/* * Copyright (c) 2018, Red Hat, Inc. and/or its affiliates. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shenandoah/brooksPointer.hpp" #include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp" #include "gc/shenandoah/shenandoahConnectionMatrix.hpp" #include "gc/shenandoah/shenandoahHeap.hpp" #include "gc/shenandoah/shenandoahHeapRegion.hpp" #include "gc/shenandoah/shenandoahRuntime.hpp" #include "gc/shenandoah/shenandoahThreadLocalData.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interp_masm.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.hpp" #include "utilities/macros.hpp" #ifdef COMPILER1 #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp" #endif #define __ masm-> address ShenandoahBarrierSetAssembler::_shenandoah_wb = NULL; address ShenandoahBarrierSetAssembler::_shenandoah_wb_C = NULL; void ShenandoahBarrierSetAssembler::arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Register src, Register dst, Register count) { bool checkcast = (decorators & ARRAYCOPY_CHECKCAST) != 0; bool disjoint = (decorators & ARRAYCOPY_DISJOINT) != 0; bool obj_int = type == T_OBJECT LP64_ONLY(&& UseCompressedOops); bool dest_uninitialized = (decorators & AS_DEST_NOT_INITIALIZED) != 0; if (type == T_OBJECT || type == T_ARRAY) { #ifdef _LP64 if (!checkcast && !obj_int) { // Save count for barrier __ movptr(r11, count); } else if (disjoint && obj_int) { // Save dst in r11 in the disjoint case __ movq(r11, dst); } #else if (disjoint) { __ mov(rdx, dst); // save 'to' } #endif if (!dest_uninitialized) { Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); #ifndef _LP64 __ push(thread); __ get_thread(thread); #endif Label filtered; Address in_progress(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset())); // Is marking active? if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) { __ cmpl(in_progress, 0); } else { assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption"); __ cmpb(in_progress, 0); } NOT_LP64(__ pop(thread);) __ jcc(Assembler::equal, filtered); __ pusha(); // push registers #ifdef _LP64 if (count == c_rarg0) { if (dst == c_rarg1) { // exactly backwards!! __ xchgptr(c_rarg1, c_rarg0); } else { __ movptr(c_rarg1, count); __ movptr(c_rarg0, dst); } } else { __ movptr(c_rarg0, dst); __ movptr(c_rarg1, count); } if (UseCompressedOops) { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_narrow_oop_entry), 2); } else { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_oop_entry), 2); } #else __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_pre_oop_entry), dst, count); #endif __ popa(); __ bind(filtered); } } } void ShenandoahBarrierSetAssembler::arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Register src, Register dst, Register count) { bool checkcast = (decorators & ARRAYCOPY_CHECKCAST) != 0; bool disjoint = (decorators & ARRAYCOPY_DISJOINT) != 0; bool obj_int = type == T_OBJECT LP64_ONLY(&& UseCompressedOops); Register tmp = rax; if (type == T_OBJECT || type == T_ARRAY) { #ifdef _LP64 if (!checkcast && !obj_int) { // Save count for barrier count = r11; } else if (disjoint && obj_int) { // Use the saved dst in the disjoint case dst = r11; } else if (checkcast) { tmp = rscratch1; } #else if (disjoint) { __ mov(dst, rdx); // restore 'to' } #endif __ pusha(); // push registers (overkill) #ifdef _LP64 if (c_rarg0 == count) { // On win64 c_rarg0 == rcx assert_different_registers(c_rarg1, dst); __ mov(c_rarg1, count); __ mov(c_rarg0, dst); } else { assert_different_registers(c_rarg0, count); __ mov(c_rarg0, dst); __ mov(c_rarg1, count); } __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_post_entry), 2); #else __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_array_post_entry), dst, count); #endif __ popa(); } } void ShenandoahBarrierSetAssembler::shenandoah_write_barrier_pre(MacroAssembler* masm, Register obj, Register pre_val, Register thread, Register tmp, bool tosca_live, bool expand_call) { if (ShenandoahSATBBarrier) { satb_write_barrier_pre(masm, obj, pre_val, thread, tmp, tosca_live, expand_call); } } void ShenandoahBarrierSetAssembler::satb_write_barrier_pre(MacroAssembler* masm, Register obj, Register pre_val, Register thread, Register tmp, bool tosca_live, bool expand_call) { // If expand_call is true then we expand the call_VM_leaf macro // directly to skip generating the check by // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp. #ifdef _LP64 assert(thread == r15_thread, "must be"); #endif // _LP64 Label done; Label runtime; assert(pre_val != noreg, "check this code"); if (obj != noreg) { assert_different_registers(obj, pre_val, tmp); assert(pre_val != rax, "check this code"); } Address in_progress(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset())); Address index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset())); Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())); Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::MARKING | ShenandoahHeap::TRAVERSAL); __ jcc(Assembler::zero, done); // Do we need to load the previous value? if (obj != noreg) { __ load_heap_oop(pre_val, Address(obj, 0), noreg, noreg, AS_RAW); } // Is the previous value null? __ cmpptr(pre_val, (int32_t) NULL_WORD); __ jcc(Assembler::equal, done); // Can we store original value in the thread's buffer? // Is index == 0? // (The index field is typed as size_t.) __ movptr(tmp, index); // tmp := *index_adr __ cmpptr(tmp, 0); // tmp == 0? __ jcc(Assembler::equal, runtime); // If yes, goto runtime __ subptr(tmp, wordSize); // tmp := tmp - wordSize __ movptr(index, tmp); // *index_adr := tmp __ addptr(tmp, buffer); // tmp := tmp + *buffer_adr // Record the previous value __ movptr(Address(tmp, 0), pre_val); __ jmp(done); __ bind(runtime); // save the live input values if(tosca_live) __ push(rax); if (obj != noreg && obj != rax) __ push(obj); if (pre_val != rax) __ push(pre_val); // Calling the runtime using the regular call_VM_leaf mechanism generates // code (generated by InterpreterMacroAssember::call_VM_leaf_base) // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL. // // If we care generating the pre-barrier without a frame (e.g. in the // intrinsified Reference.get() routine) then ebp might be pointing to // the caller frame and so this check will most likely fail at runtime. // // Expanding the call directly bypasses the generation of the check. // So when we do not have have a full interpreter frame on the stack // expand_call should be passed true. NOT_LP64( __ push(thread); ) if (expand_call) { LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); ) #ifdef _LP64 if (c_rarg1 != thread) { __ mov(c_rarg1, thread); } if (c_rarg0 != pre_val) { __ mov(c_rarg0, pre_val); } #else __ push(thread); __ push(pre_val); #endif __ MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), 2); } else { __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), pre_val, thread); } NOT_LP64( __ pop(thread); ) // save the live input values if (pre_val != rax) __ pop(pre_val); if (obj != noreg && obj != rax) __ pop(obj); if(tosca_live) __ pop(rax); __ bind(done); } void ShenandoahBarrierSetAssembler::shenandoah_write_barrier_post(MacroAssembler* masm, Register store_addr, Register new_val, Register thread, Register tmp, Register tmp2) { assert(UseShenandoahGC, "why else should we be here?"); if (! UseShenandoahMatrix) { // No need for that barrier if not using matrix. return; } Label done; __ testptr(new_val, new_val); __ jcc(Assembler::zero, done); ShenandoahConnectionMatrix* matrix = ShenandoahHeap::heap()->connection_matrix(); address matrix_addr = matrix->matrix_addr(); __ movptr(rscratch1, (intptr_t) ShenandoahHeap::heap()->base()); // Compute to-region index __ movptr(tmp, new_val); __ subptr(tmp, rscratch1); __ shrptr(tmp, ShenandoahHeapRegion::region_size_bytes_shift_jint()); // Compute from-region index __ movptr(tmp2, store_addr); __ subptr(tmp2, rscratch1); __ shrptr(tmp2, ShenandoahHeapRegion::region_size_bytes_shift_jint()); // Compute matrix index __ imulptr(tmp, tmp, matrix->stride_jint()); __ addptr(tmp, tmp2); // Address is _matrix[to * stride + from] __ movptr(rscratch1, (intptr_t) matrix_addr); // Test if the element is already set. __ cmpb(Address(rscratch1, tmp, Address::times_1), 0); __ jcc(Assembler::notEqual, done); // Store true, if not yet set. __ movb(Address(rscratch1, tmp, Address::times_1), 1); __ bind(done); } void ShenandoahBarrierSetAssembler::read_barrier(MacroAssembler* masm, Register dst) { if (ShenandoahReadBarrier) { read_barrier_impl(masm, dst); } } void ShenandoahBarrierSetAssembler::read_barrier_impl(MacroAssembler* masm, Register dst) { assert(UseShenandoahGC && (ShenandoahReadBarrier || ShenandoahStoreValReadBarrier), "should be enabled"); Label is_null; __ testptr(dst, dst); __ jcc(Assembler::zero, is_null); read_barrier_not_null_impl(masm, dst); __ bind(is_null); } void ShenandoahBarrierSetAssembler::read_barrier_not_null(MacroAssembler* masm, Register dst) { if (ShenandoahReadBarrier) { read_barrier_not_null_impl(masm, dst); } } void ShenandoahBarrierSetAssembler::read_barrier_not_null_impl(MacroAssembler* masm, Register dst) { assert(UseShenandoahGC && (ShenandoahReadBarrier || ShenandoahStoreValReadBarrier), "should be enabled"); __ movptr(dst, Address(dst, BrooksPointer::byte_offset())); } void ShenandoahBarrierSetAssembler::write_barrier(MacroAssembler* masm, Register dst) { if (ShenandoahWriteBarrier) { write_barrier_impl(masm, dst); } } void ShenandoahBarrierSetAssembler::write_barrier_impl(MacroAssembler* masm, Register dst) { assert(UseShenandoahGC && (ShenandoahWriteBarrier || ShenandoahStoreValEnqueueBarrier), "should be enabled"); #ifdef _LP64 assert(dst != rscratch1, "different regs"); Label done; Address gc_state(r15_thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::EVACUATION | ShenandoahHeap::TRAVERSAL); // Now check if evacuation is in progress. read_barrier_not_null(masm, dst); __ jcc(Assembler::zero, done); __ push(rscratch1); __ push(rscratch2); __ movptr(rscratch1, dst); __ shrptr(rscratch1, ShenandoahHeapRegion::region_size_bytes_shift_jint()); __ movptr(rscratch2, (intptr_t) ShenandoahHeap::in_cset_fast_test_addr()); __ movbool(rscratch2, Address(rscratch2, rscratch1, Address::times_1)); __ testb(rscratch2, 0x1); __ pop(rscratch2); __ pop(rscratch1); __ jcc(Assembler::zero, done); __ push(rscratch1); // Save possibly live regs. if (dst != rax) { __ push(rax); } if (dst != rbx) { __ push(rbx); } if (dst != rcx) { __ push(rcx); } if (dst != rdx) { __ push(rdx); } if (dst != c_rarg1) { __ push(c_rarg1); } __ subptr(rsp, 2 * Interpreter::stackElementSize); __ movdbl(Address(rsp, 0), xmm0); // Call into runtime __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_barrier_IRT), dst); __ mov(rscratch1, rax); // Restore possibly live regs. __ movdbl(xmm0, Address(rsp, 0)); __ addptr(rsp, 2 * Interpreter::stackElementSize); if (dst != c_rarg1) { __ pop(c_rarg1); } if (dst != rdx) { __ pop(rdx); } if (dst != rcx) { __ pop(rcx); } if (dst != rbx) { __ pop(rbx); } if (dst != rax) { __ pop(rax); } // Move result into dst reg. __ mov(dst, rscratch1); __ pop(rscratch1); __ bind(done); #else Unimplemented(); #endif } void ShenandoahBarrierSetAssembler::storeval_barrier(MacroAssembler* masm, Register dst, Register tmp) { if (ShenandoahStoreValReadBarrier || ShenandoahStoreValEnqueueBarrier) { storeval_barrier_impl(masm, dst, tmp); } } void ShenandoahBarrierSetAssembler::storeval_barrier_impl(MacroAssembler* masm, Register dst, Register tmp) { assert(UseShenandoahGC && (ShenandoahStoreValReadBarrier || ShenandoahStoreValEnqueueBarrier), "should be enabled"); if (dst == noreg) return; #ifdef _LP64 if (ShenandoahStoreValEnqueueBarrier) { Label is_null; __ testptr(dst, dst); __ jcc(Assembler::zero, is_null); write_barrier_impl(masm, dst); __ bind(is_null); // The set of registers to be saved+restored is the same as in the write-barrier above. // Those are the commonly used registers in the interpreter. __ pusha(); // __ push_callee_saved_registers(); __ subptr(rsp, 2 * Interpreter::stackElementSize); __ movdbl(Address(rsp, 0), xmm0); satb_write_barrier_pre(masm, noreg, dst, r15_thread, tmp, true, false); __ movdbl(xmm0, Address(rsp, 0)); __ addptr(rsp, 2 * Interpreter::stackElementSize); //__ pop_callee_saved_registers(); __ popa(); } if (ShenandoahStoreValReadBarrier) { read_barrier_impl(masm, dst); } #else Unimplemented(); #endif } void ShenandoahBarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Register dst, Address src, Register tmp1, Register tmp_thread) { bool on_oop = type == T_OBJECT || type == T_ARRAY; bool in_heap = (decorators & IN_HEAP) != 0; bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0; bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0; bool on_reference = on_weak || on_phantom; if (in_heap) { read_barrier_not_null(masm, src.base()); } BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread); if (ShenandoahKeepAliveBarrier && on_oop && on_reference) { const Register thread = NOT_LP64(tmp_thread) LP64_ONLY(r15_thread); NOT_LP64(__ get_thread(thread)); // Generate the SATB pre-barrier code to log the value of // the referent field in an SATB buffer. shenandoah_write_barrier_pre(masm /* masm */, noreg /* obj */, dst /* pre_val */, thread /* thread */, tmp1 /* tmp */, true /* tosca_live */, true /* expand_call */); } } void ShenandoahBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, Address dst, Register val, Register tmp1, Register tmp2) { bool in_heap = (decorators & IN_HEAP) != 0; bool in_concurrent_root = (decorators & IN_CONCURRENT_ROOT) != 0; if (in_heap) { write_barrier(masm, dst.base()); } if (type == T_OBJECT || type == T_ARRAY) { bool needs_pre_barrier = in_heap || in_concurrent_root; bool needs_post_barrier = val != noreg && in_heap && UseShenandoahMatrix; Register tmp3 = LP64_ONLY(r8) NOT_LP64(rsi); Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); // flatten object address if needed // We do it regardless of precise because we need the registers if (dst.index() == noreg && dst.disp() == 0) { if (dst.base() != tmp1) { __ movptr(tmp1, dst.base()); } } else { __ lea(tmp1, dst); } #ifndef _LP64 InterpreterMacroAssembler *imasm = static_cast(masm); #endif NOT_LP64(__ get_thread(rcx)); NOT_LP64(imasm->save_bcp()); if (needs_pre_barrier) { shenandoah_write_barrier_pre(masm /*masm*/, tmp1 /* obj */, tmp2 /* pre_val */, rthread /* thread */, tmp3 /* tmp */, val != noreg /* tosca_live */, false /* expand_call */); } if (val == noreg) { BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg); } else { storeval_barrier(masm, val, tmp3); Register new_val = val; if (needs_post_barrier) { if (UseCompressedOops) { new_val = tmp2; __ movptr(new_val, val); } } BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg); if (needs_post_barrier) { shenandoah_write_barrier_post(masm /*masm*/, tmp1 /* store_adr */, new_val /* new_val */, rthread /* thread */, tmp3 /* tmp */, tmp2 /* tmp2 */); } } NOT_LP64(imasm->restore_bcp()); } else { BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2); } } void ShenandoahBarrierSetAssembler::obj_equals(MacroAssembler* masm, DecoratorSet decorators, Register op1, Register op2) { __ cmpptr(op1, op2); if (ShenandoahAcmpBarrier) { Label done; __ jccb(Assembler::equal, done); read_barrier(masm, op1); read_barrier(masm, op2); __ cmpptr(op1, op2); __ bind(done); } } void ShenandoahBarrierSetAssembler::obj_equals_addr(MacroAssembler* masm, DecoratorSet decorators, Register src1, Address src2) { __ cmpptr(src1, src2); if (ShenandoahAcmpBarrier) { Label done; __ jccb(Assembler::equal, done); __ movptr(rscratch2, src2); read_barrier(masm, src1); read_barrier(masm, rscratch2); __ cmpptr(src1, rscratch2); __ bind(done); } } void ShenandoahBarrierSetAssembler::resolve_for_read(MacroAssembler* masm, DecoratorSet decorators, Register obj) { bool oop_not_null = (decorators & OOP_NOT_NULL) != 0; if (oop_not_null) { read_barrier_not_null(masm, obj); } else { read_barrier(masm, obj); } } void ShenandoahBarrierSetAssembler::resolve_for_write(MacroAssembler* masm, DecoratorSet decorators, Register obj) { write_barrier(masm, obj); } // Special Shenandoah CAS implementation that handles false negatives // due to concurrent evacuation. #ifndef _LP64 void ShenandoahBarrierSetAssembler::cmpxchg_oop(MacroAssembler* masm, DecoratorSet decorators, Register res, Address addr, Register oldval, Register newval, bool exchange, bool encode, Register tmp1, Register tmp2) { // Shenandoah has no 32-bit version for this. Unimplemented(); } #else void ShenandoahBarrierSetAssembler::cmpxchg_oop(MacroAssembler* masm, DecoratorSet decorators, Register res, Address addr, Register oldval, Register newval, bool exchange, bool encode, Register tmp1, Register tmp2) { if (!ShenandoahCASBarrier) { BarrierSetAssembler::cmpxchg_oop(masm, decorators, res, addr, oldval, newval, exchange, encode, tmp1, tmp2); return; } assert(ShenandoahCASBarrier, "Should only be used when CAS barrier is enabled"); assert(oldval == rax, "must be in rax for implicit use in cmpxchg"); Label retry, done; // Apply storeval barrier to newval. if (encode) { if (newval == c_rarg1 && ShenandoahStoreValEnqueueBarrier) { __ mov(tmp2, newval); storeval_barrier(masm, tmp2, tmp1); } else { storeval_barrier(masm, newval, tmp1); } } if (UseCompressedOops) { if (encode) { __ encode_heap_oop(oldval); __ mov(rscratch1, newval); __ encode_heap_oop(rscratch1); newval = rscratch1; } } // Remember oldval for retry logic below if (UseCompressedOops) { __ movl(tmp1, oldval); } else { __ movptr(tmp1, oldval); } // Step 1. Try to CAS with given arguments. If successful, then we are done, // and can safely return. if (os::is_MP()) __ lock(); if (UseCompressedOops) { __ cmpxchgl(newval, addr); } else { __ cmpxchgptr(newval, addr); } __ jcc(Assembler::equal, done, true); // Step 2. CAS had failed. This may be a false negative. // // The trouble comes when we compare the to-space pointer with the from-space // pointer to the same object. To resolve this, it will suffice to read both // oldval and the value from memory through the read barriers -- this will give // both to-space pointers. If they mismatch, then it was a legitimate failure. // if (UseCompressedOops) { __ decode_heap_oop(tmp1); } __ resolve_for_read(0, tmp1); if (UseCompressedOops) { __ movl(tmp2, oldval); __ decode_heap_oop(tmp2); } else { __ movptr(tmp2, oldval); } __ resolve_for_read(0, tmp2); __ cmpptr(tmp1, tmp2); __ jcc(Assembler::notEqual, done, true); // Step 3. Try to CAS again with resolved to-space pointers. // // Corner case: it may happen that somebody stored the from-space pointer // to memory while we were preparing for retry. Therefore, we can fail again // on retry, and so need to do this in loop, always re-reading the failure // witness through the read barrier. __ bind(retry); if (os::is_MP()) __ lock(); if (UseCompressedOops) { __ cmpxchgl(newval, addr); } else { __ cmpxchgptr(newval, addr); } __ jcc(Assembler::equal, done, true); if (UseCompressedOops) { __ movl(tmp2, oldval); __ decode_heap_oop(tmp2); } else { __ movptr(tmp2, oldval); } __ resolve_for_read(0, tmp2); __ cmpptr(tmp1, tmp2); __ jcc(Assembler::equal, retry, true); // Step 4. If we need a boolean result out of CAS, check the flag again, // and promote the result. Note that we handle the flag from both the CAS // itself and from the retry loop. __ bind(done); if (!exchange) { assert(res != NULL, "need result register"); __ setb(Assembler::equal, res); __ movzbl(res, res); } } #endif // LP64 void ShenandoahBarrierSetAssembler::xchg_oop(MacroAssembler* masm, DecoratorSet decorators, Register obj, Address addr, Register tmp) { storeval_barrier(masm, obj, tmp); BarrierSetAssembler::xchg_oop(masm, decorators, obj, addr, tmp); } #ifdef COMPILER1 #undef __ #define __ ce->masm()-> void ShenandoahBarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, ShenandoahPreBarrierStub* stub) { ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1(); // At this point we know that marking is in progress. // If do_load() is true then we have to emit the // load of the previous value; otherwise it has already // been loaded into _pre_val. __ bind(*stub->entry()); assert(stub->pre_val()->is_register(), "Precondition."); Register pre_val_reg = stub->pre_val()->as_register(); if (stub->do_load()) { ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /*wide*/, false /*unaligned*/); } __ cmpptr(pre_val_reg, (int32_t)NULL_WORD); __ jcc(Assembler::equal, *stub->continuation()); ce->store_parameter(stub->pre_val()->as_register(), 0); __ call(RuntimeAddress(bs->pre_barrier_c1_runtime_code_blob()->code_begin())); __ jmp(*stub->continuation()); } #undef __ #define __ sasm-> void ShenandoahBarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) { __ prologue("shenandoah_pre_barrier", false); // arg0 : previous value of memory __ push(rax); __ push(rdx); const Register pre_val = rax; const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); const Register tmp = rdx; NOT_LP64(__ get_thread(thread);) Address queue_index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset())); Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())); Label done; Label runtime; // Is SATB still active? Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); __ testb(gc_state, ShenandoahHeap::MARKING | ShenandoahHeap::TRAVERSAL); __ jcc(Assembler::zero, done); // Can we store original value in the thread's buffer? __ movptr(tmp, queue_index); __ testptr(tmp, tmp); __ jcc(Assembler::zero, runtime); __ subptr(tmp, wordSize); __ movptr(queue_index, tmp); __ addptr(tmp, buffer); // prev_val (rax) __ load_parameter(0, pre_val); __ movptr(Address(tmp, 0), pre_val); __ jmp(done); __ bind(runtime); __ save_live_registers_no_oop_map(true); // load the pre-value __ load_parameter(0, rcx); __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), rcx, thread); __ restore_live_registers(true); __ bind(done); __ pop(rdx); __ pop(rax); __ epilogue(); } #undef __ #endif // COMPILER1 address ShenandoahBarrierSetAssembler::shenandoah_wb() { assert(_shenandoah_wb != NULL, "need write barrier stub"); return _shenandoah_wb; } address ShenandoahBarrierSetAssembler::shenandoah_wb_C() { assert(_shenandoah_wb_C != NULL, "need write barrier stub"); return _shenandoah_wb_C; } #define __ cgen->assembler()-> address ShenandoahBarrierSetAssembler::generate_shenandoah_wb(StubCodeGenerator* cgen, bool c_abi, bool do_cset_test) { __ align(CodeEntryAlignment); StubCodeMark mark(cgen, "StubRoutines", "shenandoah_wb"); address start = __ pc(); Label not_done; // We use RDI, which also serves as argument register for slow call. // RAX always holds the src object ptr, except after the slow call and // the cmpxchg, then it holds the result. // R8 and RCX are used as temporary registers. if (!c_abi) { __ push(rdi); __ push(r8); } // Check for object beeing in the collection set. // TODO: Can we use only 1 register here? // The source object arrives here in rax. // live: rax // live: rdi if (!c_abi) { __ mov(rdi, rax); } else { if (rax != c_rarg0) { __ mov(rax, c_rarg0); } } if (do_cset_test) { __ shrptr(rdi, ShenandoahHeapRegion::region_size_bytes_shift_jint()); // live: r8 __ movptr(r8, (intptr_t) ShenandoahHeap::in_cset_fast_test_addr()); __ movbool(r8, Address(r8, rdi, Address::times_1)); // unlive: rdi __ testbool(r8); // unlive: r8 __ jccb(Assembler::notZero, not_done); if (!c_abi) { __ pop(r8); __ pop(rdi); } __ ret(0); __ bind(not_done); } if (!c_abi) { __ push(rcx); } if (!c_abi) { __ push(rdx); __ push(rdi); __ push(rsi); __ push(r8); __ push(r9); __ push(r10); __ push(r11); __ push(r12); __ push(r13); __ push(r14); __ push(r15); } __ save_vector_registers(); __ movptr(rdi, rax); __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_barrier_JRT), rdi); __ restore_vector_registers(); if (!c_abi) { __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ pop(r11); __ pop(r10); __ pop(r9); __ pop(r8); __ pop(rsi); __ pop(rdi); __ pop(rdx); __ pop(rcx); __ pop(r8); __ pop(rdi); } __ ret(0); return start; } #undef __ void ShenandoahBarrierSetAssembler::barrier_stubs_init() { if (ShenandoahWriteBarrier || ShenandoahStoreValEnqueueBarrier) { int stub_code_size = 1536; ResourceMark rm; BufferBlob* bb = BufferBlob::create("shenandoah_barrier_stubs", stub_code_size); CodeBuffer buf(bb); StubCodeGenerator cgen(&buf); _shenandoah_wb = generate_shenandoah_wb(&cgen, false, true); _shenandoah_wb_C = generate_shenandoah_wb(&cgen, true, !ShenandoahWriteBarrierCsetTestInIR); } }