 // Optimization - Graph Style
  39 
  40 // Check whether val is not-null-decoded compressed oop,
  41 // i.e. will grab into the base of the heap if it represents NULL.
  42 static bool accesses_heap_base_zone(Node *val) {
  43   if (Universe::narrow_oop_base() != NULL) { // Implies UseCompressedOops.
  44     if (val && val->is_Mach()) {
  45       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  46         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  47         // decode NULL to point to the heap base (Decode_NN).
  48         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  49           return true;
  50         }
  51       }
  52       // Must recognize load operation with Decode matched in memory operand.
  53       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  54       // returns true everywhere else. On PPC, no such memory operands
  55       // exist, therefore we did not yet implement a check for such operands.
  56       NOT_AIX(Unimplemented());
  57     }
  58   }
  59   return false;
  60 }
  61 
  62 static bool needs_explicit_null_check_for_read(Node *val) {
  63   // On some OSes (AIX) the page at address 0 is only write protected.
  64   // If so, only Store operations will trap.
  65   if (os::zero_page_read_protected()) {
  66     return false;  // Implicit null check will work.
  67   }
  68   // Also a read accessing the base of a heap-based compressed heap will trap.
  69   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  70       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  71     return false;
  72   }
  73 
  74   return true;
  75 }
  76 
  77 //------------------------------implicit_null_check----------------------------
  78 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  79 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  80 // I can generate a memory op if there is not one nearby.
  81 // The proj is the control projection for the not-null case.
  82 // The val is the pointer being checked for nullness or
  83 // decodeHeapOop_not_null node if it did not fold into address.
  84 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  85   // Assume if null check need for 0 offset then always needed
  86   // Intel solaris doesn't support any null checks yet and no
  87   // mechanism exists (yet) to set the switches at an os_cpu level
  88   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  89 
  90   // Make sure the ptr-is-null path appears to be uncommon!
  91   float f = block->end()->as_MachIf()->_prob;
  92   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  93   if( f > PROB_UNLIKELY_MAG(4) ) return;
  94 
  95   uint bidx = 0;                // Capture index of value into memop
  96   bool was_store;               // Memory op is a store op
  97 
  98   // Get the successor block for if the test ptr is non-null
  99   Block* not_null_block;  // this one goes with the proj
 100   Block* null_block;
 101   if (block->get_node(block->number_of_nodes()-1) == proj) {
 102     null_block     = block->_succs[0];
 103     not_null_block = block->_succs[1];
 104   } else {
 105     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 106     not_null_block = block->_succs[0];
 107     null_block     = block->_succs[1];
 108   }
 109   while (null_block->is_Empty() == Block::empty_with_goto) {
 110     null_block     = null_block->_succs[0];
 111   }
 112 
 113   // Search the exception block for an uncommon trap.
 114   // (See Parse::do_if and Parse::do_ifnull for the reason
 115   // we need an uncommon trap.  Briefly, we need a way to
 116   // detect failure of this optimization, as in 6366351.)
 117   {
 118     bool found_trap = false;
 119     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 120       Node* nn = null_block->get_node(i1);
 121       if (nn->is_MachCall() &&
 122           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 123         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 124         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 125           jint tr_con = trtype->is_int()->get_con();
 126           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 127           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 128           assert((int)reason < (int)BitsPerInt, "recode bit map");
 129           if (is_set_nth_bit(allowed_reasons, (int) reason)
 130               && action != Deoptimization::Action_none) {
 131             // This uncommon trap is sure to recompile, eventually.
 132             // When that happens, C->too_many_traps will prevent
 133             // this transformation from happening again.
 134             found_trap = true;
 135           }
 136         }
 137         break;
 138       }
 139     }
 140     if (!found_trap) {
 141       // We did not find an uncommon trap.
 142       return;
 143     }
 144   }
 145 
 146   // Check for decodeHeapOop_not_null node which did not fold into address
 147   bool is_decoden = ((intptr_t)val) & 1;
 148   val = (Node*)(((intptr_t)val) & ~1);
 149 
 150   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 151          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 152 
 153   // Search the successor block for a load or store who's base value is also
 154   // the tested value.  There may be several.
 155   Node_List *out = new Node_List(Thread::current()->resource_area());
 156   MachNode *best = NULL;        // Best found so far
 157   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 158     Node *m = val->out(i);
 159     if( !m->is_Mach() ) continue;
 160     MachNode *mach = m->as_Mach();
 161     was_store = false;
 162     int iop = mach->ideal_Opcode();
 163     switch( iop ) {
 164     case Op_LoadB:
 165     case Op_LoadUB:
 166     case Op_LoadUS:
 167     case Op_LoadD:
 168     case Op_LoadF:
 169     case Op_LoadI:
 170     case Op_LoadL:
 171     case Op_LoadP:
 172     case Op_LoadBarrierSlowReg:
 173     case Op_LoadBarrierWeakSlowReg:
 174     case Op_LoadN:
 175     case Op_LoadS:
 176     case Op_LoadKlass:
 177     case Op_LoadNKlass:
 178     case Op_LoadRange:
 179     case Op_LoadD_unaligned:
 180     case Op_LoadL_unaligned:
 181     case Op_ShenandoahReadBarrier:
 182     case Op_ShenandoahWriteBarrier:
 183       assert(mach->in(2) == val, "should be address");
 184       break;
 185     case Op_StoreB:
 186     case Op_StoreC:
 187     case Op_StoreCM:
 188     case Op_StoreD:
 189     case Op_StoreF:
 190     case Op_StoreI:
 191     case Op_StoreL:
 192     case Op_StoreP:
 193     case Op_StoreN:
 194     case Op_StoreNKlass:
 195       was_store = true;         // Memory op is a store op
 196       // Stores will have their address in slot 2 (memory in slot 1).
 197       // If the value being nul-checked is in another slot, it means we
 198       // are storing the checked value, which does NOT check the value!
 199       if( mach->in(2) != val ) continue;
 200       break;                    // Found a memory op?
 201     case Op_StrComp:
 202     case Op_StrEquals:
 203     case Op_StrIndexOf:
 204     case Op_StrIndexOfChar:
 205     case Op_AryEq:
 206     case Op_StrInflatedCopy:
 207     case Op_StrCompressedCopy:
 208     case Op_EncodeISOArray:
 209     case Op_HasNegatives:
 210       // Not a legit memory op for implicit null check regardless of
 211       // embedded loads
 212       continue;
 213     default:                    // Also check for embedded loads
 214       if( !mach->needs_anti_dependence_check() )
 215         continue;               // Not an memory op; skip it
 216       if( must_clone[iop] ) {
 217         // Do not move nodes which produce flags because
 218         // RA will try to clone it to place near branch and
 219         // it will cause recompilation, see clone_node().
 220         continue;
 221       }
 222       {
 223         // Check that value is used in memory address in
 224         // instructions with embedded load (CmpP val1,(val2+off)).
 225         Node* base;
 226         Node* index;
 227         const MachOper* oper = mach->memory_inputs(base, index);
 228         if (oper == NULL || oper == (MachOper*)-1) {
 229           continue;             // Not an memory op; skip it
 230         }
 231         if (val == base ||
 232             (val == index && val->bottom_type()->isa_narrowoop())) {
 233           break;                // Found it
 234         } else {
 235           continue;             // Skip it
 236         }
 237       }
 238       break;
 239     }
 240 
 241     // On some OSes (AIX) the page at address 0 is only write protected.
 242     // If so, only Store operations will trap.
 243     // But a read accessing the base of a heap-based compressed heap will trap.
 244     if (!was_store && needs_explicit_null_check_for_read(val)) {
 245       continue;
 246     }
 247 
 248     // Check that node's control edge is not-null block's head or dominates it,
 249     // otherwise we can't hoist it because there are other control dependencies.
 250     Node* ctrl = mach->in(0);
 251     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
 252         get_block_for_node(ctrl)->dominates(not_null_block))) {
 253       continue;
 254     }
 255 
 256     // check if the offset is not too high for implicit exception
 257     {
 258       intptr_t offset = 0;
 259       const TypePtr *adr_type = NULL;  // Do not need this return value here
 260       const Node* base = mach->get_base_and_disp(offset, adr_type);
 261       if (base == NULL || base == NodeSentinel) {
 262         // Narrow oop address doesn't have base, only index.
 263         // Give up if offset is beyond page size or if heap base is not protected.
 264         if (val->bottom_type()->isa_narrowoop() &&
 265             (MacroAssembler::needs_explicit_null_check(offset) ||
 266              !Universe::narrow_oop_use_implicit_null_checks()))
 267           continue;
 268         // cannot reason about it; is probably not implicit null exception
 269       } else {
 270         const TypePtr* tptr;
 271         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 272                                   Universe::narrow_klass_shift() == 0)) {
 273           // 32-bits narrow oop can be the base of address expressions
 274           tptr = base->get_ptr_type();
 275         } else {
 276           // only regular oops are expected here
 277           tptr = base->bottom_type()->is_ptr();
 278         }
 279         // Give up if offset is not a compile-time constant.
 280         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 281           continue;
 282         offset += tptr->_offset; // correct if base is offseted
 283         // Give up if reference is beyond page size.
 284         if (MacroAssembler::needs_explicit_null_check(offset))
 285           continue;
 286         // Give up if base is a decode node and the heap base is not protected.
 287         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 288             !Universe::narrow_oop_use_implicit_null_checks())
 289           continue;
 290       }
 291     }
 292 
 293     // Check ctrl input to see if the null-check dominates the memory op
 294     Block *cb = get_block_for_node(mach);
 295     cb = cb->_idom;             // Always hoist at least 1 block
 296     if( !was_store ) {          // Stores can be hoisted only one block
 297       while( cb->_dom_depth > (block->_dom_depth + 1))
 298         cb = cb->_idom;         // Hoist loads as far as we want
 299       // The non-null-block should dominate the memory op, too. Live
 300       // range spilling will insert a spill in the non-null-block if it is
 301       // needs to spill the memory op for an implicit null check.
 302       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 303         if (cb != not_null_block) continue;
 304         cb = cb->_idom;
 305       }
 306     }
 307     if( cb != block ) continue;
 308 
 309     // Found a memory user; see if it can be hoisted to check-block
 310     uint vidx = 0;              // Capture index of value into memop
 311     uint j;
 312     for( j = mach->req()-1; j > 0; j-- ) {
 313       if( mach->in(j) == val ) {
 314         vidx = j;
 315         // Ignore DecodeN val which could be hoisted to where needed.
 316         if( is_decoden ) continue;
 317       }
 318       // Block of memory-op input
 319       Block *inb = get_block_for_node(mach->in(j));
 320       Block *b = block;          // Start from nul check
 321       while( b != inb && b->_dom_depth > inb->_dom_depth )
 322         b = b->_idom;           // search upwards for input
 323       // See if input dominates null check
 324       if( b != inb )
 325         break;
 326     }
 327     if( j > 0 )
 328       continue;
 329     Block *mb = get_block_for_node(mach);
 330     // Hoisting stores requires more checks for the anti-dependence case.
 331     // Give up hoisting if we have to move the store past any load.
 332     if( was_store ) {
 333       Block *b = mb;            // Start searching here for a local load
 334       // mach use (faulting) trying to hoist
 335       // n might be blocker to hoisting
 336       while( b != block ) {
 337         uint k;
 338         for( k = 1; k < b->number_of_nodes(); k++ ) {
 339           Node *n = b->get_node(k);
 340           if( n->needs_anti_dependence_check() &&
 341               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 342             break;              // Found anti-dependent load
 343         }
 344         if( k < b->number_of_nodes() )
 345           break;                // Found anti-dependent load
 346         // Make sure control does not do a merge (would have to check allpaths)
 347         if( b->num_preds() != 2 ) break;
 348         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 349       }
 350       if( b != block ) continue;
 351     }
 352 
 353     // Make sure this memory op is not already being used for a NullCheck
 354     Node *e = mb->end();
 355     if( e->is_MachNullCheck() && e->in(1) == mach )
 356       continue;                 // Already being used as a NULL check
 357 
 358     // Found a candidate!  Pick one with least dom depth - the highest
 359     // in the dom tree should be closest to the null check.
 360     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 361       best = mach;
 362       bidx = vidx;
 363     }
 364   }
 365   // No candidate!
 366   if (best == NULL) {
 367     return;
 368   }
 369 
 370   // ---- Found an implicit null check
 371 #ifndef PRODUCT
 372   extern int implicit_null_checks;
 373   implicit_null_checks++;
 374 #endif
 375 
 376   if( is_decoden ) {
 377     // Check if we need to hoist decodeHeapOop_not_null first.
 378     Block *valb = get_block_for_node(val);
 379     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 380       // Hoist it up to the end of the test block.
 381       valb->find_remove(val);
 382       block->add_inst(val);
 383       map_node_to_block(val, block);
 384       // DecodeN on x86 may kill flags. Check for flag-killing projections
 385       // that also need to be hoisted.
 386       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 387         Node* n = val->fast_out(j);
 388         if( n->is_MachProj() ) {
 389           get_block_for_node(n)->find_remove(n);
 390           block->add_inst(n);
 391           map_node_to_block(n, block);
 392         }
 393       }
 394     }
 395   }
 396   // Hoist the memory candidate up to the end of the test block.
 397   Block *old_block = get_block_for_node(best);
 398   old_block->find_remove(best);
 399   block->add_inst(best);
 400   map_node_to_block(best, block);
 401 
 402   // Move the control dependence if it is pinned to not-null block.
 403   // Don't change it in other cases: NULL or dominating control.
 404   if (best->in(0) == not_null_block->head()) {
 405     // Set it to control edge of null check.
 406     best->set_req(0, proj->in(0)->in(0));
 407   }
 408 
 409   // Check for flag-killing projections that also need to be hoisted
 410   // Should be DU safe because no edge updates.
 411   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 412     Node* n = best->fast_out(j);
 413     if( n->is_MachProj() || n->Opcode() == Op_ShenandoahWBMemProj) {
 414       get_block_for_node(n)->find_remove(n);
 415       block->add_inst(n);
 416       map_node_to_block(n, block);
 417     }
 418   }
 419 
 420   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 421   // One of two graph shapes got matched:
 422   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 423   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 424   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 425   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 426   // We need to flip the projections to keep the same semantics.
 427   if( proj->Opcode() == Op_IfTrue ) {
 428     // Swap order of projections in basic block to swap branch targets
 429     Node *tmp1 = block->get_node(block->end_idx()+1);
 430     Node *tmp2 = block->get_node(block->end_idx()+2);
 431     block->map_node(tmp2, block->end_idx()+1);
 432     block->map_node(tmp1, block->end_idx()+2);
 433     Node *tmp = new Node(C->top()); // Use not NULL input
 434     tmp1->replace_by(tmp);
 435     tmp2->replace_by(tmp1);
 436     tmp->replace_by(tmp2);
 437     tmp->destruct();
 438   }
 439 
 440   // Remove the existing null check; use a new implicit null check instead.
 441   // Since schedule-local needs precise def-use info, we need to correct
 442   // it as well.
 443   Node *old_tst = proj->in(0);
 444   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 445   block->map_node(nul_chk, block->end_idx());
 446   map_node_to_block(nul_chk, block);
 447   // Redirect users of old_test to nul_chk
 448   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 449     old_tst->last_out(i2)->set_req(0, nul_chk);
 450   // Clean-up any dead code
 451   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 452     Node* in = old_tst->in(i3);
 453     old_tst->set_req(i3, NULL);
 454     if (in->outcnt() == 0) {
 455       // Remove dead input node
 456       in->disconnect_inputs(NULL, C);
 457       block->find_remove(in);
 458     }
 459   }
 460 
 461   latency_from_uses(nul_chk);
 462   latency_from_uses(best);
 463 
 464   // insert anti-dependences to defs in this block
 465   if (! best->needs_anti_dependence_check()) {
 466     for (uint k = 1; k < block->number_of_nodes(); k++) {
 467       Node *n = block->get_node(k);
 468       if (n->needs_anti_dependence_check() &&
 469           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 470         // Found anti-dependent load
 471         insert_anti_dependences(block, n);
 472       }
 473     }
 474   }
 475 }
 476 
 477 
 478 //------------------------------select-----------------------------------------
 479 // Select a nice fellow from the worklist to schedule next. If there is only
 480 // one choice, then use it. Projections take top priority for correctness
 481 // reasons - if I see a projection, then it is next.  There are a number of
 482 // other special cases, for instructions that consume condition codes, et al.
 483 // These are chosen immediately. Some instructions are required to immediately
 484 // precede the last instruction in the block, and these are taken last. Of the
 485 // remaining cases (most), choose the instruction with the greatest latency
 486 // (that is, the most number of pseudo-cycles required to the end of the
 487 // routine). If there is a tie, choose the instruction with the most inputs.
 488 Node* PhaseCFG::select(
 489   Block* block,
 490   Node_List &worklist,
 491   GrowableArray<int> &ready_cnt,
 492   VectorSet &next_call,
 493   uint sched_slot,
 494   intptr_t* recalc_pressure_nodes) {
 495 
 496   // If only a single entry on the stack, use it
 497   uint cnt = worklist.size();
 498   if (cnt == 1) {
 499     Node *n = worklist[0];
 500     worklist.map(0,worklist.pop());
 501     return n;
 502   }
 503 
 504   uint choice  = 0; // Bigger is most important
 505   uint latency = 0; // Bigger is scheduled first
 506   uint score   = 0; // Bigger is better
 507   int idx = -1;     // Index in worklist
 508   int cand_cnt = 0; // Candidate count
 509   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 510 
 511   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 512     // Order in worklist is used to break ties.
 513     // See caller for how this is used to delay scheduling
 514     // of induction variable increments to after the other
 515     // uses of the phi are scheduled.
 516     Node *n = worklist[i];      // Get Node on worklist
 517 
 518     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 519     if( n->is_Proj() ||         // Projections always win
 520         n->Opcode()== Op_Con || // So does constant 'Top'
 521         iop == Op_CreateEx ||   // Create-exception must start block
 522         iop == Op_CheckCastPP
 523         ) {
 524       worklist.map(i,worklist.pop());
 525       return n;
 526     }
 527 
 528     // Final call in a block must be adjacent to 'catch'
 529     Node *e = block->end();
 530     if( e->is_Catch() && e->in(0)->in(0) == n )
 531       continue;
 532 
 533     // Memory op for an implicit null check has to be at the end of the block
 534     if( e->is_MachNullCheck() && e->in(1) == n )
 535       continue;
 536 
 537     // Schedule IV increment last.
 538     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 539       // Cmp might be matched into CountedLoopEnd node.
 540       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 541       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 542         continue;
 543       }
 544     }
 545 
 546     uint n_choice  = 2;
 547 
 548     // See if this instruction is consumed by a branch. If so, then (as the
 549     // branch is the last instruction in the basic block) force it to the
 550     // end of the basic block
 551     if ( must_clone[iop] ) {
 552       // See if any use is a branch
 553       bool found_machif = false;
 554 
 555       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 556         Node* use = n->fast_out(j);
 557 
 558         // The use is a conditional branch, make them adjacent
 559         if (use->is_MachIf() && get_block_for_node(use) == block) {
 560           found_machif = true;
 561           break;
 562         }
 563 
 564         // More than this instruction pending for successor to be ready,
 565         // don't choose this if other opportunities are ready
 566         if (ready_cnt.at(use->_idx) > 1)
 567           n_choice = 1;
 568       }
 569 
 570       // loop terminated, prefer not to use this instruction
 571       if (found_machif)
 572         continue;
 573     }
 574 
 575     // See if this has a predecessor that is "must_clone", i.e. sets the
 576     // condition code. If so, choose this first
 577     for (uint j = 0; j < n->req() ; j++) {
 578       Node *inn = n->in(j);
 579       if (inn) {
 580         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 581           n_choice = 3;
 582           break;
 583         }
 584       }
 585     }
 586 
 587     // MachTemps should be scheduled last so they are near their uses
 588     if (n->is_MachTemp()) {
 589       n_choice = 1;
 590     }
 591 
 592     uint n_latency = get_latency_for_node(n);
 593     uint n_score = n->req();   // Many inputs get high score to break ties
 594 
 595     if (OptoRegScheduling && block_size_threshold_ok) {
 596       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 597         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 598         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 599         // simulate the notion that we just picked this node to schedule
 600         n->add_flag(Node::Flag_is_scheduled);
 601         // now caculate its effect upon the graph if we did
 602         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 603         // return its state for finalize in case somebody else wins
 604         n->remove_flag(Node::Flag_is_scheduled);
 605         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 606         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 607         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 608         recalc_pressure_nodes[n->_idx] = int_pressure;
 609         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 610       }
 611 
 612       if (_scheduling_for_pressure) {
 613         latency = n_latency;
 614         if (n_choice != 3) {
 615           // Now evaluate each register pressure component based on threshold in the score.
 616           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 617           // on a single instruction, but we might see it shrink on both banks.
 618           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 619           // live ranges that terminate on this instruction.
 620           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 621             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 622             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 623           }
 624           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 625             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 626             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 627           }
 628         } else {
 629           // make sure we choose these candidates
 630           score = 0;
 631         }
 632       }
 633     }
 634 
 635     // Keep best latency found
 636     cand_cnt++;
 637     if (choice < n_choice ||
 638         (choice == n_choice &&
 639          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 640           (!StressLCM &&
 641            (latency < n_latency ||
 642             (latency == n_latency &&
 643              (score < n_score))))))) {
 644       choice  = n_choice;
 645       latency = n_latency;
 646       score   = n_score;
 647       idx     = i;               // Also keep index in worklist
 648     }
 649   } // End of for all ready nodes in worklist
 650 
 651   assert(idx >= 0, "index should be set");
 652   Node *n = worklist[(uint)idx];      // Get the winner
 653 
 654   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 655   return n;
 656 }
 657 
 658 //-------------------------adjust_register_pressure----------------------------
 659 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 660   PhaseLive* liveinfo = _regalloc->get_live();
 661   IndexSet* liveout = liveinfo->live(block);
 662   // first adjust the register pressure for the sources
 663   for (uint i = 1; i < n->req(); i++) {
 664     bool lrg_ends = false;
 665     Node *src_n = n->in(i);
 666     if (src_n == NULL) continue;
 667     if (!src_n->is_Mach()) continue;
 668     uint src = _regalloc->_lrg_map.find(src_n);
 669     if (src == 0) continue;
 670     LRG& lrg_src = _regalloc->lrgs(src);
 671     // detect if the live range ends or not
 672     if (liveout->member(src) == false) {
 673       lrg_ends = true;
 674       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 675         Node* m = src_n->fast_out(j); // Get user
 676         if (m == n) continue;
 677         if (!m->is_Mach()) continue;
 678         MachNode *mach = m->as_Mach();
 679         bool src_matches = false;
 680         int iop = mach->ideal_Opcode();
 681 
 682         switch (iop) {
 683         case Op_StoreB:
 684         case Op_StoreC:
 685         case Op_StoreCM:
 686         case Op_StoreD:
 687         case Op_StoreF:
 688         case Op_StoreI:
 689         case Op_StoreL:
 690         case Op_StoreP:
 691         case Op_StoreN:
 692         case Op_StoreVector:
 693         case Op_StoreNKlass:
 694           for (uint k = 1; k < m->req(); k++) {
 695             Node *in = m->in(k);
 696             if (in == src_n) {
 697               src_matches = true;
 698               break;
 699             }
 700           }
 701           break;
 702 
 703         default:
 704           src_matches = true;
 705           break;
 706         }
 707 
 708         // If we have a store as our use, ignore the non source operands
 709         if (src_matches == false) continue;
 710 
 711         // Mark every unscheduled use which is not n with a recalculation
 712         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 713           if (finalize_mode && !m->is_Phi()) {
 714             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 715           }
 716           lrg_ends = false;
 717         }
 718       }
 719     }
 720     // if none, this live range ends and we can adjust register pressure
 721     if (lrg_ends) {
 722       if (finalize_mode) {
 723         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 724       } else {
 725         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 726       }
 727     }
 728   }
 729 
 730   // now add the register pressure from the dest and evaluate which heuristic we should use:
 731   // 1.) The default, latency scheduling
 732   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 733   uint dst = _regalloc->_lrg_map.find(n);
 734   if (dst != 0) {
 735     LRG& lrg_dst = _regalloc->lrgs(dst);
 736     if (finalize_mode) {
 737       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 738       // check to see if we fall over the register pressure cliff here
 739       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 740         _scheduling_for_pressure = true;
 741       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 742         _scheduling_for_pressure = true;
 743       } else {
 744         // restore latency scheduling mode
 745         _scheduling_for_pressure = false;
 746       }
 747     } else {
 748       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 749     }
 750   }
 751 }
 752 
 753 //------------------------------set_next_call----------------------------------
 754 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 755   if( next_call.test_set(n->_idx) ) return;
 756   for( uint i=0; i<n->len(); i++ ) {
 757     Node *m = n->in(i);
 758     if( !m ) continue;  // must see all nodes in block that precede call
 759     if (get_block_for_node(m) == block) {
 760       set_next_call(block, m, next_call);
 761     }
 762   }
 763 }
 764 
 765 //------------------------------needed_for_next_call---------------------------
 766 // Set the flag 'next_call' for each Node that is needed for the next call to
 767 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 768 // next subroutine call get priority - basically it moves things NOT needed
 769 // for the next call till after the call.  This prevents me from trying to
 770 // carry lots of stuff live across a call.
 771 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 772   // Find the next control-defining Node in this block
 773   Node* call = NULL;
 774   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 775     Node* m = this_call->fast_out(i);
 776     if (get_block_for_node(m) == block && // Local-block user
 777         m != this_call &&       // Not self-start node
 778         m->is_MachCall()) {
 779       call = m;
 780       break;
 781     }
 782   }
 783   if (call == NULL)  return;    // No next call (e.g., block end is near)
 784   // Set next-call for all inputs to this call
 785   set_next_call(block, call, next_call);
 786 }
 787 
 788 //------------------------------add_call_kills-------------------------------------
 789 // helper function that adds caller save registers to MachProjNode
 790 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe, bool exclude_fp) {
 791   // Fill in the kill mask for the call
 792   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 793     if (exclude_fp && (register_save_type[r] == Op_RegF || register_save_type[r] == Op_RegD)) {
 794       continue;
 795     }
 796     if( !regs.Member(r) ) {     // Not already defined by the call
 797       // Save-on-call register?
 798       if ((save_policy[r] == 'C') ||
 799           (save_policy[r] == 'A') ||
 800           ((save_policy[r] == 'E') && exclude_soe)) {
 801         proj->_rout.Insert(r);
 802       }
 803     }
 804   }
 805 }
 806 
 807 
 808 //------------------------------sched_call-------------------------------------
 809 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 810   RegMask regs;
 811 
 812   // Schedule all the users of the call right now.  All the users are
 813   // projection Nodes, so they must be scheduled next to the call.
 814   // Collect all the defined registers.
 815   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 816     Node* n = mcall->fast_out(i);
 817     assert( n->is_MachProj(), "" );
 818     int n_cnt = ready_cnt.at(n->_idx)-1;
 819     ready_cnt.at_put(n->_idx, n_cnt);
 820     assert( n_cnt == 0, "" );
 821     // Schedule next to call
 822     block->map_node(n, node_cnt++);
 823     // Collect defined registers
 824     regs.OR(n->out_RegMask());
 825     // Check for scheduling the next control-definer
 826     if( n->bottom_type() == Type::CONTROL )
 827       // Warm up next pile of heuristic bits
 828       needed_for_next_call(block, n, next_call);
 829 
 830     // Children of projections are now all ready
 831     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 832       Node* m = n->fast_out(j); // Get user
 833       if(get_block_for_node(m) != block) {
 834         continue;
 835       }
 836       if( m->is_Phi() ) continue;
 837       int m_cnt = ready_cnt.at(m->_idx) - 1;
 838       ready_cnt.at_put(m->_idx, m_cnt);
 839       if( m_cnt == 0 )
 840         worklist.push(m);
 841     }
 842 
 843   }
 844 
 845   // Act as if the call defines the Frame Pointer.
 846   // Certainly the FP is alive and well after the call.
 847   regs.Insert(_matcher.c_frame_pointer());
 848 
 849   // Set all registers killed and not already defined by the call.
 850   uint r_cnt = mcall->tf()->range()->cnt();
 851   int op = mcall->ideal_Opcode();
 852   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 853   map_node_to_block(proj, block);
 854   block->insert_node(proj, node_cnt++);
 855 
 856   // Select the right register save policy.
 857   const char *save_policy = NULL;
 858   switch (op) {
 859     case Op_CallRuntime:
 860     case Op_CallLeaf:
 861     case Op_CallLeafNoFP:
 862       // Calling C code so use C calling convention
 863       save_policy = _matcher._c_reg_save_policy;
 864       break;
 865 
 866     case Op_CallStaticJava:
 867     case Op_CallDynamicJava:
 868       // Calling Java code so use Java calling convention
 869       save_policy = _matcher._register_save_policy;
 870       break;
 871 
 872     default:
 873       ShouldNotReachHere();
 874   }
 875 
 876   // When using CallRuntime mark SOE registers as killed by the call
 877   // so values that could show up in the RegisterMap aren't live in a
 878   // callee saved register since the register wouldn't know where to
 879   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 880   // have debug info on them.  Strictly speaking this only needs to be
 881   // done for oops since idealreg2debugmask takes care of debug info
 882   // references but there no way to handle oops differently than other
 883   // pointers as far as the kill mask goes.
 884   bool exclude_soe = op == Op_CallRuntime;
 885 
 886   // If the call is a MethodHandle invoke, we need to exclude the
 887   // register which is used to save the SP value over MH invokes from
 888   // the mask.  Otherwise this register could be used for
 889   // deoptimization information.
 890   if (op == Op_CallStaticJava) {
 891     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 892     if (mcallstaticjava->_method_handle_invoke)
 893       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 894   }
 895 
 896   if (UseShenandoahGC && mcall->entry_point() == StubRoutines::shenandoah_wb_C()) {
 897     assert(op == Op_CallLeafNoFP, "shenandoah_wb_C should be called with Op_CallLeafNoFP");
 898     add_call_kills(proj, regs, save_policy, exclude_soe, true);
 899   } else {
 900     add_call_kills(proj, regs, save_policy, exclude_soe, false);
 901   }
 902 
 903   return node_cnt;
 904 }
 905 
 906 void PhaseCFG::push_ready_nodes(Node* n, Node* m, Block* block, GrowableArray<int>& ready_cnt, Node_List& worklist, uint max_idx, int c) {
 907   if (get_block_for_node(m) != block) {
 908     return;
 909   }
 910   if (m->is_Phi()) {
 911     return;
 912   }
 913   if (m->_idx >= max_idx) { // new node, skip it
 914     assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 915     return;
 916   }
 917   int m_cnt = ready_cnt.at(m->_idx) - c;
 918   ready_cnt.at_put(m->_idx, m_cnt);
 919   if (m_cnt == 0) {
 920     worklist.push(m);
 921   }
 922 }
 923 
 924 //------------------------------schedule_local---------------------------------
 925 // Topological sort within a block.  Someday become a real scheduler.
 926 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 927   // Already "sorted" are the block start Node (as the first entry), and
 928   // the block-ending Node and any trailing control projections.  We leave
 929   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 930   // Node.  Everything else gets topo-sorted.
 931 
 932 #ifndef PRODUCT
 933     if (trace_opto_pipelining()) {
 934       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 935       for (uint i = 0;i < block->number_of_nodes(); i++) {
 936         tty->print("# ");
 937         block->get_node(i)->fast_dump();
 938       }
 939       tty->print_cr("#");
 940     }
 941 #endif
 942 
 943   // RootNode is already sorted
 944   if (block->number_of_nodes() == 1) {
 945     return true;
 946   }
 947 
 948   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 949 
 950   // We track the uses of local definitions as input dependences so that
 951   // we know when a given instruction is avialable to be scheduled.
 952   uint i;
 953   if (OptoRegScheduling && block_size_threshold_ok) {
 954     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 955       Node *n = block->get_node(i);
 956       n->remove_flag(Node::Flag_is_scheduled);
 957       if (!n->is_Phi()) {
 958         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 959       }
 960     }
 961   } else {
 962 #ifdef ASSERT
 963     for (i = 1; i < block->number_of_nodes(); i++) {
 964       Node *n = block->get_node(i);
 965       assert(!n->is_scheduled(), "shouldn't be scheduled yet");
 966     }
 967 #endif
 968   }
 969 
 970   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 971   uint node_cnt = block->end_idx();
 972   uint phi_cnt = 1;
 973   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 974     Node *n = block->get_node(i);
 975     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 976         (n->is_Proj()  && n->in(0) == block->head()) ) {
 977       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 978       block->map_node(block->get_node(phi_cnt), i);
 979       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 980       // mark n as scheduled
 981       n->add_flag(Node::Flag_is_scheduled);
 982     } else {                    // All others
 983       // Count block-local inputs to 'n'
 984       uint cnt = n->len();      // Input count
 985       uint local = 0;
 986       for( uint j=0; j<cnt; j++ ) {
 987         Node *m = n->in(j);
 988         if( m && get_block_for_node(m) == block && !m->is_top() )
 989           local++;              // One more block-local input
 990       }
 991       ready_cnt.at_put(n->_idx, local); // Count em up
 992 
 993 #ifdef ASSERT
 994       if( UseConcMarkSweepGC || UseG1GC ) {
 995         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 996           // Check the precedence edges
 997           for (uint prec = n->req(); prec < n->len(); prec++) {
 998             Node* oop_store = n->in(prec);
 999             if (oop_store != NULL) {
1000               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
1001             }
1002           }
1003         }
1004       }
1005 #endif
1006 
1007       // A few node types require changing a required edge to a precedence edge
1008       // before allocation.
1009       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
1010           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
1011            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
1012         // MemBarAcquire could be created without Precedent edge.
1013         // del_req() replaces the specified edge with the last input edge
1014         // and then removes the last edge. If the specified edge > number of
1015         // edges the last edge will be moved outside of the input edges array
1016         // and the edge will be lost. This is why this code should be
1017         // executed only when Precedent (== TypeFunc::Parms) edge is present.
1018         Node *x = n->in(TypeFunc::Parms);
1019         if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1020           // Old edge to node within same block will get removed, but no precedence
1021           // edge will get added because it already exists. Update ready count.
1022           int cnt = ready_cnt.at(n->_idx);
1023           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1024           ready_cnt.at_put(n->_idx, cnt-1);
1025         }
1026         n->del_req(TypeFunc::Parms);
1027         n->add_prec(x);
1028       }
1029     }
1030   }
1031   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1032     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1033 
1034   // All the prescheduled guys do not hold back internal nodes
1035   uint i3;
1036   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1037     Node *n = block->get_node(i3);       // Get pre-scheduled
1038     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1039       Node* m = n->fast_out(j);
1040       if (get_block_for_node(m) == block) { // Local-block user
1041         int m_cnt = ready_cnt.at(m->_idx)-1;
1042         // mark m as scheduled
1043         if (m_cnt < 0) {
1044           m->add_flag(Node::Flag_is_scheduled);
1045         }
1046         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1047       }
1048     }
1049   }
1050 
1051   Node_List delay;
1052   // Make a worklist
1053   Node_List worklist;
1054   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1055     Node *m = block->get_node(i4);
1056     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1057       if (m->is_iteratively_computed()) {
1058         // Push induction variable increments last to allow other uses
1059         // of the phi to be scheduled first. The select() method breaks
1060         // ties in scheduling by worklist order.
1061         delay.push(m);
1062       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1063         // Force the CreateEx to the top of the list so it's processed
1064         // first and ends up at the start of the block.
1065         worklist.insert(0, m);
1066       } else {
1067         worklist.push(m);         // Then on to worklist!
1068       }
1069     }
1070   }
1071   while (delay.size()) {
1072     Node* d = delay.pop();
1073     worklist.push(d);
1074   }
1075 
1076   if (OptoRegScheduling && block_size_threshold_ok) {
1077     // To stage register pressure calculations we need to examine the live set variables
1078     // breaking them up by register class to compartmentalize the calculations.
1079     uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1080     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1081     _regalloc->_sched_float_pressure.init(float_pressure);
1082     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1083     _regalloc->_scratch_float_pressure.init(float_pressure);
1084 
1085     _regalloc->compute_entry_block_pressure(block);
1086   }
1087 
1088   // Warm up the 'next_call' heuristic bits
1089   needed_for_next_call(block, block->head(), next_call);
1090 
1091 #ifndef PRODUCT
1092     if (trace_opto_pipelining()) {
1093       for (uint j=0; j< block->number_of_nodes(); j++) {
1094         Node     *n = block->get_node(j);
1095         int     idx = n->_idx;
1096         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1097         tty->print("latency:%3d  ", get_latency_for_node(n));
1098         tty->print("%4d: %s\n", idx, n->Name());
1099       }
1100     }
1101 #endif
1102 
1103   uint max_idx = (uint)ready_cnt.length();
1104   // Pull from worklist and schedule
1105   while( worklist.size() ) {    // Worklist is not ready
1106 
1107 #ifndef PRODUCT
1108     if (trace_opto_pipelining()) {
1109       tty->print("#   ready list:");
1110       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1111         Node *n = worklist[i];      // Get Node on worklist
1112         tty->print(" %d", n->_idx);
1113       }
1114       tty->cr();
1115     }
1116 #endif
1117 
1118     // Select and pop a ready guy from worklist
1119     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1120     block->map_node(n, phi_cnt++);    // Schedule him next
1121 
1122     n->add_flag(Node::Flag_is_scheduled);
1123 
1124     if (OptoRegScheduling && block_size_threshold_ok) {
1125       // Now adjust the resister pressure with the node we selected
1126       if (!n->is_Phi()) {
1127         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1128       }
1129     }
1130 
1131 #ifndef PRODUCT
1132     if (trace_opto_pipelining()) {
1133       tty->print("#    select %d: %s", n->_idx, n->Name());
1134       tty->print(", latency:%d", get_latency_for_node(n));
1135       n->dump();
1136       if (Verbose) {
1137         tty->print("#   ready list:");
1138         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1139           Node *n = worklist[i];      // Get Node on worklist
1140           tty->print(" %d", n->_idx);
1141         }
1142         tty->cr();
1143       }
1144     }
1145 
1146 #endif
1147     if( n->is_MachCall() ) {
1148       MachCallNode *mcall = n->as_MachCall();
1149       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1150       continue;
1151     }
1152 
1153     if (n->is_Mach() && n->as_Mach()->has_call()) {
1154       RegMask regs;
1155       regs.Insert(_matcher.c_frame_pointer());
1156       regs.OR(n->out_RegMask());
1157 
1158       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1159       map_node_to_block(proj, block);
1160       block->insert_node(proj, phi_cnt++);
1161 
1162       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false, false);
1163     }
1164 
1165     // Children are now all ready
1166     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1167       Node* m = n->fast_out(i5); // Get user
1168       push_ready_nodes(n, m, block, ready_cnt, worklist, max_idx, 1);
1169     }
1170 
1171 #if INCLUDE_SHENANDOAHGC
1172     replace_uses_with_shenandoah_barrier(n, block, worklist, ready_cnt, max_idx, phi_cnt);
1173 #endif
1174   }
1175 
1176   if( phi_cnt != block->end_idx() ) {
1177     // did not schedule all.  Retry, Bailout, or Die
1178     if (C->subsume_loads() == true && !C->failing()) {
1179       // Retry with subsume_loads == false
1180       // If this is the first failure, the sentinel string will "stick"
1181       // to the Compile object, and the C2Compiler will see it and retry.
1182       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1183     } else {
1184       assert(false, "graph should be schedulable");
1185     }
1186     // assert( phi_cnt == end_idx(), "did not schedule all" );
1187     return false;
1188   }
1189 
1190   if (OptoRegScheduling && block_size_threshold_ok) {
1191     _regalloc->compute_exit_block_pressure(block);
1192     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1193     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1194   }
1195 
1196 #ifndef PRODUCT
1197   if (trace_opto_pipelining()) {
1198     tty->print_cr("#");
1199     tty->print_cr("# after schedule_local");
1200     for (uint i = 0;i < block->number_of_nodes();i++) {
1201       tty->print("# ");
1202       block->get_node(i)->fast_dump();
1203     }
1204     tty->print_cr("# ");
1205 
1206     if (OptoRegScheduling && block_size_threshold_ok) {
1207       tty->print_cr("# pressure info : %d", block->_pre_order);
1208       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1209       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1210     }
1211     tty->cr();
1212   }
1213 #endif
1214 
1215   return true;
1216 }
1217 
1218 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1219 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1220   for (uint l = 0; l < use->len(); l++) {
1221     if (use->in(l) == old_def) {
1222       if (l < use->req()) {
1223         use->set_req(l, new_def);
1224       } else {
1225         use->rm_prec(l);
1226         use->add_prec(new_def);
1227         l--;
1228       }
1229     }
1230   }
1231 }
1232 
1233 //------------------------------catch_cleanup_find_cloned_def------------------
1234 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1235   assert( use_blk != def_blk, "Inter-block cleanup only");
1236 
1237   // The use is some block below the Catch.  Find and return the clone of the def
1238   // that dominates the use. If there is no clone in a dominating block, then
1239   // create a phi for the def in a dominating block.
1240 
1241   // Find which successor block dominates this use.  The successor
1242   // blocks must all be single-entry (from the Catch only; I will have
1243   // split blocks to make this so), hence they all dominate.
1244   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1245     use_blk = use_blk->_idom;
1246 
1247   // Find the successor
1248   Node *fixup = NULL;
1249 
1250   uint j;
1251   for( j = 0; j < def_blk->_num_succs; j++ )
1252     if( use_blk == def_blk->_succs[j] )
1253       break;
1254 
1255   if( j == def_blk->_num_succs ) {
1256     // Block at same level in dom-tree is not a successor.  It needs a
1257     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1258     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1259     for(uint k = 1; k < use_blk->num_preds(); k++) {
1260       Block* block = get_block_for_node(use_blk->pred(k));
1261       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1262     }
1263 
1264     // Check to see if the use_blk already has an identical phi inserted.
1265     // If it exists, it will be at the first position since all uses of a
1266     // def are processed together.
1267     Node *phi = use_blk->get_node(1);
1268     if( phi->is_Phi() ) {
1269       fixup = phi;
1270       for (uint k = 1; k < use_blk->num_preds(); k++) {
1271         if (phi->in(k) != inputs[k]) {
1272           // Not a match
1273           fixup = NULL;
1274           break;
1275         }
1276       }
1277     }
1278 
1279     // If an existing PhiNode was not found, make a new one.
1280     if (fixup == NULL) {
1281       Node *new_phi = PhiNode::make(use_blk->head(), def);
1282       use_blk->insert_node(new_phi, 1);
1283       map_node_to_block(new_phi, use_blk);
1284       for (uint k = 1; k < use_blk->num_preds(); k++) {
1285         new_phi->set_req(k, inputs[k]);
1286       }
1287       fixup = new_phi;
1288     }
1289 
1290   } else {
1291     // Found the use just below the Catch.  Make it use the clone.
1292     fixup = use_blk->get_node(n_clone_idx);
1293   }
1294 
1295   return fixup;
1296 }
1297 
1298 //--------------------------catch_cleanup_intra_block--------------------------
1299 // Fix all input edges in use that reference "def".  The use is in the same
1300 // block as the def and both have been cloned in each successor block.
1301 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1302 
1303   // Both the use and def have been cloned. For each successor block,
1304   // get the clone of the use, and make its input the clone of the def
1305   // found in that block.
1306 
1307   uint use_idx = blk->find_node(use);
1308   uint offset_idx = use_idx - beg;
1309   for( uint k = 0; k < blk->_num_succs; k++ ) {
1310     // Get clone in each successor block
1311     Block *sb = blk->_succs[k];
1312     Node *clone = sb->get_node(offset_idx+1);
1313     assert( clone->Opcode() == use->Opcode(), "" );
1314 
1315     // Make use-clone reference the def-clone
1316     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1317   }
1318 }
1319 
1320 //------------------------------catch_cleanup_inter_block---------------------
1321 // Fix all input edges in use that reference "def".  The use is in a different
1322 // block than the def.
1323 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1324   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1325 
1326   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1327   catch_cleanup_fix_all_inputs(use, def, new_def);
1328 }
1329 
1330 //------------------------------call_catch_cleanup-----------------------------
1331 // If we inserted any instructions between a Call and his CatchNode,
1332 // clone the instructions on all paths below the Catch.
1333 void PhaseCFG::call_catch_cleanup(Block* block) {
1334 
1335   // End of region to clone
1336   uint end = block->end_idx();
1337   if( !block->get_node(end)->is_Catch() ) return;
1338   // Start of region to clone
1339   uint beg = end;
1340   while(!block->get_node(beg-1)->is_MachProj() ||
1341         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1342     beg--;
1343     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1344   }
1345   // Range of inserted instructions is [beg, end)
1346   if( beg == end ) return;
1347 
1348   // Clone along all Catch output paths.  Clone area between the 'beg' and
1349   // 'end' indices.
1350   for( uint i = 0; i < block->_num_succs; i++ ) {
1351     Block *sb = block->_succs[i];
1352     // Clone the entire area; ignoring the edge fixup for now.
1353     for( uint j = end; j > beg; j-- ) {
1354       Node *clone = block->get_node(j-1)->clone();
1355       sb->insert_node(clone, 1);
1356       map_node_to_block(clone, sb);
1357       if (clone->needs_anti_dependence_check()) {
1358         insert_anti_dependences(sb, clone);
1359       }
1360     }
1361   }
1362 
1363 
1364   // Fixup edges.  Check the def-use info per cloned Node
1365   for(uint i2 = beg; i2 < end; i2++ ) {
1366     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1367     Node *n = block->get_node(i2);        // Node that got cloned
1368     // Need DU safe iterator because of edge manipulation in calls.
1369     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1370     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1371       out->push(n->fast_out(j1));
1372     }
1373     uint max = out->size();
1374     for (uint j = 0; j < max; j++) {// For all users
1375       Node *use = out->pop();
1376       Block *buse = get_block_for_node(use);
1377       if( use->is_Phi() ) {
1378         for( uint k = 1; k < use->req(); k++ )
1379           if( use->in(k) == n ) {
1380             Block* b = get_block_for_node(buse->pred(k));
1381             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1382             use->set_req(k, fixup);
1383           }
1384       } else {
1385         if (block == buse) {
1386           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1387         } else {
1388           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1389         }
1390       }
1391     } // End for all users
1392 
1393   } // End of for all Nodes in cloned area
1394 
1395   // Remove the now-dead cloned ops
1396   for(uint i3 = beg; i3 < end; i3++ ) {
1397     block->get_node(beg)->disconnect_inputs(NULL, C);
1398     block->remove_node(beg);
1399   }
1400 
1401   // If the successor blocks have a CreateEx node, move it back to the top
1402   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1403     Block *sb = block->_succs[i4];
1404     uint new_cnt = end - beg;
1405     // Remove any newly created, but dead, nodes.
1406     for( uint j = new_cnt; j > 0; j-- ) {
1407       Node *n = sb->get_node(j);
1408       if (n->outcnt() == 0 &&
1409           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1410         n->disconnect_inputs(NULL, C);
1411         sb->remove_node(j);
1412         new_cnt--;
1413       }
1414     }
1415     // If any newly created nodes remain, move the CreateEx node to the top
1416     if (new_cnt > 0) {
1417       Node *cex = sb->get_node(1+new_cnt);
1418       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1419         sb->remove_node(1+new_cnt);
1420         sb->insert_node(cex, 1);
1421       }
1422     }
1423   }
1424 }