1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "memory/metaspaceShared.hpp"
  29 #include "memory/padded.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/biasedLocking.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/mutexLocker.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/objectMonitor.inline.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/synchronizer.hpp"
  43 #include "runtime/thread.inline.hpp"
  44 #include "runtime/vframe.hpp"
  45 #include "trace/traceMacros.hpp"
  46 #include "trace/tracing.hpp"
  47 #include "utilities/dtrace.hpp"
  48 #include "utilities/events.hpp"
  49 #include "utilities/preserveException.hpp"
  50 
  51 // The "core" versions of monitor enter and exit reside in this file.
  52 // The interpreter and compilers contain specialized transliterated
  53 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  54 // for instance.  If you make changes here, make sure to modify the
  55 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  56 //
  57 // -----------------------------------------------------------------------------
  58 
  59 #ifdef DTRACE_ENABLED
  60 
  61 // Only bother with this argument setup if dtrace is available
  62 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  63 
  64 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  65   char* bytes = NULL;                                                      \
  66   int len = 0;                                                             \
  67   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  68   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  69   if (klassname != NULL) {                                                 \
  70     bytes = (char*)klassname->bytes();                                     \
  71     len = klassname->utf8_length();                                        \
  72   }
  73 
  74 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  75   {                                                                        \
  76     if (DTraceMonitorProbes) {                                             \
  77       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  78       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  79                            (uintptr_t)(monitor), bytes, len, (millis));    \
  80     }                                                                      \
  81   }
  82 
  83 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  84 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  85 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  86 
  87 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  88   {                                                                        \
  89     if (DTraceMonitorProbes) {                                             \
  90       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  91       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  92                                     (uintptr_t)(monitor), bytes, len);     \
  93     }                                                                      \
  94   }
  95 
  96 #else //  ndef DTRACE_ENABLED
  97 
  98 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  99 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 100 
 101 #endif // ndef DTRACE_ENABLED
 102 
 103 // This exists only as a workaround of dtrace bug 6254741
 104 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 105   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 106   return 0;
 107 }
 108 
 109 #define NINFLATIONLOCKS 256
 110 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 111 
 112 // global list of blocks of monitors
 113 // gBlockList is really PaddedEnd<ObjectMonitor> *, but we don't
 114 // want to expose the PaddedEnd template more than necessary.
 115 ObjectMonitor * volatile ObjectSynchronizer::gBlockList = NULL;
 116 // global monitor free list
 117 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 118 // global monitor in-use list, for moribund threads,
 119 // monitors they inflated need to be scanned for deflation
 120 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 121 // count of entries in gOmInUseList
 122 int ObjectSynchronizer::gOmInUseCount = 0;
 123 
 124 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 125 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 126 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 127 
 128 static void post_monitor_inflate_event(EventJavaMonitorInflate&,
 129                                        const oop,
 130                                        const ObjectSynchronizer::InflateCause);
 131 
 132 #define CHAINMARKER   (cast_to_oop<intptr_t>(-1))
 133 #define CLAIMEDMARKER (cast_to_oop<intptr_t>(-2))
 134 
 135 
 136 // =====================> Quick functions
 137 
 138 // The quick_* forms are special fast-path variants used to improve
 139 // performance.  In the simplest case, a "quick_*" implementation could
 140 // simply return false, in which case the caller will perform the necessary
 141 // state transitions and call the slow-path form.
 142 // The fast-path is designed to handle frequently arising cases in an efficient
 143 // manner and is just a degenerate "optimistic" variant of the slow-path.
 144 // returns true  -- to indicate the call was satisfied.
 145 // returns false -- to indicate the call needs the services of the slow-path.
 146 // A no-loitering ordinance is in effect for code in the quick_* family
 147 // operators: safepoints or indefinite blocking (blocking that might span a
 148 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 149 // entry.
 150 //
 151 // Consider: An interesting optimization is to have the JIT recognize the
 152 // following common idiom:
 153 //   synchronized (someobj) { .... ; notify(); }
 154 // That is, we find a notify() or notifyAll() call that immediately precedes
 155 // the monitorexit operation.  In that case the JIT could fuse the operations
 156 // into a single notifyAndExit() runtime primitive.
 157 
 158 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 159   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 160   assert(self->is_Java_thread(), "invariant");
 161   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 162   NoSafepointVerifier nsv;
 163   if (obj == NULL) return false;  // slow-path for invalid obj
 164   const markOop mark = obj->mark();
 165 
 166   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 167     // Degenerate notify
 168     // stack-locked by caller so by definition the implied waitset is empty.
 169     return true;
 170   }
 171 
 172   if (mark->has_monitor()) {
 173     ObjectMonitor * const mon = mark->monitor();
 174     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 175     if (mon->owner() != self) return false;  // slow-path for IMS exception
 176 
 177     if (mon->first_waiter() != NULL) {
 178       // We have one or more waiters. Since this is an inflated monitor
 179       // that we own, we can transfer one or more threads from the waitset
 180       // to the entrylist here and now, avoiding the slow-path.
 181       if (all) {
 182         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 183       } else {
 184         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 185       }
 186       int tally = 0;
 187       do {
 188         mon->INotify(self);
 189         ++tally;
 190       } while (mon->first_waiter() != NULL && all);
 191       OM_PERFDATA_OP(Notifications, inc(tally));
 192     }
 193     return true;
 194   }
 195 
 196   // biased locking and any other IMS exception states take the slow-path
 197   return false;
 198 }
 199 
 200 
 201 // The LockNode emitted directly at the synchronization site would have
 202 // been too big if it were to have included support for the cases of inflated
 203 // recursive enter and exit, so they go here instead.
 204 // Note that we can't safely call AsyncPrintJavaStack() from within
 205 // quick_enter() as our thread state remains _in_Java.
 206 
 207 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 208                                      BasicLock * lock) {
 209   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 210   assert(Self->is_Java_thread(), "invariant");
 211   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 212   NoSafepointVerifier nsv;
 213   if (obj == NULL) return false;       // Need to throw NPE
 214   const markOop mark = obj->mark();
 215 
 216   if (mark->has_monitor()) {
 217     ObjectMonitor * const m = mark->monitor();
 218     assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 219     Thread * const owner = (Thread *) m->_owner;
 220 
 221     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 222     // and observability
 223     // Case: light contention possibly amenable to TLE
 224     // Case: TLE inimical operations such as nested/recursive synchronization
 225 
 226     if (owner == Self) {
 227       m->_recursions++;
 228       return true;
 229     }
 230 
 231     // This Java Monitor is inflated so obj's header will never be
 232     // displaced to this thread's BasicLock. Make the displaced header
 233     // non-NULL so this BasicLock is not seen as recursive nor as
 234     // being locked. We do this unconditionally so that this thread's
 235     // BasicLock cannot be mis-interpreted by any stack walkers. For
 236     // performance reasons, stack walkers generally first check for
 237     // Biased Locking in the object's header, the second check is for
 238     // stack-locking in the object's header, the third check is for
 239     // recursive stack-locking in the displaced header in the BasicLock,
 240     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 241     lock->set_displaced_header(markOopDesc::unused_mark());
 242 
 243     if (owner == NULL &&
 244         Atomic::cmpxchg_ptr(Self, &(m->_owner), NULL) == NULL) {
 245       assert(m->_recursions == 0, "invariant");
 246       assert(m->_owner == Self, "invariant");
 247       return true;
 248     }
 249   }
 250 
 251   // Note that we could inflate in quick_enter.
 252   // This is likely a useful optimization
 253   // Critically, in quick_enter() we must not:
 254   // -- perform bias revocation, or
 255   // -- block indefinitely, or
 256   // -- reach a safepoint
 257 
 258   return false;        // revert to slow-path
 259 }
 260 
 261 // -----------------------------------------------------------------------------
 262 //  Fast Monitor Enter/Exit
 263 // This the fast monitor enter. The interpreter and compiler use
 264 // some assembly copies of this code. Make sure update those code
 265 // if the following function is changed. The implementation is
 266 // extremely sensitive to race condition. Be careful.
 267 
 268 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 269                                     bool attempt_rebias, TRAPS) {
 270   if (UseBiasedLocking) {
 271     if (!SafepointSynchronize::is_at_safepoint()) {
 272       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 273       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 274         return;
 275       }
 276     } else {
 277       assert(!attempt_rebias, "can not rebias toward VM thread");
 278       BiasedLocking::revoke_at_safepoint(obj);
 279     }
 280     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 281   }
 282 
 283   slow_enter(obj, lock, THREAD);
 284 }
 285 
 286 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 287   markOop mark = object->mark();
 288   // We cannot check for Biased Locking if we are racing an inflation.
 289   assert(mark == markOopDesc::INFLATING() ||
 290          !mark->has_bias_pattern(), "should not see bias pattern here");
 291 
 292   markOop dhw = lock->displaced_header();
 293   if (dhw == NULL) {
 294     // If the displaced header is NULL, then this exit matches up with
 295     // a recursive enter. No real work to do here except for diagnostics.
 296 #ifndef PRODUCT
 297     if (mark != markOopDesc::INFLATING()) {
 298       // Only do diagnostics if we are not racing an inflation. Simply
 299       // exiting a recursive enter of a Java Monitor that is being
 300       // inflated is safe; see the has_monitor() comment below.
 301       assert(!mark->is_neutral(), "invariant");
 302       assert(!mark->has_locker() ||
 303              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 304       if (mark->has_monitor()) {
 305         // The BasicLock's displaced_header is marked as a recursive
 306         // enter and we have an inflated Java Monitor (ObjectMonitor).
 307         // This is a special case where the Java Monitor was inflated
 308         // after this thread entered the stack-lock recursively. When a
 309         // Java Monitor is inflated, we cannot safely walk the Java
 310         // Monitor owner's stack and update the BasicLocks because a
 311         // Java Monitor can be asynchronously inflated by a thread that
 312         // does not own the Java Monitor.
 313         ObjectMonitor * m = mark->monitor();
 314         assert(((oop)(m->object()))->mark() == mark, "invariant");
 315         assert(m->is_entered(THREAD), "invariant");
 316       }
 317     }
 318 #endif
 319     return;
 320   }
 321 
 322   if (mark == (markOop) lock) {
 323     // If the object is stack-locked by the current thread, try to
 324     // swing the displaced header from the BasicLock back to the mark.
 325     assert(dhw->is_neutral(), "invariant");
 326     if (object->cas_set_mark(dhw, mark) == mark) {
 327       TEVENT(fast_exit: release stack-lock);
 328       return;
 329     }
 330   }
 331 
 332   // We have to take the slow-path of possible inflation and then exit.
 333   ObjectSynchronizer::inflate(THREAD,
 334                               object,
 335                               inflate_cause_vm_internal)->exit(true, THREAD);
 336 }
 337 
 338 // -----------------------------------------------------------------------------
 339 // Interpreter/Compiler Slow Case
 340 // This routine is used to handle interpreter/compiler slow case
 341 // We don't need to use fast path here, because it must have been
 342 // failed in the interpreter/compiler code.
 343 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 344   markOop mark = obj->mark();
 345   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 346 
 347   if (mark->is_neutral()) {
 348     // Anticipate successful CAS -- the ST of the displaced mark must
 349     // be visible <= the ST performed by the CAS.
 350     lock->set_displaced_header(mark);
 351     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 352       TEVENT(slow_enter: release stacklock);
 353       return;
 354     }
 355     // Fall through to inflate() ...
 356   } else if (mark->has_locker() &&
 357              THREAD->is_lock_owned((address)mark->locker())) {
 358     assert(lock != mark->locker(), "must not re-lock the same lock");
 359     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 360     lock->set_displaced_header(NULL);
 361     return;
 362   }
 363 
 364   // The object header will never be displaced to this lock,
 365   // so it does not matter what the value is, except that it
 366   // must be non-zero to avoid looking like a re-entrant lock,
 367   // and must not look locked either.
 368   lock->set_displaced_header(markOopDesc::unused_mark());
 369   ObjectSynchronizer::inflate(THREAD,
 370                               obj(),
 371                               inflate_cause_monitor_enter)->enter(THREAD);
 372 }
 373 
 374 // This routine is used to handle interpreter/compiler slow case
 375 // We don't need to use fast path here, because it must have
 376 // failed in the interpreter/compiler code. Simply use the heavy
 377 // weight monitor should be ok, unless someone find otherwise.
 378 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 379   fast_exit(object, lock, THREAD);
 380 }
 381 
 382 // -----------------------------------------------------------------------------
 383 // Class Loader  support to workaround deadlocks on the class loader lock objects
 384 // Also used by GC
 385 // complete_exit()/reenter() are used to wait on a nested lock
 386 // i.e. to give up an outer lock completely and then re-enter
 387 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 388 //  1) complete_exit lock1 - saving recursion count
 389 //  2) wait on lock2
 390 //  3) when notified on lock2, unlock lock2
 391 //  4) reenter lock1 with original recursion count
 392 //  5) lock lock2
 393 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 394 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 395   TEVENT(complete_exit);
 396   if (UseBiasedLocking) {
 397     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 398     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 399   }
 400 
 401   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 402                                                        obj(),
 403                                                        inflate_cause_vm_internal);
 404 
 405   return monitor->complete_exit(THREAD);
 406 }
 407 
 408 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 409 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 410   TEVENT(reenter);
 411   if (UseBiasedLocking) {
 412     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 413     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 414   }
 415 
 416   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 417                                                        obj(),
 418                                                        inflate_cause_vm_internal);
 419 
 420   monitor->reenter(recursion, THREAD);
 421 }
 422 // -----------------------------------------------------------------------------
 423 // JNI locks on java objects
 424 // NOTE: must use heavy weight monitor to handle jni monitor enter
 425 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 426   // the current locking is from JNI instead of Java code
 427   TEVENT(jni_enter);
 428   if (UseBiasedLocking) {
 429     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 430     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 431   }
 432   THREAD->set_current_pending_monitor_is_from_java(false);
 433   ObjectSynchronizer::inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 434   THREAD->set_current_pending_monitor_is_from_java(true);
 435 }
 436 
 437 // NOTE: must use heavy weight monitor to handle jni monitor exit
 438 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 439   TEVENT(jni_exit);
 440   if (UseBiasedLocking) {
 441     Handle h_obj(THREAD, obj);
 442     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 443     obj = h_obj();
 444   }
 445   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 446 
 447   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 448                                                        obj,
 449                                                        inflate_cause_jni_exit);
 450   // If this thread has locked the object, exit the monitor.  Note:  can't use
 451   // monitor->check(CHECK); must exit even if an exception is pending.
 452   if (monitor->check(THREAD)) {
 453     monitor->exit(true, THREAD);
 454   }
 455 }
 456 
 457 // -----------------------------------------------------------------------------
 458 // Internal VM locks on java objects
 459 // standard constructor, allows locking failures
 460 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 461   _dolock = doLock;
 462   _thread = thread;
 463   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 464   _obj = obj;
 465 
 466   if (_dolock) {
 467     TEVENT(ObjectLocker);
 468 
 469     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 470   }
 471 }
 472 
 473 ObjectLocker::~ObjectLocker() {
 474   if (_dolock) {
 475     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 476   }
 477 }
 478 
 479 
 480 // -----------------------------------------------------------------------------
 481 //  Wait/Notify/NotifyAll
 482 // NOTE: must use heavy weight monitor to handle wait()
 483 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 484   if (UseBiasedLocking) {
 485     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 486     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 487   }
 488   if (millis < 0) {
 489     TEVENT(wait - throw IAX);
 490     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 491   }
 492   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 493                                                        obj(),
 494                                                        inflate_cause_wait);
 495 
 496   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 497   monitor->wait(millis, true, THREAD);
 498 
 499   // This dummy call is in place to get around dtrace bug 6254741.  Once
 500   // that's fixed we can uncomment the following line, remove the call
 501   // and change this function back into a "void" func.
 502   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 503   return dtrace_waited_probe(monitor, obj, THREAD);
 504 }
 505 
 506 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 507   if (UseBiasedLocking) {
 508     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 509     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 510   }
 511   if (millis < 0) {
 512     TEVENT(wait - throw IAX);
 513     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 514   }
 515   ObjectSynchronizer::inflate(THREAD,
 516                               obj(),
 517                               inflate_cause_wait)->wait(millis, false, THREAD);
 518 }
 519 
 520 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 521   if (UseBiasedLocking) {
 522     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 523     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 524   }
 525 
 526   markOop mark = obj->mark();
 527   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 528     return;
 529   }
 530   ObjectSynchronizer::inflate(THREAD,
 531                               obj(),
 532                               inflate_cause_notify)->notify(THREAD);
 533 }
 534 
 535 // NOTE: see comment of notify()
 536 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 537   if (UseBiasedLocking) {
 538     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 539     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 540   }
 541 
 542   markOop mark = obj->mark();
 543   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 544     return;
 545   }
 546   ObjectSynchronizer::inflate(THREAD,
 547                               obj(),
 548                               inflate_cause_notify)->notifyAll(THREAD);
 549 }
 550 
 551 // -----------------------------------------------------------------------------
 552 // Hash Code handling
 553 //
 554 // Performance concern:
 555 // OrderAccess::storestore() calls release() which at one time stored 0
 556 // into the global volatile OrderAccess::dummy variable. This store was
 557 // unnecessary for correctness. Many threads storing into a common location
 558 // causes considerable cache migration or "sloshing" on large SMP systems.
 559 // As such, I avoided using OrderAccess::storestore(). In some cases
 560 // OrderAccess::fence() -- which incurs local latency on the executing
 561 // processor -- is a better choice as it scales on SMP systems.
 562 //
 563 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 564 // a discussion of coherency costs. Note that all our current reference
 565 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 566 // x64, and SPARC.
 567 //
 568 // As a general policy we use "volatile" to control compiler-based reordering
 569 // and explicit fences (barriers) to control for architectural reordering
 570 // performed by the CPU(s) or platform.
 571 
 572 struct SharedGlobals {
 573   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 574   // These are highly shared mostly-read variables.
 575   // To avoid false-sharing they need to be the sole occupants of a cache line.
 576   volatile int stwRandom;
 577   volatile int stwCycle;
 578   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 579   // Hot RW variable -- Sequester to avoid false-sharing
 580   volatile int hcSequence;
 581   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 582 };
 583 
 584 static SharedGlobals GVars;
 585 static int MonitorScavengeThreshold = 1000000;
 586 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 587 
 588 static markOop ReadStableMark(oop obj) {
 589   markOop mark = obj->mark();
 590   if (!mark->is_being_inflated()) {
 591     return mark;       // normal fast-path return
 592   }
 593 
 594   int its = 0;
 595   for (;;) {
 596     markOop mark = obj->mark();
 597     if (!mark->is_being_inflated()) {
 598       return mark;    // normal fast-path return
 599     }
 600 
 601     // The object is being inflated by some other thread.
 602     // The caller of ReadStableMark() must wait for inflation to complete.
 603     // Avoid live-lock
 604     // TODO: consider calling SafepointSynchronize::do_call_back() while
 605     // spinning to see if there's a safepoint pending.  If so, immediately
 606     // yielding or blocking would be appropriate.  Avoid spinning while
 607     // there is a safepoint pending.
 608     // TODO: add inflation contention performance counters.
 609     // TODO: restrict the aggregate number of spinners.
 610 
 611     ++its;
 612     if (its > 10000 || !os::is_MP()) {
 613       if (its & 1) {
 614         os::naked_yield();
 615         TEVENT(Inflate: INFLATING - yield);
 616       } else {
 617         // Note that the following code attenuates the livelock problem but is not
 618         // a complete remedy.  A more complete solution would require that the inflating
 619         // thread hold the associated inflation lock.  The following code simply restricts
 620         // the number of spinners to at most one.  We'll have N-2 threads blocked
 621         // on the inflationlock, 1 thread holding the inflation lock and using
 622         // a yield/park strategy, and 1 thread in the midst of inflation.
 623         // A more refined approach would be to change the encoding of INFLATING
 624         // to allow encapsulation of a native thread pointer.  Threads waiting for
 625         // inflation to complete would use CAS to push themselves onto a singly linked
 626         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 627         // and calling park().  When inflation was complete the thread that accomplished inflation
 628         // would detach the list and set the markword to inflated with a single CAS and
 629         // then for each thread on the list, set the flag and unpark() the thread.
 630         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 631         // wakes at most one thread whereas we need to wake the entire list.
 632         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 633         int YieldThenBlock = 0;
 634         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 635         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 636         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 637         while (obj->mark() == markOopDesc::INFLATING()) {
 638           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 639           // so we periodically call Self->_ParkEvent->park(1).
 640           // We use a mixed spin/yield/block mechanism.
 641           if ((YieldThenBlock++) >= 16) {
 642             Thread::current()->_ParkEvent->park(1);
 643           } else {
 644             os::naked_yield();
 645           }
 646         }
 647         Thread::muxRelease(gInflationLocks + ix);
 648         TEVENT(Inflate: INFLATING - yield/park);
 649       }
 650     } else {
 651       SpinPause();       // SMP-polite spinning
 652     }
 653   }
 654 }
 655 
 656 // hashCode() generation :
 657 //
 658 // Possibilities:
 659 // * MD5Digest of {obj,stwRandom}
 660 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 661 // * A DES- or AES-style SBox[] mechanism
 662 // * One of the Phi-based schemes, such as:
 663 //   2654435761 = 2^32 * Phi (golden ratio)
 664 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 665 // * A variation of Marsaglia's shift-xor RNG scheme.
 666 // * (obj ^ stwRandom) is appealing, but can result
 667 //   in undesirable regularity in the hashCode values of adjacent objects
 668 //   (objects allocated back-to-back, in particular).  This could potentially
 669 //   result in hashtable collisions and reduced hashtable efficiency.
 670 //   There are simple ways to "diffuse" the middle address bits over the
 671 //   generated hashCode values:
 672 
 673 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 674   intptr_t value = 0;
 675   if (hashCode == 0) {
 676     // This form uses an unguarded global Park-Miller RNG,
 677     // so it's possible for two threads to race and generate the same RNG.
 678     // On MP system we'll have lots of RW access to a global, so the
 679     // mechanism induces lots of coherency traffic.
 680     value = os::random();
 681   } else if (hashCode == 1) {
 682     // This variation has the property of being stable (idempotent)
 683     // between STW operations.  This can be useful in some of the 1-0
 684     // synchronization schemes.
 685     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 686     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 687   } else if (hashCode == 2) {
 688     value = 1;            // for sensitivity testing
 689   } else if (hashCode == 3) {
 690     value = ++GVars.hcSequence;
 691   } else if (hashCode == 4) {
 692     value = cast_from_oop<intptr_t>(obj);
 693   } else {
 694     // Marsaglia's xor-shift scheme with thread-specific state
 695     // This is probably the best overall implementation -- we'll
 696     // likely make this the default in future releases.
 697     unsigned t = Self->_hashStateX;
 698     t ^= (t << 11);
 699     Self->_hashStateX = Self->_hashStateY;
 700     Self->_hashStateY = Self->_hashStateZ;
 701     Self->_hashStateZ = Self->_hashStateW;
 702     unsigned v = Self->_hashStateW;
 703     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 704     Self->_hashStateW = v;
 705     value = v;
 706   }
 707 
 708   value &= markOopDesc::hash_mask;
 709   if (value == 0) value = 0xBAD;
 710   assert(value != markOopDesc::no_hash, "invariant");
 711   TEVENT(hashCode: GENERATE);
 712   return value;
 713 }
 714 
 715 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 716   if (UseBiasedLocking) {
 717     // NOTE: many places throughout the JVM do not expect a safepoint
 718     // to be taken here, in particular most operations on perm gen
 719     // objects. However, we only ever bias Java instances and all of
 720     // the call sites of identity_hash that might revoke biases have
 721     // been checked to make sure they can handle a safepoint. The
 722     // added check of the bias pattern is to avoid useless calls to
 723     // thread-local storage.
 724     if (obj->mark()->has_bias_pattern()) {
 725       // Handle for oop obj in case of STW safepoint
 726       Handle hobj(Self, obj);
 727       // Relaxing assertion for bug 6320749.
 728       assert(Universe::verify_in_progress() ||
 729              !SafepointSynchronize::is_at_safepoint(),
 730              "biases should not be seen by VM thread here");
 731       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 732       obj = hobj();
 733       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 734     }
 735   }
 736 
 737   // hashCode() is a heap mutator ...
 738   // Relaxing assertion for bug 6320749.
 739   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 740          !SafepointSynchronize::is_at_safepoint(), "invariant");
 741   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 742          Self->is_Java_thread() , "invariant");
 743   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 744          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 745 
 746   ObjectMonitor* monitor = NULL;
 747   markOop temp, test;
 748   intptr_t hash;
 749   markOop mark = ReadStableMark(obj);
 750 
 751   // object should remain ineligible for biased locking
 752   assert(!mark->has_bias_pattern(), "invariant");
 753 
 754   if (mark->is_neutral()) {
 755     hash = mark->hash();              // this is a normal header
 756     if (hash) {                       // if it has hash, just return it
 757       return hash;
 758     }
 759     hash = get_next_hash(Self, obj);  // allocate a new hash code
 760     temp = mark->copy_set_hash(hash); // merge the hash code into header
 761     // use (machine word version) atomic operation to install the hash
 762     test = obj->cas_set_mark(temp, mark);
 763     if (test == mark) {
 764       return hash;
 765     }
 766     // If atomic operation failed, we must inflate the header
 767     // into heavy weight monitor. We could add more code here
 768     // for fast path, but it does not worth the complexity.
 769   } else if (mark->has_monitor()) {
 770     monitor = mark->monitor();
 771     temp = monitor->header();
 772     assert(temp->is_neutral(), "invariant");
 773     hash = temp->hash();
 774     if (hash) {
 775       return hash;
 776     }
 777     // Skip to the following code to reduce code size
 778   } else if (Self->is_lock_owned((address)mark->locker())) {
 779     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 780     assert(temp->is_neutral(), "invariant");
 781     hash = temp->hash();              // by current thread, check if the displaced
 782     if (hash) {                       // header contains hash code
 783       return hash;
 784     }
 785     // WARNING:
 786     //   The displaced header is strictly immutable.
 787     // It can NOT be changed in ANY cases. So we have
 788     // to inflate the header into heavyweight monitor
 789     // even the current thread owns the lock. The reason
 790     // is the BasicLock (stack slot) will be asynchronously
 791     // read by other threads during the inflate() function.
 792     // Any change to stack may not propagate to other threads
 793     // correctly.
 794   }
 795 
 796   // Inflate the monitor to set hash code
 797   monitor = ObjectSynchronizer::inflate(Self, obj, inflate_cause_hash_code);
 798   // Load displaced header and check it has hash code
 799   mark = monitor->header();
 800   assert(mark->is_neutral(), "invariant");
 801   hash = mark->hash();
 802   if (hash == 0) {
 803     hash = get_next_hash(Self, obj);
 804     temp = mark->copy_set_hash(hash); // merge hash code into header
 805     assert(temp->is_neutral(), "invariant");
 806     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 807     if (test != mark) {
 808       // The only update to the header in the monitor (outside GC)
 809       // is install the hash code. If someone add new usage of
 810       // displaced header, please update this code
 811       hash = test->hash();
 812       assert(test->is_neutral(), "invariant");
 813       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 814     }
 815   }
 816   // We finally get the hash
 817   return hash;
 818 }
 819 
 820 // Deprecated -- use FastHashCode() instead.
 821 
 822 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 823   return FastHashCode(Thread::current(), obj());
 824 }
 825 
 826 
 827 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 828                                                    Handle h_obj) {
 829   if (UseBiasedLocking) {
 830     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 831     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 832   }
 833 
 834   assert(thread == JavaThread::current(), "Can only be called on current thread");
 835   oop obj = h_obj();
 836 
 837   markOop mark = ReadStableMark(obj);
 838 
 839   // Uncontended case, header points to stack
 840   if (mark->has_locker()) {
 841     return thread->is_lock_owned((address)mark->locker());
 842   }
 843   // Contended case, header points to ObjectMonitor (tagged pointer)
 844   if (mark->has_monitor()) {
 845     ObjectMonitor* monitor = mark->monitor();
 846     return monitor->is_entered(thread) != 0;
 847   }
 848   // Unlocked case, header in place
 849   assert(mark->is_neutral(), "sanity check");
 850   return false;
 851 }
 852 
 853 // Be aware of this method could revoke bias of the lock object.
 854 // This method queries the ownership of the lock handle specified by 'h_obj'.
 855 // If the current thread owns the lock, it returns owner_self. If no
 856 // thread owns the lock, it returns owner_none. Otherwise, it will return
 857 // owner_other.
 858 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 859 (JavaThread *self, Handle h_obj) {
 860   // The caller must beware this method can revoke bias, and
 861   // revocation can result in a safepoint.
 862   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 863   assert(self->thread_state() != _thread_blocked, "invariant");
 864 
 865   // Possible mark states: neutral, biased, stack-locked, inflated
 866 
 867   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 868     // CASE: biased
 869     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 870     assert(!h_obj->mark()->has_bias_pattern(),
 871            "biases should be revoked by now");
 872   }
 873 
 874   assert(self == JavaThread::current(), "Can only be called on current thread");
 875   oop obj = h_obj();
 876   markOop mark = ReadStableMark(obj);
 877 
 878   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 879   if (mark->has_locker()) {
 880     return self->is_lock_owned((address)mark->locker()) ?
 881       owner_self : owner_other;
 882   }
 883 
 884   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 885   // The Object:ObjectMonitor relationship is stable as long as we're
 886   // not at a safepoint.
 887   if (mark->has_monitor()) {
 888     void * owner = mark->monitor()->_owner;
 889     if (owner == NULL) return owner_none;
 890     return (owner == self ||
 891             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 892   }
 893 
 894   // CASE: neutral
 895   assert(mark->is_neutral(), "sanity check");
 896   return owner_none;           // it's unlocked
 897 }
 898 
 899 // FIXME: jvmti should call this
 900 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 901   if (UseBiasedLocking) {
 902     if (SafepointSynchronize::is_at_safepoint()) {
 903       BiasedLocking::revoke_at_safepoint(h_obj);
 904     } else {
 905       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 906     }
 907     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 908   }
 909 
 910   oop obj = h_obj();
 911   address owner = NULL;
 912 
 913   markOop mark = ReadStableMark(obj);
 914 
 915   // Uncontended case, header points to stack
 916   if (mark->has_locker()) {
 917     owner = (address) mark->locker();
 918   }
 919 
 920   // Contended case, header points to ObjectMonitor (tagged pointer)
 921   if (mark->has_monitor()) {
 922     ObjectMonitor* monitor = mark->monitor();
 923     assert(monitor != NULL, "monitor should be non-null");
 924     owner = (address) monitor->owner();
 925   }
 926 
 927   if (owner != NULL) {
 928     // owning_thread_from_monitor_owner() may also return NULL here
 929     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 930   }
 931 
 932   // Unlocked case, header in place
 933   // Cannot have assertion since this object may have been
 934   // locked by another thread when reaching here.
 935   // assert(mark->is_neutral(), "sanity check");
 936 
 937   return NULL;
 938 }
 939 
 940 // Visitors ...
 941 
 942 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 943   PaddedEnd<ObjectMonitor> * block =
 944     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
 945   while (block != NULL) {
 946     assert(block->object() == CHAINMARKER, "must be a block header");
 947     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 948       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 949       oop object = (oop)mid->object();
 950       if (object != NULL) {
 951         closure->do_monitor(mid);
 952       }
 953     }
 954     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
 955   }
 956 }
 957 
 958 // Get the next block in the block list.
 959 static inline ObjectMonitor* next(ObjectMonitor* block) {
 960   assert(block->object() == CHAINMARKER || block->object() == CLAIMEDMARKER, "must be a valid block header");
 961   block = block->FreeNext;
 962   assert(block == NULL || block->object() == CHAINMARKER || block->object() == CLAIMEDMARKER, "must be a valid block header");
 963   return block;
 964 }
 965 
 966 
 967 void ObjectSynchronizer::oops_do(OopClosure* f) {
 968   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 969   PaddedEnd<ObjectMonitor> * block =
 970     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
 971   for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
 972     assert(block->object() == CHAINMARKER, "must be a block header");
 973     for (int i = 1; i < _BLOCKSIZE; i++) {
 974       ObjectMonitor* mid = (ObjectMonitor *)&block[i];
 975       if (mid->object() != NULL) {
 976         f->do_oop((oop*)mid->object_addr());
 977       }
 978     }
 979   }
 980 }
 981 
 982 
 983 // -----------------------------------------------------------------------------
 984 // ObjectMonitor Lifecycle
 985 // -----------------------
 986 // Inflation unlinks monitors from the global gFreeList and
 987 // associates them with objects.  Deflation -- which occurs at
 988 // STW-time -- disassociates idle monitors from objects.  Such
 989 // scavenged monitors are returned to the gFreeList.
 990 //
 991 // The global list is protected by gListLock.  All the critical sections
 992 // are short and operate in constant-time.
 993 //
 994 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 995 //
 996 // Lifecycle:
 997 // --   unassigned and on the global free list
 998 // --   unassigned and on a thread's private omFreeList
 999 // --   assigned to an object.  The object is inflated and the mark refers
1000 //      to the objectmonitor.
1001 
1002 
1003 // Constraining monitor pool growth via MonitorBound ...
1004 //
1005 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1006 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1007 // an inordinate number of monitors in circulation.
1008 // To avoid that scenario we can artificially induce a STW safepoint
1009 // if the pool appears to be growing past some reasonable bound.
1010 // Generally we favor time in space-time tradeoffs, but as there's no
1011 // natural back-pressure on the # of extant monitors we need to impose some
1012 // type of limit.  Beware that if MonitorBound is set to too low a value
1013 // we could just loop. In addition, if MonitorBound is set to a low value
1014 // we'll incur more safepoints, which are harmful to performance.
1015 // See also: GuaranteedSafepointInterval
1016 //
1017 // The current implementation uses asynchronous VM operations.
1018 
1019 static void InduceScavenge(Thread * Self, const char * Whence) {
1020   // Induce STW safepoint to trim monitors
1021   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1022   // More precisely, trigger an asynchronous STW safepoint as the number
1023   // of active monitors passes the specified threshold.
1024   // TODO: assert thread state is reasonable
1025 
1026   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1027     if (ObjectMonitor::Knob_Verbose) {
1028       tty->print_cr("INFO: Monitor scavenge - Induced STW @%s (%d)",
1029                     Whence, ForceMonitorScavenge) ;
1030       tty->flush();
1031     }
1032     // Induce a 'null' safepoint to scavenge monitors
1033     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1034     // to the VMthread and have a lifespan longer than that of this activation record.
1035     // The VMThread will delete the op when completed.
1036     VMThread::execute(new VM_ForceAsyncSafepoint());
1037 
1038     if (ObjectMonitor::Knob_Verbose) {
1039       tty->print_cr("INFO: Monitor scavenge - STW posted @%s (%d)",
1040                     Whence, ForceMonitorScavenge) ;
1041       tty->flush();
1042     }
1043   }
1044 }
1045 
1046 void ObjectSynchronizer::verifyInUse(Thread *Self) {
1047   ObjectMonitor* mid;
1048   int in_use_tally = 0;
1049   for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
1050     in_use_tally++;
1051   }
1052   assert(in_use_tally == Self->omInUseCount, "in-use count off");
1053 
1054   int free_tally = 0;
1055   for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
1056     free_tally++;
1057   }
1058   assert(free_tally == Self->omFreeCount, "free count off");
1059 }
1060 
1061 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {
1062   // A large MAXPRIVATE value reduces both list lock contention
1063   // and list coherency traffic, but also tends to increase the
1064   // number of objectMonitors in circulation as well as the STW
1065   // scavenge costs.  As usual, we lean toward time in space-time
1066   // tradeoffs.
1067   const int MAXPRIVATE = 1024;
1068   for (;;) {
1069     ObjectMonitor * m;
1070 
1071     // 1: try to allocate from the thread's local omFreeList.
1072     // Threads will attempt to allocate first from their local list, then
1073     // from the global list, and only after those attempts fail will the thread
1074     // attempt to instantiate new monitors.   Thread-local free lists take
1075     // heat off the gListLock and improve allocation latency, as well as reducing
1076     // coherency traffic on the shared global list.
1077     m = Self->omFreeList;
1078     if (m != NULL) {
1079       Self->omFreeList = m->FreeNext;
1080       Self->omFreeCount--;
1081       // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
1082       guarantee(m->object() == NULL, "invariant");
1083       if (MonitorInUseLists) {
1084         m->FreeNext = Self->omInUseList;
1085         Self->omInUseList = m;
1086         Self->omInUseCount++;
1087         if (ObjectMonitor::Knob_VerifyInUse) {
1088           verifyInUse(Self);
1089         }
1090       } else {
1091         m->FreeNext = NULL;
1092       }
1093       return m;
1094     }
1095 
1096     // 2: try to allocate from the global gFreeList
1097     // CONSIDER: use muxTry() instead of muxAcquire().
1098     // If the muxTry() fails then drop immediately into case 3.
1099     // If we're using thread-local free lists then try
1100     // to reprovision the caller's free list.
1101     if (gFreeList != NULL) {
1102       // Reprovision the thread's omFreeList.
1103       // Use bulk transfers to reduce the allocation rate and heat
1104       // on various locks.
1105       Thread::muxAcquire(&gListLock, "omAlloc");
1106       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1107         gMonitorFreeCount--;
1108         ObjectMonitor * take = gFreeList;
1109         gFreeList = take->FreeNext;
1110         guarantee(take->object() == NULL, "invariant");
1111         guarantee(!take->is_busy(), "invariant");
1112         take->Recycle();
1113         omRelease(Self, take, false);
1114       }
1115       Thread::muxRelease(&gListLock);
1116       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1117       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1118       TEVENT(omFirst - reprovision);
1119 
1120       const int mx = MonitorBound;
1121       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1122         // We can't safely induce a STW safepoint from omAlloc() as our thread
1123         // state may not be appropriate for such activities and callers may hold
1124         // naked oops, so instead we defer the action.
1125         InduceScavenge(Self, "omAlloc");
1126       }
1127       continue;
1128     }
1129 
1130     // 3: allocate a block of new ObjectMonitors
1131     // Both the local and global free lists are empty -- resort to malloc().
1132     // In the current implementation objectMonitors are TSM - immortal.
1133     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1134     // each ObjectMonitor to start at the beginning of a cache line,
1135     // so we use align_size_up().
1136     // A better solution would be to use C++ placement-new.
1137     // BEWARE: As it stands currently, we don't run the ctors!
1138     assert(_BLOCKSIZE > 1, "invariant");
1139     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1140     PaddedEnd<ObjectMonitor> * temp;
1141     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1142     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1143                                                       mtInternal);
1144     temp = (PaddedEnd<ObjectMonitor> *)
1145              align_size_up((intptr_t)real_malloc_addr,
1146                            DEFAULT_CACHE_LINE_SIZE);
1147 
1148     // NOTE: (almost) no way to recover if allocation failed.
1149     // We might be able to induce a STW safepoint and scavenge enough
1150     // objectMonitors to permit progress.
1151     if (temp == NULL) {
1152       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1153                             "Allocate ObjectMonitors");
1154     }
1155     (void)memset((void *) temp, 0, neededsize);
1156 
1157     // Format the block.
1158     // initialize the linked list, each monitor points to its next
1159     // forming the single linked free list, the very first monitor
1160     // will points to next block, which forms the block list.
1161     // The trick of using the 1st element in the block as gBlockList
1162     // linkage should be reconsidered.  A better implementation would
1163     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1164 
1165     for (int i = 1; i < _BLOCKSIZE; i++) {
1166       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1167     }
1168 
1169     // terminate the last monitor as the end of list
1170     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1171 
1172     // Element [0] is reserved for global list linkage
1173     temp[0].set_object(CHAINMARKER);
1174 
1175     // Consider carving out this thread's current request from the
1176     // block in hand.  This avoids some lock traffic and redundant
1177     // list activity.
1178 
1179     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1180     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1181     Thread::muxAcquire(&gListLock, "omAlloc [2]");
1182     gMonitorPopulation += _BLOCKSIZE-1;
1183     gMonitorFreeCount += _BLOCKSIZE-1;
1184 
1185     // Add the new block to the list of extant blocks (gBlockList).
1186     // The very first objectMonitor in a block is reserved and dedicated.
1187     // It serves as blocklist "next" linkage.
1188     temp[0].FreeNext = gBlockList;
1189     // There are lock-free uses of gBlockList so make sure that
1190     // the previous stores happen before we update gBlockList.
1191     OrderAccess::release_store_ptr(&gBlockList, temp);
1192 
1193     // Add the new string of objectMonitors to the global free list
1194     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1195     gFreeList = temp + 1;
1196     Thread::muxRelease(&gListLock);
1197     TEVENT(Allocate block of monitors);
1198   }
1199 }
1200 
1201 // Place "m" on the caller's private per-thread omFreeList.
1202 // In practice there's no need to clamp or limit the number of
1203 // monitors on a thread's omFreeList as the only time we'll call
1204 // omRelease is to return a monitor to the free list after a CAS
1205 // attempt failed.  This doesn't allow unbounded #s of monitors to
1206 // accumulate on a thread's free list.
1207 //
1208 // Key constraint: all ObjectMonitors on a thread's free list and the global
1209 // free list must have their object field set to null. This prevents the
1210 // scavenger -- deflate_idle_monitors -- from reclaiming them.
1211 
1212 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1213                                    bool fromPerThreadAlloc) {
1214   guarantee(m->object() == NULL, "invariant");
1215   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1216   // Remove from omInUseList
1217   if (MonitorInUseLists && fromPerThreadAlloc) {
1218     ObjectMonitor* cur_mid_in_use = NULL;
1219     bool extracted = false;
1220     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1221       if (m == mid) {
1222         // extract from per-thread in-use list
1223         if (mid == Self->omInUseList) {
1224           Self->omInUseList = mid->FreeNext;
1225         } else if (cur_mid_in_use != NULL) {
1226           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1227         }
1228         extracted = true;
1229         Self->omInUseCount--;
1230         if (ObjectMonitor::Knob_VerifyInUse) {
1231           verifyInUse(Self);
1232         }
1233         break;
1234       }
1235     }
1236     assert(extracted, "Should have extracted from in-use list");
1237   }
1238 
1239   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1240   m->FreeNext = Self->omFreeList;
1241   Self->omFreeList = m;
1242   Self->omFreeCount++;
1243 }
1244 
1245 // Return the monitors of a moribund thread's local free list to
1246 // the global free list.  Typically a thread calls omFlush() when
1247 // it's dying.  We could also consider having the VM thread steal
1248 // monitors from threads that have not run java code over a few
1249 // consecutive STW safepoints.  Relatedly, we might decay
1250 // omFreeProvision at STW safepoints.
1251 //
1252 // Also return the monitors of a moribund thread's omInUseList to
1253 // a global gOmInUseList under the global list lock so these
1254 // will continue to be scanned.
1255 //
1256 // We currently call omFlush() from the Thread:: dtor _after the thread
1257 // has been excised from the thread list and is no longer a mutator.
1258 // That means that omFlush() can run concurrently with a safepoint and
1259 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
1260 // be a better choice as we could safely reason that that the JVM is
1261 // not at a safepoint at the time of the call, and thus there could
1262 // be not inopportune interleavings between omFlush() and the scavenge
1263 // operator.
1264 
1265 void ObjectSynchronizer::omFlush(Thread * Self) {
1266   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1267   Self->omFreeList = NULL;
1268   ObjectMonitor * tail = NULL;
1269   int tally = 0;
1270   if (list != NULL) {
1271     ObjectMonitor * s;
1272     // The thread is going away, the per-thread free monitors
1273     // are freed via set_owner(NULL)
1274     // Link them to tail, which will be linked into the global free list
1275     // gFreeList below, under the gListLock
1276     for (s = list; s != NULL; s = s->FreeNext) {
1277       tally++;
1278       tail = s;
1279       guarantee(s->object() == NULL, "invariant");
1280       guarantee(!s->is_busy(), "invariant");
1281       s->set_owner(NULL);   // redundant but good hygiene
1282       TEVENT(omFlush - Move one);
1283     }
1284     guarantee(tail != NULL && list != NULL, "invariant");
1285   }
1286 
1287   ObjectMonitor * inUseList = Self->omInUseList;
1288   ObjectMonitor * inUseTail = NULL;
1289   int inUseTally = 0;
1290   if (inUseList != NULL) {
1291     Self->omInUseList = NULL;
1292     ObjectMonitor *cur_om;
1293     // The thread is going away, however the omInUseList inflated
1294     // monitors may still be in-use by other threads.
1295     // Link them to inUseTail, which will be linked into the global in-use list
1296     // gOmInUseList below, under the gListLock
1297     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1298       inUseTail = cur_om;
1299       inUseTally++;
1300     }
1301     assert(Self->omInUseCount == inUseTally, "in-use count off");
1302     Self->omInUseCount = 0;
1303     guarantee(inUseTail != NULL && inUseList != NULL, "invariant");
1304   }
1305 
1306   Thread::muxAcquire(&gListLock, "omFlush");
1307   if (tail != NULL) {
1308     tail->FreeNext = gFreeList;
1309     gFreeList = list;
1310     gMonitorFreeCount += tally;
1311   }
1312 
1313   if (inUseTail != NULL) {
1314     inUseTail->FreeNext = gOmInUseList;
1315     gOmInUseList = inUseList;
1316     gOmInUseCount += inUseTally;
1317   }
1318 
1319   Thread::muxRelease(&gListLock);
1320   TEVENT(omFlush);
1321 }
1322 
1323 // Fast path code shared by multiple functions
1324 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1325   markOop mark = obj->mark();
1326   if (mark->has_monitor()) {
1327     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1328     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1329     return mark->monitor();
1330   }
1331   return ObjectSynchronizer::inflate(Thread::current(),
1332                                      obj,
1333                                      inflate_cause_vm_internal);
1334 }
1335 
1336 ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1337                                                      oop object,
1338                                                      const InflateCause cause) {
1339 
1340   // Inflate mutates the heap ...
1341   // Relaxing assertion for bug 6320749.
1342   assert(Universe::verify_in_progress() ||
1343          !SafepointSynchronize::is_at_safepoint(), "invariant");
1344 
1345   EventJavaMonitorInflate event;
1346 
1347   for (;;) {
1348     const markOop mark = object->mark();
1349     assert(!mark->has_bias_pattern(), "invariant");
1350 
1351     // The mark can be in one of the following states:
1352     // *  Inflated     - just return
1353     // *  Stack-locked - coerce it to inflated
1354     // *  INFLATING    - busy wait for conversion to complete
1355     // *  Neutral      - aggressively inflate the object.
1356     // *  BIASED       - Illegal.  We should never see this
1357 
1358     // CASE: inflated
1359     if (mark->has_monitor()) {
1360       ObjectMonitor * inf = mark->monitor();
1361       assert(inf->header()->is_neutral(), "invariant");
1362       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1363       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1364       event.cancel(); // let's not post an inflation event, unless we did the deed ourselves
1365       return inf;
1366     }
1367 
1368     // CASE: inflation in progress - inflating over a stack-lock.
1369     // Some other thread is converting from stack-locked to inflated.
1370     // Only that thread can complete inflation -- other threads must wait.
1371     // The INFLATING value is transient.
1372     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1373     // We could always eliminate polling by parking the thread on some auxiliary list.
1374     if (mark == markOopDesc::INFLATING()) {
1375       TEVENT(Inflate: spin while INFLATING);
1376       ReadStableMark(object);
1377       continue;
1378     }
1379 
1380     // CASE: stack-locked
1381     // Could be stack-locked either by this thread or by some other thread.
1382     //
1383     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1384     // to install INFLATING into the mark word.  We originally installed INFLATING,
1385     // allocated the objectmonitor, and then finally STed the address of the
1386     // objectmonitor into the mark.  This was correct, but artificially lengthened
1387     // the interval in which INFLATED appeared in the mark, thus increasing
1388     // the odds of inflation contention.
1389     //
1390     // We now use per-thread private objectmonitor free lists.
1391     // These list are reprovisioned from the global free list outside the
1392     // critical INFLATING...ST interval.  A thread can transfer
1393     // multiple objectmonitors en-mass from the global free list to its local free list.
1394     // This reduces coherency traffic and lock contention on the global free list.
1395     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1396     // before or after the CAS(INFLATING) operation.
1397     // See the comments in omAlloc().
1398 
1399     if (mark->has_locker()) {
1400       ObjectMonitor * m = omAlloc(Self);
1401       // Optimistically prepare the objectmonitor - anticipate successful CAS
1402       // We do this before the CAS in order to minimize the length of time
1403       // in which INFLATING appears in the mark.
1404       m->Recycle();
1405       m->_Responsible  = NULL;
1406       m->_recursions   = 0;
1407       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1408 
1409       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1410       if (cmp != mark) {
1411         omRelease(Self, m, true);
1412         continue;       // Interference -- just retry
1413       }
1414 
1415       // We've successfully installed INFLATING (0) into the mark-word.
1416       // This is the only case where 0 will appear in a mark-word.
1417       // Only the singular thread that successfully swings the mark-word
1418       // to 0 can perform (or more precisely, complete) inflation.
1419       //
1420       // Why do we CAS a 0 into the mark-word instead of just CASing the
1421       // mark-word from the stack-locked value directly to the new inflated state?
1422       // Consider what happens when a thread unlocks a stack-locked object.
1423       // It attempts to use CAS to swing the displaced header value from the
1424       // on-stack basiclock back into the object header.  Recall also that the
1425       // header value (hashcode, etc) can reside in (a) the object header, or
1426       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1427       // header in an objectMonitor.  The inflate() routine must copy the header
1428       // value from the basiclock on the owner's stack to the objectMonitor, all
1429       // the while preserving the hashCode stability invariants.  If the owner
1430       // decides to release the lock while the value is 0, the unlock will fail
1431       // and control will eventually pass from slow_exit() to inflate.  The owner
1432       // will then spin, waiting for the 0 value to disappear.   Put another way,
1433       // the 0 causes the owner to stall if the owner happens to try to
1434       // drop the lock (restoring the header from the basiclock to the object)
1435       // while inflation is in-progress.  This protocol avoids races that might
1436       // would otherwise permit hashCode values to change or "flicker" for an object.
1437       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1438       // 0 serves as a "BUSY" inflate-in-progress indicator.
1439 
1440 
1441       // fetch the displaced mark from the owner's stack.
1442       // The owner can't die or unwind past the lock while our INFLATING
1443       // object is in the mark.  Furthermore the owner can't complete
1444       // an unlock on the object, either.
1445       markOop dmw = mark->displaced_mark_helper();
1446       assert(dmw->is_neutral(), "invariant");
1447 
1448       // Setup monitor fields to proper values -- prepare the monitor
1449       m->set_header(dmw);
1450 
1451       // Optimization: if the mark->locker stack address is associated
1452       // with this thread we could simply set m->_owner = Self.
1453       // Note that a thread can inflate an object
1454       // that it has stack-locked -- as might happen in wait() -- directly
1455       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1456       m->set_owner(mark->locker());
1457       m->set_object(object);
1458       // TODO-FIXME: assert BasicLock->dhw != 0.
1459 
1460       // Must preserve store ordering. The monitor state must
1461       // be stable at the time of publishing the monitor address.
1462       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1463       object->release_set_mark(markOopDesc::encode(m));
1464 
1465       // Hopefully the performance counters are allocated on distinct cache lines
1466       // to avoid false sharing on MP systems ...
1467       OM_PERFDATA_OP(Inflations, inc());
1468       TEVENT(Inflate: overwrite stacklock);
1469       if (log_is_enabled(Debug, monitorinflation)) {
1470         if (object->is_instance()) {
1471           ResourceMark rm;
1472           log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1473                                       p2i(object), p2i(object->mark()),
1474                                       object->klass()->external_name());
1475         }
1476       }
1477       if (event.should_commit()) {
1478         post_monitor_inflate_event(event, object, cause);
1479       }
1480       return m;
1481     }
1482 
1483     // CASE: neutral
1484     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1485     // If we know we're inflating for entry it's better to inflate by swinging a
1486     // pre-locked objectMonitor pointer into the object header.   A successful
1487     // CAS inflates the object *and* confers ownership to the inflating thread.
1488     // In the current implementation we use a 2-step mechanism where we CAS()
1489     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1490     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1491     // would be useful.
1492 
1493     assert(mark->is_neutral(), "invariant");
1494     ObjectMonitor * m = omAlloc(Self);
1495     // prepare m for installation - set monitor to initial state
1496     m->Recycle();
1497     m->set_header(mark);
1498     m->set_owner(NULL);
1499     m->set_object(object);
1500     m->_recursions   = 0;
1501     m->_Responsible  = NULL;
1502     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1503 
1504     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1505       m->set_object(NULL);
1506       m->set_owner(NULL);
1507       m->Recycle();
1508       omRelease(Self, m, true);
1509       m = NULL;
1510       continue;
1511       // interference - the markword changed - just retry.
1512       // The state-transitions are one-way, so there's no chance of
1513       // live-lock -- "Inflated" is an absorbing state.
1514     }
1515 
1516     // Hopefully the performance counters are allocated on distinct
1517     // cache lines to avoid false sharing on MP systems ...
1518     OM_PERFDATA_OP(Inflations, inc());
1519     TEVENT(Inflate: overwrite neutral);
1520     if (log_is_enabled(Debug, monitorinflation)) {
1521       if (object->is_instance()) {
1522         ResourceMark rm;
1523         log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1524                                     p2i(object), p2i(object->mark()),
1525                                     object->klass()->external_name());
1526       }
1527     }
1528     if (event.should_commit()) {
1529       post_monitor_inflate_event(event, object, cause);
1530     }
1531     return m;
1532   }
1533 }
1534 
1535 
1536 // Deflate_idle_monitors() is called at all safepoints, immediately
1537 // after all mutators are stopped, but before any objects have moved.
1538 // It traverses the list of known monitors, deflating where possible.
1539 // The scavenged monitor are returned to the monitor free list.
1540 //
1541 // Beware that we scavenge at *every* stop-the-world point.
1542 // Having a large number of monitors in-circulation negatively
1543 // impacts the performance of some applications (e.g., PointBase).
1544 // Broadly, we want to minimize the # of monitors in circulation.
1545 //
1546 // We have added a flag, MonitorInUseLists, which creates a list
1547 // of active monitors for each thread. deflate_idle_monitors()
1548 // only scans the per-thread in-use lists. omAlloc() puts all
1549 // assigned monitors on the per-thread list. deflate_idle_monitors()
1550 // returns the non-busy monitors to the global free list.
1551 // When a thread dies, omFlush() adds the list of active monitors for
1552 // that thread to a global gOmInUseList acquiring the
1553 // global list lock. deflate_idle_monitors() acquires the global
1554 // list lock to scan for non-busy monitors to the global free list.
1555 // An alternative could have used a single global in-use list. The
1556 // downside would have been the additional cost of acquiring the global list lock
1557 // for every omAlloc().
1558 //
1559 // Perversely, the heap size -- and thus the STW safepoint rate --
1560 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1561 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1562 // This is an unfortunate aspect of this design.
1563 
1564 enum ManifestConstants {
1565   ClearResponsibleAtSTW = 0
1566 };
1567 
1568 // Deflate a single monitor if not in-use
1569 // Return true if deflated, false if in-use
1570 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1571                                          ObjectMonitor** freeHeadp,
1572                                          ObjectMonitor** freeTailp) {
1573   bool deflated;
1574   // Normal case ... The monitor is associated with obj.
1575   guarantee(obj->mark() == markOopDesc::encode(mid), "invariant");
1576   guarantee(mid == obj->mark()->monitor(), "invariant");
1577   guarantee(mid->header()->is_neutral(), "invariant");
1578 
1579   if (mid->is_busy()) {
1580     if (ClearResponsibleAtSTW) mid->_Responsible = NULL;
1581     deflated = false;
1582   } else {
1583     // Deflate the monitor if it is no longer being used
1584     // It's idle - scavenge and return to the global free list
1585     // plain old deflation ...
1586     TEVENT(deflate_idle_monitors - scavenge1);
1587     if (log_is_enabled(Debug, monitorinflation)) {
1588       if (obj->is_instance()) {
1589         ResourceMark rm;
1590         log_debug(monitorinflation)("Deflating object " INTPTR_FORMAT " , "
1591                                     "mark " INTPTR_FORMAT " , type %s",
1592                                     p2i(obj), p2i(obj->mark()),
1593                                     obj->klass()->external_name());
1594       }
1595     }
1596 
1597     // Restore the header back to obj
1598     obj->release_set_mark(mid->header());
1599     mid->clear();
1600 
1601     assert(mid->object() == NULL, "invariant");
1602 
1603     // Move the object to the working free list defined by freeHeadp, freeTailp
1604     if (*freeHeadp == NULL) *freeHeadp = mid;
1605     if (*freeTailp != NULL) {
1606       ObjectMonitor * prevtail = *freeTailp;
1607       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1608       prevtail->FreeNext = mid;
1609     }
1610     *freeTailp = mid;
1611     deflated = true;
1612   }
1613   return deflated;
1614 }
1615 
1616 // Walk a given monitor list, and deflate idle monitors
1617 // The given list could be a per-thread list or a global list
1618 // Caller acquires gListLock
1619 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1620                                              ObjectMonitor** freeHeadp,
1621                                              ObjectMonitor** freeTailp) {
1622   ObjectMonitor* mid;
1623   ObjectMonitor* next;
1624   ObjectMonitor* cur_mid_in_use = NULL;
1625   int deflated_count = 0;
1626 
1627   for (mid = *listHeadp; mid != NULL;) {
1628     oop obj = (oop) mid->object();
1629     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1630       // if deflate_monitor succeeded,
1631       // extract from per-thread in-use list
1632       if (mid == *listHeadp) {
1633         *listHeadp = mid->FreeNext;
1634       } else if (cur_mid_in_use != NULL) {
1635         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1636       }
1637       next = mid->FreeNext;
1638       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1639       mid = next;
1640       deflated_count++;
1641     } else {
1642       cur_mid_in_use = mid;
1643       mid = mid->FreeNext;
1644     }
1645   }
1646   return deflated_count;
1647 }
1648 
1649 void ObjectSynchronizer::deflate_idle_monitors() {
1650   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1651   int nInuse = 0;              // currently associated with objects
1652   int nInCirculation = 0;      // extant
1653   int nScavenged = 0;          // reclaimed
1654   bool deflated = false;
1655 
1656   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1657   ObjectMonitor * freeTailp = NULL;
1658 
1659   TEVENT(deflate_idle_monitors);
1660   // Prevent omFlush from changing mids in Thread dtor's during deflation
1661   // And in case the vm thread is acquiring a lock during a safepoint
1662   // See e.g. 6320749
1663   Thread::muxAcquire(&gListLock, "scavenge - return");
1664 
1665   if (MonitorInUseLists) {
1666     int inUse = 0;
1667     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1668       nInCirculation+= cur->omInUseCount;
1669       int deflated_count = deflate_monitor_list(cur->omInUseList_addr(), &freeHeadp, &freeTailp);
1670       cur->omInUseCount-= deflated_count;
1671       if (ObjectMonitor::Knob_VerifyInUse) {
1672         verifyInUse(cur);
1673       }
1674       nScavenged += deflated_count;
1675       nInuse += cur->omInUseCount;
1676     }
1677 
1678     // For moribund threads, scan gOmInUseList
1679     if (gOmInUseList) {
1680       nInCirculation += gOmInUseCount;
1681       int deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1682       gOmInUseCount-= deflated_count;
1683       nScavenged += deflated_count;
1684       nInuse += gOmInUseCount;
1685     }
1686 
1687   } else {
1688     PaddedEnd<ObjectMonitor> * block =
1689       (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1690     for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
1691       // Iterate over all extant monitors - Scavenge all idle monitors.
1692       assert(block->object() == CHAINMARKER, "must be a block header");
1693       nInCirculation += _BLOCKSIZE;
1694       for (int i = 1; i < _BLOCKSIZE; i++) {
1695         ObjectMonitor* mid = (ObjectMonitor*)&block[i];
1696         oop obj = (oop)mid->object();
1697 
1698         if (obj == NULL) {
1699           // The monitor is not associated with an object.
1700           // The monitor should either be a thread-specific private
1701           // free list or the global free list.
1702           // obj == NULL IMPLIES mid->is_busy() == 0
1703           guarantee(!mid->is_busy(), "invariant");
1704           continue;
1705         }
1706         deflated = deflate_monitor(mid, obj, &freeHeadp, &freeTailp);
1707 
1708         if (deflated) {
1709           mid->FreeNext = NULL;
1710           nScavenged++;
1711         } else {
1712           nInuse++;
1713         }
1714       }
1715     }
1716   }
1717 
1718   gMonitorFreeCount += nScavenged;
1719 
1720   // Consider: audit gFreeList to ensure that gMonitorFreeCount and list agree.
1721 
1722   if (ObjectMonitor::Knob_Verbose) {
1723     tty->print_cr("INFO: Deflate: InCirc=%d InUse=%d Scavenged=%d "
1724                   "ForceMonitorScavenge=%d : pop=%d free=%d",
1725                   nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1726                   gMonitorPopulation, gMonitorFreeCount);
1727     tty->flush();
1728   }
1729 
1730   ForceMonitorScavenge = 0;    // Reset
1731 
1732   // Move the scavenged monitors back to the global free list.
1733   if (freeHeadp != NULL) {
1734     guarantee(freeTailp != NULL && nScavenged > 0, "invariant");
1735     assert(freeTailp->FreeNext == NULL, "invariant");
1736     // constant-time list splice - prepend scavenged segment to gFreeList
1737     freeTailp->FreeNext = gFreeList;
1738     gFreeList = freeHeadp;
1739   }
1740   Thread::muxRelease(&gListLock);
1741 
1742   OM_PERFDATA_OP(Deflations, inc(nScavenged));
1743   OM_PERFDATA_OP(MonExtant, set_value(nInCirculation));
1744 
1745   // TODO: Add objectMonitor leak detection.
1746   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1747   GVars.stwRandom = os::random();
1748   GVars.stwCycle++;
1749 }
1750 
1751 // Monitor cleanup on JavaThread::exit
1752 
1753 // Iterate through monitor cache and attempt to release thread's monitors
1754 // Gives up on a particular monitor if an exception occurs, but continues
1755 // the overall iteration, swallowing the exception.
1756 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1757  private:
1758   TRAPS;
1759 
1760  public:
1761   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1762   void do_monitor(ObjectMonitor* mid) {
1763     if (mid->owner() == THREAD) {
1764       if (ObjectMonitor::Knob_VerifyMatch != 0) {
1765         ResourceMark rm;
1766         Handle obj((oop) mid->object());
1767         tty->print("INFO: unexpected locked object:");
1768         javaVFrame::print_locked_object_class_name(tty, obj, "locked");
1769         fatal("exiting JavaThread=" INTPTR_FORMAT
1770               " unexpectedly owns ObjectMonitor=" INTPTR_FORMAT,
1771               p2i(THREAD), p2i(mid));
1772       }
1773       (void)mid->complete_exit(CHECK);
1774     }
1775   }
1776 };
1777 
1778 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1779 // ignored.  This is meant to be called during JNI thread detach which assumes
1780 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1781 // Scanning the extant monitor list can be time consuming.
1782 // A simple optimization is to add a per-thread flag that indicates a thread
1783 // called jni_monitorenter() during its lifetime.
1784 //
1785 // Instead of No_Savepoint_Verifier it might be cheaper to
1786 // use an idiom of the form:
1787 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1788 //   <code that must not run at safepoint>
1789 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1790 // Since the tests are extremely cheap we could leave them enabled
1791 // for normal product builds.
1792 
1793 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1794   assert(THREAD == JavaThread::current(), "must be current Java thread");
1795   NoSafepointVerifier nsv;
1796   ReleaseJavaMonitorsClosure rjmc(THREAD);
1797   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1798   ObjectSynchronizer::monitors_iterate(&rjmc);
1799   Thread::muxRelease(&gListLock);
1800   THREAD->clear_pending_exception();
1801 }
1802 
1803 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1804   switch (cause) {
1805     case inflate_cause_vm_internal:    return "VM Internal";
1806     case inflate_cause_monitor_enter:  return "Monitor Enter";
1807     case inflate_cause_wait:           return "Monitor Wait";
1808     case inflate_cause_notify:         return "Monitor Notify";
1809     case inflate_cause_hash_code:      return "Monitor Hash Code";
1810     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1811     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1812     default:
1813       ShouldNotReachHere();
1814   }
1815   return "Unknown";
1816 }
1817 
1818 static void post_monitor_inflate_event(EventJavaMonitorInflate& event,
1819                                        const oop obj,
1820                                        const ObjectSynchronizer::InflateCause cause) {
1821 #if INCLUDE_TRACE
1822   assert(event.should_commit(), "check outside");
1823   event.set_monitorClass(obj->klass());
1824   event.set_address((TYPE_ADDRESS)(uintptr_t)(void*)obj);
1825   event.set_cause((u1)cause);
1826   event.commit();
1827 #endif
1828 }
1829 
1830 //------------------------------------------------------------------------------
1831 // Debugging code
1832 
1833 void ObjectSynchronizer::sanity_checks(const bool verbose,
1834                                        const uint cache_line_size,
1835                                        int *error_cnt_ptr,
1836                                        int *warning_cnt_ptr) {
1837   u_char *addr_begin      = (u_char*)&GVars;
1838   u_char *addr_stwRandom  = (u_char*)&GVars.stwRandom;
1839   u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
1840 
1841   if (verbose) {
1842     tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
1843                   sizeof(SharedGlobals));
1844   }
1845 
1846   uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
1847   if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
1848 
1849   uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
1850   if (verbose) {
1851     tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
1852   }
1853 
1854   if (cache_line_size != 0) {
1855     // We were able to determine the L1 data cache line size so
1856     // do some cache line specific sanity checks
1857 
1858     if (offset_stwRandom < cache_line_size) {
1859       tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
1860                     "to the struct beginning than a cache line which permits "
1861                     "false sharing.");
1862       (*warning_cnt_ptr)++;
1863     }
1864 
1865     if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
1866       tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
1867                     "SharedGlobals.hcSequence fields are closer than a cache "
1868                     "line which permits false sharing.");
1869       (*warning_cnt_ptr)++;
1870     }
1871 
1872     if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
1873       tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
1874                     "to the struct end than a cache line which permits false "
1875                     "sharing.");
1876       (*warning_cnt_ptr)++;
1877     }
1878   }
1879 }
1880 
1881 #ifndef PRODUCT
1882 
1883 // Verify all monitors in the monitor cache, the verification is weak.
1884 void ObjectSynchronizer::verify() {
1885   PaddedEnd<ObjectMonitor> * block =
1886     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1887   while (block != NULL) {
1888     assert(block->object() == CHAINMARKER, "must be a block header");
1889     for (int i = 1; i < _BLOCKSIZE; i++) {
1890       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1891       oop object = (oop)mid->object();
1892       if (object != NULL) {
1893         mid->verify();
1894       }
1895     }
1896     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1897   }
1898 }
1899 
1900 // Check if monitor belongs to the monitor cache
1901 // The list is grow-only so it's *relatively* safe to traverse
1902 // the list of extant blocks without taking a lock.
1903 
1904 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1905   PaddedEnd<ObjectMonitor> * block =
1906     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1907   while (block != NULL) {
1908     assert(block->object() == CHAINMARKER, "must be a block header");
1909     if (monitor > (ObjectMonitor *)&block[0] &&
1910         monitor < (ObjectMonitor *)&block[_BLOCKSIZE]) {
1911       address mon = (address)monitor;
1912       address blk = (address)block;
1913       size_t diff = mon - blk;
1914       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
1915       return 1;
1916     }
1917     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1918   }
1919   return 0;
1920 }
1921 
1922 #endif
1923 
1924 
1925 ParallelObjectSynchronizerIterator ObjectSynchronizer::parallel_iterator() {
1926   return ParallelObjectSynchronizerIterator(gBlockList);
1927 }
1928 
1929 // ParallelObjectSynchronizerIterator implementation
1930 ParallelObjectSynchronizerIterator::ParallelObjectSynchronizerIterator(ObjectMonitor * head)
1931   : _head(head), _cur(head) {
1932   assert(SafepointSynchronize::is_at_safepoint(), "Must at safepoint");
1933 }
1934 
1935 ParallelObjectSynchronizerIterator::~ParallelObjectSynchronizerIterator() {
1936   assert(SafepointSynchronize::is_at_safepoint(), "Must at safepoint");
1937   PaddedEnd<ObjectMonitor>* block = (PaddedEnd<ObjectMonitor>*)_head;
1938   for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
1939     assert(block->object() == CLAIMEDMARKER, "Must be a claimed block");
1940     // Restore chainmarker
1941     block->set_object(CHAINMARKER);
1942   }
1943 }
1944 
1945 void* ParallelObjectSynchronizerIterator::claim() {
1946   PaddedEnd<ObjectMonitor>* my_cur = (PaddedEnd<ObjectMonitor>*)_cur;
1947   PaddedEnd<ObjectMonitor>* next_block;
1948 
1949   while (true) {
1950     if (my_cur == NULL) return NULL;
1951 
1952     if (my_cur->object() == CHAINMARKER) {
1953       if (my_cur->cas_set_object(CLAIMEDMARKER, CHAINMARKER) == CHAINMARKER) {
1954         return (void*)my_cur;
1955       }
1956     } else {
1957       assert(my_cur->object() == CLAIMEDMARKER, "Must be");
1958     }
1959 
1960     next_block =  (PaddedEnd<ObjectMonitor> *)next(my_cur);
1961     my_cur = (PaddedEnd<ObjectMonitor> *)Atomic::cmpxchg_ptr(next_block, &_cur, my_cur);
1962   }
1963 }
1964 
1965 bool ParallelObjectSynchronizerIterator::parallel_oops_do(OopClosure* f) {
1966   PaddedEnd<ObjectMonitor>* block = (PaddedEnd<ObjectMonitor>*)claim();
1967   if (block != NULL) {
1968     assert(block->object() == CLAIMEDMARKER, "Must be a claimed block");
1969     for (int i = 1; i < ObjectSynchronizer::_BLOCKSIZE; i++) {
1970       ObjectMonitor* mid = (ObjectMonitor *)&block[i];
1971       if (mid->object() != NULL) {
1972         f->do_oop((oop*)mid->object_addr());
1973       }
1974     }
1975     return true;
1976   }
1977   return false;
1978 }