1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 #ifdef ASSERT
  32 #include "gc/shared/collectedHeap.hpp"
  33 #endif
  34 
  35 // MacroAssembler extends Assembler by frequently used macros.
  36 //
  37 // Instructions for which a 'better' code sequence exists depending
  38 // on arguments should also go in here.
  39 
  40 class MacroAssembler: public Assembler {
  41   friend class LIR_Assembler;
  42 
  43  public:
  44   using Assembler::mov;
  45   using Assembler::movi;
  46 
  47  protected:
  48 
  49   // Support for VM calls
  50   //
  51   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  52   // may customize this version by overriding it for its purposes (e.g., to save/restore
  53   // additional registers when doing a VM call).
  54   virtual void call_VM_leaf_base(
  55     address entry_point,               // the entry point
  56     int     number_of_arguments,        // the number of arguments to pop after the call
  57     Label *retaddr = NULL
  58   );
  59 
  60   virtual void call_VM_leaf_base(
  61     address entry_point,               // the entry point
  62     int     number_of_arguments,        // the number of arguments to pop after the call
  63     Label &retaddr) {
  64     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  65   }
  66 
  67   // This is the base routine called by the different versions of call_VM. The interpreter
  68   // may customize this version by overriding it for its purposes (e.g., to save/restore
  69   // additional registers when doing a VM call).
  70   //
  71   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  72   // returns the register which contains the thread upon return. If a thread register has been
  73   // specified, the return value will correspond to that register. If no last_java_sp is specified
  74   // (noreg) than rsp will be used instead.
  75   virtual void call_VM_base(           // returns the register containing the thread upon return
  76     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  77     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  78     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  79     address  entry_point,              // the entry point
  80     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  81     bool     check_exceptions          // whether to check for pending exceptions after return
  82   );
  83 
  84   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85   // The implementation is only non-empty for the InterpreterMacroAssembler,
  86   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87   virtual void check_and_handle_popframe(Register java_thread);
  88   virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  91 
  92   // Maximum size of class area in Metaspace when compressed
  93   uint64_t use_XOR_for_compressed_class_base;
  94 
  95  public:
  96   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  97     use_XOR_for_compressed_class_base
  98       = (operand_valid_for_logical_immediate(false /*is32*/,
  99                                              (uint64_t)Universe::narrow_klass_base())
 100          && ((uint64_t)Universe::narrow_klass_base()
 101              > (1u << log2_intptr(CompressedClassSpaceSize))));
 102   }
 103 
 104   // Biased locking support
 105   // lock_reg and obj_reg must be loaded up with the appropriate values.
 106   // swap_reg is killed.
 107   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 108   // Optional slow case is for implementations (interpreter and C1) which branch to
 109   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 110   // Returns offset of first potentially-faulting instruction for null
 111   // check info (currently consumed only by C1). If
 112   // swap_reg_contains_mark is true then returns -1 as it is assumed
 113   // the calling code has already passed any potential faults.
 114   int biased_locking_enter(Register lock_reg, Register obj_reg,
 115                            Register swap_reg, Register tmp_reg,
 116                            bool swap_reg_contains_mark,
 117                            Label& done, Label* slow_case = NULL,
 118                            BiasedLockingCounters* counters = NULL);
 119   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 120 
 121 
 122   // Helper functions for statistics gathering.
 123   // Unconditional atomic increment.
 124   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 125   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 126     lea(tmp1, counter_addr);
 127     atomic_incw(tmp1, tmp2, tmp3);
 128   }
 129   // Load Effective Address
 130   void lea(Register r, const Address &a) {
 131     InstructionMark im(this);
 132     code_section()->relocate(inst_mark(), a.rspec());
 133     a.lea(this, r);
 134   }
 135 
 136   void addmw(Address a, Register incr, Register scratch) {
 137     ldrw(scratch, a);
 138     addw(scratch, scratch, incr);
 139     strw(scratch, a);
 140   }
 141 
 142   // Add constant to memory word
 143   void addmw(Address a, int imm, Register scratch) {
 144     ldrw(scratch, a);
 145     if (imm > 0)
 146       addw(scratch, scratch, (unsigned)imm);
 147     else
 148       subw(scratch, scratch, (unsigned)-imm);
 149     strw(scratch, a);
 150   }
 151 
 152   void bind(Label& L) {
 153     Assembler::bind(L);
 154     code()->clear_last_membar();
 155   }
 156 
 157   void membar(Membar_mask_bits order_constraint);
 158 
 159   // Frame creation and destruction shared between JITs.
 160   void build_frame(int framesize);
 161   void remove_frame(int framesize);
 162 
 163   virtual void _call_Unimplemented(address call_site) {
 164     mov(rscratch2, call_site);
 165     haltsim();
 166   }
 167 
 168 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 169 
 170   virtual void notify(int type);
 171 
 172   // aliases defined in AARCH64 spec
 173 
 174   template<class T>
 175   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 176   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 177 
 178   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 179   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 180 
 181   void cset(Register Rd, Assembler::Condition cond) {
 182     csinc(Rd, zr, zr, ~cond);
 183   }
 184   void csetw(Register Rd, Assembler::Condition cond) {
 185     csincw(Rd, zr, zr, ~cond);
 186   }
 187 
 188   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 189     csneg(Rd, Rn, Rn, ~cond);
 190   }
 191   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 192     csnegw(Rd, Rn, Rn, ~cond);
 193   }
 194 
 195   inline void movw(Register Rd, Register Rn) {
 196     if (Rd == sp || Rn == sp) {
 197       addw(Rd, Rn, 0U);
 198     } else {
 199       orrw(Rd, zr, Rn);
 200     }
 201   }
 202   inline void mov(Register Rd, Register Rn) {
 203     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 204     if (Rd == Rn) {
 205     } else if (Rd == sp || Rn == sp) {
 206       add(Rd, Rn, 0U);
 207     } else {
 208       orr(Rd, zr, Rn);
 209     }
 210   }
 211 
 212   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 213   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 214 
 215   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 216   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 217 
 218   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 219   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 220 
 221   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 222     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 223   }
 224   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 225     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 226   }
 227 
 228   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 229     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 230   }
 231   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 232     bfm(Rd, Rn, lsb , (lsb + width - 1));
 233   }
 234 
 235   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 236     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 237   }
 238   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 239     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 240   }
 241 
 242   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 243     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 244   }
 245   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 247   }
 248 
 249   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 250     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 251   }
 252   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 254   }
 255 
 256   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 257     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 258   }
 259   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 261   }
 262 
 263   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 264     sbfmw(Rd, Rn, imm, 31);
 265   }
 266 
 267   inline void asr(Register Rd, Register Rn, unsigned imm) {
 268     sbfm(Rd, Rn, imm, 63);
 269   }
 270 
 271   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 272     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 273   }
 274 
 275   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 276     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 277   }
 278 
 279   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 280     ubfmw(Rd, Rn, imm, 31);
 281   }
 282 
 283   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 284     ubfm(Rd, Rn, imm, 63);
 285   }
 286 
 287   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 288     extrw(Rd, Rn, Rn, imm);
 289   }
 290 
 291   inline void ror(Register Rd, Register Rn, unsigned imm) {
 292     extr(Rd, Rn, Rn, imm);
 293   }
 294 
 295   inline void sxtbw(Register Rd, Register Rn) {
 296     sbfmw(Rd, Rn, 0, 7);
 297   }
 298   inline void sxthw(Register Rd, Register Rn) {
 299     sbfmw(Rd, Rn, 0, 15);
 300   }
 301   inline void sxtb(Register Rd, Register Rn) {
 302     sbfm(Rd, Rn, 0, 7);
 303   }
 304   inline void sxth(Register Rd, Register Rn) {
 305     sbfm(Rd, Rn, 0, 15);
 306   }
 307   inline void sxtw(Register Rd, Register Rn) {
 308     sbfm(Rd, Rn, 0, 31);
 309   }
 310 
 311   inline void uxtbw(Register Rd, Register Rn) {
 312     ubfmw(Rd, Rn, 0, 7);
 313   }
 314   inline void uxthw(Register Rd, Register Rn) {
 315     ubfmw(Rd, Rn, 0, 15);
 316   }
 317   inline void uxtb(Register Rd, Register Rn) {
 318     ubfm(Rd, Rn, 0, 7);
 319   }
 320   inline void uxth(Register Rd, Register Rn) {
 321     ubfm(Rd, Rn, 0, 15);
 322   }
 323   inline void uxtw(Register Rd, Register Rn) {
 324     ubfm(Rd, Rn, 0, 31);
 325   }
 326 
 327   inline void cmnw(Register Rn, Register Rm) {
 328     addsw(zr, Rn, Rm);
 329   }
 330   inline void cmn(Register Rn, Register Rm) {
 331     adds(zr, Rn, Rm);
 332   }
 333 
 334   inline void cmpw(Register Rn, Register Rm) {
 335     subsw(zr, Rn, Rm);
 336   }
 337   inline void cmp(Register Rn, Register Rm) {
 338     subs(zr, Rn, Rm);
 339   }
 340 
 341   inline void negw(Register Rd, Register Rn) {
 342     subw(Rd, zr, Rn);
 343   }
 344 
 345   inline void neg(Register Rd, Register Rn) {
 346     sub(Rd, zr, Rn);
 347   }
 348 
 349   inline void negsw(Register Rd, Register Rn) {
 350     subsw(Rd, zr, Rn);
 351   }
 352 
 353   inline void negs(Register Rd, Register Rn) {
 354     subs(Rd, zr, Rn);
 355   }
 356 
 357   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 358     addsw(zr, Rn, Rm, kind, shift);
 359   }
 360   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 361     adds(zr, Rn, Rm, kind, shift);
 362   }
 363 
 364   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 365     subsw(zr, Rn, Rm, kind, shift);
 366   }
 367   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 368     subs(zr, Rn, Rm, kind, shift);
 369   }
 370 
 371   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 372     subw(Rd, zr, Rn, kind, shift);
 373   }
 374 
 375   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 376     sub(Rd, zr, Rn, kind, shift);
 377   }
 378 
 379   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 380     subsw(Rd, zr, Rn, kind, shift);
 381   }
 382 
 383   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 384     subs(Rd, zr, Rn, kind, shift);
 385   }
 386 
 387   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 388     msubw(Rd, Rn, Rm, zr);
 389   }
 390   inline void mneg(Register Rd, Register Rn, Register Rm) {
 391     msub(Rd, Rn, Rm, zr);
 392   }
 393 
 394   inline void mulw(Register Rd, Register Rn, Register Rm) {
 395     maddw(Rd, Rn, Rm, zr);
 396   }
 397   inline void mul(Register Rd, Register Rn, Register Rm) {
 398     madd(Rd, Rn, Rm, zr);
 399   }
 400 
 401   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 402     smsubl(Rd, Rn, Rm, zr);
 403   }
 404   inline void smull(Register Rd, Register Rn, Register Rm) {
 405     smaddl(Rd, Rn, Rm, zr);
 406   }
 407 
 408   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 409     umsubl(Rd, Rn, Rm, zr);
 410   }
 411   inline void umull(Register Rd, Register Rn, Register Rm) {
 412     umaddl(Rd, Rn, Rm, zr);
 413   }
 414 
 415 #define WRAP(INSN)                                                            \
 416   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 417     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 418       nop();                                                                  \
 419     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 420   }
 421 
 422   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 423   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 424 #undef WRAP
 425 
 426 
 427   // macro assembly operations needed for aarch64
 428 
 429   // first two private routines for loading 32 bit or 64 bit constants
 430 private:
 431 
 432   void mov_immediate64(Register dst, u_int64_t imm64);
 433   void mov_immediate32(Register dst, u_int32_t imm32);
 434 
 435   int push(unsigned int bitset, Register stack);
 436   int pop(unsigned int bitset, Register stack);
 437 
 438   void mov(Register dst, Address a);
 439 
 440 public:
 441   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 442   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 443 
 444   // Push and pop everything that might be clobbered by a native
 445   // runtime call except rscratch1 and rscratch2.  (They are always
 446   // scratch, so we don't have to protect them.)  Only save the lower
 447   // 64 bits of each vector register.
 448   void push_call_clobbered_registers();
 449   void pop_call_clobbered_registers();
 450 
 451   // now mov instructions for loading absolute addresses and 32 or
 452   // 64 bit integers
 453 
 454   inline void mov(Register dst, address addr) {
 455     assert(Universe::heap() == NULL
 456            || !Universe::heap()->is_in(addr), "use movptr for oop pointers");
 457     mov_immediate64(dst, (uintptr_t)addr);
 458   }
 459 
 460   inline void mov(Register dst, u_int64_t imm64)
 461   {
 462     mov_immediate64(dst, imm64);
 463   }
 464 
 465   inline void movw(Register dst, u_int32_t imm32)
 466   {
 467     mov_immediate32(dst, imm32);
 468   }
 469 
 470   inline void mov(Register dst, long l)
 471   {
 472     mov(dst, (u_int64_t)l);
 473   }
 474 
 475   inline void mov(Register dst, int i)
 476   {
 477     mov(dst, (long)i);
 478   }
 479 
 480   void mov(Register dst, RegisterOrConstant src) {
 481     if (src.is_register())
 482       mov(dst, src.as_register());
 483     else
 484       mov(dst, src.as_constant());
 485   }
 486 
 487   void movptr(Register r, uintptr_t imm64);
 488 
 489   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 490 
 491   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 492     orr(Vd, T, Vn, Vn);
 493   }
 494 
 495 public:
 496 
 497   // Generalized Test Bit And Branch, including a "far" variety which
 498   // spans more than 32KiB.
 499   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 500     assert(cond == EQ || cond == NE, "must be");
 501 
 502     if (far)
 503       cond = ~cond;
 504 
 505     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 506     if (cond == Assembler::EQ)
 507       branch = &Assembler::tbz;
 508     else
 509       branch = &Assembler::tbnz;
 510 
 511     if (far) {
 512       Label L;
 513       (this->*branch)(Rt, bitpos, L);
 514       b(dest);
 515       bind(L);
 516     } else {
 517       (this->*branch)(Rt, bitpos, dest);
 518     }
 519   }
 520 
 521   // macro instructions for accessing and updating floating point
 522   // status register
 523   //
 524   // FPSR : op1 == 011
 525   //        CRn == 0100
 526   //        CRm == 0100
 527   //        op2 == 001
 528 
 529   inline void get_fpsr(Register reg)
 530   {
 531     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 532   }
 533 
 534   inline void set_fpsr(Register reg)
 535   {
 536     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 537   }
 538 
 539   inline void clear_fpsr()
 540   {
 541     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 542   }
 543 
 544   // Macro instructions for accessing and updating the condition flags
 545   inline void get_cflags(Register reg)
 546   {
 547     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 548   }
 549 
 550   inline void set_cflags(Register reg)
 551   {
 552     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 553   }
 554 
 555   // DCZID_EL0: op1 == 011
 556   //            CRn == 0000
 557   //            CRm == 0000
 558   //            op2 == 111
 559   inline void get_dczid_el0(Register reg)
 560   {
 561     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 562   }
 563 
 564   // CTR_EL0:   op1 == 011
 565   //            CRn == 0000
 566   //            CRm == 0000
 567   //            op2 == 001
 568   inline void get_ctr_el0(Register reg)
 569   {
 570     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 571   }
 572 
 573   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 574   int corrected_idivl(Register result, Register ra, Register rb,
 575                       bool want_remainder, Register tmp = rscratch1);
 576   int corrected_idivq(Register result, Register ra, Register rb,
 577                       bool want_remainder, Register tmp = rscratch1);
 578 
 579   // Support for NULL-checks
 580   //
 581   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 582   // If the accessed location is M[reg + offset] and the offset is known, provide the
 583   // offset. No explicit code generation is needed if the offset is within a certain
 584   // range (0 <= offset <= page_size).
 585 
 586   virtual void null_check(Register reg, int offset = -1);
 587   static bool needs_explicit_null_check(intptr_t offset);
 588 
 589   static address target_addr_for_insn(address insn_addr, unsigned insn);
 590   static address target_addr_for_insn(address insn_addr) {
 591     unsigned insn = *(unsigned*)insn_addr;
 592     return target_addr_for_insn(insn_addr, insn);
 593   }
 594 
 595   // Required platform-specific helpers for Label::patch_instructions.
 596   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 597   static int pd_patch_instruction_size(address branch, address target);
 598   static void pd_patch_instruction(address branch, address target) {
 599     pd_patch_instruction_size(branch, target);
 600   }
 601   static address pd_call_destination(address branch) {
 602     return target_addr_for_insn(branch);
 603   }
 604 #ifndef PRODUCT
 605   static void pd_print_patched_instruction(address branch);
 606 #endif
 607 
 608   static int patch_oop(address insn_addr, address o);
 609 
 610   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 611 
 612   // The following 4 methods return the offset of the appropriate move instruction
 613 
 614   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 615   int load_unsigned_byte(Register dst, Address src);
 616   int load_unsigned_short(Register dst, Address src);
 617 
 618   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 619   int load_signed_byte(Register dst, Address src);
 620   int load_signed_short(Register dst, Address src);
 621 
 622   int load_signed_byte32(Register dst, Address src);
 623   int load_signed_short32(Register dst, Address src);
 624 
 625   // Support for sign-extension (hi:lo = extend_sign(lo))
 626   void extend_sign(Register hi, Register lo);
 627 
 628   // Load and store values by size and signed-ness
 629   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 630   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 631 
 632   // Support for inc/dec with optimal instruction selection depending on value
 633 
 634   // x86_64 aliases an unqualified register/address increment and
 635   // decrement to call incrementq and decrementq but also supports
 636   // explicitly sized calls to incrementq/decrementq or
 637   // incrementl/decrementl
 638 
 639   // for aarch64 the proper convention would be to use
 640   // increment/decrement for 64 bit operatons and
 641   // incrementw/decrementw for 32 bit operations. so when porting
 642   // x86_64 code we can leave calls to increment/decrement as is,
 643   // replace incrementq/decrementq with increment/decrement and
 644   // replace incrementl/decrementl with incrementw/decrementw.
 645 
 646   // n.b. increment/decrement calls with an Address destination will
 647   // need to use a scratch register to load the value to be
 648   // incremented. increment/decrement calls which add or subtract a
 649   // constant value greater than 2^12 will need to use a 2nd scratch
 650   // register to hold the constant. so, a register increment/decrement
 651   // may trash rscratch2 and an address increment/decrement trash
 652   // rscratch and rscratch2
 653 
 654   void decrementw(Address dst, int value = 1);
 655   void decrementw(Register reg, int value = 1);
 656 
 657   void decrement(Register reg, int value = 1);
 658   void decrement(Address dst, int value = 1);
 659 
 660   void incrementw(Address dst, int value = 1);
 661   void incrementw(Register reg, int value = 1);
 662 
 663   void increment(Register reg, int value = 1);
 664   void increment(Address dst, int value = 1);
 665 
 666 
 667   // Alignment
 668   void align(int modulus);
 669 
 670   // Stack frame creation/removal
 671   void enter()
 672   {
 673     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 674     mov(rfp, sp);
 675   }
 676   void leave()
 677   {
 678     mov(sp, rfp);
 679     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 680   }
 681 
 682   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 683   // The pointer will be loaded into the thread register.
 684   void get_thread(Register thread);
 685 
 686 
 687   // Support for VM calls
 688   //
 689   // It is imperative that all calls into the VM are handled via the call_VM macros.
 690   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 691   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 692 
 693 
 694   void call_VM(Register oop_result,
 695                address entry_point,
 696                bool check_exceptions = true);
 697   void call_VM(Register oop_result,
 698                address entry_point,
 699                Register arg_1,
 700                bool check_exceptions = true);
 701   void call_VM(Register oop_result,
 702                address entry_point,
 703                Register arg_1, Register arg_2,
 704                bool check_exceptions = true);
 705   void call_VM(Register oop_result,
 706                address entry_point,
 707                Register arg_1, Register arg_2, Register arg_3,
 708                bool check_exceptions = true);
 709 
 710   // Overloadings with last_Java_sp
 711   void call_VM(Register oop_result,
 712                Register last_java_sp,
 713                address entry_point,
 714                int number_of_arguments = 0,
 715                bool check_exceptions = true);
 716   void call_VM(Register oop_result,
 717                Register last_java_sp,
 718                address entry_point,
 719                Register arg_1, bool
 720                check_exceptions = true);
 721   void call_VM(Register oop_result,
 722                Register last_java_sp,
 723                address entry_point,
 724                Register arg_1, Register arg_2,
 725                bool check_exceptions = true);
 726   void call_VM(Register oop_result,
 727                Register last_java_sp,
 728                address entry_point,
 729                Register arg_1, Register arg_2, Register arg_3,
 730                bool check_exceptions = true);
 731 
 732   void get_vm_result  (Register oop_result, Register thread);
 733   void get_vm_result_2(Register metadata_result, Register thread);
 734 
 735   // These always tightly bind to MacroAssembler::call_VM_base
 736   // bypassing the virtual implementation
 737   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 738   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 739   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 740   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 741   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 742 
 743   void call_VM_leaf(address entry_point,
 744                     int number_of_arguments = 0);
 745   void call_VM_leaf(address entry_point,
 746                     Register arg_1);
 747   void call_VM_leaf(address entry_point,
 748                     Register arg_1, Register arg_2);
 749   void call_VM_leaf(address entry_point,
 750                     Register arg_1, Register arg_2, Register arg_3);
 751 
 752   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 753   // bypassing the virtual implementation
 754   void super_call_VM_leaf(address entry_point);
 755   void super_call_VM_leaf(address entry_point, Register arg_1);
 756   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 757   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 758   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 759 
 760   // last Java Frame (fills frame anchor)
 761   void set_last_Java_frame(Register last_java_sp,
 762                            Register last_java_fp,
 763                            address last_java_pc,
 764                            Register scratch);
 765 
 766   void set_last_Java_frame(Register last_java_sp,
 767                            Register last_java_fp,
 768                            Label &last_java_pc,
 769                            Register scratch);
 770 
 771   void set_last_Java_frame(Register last_java_sp,
 772                            Register last_java_fp,
 773                            Register last_java_pc,
 774                            Register scratch);
 775 
 776   void reset_last_Java_frame(Register thread);
 777 
 778   // thread in the default location (rthread)
 779   void reset_last_Java_frame(bool clear_fp);
 780 
 781   // Stores
 782   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 783   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 784 
 785 #if INCLUDE_ALL_GCS
 786 
 787   void g1_write_barrier_pre(Register obj,
 788                             Register pre_val,
 789                             Register thread,
 790                             Register tmp,
 791                             bool tosca_live,
 792                             bool expand_call);
 793 
 794   void g1_write_barrier_post(Register store_addr,
 795                              Register new_val,
 796                              Register thread,
 797                              Register tmp,
 798                              Register tmp2);
 799 
 800 #endif // INCLUDE_ALL_GCS
 801 
 802   // oop manipulations
 803   void load_klass(Register dst, Register src);
 804   void store_klass(Register dst, Register src);
 805   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 806 
 807   void load_mirror(Register dst, Register method);
 808 
 809   void load_heap_oop(Register dst, Address src);
 810 
 811   void load_heap_oop_not_null(Register dst, Address src);
 812   void store_heap_oop(Address dst, Register src);
 813 
 814   // currently unimplemented
 815   // Used for storing NULL. All other oop constants should be
 816   // stored using routines that take a jobject.
 817   void store_heap_oop_null(Address dst);
 818 
 819   void load_prototype_header(Register dst, Register src);
 820 
 821   void store_klass_gap(Register dst, Register src);
 822 
 823   // This dummy is to prevent a call to store_heap_oop from
 824   // converting a zero (like NULL) into a Register by giving
 825   // the compiler two choices it can't resolve
 826 
 827   void store_heap_oop(Address dst, void* dummy);
 828 
 829   void encode_heap_oop(Register d, Register s);
 830   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 831   void decode_heap_oop(Register d, Register s);
 832   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 833   void encode_heap_oop_not_null(Register r);
 834   void decode_heap_oop_not_null(Register r);
 835   void encode_heap_oop_not_null(Register dst, Register src);
 836   void decode_heap_oop_not_null(Register dst, Register src);
 837 
 838   void set_narrow_oop(Register dst, jobject obj);
 839 
 840   void encode_klass_not_null(Register r);
 841   void decode_klass_not_null(Register r);
 842   void encode_klass_not_null(Register dst, Register src);
 843   void decode_klass_not_null(Register dst, Register src);
 844 
 845   void set_narrow_klass(Register dst, Klass* k);
 846 
 847   // if heap base register is used - reinit it with the correct value
 848   void reinit_heapbase();
 849 
 850   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 851 
 852   void push_CPU_state(bool save_vectors = false);
 853   void pop_CPU_state(bool restore_vectors = false) ;
 854 
 855   // Round up to a power of two
 856   void round_to(Register reg, int modulus);
 857 
 858   // allocation
 859   void eden_allocate(
 860     Register obj,                      // result: pointer to object after successful allocation
 861     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 862     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 863     Register t1,                       // temp register
 864     Label&   slow_case                 // continuation point if fast allocation fails
 865   );
 866   void tlab_allocate(
 867     Register obj,                      // result: pointer to object after successful allocation
 868     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 869     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 870     Register t1,                       // temp register
 871     Register t2,                       // temp register
 872     Label&   slow_case                 // continuation point if fast allocation fails
 873   );
 874   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 875   void verify_tlab();
 876 
 877   void incr_allocated_bytes(Register thread,
 878                             Register var_size_in_bytes, int con_size_in_bytes,
 879                             Register t1 = noreg);
 880 
 881   // interface method calling
 882   void lookup_interface_method(Register recv_klass,
 883                                Register intf_klass,
 884                                RegisterOrConstant itable_index,
 885                                Register method_result,
 886                                Register scan_temp,
 887                                Label& no_such_interface);
 888 
 889   // virtual method calling
 890   // n.b. x86 allows RegisterOrConstant for vtable_index
 891   void lookup_virtual_method(Register recv_klass,
 892                              RegisterOrConstant vtable_index,
 893                              Register method_result);
 894 
 895   // Test sub_klass against super_klass, with fast and slow paths.
 896 
 897   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 898   // One of the three labels can be NULL, meaning take the fall-through.
 899   // If super_check_offset is -1, the value is loaded up from super_klass.
 900   // No registers are killed, except temp_reg.
 901   void check_klass_subtype_fast_path(Register sub_klass,
 902                                      Register super_klass,
 903                                      Register temp_reg,
 904                                      Label* L_success,
 905                                      Label* L_failure,
 906                                      Label* L_slow_path,
 907                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 908 
 909   // The rest of the type check; must be wired to a corresponding fast path.
 910   // It does not repeat the fast path logic, so don't use it standalone.
 911   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 912   // Updates the sub's secondary super cache as necessary.
 913   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 914   void check_klass_subtype_slow_path(Register sub_klass,
 915                                      Register super_klass,
 916                                      Register temp_reg,
 917                                      Register temp2_reg,
 918                                      Label* L_success,
 919                                      Label* L_failure,
 920                                      bool set_cond_codes = false);
 921 
 922   // Simplified, combined version, good for typical uses.
 923   // Falls through on failure.
 924   void check_klass_subtype(Register sub_klass,
 925                            Register super_klass,
 926                            Register temp_reg,
 927                            Label& L_success);
 928 
 929   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 930 
 931 
 932   // Debugging
 933 
 934   // only if +VerifyOops
 935   void verify_oop(Register reg, const char* s = "broken oop");
 936   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 937 
 938 // TODO: verify method and klass metadata (compare against vptr?)
 939   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 940   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 941 
 942 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 943 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 944 
 945   // only if +VerifyFPU
 946   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 947 
 948   // prints msg, dumps registers and stops execution
 949   void stop(const char* msg, Label *l = NULL);
 950 
 951   // prints msg and continues
 952   void warn(const char* msg);
 953 
 954   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 955 
 956   void untested()                                { stop("untested"); }
 957 
 958   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 959 
 960   void should_not_reach_here()                   { stop("should not reach here"); }
 961 
 962   // Stack overflow checking
 963   void bang_stack_with_offset(int offset) {
 964     // stack grows down, caller passes positive offset
 965     assert(offset > 0, "must bang with negative offset");
 966     mov(rscratch2, -offset);
 967     str(zr, Address(sp, rscratch2));
 968   }
 969 
 970   // Writes to stack successive pages until offset reached to check for
 971   // stack overflow + shadow pages.  Also, clobbers tmp
 972   void bang_stack_size(Register size, Register tmp);
 973 
 974   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 975                                                 Register tmp,
 976                                                 int offset);
 977 
 978   // Support for serializing memory accesses between threads
 979   void serialize_memory(Register thread, Register tmp);
 980 
 981   // Arithmetics
 982 
 983   void addptr(const Address &dst, int32_t src);
 984   void cmpptr(Register src1, Address src2);
 985 
 986   // Various forms of CAS
 987 
 988   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 989                   Label &suceed, Label *fail);
 990 
 991   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 992                   Label &suceed, Label *fail);
 993 
 994   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 995   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 996   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
 997   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
 998 
 999   void atomic_xchg(Register prev, Register newv, Register addr);
1000   void atomic_xchgw(Register prev, Register newv, Register addr);
1001   void atomic_xchgal(Register prev, Register newv, Register addr);
1002   void atomic_xchgalw(Register prev, Register newv, Register addr);
1003 
1004   void orptr(Address adr, RegisterOrConstant src) {
1005     ldr(rscratch2, adr);
1006     if (src.is_register())
1007       orr(rscratch2, rscratch2, src.as_register());
1008     else
1009       orr(rscratch2, rscratch2, src.as_constant());
1010     str(rscratch2, adr);
1011   }
1012 
1013   // A generic CAS; success or failure is in the EQ flag.
1014   // Clobbers rscratch1
1015   void cmpxchg(Register addr, Register expected, Register new_val,
1016                enum operand_size size,
1017                bool acquire, bool release, bool weak,
1018                Register result);
1019 
1020   void cmpxchg_oop_shenandoah(Register res, Register addr, Register expected, Register new_val,
1021                               bool narrow,
1022                               bool acquire, bool release,
1023                               Register tmp1 = rscratch1, Register tmp2 = rscratch2);
1024   // Calls
1025 
1026   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1027 
1028   static bool far_branches() {
1029     return ReservedCodeCacheSize > branch_range;
1030   }
1031 
1032   // Jumps that can reach anywhere in the code cache.
1033   // Trashes tmp.
1034   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1035   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1036 
1037   static int far_branch_size() {
1038     if (far_branches()) {
1039       return 3 * 4;  // adrp, add, br
1040     } else {
1041       return 4;
1042     }
1043   }
1044 
1045   // Emit the CompiledIC call idiom
1046   address ic_call(address entry, jint method_index = 0);
1047 
1048 public:
1049 
1050   // Data
1051 
1052   void mov_metadata(Register dst, Metadata* obj);
1053   Address allocate_metadata_address(Metadata* obj);
1054   Address constant_oop_address(jobject obj);
1055 
1056   void movoop(Register dst, jobject obj, bool immediate = false);
1057 
1058   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1059   void kernel_crc32(Register crc, Register buf, Register len,
1060         Register table0, Register table1, Register table2, Register table3,
1061         Register tmp, Register tmp2, Register tmp3);
1062   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1063   void kernel_crc32c(Register crc, Register buf, Register len,
1064         Register table0, Register table1, Register table2, Register table3,
1065         Register tmp, Register tmp2, Register tmp3);
1066 
1067   // Stack push and pop individual 64 bit registers
1068   void push(Register src);
1069   void pop(Register dst);
1070 
1071   // push all registers onto the stack
1072   void pusha();
1073   void popa();
1074 
1075   void repne_scan(Register addr, Register value, Register count,
1076                   Register scratch);
1077   void repne_scanw(Register addr, Register value, Register count,
1078                    Register scratch);
1079 
1080   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1081   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1082 
1083   // If a constant does not fit in an immediate field, generate some
1084   // number of MOV instructions and then perform the operation
1085   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1086                              add_sub_imm_insn insn1,
1087                              add_sub_reg_insn insn2);
1088   // Seperate vsn which sets the flags
1089   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1090                              add_sub_imm_insn insn1,
1091                              add_sub_reg_insn insn2);
1092 
1093 #define WRAP(INSN)                                                      \
1094   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1095     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1096   }                                                                     \
1097                                                                         \
1098   void INSN(Register Rd, Register Rn, Register Rm,                      \
1099              enum shift_kind kind, unsigned shift = 0) {                \
1100     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1101   }                                                                     \
1102                                                                         \
1103   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1104     Assembler::INSN(Rd, Rn, Rm);                                        \
1105   }                                                                     \
1106                                                                         \
1107   void INSN(Register Rd, Register Rn, Register Rm,                      \
1108            ext::operation option, int amount = 0) {                     \
1109     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1110   }
1111 
1112   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1113 
1114 #undef WRAP
1115 #define WRAP(INSN)                                                      \
1116   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1117     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1118   }                                                                     \
1119                                                                         \
1120   void INSN(Register Rd, Register Rn, Register Rm,                      \
1121              enum shift_kind kind, unsigned shift = 0) {                \
1122     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1123   }                                                                     \
1124                                                                         \
1125   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1126     Assembler::INSN(Rd, Rn, Rm);                                        \
1127   }                                                                     \
1128                                                                         \
1129   void INSN(Register Rd, Register Rn, Register Rm,                      \
1130            ext::operation option, int amount = 0) {                     \
1131     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1132   }
1133 
1134   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1135 
1136   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1137   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1138   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1139   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1140 
1141   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1142 
1143   void tableswitch(Register index, jint lowbound, jint highbound,
1144                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1145     adr(rscratch1, jumptable);
1146     subsw(rscratch2, index, lowbound);
1147     subsw(zr, rscratch2, highbound - lowbound);
1148     br(Assembler::HS, jumptable_end);
1149     add(rscratch1, rscratch1, rscratch2,
1150         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1151     br(rscratch1);
1152   }
1153 
1154   // Form an address from base + offset in Rd.  Rd may or may not
1155   // actually be used: you must use the Address that is returned.  It
1156   // is up to you to ensure that the shift provided matches the size
1157   // of your data.
1158   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1159 
1160   // Return true iff an address is within the 48-bit AArch64 address
1161   // space.
1162   bool is_valid_AArch64_address(address a) {
1163     return ((uint64_t)a >> 48) == 0;
1164   }
1165 
1166   // Load the base of the cardtable byte map into reg.
1167   void load_byte_map_base(Register reg);
1168 
1169   // Prolog generator routines to support switch between x86 code and
1170   // generated ARM code
1171 
1172   // routine to generate an x86 prolog for a stub function which
1173   // bootstraps into the generated ARM code which directly follows the
1174   // stub
1175   //
1176 
1177   public:
1178   // enum used for aarch64--x86 linkage to define return type of x86 function
1179   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1180 
1181 #ifdef BUILTIN_SIM
1182   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1183 #else
1184   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1185 #endif
1186 
1187   // special version of call_VM_leaf_base needed for aarch64 simulator
1188   // where we need to specify both the gp and fp arg counts and the
1189   // return type so that the linkage routine from aarch64 to x86 and
1190   // back knows which aarch64 registers to copy to x86 registers and
1191   // which x86 result register to copy back to an aarch64 register
1192 
1193   void call_VM_leaf_base1(
1194     address  entry_point,             // the entry point
1195     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1196     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1197     ret_type type,                    // the return type for the call
1198     Label*   retaddr = NULL
1199   );
1200 
1201   void ldr_constant(Register dest, const Address &const_addr) {
1202     if (NearCpool) {
1203       ldr(dest, const_addr);
1204     } else {
1205       unsigned long offset;
1206       adrp(dest, InternalAddress(const_addr.target()), offset);
1207       ldr(dest, Address(dest, offset));
1208     }
1209   }
1210 
1211   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1212   address read_polling_page(Register r, relocInfo::relocType rtype);
1213 
1214   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1215   void update_byte_crc32(Register crc, Register val, Register table);
1216   void update_word_crc32(Register crc, Register v, Register tmp,
1217         Register table0, Register table1, Register table2, Register table3,
1218         bool upper = false);
1219 
1220   void string_compare(Register str1, Register str2,
1221                       Register cnt1, Register cnt2, Register result,
1222                       Register tmp1,
1223                       FloatRegister vtmp, FloatRegister vtmpZ, int ae);
1224 
1225   void arrays_equals(Register a1, Register a2,
1226                      Register result, Register cnt1,
1227                      int elem_size, bool is_string);
1228 
1229   void fill_words(Register base, Register cnt, Register value);
1230   void zero_words(Register base, u_int64_t cnt);
1231   void zero_words(Register base, Register cnt);
1232   void block_zero(Register base, Register cnt, bool is_large = false);
1233 
1234   void byte_array_inflate(Register src, Register dst, Register len,
1235                           FloatRegister vtmp1, FloatRegister vtmp2,
1236                           FloatRegister vtmp3, Register tmp4);
1237 
1238   void char_array_compress(Register src, Register dst, Register len,
1239                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1240                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1241                            Register result);
1242 
1243   void encode_iso_array(Register src, Register dst,
1244                         Register len, Register result,
1245                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1246                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1247   void string_indexof(Register str1, Register str2,
1248                       Register cnt1, Register cnt2,
1249                       Register tmp1, Register tmp2,
1250                       Register tmp3, Register tmp4,
1251                       int int_cnt1, Register result, int ae);
1252 
1253   void in_heap_check(Register r, Register tmp, Label &nope);
1254 
1255 private:
1256   void shenandoah_cset_check(Register obj, Register tmp1, Register tmp2, Label& done);
1257 
1258 public:
1259   void _shenandoah_store_addr_check(Register addr, const char* msg, const char* file, int line);
1260   void _shenandoah_store_addr_check(Address addr, const char* msg, const char* file, int line);
1261 #define shenandoah_store_addr_check(reg) _shenandoah_store_addr_check(reg, "oop not safe for writing", __FILE__, __LINE__)
1262 
1263   void _shenandoah_store_check(Address addr, Register value, const char* msg, const char* file, int line);
1264   void _shenandoah_store_check(Register addr, Register value, const char* msg, const char* file, int line);
1265 #define shenandoah_store_check(addr, value) _shenandoah_store_check(addr, value, "oop not safe for writing", __FILE__, __LINE__)
1266 
1267 private:
1268   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1269                        Register src1, Register src2);
1270   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1271     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1272   }
1273   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1274                              Register y, Register y_idx, Register z,
1275                              Register carry, Register product,
1276                              Register idx, Register kdx);
1277   void multiply_128_x_128_loop(Register y, Register z,
1278                                Register carry, Register carry2,
1279                                Register idx, Register jdx,
1280                                Register yz_idx1, Register yz_idx2,
1281                                Register tmp, Register tmp3, Register tmp4,
1282                                Register tmp7, Register product_hi);
1283 public:
1284   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1285                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1286                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1287   // ISB may be needed because of a safepoint
1288   void maybe_isb() { isb(); }
1289 
1290 private:
1291   // Return the effective address r + (r1 << ext) + offset.
1292   // Uses rscratch2.
1293   Address offsetted_address(Register r, Register r1, Address::extend ext,
1294                             int offset, int size);
1295 
1296 private:
1297   // Returns an address on the stack which is reachable with a ldr/str of size
1298   // Uses rscratch2 if the address is not directly reachable
1299   Address spill_address(int size, int offset, Register tmp=rscratch2);
1300 
1301 public:
1302   void spill(Register Rx, bool is64, int offset) {
1303     if (is64) {
1304       str(Rx, spill_address(8, offset));
1305     } else {
1306       strw(Rx, spill_address(4, offset));
1307     }
1308   }
1309   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1310     str(Vx, T, spill_address(1 << (int)T, offset));
1311   }
1312   void unspill(Register Rx, bool is64, int offset) {
1313     if (is64) {
1314       ldr(Rx, spill_address(8, offset));
1315     } else {
1316       ldrw(Rx, spill_address(4, offset));
1317     }
1318   }
1319   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1320     ldr(Vx, T, spill_address(1 << (int)T, offset));
1321   }
1322   void spill_copy128(int src_offset, int dst_offset,
1323                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1324     if (src_offset < 512 && (src_offset & 7) == 0 &&
1325         dst_offset < 512 && (dst_offset & 7) == 0) {
1326       ldp(tmp1, tmp2, Address(sp, src_offset));
1327       stp(tmp1, tmp2, Address(sp, dst_offset));
1328     } else {
1329       unspill(tmp1, true, src_offset);
1330       spill(tmp1, true, dst_offset);
1331       unspill(tmp1, true, src_offset+8);
1332       spill(tmp1, true, dst_offset+8);
1333     }
1334   }
1335 };
1336 
1337 #ifdef ASSERT
1338 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1339 #endif
1340 
1341 /**
1342  * class SkipIfEqual:
1343  *
1344  * Instantiating this class will result in assembly code being output that will
1345  * jump around any code emitted between the creation of the instance and it's
1346  * automatic destruction at the end of a scope block, depending on the value of
1347  * the flag passed to the constructor, which will be checked at run-time.
1348  */
1349 class SkipIfEqual {
1350  private:
1351   MacroAssembler* _masm;
1352   Label _label;
1353 
1354  public:
1355    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1356    ~SkipIfEqual();
1357 };
1358 
1359 struct tableswitch {
1360   Register _reg;
1361   int _insn_index; jint _first_key; jint _last_key;
1362   Label _after;
1363   Label _branches;
1364 };
1365 
1366 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP