1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  75   // The implementation is only non-empty for the InterpreterMacroAssembler,
  76   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  77   virtual void check_and_handle_popframe(Register java_thread);
  78   virtual void check_and_handle_earlyret(Register java_thread);
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // helpers for FPU flag access
  83   // tmp is a temporary register, if none is available use noreg
  84   void save_rax   (Register tmp);
  85   void restore_rax(Register tmp);
  86 
  87  public:
  88   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300 #if INCLUDE_ALL_GCS
 301 
 302   void g1_write_barrier_pre(Register obj,
 303                             Register pre_val,
 304                             Register thread,
 305                             Register tmp,
 306                             bool tosca_live,
 307                             bool expand_call);
 308 
 309   void g1_write_barrier_post(Register store_addr,
 310                              Register new_val,
 311                              Register thread,
 312                              Register tmp,
 313                              Register tmp2);
 314 
 315 #endif // INCLUDE_ALL_GCS
 316 
 317   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 318   void c2bool(Register x);
 319 
 320   // C++ bool manipulation
 321 
 322   void movbool(Register dst, Address src);
 323   void movbool(Address dst, bool boolconst);
 324   void movbool(Address dst, Register src);
 325   void testbool(Register dst);
 326 
 327   void load_mirror(Register mirror, Register method);
 328 
 329   // oop manipulations
 330   void load_klass(Register dst, Register src);
 331   void store_klass(Register dst, Register src);
 332 
 333   void load_heap_oop(Register dst, Address src);
 334   void load_heap_oop_not_null(Register dst, Address src);
 335   void store_heap_oop(Address dst, Register src);
 336   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 337 
 338   // Used for storing NULL. All other oop constants should be
 339   // stored using routines that take a jobject.
 340   void store_heap_oop_null(Address dst);
 341 
 342   void load_prototype_header(Register dst, Register src);
 343 
 344 #ifdef _LP64
 345   void store_klass_gap(Register dst, Register src);
 346 
 347   // This dummy is to prevent a call to store_heap_oop from
 348   // converting a zero (like NULL) into a Register by giving
 349   // the compiler two choices it can't resolve
 350 
 351   void store_heap_oop(Address dst, void* dummy);
 352 
 353   void encode_heap_oop(Register r);
 354   void decode_heap_oop(Register r);
 355   void encode_heap_oop_not_null(Register r);
 356   void decode_heap_oop_not_null(Register r);
 357   void encode_heap_oop_not_null(Register dst, Register src);
 358   void decode_heap_oop_not_null(Register dst, Register src);
 359 
 360   void set_narrow_oop(Register dst, jobject obj);
 361   void set_narrow_oop(Address dst, jobject obj);
 362   void cmp_narrow_oop(Register dst, jobject obj);
 363   void cmp_narrow_oop(Address dst, jobject obj);
 364 
 365   void encode_klass_not_null(Register r);
 366   void decode_klass_not_null(Register r);
 367   void encode_klass_not_null(Register dst, Register src);
 368   void decode_klass_not_null(Register dst, Register src);
 369   void set_narrow_klass(Register dst, Klass* k);
 370   void set_narrow_klass(Address dst, Klass* k);
 371   void cmp_narrow_klass(Register dst, Klass* k);
 372   void cmp_narrow_klass(Address dst, Klass* k);
 373 
 374   // Returns the byte size of the instructions generated by decode_klass_not_null()
 375   // when compressed klass pointers are being used.
 376   static int instr_size_for_decode_klass_not_null();
 377 
 378   // if heap base register is used - reinit it with the correct value
 379   void reinit_heapbase();
 380 
 381   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 382 
 383 #endif // _LP64
 384 
 385   // Int division/remainder for Java
 386   // (as idivl, but checks for special case as described in JVM spec.)
 387   // returns idivl instruction offset for implicit exception handling
 388   int corrected_idivl(Register reg);
 389 
 390   // Long division/remainder for Java
 391   // (as idivq, but checks for special case as described in JVM spec.)
 392   // returns idivq instruction offset for implicit exception handling
 393   int corrected_idivq(Register reg);
 394 
 395   void int3();
 396 
 397   // Long operation macros for a 32bit cpu
 398   // Long negation for Java
 399   void lneg(Register hi, Register lo);
 400 
 401   // Long multiplication for Java
 402   // (destroys contents of eax, ebx, ecx and edx)
 403   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 404 
 405   // Long shifts for Java
 406   // (semantics as described in JVM spec.)
 407   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 408   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 409 
 410   // Long compare for Java
 411   // (semantics as described in JVM spec.)
 412   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 413 
 414 
 415   // misc
 416 
 417   // Sign extension
 418   void sign_extend_short(Register reg);
 419   void sign_extend_byte(Register reg);
 420 
 421   // Division by power of 2, rounding towards 0
 422   void division_with_shift(Register reg, int shift_value);
 423 
 424   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 425   //
 426   // CF (corresponds to C0) if x < y
 427   // PF (corresponds to C2) if unordered
 428   // ZF (corresponds to C3) if x = y
 429   //
 430   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 431   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 432   void fcmp(Register tmp);
 433   // Variant of the above which allows y to be further down the stack
 434   // and which only pops x and y if specified. If pop_right is
 435   // specified then pop_left must also be specified.
 436   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 437 
 438   // Floating-point comparison for Java
 439   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 440   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 441   // (semantics as described in JVM spec.)
 442   void fcmp2int(Register dst, bool unordered_is_less);
 443   // Variant of the above which allows y to be further down the stack
 444   // and which only pops x and y if specified. If pop_right is
 445   // specified then pop_left must also be specified.
 446   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 447 
 448   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 449   // tmp is a temporary register, if none is available use noreg
 450   void fremr(Register tmp);
 451 
 452 
 453   // same as fcmp2int, but using SSE2
 454   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 455   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 456 
 457   // branch to L if FPU flag C2 is set/not set
 458   // tmp is a temporary register, if none is available use noreg
 459   void jC2 (Register tmp, Label& L);
 460   void jnC2(Register tmp, Label& L);
 461 
 462   // Pop ST (ffree & fincstp combined)
 463   void fpop();
 464 
 465   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 466   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 467   void load_float(Address src);
 468 
 469   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 470   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 471   void store_float(Address dst);
 472 
 473   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 474   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 475   void load_double(Address src);
 476 
 477   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 478   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 479   void store_double(Address dst);
 480 
 481   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 482   void push_fTOS();
 483 
 484   // pops double TOS element from CPU stack and pushes on FPU stack
 485   void pop_fTOS();
 486 
 487   void empty_FPU_stack();
 488 
 489   void push_IU_state();
 490   void pop_IU_state();
 491 
 492   void push_FPU_state();
 493   void pop_FPU_state();
 494 
 495   void push_CPU_state();
 496   void pop_CPU_state();
 497 
 498   // Round up to a power of two
 499   void round_to(Register reg, int modulus);
 500 
 501   // Callee saved registers handling
 502   void push_callee_saved_registers();
 503   void pop_callee_saved_registers();
 504 
 505   // allocation
 506   void eden_allocate(
 507     Register obj,                      // result: pointer to object after successful allocation
 508     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 509     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 510     Register t1,                       // temp register
 511     Label&   slow_case                 // continuation point if fast allocation fails
 512   );
 513   void tlab_allocate(
 514     Register obj,                      // result: pointer to object after successful allocation
 515     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 516     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 517     Register t1,                       // temp register
 518     Register t2,                       // temp register
 519     Label&   slow_case                 // continuation point if fast allocation fails
 520   );
 521   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 522   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 523 
 524   void incr_allocated_bytes(Register thread,
 525                             Register var_size_in_bytes, int con_size_in_bytes,
 526                             Register t1 = noreg);
 527 
 528   // interface method calling
 529   void lookup_interface_method(Register recv_klass,
 530                                Register intf_klass,
 531                                RegisterOrConstant itable_index,
 532                                Register method_result,
 533                                Register scan_temp,
 534                                Label& no_such_interface);
 535 
 536   // virtual method calling
 537   void lookup_virtual_method(Register recv_klass,
 538                              RegisterOrConstant vtable_index,
 539                              Register method_result);
 540 
 541   // Test sub_klass against super_klass, with fast and slow paths.
 542 
 543   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 544   // One of the three labels can be NULL, meaning take the fall-through.
 545   // If super_check_offset is -1, the value is loaded up from super_klass.
 546   // No registers are killed, except temp_reg.
 547   void check_klass_subtype_fast_path(Register sub_klass,
 548                                      Register super_klass,
 549                                      Register temp_reg,
 550                                      Label* L_success,
 551                                      Label* L_failure,
 552                                      Label* L_slow_path,
 553                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 554 
 555   // The rest of the type check; must be wired to a corresponding fast path.
 556   // It does not repeat the fast path logic, so don't use it standalone.
 557   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 558   // Updates the sub's secondary super cache as necessary.
 559   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 560   void check_klass_subtype_slow_path(Register sub_klass,
 561                                      Register super_klass,
 562                                      Register temp_reg,
 563                                      Register temp2_reg,
 564                                      Label* L_success,
 565                                      Label* L_failure,
 566                                      bool set_cond_codes = false);
 567 
 568   // Simplified, combined version, good for typical uses.
 569   // Falls through on failure.
 570   void check_klass_subtype(Register sub_klass,
 571                            Register super_klass,
 572                            Register temp_reg,
 573                            Label& L_success);
 574 
 575   // method handles (JSR 292)
 576   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 577 
 578   //----
 579   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 580 
 581   // Debugging
 582 
 583   // only if +VerifyOops
 584   // TODO: Make these macros with file and line like sparc version!
 585   void verify_oop(Register reg, const char* s = "broken oop");
 586   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 587 
 588   void in_heap_check(Register raddr, Label& done);
 589   void shenandoah_cset_check(Register raddr, Register tmp1, Register tmp2, Label& done);
 590 
 591   void _shenandoah_store_addr_check(Register dst, const char* msg, const char* file, int line);
 592   void _shenandoah_store_addr_check(Address dst, const char* msg, const char* file, int line);
 593 #define shenandoah_store_addr_check(reg) _shenandoah_store_addr_check(reg, "oop not safe for writing", __FILE__, __LINE__)
 594 
 595   void _shenandoah_store_check(Address addr, Register value, const char* msg, const char* file, int line);
 596   void _shenandoah_store_check(Register addr, Register value, const char* msg, const char* file, int line);
 597 #define shenandoah_store_check(addr, value) _shenandoah_store_check(addr, value, "oop not safe for writing", __FILE__, __LINE__)
 598 
 599   void _shenandoah_lock_check(Register dst, const char* msg, const char* file, int line);
 600 #define shenandoah_lock_check(reg) _shenandoah_lock_check(reg, "lock/oop not safe for writing", __FILE__, __LINE__)
 601 
 602   // TODO: verify method and klass metadata (compare against vptr?)
 603   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 604   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 605 
 606 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 607 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 608 
 609   // only if +VerifyFPU
 610   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 611 
 612   // Verify or restore cpu control state after JNI call
 613   void restore_cpu_control_state_after_jni();
 614 
 615   // prints msg, dumps registers and stops execution
 616   void stop(const char* msg);
 617 
 618   // prints msg and continues
 619   void warn(const char* msg);
 620 
 621   // dumps registers and other state
 622   void print_state();
 623 
 624   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 625   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 626   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 627   static void print_state64(int64_t pc, int64_t regs[]);
 628 
 629   void os_breakpoint();
 630 
 631   void untested()                                { stop("untested"); }
 632 
 633   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 634 
 635   void should_not_reach_here()                   { stop("should not reach here"); }
 636 
 637   void print_CPU_state();
 638 
 639   // Stack overflow checking
 640   void bang_stack_with_offset(int offset) {
 641     // stack grows down, caller passes positive offset
 642     assert(offset > 0, "must bang with negative offset");
 643     movl(Address(rsp, (-offset)), rax);
 644   }
 645 
 646   // Writes to stack successive pages until offset reached to check for
 647   // stack overflow + shadow pages.  Also, clobbers tmp
 648   void bang_stack_size(Register size, Register tmp);
 649 
 650   // Check for reserved stack access in method being exited (for JIT)
 651   void reserved_stack_check();
 652 
 653   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 654                                                 Register tmp,
 655                                                 int offset);
 656 
 657   // Support for serializing memory accesses between threads
 658   void serialize_memory(Register thread, Register tmp);
 659 
 660   void verify_tlab();
 661 
 662   // Biased locking support
 663   // lock_reg and obj_reg must be loaded up with the appropriate values.
 664   // swap_reg must be rax, and is killed.
 665   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 666   // be killed; if not supplied, push/pop will be used internally to
 667   // allocate a temporary (inefficient, avoid if possible).
 668   // Optional slow case is for implementations (interpreter and C1) which branch to
 669   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 670   // Returns offset of first potentially-faulting instruction for null
 671   // check info (currently consumed only by C1). If
 672   // swap_reg_contains_mark is true then returns -1 as it is assumed
 673   // the calling code has already passed any potential faults.
 674   int biased_locking_enter(Register lock_reg, Register obj_reg,
 675                            Register swap_reg, Register tmp_reg,
 676                            bool swap_reg_contains_mark,
 677                            Label& done, Label* slow_case = NULL,
 678                            BiasedLockingCounters* counters = NULL);
 679   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 680 #ifdef COMPILER2
 681   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 682   // See full desription in macroAssembler_x86.cpp.
 683   void fast_lock(Register obj, Register box, Register tmp,
 684                  Register scr, Register cx1, Register cx2,
 685                  BiasedLockingCounters* counters,
 686                  RTMLockingCounters* rtm_counters,
 687                  RTMLockingCounters* stack_rtm_counters,
 688                  Metadata* method_data,
 689                  bool use_rtm, bool profile_rtm);
 690   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 691 #if INCLUDE_RTM_OPT
 692   void rtm_counters_update(Register abort_status, Register rtm_counters);
 693   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 694   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 695                                    RTMLockingCounters* rtm_counters,
 696                                    Metadata* method_data);
 697   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 698                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 699   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 700   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 701   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 702                          Register retry_on_abort_count,
 703                          RTMLockingCounters* stack_rtm_counters,
 704                          Metadata* method_data, bool profile_rtm,
 705                          Label& DONE_LABEL, Label& IsInflated);
 706   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 707                             Register scr, Register retry_on_busy_count,
 708                             Register retry_on_abort_count,
 709                             RTMLockingCounters* rtm_counters,
 710                             Metadata* method_data, bool profile_rtm,
 711                             Label& DONE_LABEL);
 712 #endif
 713 #endif
 714 
 715   Condition negate_condition(Condition cond);
 716 
 717   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 718   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 719   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 720   // here in MacroAssembler. The major exception to this rule is call
 721 
 722   // Arithmetics
 723 
 724 
 725   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 726   void addptr(Address dst, Register src);
 727 
 728   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 729   void addptr(Register dst, int32_t src);
 730   void addptr(Register dst, Register src);
 731   void addptr(Register dst, RegisterOrConstant src) {
 732     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 733     else                   addptr(dst,       src.as_register());
 734   }
 735 
 736   void andptr(Register dst, int32_t src);
 737   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 738 
 739   void cmp8(AddressLiteral src1, int imm);
 740 
 741   // renamed to drag out the casting of address to int32_t/intptr_t
 742   void cmp32(Register src1, int32_t imm);
 743 
 744   void cmp32(AddressLiteral src1, int32_t imm);
 745   // compare reg - mem, or reg - &mem
 746   void cmp32(Register src1, AddressLiteral src2);
 747 
 748   void cmp32(Register src1, Address src2);
 749 
 750 #ifndef _LP64
 751   void cmpklass(Address dst, Metadata* obj);
 752   void cmpklass(Register dst, Metadata* obj);
 753   void cmpoop(Address dst, jobject obj);
 754   void cmpoop(Register dst, jobject obj);
 755 #endif // _LP64
 756 
 757   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 758   void cmpptr(Address src1, AddressLiteral src2);
 759 
 760   void cmpptr(Register src1, AddressLiteral src2);
 761 
 762   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 763   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 764   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 765 
 766   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 767   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 768 
 769   // cmp64 to avoild hiding cmpq
 770   void cmp64(Register src1, AddressLiteral src);
 771 
 772   void cmpxchgptr(Register reg, Address adr);
 773 
 774   // Special Shenandoah CAS implementation that handles false negatives
 775   // due to concurrent evacuation.
 776   void cmpxchg_oop_shenandoah(Register res, Address addr, Register oldval, Register newval,
 777                               bool exchange,
 778                               Register tmp1, Register tmp2);
 779 
 780   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 781 
 782 
 783   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 784   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 785 
 786 
 787   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 788 
 789   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 790 
 791   void shlptr(Register dst, int32_t shift);
 792   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 793 
 794   void shrptr(Register dst, int32_t shift);
 795   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 796 
 797   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 798   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 799 
 800   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 801 
 802   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 803   void subptr(Register dst, int32_t src);
 804   // Force generation of a 4 byte immediate value even if it fits into 8bit
 805   void subptr_imm32(Register dst, int32_t src);
 806   void subptr(Register dst, Register src);
 807   void subptr(Register dst, RegisterOrConstant src) {
 808     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 809     else                   subptr(dst,       src.as_register());
 810   }
 811 
 812   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 813   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 814 
 815   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 816   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 817 
 818   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 819 
 820 
 821 
 822   // Helper functions for statistics gathering.
 823   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 824   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 825   // Unconditional atomic increment.
 826   void atomic_incl(Address counter_addr);
 827   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 828 #ifdef _LP64
 829   void atomic_incq(Address counter_addr);
 830   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 831 #endif
 832   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 833   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 834 
 835   void lea(Register dst, AddressLiteral adr);
 836   void lea(Address dst, AddressLiteral adr);
 837   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 838 
 839   void leal32(Register dst, Address src) { leal(dst, src); }
 840 
 841   // Import other testl() methods from the parent class or else
 842   // they will be hidden by the following overriding declaration.
 843   using Assembler::testl;
 844   void testl(Register dst, AddressLiteral src);
 845 
 846   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 847   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 848   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 849   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 850 
 851   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 852   void testptr(Register src1, Register src2);
 853 
 854   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 855   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 856 
 857   // Calls
 858 
 859   void call(Label& L, relocInfo::relocType rtype);
 860   void call(Register entry);
 861 
 862   // NOTE: this call transfers to the effective address of entry NOT
 863   // the address contained by entry. This is because this is more natural
 864   // for jumps/calls.
 865   void call(AddressLiteral entry);
 866 
 867   // Emit the CompiledIC call idiom
 868   void ic_call(address entry, jint method_index = 0);
 869 
 870   // Jumps
 871 
 872   // NOTE: these jumps tranfer to the effective address of dst NOT
 873   // the address contained by dst. This is because this is more natural
 874   // for jumps/calls.
 875   void jump(AddressLiteral dst);
 876   void jump_cc(Condition cc, AddressLiteral dst);
 877 
 878   // 32bit can do a case table jump in one instruction but we no longer allow the base
 879   // to be installed in the Address class. This jump will tranfers to the address
 880   // contained in the location described by entry (not the address of entry)
 881   void jump(ArrayAddress entry);
 882 
 883   // Floating
 884 
 885   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 886   void andpd(XMMRegister dst, AddressLiteral src);
 887   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 888 
 889   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 890   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 891   void andps(XMMRegister dst, AddressLiteral src);
 892 
 893   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 894   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 895   void comiss(XMMRegister dst, AddressLiteral src);
 896 
 897   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 898   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 899   void comisd(XMMRegister dst, AddressLiteral src);
 900 
 901   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 902   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 903 
 904   void fldcw(Address src) { Assembler::fldcw(src); }
 905   void fldcw(AddressLiteral src);
 906 
 907   void fld_s(int index)   { Assembler::fld_s(index); }
 908   void fld_s(Address src) { Assembler::fld_s(src); }
 909   void fld_s(AddressLiteral src);
 910 
 911   void fld_d(Address src) { Assembler::fld_d(src); }
 912   void fld_d(AddressLiteral src);
 913 
 914   void fld_x(Address src) { Assembler::fld_x(src); }
 915   void fld_x(AddressLiteral src);
 916 
 917   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 918   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 919 
 920   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 921   void ldmxcsr(AddressLiteral src);
 922 
 923 #ifdef _LP64
 924  private:
 925   void sha256_AVX2_one_round_compute(
 926     Register  reg_old_h,
 927     Register  reg_a,
 928     Register  reg_b,
 929     Register  reg_c,
 930     Register  reg_d,
 931     Register  reg_e,
 932     Register  reg_f,
 933     Register  reg_g,
 934     Register  reg_h,
 935     int iter);
 936   void sha256_AVX2_four_rounds_compute_first(int start);
 937   void sha256_AVX2_four_rounds_compute_last(int start);
 938   void sha256_AVX2_one_round_and_sched(
 939         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 940         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 941         XMMRegister xmm_2,     /* ymm6 */
 942         XMMRegister xmm_3,     /* ymm7 */
 943         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 944         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 945         Register    reg_c,      /* edi */
 946         Register    reg_d,      /* esi */
 947         Register    reg_e,      /* r8d */
 948         Register    reg_f,      /* r9d */
 949         Register    reg_g,      /* r10d */
 950         Register    reg_h,      /* r11d */
 951         int iter);
 952 
 953   void addm(int disp, Register r1, Register r2);
 954 
 955  public:
 956   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 957                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 958                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 959                    bool multi_block, XMMRegister shuf_mask);
 960 #endif
 961 
 962   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 963                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 964                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 965                  bool multi_block);
 966 
 967 #ifdef _LP64
 968   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 969                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 970                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 971                    bool multi_block, XMMRegister shuf_mask);
 972 #else
 973   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 974                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 975                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 976                    bool multi_block);
 977 #endif
 978 
 979   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 980                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 981                 Register rax, Register rcx, Register rdx, Register tmp);
 982 
 983 #ifdef _LP64
 984   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 985                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 986                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 987 
 988   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 989                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 990                   Register rax, Register rcx, Register rdx, Register r11);
 991 
 992   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 993                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 994                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 995 
 996   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 997                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 998                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
 999                 Register tmp3, Register tmp4);
1000 
1001   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1002                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1003                 Register rax, Register rcx, Register rdx, Register tmp1,
1004                 Register tmp2, Register tmp3, Register tmp4);
1005   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1006                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1007                 Register rax, Register rcx, Register rdx, Register tmp1,
1008                 Register tmp2, Register tmp3, Register tmp4);
1009 #else
1010   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1011                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1012                 Register rax, Register rcx, Register rdx, Register tmp1);
1013 
1014   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                 Register rax, Register rcx, Register rdx, Register tmp);
1017 
1018   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1019                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1020                 Register rdx, Register tmp);
1021 
1022   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1023                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1024                 Register rax, Register rbx, Register rdx);
1025 
1026   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028                 Register rax, Register rcx, Register rdx, Register tmp);
1029 
1030   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1031                         Register edx, Register ebx, Register esi, Register edi,
1032                         Register ebp, Register esp);
1033 
1034   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1035                          Register esi, Register edi, Register ebp, Register esp);
1036 
1037   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1038                         Register edx, Register ebx, Register esi, Register edi,
1039                         Register ebp, Register esp);
1040 
1041   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1042                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1043                 Register rax, Register rcx, Register rdx, Register tmp);
1044 #endif
1045 
1046   void increase_precision();
1047   void restore_precision();
1048 
1049 private:
1050 
1051   // these are private because users should be doing movflt/movdbl
1052 
1053   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1054   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1055   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1056   void movss(XMMRegister dst, AddressLiteral src);
1057 
1058   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1059   void movlpd(XMMRegister dst, AddressLiteral src);
1060 
1061 public:
1062 
1063   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1064   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1065   void addsd(XMMRegister dst, AddressLiteral src);
1066 
1067   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1068   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1069   void addss(XMMRegister dst, AddressLiteral src);
1070 
1071   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1072   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1073   void addpd(XMMRegister dst, AddressLiteral src);
1074 
1075   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1076   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1077   void divsd(XMMRegister dst, AddressLiteral src);
1078 
1079   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1080   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1081   void divss(XMMRegister dst, AddressLiteral src);
1082 
1083   // Move Unaligned Double Quadword
1084   void movdqu(Address     dst, XMMRegister src);
1085   void movdqu(XMMRegister dst, Address src);
1086   void movdqu(XMMRegister dst, XMMRegister src);
1087   void movdqu(XMMRegister dst, AddressLiteral src);
1088   // AVX Unaligned forms
1089   void vmovdqu(Address     dst, XMMRegister src);
1090   void vmovdqu(XMMRegister dst, Address src);
1091   void vmovdqu(XMMRegister dst, XMMRegister src);
1092   void vmovdqu(XMMRegister dst, AddressLiteral src);
1093 
1094   // Move Aligned Double Quadword
1095   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1096   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1097   void movdqa(XMMRegister dst, AddressLiteral src);
1098 
1099   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1100   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1101   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1102   void movsd(XMMRegister dst, AddressLiteral src);
1103 
1104   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1105   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1106   void mulpd(XMMRegister dst, AddressLiteral src);
1107 
1108   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1109   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1110   void mulsd(XMMRegister dst, AddressLiteral src);
1111 
1112   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1113   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1114   void mulss(XMMRegister dst, AddressLiteral src);
1115 
1116   // Carry-Less Multiplication Quadword
1117   void pclmulldq(XMMRegister dst, XMMRegister src) {
1118     // 0x00 - multiply lower 64 bits [0:63]
1119     Assembler::pclmulqdq(dst, src, 0x00);
1120   }
1121   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1122     // 0x11 - multiply upper 64 bits [64:127]
1123     Assembler::pclmulqdq(dst, src, 0x11);
1124   }
1125 
1126   void pcmpeqb(XMMRegister dst, XMMRegister src);
1127   void pcmpeqw(XMMRegister dst, XMMRegister src);
1128 
1129   void pcmpestri(XMMRegister dst, Address src, int imm8);
1130   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1131 
1132   void pmovzxbw(XMMRegister dst, XMMRegister src);
1133   void pmovzxbw(XMMRegister dst, Address src);
1134 
1135   void pmovmskb(Register dst, XMMRegister src);
1136 
1137   void ptest(XMMRegister dst, XMMRegister src);
1138 
1139   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1140   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1141   void sqrtsd(XMMRegister dst, AddressLiteral src);
1142 
1143   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1144   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1145   void sqrtss(XMMRegister dst, AddressLiteral src);
1146 
1147   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1148   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1149   void subsd(XMMRegister dst, AddressLiteral src);
1150 
1151   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1152   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1153   void subss(XMMRegister dst, AddressLiteral src);
1154 
1155   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1156   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1157   void ucomiss(XMMRegister dst, AddressLiteral src);
1158 
1159   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1160   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1161   void ucomisd(XMMRegister dst, AddressLiteral src);
1162 
1163   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1164   void xorpd(XMMRegister dst, XMMRegister src);
1165   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1166   void xorpd(XMMRegister dst, AddressLiteral src);
1167 
1168   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1169   void xorps(XMMRegister dst, XMMRegister src);
1170   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1171   void xorps(XMMRegister dst, AddressLiteral src);
1172 
1173   // Shuffle Bytes
1174   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1175   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1176   void pshufb(XMMRegister dst, AddressLiteral src);
1177   // AVX 3-operands instructions
1178 
1179   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1180   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1181   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1182 
1183   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1184   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1185   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1186 
1187   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1188   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1189 
1190   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1191   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1192 
1193   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1194   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1195 
1196   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1197 
1198   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1199   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1200 
1201   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1202   void vpmovmskb(Register dst, XMMRegister src);
1203 
1204   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1205   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1206 
1207   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1208   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1209 
1210   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1211   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1212 
1213   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1214   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1215 
1216   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1217   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1218 
1219   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1220   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1221 
1222   void vptest(XMMRegister dst, XMMRegister src);
1223 
1224   void punpcklbw(XMMRegister dst, XMMRegister src);
1225   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1226 
1227   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1228   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1229 
1230   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1231   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1232   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1233 
1234   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1235   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1236   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1237 
1238   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1239   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1240   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1241 
1242   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1243   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1244   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1245 
1246   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1247   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1248   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1249 
1250   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1251   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1252   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1253 
1254   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1255   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1256   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1257 
1258   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1259   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1260   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1261 
1262   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1263   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1264 
1265   // AVX Vector instructions
1266 
1267   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1268   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1269   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1270 
1271   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1272   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1273   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1274 
1275   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1276     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1277       Assembler::vpxor(dst, nds, src, vector_len);
1278     else
1279       Assembler::vxorpd(dst, nds, src, vector_len);
1280   }
1281   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1282     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1283       Assembler::vpxor(dst, nds, src, vector_len);
1284     else
1285       Assembler::vxorpd(dst, nds, src, vector_len);
1286   }
1287 
1288   // Simple version for AVX2 256bit vectors
1289   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1290   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1291 
1292   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1293     if (UseAVX > 2) {
1294       Assembler::vinserti32x4(dst, dst, src, imm8);
1295     } else if (UseAVX > 1) {
1296       // vinserti128 is available only in AVX2
1297       Assembler::vinserti128(dst, nds, src, imm8);
1298     } else {
1299       Assembler::vinsertf128(dst, nds, src, imm8);
1300     }
1301   }
1302 
1303   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1304     if (UseAVX > 2) {
1305       Assembler::vinserti32x4(dst, dst, src, imm8);
1306     } else if (UseAVX > 1) {
1307       // vinserti128 is available only in AVX2
1308       Assembler::vinserti128(dst, nds, src, imm8);
1309     } else {
1310       Assembler::vinsertf128(dst, nds, src, imm8);
1311     }
1312   }
1313 
1314   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1315     if (UseAVX > 2) {
1316       Assembler::vextracti32x4(dst, src, imm8);
1317     } else if (UseAVX > 1) {
1318       // vextracti128 is available only in AVX2
1319       Assembler::vextracti128(dst, src, imm8);
1320     } else {
1321       Assembler::vextractf128(dst, src, imm8);
1322     }
1323   }
1324 
1325   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1326     if (UseAVX > 2) {
1327       Assembler::vextracti32x4(dst, src, imm8);
1328     } else if (UseAVX > 1) {
1329       // vextracti128 is available only in AVX2
1330       Assembler::vextracti128(dst, src, imm8);
1331     } else {
1332       Assembler::vextractf128(dst, src, imm8);
1333     }
1334   }
1335 
1336   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1337   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1338     vinserti128(dst, dst, src, 1);
1339   }
1340   void vinserti128_high(XMMRegister dst, Address src) {
1341     vinserti128(dst, dst, src, 1);
1342   }
1343   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1344     vextracti128(dst, src, 1);
1345   }
1346   void vextracti128_high(Address dst, XMMRegister src) {
1347     vextracti128(dst, src, 1);
1348   }
1349 
1350   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1351     if (UseAVX > 2) {
1352       Assembler::vinsertf32x4(dst, dst, src, 1);
1353     } else {
1354       Assembler::vinsertf128(dst, dst, src, 1);
1355     }
1356   }
1357 
1358   void vinsertf128_high(XMMRegister dst, Address src) {
1359     if (UseAVX > 2) {
1360       Assembler::vinsertf32x4(dst, dst, src, 1);
1361     } else {
1362       Assembler::vinsertf128(dst, dst, src, 1);
1363     }
1364   }
1365 
1366   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1367     if (UseAVX > 2) {
1368       Assembler::vextractf32x4(dst, src, 1);
1369     } else {
1370       Assembler::vextractf128(dst, src, 1);
1371     }
1372   }
1373 
1374   void vextractf128_high(Address dst, XMMRegister src) {
1375     if (UseAVX > 2) {
1376       Assembler::vextractf32x4(dst, src, 1);
1377     } else {
1378       Assembler::vextractf128(dst, src, 1);
1379     }
1380   }
1381 
1382   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1383   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1384     Assembler::vinserti64x4(dst, dst, src, 1);
1385   }
1386   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1387     Assembler::vinsertf64x4(dst, dst, src, 1);
1388   }
1389   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1390     Assembler::vextracti64x4(dst, src, 1);
1391   }
1392   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1393     Assembler::vextractf64x4(dst, src, 1);
1394   }
1395   void vextractf64x4_high(Address dst, XMMRegister src) {
1396     Assembler::vextractf64x4(dst, src, 1);
1397   }
1398   void vinsertf64x4_high(XMMRegister dst, Address src) {
1399     Assembler::vinsertf64x4(dst, dst, src, 1);
1400   }
1401 
1402   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1403   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1404     vinserti128(dst, dst, src, 0);
1405   }
1406   void vinserti128_low(XMMRegister dst, Address src) {
1407     vinserti128(dst, dst, src, 0);
1408   }
1409   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1410     vextracti128(dst, src, 0);
1411   }
1412   void vextracti128_low(Address dst, XMMRegister src) {
1413     vextracti128(dst, src, 0);
1414   }
1415 
1416   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1417     if (UseAVX > 2) {
1418       Assembler::vinsertf32x4(dst, dst, src, 0);
1419     } else {
1420       Assembler::vinsertf128(dst, dst, src, 0);
1421     }
1422   }
1423 
1424   void vinsertf128_low(XMMRegister dst, Address src) {
1425     if (UseAVX > 2) {
1426       Assembler::vinsertf32x4(dst, dst, src, 0);
1427     } else {
1428       Assembler::vinsertf128(dst, dst, src, 0);
1429     }
1430   }
1431 
1432   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1433     if (UseAVX > 2) {
1434       Assembler::vextractf32x4(dst, src, 0);
1435     } else {
1436       Assembler::vextractf128(dst, src, 0);
1437     }
1438   }
1439 
1440   void vextractf128_low(Address dst, XMMRegister src) {
1441     if (UseAVX > 2) {
1442       Assembler::vextractf32x4(dst, src, 0);
1443     } else {
1444       Assembler::vextractf128(dst, src, 0);
1445     }
1446   }
1447 
1448   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1449   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1450     Assembler::vinserti64x4(dst, dst, src, 0);
1451   }
1452   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1453     Assembler::vinsertf64x4(dst, dst, src, 0);
1454   }
1455   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1456     Assembler::vextracti64x4(dst, src, 0);
1457   }
1458   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1459     Assembler::vextractf64x4(dst, src, 0);
1460   }
1461   void vextractf64x4_low(Address dst, XMMRegister src) {
1462     Assembler::vextractf64x4(dst, src, 0);
1463   }
1464   void vinsertf64x4_low(XMMRegister dst, Address src) {
1465     Assembler::vinsertf64x4(dst, dst, src, 0);
1466   }
1467 
1468   // Carry-Less Multiplication Quadword
1469   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1470     // 0x00 - multiply lower 64 bits [0:63]
1471     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1472   }
1473   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1474     // 0x11 - multiply upper 64 bits [64:127]
1475     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1476   }
1477 
1478   // Data
1479 
1480   void cmov32( Condition cc, Register dst, Address  src);
1481   void cmov32( Condition cc, Register dst, Register src);
1482 
1483   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1484 
1485   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1486   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1487 
1488   void movoop(Register dst, jobject obj);
1489   void movoop(Address dst, jobject obj);
1490 
1491   void mov_metadata(Register dst, Metadata* obj);
1492   void mov_metadata(Address dst, Metadata* obj);
1493 
1494   void movptr(ArrayAddress dst, Register src);
1495   // can this do an lea?
1496   void movptr(Register dst, ArrayAddress src);
1497 
1498   void movptr(Register dst, Address src);
1499 
1500 #ifdef _LP64
1501   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1502 #else
1503   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1504 #endif
1505 
1506   void movptr(Register dst, intptr_t src);
1507   void movptr(Register dst, Register src);
1508   void movptr(Address dst, intptr_t src);
1509 
1510   void movptr(Address dst, Register src);
1511 
1512   void movptr(Register dst, RegisterOrConstant src) {
1513     if (src.is_constant()) movptr(dst, src.as_constant());
1514     else                   movptr(dst, src.as_register());
1515   }
1516 
1517 #ifdef _LP64
1518   // Generally the next two are only used for moving NULL
1519   // Although there are situations in initializing the mark word where
1520   // they could be used. They are dangerous.
1521 
1522   // They only exist on LP64 so that int32_t and intptr_t are not the same
1523   // and we have ambiguous declarations.
1524 
1525   void movptr(Address dst, int32_t imm32);
1526   void movptr(Register dst, int32_t imm32);
1527 #endif // _LP64
1528 
1529   // to avoid hiding movl
1530   void mov32(AddressLiteral dst, Register src);
1531   void mov32(Register dst, AddressLiteral src);
1532 
1533   // to avoid hiding movb
1534   void movbyte(ArrayAddress dst, int src);
1535 
1536   // Import other mov() methods from the parent class or else
1537   // they will be hidden by the following overriding declaration.
1538   using Assembler::movdl;
1539   using Assembler::movq;
1540   void movdl(XMMRegister dst, AddressLiteral src);
1541   void movq(XMMRegister dst, AddressLiteral src);
1542 
1543   // Can push value or effective address
1544   void pushptr(AddressLiteral src);
1545 
1546   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1547   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1548 
1549   void pushoop(jobject obj);
1550   void pushklass(Metadata* obj);
1551 
1552   // sign extend as need a l to ptr sized element
1553   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1554   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1555 
1556   // C2 compiled method's prolog code.
1557   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1558 
1559   // clear memory of size 'cnt' qwords, starting at 'base';
1560   // if 'is_large' is set, do not try to produce short loop
1561   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1562 
1563 #ifdef COMPILER2
1564   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1565                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1566 
1567   // IndexOf strings.
1568   // Small strings are loaded through stack if they cross page boundary.
1569   void string_indexof(Register str1, Register str2,
1570                       Register cnt1, Register cnt2,
1571                       int int_cnt2,  Register result,
1572                       XMMRegister vec, Register tmp,
1573                       int ae);
1574 
1575   // IndexOf for constant substrings with size >= 8 elements
1576   // which don't need to be loaded through stack.
1577   void string_indexofC8(Register str1, Register str2,
1578                       Register cnt1, Register cnt2,
1579                       int int_cnt2,  Register result,
1580                       XMMRegister vec, Register tmp,
1581                       int ae);
1582 
1583     // Smallest code: we don't need to load through stack,
1584     // check string tail.
1585 
1586   // helper function for string_compare
1587   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1588                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1589                           Address::ScaleFactor scale2, Register index, int ae);
1590   // Compare strings.
1591   void string_compare(Register str1, Register str2,
1592                       Register cnt1, Register cnt2, Register result,
1593                       XMMRegister vec1, int ae);
1594 
1595   // Search for Non-ASCII character (Negative byte value) in a byte array,
1596   // return true if it has any and false otherwise.
1597   void has_negatives(Register ary1, Register len,
1598                      Register result, Register tmp1,
1599                      XMMRegister vec1, XMMRegister vec2);
1600 
1601   // Compare char[] or byte[] arrays.
1602   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1603                      Register limit, Register result, Register chr,
1604                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1605 
1606 #endif
1607 
1608   // Fill primitive arrays
1609   void generate_fill(BasicType t, bool aligned,
1610                      Register to, Register value, Register count,
1611                      Register rtmp, XMMRegister xtmp);
1612 
1613   void encode_iso_array(Register src, Register dst, Register len,
1614                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1615                         XMMRegister tmp4, Register tmp5, Register result);
1616 
1617 #ifdef _LP64
1618   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1619   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1620                              Register y, Register y_idx, Register z,
1621                              Register carry, Register product,
1622                              Register idx, Register kdx);
1623   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1624                               Register yz_idx, Register idx,
1625                               Register carry, Register product, int offset);
1626   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1627                                     Register carry, Register carry2,
1628                                     Register idx, Register jdx,
1629                                     Register yz_idx1, Register yz_idx2,
1630                                     Register tmp, Register tmp3, Register tmp4);
1631   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1632                                Register yz_idx, Register idx, Register jdx,
1633                                Register carry, Register product,
1634                                Register carry2);
1635   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1636                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1637   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1638                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1639   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1640                             Register tmp2);
1641   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1642                        Register rdxReg, Register raxReg);
1643   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1644   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1645                        Register tmp3, Register tmp4);
1646   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1647                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1648 
1649   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1650                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1651                Register raxReg);
1652   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1653                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1654                Register raxReg);
1655   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1656                            Register result, Register tmp1, Register tmp2,
1657                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1658 #endif
1659 
1660   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1661   void update_byte_crc32(Register crc, Register val, Register table);
1662   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1663   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1664   // Note on a naming convention:
1665   // Prefix w = register only used on a Westmere+ architecture
1666   // Prefix n = register only used on a Nehalem architecture
1667 #ifdef _LP64
1668   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1669                        Register tmp1, Register tmp2, Register tmp3);
1670 #else
1671   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1672                        Register tmp1, Register tmp2, Register tmp3,
1673                        XMMRegister xtmp1, XMMRegister xtmp2);
1674 #endif
1675   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1676                         Register in_out,
1677                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1678                         XMMRegister w_xtmp2,
1679                         Register tmp1,
1680                         Register n_tmp2, Register n_tmp3);
1681   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1682                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1683                        Register tmp1, Register tmp2,
1684                        Register n_tmp3);
1685   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1686                          Register in_out1, Register in_out2, Register in_out3,
1687                          Register tmp1, Register tmp2, Register tmp3,
1688                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1689                          Register tmp4, Register tmp5,
1690                          Register n_tmp6);
1691   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1692                             Register tmp1, Register tmp2, Register tmp3,
1693                             Register tmp4, Register tmp5, Register tmp6,
1694                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1695                             bool is_pclmulqdq_supported);
1696   // Fold 128-bit data chunk
1697   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1698   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1699   // Fold 8-bit data
1700   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1701   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1702 
1703   // Compress char[] array to byte[].
1704   void char_array_compress(Register src, Register dst, Register len,
1705                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1706                            XMMRegister tmp4, Register tmp5, Register result);
1707 
1708   // Inflate byte[] array to char[].
1709   void byte_array_inflate(Register src, Register dst, Register len,
1710                           XMMRegister tmp1, Register tmp2);
1711 
1712 
1713   void save_vector_registers();
1714   void restore_vector_registers();
1715 };
1716 
1717 /**
1718  * class SkipIfEqual:
1719  *
1720  * Instantiating this class will result in assembly code being output that will
1721  * jump around any code emitted between the creation of the instance and it's
1722  * automatic destruction at the end of a scope block, depending on the value of
1723  * the flag passed to the constructor, which will be checked at run-time.
1724  */
1725 class SkipIfEqual {
1726  private:
1727   MacroAssembler* _masm;
1728   Label _label;
1729 
1730  public:
1731    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1732    ~SkipIfEqual();
1733 };
1734 
1735 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP