1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  75   // The implementation is only non-empty for the InterpreterMacroAssembler,
  76   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  77   virtual void check_and_handle_popframe(Register java_thread);
  78   virtual void check_and_handle_earlyret(Register java_thread);
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // helpers for FPU flag access
  83   // tmp is a temporary register, if none is available use noreg
  84   void save_rax   (Register tmp);
  85   void restore_rax(Register tmp);
  86 
  87  public:
  88   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300 #if INCLUDE_ALL_GCS
 301 
 302   void g1_write_barrier_pre(Register obj,
 303                             Register pre_val,
 304                             Register thread,
 305                             Register tmp,
 306                             bool tosca_live,
 307                             bool expand_call);
 308 
 309   void g1_write_barrier_post(Register store_addr,
 310                              Register new_val,
 311                              Register thread,
 312                              Register tmp,
 313                              Register tmp2);
 314 
 315 #endif // INCLUDE_ALL_GCS
 316 
 317   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 318   void c2bool(Register x);
 319 
 320   // C++ bool manipulation
 321 
 322   void movbool(Register dst, Address src);
 323   void movbool(Address dst, bool boolconst);
 324   void movbool(Address dst, Register src);
 325   void testbool(Register dst);
 326 
 327   void load_mirror(Register mirror, Register method);
 328 
 329   // oop manipulations
 330   void load_klass(Register dst, Register src);
 331   void store_klass(Register dst, Register src);
 332 
 333   void load_heap_oop(Register dst, Address src);
 334   void load_heap_oop_not_null(Register dst, Address src);
 335   void store_heap_oop(Address dst, Register src);
 336   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 337 
 338   // Used for storing NULL. All other oop constants should be
 339   // stored using routines that take a jobject.
 340   void store_heap_oop_null(Address dst);
 341 
 342   void load_prototype_header(Register dst, Register src);
 343 
 344 #ifdef _LP64
 345   void store_klass_gap(Register dst, Register src);
 346 
 347   // This dummy is to prevent a call to store_heap_oop from
 348   // converting a zero (like NULL) into a Register by giving
 349   // the compiler two choices it can't resolve
 350 
 351   void store_heap_oop(Address dst, void* dummy);
 352 
 353   void encode_heap_oop(Register r);
 354   void decode_heap_oop(Register r);
 355   void encode_heap_oop_not_null(Register r);
 356   void decode_heap_oop_not_null(Register r);
 357   void encode_heap_oop_not_null(Register dst, Register src);
 358   void decode_heap_oop_not_null(Register dst, Register src);
 359 
 360   void set_narrow_oop(Register dst, jobject obj);
 361   void set_narrow_oop(Address dst, jobject obj);
 362   void cmp_narrow_oop(Register dst, jobject obj);
 363   void cmp_narrow_oop(Address dst, jobject obj);
 364 
 365   void encode_klass_not_null(Register r);
 366   void decode_klass_not_null(Register r);
 367   void encode_klass_not_null(Register dst, Register src);
 368   void decode_klass_not_null(Register dst, Register src);
 369   void set_narrow_klass(Register dst, Klass* k);
 370   void set_narrow_klass(Address dst, Klass* k);
 371   void cmp_narrow_klass(Register dst, Klass* k);
 372   void cmp_narrow_klass(Address dst, Klass* k);
 373 
 374   // Returns the byte size of the instructions generated by decode_klass_not_null()
 375   // when compressed klass pointers are being used.
 376   static int instr_size_for_decode_klass_not_null();
 377 
 378   // if heap base register is used - reinit it with the correct value
 379   void reinit_heapbase();
 380 
 381   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 382 
 383 #endif // _LP64
 384 
 385   // Int division/remainder for Java
 386   // (as idivl, but checks for special case as described in JVM spec.)
 387   // returns idivl instruction offset for implicit exception handling
 388   int corrected_idivl(Register reg);
 389 
 390   // Long division/remainder for Java
 391   // (as idivq, but checks for special case as described in JVM spec.)
 392   // returns idivq instruction offset for implicit exception handling
 393   int corrected_idivq(Register reg);
 394 
 395   void int3();
 396 
 397   // Long operation macros for a 32bit cpu
 398   // Long negation for Java
 399   void lneg(Register hi, Register lo);
 400 
 401   // Long multiplication for Java
 402   // (destroys contents of eax, ebx, ecx and edx)
 403   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 404 
 405   // Long shifts for Java
 406   // (semantics as described in JVM spec.)
 407   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 408   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 409 
 410   // Long compare for Java
 411   // (semantics as described in JVM spec.)
 412   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 413 
 414 
 415   // misc
 416 
 417   // Sign extension
 418   void sign_extend_short(Register reg);
 419   void sign_extend_byte(Register reg);
 420 
 421   // Division by power of 2, rounding towards 0
 422   void division_with_shift(Register reg, int shift_value);
 423 
 424   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 425   //
 426   // CF (corresponds to C0) if x < y
 427   // PF (corresponds to C2) if unordered
 428   // ZF (corresponds to C3) if x = y
 429   //
 430   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 431   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 432   void fcmp(Register tmp);
 433   // Variant of the above which allows y to be further down the stack
 434   // and which only pops x and y if specified. If pop_right is
 435   // specified then pop_left must also be specified.
 436   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 437 
 438   // Floating-point comparison for Java
 439   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 440   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 441   // (semantics as described in JVM spec.)
 442   void fcmp2int(Register dst, bool unordered_is_less);
 443   // Variant of the above which allows y to be further down the stack
 444   // and which only pops x and y if specified. If pop_right is
 445   // specified then pop_left must also be specified.
 446   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 447 
 448   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 449   // tmp is a temporary register, if none is available use noreg
 450   void fremr(Register tmp);
 451 
 452 
 453   // same as fcmp2int, but using SSE2
 454   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 455   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 456 
 457   // branch to L if FPU flag C2 is set/not set
 458   // tmp is a temporary register, if none is available use noreg
 459   void jC2 (Register tmp, Label& L);
 460   void jnC2(Register tmp, Label& L);
 461 
 462   // Pop ST (ffree & fincstp combined)
 463   void fpop();
 464 
 465   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 466   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 467   void load_float(Address src);
 468 
 469   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 470   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 471   void store_float(Address dst);
 472 
 473   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 474   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 475   void load_double(Address src);
 476 
 477   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 478   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 479   void store_double(Address dst);
 480 
 481   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 482   void push_fTOS();
 483 
 484   // pops double TOS element from CPU stack and pushes on FPU stack
 485   void pop_fTOS();
 486 
 487   void empty_FPU_stack();
 488 
 489   void push_IU_state();
 490   void pop_IU_state();
 491 
 492   void push_FPU_state();
 493   void pop_FPU_state();
 494 
 495   void push_CPU_state();
 496   void pop_CPU_state();
 497 
 498   // Round up to a power of two
 499   void round_to(Register reg, int modulus);
 500 
 501   // Callee saved registers handling
 502   void push_callee_saved_registers();
 503   void pop_callee_saved_registers();
 504 
 505   // allocation
 506   void eden_allocate(
 507     Register obj,                      // result: pointer to object after successful allocation
 508     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 509     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 510     Register t1,                       // temp register
 511     Label&   slow_case                 // continuation point if fast allocation fails
 512   );
 513   void tlab_allocate(
 514     Register obj,                      // result: pointer to object after successful allocation
 515     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 516     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 517     Register t1,                       // temp register
 518     Register t2,                       // temp register
 519     Label&   slow_case                 // continuation point if fast allocation fails
 520   );
 521   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 522   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 523 
 524   void incr_allocated_bytes(Register thread,
 525                             Register var_size_in_bytes, int con_size_in_bytes,
 526                             Register t1 = noreg);
 527 
 528   // interface method calling
 529   void lookup_interface_method(Register recv_klass,
 530                                Register intf_klass,
 531                                RegisterOrConstant itable_index,
 532                                Register method_result,
 533                                Register scan_temp,
 534                                Label& no_such_interface);
 535 
 536   // virtual method calling
 537   void lookup_virtual_method(Register recv_klass,
 538                              RegisterOrConstant vtable_index,
 539                              Register method_result);
 540 
 541   // Test sub_klass against super_klass, with fast and slow paths.
 542 
 543   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 544   // One of the three labels can be NULL, meaning take the fall-through.
 545   // If super_check_offset is -1, the value is loaded up from super_klass.
 546   // No registers are killed, except temp_reg.
 547   void check_klass_subtype_fast_path(Register sub_klass,
 548                                      Register super_klass,
 549                                      Register temp_reg,
 550                                      Label* L_success,
 551                                      Label* L_failure,
 552                                      Label* L_slow_path,
 553                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 554 
 555   // The rest of the type check; must be wired to a corresponding fast path.
 556   // It does not repeat the fast path logic, so don't use it standalone.
 557   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 558   // Updates the sub's secondary super cache as necessary.
 559   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 560   void check_klass_subtype_slow_path(Register sub_klass,
 561                                      Register super_klass,
 562                                      Register temp_reg,
 563                                      Register temp2_reg,
 564                                      Label* L_success,
 565                                      Label* L_failure,
 566                                      bool set_cond_codes = false);
 567 
 568   // Simplified, combined version, good for typical uses.
 569   // Falls through on failure.
 570   void check_klass_subtype(Register sub_klass,
 571                            Register super_klass,
 572                            Register temp_reg,
 573                            Label& L_success);
 574 
 575   // method handles (JSR 292)
 576   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 577 
 578   //----
 579   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 580 
 581   // Debugging
 582 
 583   // only if +VerifyOops
 584   // TODO: Make these macros with file and line like sparc version!
 585   void verify_oop(Register reg, const char* s = "broken oop");
 586   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 587 
 588   // TODO: verify method and klass metadata (compare against vptr?)
 589   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 590   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 591 
 592 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 593 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 594 
 595   // only if +VerifyFPU
 596   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 597 
 598   // Verify or restore cpu control state after JNI call
 599   void restore_cpu_control_state_after_jni();
 600 
 601   // prints msg, dumps registers and stops execution
 602   void stop(const char* msg);
 603 
 604   // prints msg and continues
 605   void warn(const char* msg);
 606 
 607   // dumps registers and other state
 608   void print_state();
 609 
 610   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 611   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 612   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 613   static void print_state64(int64_t pc, int64_t regs[]);
 614 
 615   void os_breakpoint();
 616 
 617   void untested()                                { stop("untested"); }
 618 
 619   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 620 
 621   void should_not_reach_here()                   { stop("should not reach here"); }
 622 
 623   void print_CPU_state();
 624 
 625   // Stack overflow checking
 626   void bang_stack_with_offset(int offset) {
 627     // stack grows down, caller passes positive offset
 628     assert(offset > 0, "must bang with negative offset");
 629     movl(Address(rsp, (-offset)), rax);
 630   }
 631 
 632   // Writes to stack successive pages until offset reached to check for
 633   // stack overflow + shadow pages.  Also, clobbers tmp
 634   void bang_stack_size(Register size, Register tmp);
 635 
 636   // Check for reserved stack access in method being exited (for JIT)
 637   void reserved_stack_check();
 638 
 639   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 640                                                 Register tmp,
 641                                                 int offset);
 642 
 643   // Support for serializing memory accesses between threads
 644   void serialize_memory(Register thread, Register tmp);
 645 
 646   void verify_tlab();
 647 
 648   // Biased locking support
 649   // lock_reg and obj_reg must be loaded up with the appropriate values.
 650   // swap_reg must be rax, and is killed.
 651   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 652   // be killed; if not supplied, push/pop will be used internally to
 653   // allocate a temporary (inefficient, avoid if possible).
 654   // Optional slow case is for implementations (interpreter and C1) which branch to
 655   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 656   // Returns offset of first potentially-faulting instruction for null
 657   // check info (currently consumed only by C1). If
 658   // swap_reg_contains_mark is true then returns -1 as it is assumed
 659   // the calling code has already passed any potential faults.
 660   int biased_locking_enter(Register lock_reg, Register obj_reg,
 661                            Register swap_reg, Register tmp_reg,
 662                            bool swap_reg_contains_mark,
 663                            Label& done, Label* slow_case = NULL,
 664                            BiasedLockingCounters* counters = NULL);
 665   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 666 #ifdef COMPILER2
 667   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 668   // See full desription in macroAssembler_x86.cpp.
 669   void fast_lock(Register obj, Register box, Register tmp,
 670                  Register scr, Register cx1, Register cx2,
 671                  BiasedLockingCounters* counters,
 672                  RTMLockingCounters* rtm_counters,
 673                  RTMLockingCounters* stack_rtm_counters,
 674                  Metadata* method_data,
 675                  bool use_rtm, bool profile_rtm);
 676   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 677 #if INCLUDE_RTM_OPT
 678   void rtm_counters_update(Register abort_status, Register rtm_counters);
 679   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 680   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 681                                    RTMLockingCounters* rtm_counters,
 682                                    Metadata* method_data);
 683   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 684                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 685   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 686   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 687   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 688                          Register retry_on_abort_count,
 689                          RTMLockingCounters* stack_rtm_counters,
 690                          Metadata* method_data, bool profile_rtm,
 691                          Label& DONE_LABEL, Label& IsInflated);
 692   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 693                             Register scr, Register retry_on_busy_count,
 694                             Register retry_on_abort_count,
 695                             RTMLockingCounters* rtm_counters,
 696                             Metadata* method_data, bool profile_rtm,
 697                             Label& DONE_LABEL);
 698 #endif
 699 #endif
 700 
 701   Condition negate_condition(Condition cond);
 702 
 703   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 704   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 705   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 706   // here in MacroAssembler. The major exception to this rule is call
 707 
 708   // Arithmetics
 709 
 710 
 711   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 712   void addptr(Address dst, Register src);
 713 
 714   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 715   void addptr(Register dst, int32_t src);
 716   void addptr(Register dst, Register src);
 717   void addptr(Register dst, RegisterOrConstant src) {
 718     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 719     else                   addptr(dst,       src.as_register());
 720   }
 721 
 722   void andptr(Register dst, int32_t src);
 723   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 724 
 725   void cmp8(AddressLiteral src1, int imm);
 726 
 727   // renamed to drag out the casting of address to int32_t/intptr_t
 728   void cmp32(Register src1, int32_t imm);
 729 
 730   void cmp32(AddressLiteral src1, int32_t imm);
 731   // compare reg - mem, or reg - &mem
 732   void cmp32(Register src1, AddressLiteral src2);
 733 
 734   void cmp32(Register src1, Address src2);
 735 
 736 #ifndef _LP64
 737   void cmpklass(Address dst, Metadata* obj);
 738   void cmpklass(Register dst, Metadata* obj);
 739   void cmpoop(Address dst, jobject obj);
 740   void cmpoop(Register dst, jobject obj);
 741 #endif // _LP64
 742 
 743   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 744   void cmpptr(Address src1, AddressLiteral src2);
 745 
 746   void cmpptr(Register src1, AddressLiteral src2);
 747 
 748   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 749   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 750   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 751 
 752   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 753   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 754 
 755   // cmp64 to avoild hiding cmpq
 756   void cmp64(Register src1, AddressLiteral src);
 757 
 758   void cmpxchgptr(Register reg, Address adr);
 759 
 760   // Special Shenandoah CAS implementation that handles false negatives
 761   // due to concurrent evacuation.
 762   void cmpxchg_oop_shenandoah(Register res, Address addr, Register oldval, Register newval,
 763                               bool exchange,
 764                               Register tmp1, Register tmp2);
 765 
 766   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 767 
 768 
 769   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 770   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 771 
 772 
 773   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 774 
 775   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 776 
 777   void shlptr(Register dst, int32_t shift);
 778   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 779 
 780   void shrptr(Register dst, int32_t shift);
 781   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 782 
 783   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 784   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 785 
 786   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 787 
 788   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 789   void subptr(Register dst, int32_t src);
 790   // Force generation of a 4 byte immediate value even if it fits into 8bit
 791   void subptr_imm32(Register dst, int32_t src);
 792   void subptr(Register dst, Register src);
 793   void subptr(Register dst, RegisterOrConstant src) {
 794     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 795     else                   subptr(dst,       src.as_register());
 796   }
 797 
 798   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 799   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 800 
 801   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 802   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 803 
 804   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 805 
 806 
 807 
 808   // Helper functions for statistics gathering.
 809   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 810   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 811   // Unconditional atomic increment.
 812   void atomic_incl(Address counter_addr);
 813   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 814 #ifdef _LP64
 815   void atomic_incq(Address counter_addr);
 816   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 817 #endif
 818   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 819   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 820 
 821   void lea(Register dst, AddressLiteral adr);
 822   void lea(Address dst, AddressLiteral adr);
 823   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 824 
 825   void leal32(Register dst, Address src) { leal(dst, src); }
 826 
 827   // Import other testl() methods from the parent class or else
 828   // they will be hidden by the following overriding declaration.
 829   using Assembler::testl;
 830   void testl(Register dst, AddressLiteral src);
 831 
 832   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 833   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 834   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 835   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 836 
 837   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 838   void testptr(Register src1, Register src2);
 839 
 840   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 841   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 842 
 843   // Calls
 844 
 845   void call(Label& L, relocInfo::relocType rtype);
 846   void call(Register entry);
 847 
 848   // NOTE: this call transfers to the effective address of entry NOT
 849   // the address contained by entry. This is because this is more natural
 850   // for jumps/calls.
 851   void call(AddressLiteral entry);
 852 
 853   // Emit the CompiledIC call idiom
 854   void ic_call(address entry, jint method_index = 0);
 855 
 856   // Jumps
 857 
 858   // NOTE: these jumps tranfer to the effective address of dst NOT
 859   // the address contained by dst. This is because this is more natural
 860   // for jumps/calls.
 861   void jump(AddressLiteral dst);
 862   void jump_cc(Condition cc, AddressLiteral dst);
 863 
 864   // 32bit can do a case table jump in one instruction but we no longer allow the base
 865   // to be installed in the Address class. This jump will tranfers to the address
 866   // contained in the location described by entry (not the address of entry)
 867   void jump(ArrayAddress entry);
 868 
 869   // Floating
 870 
 871   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 872   void andpd(XMMRegister dst, AddressLiteral src);
 873   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 874 
 875   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 876   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 877   void andps(XMMRegister dst, AddressLiteral src);
 878 
 879   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 880   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 881   void comiss(XMMRegister dst, AddressLiteral src);
 882 
 883   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 884   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 885   void comisd(XMMRegister dst, AddressLiteral src);
 886 
 887   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 888   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 889 
 890   void fldcw(Address src) { Assembler::fldcw(src); }
 891   void fldcw(AddressLiteral src);
 892 
 893   void fld_s(int index)   { Assembler::fld_s(index); }
 894   void fld_s(Address src) { Assembler::fld_s(src); }
 895   void fld_s(AddressLiteral src);
 896 
 897   void fld_d(Address src) { Assembler::fld_d(src); }
 898   void fld_d(AddressLiteral src);
 899 
 900   void fld_x(Address src) { Assembler::fld_x(src); }
 901   void fld_x(AddressLiteral src);
 902 
 903   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 904   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 905 
 906   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 907   void ldmxcsr(AddressLiteral src);
 908 
 909 #ifdef _LP64
 910  private:
 911   void sha256_AVX2_one_round_compute(
 912     Register  reg_old_h,
 913     Register  reg_a,
 914     Register  reg_b,
 915     Register  reg_c,
 916     Register  reg_d,
 917     Register  reg_e,
 918     Register  reg_f,
 919     Register  reg_g,
 920     Register  reg_h,
 921     int iter);
 922   void sha256_AVX2_four_rounds_compute_first(int start);
 923   void sha256_AVX2_four_rounds_compute_last(int start);
 924   void sha256_AVX2_one_round_and_sched(
 925         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 926         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 927         XMMRegister xmm_2,     /* ymm6 */
 928         XMMRegister xmm_3,     /* ymm7 */
 929         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 930         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 931         Register    reg_c,      /* edi */
 932         Register    reg_d,      /* esi */
 933         Register    reg_e,      /* r8d */
 934         Register    reg_f,      /* r9d */
 935         Register    reg_g,      /* r10d */
 936         Register    reg_h,      /* r11d */
 937         int iter);
 938 
 939   void addm(int disp, Register r1, Register r2);
 940 
 941  public:
 942   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 943                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 944                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 945                    bool multi_block, XMMRegister shuf_mask);
 946 #endif
 947 
 948   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 949                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 950                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 951                  bool multi_block);
 952 
 953 #ifdef _LP64
 954   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 955                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 956                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 957                    bool multi_block, XMMRegister shuf_mask);
 958 #else
 959   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 960                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 961                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 962                    bool multi_block);
 963 #endif
 964 
 965   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 966                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 967                 Register rax, Register rcx, Register rdx, Register tmp);
 968 
 969 #ifdef _LP64
 970   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 971                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 972                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 973 
 974   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 975                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 976                   Register rax, Register rcx, Register rdx, Register r11);
 977 
 978   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 979                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 980                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 981 
 982   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 983                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 984                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
 985                 Register tmp3, Register tmp4);
 986 
 987   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 988                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 989                 Register rax, Register rcx, Register rdx, Register tmp1,
 990                 Register tmp2, Register tmp3, Register tmp4);
 991   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 992                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 993                 Register rax, Register rcx, Register rdx, Register tmp1,
 994                 Register tmp2, Register tmp3, Register tmp4);
 995 #else
 996   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 997                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 998                 Register rax, Register rcx, Register rdx, Register tmp1);
 999 
1000   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1001                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1002                 Register rax, Register rcx, Register rdx, Register tmp);
1003 
1004   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1005                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1006                 Register rdx, Register tmp);
1007 
1008   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1009                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1010                 Register rax, Register rbx, Register rdx);
1011 
1012   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1013                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1014                 Register rax, Register rcx, Register rdx, Register tmp);
1015 
1016   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1017                         Register edx, Register ebx, Register esi, Register edi,
1018                         Register ebp, Register esp);
1019 
1020   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1021                          Register esi, Register edi, Register ebp, Register esp);
1022 
1023   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1024                         Register edx, Register ebx, Register esi, Register edi,
1025                         Register ebp, Register esp);
1026 
1027   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1028                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1029                 Register rax, Register rcx, Register rdx, Register tmp);
1030 #endif
1031 
1032   void increase_precision();
1033   void restore_precision();
1034 
1035 private:
1036 
1037   // these are private because users should be doing movflt/movdbl
1038 
1039   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1040   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1041   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1042   void movss(XMMRegister dst, AddressLiteral src);
1043 
1044   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1045   void movlpd(XMMRegister dst, AddressLiteral src);
1046 
1047 public:
1048 
1049   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1050   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1051   void addsd(XMMRegister dst, AddressLiteral src);
1052 
1053   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1054   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1055   void addss(XMMRegister dst, AddressLiteral src);
1056 
1057   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1058   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1059   void addpd(XMMRegister dst, AddressLiteral src);
1060 
1061   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1062   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1063   void divsd(XMMRegister dst, AddressLiteral src);
1064 
1065   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1066   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1067   void divss(XMMRegister dst, AddressLiteral src);
1068 
1069   // Move Unaligned Double Quadword
1070   void movdqu(Address     dst, XMMRegister src);
1071   void movdqu(XMMRegister dst, Address src);
1072   void movdqu(XMMRegister dst, XMMRegister src);
1073   void movdqu(XMMRegister dst, AddressLiteral src);
1074   // AVX Unaligned forms
1075   void vmovdqu(Address     dst, XMMRegister src);
1076   void vmovdqu(XMMRegister dst, Address src);
1077   void vmovdqu(XMMRegister dst, XMMRegister src);
1078   void vmovdqu(XMMRegister dst, AddressLiteral src);
1079 
1080   // Move Aligned Double Quadword
1081   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1082   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1083   void movdqa(XMMRegister dst, AddressLiteral src);
1084 
1085   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1086   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1087   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1088   void movsd(XMMRegister dst, AddressLiteral src);
1089 
1090   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1091   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1092   void mulpd(XMMRegister dst, AddressLiteral src);
1093 
1094   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1095   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1096   void mulsd(XMMRegister dst, AddressLiteral src);
1097 
1098   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1099   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1100   void mulss(XMMRegister dst, AddressLiteral src);
1101 
1102   // Carry-Less Multiplication Quadword
1103   void pclmulldq(XMMRegister dst, XMMRegister src) {
1104     // 0x00 - multiply lower 64 bits [0:63]
1105     Assembler::pclmulqdq(dst, src, 0x00);
1106   }
1107   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1108     // 0x11 - multiply upper 64 bits [64:127]
1109     Assembler::pclmulqdq(dst, src, 0x11);
1110   }
1111 
1112   void pcmpeqb(XMMRegister dst, XMMRegister src);
1113   void pcmpeqw(XMMRegister dst, XMMRegister src);
1114 
1115   void pcmpestri(XMMRegister dst, Address src, int imm8);
1116   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1117 
1118   void pmovzxbw(XMMRegister dst, XMMRegister src);
1119   void pmovzxbw(XMMRegister dst, Address src);
1120 
1121   void pmovmskb(Register dst, XMMRegister src);
1122 
1123   void ptest(XMMRegister dst, XMMRegister src);
1124 
1125   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1126   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1127   void sqrtsd(XMMRegister dst, AddressLiteral src);
1128 
1129   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1130   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1131   void sqrtss(XMMRegister dst, AddressLiteral src);
1132 
1133   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1134   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1135   void subsd(XMMRegister dst, AddressLiteral src);
1136 
1137   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1138   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1139   void subss(XMMRegister dst, AddressLiteral src);
1140 
1141   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1142   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1143   void ucomiss(XMMRegister dst, AddressLiteral src);
1144 
1145   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1146   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1147   void ucomisd(XMMRegister dst, AddressLiteral src);
1148 
1149   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1150   void xorpd(XMMRegister dst, XMMRegister src);
1151   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1152   void xorpd(XMMRegister dst, AddressLiteral src);
1153 
1154   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1155   void xorps(XMMRegister dst, XMMRegister src);
1156   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1157   void xorps(XMMRegister dst, AddressLiteral src);
1158 
1159   // Shuffle Bytes
1160   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1161   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1162   void pshufb(XMMRegister dst, AddressLiteral src);
1163   // AVX 3-operands instructions
1164 
1165   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1166   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1167   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1168 
1169   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1170   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1171   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1172 
1173   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1174   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1175 
1176   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1177   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1178 
1179   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1180   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1181 
1182   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1183 
1184   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1185   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1186 
1187   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1188   void vpmovmskb(Register dst, XMMRegister src);
1189 
1190   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1191   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1192 
1193   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1194   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1195 
1196   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1197   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1198 
1199   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1200   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1201 
1202   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1203   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1204 
1205   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1206   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1207 
1208   void vptest(XMMRegister dst, XMMRegister src);
1209 
1210   void punpcklbw(XMMRegister dst, XMMRegister src);
1211   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1212 
1213   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1214   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1215 
1216   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1217   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1218   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1219 
1220   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1221   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1222   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1223 
1224   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1225   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1226   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1227 
1228   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1229   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1230   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1231 
1232   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1233   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1234   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1235 
1236   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1237   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1238   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1239 
1240   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1241   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1242   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1243 
1244   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1245   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1246   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1247 
1248   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1249   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1250 
1251   // AVX Vector instructions
1252 
1253   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1254   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1255   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1256 
1257   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1258   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1259   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1260 
1261   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1262     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1263       Assembler::vpxor(dst, nds, src, vector_len);
1264     else
1265       Assembler::vxorpd(dst, nds, src, vector_len);
1266   }
1267   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1268     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1269       Assembler::vpxor(dst, nds, src, vector_len);
1270     else
1271       Assembler::vxorpd(dst, nds, src, vector_len);
1272   }
1273 
1274   // Simple version for AVX2 256bit vectors
1275   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1276   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1277 
1278   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1279     if (UseAVX > 2) {
1280       Assembler::vinserti32x4(dst, dst, src, imm8);
1281     } else if (UseAVX > 1) {
1282       // vinserti128 is available only in AVX2
1283       Assembler::vinserti128(dst, nds, src, imm8);
1284     } else {
1285       Assembler::vinsertf128(dst, nds, src, imm8);
1286     }
1287   }
1288 
1289   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1290     if (UseAVX > 2) {
1291       Assembler::vinserti32x4(dst, dst, src, imm8);
1292     } else if (UseAVX > 1) {
1293       // vinserti128 is available only in AVX2
1294       Assembler::vinserti128(dst, nds, src, imm8);
1295     } else {
1296       Assembler::vinsertf128(dst, nds, src, imm8);
1297     }
1298   }
1299 
1300   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1301     if (UseAVX > 2) {
1302       Assembler::vextracti32x4(dst, src, imm8);
1303     } else if (UseAVX > 1) {
1304       // vextracti128 is available only in AVX2
1305       Assembler::vextracti128(dst, src, imm8);
1306     } else {
1307       Assembler::vextractf128(dst, src, imm8);
1308     }
1309   }
1310 
1311   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1312     if (UseAVX > 2) {
1313       Assembler::vextracti32x4(dst, src, imm8);
1314     } else if (UseAVX > 1) {
1315       // vextracti128 is available only in AVX2
1316       Assembler::vextracti128(dst, src, imm8);
1317     } else {
1318       Assembler::vextractf128(dst, src, imm8);
1319     }
1320   }
1321 
1322   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1323   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1324     vinserti128(dst, dst, src, 1);
1325   }
1326   void vinserti128_high(XMMRegister dst, Address src) {
1327     vinserti128(dst, dst, src, 1);
1328   }
1329   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1330     vextracti128(dst, src, 1);
1331   }
1332   void vextracti128_high(Address dst, XMMRegister src) {
1333     vextracti128(dst, src, 1);
1334   }
1335 
1336   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1337     if (UseAVX > 2) {
1338       Assembler::vinsertf32x4(dst, dst, src, 1);
1339     } else {
1340       Assembler::vinsertf128(dst, dst, src, 1);
1341     }
1342   }
1343 
1344   void vinsertf128_high(XMMRegister dst, Address src) {
1345     if (UseAVX > 2) {
1346       Assembler::vinsertf32x4(dst, dst, src, 1);
1347     } else {
1348       Assembler::vinsertf128(dst, dst, src, 1);
1349     }
1350   }
1351 
1352   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1353     if (UseAVX > 2) {
1354       Assembler::vextractf32x4(dst, src, 1);
1355     } else {
1356       Assembler::vextractf128(dst, src, 1);
1357     }
1358   }
1359 
1360   void vextractf128_high(Address dst, XMMRegister src) {
1361     if (UseAVX > 2) {
1362       Assembler::vextractf32x4(dst, src, 1);
1363     } else {
1364       Assembler::vextractf128(dst, src, 1);
1365     }
1366   }
1367 
1368   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1369   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1370     Assembler::vinserti64x4(dst, dst, src, 1);
1371   }
1372   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1373     Assembler::vinsertf64x4(dst, dst, src, 1);
1374   }
1375   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1376     Assembler::vextracti64x4(dst, src, 1);
1377   }
1378   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1379     Assembler::vextractf64x4(dst, src, 1);
1380   }
1381   void vextractf64x4_high(Address dst, XMMRegister src) {
1382     Assembler::vextractf64x4(dst, src, 1);
1383   }
1384   void vinsertf64x4_high(XMMRegister dst, Address src) {
1385     Assembler::vinsertf64x4(dst, dst, src, 1);
1386   }
1387 
1388   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1389   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1390     vinserti128(dst, dst, src, 0);
1391   }
1392   void vinserti128_low(XMMRegister dst, Address src) {
1393     vinserti128(dst, dst, src, 0);
1394   }
1395   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1396     vextracti128(dst, src, 0);
1397   }
1398   void vextracti128_low(Address dst, XMMRegister src) {
1399     vextracti128(dst, src, 0);
1400   }
1401 
1402   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1403     if (UseAVX > 2) {
1404       Assembler::vinsertf32x4(dst, dst, src, 0);
1405     } else {
1406       Assembler::vinsertf128(dst, dst, src, 0);
1407     }
1408   }
1409 
1410   void vinsertf128_low(XMMRegister dst, Address src) {
1411     if (UseAVX > 2) {
1412       Assembler::vinsertf32x4(dst, dst, src, 0);
1413     } else {
1414       Assembler::vinsertf128(dst, dst, src, 0);
1415     }
1416   }
1417 
1418   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1419     if (UseAVX > 2) {
1420       Assembler::vextractf32x4(dst, src, 0);
1421     } else {
1422       Assembler::vextractf128(dst, src, 0);
1423     }
1424   }
1425 
1426   void vextractf128_low(Address dst, XMMRegister src) {
1427     if (UseAVX > 2) {
1428       Assembler::vextractf32x4(dst, src, 0);
1429     } else {
1430       Assembler::vextractf128(dst, src, 0);
1431     }
1432   }
1433 
1434   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1435   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1436     Assembler::vinserti64x4(dst, dst, src, 0);
1437   }
1438   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1439     Assembler::vinsertf64x4(dst, dst, src, 0);
1440   }
1441   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1442     Assembler::vextracti64x4(dst, src, 0);
1443   }
1444   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1445     Assembler::vextractf64x4(dst, src, 0);
1446   }
1447   void vextractf64x4_low(Address dst, XMMRegister src) {
1448     Assembler::vextractf64x4(dst, src, 0);
1449   }
1450   void vinsertf64x4_low(XMMRegister dst, Address src) {
1451     Assembler::vinsertf64x4(dst, dst, src, 0);
1452   }
1453 
1454   // Carry-Less Multiplication Quadword
1455   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1456     // 0x00 - multiply lower 64 bits [0:63]
1457     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1458   }
1459   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1460     // 0x11 - multiply upper 64 bits [64:127]
1461     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1462   }
1463 
1464   // Data
1465 
1466   void cmov32( Condition cc, Register dst, Address  src);
1467   void cmov32( Condition cc, Register dst, Register src);
1468 
1469   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1470 
1471   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1472   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1473 
1474   void movoop(Register dst, jobject obj);
1475   void movoop(Address dst, jobject obj);
1476 
1477   void mov_metadata(Register dst, Metadata* obj);
1478   void mov_metadata(Address dst, Metadata* obj);
1479 
1480   void movptr(ArrayAddress dst, Register src);
1481   // can this do an lea?
1482   void movptr(Register dst, ArrayAddress src);
1483 
1484   void movptr(Register dst, Address src);
1485 
1486 #ifdef _LP64
1487   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1488 #else
1489   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1490 #endif
1491 
1492   void movptr(Register dst, intptr_t src);
1493   void movptr(Register dst, Register src);
1494   void movptr(Address dst, intptr_t src);
1495 
1496   void movptr(Address dst, Register src);
1497 
1498   void movptr(Register dst, RegisterOrConstant src) {
1499     if (src.is_constant()) movptr(dst, src.as_constant());
1500     else                   movptr(dst, src.as_register());
1501   }
1502 
1503 #ifdef _LP64
1504   // Generally the next two are only used for moving NULL
1505   // Although there are situations in initializing the mark word where
1506   // they could be used. They are dangerous.
1507 
1508   // They only exist on LP64 so that int32_t and intptr_t are not the same
1509   // and we have ambiguous declarations.
1510 
1511   void movptr(Address dst, int32_t imm32);
1512   void movptr(Register dst, int32_t imm32);
1513 #endif // _LP64
1514 
1515   // to avoid hiding movl
1516   void mov32(AddressLiteral dst, Register src);
1517   void mov32(Register dst, AddressLiteral src);
1518 
1519   // to avoid hiding movb
1520   void movbyte(ArrayAddress dst, int src);
1521 
1522   // Import other mov() methods from the parent class or else
1523   // they will be hidden by the following overriding declaration.
1524   using Assembler::movdl;
1525   using Assembler::movq;
1526   void movdl(XMMRegister dst, AddressLiteral src);
1527   void movq(XMMRegister dst, AddressLiteral src);
1528 
1529   // Can push value or effective address
1530   void pushptr(AddressLiteral src);
1531 
1532   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1533   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1534 
1535   void pushoop(jobject obj);
1536   void pushklass(Metadata* obj);
1537 
1538   // sign extend as need a l to ptr sized element
1539   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1540   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1541 
1542   // C2 compiled method's prolog code.
1543   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1544 
1545   // clear memory of size 'cnt' qwords, starting at 'base';
1546   // if 'is_large' is set, do not try to produce short loop
1547   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1548 
1549 #ifdef COMPILER2
1550   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1551                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1552 
1553   // IndexOf strings.
1554   // Small strings are loaded through stack if they cross page boundary.
1555   void string_indexof(Register str1, Register str2,
1556                       Register cnt1, Register cnt2,
1557                       int int_cnt2,  Register result,
1558                       XMMRegister vec, Register tmp,
1559                       int ae);
1560 
1561   // IndexOf for constant substrings with size >= 8 elements
1562   // which don't need to be loaded through stack.
1563   void string_indexofC8(Register str1, Register str2,
1564                       Register cnt1, Register cnt2,
1565                       int int_cnt2,  Register result,
1566                       XMMRegister vec, Register tmp,
1567                       int ae);
1568 
1569     // Smallest code: we don't need to load through stack,
1570     // check string tail.
1571 
1572   // helper function for string_compare
1573   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1574                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1575                           Address::ScaleFactor scale2, Register index, int ae);
1576   // Compare strings.
1577   void string_compare(Register str1, Register str2,
1578                       Register cnt1, Register cnt2, Register result,
1579                       XMMRegister vec1, int ae);
1580 
1581   // Search for Non-ASCII character (Negative byte value) in a byte array,
1582   // return true if it has any and false otherwise.
1583   void has_negatives(Register ary1, Register len,
1584                      Register result, Register tmp1,
1585                      XMMRegister vec1, XMMRegister vec2);
1586 
1587   // Compare char[] or byte[] arrays.
1588   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1589                      Register limit, Register result, Register chr,
1590                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1591 
1592 #endif
1593 
1594   // Fill primitive arrays
1595   void generate_fill(BasicType t, bool aligned,
1596                      Register to, Register value, Register count,
1597                      Register rtmp, XMMRegister xtmp);
1598 
1599   void encode_iso_array(Register src, Register dst, Register len,
1600                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1601                         XMMRegister tmp4, Register tmp5, Register result);
1602 
1603 #ifdef _LP64
1604   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1605   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1606                              Register y, Register y_idx, Register z,
1607                              Register carry, Register product,
1608                              Register idx, Register kdx);
1609   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1610                               Register yz_idx, Register idx,
1611                               Register carry, Register product, int offset);
1612   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1613                                     Register carry, Register carry2,
1614                                     Register idx, Register jdx,
1615                                     Register yz_idx1, Register yz_idx2,
1616                                     Register tmp, Register tmp3, Register tmp4);
1617   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1618                                Register yz_idx, Register idx, Register jdx,
1619                                Register carry, Register product,
1620                                Register carry2);
1621   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1622                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1623   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1624                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1625   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1626                             Register tmp2);
1627   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1628                        Register rdxReg, Register raxReg);
1629   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1630   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1631                        Register tmp3, Register tmp4);
1632   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1633                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1634 
1635   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1636                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1637                Register raxReg);
1638   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1639                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1640                Register raxReg);
1641   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1642                            Register result, Register tmp1, Register tmp2,
1643                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1644 #endif
1645 
1646   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1647   void update_byte_crc32(Register crc, Register val, Register table);
1648   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1649   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1650   // Note on a naming convention:
1651   // Prefix w = register only used on a Westmere+ architecture
1652   // Prefix n = register only used on a Nehalem architecture
1653 #ifdef _LP64
1654   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1655                        Register tmp1, Register tmp2, Register tmp3);
1656 #else
1657   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1658                        Register tmp1, Register tmp2, Register tmp3,
1659                        XMMRegister xtmp1, XMMRegister xtmp2);
1660 #endif
1661   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1662                         Register in_out,
1663                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1664                         XMMRegister w_xtmp2,
1665                         Register tmp1,
1666                         Register n_tmp2, Register n_tmp3);
1667   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1668                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1669                        Register tmp1, Register tmp2,
1670                        Register n_tmp3);
1671   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1672                          Register in_out1, Register in_out2, Register in_out3,
1673                          Register tmp1, Register tmp2, Register tmp3,
1674                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1675                          Register tmp4, Register tmp5,
1676                          Register n_tmp6);
1677   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1678                             Register tmp1, Register tmp2, Register tmp3,
1679                             Register tmp4, Register tmp5, Register tmp6,
1680                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1681                             bool is_pclmulqdq_supported);
1682   // Fold 128-bit data chunk
1683   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1684   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1685   // Fold 8-bit data
1686   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1687   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1688 
1689   // Compress char[] array to byte[].
1690   void char_array_compress(Register src, Register dst, Register len,
1691                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1692                            XMMRegister tmp4, Register tmp5, Register result);
1693 
1694   // Inflate byte[] array to char[].
1695   void byte_array_inflate(Register src, Register dst, Register len,
1696                           XMMRegister tmp1, Register tmp2);
1697 
1698 
1699   void save_vector_registers();
1700   void restore_vector_registers();
1701 };
1702 
1703 /**
1704  * class SkipIfEqual:
1705  *
1706  * Instantiating this class will result in assembly code being output that will
1707  * jump around any code emitted between the creation of the instance and it's
1708  * automatic destruction at the end of a scope block, depending on the value of
1709  * the flag passed to the constructor, which will be checked at run-time.
1710  */
1711 class SkipIfEqual {
1712  private:
1713   MacroAssembler* _masm;
1714   Label _label;
1715 
1716  public:
1717    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1718    ~SkipIfEqual();
1719 };
1720 
1721 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP