1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/referencePendingListLocker.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvmtifiles/jvmtiEnv.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logConfiguration.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.inline.hpp"
  50 #include "oops/instanceKlass.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/symbol.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/fprofiler.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/globals.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/interfaceSupport.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jniPeriodicChecker.hpp"
  74 #include "runtime/timerTrace.hpp"
  75 #include "runtime/memprofiler.hpp"
  76 #include "runtime/mutexLocker.hpp"
  77 #include "runtime/objectMonitor.hpp"
  78 #include "runtime/orderAccess.inline.hpp"
  79 #include "runtime/osThread.hpp"
  80 #include "runtime/safepoint.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/statSampler.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/sweeper.hpp"
  85 #include "runtime/task.hpp"
  86 #include "runtime/thread.inline.hpp"
  87 #include "runtime/threadCritical.hpp"
  88 #include "runtime/vframe.hpp"
  89 #include "runtime/vframeArray.hpp"
  90 #include "runtime/vframe_hp.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "runtime/vm_operations.hpp"
  93 #include "runtime/vm_version.hpp"
  94 #include "services/attachListener.hpp"
  95 #include "services/management.hpp"
  96 #include "services/memTracker.hpp"
  97 #include "services/threadService.hpp"
  98 #include "trace/traceMacros.hpp"
  99 #include "trace/tracing.hpp"
 100 #include "utilities/defaultStream.hpp"
 101 #include "utilities/dtrace.hpp"
 102 #include "utilities/events.hpp"
 103 #include "utilities/macros.hpp"
 104 #include "utilities/preserveException.hpp"
 105 #if INCLUDE_ALL_GCS
 106 #include "gc/shenandoah/shenandoahConcurrentThread.hpp"
 107 #include "gc/cms/concurrentMarkSweepThread.hpp"
 108 #include "gc/g1/concurrentMarkThread.inline.hpp"
 109 #include "gc/parallel/pcTasks.hpp"
 110 #endif // INCLUDE_ALL_GCS
 111 #if INCLUDE_JVMCI
 112 #include "jvmci/jvmciCompiler.hpp"
 113 #include "jvmci/jvmciRuntime.hpp"
 114 #endif
 115 #ifdef COMPILER1
 116 #include "c1/c1_Compiler.hpp"
 117 #endif
 118 #ifdef COMPILER2
 119 #include "opto/c2compiler.hpp"
 120 #include "opto/idealGraphPrinter.hpp"
 121 #endif
 122 #if INCLUDE_RTM_OPT
 123 #include "runtime/rtmLocking.hpp"
 124 #endif
 125 
 126 // Initialization after module runtime initialization
 127 void universe_post_module_init();  // must happen after call_initPhase2
 128 
 129 #ifdef DTRACE_ENABLED
 130 
 131 // Only bother with this argument setup if dtrace is available
 132 
 133   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 134   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 135 
 136   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 137     {                                                                      \
 138       ResourceMark rm(this);                                               \
 139       int len = 0;                                                         \
 140       const char* name = (javathread)->get_thread_name();                  \
 141       len = strlen(name);                                                  \
 142       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 143         (char *) name, len,                                                \
 144         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 145         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 146         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 147     }
 148 
 149 #else //  ndef DTRACE_ENABLED
 150 
 151   #define DTRACE_THREAD_PROBE(probe, javathread)
 152 
 153 #endif // ndef DTRACE_ENABLED
 154 
 155 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 156 // Current thread is maintained as a thread-local variable
 157 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 158 #endif
 159 // Class hierarchy
 160 // - Thread
 161 //   - VMThread
 162 //   - WatcherThread
 163 //   - ConcurrentMarkSweepThread
 164 //   - JavaThread
 165 //     - CompilerThread
 166 
 167 // ======= Thread ========
 168 // Support for forcing alignment of thread objects for biased locking
 169 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 170   if (UseBiasedLocking) {
 171     const int alignment = markOopDesc::biased_lock_alignment;
 172     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 173     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 174                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 175                                                          AllocFailStrategy::RETURN_NULL);
 176     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 177     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 178            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 179            "JavaThread alignment code overflowed allocated storage");
 180     if (aligned_addr != real_malloc_addr) {
 181       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 182                               p2i(real_malloc_addr),
 183                               p2i(aligned_addr));
 184     }
 185     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 186     return aligned_addr;
 187   } else {
 188     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 189                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 190   }
 191 }
 192 
 193 void Thread::operator delete(void* p) {
 194   if (UseBiasedLocking) {
 195     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 196     FreeHeap(real_malloc_addr);
 197   } else {
 198     FreeHeap(p);
 199   }
 200 }
 201 
 202 
 203 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 204 // JavaThread
 205 
 206 
 207 Thread::Thread() {
 208   // stack and get_thread
 209   set_stack_base(NULL);
 210   set_stack_size(0);
 211   set_self_raw_id(0);
 212   set_lgrp_id(-1);
 213   DEBUG_ONLY(clear_suspendible_thread();)
 214 
 215   // allocated data structures
 216   set_osthread(NULL);
 217   set_resource_area(new (mtThread)ResourceArea());
 218   DEBUG_ONLY(_current_resource_mark = NULL;)
 219   set_handle_area(new (mtThread) HandleArea(NULL));
 220   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 221   set_active_handles(NULL);
 222   set_free_handle_block(NULL);
 223   set_last_handle_mark(NULL);
 224 
 225   // This initial value ==> never claimed.
 226   _oops_do_parity = 0;
 227 
 228   // the handle mark links itself to last_handle_mark
 229   new HandleMark(this);
 230 
 231   // plain initialization
 232   debug_only(_owned_locks = NULL;)
 233   debug_only(_allow_allocation_count = 0;)
 234   NOT_PRODUCT(_allow_safepoint_count = 0;)
 235   NOT_PRODUCT(_skip_gcalot = false;)
 236   _jvmti_env_iteration_count = 0;
 237   set_allocated_bytes(0);
 238   _vm_operation_started_count = 0;
 239   _vm_operation_completed_count = 0;
 240   _current_pending_monitor = NULL;
 241   _current_pending_monitor_is_from_java = true;
 242   _current_waiting_monitor = NULL;
 243   _num_nested_signal = 0;
 244   omFreeList = NULL;
 245   omFreeCount = 0;
 246   omFreeProvision = 32;
 247   omInUseList = NULL;
 248   omInUseCount = 0;
 249 
 250 #ifdef ASSERT
 251   _visited_for_critical_count = false;
 252 #endif
 253 
 254   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 255                          Monitor::_safepoint_check_sometimes);
 256   _suspend_flags = 0;
 257 
 258   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 259   _hashStateX = os::random();
 260   _hashStateY = 842502087;
 261   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 262   _hashStateW = 273326509;
 263 
 264   _OnTrap   = 0;
 265   _schedctl = NULL;
 266   _Stalled  = 0;
 267   _TypeTag  = 0x2BAD;
 268 
 269   // Many of the following fields are effectively final - immutable
 270   // Note that nascent threads can't use the Native Monitor-Mutex
 271   // construct until the _MutexEvent is initialized ...
 272   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 273   // we might instead use a stack of ParkEvents that we could provision on-demand.
 274   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 275   // and ::Release()
 276   _ParkEvent   = ParkEvent::Allocate(this);
 277   _SleepEvent  = ParkEvent::Allocate(this);
 278   _MutexEvent  = ParkEvent::Allocate(this);
 279   _MuxEvent    = ParkEvent::Allocate(this);
 280 
 281 #ifdef CHECK_UNHANDLED_OOPS
 282   if (CheckUnhandledOops) {
 283     _unhandled_oops = new UnhandledOops(this);
 284   }
 285 #endif // CHECK_UNHANDLED_OOPS
 286 #ifdef ASSERT
 287   if (UseBiasedLocking) {
 288     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 289     assert(this == _real_malloc_address ||
 290            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 291            "bug in forced alignment of thread objects");
 292   }
 293 #endif // ASSERT
 294 }
 295 
 296 void Thread::initialize_thread_current() {
 297 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 298   assert(_thr_current == NULL, "Thread::current already initialized");
 299   _thr_current = this;
 300 #endif
 301   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 302   ThreadLocalStorage::set_thread(this);
 303   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 304 }
 305 
 306 void Thread::clear_thread_current() {
 307   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 308 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 309   _thr_current = NULL;
 310 #endif
 311   ThreadLocalStorage::set_thread(NULL);
 312 }
 313 
 314 void Thread::record_stack_base_and_size() {
 315   set_stack_base(os::current_stack_base());
 316   set_stack_size(os::current_stack_size());
 317   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 318   // in initialize_thread(). Without the adjustment, stack size is
 319   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 320   // So far, only Solaris has real implementation of initialize_thread().
 321   //
 322   // set up any platform-specific state.
 323   os::initialize_thread(this);
 324 
 325   // Set stack limits after thread is initialized.
 326   if (is_Java_thread()) {
 327     ((JavaThread*) this)->set_stack_overflow_limit();
 328     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 329   }
 330 #if INCLUDE_NMT
 331   // record thread's native stack, stack grows downward
 332   MemTracker::record_thread_stack(stack_end(), stack_size());
 333 #endif // INCLUDE_NMT
 334   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 335     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 336     os::current_thread_id(), p2i(stack_base() - stack_size()),
 337     p2i(stack_base()), stack_size()/1024);
 338 }
 339 
 340 
 341 Thread::~Thread() {
 342   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 343   ObjectSynchronizer::omFlush(this);
 344 
 345   EVENT_THREAD_DESTRUCT(this);
 346 
 347   // stack_base can be NULL if the thread is never started or exited before
 348   // record_stack_base_and_size called. Although, we would like to ensure
 349   // that all started threads do call record_stack_base_and_size(), there is
 350   // not proper way to enforce that.
 351 #if INCLUDE_NMT
 352   if (_stack_base != NULL) {
 353     MemTracker::release_thread_stack(stack_end(), stack_size());
 354 #ifdef ASSERT
 355     set_stack_base(NULL);
 356 #endif
 357   }
 358 #endif // INCLUDE_NMT
 359 
 360   // deallocate data structures
 361   delete resource_area();
 362   // since the handle marks are using the handle area, we have to deallocated the root
 363   // handle mark before deallocating the thread's handle area,
 364   assert(last_handle_mark() != NULL, "check we have an element");
 365   delete last_handle_mark();
 366   assert(last_handle_mark() == NULL, "check we have reached the end");
 367 
 368   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 369   // We NULL out the fields for good hygiene.
 370   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 371   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 372   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 373   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 374 
 375   delete handle_area();
 376   delete metadata_handles();
 377 
 378   // SR_handler uses this as a termination indicator -
 379   // needs to happen before os::free_thread()
 380   delete _SR_lock;
 381   _SR_lock = NULL;
 382 
 383   // osthread() can be NULL, if creation of thread failed.
 384   if (osthread() != NULL) os::free_thread(osthread());
 385 
 386   // clear Thread::current if thread is deleting itself.
 387   // Needed to ensure JNI correctly detects non-attached threads.
 388   if (this == Thread::current()) {
 389     clear_thread_current();
 390   }
 391 
 392   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 393 }
 394 
 395 // NOTE: dummy function for assertion purpose.
 396 void Thread::run() {
 397   ShouldNotReachHere();
 398 }
 399 
 400 #ifdef ASSERT
 401 // Private method to check for dangling thread pointer
 402 void check_for_dangling_thread_pointer(Thread *thread) {
 403   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 404          "possibility of dangling Thread pointer");
 405 }
 406 #endif
 407 
 408 ThreadPriority Thread::get_priority(const Thread* const thread) {
 409   ThreadPriority priority;
 410   // Can return an error!
 411   (void)os::get_priority(thread, priority);
 412   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 413   return priority;
 414 }
 415 
 416 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 417   debug_only(check_for_dangling_thread_pointer(thread);)
 418   // Can return an error!
 419   (void)os::set_priority(thread, priority);
 420 }
 421 
 422 
 423 void Thread::start(Thread* thread) {
 424   // Start is different from resume in that its safety is guaranteed by context or
 425   // being called from a Java method synchronized on the Thread object.
 426   if (!DisableStartThread) {
 427     if (thread->is_Java_thread()) {
 428       // Initialize the thread state to RUNNABLE before starting this thread.
 429       // Can not set it after the thread started because we do not know the
 430       // exact thread state at that time. It could be in MONITOR_WAIT or
 431       // in SLEEPING or some other state.
 432       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 433                                           java_lang_Thread::RUNNABLE);
 434     }
 435     os::start_thread(thread);
 436   }
 437 }
 438 
 439 // Enqueue a VM_Operation to do the job for us - sometime later
 440 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 441   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 442   VMThread::execute(vm_stop);
 443 }
 444 
 445 
 446 // Check if an external suspend request has completed (or has been
 447 // cancelled). Returns true if the thread is externally suspended and
 448 // false otherwise.
 449 //
 450 // The bits parameter returns information about the code path through
 451 // the routine. Useful for debugging:
 452 //
 453 // set in is_ext_suspend_completed():
 454 // 0x00000001 - routine was entered
 455 // 0x00000010 - routine return false at end
 456 // 0x00000100 - thread exited (return false)
 457 // 0x00000200 - suspend request cancelled (return false)
 458 // 0x00000400 - thread suspended (return true)
 459 // 0x00001000 - thread is in a suspend equivalent state (return true)
 460 // 0x00002000 - thread is native and walkable (return true)
 461 // 0x00004000 - thread is native_trans and walkable (needed retry)
 462 //
 463 // set in wait_for_ext_suspend_completion():
 464 // 0x00010000 - routine was entered
 465 // 0x00020000 - suspend request cancelled before loop (return false)
 466 // 0x00040000 - thread suspended before loop (return true)
 467 // 0x00080000 - suspend request cancelled in loop (return false)
 468 // 0x00100000 - thread suspended in loop (return true)
 469 // 0x00200000 - suspend not completed during retry loop (return false)
 470 
 471 // Helper class for tracing suspend wait debug bits.
 472 //
 473 // 0x00000100 indicates that the target thread exited before it could
 474 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 475 // 0x00080000 each indicate a cancelled suspend request so they don't
 476 // count as wait failures either.
 477 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 478 
 479 class TraceSuspendDebugBits : public StackObj {
 480  private:
 481   JavaThread * jt;
 482   bool         is_wait;
 483   bool         called_by_wait;  // meaningful when !is_wait
 484   uint32_t *   bits;
 485 
 486  public:
 487   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 488                         uint32_t *_bits) {
 489     jt             = _jt;
 490     is_wait        = _is_wait;
 491     called_by_wait = _called_by_wait;
 492     bits           = _bits;
 493   }
 494 
 495   ~TraceSuspendDebugBits() {
 496     if (!is_wait) {
 497 #if 1
 498       // By default, don't trace bits for is_ext_suspend_completed() calls.
 499       // That trace is very chatty.
 500       return;
 501 #else
 502       if (!called_by_wait) {
 503         // If tracing for is_ext_suspend_completed() is enabled, then only
 504         // trace calls to it from wait_for_ext_suspend_completion()
 505         return;
 506       }
 507 #endif
 508     }
 509 
 510     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 511       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 512         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 513         ResourceMark rm;
 514 
 515         tty->print_cr(
 516                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 517                       jt->get_thread_name(), *bits);
 518 
 519         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 520       }
 521     }
 522   }
 523 };
 524 #undef DEBUG_FALSE_BITS
 525 
 526 
 527 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 528                                           uint32_t *bits) {
 529   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 530 
 531   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 532   bool do_trans_retry;           // flag to force the retry
 533 
 534   *bits |= 0x00000001;
 535 
 536   do {
 537     do_trans_retry = false;
 538 
 539     if (is_exiting()) {
 540       // Thread is in the process of exiting. This is always checked
 541       // first to reduce the risk of dereferencing a freed JavaThread.
 542       *bits |= 0x00000100;
 543       return false;
 544     }
 545 
 546     if (!is_external_suspend()) {
 547       // Suspend request is cancelled. This is always checked before
 548       // is_ext_suspended() to reduce the risk of a rogue resume
 549       // confusing the thread that made the suspend request.
 550       *bits |= 0x00000200;
 551       return false;
 552     }
 553 
 554     if (is_ext_suspended()) {
 555       // thread is suspended
 556       *bits |= 0x00000400;
 557       return true;
 558     }
 559 
 560     // Now that we no longer do hard suspends of threads running
 561     // native code, the target thread can be changing thread state
 562     // while we are in this routine:
 563     //
 564     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 565     //
 566     // We save a copy of the thread state as observed at this moment
 567     // and make our decision about suspend completeness based on the
 568     // copy. This closes the race where the thread state is seen as
 569     // _thread_in_native_trans in the if-thread_blocked check, but is
 570     // seen as _thread_blocked in if-thread_in_native_trans check.
 571     JavaThreadState save_state = thread_state();
 572 
 573     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 574       // If the thread's state is _thread_blocked and this blocking
 575       // condition is known to be equivalent to a suspend, then we can
 576       // consider the thread to be externally suspended. This means that
 577       // the code that sets _thread_blocked has been modified to do
 578       // self-suspension if the blocking condition releases. We also
 579       // used to check for CONDVAR_WAIT here, but that is now covered by
 580       // the _thread_blocked with self-suspension check.
 581       //
 582       // Return true since we wouldn't be here unless there was still an
 583       // external suspend request.
 584       *bits |= 0x00001000;
 585       return true;
 586     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 587       // Threads running native code will self-suspend on native==>VM/Java
 588       // transitions. If its stack is walkable (should always be the case
 589       // unless this function is called before the actual java_suspend()
 590       // call), then the wait is done.
 591       *bits |= 0x00002000;
 592       return true;
 593     } else if (!called_by_wait && !did_trans_retry &&
 594                save_state == _thread_in_native_trans &&
 595                frame_anchor()->walkable()) {
 596       // The thread is transitioning from thread_in_native to another
 597       // thread state. check_safepoint_and_suspend_for_native_trans()
 598       // will force the thread to self-suspend. If it hasn't gotten
 599       // there yet we may have caught the thread in-between the native
 600       // code check above and the self-suspend. Lucky us. If we were
 601       // called by wait_for_ext_suspend_completion(), then it
 602       // will be doing the retries so we don't have to.
 603       //
 604       // Since we use the saved thread state in the if-statement above,
 605       // there is a chance that the thread has already transitioned to
 606       // _thread_blocked by the time we get here. In that case, we will
 607       // make a single unnecessary pass through the logic below. This
 608       // doesn't hurt anything since we still do the trans retry.
 609 
 610       *bits |= 0x00004000;
 611 
 612       // Once the thread leaves thread_in_native_trans for another
 613       // thread state, we break out of this retry loop. We shouldn't
 614       // need this flag to prevent us from getting back here, but
 615       // sometimes paranoia is good.
 616       did_trans_retry = true;
 617 
 618       // We wait for the thread to transition to a more usable state.
 619       for (int i = 1; i <= SuspendRetryCount; i++) {
 620         // We used to do an "os::yield_all(i)" call here with the intention
 621         // that yielding would increase on each retry. However, the parameter
 622         // is ignored on Linux which means the yield didn't scale up. Waiting
 623         // on the SR_lock below provides a much more predictable scale up for
 624         // the delay. It also provides a simple/direct point to check for any
 625         // safepoint requests from the VMThread
 626 
 627         // temporarily drops SR_lock while doing wait with safepoint check
 628         // (if we're a JavaThread - the WatcherThread can also call this)
 629         // and increase delay with each retry
 630         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 631 
 632         // check the actual thread state instead of what we saved above
 633         if (thread_state() != _thread_in_native_trans) {
 634           // the thread has transitioned to another thread state so
 635           // try all the checks (except this one) one more time.
 636           do_trans_retry = true;
 637           break;
 638         }
 639       } // end retry loop
 640 
 641 
 642     }
 643   } while (do_trans_retry);
 644 
 645   *bits |= 0x00000010;
 646   return false;
 647 }
 648 
 649 // Wait for an external suspend request to complete (or be cancelled).
 650 // Returns true if the thread is externally suspended and false otherwise.
 651 //
 652 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 653                                                  uint32_t *bits) {
 654   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 655                              false /* !called_by_wait */, bits);
 656 
 657   // local flag copies to minimize SR_lock hold time
 658   bool is_suspended;
 659   bool pending;
 660   uint32_t reset_bits;
 661 
 662   // set a marker so is_ext_suspend_completed() knows we are the caller
 663   *bits |= 0x00010000;
 664 
 665   // We use reset_bits to reinitialize the bits value at the top of
 666   // each retry loop. This allows the caller to make use of any
 667   // unused bits for their own marking purposes.
 668   reset_bits = *bits;
 669 
 670   {
 671     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 672     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 673                                             delay, bits);
 674     pending = is_external_suspend();
 675   }
 676   // must release SR_lock to allow suspension to complete
 677 
 678   if (!pending) {
 679     // A cancelled suspend request is the only false return from
 680     // is_ext_suspend_completed() that keeps us from entering the
 681     // retry loop.
 682     *bits |= 0x00020000;
 683     return false;
 684   }
 685 
 686   if (is_suspended) {
 687     *bits |= 0x00040000;
 688     return true;
 689   }
 690 
 691   for (int i = 1; i <= retries; i++) {
 692     *bits = reset_bits;  // reinit to only track last retry
 693 
 694     // We used to do an "os::yield_all(i)" call here with the intention
 695     // that yielding would increase on each retry. However, the parameter
 696     // is ignored on Linux which means the yield didn't scale up. Waiting
 697     // on the SR_lock below provides a much more predictable scale up for
 698     // the delay. It also provides a simple/direct point to check for any
 699     // safepoint requests from the VMThread
 700 
 701     {
 702       MutexLocker ml(SR_lock());
 703       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 704       // can also call this)  and increase delay with each retry
 705       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 706 
 707       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 708                                               delay, bits);
 709 
 710       // It is possible for the external suspend request to be cancelled
 711       // (by a resume) before the actual suspend operation is completed.
 712       // Refresh our local copy to see if we still need to wait.
 713       pending = is_external_suspend();
 714     }
 715 
 716     if (!pending) {
 717       // A cancelled suspend request is the only false return from
 718       // is_ext_suspend_completed() that keeps us from staying in the
 719       // retry loop.
 720       *bits |= 0x00080000;
 721       return false;
 722     }
 723 
 724     if (is_suspended) {
 725       *bits |= 0x00100000;
 726       return true;
 727     }
 728   } // end retry loop
 729 
 730   // thread did not suspend after all our retries
 731   *bits |= 0x00200000;
 732   return false;
 733 }
 734 
 735 #ifndef PRODUCT
 736 void JavaThread::record_jump(address target, address instr, const char* file,
 737                              int line) {
 738 
 739   // This should not need to be atomic as the only way for simultaneous
 740   // updates is via interrupts. Even then this should be rare or non-existent
 741   // and we don't care that much anyway.
 742 
 743   int index = _jmp_ring_index;
 744   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 745   _jmp_ring[index]._target = (intptr_t) target;
 746   _jmp_ring[index]._instruction = (intptr_t) instr;
 747   _jmp_ring[index]._file = file;
 748   _jmp_ring[index]._line = line;
 749 }
 750 #endif // PRODUCT
 751 
 752 // Called by flat profiler
 753 // Callers have already called wait_for_ext_suspend_completion
 754 // The assertion for that is currently too complex to put here:
 755 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 756   bool gotframe = false;
 757   // self suspension saves needed state.
 758   if (has_last_Java_frame() && _anchor.walkable()) {
 759     *_fr = pd_last_frame();
 760     gotframe = true;
 761   }
 762   return gotframe;
 763 }
 764 
 765 void Thread::interrupt(Thread* thread) {
 766   debug_only(check_for_dangling_thread_pointer(thread);)
 767   os::interrupt(thread);
 768 }
 769 
 770 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 771   debug_only(check_for_dangling_thread_pointer(thread);)
 772   // Note:  If clear_interrupted==false, this simply fetches and
 773   // returns the value of the field osthread()->interrupted().
 774   return os::is_interrupted(thread, clear_interrupted);
 775 }
 776 
 777 
 778 // GC Support
 779 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 780   jint thread_parity = _oops_do_parity;
 781   if (thread_parity != strong_roots_parity) {
 782     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 783     if (res == thread_parity) {
 784       return true;
 785     } else {
 786       guarantee(res == strong_roots_parity, "Or else what?");
 787       return false;
 788     }
 789   }
 790   return false;
 791 }
 792 
 793 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 794   active_handles()->oops_do(f);
 795   // Do oop for ThreadShadow
 796   f->do_oop((oop*)&_pending_exception);
 797   handle_area()->oops_do(f);
 798 }
 799 
 800 void Thread::metadata_handles_do(void f(Metadata*)) {
 801   // Only walk the Handles in Thread.
 802   if (metadata_handles() != NULL) {
 803     for (int i = 0; i< metadata_handles()->length(); i++) {
 804       f(metadata_handles()->at(i));
 805     }
 806   }
 807 }
 808 
 809 void Thread::print_on(outputStream* st) const {
 810   // get_priority assumes osthread initialized
 811   if (osthread() != NULL) {
 812     int os_prio;
 813     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 814       st->print("os_prio=%d ", os_prio);
 815     }
 816     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 817     ext().print_on(st);
 818     osthread()->print_on(st);
 819   }
 820   debug_only(if (WizardMode) print_owned_locks_on(st);)
 821 }
 822 
 823 // Thread::print_on_error() is called by fatal error handler. Don't use
 824 // any lock or allocate memory.
 825 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 826   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 827 
 828   if (is_VM_thread())                 { st->print("VMThread"); }
 829   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 830   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 831   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 832   else                                { st->print("Thread"); }
 833 
 834   if (is_Named_thread()) {
 835     st->print(" \"%s\"", name());
 836   }
 837 
 838   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 839             p2i(stack_end()), p2i(stack_base()));
 840 
 841   if (osthread()) {
 842     st->print(" [id=%d]", osthread()->thread_id());
 843   }
 844 }
 845 
 846 #ifdef ASSERT
 847 void Thread::print_owned_locks_on(outputStream* st) const {
 848   Monitor *cur = _owned_locks;
 849   if (cur == NULL) {
 850     st->print(" (no locks) ");
 851   } else {
 852     st->print_cr(" Locks owned:");
 853     while (cur) {
 854       cur->print_on(st);
 855       cur = cur->next();
 856     }
 857   }
 858 }
 859 
 860 static int ref_use_count  = 0;
 861 
 862 bool Thread::owns_locks_but_compiled_lock() const {
 863   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 864     if (cur != Compile_lock) return true;
 865   }
 866   return false;
 867 }
 868 
 869 
 870 #endif
 871 
 872 #ifndef PRODUCT
 873 
 874 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 875 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 876 // no threads which allow_vm_block's are held
 877 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 878   // Check if current thread is allowed to block at a safepoint
 879   if (!(_allow_safepoint_count == 0)) {
 880     fatal("Possible safepoint reached by thread that does not allow it");
 881   }
 882   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 883     fatal("LEAF method calling lock?");
 884   }
 885 
 886 #ifdef ASSERT
 887   if (potential_vm_operation && is_Java_thread()
 888       && !Universe::is_bootstrapping()) {
 889     // Make sure we do not hold any locks that the VM thread also uses.
 890     // This could potentially lead to deadlocks
 891     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 892       // Threads_lock is special, since the safepoint synchronization will not start before this is
 893       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 894       // since it is used to transfer control between JavaThreads and the VMThread
 895       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 896       if ((cur->allow_vm_block() &&
 897            cur != Threads_lock &&
 898            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 899            cur != VMOperationRequest_lock &&
 900            cur != VMOperationQueue_lock) ||
 901            cur->rank() == Mutex::special) {
 902         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 903       }
 904     }
 905   }
 906 
 907   if (GCALotAtAllSafepoints) {
 908     // We could enter a safepoint here and thus have a gc
 909     InterfaceSupport::check_gc_alot();
 910   }
 911 #endif
 912 }
 913 #endif
 914 
 915 bool Thread::is_in_stack(address adr) const {
 916   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 917   address end = os::current_stack_pointer();
 918   // Allow non Java threads to call this without stack_base
 919   if (_stack_base == NULL) return true;
 920   if (stack_base() >= adr && adr >= end) return true;
 921 
 922   return false;
 923 }
 924 
 925 bool Thread::is_in_usable_stack(address adr) const {
 926   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 927   size_t usable_stack_size = _stack_size - stack_guard_size;
 928 
 929   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 930 }
 931 
 932 
 933 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 934 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 935 // used for compilation in the future. If that change is made, the need for these methods
 936 // should be revisited, and they should be removed if possible.
 937 
 938 bool Thread::is_lock_owned(address adr) const {
 939   return on_local_stack(adr);
 940 }
 941 
 942 bool Thread::set_as_starting_thread() {
 943   // NOTE: this must be called inside the main thread.
 944   return os::create_main_thread((JavaThread*)this);
 945 }
 946 
 947 static void initialize_class(Symbol* class_name, TRAPS) {
 948   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 949   InstanceKlass::cast(klass)->initialize(CHECK);
 950 }
 951 
 952 
 953 // Creates the initial ThreadGroup
 954 static Handle create_initial_thread_group(TRAPS) {
 955   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 956   instanceKlassHandle klass (THREAD, k);
 957 
 958   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 959   {
 960     JavaValue result(T_VOID);
 961     JavaCalls::call_special(&result,
 962                             system_instance,
 963                             klass,
 964                             vmSymbols::object_initializer_name(),
 965                             vmSymbols::void_method_signature(),
 966                             CHECK_NH);
 967   }
 968   Universe::set_system_thread_group(system_instance());
 969 
 970   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 971   {
 972     JavaValue result(T_VOID);
 973     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 974     JavaCalls::call_special(&result,
 975                             main_instance,
 976                             klass,
 977                             vmSymbols::object_initializer_name(),
 978                             vmSymbols::threadgroup_string_void_signature(),
 979                             system_instance,
 980                             string,
 981                             CHECK_NH);
 982   }
 983   return main_instance;
 984 }
 985 
 986 // Creates the initial Thread
 987 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 988                                  TRAPS) {
 989   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 990   instanceKlassHandle klass (THREAD, k);
 991   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 992 
 993   java_lang_Thread::set_thread(thread_oop(), thread);
 994   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 995   thread->set_threadObj(thread_oop());
 996 
 997   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 998 
 999   JavaValue result(T_VOID);
1000   JavaCalls::call_special(&result, thread_oop,
1001                           klass,
1002                           vmSymbols::object_initializer_name(),
1003                           vmSymbols::threadgroup_string_void_signature(),
1004                           thread_group,
1005                           string,
1006                           CHECK_NULL);
1007   return thread_oop();
1008 }
1009 
1010 char java_runtime_name[128] = "";
1011 char java_runtime_version[128] = "";
1012 
1013 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1014 static const char* get_java_runtime_name(TRAPS) {
1015   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1016                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1017   fieldDescriptor fd;
1018   bool found = k != NULL &&
1019                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1020                                                         vmSymbols::string_signature(), &fd);
1021   if (found) {
1022     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1023     if (name_oop == NULL) {
1024       return NULL;
1025     }
1026     const char* name = java_lang_String::as_utf8_string(name_oop,
1027                                                         java_runtime_name,
1028                                                         sizeof(java_runtime_name));
1029     return name;
1030   } else {
1031     return NULL;
1032   }
1033 }
1034 
1035 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1036 static const char* get_java_runtime_version(TRAPS) {
1037   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1038                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1039   fieldDescriptor fd;
1040   bool found = k != NULL &&
1041                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1042                                                         vmSymbols::string_signature(), &fd);
1043   if (found) {
1044     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1045     if (name_oop == NULL) {
1046       return NULL;
1047     }
1048     const char* name = java_lang_String::as_utf8_string(name_oop,
1049                                                         java_runtime_version,
1050                                                         sizeof(java_runtime_version));
1051     return name;
1052   } else {
1053     return NULL;
1054   }
1055 }
1056 
1057 // General purpose hook into Java code, run once when the VM is initialized.
1058 // The Java library method itself may be changed independently from the VM.
1059 static void call_postVMInitHook(TRAPS) {
1060   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1061   instanceKlassHandle klass (THREAD, k);
1062   if (klass.not_null()) {
1063     JavaValue result(T_VOID);
1064     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1065                            vmSymbols::void_method_signature(),
1066                            CHECK);
1067   }
1068 }
1069 
1070 static void reset_vm_info_property(TRAPS) {
1071   // the vm info string
1072   ResourceMark rm(THREAD);
1073   const char *vm_info = VM_Version::vm_info_string();
1074 
1075   // java.lang.System class
1076   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1077   instanceKlassHandle klass (THREAD, k);
1078 
1079   // setProperty arguments
1080   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1081   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1082 
1083   // return value
1084   JavaValue r(T_OBJECT);
1085 
1086   // public static String setProperty(String key, String value);
1087   JavaCalls::call_static(&r,
1088                          klass,
1089                          vmSymbols::setProperty_name(),
1090                          vmSymbols::string_string_string_signature(),
1091                          key_str,
1092                          value_str,
1093                          CHECK);
1094 }
1095 
1096 
1097 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1098                                     bool daemon, TRAPS) {
1099   assert(thread_group.not_null(), "thread group should be specified");
1100   assert(threadObj() == NULL, "should only create Java thread object once");
1101 
1102   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1103   instanceKlassHandle klass (THREAD, k);
1104   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1105 
1106   java_lang_Thread::set_thread(thread_oop(), this);
1107   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1108   set_threadObj(thread_oop());
1109 
1110   JavaValue result(T_VOID);
1111   if (thread_name != NULL) {
1112     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1113     // Thread gets assigned specified name and null target
1114     JavaCalls::call_special(&result,
1115                             thread_oop,
1116                             klass,
1117                             vmSymbols::object_initializer_name(),
1118                             vmSymbols::threadgroup_string_void_signature(),
1119                             thread_group, // Argument 1
1120                             name,         // Argument 2
1121                             THREAD);
1122   } else {
1123     // Thread gets assigned name "Thread-nnn" and null target
1124     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1125     JavaCalls::call_special(&result,
1126                             thread_oop,
1127                             klass,
1128                             vmSymbols::object_initializer_name(),
1129                             vmSymbols::threadgroup_runnable_void_signature(),
1130                             thread_group, // Argument 1
1131                             Handle(),     // Argument 2
1132                             THREAD);
1133   }
1134 
1135 
1136   if (daemon) {
1137     java_lang_Thread::set_daemon(thread_oop());
1138   }
1139 
1140   if (HAS_PENDING_EXCEPTION) {
1141     return;
1142   }
1143 
1144   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1145   Handle threadObj(THREAD, this->threadObj());
1146 
1147   JavaCalls::call_special(&result,
1148                           thread_group,
1149                           group,
1150                           vmSymbols::add_method_name(),
1151                           vmSymbols::thread_void_signature(),
1152                           threadObj,          // Arg 1
1153                           THREAD);
1154 }
1155 
1156 // NamedThread --  non-JavaThread subclasses with multiple
1157 // uniquely named instances should derive from this.
1158 NamedThread::NamedThread() : Thread() {
1159   _name = NULL;
1160   _processed_thread = NULL;
1161   _gc_id = GCId::undefined();
1162 }
1163 
1164 NamedThread::~NamedThread() {
1165   if (_name != NULL) {
1166     FREE_C_HEAP_ARRAY(char, _name);
1167     _name = NULL;
1168   }
1169 }
1170 
1171 void NamedThread::set_name(const char* format, ...) {
1172   guarantee(_name == NULL, "Only get to set name once.");
1173   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1174   guarantee(_name != NULL, "alloc failure");
1175   va_list ap;
1176   va_start(ap, format);
1177   jio_vsnprintf(_name, max_name_len, format, ap);
1178   va_end(ap);
1179 }
1180 
1181 void NamedThread::initialize_named_thread() {
1182   set_native_thread_name(name());
1183 }
1184 
1185 void NamedThread::print_on(outputStream* st) const {
1186   st->print("\"%s\" ", name());
1187   Thread::print_on(st);
1188   st->cr();
1189 }
1190 
1191 
1192 // ======= WatcherThread ========
1193 
1194 // The watcher thread exists to simulate timer interrupts.  It should
1195 // be replaced by an abstraction over whatever native support for
1196 // timer interrupts exists on the platform.
1197 
1198 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1199 bool WatcherThread::_startable = false;
1200 volatile bool  WatcherThread::_should_terminate = false;
1201 
1202 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1203   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1204   if (os::create_thread(this, os::watcher_thread)) {
1205     _watcher_thread = this;
1206 
1207     // Set the watcher thread to the highest OS priority which should not be
1208     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1209     // is created. The only normal thread using this priority is the reference
1210     // handler thread, which runs for very short intervals only.
1211     // If the VMThread's priority is not lower than the WatcherThread profiling
1212     // will be inaccurate.
1213     os::set_priority(this, MaxPriority);
1214     if (!DisableStartThread) {
1215       os::start_thread(this);
1216     }
1217   }
1218 }
1219 
1220 int WatcherThread::sleep() const {
1221   // The WatcherThread does not participate in the safepoint protocol
1222   // for the PeriodicTask_lock because it is not a JavaThread.
1223   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1224 
1225   if (_should_terminate) {
1226     // check for termination before we do any housekeeping or wait
1227     return 0;  // we did not sleep.
1228   }
1229 
1230   // remaining will be zero if there are no tasks,
1231   // causing the WatcherThread to sleep until a task is
1232   // enrolled
1233   int remaining = PeriodicTask::time_to_wait();
1234   int time_slept = 0;
1235 
1236   // we expect this to timeout - we only ever get unparked when
1237   // we should terminate or when a new task has been enrolled
1238   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1239 
1240   jlong time_before_loop = os::javaTimeNanos();
1241 
1242   while (true) {
1243     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1244                                             remaining);
1245     jlong now = os::javaTimeNanos();
1246 
1247     if (remaining == 0) {
1248       // if we didn't have any tasks we could have waited for a long time
1249       // consider the time_slept zero and reset time_before_loop
1250       time_slept = 0;
1251       time_before_loop = now;
1252     } else {
1253       // need to recalculate since we might have new tasks in _tasks
1254       time_slept = (int) ((now - time_before_loop) / 1000000);
1255     }
1256 
1257     // Change to task list or spurious wakeup of some kind
1258     if (timedout || _should_terminate) {
1259       break;
1260     }
1261 
1262     remaining = PeriodicTask::time_to_wait();
1263     if (remaining == 0) {
1264       // Last task was just disenrolled so loop around and wait until
1265       // another task gets enrolled
1266       continue;
1267     }
1268 
1269     remaining -= time_slept;
1270     if (remaining <= 0) {
1271       break;
1272     }
1273   }
1274 
1275   return time_slept;
1276 }
1277 
1278 void WatcherThread::run() {
1279   assert(this == watcher_thread(), "just checking");
1280 
1281   this->record_stack_base_and_size();
1282   this->set_native_thread_name(this->name());
1283   this->set_active_handles(JNIHandleBlock::allocate_block());
1284   while (true) {
1285     assert(watcher_thread() == Thread::current(), "thread consistency check");
1286     assert(watcher_thread() == this, "thread consistency check");
1287 
1288     // Calculate how long it'll be until the next PeriodicTask work
1289     // should be done, and sleep that amount of time.
1290     int time_waited = sleep();
1291 
1292     if (is_error_reported()) {
1293       // A fatal error has happened, the error handler(VMError::report_and_die)
1294       // should abort JVM after creating an error log file. However in some
1295       // rare cases, the error handler itself might deadlock. Here we try to
1296       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1297       //
1298       // This code is in WatcherThread because WatcherThread wakes up
1299       // periodically so the fatal error handler doesn't need to do anything;
1300       // also because the WatcherThread is less likely to crash than other
1301       // threads.
1302 
1303       for (;;) {
1304         if (!ShowMessageBoxOnError
1305             && (OnError == NULL || OnError[0] == '\0')
1306             && Arguments::abort_hook() == NULL) {
1307           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1308           fdStream err(defaultStream::output_fd());
1309           err.print_raw_cr("# [ timer expired, abort... ]");
1310           // skip atexit/vm_exit/vm_abort hooks
1311           os::die();
1312         }
1313 
1314         // Wake up 5 seconds later, the fatal handler may reset OnError or
1315         // ShowMessageBoxOnError when it is ready to abort.
1316         os::sleep(this, 5 * 1000, false);
1317       }
1318     }
1319 
1320     if (_should_terminate) {
1321       // check for termination before posting the next tick
1322       break;
1323     }
1324 
1325     PeriodicTask::real_time_tick(time_waited);
1326   }
1327 
1328   // Signal that it is terminated
1329   {
1330     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1331     _watcher_thread = NULL;
1332     Terminator_lock->notify();
1333   }
1334 }
1335 
1336 void WatcherThread::start() {
1337   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1338 
1339   if (watcher_thread() == NULL && _startable) {
1340     _should_terminate = false;
1341     // Create the single instance of WatcherThread
1342     new WatcherThread();
1343   }
1344 }
1345 
1346 void WatcherThread::make_startable() {
1347   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1348   _startable = true;
1349 }
1350 
1351 void WatcherThread::stop() {
1352   {
1353     // Follow normal safepoint aware lock enter protocol since the
1354     // WatcherThread is stopped by another JavaThread.
1355     MutexLocker ml(PeriodicTask_lock);
1356     _should_terminate = true;
1357 
1358     WatcherThread* watcher = watcher_thread();
1359     if (watcher != NULL) {
1360       // unpark the WatcherThread so it can see that it should terminate
1361       watcher->unpark();
1362     }
1363   }
1364 
1365   MutexLocker mu(Terminator_lock);
1366 
1367   while (watcher_thread() != NULL) {
1368     // This wait should make safepoint checks, wait without a timeout,
1369     // and wait as a suspend-equivalent condition.
1370     //
1371     // Note: If the FlatProfiler is running, then this thread is waiting
1372     // for the WatcherThread to terminate and the WatcherThread, via the
1373     // FlatProfiler task, is waiting for the external suspend request on
1374     // this thread to complete. wait_for_ext_suspend_completion() will
1375     // eventually timeout, but that takes time. Making this wait a
1376     // suspend-equivalent condition solves that timeout problem.
1377     //
1378     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1379                           Mutex::_as_suspend_equivalent_flag);
1380   }
1381 }
1382 
1383 void WatcherThread::unpark() {
1384   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1385   PeriodicTask_lock->notify();
1386 }
1387 
1388 void WatcherThread::print_on(outputStream* st) const {
1389   st->print("\"%s\" ", name());
1390   Thread::print_on(st);
1391   st->cr();
1392 }
1393 
1394 // ======= JavaThread ========
1395 
1396 #if INCLUDE_JVMCI
1397 
1398 jlong* JavaThread::_jvmci_old_thread_counters;
1399 
1400 bool jvmci_counters_include(JavaThread* thread) {
1401   oop threadObj = thread->threadObj();
1402   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1403 }
1404 
1405 void JavaThread::collect_counters(typeArrayOop array) {
1406   if (JVMCICounterSize > 0) {
1407     MutexLocker tl(Threads_lock);
1408     for (int i = 0; i < array->length(); i++) {
1409       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1410     }
1411     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1412       if (jvmci_counters_include(tp)) {
1413         for (int i = 0; i < array->length(); i++) {
1414           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1415         }
1416       }
1417     }
1418   }
1419 }
1420 
1421 #endif // INCLUDE_JVMCI
1422 
1423 // A JavaThread is a normal Java thread
1424 
1425 void JavaThread::initialize() {
1426   // Initialize fields
1427 
1428   set_saved_exception_pc(NULL);
1429   set_threadObj(NULL);
1430   _anchor.clear();
1431   set_entry_point(NULL);
1432   set_jni_functions(jni_functions());
1433   set_callee_target(NULL);
1434   set_vm_result(NULL);
1435   set_vm_result_2(NULL);
1436   set_vframe_array_head(NULL);
1437   set_vframe_array_last(NULL);
1438   set_deferred_locals(NULL);
1439   set_deopt_mark(NULL);
1440   set_deopt_compiled_method(NULL);
1441   clear_must_deopt_id();
1442   set_monitor_chunks(NULL);
1443   set_next(NULL);
1444   set_thread_state(_thread_new);
1445   _terminated = _not_terminated;
1446   _privileged_stack_top = NULL;
1447   _array_for_gc = NULL;
1448   _suspend_equivalent = false;
1449   _in_deopt_handler = 0;
1450   _doing_unsafe_access = false;
1451   _stack_guard_state = stack_guard_unused;
1452 #if INCLUDE_JVMCI
1453   _pending_monitorenter = false;
1454   _pending_deoptimization = -1;
1455   _pending_failed_speculation = NULL;
1456   _pending_transfer_to_interpreter = false;
1457   _adjusting_comp_level = false;
1458   _jvmci._alternate_call_target = NULL;
1459   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1460   if (JVMCICounterSize > 0) {
1461     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1462     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1463   } else {
1464     _jvmci_counters = NULL;
1465   }
1466 #endif // INCLUDE_JVMCI
1467   _reserved_stack_activation = NULL;  // stack base not known yet
1468   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1469   _exception_pc  = 0;
1470   _exception_handler_pc = 0;
1471   _is_method_handle_return = 0;
1472   _jvmti_thread_state= NULL;
1473   _should_post_on_exceptions_flag = JNI_FALSE;
1474   _jvmti_get_loaded_classes_closure = NULL;
1475   _interp_only_mode    = 0;
1476   _special_runtime_exit_condition = _no_async_condition;
1477   _pending_async_exception = NULL;
1478   _thread_stat = NULL;
1479   _thread_stat = new ThreadStatistics();
1480   _blocked_on_compilation = false;
1481   _jni_active_critical = 0;
1482   _pending_jni_exception_check_fn = NULL;
1483   _do_not_unlock_if_synchronized = false;
1484   _cached_monitor_info = NULL;
1485   _parker = Parker::Allocate(this);
1486 
1487 #ifndef PRODUCT
1488   _jmp_ring_index = 0;
1489   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1490     record_jump(NULL, NULL, NULL, 0);
1491   }
1492 #endif // PRODUCT
1493 
1494   set_thread_profiler(NULL);
1495   if (FlatProfiler::is_active()) {
1496     // This is where we would decide to either give each thread it's own profiler
1497     // or use one global one from FlatProfiler,
1498     // or up to some count of the number of profiled threads, etc.
1499     ThreadProfiler* pp = new ThreadProfiler();
1500     pp->engage();
1501     set_thread_profiler(pp);
1502   }
1503 
1504   // Setup safepoint state info for this thread
1505   ThreadSafepointState::create(this);
1506 
1507   debug_only(_java_call_counter = 0);
1508 
1509   // JVMTI PopFrame support
1510   _popframe_condition = popframe_inactive;
1511   _popframe_preserved_args = NULL;
1512   _popframe_preserved_args_size = 0;
1513   _frames_to_pop_failed_realloc = 0;
1514 
1515   pd_initialize();
1516 }
1517 
1518 #if INCLUDE_ALL_GCS
1519 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1520 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1521 bool JavaThread::_evacuation_in_progress_global = false;
1522 #endif // INCLUDE_ALL_GCS
1523 
1524 JavaThread::JavaThread(bool is_attaching_via_jni) :
1525                        Thread()
1526 #if INCLUDE_ALL_GCS
1527                        , _satb_mark_queue(&_satb_mark_queue_set),
1528                        _dirty_card_queue(&_dirty_card_queue_set),
1529                        _evacuation_in_progress(_evacuation_in_progress_global)
1530 #endif // INCLUDE_ALL_GCS
1531 {
1532   initialize();
1533   if (is_attaching_via_jni) {
1534     _jni_attach_state = _attaching_via_jni;
1535   } else {
1536     _jni_attach_state = _not_attaching_via_jni;
1537   }
1538   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1539 }
1540 
1541 bool JavaThread::reguard_stack(address cur_sp) {
1542   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1543       && _stack_guard_state != stack_guard_reserved_disabled) {
1544     return true; // Stack already guarded or guard pages not needed.
1545   }
1546 
1547   if (register_stack_overflow()) {
1548     // For those architectures which have separate register and
1549     // memory stacks, we must check the register stack to see if
1550     // it has overflowed.
1551     return false;
1552   }
1553 
1554   // Java code never executes within the yellow zone: the latter is only
1555   // there to provoke an exception during stack banging.  If java code
1556   // is executing there, either StackShadowPages should be larger, or
1557   // some exception code in c1, c2 or the interpreter isn't unwinding
1558   // when it should.
1559   guarantee(cur_sp > stack_reserved_zone_base(),
1560             "not enough space to reguard - increase StackShadowPages");
1561   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1562     enable_stack_yellow_reserved_zone();
1563     if (reserved_stack_activation() != stack_base()) {
1564       set_reserved_stack_activation(stack_base());
1565     }
1566   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1567     set_reserved_stack_activation(stack_base());
1568     enable_stack_reserved_zone();
1569   }
1570   return true;
1571 }
1572 
1573 bool JavaThread::reguard_stack(void) {
1574   return reguard_stack(os::current_stack_pointer());
1575 }
1576 
1577 
1578 void JavaThread::block_if_vm_exited() {
1579   if (_terminated == _vm_exited) {
1580     // _vm_exited is set at safepoint, and Threads_lock is never released
1581     // we will block here forever
1582     Threads_lock->lock_without_safepoint_check();
1583     ShouldNotReachHere();
1584   }
1585 }
1586 
1587 
1588 // Remove this ifdef when C1 is ported to the compiler interface.
1589 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1590 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1591 
1592 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1593                        Thread()
1594 #if INCLUDE_ALL_GCS
1595                        , _satb_mark_queue(&_satb_mark_queue_set),
1596                        _dirty_card_queue(&_dirty_card_queue_set),
1597                        _evacuation_in_progress(_evacuation_in_progress_global)
1598 #endif // INCLUDE_ALL_GCS
1599 {
1600   initialize();
1601   _jni_attach_state = _not_attaching_via_jni;
1602   set_entry_point(entry_point);
1603   // Create the native thread itself.
1604   // %note runtime_23
1605   os::ThreadType thr_type = os::java_thread;
1606   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1607                                                      os::java_thread;
1608   os::create_thread(this, thr_type, stack_sz);
1609   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1610   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1611   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1612   // the exception consists of creating the exception object & initializing it, initialization
1613   // will leave the VM via a JavaCall and then all locks must be unlocked).
1614   //
1615   // The thread is still suspended when we reach here. Thread must be explicit started
1616   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1617   // by calling Threads:add. The reason why this is not done here, is because the thread
1618   // object must be fully initialized (take a look at JVM_Start)
1619 }
1620 
1621 JavaThread::~JavaThread() {
1622 
1623   // JSR166 -- return the parker to the free list
1624   Parker::Release(_parker);
1625   _parker = NULL;
1626 
1627   // Free any remaining  previous UnrollBlock
1628   vframeArray* old_array = vframe_array_last();
1629 
1630   if (old_array != NULL) {
1631     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1632     old_array->set_unroll_block(NULL);
1633     delete old_info;
1634     delete old_array;
1635   }
1636 
1637   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1638   if (deferred != NULL) {
1639     // This can only happen if thread is destroyed before deoptimization occurs.
1640     assert(deferred->length() != 0, "empty array!");
1641     do {
1642       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1643       deferred->remove_at(0);
1644       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1645       delete dlv;
1646     } while (deferred->length() != 0);
1647     delete deferred;
1648   }
1649 
1650   // All Java related clean up happens in exit
1651   ThreadSafepointState::destroy(this);
1652   if (_thread_profiler != NULL) delete _thread_profiler;
1653   if (_thread_stat != NULL) delete _thread_stat;
1654 
1655 #if INCLUDE_JVMCI
1656   if (JVMCICounterSize > 0) {
1657     if (jvmci_counters_include(this)) {
1658       for (int i = 0; i < JVMCICounterSize; i++) {
1659         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1660       }
1661     }
1662     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1663   }
1664 #endif // INCLUDE_JVMCI
1665 }
1666 
1667 
1668 // The first routine called by a new Java thread
1669 void JavaThread::run() {
1670   // initialize thread-local alloc buffer related fields
1671   this->initialize_tlab();
1672 
1673   // used to test validity of stack trace backs
1674   this->record_base_of_stack_pointer();
1675 
1676   // Record real stack base and size.
1677   this->record_stack_base_and_size();
1678 
1679   this->create_stack_guard_pages();
1680 
1681   this->cache_global_variables();
1682 
1683   // Thread is now sufficient initialized to be handled by the safepoint code as being
1684   // in the VM. Change thread state from _thread_new to _thread_in_vm
1685   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1686 
1687   assert(JavaThread::current() == this, "sanity check");
1688   assert(!Thread::current()->owns_locks(), "sanity check");
1689 
1690   DTRACE_THREAD_PROBE(start, this);
1691 
1692   // This operation might block. We call that after all safepoint checks for a new thread has
1693   // been completed.
1694   this->set_active_handles(JNIHandleBlock::allocate_block());
1695 
1696   if (JvmtiExport::should_post_thread_life()) {
1697     JvmtiExport::post_thread_start(this);
1698   }
1699 
1700   EventThreadStart event;
1701   if (event.should_commit()) {
1702     event.set_thread(THREAD_TRACE_ID(this));
1703     event.commit();
1704   }
1705 
1706   // We call another function to do the rest so we are sure that the stack addresses used
1707   // from there will be lower than the stack base just computed
1708   thread_main_inner();
1709 
1710   // Note, thread is no longer valid at this point!
1711 }
1712 
1713 
1714 void JavaThread::thread_main_inner() {
1715   assert(JavaThread::current() == this, "sanity check");
1716   assert(this->threadObj() != NULL, "just checking");
1717 
1718   // Execute thread entry point unless this thread has a pending exception
1719   // or has been stopped before starting.
1720   // Note: Due to JVM_StopThread we can have pending exceptions already!
1721   if (!this->has_pending_exception() &&
1722       !java_lang_Thread::is_stillborn(this->threadObj())) {
1723     {
1724       ResourceMark rm(this);
1725       this->set_native_thread_name(this->get_thread_name());
1726     }
1727     HandleMark hm(this);
1728     this->entry_point()(this, this);
1729   }
1730 
1731   DTRACE_THREAD_PROBE(stop, this);
1732 
1733   this->exit(false);
1734   delete this;
1735 }
1736 
1737 
1738 static void ensure_join(JavaThread* thread) {
1739   // We do not need to grap the Threads_lock, since we are operating on ourself.
1740   Handle threadObj(thread, thread->threadObj());
1741   assert(threadObj.not_null(), "java thread object must exist");
1742   ObjectLocker lock(threadObj, thread);
1743   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1744   thread->clear_pending_exception();
1745   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1746   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1747   // Clear the native thread instance - this makes isAlive return false and allows the join()
1748   // to complete once we've done the notify_all below
1749   java_lang_Thread::set_thread(threadObj(), NULL);
1750   lock.notify_all(thread);
1751   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1752   thread->clear_pending_exception();
1753 }
1754 
1755 
1756 // For any new cleanup additions, please check to see if they need to be applied to
1757 // cleanup_failed_attach_current_thread as well.
1758 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1759   assert(this == JavaThread::current(), "thread consistency check");
1760 
1761   HandleMark hm(this);
1762   Handle uncaught_exception(this, this->pending_exception());
1763   this->clear_pending_exception();
1764   Handle threadObj(this, this->threadObj());
1765   assert(threadObj.not_null(), "Java thread object should be created");
1766 
1767   if (get_thread_profiler() != NULL) {
1768     get_thread_profiler()->disengage();
1769     ResourceMark rm;
1770     get_thread_profiler()->print(get_thread_name());
1771   }
1772 
1773 
1774   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1775   {
1776     EXCEPTION_MARK;
1777 
1778     CLEAR_PENDING_EXCEPTION;
1779   }
1780   if (!destroy_vm) {
1781     if (uncaught_exception.not_null()) {
1782       EXCEPTION_MARK;
1783       // Call method Thread.dispatchUncaughtException().
1784       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1785       JavaValue result(T_VOID);
1786       JavaCalls::call_virtual(&result,
1787                               threadObj, thread_klass,
1788                               vmSymbols::dispatchUncaughtException_name(),
1789                               vmSymbols::throwable_void_signature(),
1790                               uncaught_exception,
1791                               THREAD);
1792       if (HAS_PENDING_EXCEPTION) {
1793         ResourceMark rm(this);
1794         jio_fprintf(defaultStream::error_stream(),
1795                     "\nException: %s thrown from the UncaughtExceptionHandler"
1796                     " in thread \"%s\"\n",
1797                     pending_exception()->klass()->external_name(),
1798                     get_thread_name());
1799         CLEAR_PENDING_EXCEPTION;
1800       }
1801     }
1802 
1803     // Called before the java thread exit since we want to read info
1804     // from java_lang_Thread object
1805     EventThreadEnd event;
1806     if (event.should_commit()) {
1807       event.set_thread(THREAD_TRACE_ID(this));
1808       event.commit();
1809     }
1810 
1811     // Call after last event on thread
1812     EVENT_THREAD_EXIT(this);
1813 
1814     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1815     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1816     // is deprecated anyhow.
1817     if (!is_Compiler_thread()) {
1818       int count = 3;
1819       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1820         EXCEPTION_MARK;
1821         JavaValue result(T_VOID);
1822         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1823         JavaCalls::call_virtual(&result,
1824                                 threadObj, thread_klass,
1825                                 vmSymbols::exit_method_name(),
1826                                 vmSymbols::void_method_signature(),
1827                                 THREAD);
1828         CLEAR_PENDING_EXCEPTION;
1829       }
1830     }
1831     // notify JVMTI
1832     if (JvmtiExport::should_post_thread_life()) {
1833       JvmtiExport::post_thread_end(this);
1834     }
1835 
1836     // We have notified the agents that we are exiting, before we go on,
1837     // we must check for a pending external suspend request and honor it
1838     // in order to not surprise the thread that made the suspend request.
1839     while (true) {
1840       {
1841         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1842         if (!is_external_suspend()) {
1843           set_terminated(_thread_exiting);
1844           ThreadService::current_thread_exiting(this);
1845           break;
1846         }
1847         // Implied else:
1848         // Things get a little tricky here. We have a pending external
1849         // suspend request, but we are holding the SR_lock so we
1850         // can't just self-suspend. So we temporarily drop the lock
1851         // and then self-suspend.
1852       }
1853 
1854       ThreadBlockInVM tbivm(this);
1855       java_suspend_self();
1856 
1857       // We're done with this suspend request, but we have to loop around
1858       // and check again. Eventually we will get SR_lock without a pending
1859       // external suspend request and will be able to mark ourselves as
1860       // exiting.
1861     }
1862     // no more external suspends are allowed at this point
1863   } else {
1864     // before_exit() has already posted JVMTI THREAD_END events
1865   }
1866 
1867   // Notify waiters on thread object. This has to be done after exit() is called
1868   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1869   // group should have the destroyed bit set before waiters are notified).
1870   ensure_join(this);
1871   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1872 
1873   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1874   // held by this thread must be released. The spec does not distinguish
1875   // between JNI-acquired and regular Java monitors. We can only see
1876   // regular Java monitors here if monitor enter-exit matching is broken.
1877   //
1878   // Optionally release any monitors for regular JavaThread exits. This
1879   // is provided as a work around for any bugs in monitor enter-exit
1880   // matching. This can be expensive so it is not enabled by default.
1881   //
1882   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1883   // ObjectSynchronizer::release_monitors_owned_by_thread().
1884   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1885     // Sanity check even though JNI DetachCurrentThread() would have
1886     // returned JNI_ERR if there was a Java frame. JavaThread exit
1887     // should be done executing Java code by the time we get here.
1888     assert(!this->has_last_Java_frame(),
1889            "should not have a Java frame when detaching or exiting");
1890     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1891     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1892   }
1893 
1894   // These things needs to be done while we are still a Java Thread. Make sure that thread
1895   // is in a consistent state, in case GC happens
1896   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1897 
1898   if (active_handles() != NULL) {
1899     JNIHandleBlock* block = active_handles();
1900     set_active_handles(NULL);
1901     JNIHandleBlock::release_block(block);
1902   }
1903 
1904   if (free_handle_block() != NULL) {
1905     JNIHandleBlock* block = free_handle_block();
1906     set_free_handle_block(NULL);
1907     JNIHandleBlock::release_block(block);
1908   }
1909 
1910   // These have to be removed while this is still a valid thread.
1911   remove_stack_guard_pages();
1912 
1913   if (UseTLAB) {
1914     tlab().make_parsable(true);  // retire TLAB
1915   }
1916 
1917   if (JvmtiEnv::environments_might_exist()) {
1918     JvmtiExport::cleanup_thread(this);
1919   }
1920 
1921   // We must flush any deferred card marks before removing a thread from
1922   // the list of active threads.
1923   Universe::heap()->flush_deferred_store_barrier(this);
1924   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1925 
1926 #if INCLUDE_ALL_GCS
1927   // We must flush the G1-related buffers before removing a thread
1928   // from the list of active threads. We must do this after any deferred
1929   // card marks have been flushed (above) so that any entries that are
1930   // added to the thread's dirty card queue as a result are not lost.
1931   if (UseG1GC || UseShenandoahGC) {
1932     flush_barrier_queues();
1933   }
1934   if (UseShenandoahGC && UseTLAB) {
1935     gclab().make_parsable(true);
1936   }
1937 #endif // INCLUDE_ALL_GCS
1938 
1939   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1940     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1941     os::current_thread_id());
1942 
1943   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1944   Threads::remove(this);
1945 }
1946 
1947 #if INCLUDE_ALL_GCS
1948 // Flush G1-related queues.
1949 void JavaThread::flush_barrier_queues() {
1950   satb_mark_queue().flush();
1951   dirty_card_queue().flush();
1952 }
1953 
1954 void JavaThread::initialize_queues() {
1955   assert(!SafepointSynchronize::is_at_safepoint(),
1956          "we should not be at a safepoint");
1957 
1958   SATBMarkQueue& satb_queue = satb_mark_queue();
1959   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1960   // The SATB queue should have been constructed with its active
1961   // field set to false.
1962   assert(!satb_queue.is_active(), "SATB queue should not be active");
1963   assert(satb_queue.is_empty(), "SATB queue should be empty");
1964   // If we are creating the thread during a marking cycle, we should
1965   // set the active field of the SATB queue to true.
1966   if (satb_queue_set.is_active()) {
1967     satb_queue.set_active(true);
1968   }
1969 
1970   DirtyCardQueue& dirty_queue = dirty_card_queue();
1971   // The dirty card queue should have been constructed with its
1972   // active field set to true.
1973   assert(dirty_queue.is_active(), "dirty card queue should be active");
1974 
1975   _evacuation_in_progress = _evacuation_in_progress_global;
1976 }
1977 
1978 bool JavaThread::evacuation_in_progress() const {
1979   return _evacuation_in_progress;
1980 }
1981 
1982 void JavaThread::set_evacuation_in_progress(bool in_prog) {
1983   _evacuation_in_progress = in_prog;
1984 }
1985 
1986 void JavaThread::set_evacuation_in_progress_all_threads(bool in_prog) {
1987   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
1988   _evacuation_in_progress_global = in_prog;
1989   for (JavaThread* t = Threads::first(); t != NULL; t = t->next()) {
1990     t->set_evacuation_in_progress(in_prog);
1991   }
1992 }
1993 #endif // INCLUDE_ALL_GCS
1994 
1995 void JavaThread::cleanup_failed_attach_current_thread() {
1996   if (get_thread_profiler() != NULL) {
1997     get_thread_profiler()->disengage();
1998     ResourceMark rm;
1999     get_thread_profiler()->print(get_thread_name());
2000   }
2001 
2002   if (active_handles() != NULL) {
2003     JNIHandleBlock* block = active_handles();
2004     set_active_handles(NULL);
2005     JNIHandleBlock::release_block(block);
2006   }
2007 
2008   if (free_handle_block() != NULL) {
2009     JNIHandleBlock* block = free_handle_block();
2010     set_free_handle_block(NULL);
2011     JNIHandleBlock::release_block(block);
2012   }
2013 
2014   // These have to be removed while this is still a valid thread.
2015   remove_stack_guard_pages();
2016 
2017   if (UseTLAB) {
2018     tlab().make_parsable(true);  // retire TLAB, if any
2019   }
2020 
2021 #if INCLUDE_ALL_GCS
2022   if (UseG1GC || UseShenandoahGC) {
2023     flush_barrier_queues();
2024   }
2025   if (UseShenandoahGC && UseTLAB) {
2026     gclab().make_parsable(true);
2027   }
2028 #endif // INCLUDE_ALL_GCS
2029 
2030   Threads::remove(this);
2031   delete this;
2032 }
2033 
2034 
2035 
2036 
2037 JavaThread* JavaThread::active() {
2038   Thread* thread = Thread::current();
2039   if (thread->is_Java_thread()) {
2040     return (JavaThread*) thread;
2041   } else {
2042     assert(thread->is_VM_thread(), "this must be a vm thread");
2043     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2044     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2045     assert(ret->is_Java_thread(), "must be a Java thread");
2046     return ret;
2047   }
2048 }
2049 
2050 bool JavaThread::is_lock_owned(address adr) const {
2051   if (Thread::is_lock_owned(adr)) return true;
2052 
2053   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2054     if (chunk->contains(adr)) return true;
2055   }
2056 
2057   return false;
2058 }
2059 
2060 
2061 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2062   chunk->set_next(monitor_chunks());
2063   set_monitor_chunks(chunk);
2064 }
2065 
2066 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2067   guarantee(monitor_chunks() != NULL, "must be non empty");
2068   if (monitor_chunks() == chunk) {
2069     set_monitor_chunks(chunk->next());
2070   } else {
2071     MonitorChunk* prev = monitor_chunks();
2072     while (prev->next() != chunk) prev = prev->next();
2073     prev->set_next(chunk->next());
2074   }
2075 }
2076 
2077 // JVM support.
2078 
2079 // Note: this function shouldn't block if it's called in
2080 // _thread_in_native_trans state (such as from
2081 // check_special_condition_for_native_trans()).
2082 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2083 
2084   if (has_last_Java_frame() && has_async_condition()) {
2085     // If we are at a polling page safepoint (not a poll return)
2086     // then we must defer async exception because live registers
2087     // will be clobbered by the exception path. Poll return is
2088     // ok because the call we a returning from already collides
2089     // with exception handling registers and so there is no issue.
2090     // (The exception handling path kills call result registers but
2091     //  this is ok since the exception kills the result anyway).
2092 
2093     if (is_at_poll_safepoint()) {
2094       // if the code we are returning to has deoptimized we must defer
2095       // the exception otherwise live registers get clobbered on the
2096       // exception path before deoptimization is able to retrieve them.
2097       //
2098       RegisterMap map(this, false);
2099       frame caller_fr = last_frame().sender(&map);
2100       assert(caller_fr.is_compiled_frame(), "what?");
2101       if (caller_fr.is_deoptimized_frame()) {
2102         log_info(exceptions)("deferred async exception at compiled safepoint");
2103         return;
2104       }
2105     }
2106   }
2107 
2108   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2109   if (condition == _no_async_condition) {
2110     // Conditions have changed since has_special_runtime_exit_condition()
2111     // was called:
2112     // - if we were here only because of an external suspend request,
2113     //   then that was taken care of above (or cancelled) so we are done
2114     // - if we were here because of another async request, then it has
2115     //   been cleared between the has_special_runtime_exit_condition()
2116     //   and now so again we are done
2117     return;
2118   }
2119 
2120   // Check for pending async. exception
2121   if (_pending_async_exception != NULL) {
2122     // Only overwrite an already pending exception, if it is not a threadDeath.
2123     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2124 
2125       // We cannot call Exceptions::_throw(...) here because we cannot block
2126       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2127 
2128       if (log_is_enabled(Info, exceptions)) {
2129         ResourceMark rm;
2130         outputStream* logstream = Log(exceptions)::info_stream();
2131         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2132           if (has_last_Java_frame()) {
2133             frame f = last_frame();
2134            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2135           }
2136         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2137       }
2138       _pending_async_exception = NULL;
2139       clear_has_async_exception();
2140     }
2141   }
2142 
2143   if (check_unsafe_error &&
2144       condition == _async_unsafe_access_error && !has_pending_exception()) {
2145     condition = _no_async_condition;  // done
2146     switch (thread_state()) {
2147     case _thread_in_vm: {
2148       JavaThread* THREAD = this;
2149       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2150     }
2151     case _thread_in_native: {
2152       ThreadInVMfromNative tiv(this);
2153       JavaThread* THREAD = this;
2154       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2155     }
2156     case _thread_in_Java: {
2157       ThreadInVMfromJava tiv(this);
2158       JavaThread* THREAD = this;
2159       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2160     }
2161     default:
2162       ShouldNotReachHere();
2163     }
2164   }
2165 
2166   assert(condition == _no_async_condition || has_pending_exception() ||
2167          (!check_unsafe_error && condition == _async_unsafe_access_error),
2168          "must have handled the async condition, if no exception");
2169 }
2170 
2171 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2172   //
2173   // Check for pending external suspend. Internal suspend requests do
2174   // not use handle_special_runtime_exit_condition().
2175   // If JNIEnv proxies are allowed, don't self-suspend if the target
2176   // thread is not the current thread. In older versions of jdbx, jdbx
2177   // threads could call into the VM with another thread's JNIEnv so we
2178   // can be here operating on behalf of a suspended thread (4432884).
2179   bool do_self_suspend = is_external_suspend_with_lock();
2180   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2181     //
2182     // Because thread is external suspended the safepoint code will count
2183     // thread as at a safepoint. This can be odd because we can be here
2184     // as _thread_in_Java which would normally transition to _thread_blocked
2185     // at a safepoint. We would like to mark the thread as _thread_blocked
2186     // before calling java_suspend_self like all other callers of it but
2187     // we must then observe proper safepoint protocol. (We can't leave
2188     // _thread_blocked with a safepoint in progress). However we can be
2189     // here as _thread_in_native_trans so we can't use a normal transition
2190     // constructor/destructor pair because they assert on that type of
2191     // transition. We could do something like:
2192     //
2193     // JavaThreadState state = thread_state();
2194     // set_thread_state(_thread_in_vm);
2195     // {
2196     //   ThreadBlockInVM tbivm(this);
2197     //   java_suspend_self()
2198     // }
2199     // set_thread_state(_thread_in_vm_trans);
2200     // if (safepoint) block;
2201     // set_thread_state(state);
2202     //
2203     // but that is pretty messy. Instead we just go with the way the
2204     // code has worked before and note that this is the only path to
2205     // java_suspend_self that doesn't put the thread in _thread_blocked
2206     // mode.
2207 
2208     frame_anchor()->make_walkable(this);
2209     java_suspend_self();
2210 
2211     // We might be here for reasons in addition to the self-suspend request
2212     // so check for other async requests.
2213   }
2214 
2215   if (check_asyncs) {
2216     check_and_handle_async_exceptions();
2217   }
2218 }
2219 
2220 void JavaThread::send_thread_stop(oop java_throwable)  {
2221   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2222   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2223   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2224 
2225   // Do not throw asynchronous exceptions against the compiler thread
2226   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2227   if (!can_call_java()) return;
2228 
2229   {
2230     // Actually throw the Throwable against the target Thread - however
2231     // only if there is no thread death exception installed already.
2232     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2233       // If the topmost frame is a runtime stub, then we are calling into
2234       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2235       // must deoptimize the caller before continuing, as the compiled  exception handler table
2236       // may not be valid
2237       if (has_last_Java_frame()) {
2238         frame f = last_frame();
2239         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2240           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2241           RegisterMap reg_map(this, UseBiasedLocking);
2242           frame compiled_frame = f.sender(&reg_map);
2243           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2244             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2245           }
2246         }
2247       }
2248 
2249       // Set async. pending exception in thread.
2250       set_pending_async_exception(java_throwable);
2251 
2252       if (log_is_enabled(Info, exceptions)) {
2253          ResourceMark rm;
2254         log_info(exceptions)("Pending Async. exception installed of type: %s",
2255                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2256       }
2257       // for AbortVMOnException flag
2258       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2259     }
2260   }
2261 
2262 
2263   // Interrupt thread so it will wake up from a potential wait()
2264   Thread::interrupt(this);
2265 }
2266 
2267 // External suspension mechanism.
2268 //
2269 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2270 // to any VM_locks and it is at a transition
2271 // Self-suspension will happen on the transition out of the vm.
2272 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2273 //
2274 // Guarantees on return:
2275 //   + Target thread will not execute any new bytecode (that's why we need to
2276 //     force a safepoint)
2277 //   + Target thread will not enter any new monitors
2278 //
2279 void JavaThread::java_suspend() {
2280   { MutexLocker mu(Threads_lock);
2281     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2282       return;
2283     }
2284   }
2285 
2286   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2287     if (!is_external_suspend()) {
2288       // a racing resume has cancelled us; bail out now
2289       return;
2290     }
2291 
2292     // suspend is done
2293     uint32_t debug_bits = 0;
2294     // Warning: is_ext_suspend_completed() may temporarily drop the
2295     // SR_lock to allow the thread to reach a stable thread state if
2296     // it is currently in a transient thread state.
2297     if (is_ext_suspend_completed(false /* !called_by_wait */,
2298                                  SuspendRetryDelay, &debug_bits)) {
2299       return;
2300     }
2301   }
2302 
2303   VM_ForceSafepoint vm_suspend;
2304   VMThread::execute(&vm_suspend);
2305 }
2306 
2307 // Part II of external suspension.
2308 // A JavaThread self suspends when it detects a pending external suspend
2309 // request. This is usually on transitions. It is also done in places
2310 // where continuing to the next transition would surprise the caller,
2311 // e.g., monitor entry.
2312 //
2313 // Returns the number of times that the thread self-suspended.
2314 //
2315 // Note: DO NOT call java_suspend_self() when you just want to block current
2316 //       thread. java_suspend_self() is the second stage of cooperative
2317 //       suspension for external suspend requests and should only be used
2318 //       to complete an external suspend request.
2319 //
2320 int JavaThread::java_suspend_self() {
2321   int ret = 0;
2322 
2323   // we are in the process of exiting so don't suspend
2324   if (is_exiting()) {
2325     clear_external_suspend();
2326     return ret;
2327   }
2328 
2329   assert(_anchor.walkable() ||
2330          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2331          "must have walkable stack");
2332 
2333   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2334 
2335   assert(!this->is_ext_suspended(),
2336          "a thread trying to self-suspend should not already be suspended");
2337 
2338   if (this->is_suspend_equivalent()) {
2339     // If we are self-suspending as a result of the lifting of a
2340     // suspend equivalent condition, then the suspend_equivalent
2341     // flag is not cleared until we set the ext_suspended flag so
2342     // that wait_for_ext_suspend_completion() returns consistent
2343     // results.
2344     this->clear_suspend_equivalent();
2345   }
2346 
2347   // A racing resume may have cancelled us before we grabbed SR_lock
2348   // above. Or another external suspend request could be waiting for us
2349   // by the time we return from SR_lock()->wait(). The thread
2350   // that requested the suspension may already be trying to walk our
2351   // stack and if we return now, we can change the stack out from under
2352   // it. This would be a "bad thing (TM)" and cause the stack walker
2353   // to crash. We stay self-suspended until there are no more pending
2354   // external suspend requests.
2355   while (is_external_suspend()) {
2356     ret++;
2357     this->set_ext_suspended();
2358 
2359     // _ext_suspended flag is cleared by java_resume()
2360     while (is_ext_suspended()) {
2361       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2362     }
2363   }
2364 
2365   return ret;
2366 }
2367 
2368 #ifdef ASSERT
2369 // verify the JavaThread has not yet been published in the Threads::list, and
2370 // hence doesn't need protection from concurrent access at this stage
2371 void JavaThread::verify_not_published() {
2372   if (!Threads_lock->owned_by_self()) {
2373     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2374     assert(!Threads::includes(this),
2375            "java thread shouldn't have been published yet!");
2376   } else {
2377     assert(!Threads::includes(this),
2378            "java thread shouldn't have been published yet!");
2379   }
2380 }
2381 #endif
2382 
2383 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2384 // progress or when _suspend_flags is non-zero.
2385 // Current thread needs to self-suspend if there is a suspend request and/or
2386 // block if a safepoint is in progress.
2387 // Async exception ISN'T checked.
2388 // Note only the ThreadInVMfromNative transition can call this function
2389 // directly and when thread state is _thread_in_native_trans
2390 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2391   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2392 
2393   JavaThread *curJT = JavaThread::current();
2394   bool do_self_suspend = thread->is_external_suspend();
2395 
2396   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2397 
2398   // If JNIEnv proxies are allowed, don't self-suspend if the target
2399   // thread is not the current thread. In older versions of jdbx, jdbx
2400   // threads could call into the VM with another thread's JNIEnv so we
2401   // can be here operating on behalf of a suspended thread (4432884).
2402   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2403     JavaThreadState state = thread->thread_state();
2404 
2405     // We mark this thread_blocked state as a suspend-equivalent so
2406     // that a caller to is_ext_suspend_completed() won't be confused.
2407     // The suspend-equivalent state is cleared by java_suspend_self().
2408     thread->set_suspend_equivalent();
2409 
2410     // If the safepoint code sees the _thread_in_native_trans state, it will
2411     // wait until the thread changes to other thread state. There is no
2412     // guarantee on how soon we can obtain the SR_lock and complete the
2413     // self-suspend request. It would be a bad idea to let safepoint wait for
2414     // too long. Temporarily change the state to _thread_blocked to
2415     // let the VM thread know that this thread is ready for GC. The problem
2416     // of changing thread state is that safepoint could happen just after
2417     // java_suspend_self() returns after being resumed, and VM thread will
2418     // see the _thread_blocked state. We must check for safepoint
2419     // after restoring the state and make sure we won't leave while a safepoint
2420     // is in progress.
2421     thread->set_thread_state(_thread_blocked);
2422     thread->java_suspend_self();
2423     thread->set_thread_state(state);
2424     // Make sure new state is seen by VM thread
2425     if (os::is_MP()) {
2426       if (UseMembar) {
2427         // Force a fence between the write above and read below
2428         OrderAccess::fence();
2429       } else {
2430         // Must use this rather than serialization page in particular on Windows
2431         InterfaceSupport::serialize_memory(thread);
2432       }
2433     }
2434   }
2435 
2436   if (SafepointSynchronize::do_call_back()) {
2437     // If we are safepointing, then block the caller which may not be
2438     // the same as the target thread (see above).
2439     SafepointSynchronize::block(curJT);
2440   }
2441 
2442   if (thread->is_deopt_suspend()) {
2443     thread->clear_deopt_suspend();
2444     RegisterMap map(thread, false);
2445     frame f = thread->last_frame();
2446     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2447       f = f.sender(&map);
2448     }
2449     if (f.id() == thread->must_deopt_id()) {
2450       thread->clear_must_deopt_id();
2451       f.deoptimize(thread);
2452     } else {
2453       fatal("missed deoptimization!");
2454     }
2455   }
2456 }
2457 
2458 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2459 // progress or when _suspend_flags is non-zero.
2460 // Current thread needs to self-suspend if there is a suspend request and/or
2461 // block if a safepoint is in progress.
2462 // Also check for pending async exception (not including unsafe access error).
2463 // Note only the native==>VM/Java barriers can call this function and when
2464 // thread state is _thread_in_native_trans.
2465 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2466   check_safepoint_and_suspend_for_native_trans(thread);
2467 
2468   if (thread->has_async_exception()) {
2469     // We are in _thread_in_native_trans state, don't handle unsafe
2470     // access error since that may block.
2471     thread->check_and_handle_async_exceptions(false);
2472   }
2473 }
2474 
2475 // This is a variant of the normal
2476 // check_special_condition_for_native_trans with slightly different
2477 // semantics for use by critical native wrappers.  It does all the
2478 // normal checks but also performs the transition back into
2479 // thread_in_Java state.  This is required so that critical natives
2480 // can potentially block and perform a GC if they are the last thread
2481 // exiting the GCLocker.
2482 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2483   check_special_condition_for_native_trans(thread);
2484 
2485   // Finish the transition
2486   thread->set_thread_state(_thread_in_Java);
2487 
2488   if (thread->do_critical_native_unlock()) {
2489     ThreadInVMfromJavaNoAsyncException tiv(thread);
2490     GCLocker::unlock_critical(thread);
2491     thread->clear_critical_native_unlock();
2492   }
2493 }
2494 
2495 // We need to guarantee the Threads_lock here, since resumes are not
2496 // allowed during safepoint synchronization
2497 // Can only resume from an external suspension
2498 void JavaThread::java_resume() {
2499   assert_locked_or_safepoint(Threads_lock);
2500 
2501   // Sanity check: thread is gone, has started exiting or the thread
2502   // was not externally suspended.
2503   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2504     return;
2505   }
2506 
2507   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2508 
2509   clear_external_suspend();
2510 
2511   if (is_ext_suspended()) {
2512     clear_ext_suspended();
2513     SR_lock()->notify_all();
2514   }
2515 }
2516 
2517 size_t JavaThread::_stack_red_zone_size = 0;
2518 size_t JavaThread::_stack_yellow_zone_size = 0;
2519 size_t JavaThread::_stack_reserved_zone_size = 0;
2520 size_t JavaThread::_stack_shadow_zone_size = 0;
2521 
2522 void JavaThread::create_stack_guard_pages() {
2523   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2524   address low_addr = stack_end();
2525   size_t len = stack_guard_zone_size();
2526 
2527   int must_commit = os::must_commit_stack_guard_pages();
2528   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2529 
2530   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2531     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2532     return;
2533   }
2534 
2535   if (os::guard_memory((char *) low_addr, len)) {
2536     _stack_guard_state = stack_guard_enabled;
2537   } else {
2538     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2539       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2540     if (os::uncommit_memory((char *) low_addr, len)) {
2541       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2542     }
2543     return;
2544   }
2545 
2546   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2547     PTR_FORMAT "-" PTR_FORMAT ".",
2548     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2549 }
2550 
2551 void JavaThread::remove_stack_guard_pages() {
2552   assert(Thread::current() == this, "from different thread");
2553   if (_stack_guard_state == stack_guard_unused) return;
2554   address low_addr = stack_end();
2555   size_t len = stack_guard_zone_size();
2556 
2557   if (os::must_commit_stack_guard_pages()) {
2558     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2559       _stack_guard_state = stack_guard_unused;
2560     } else {
2561       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2562         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2563       return;
2564     }
2565   } else {
2566     if (_stack_guard_state == stack_guard_unused) return;
2567     if (os::unguard_memory((char *) low_addr, len)) {
2568       _stack_guard_state = stack_guard_unused;
2569     } else {
2570       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2571         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2572       return;
2573     }
2574   }
2575 
2576   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2577     PTR_FORMAT "-" PTR_FORMAT ".",
2578     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2579 }
2580 
2581 void JavaThread::enable_stack_reserved_zone() {
2582   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2583   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2584 
2585   // The base notation is from the stack's point of view, growing downward.
2586   // We need to adjust it to work correctly with guard_memory()
2587   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2588 
2589   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2590   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2591 
2592   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2593     _stack_guard_state = stack_guard_enabled;
2594   } else {
2595     warning("Attempt to guard stack reserved zone failed.");
2596   }
2597   enable_register_stack_guard();
2598 }
2599 
2600 void JavaThread::disable_stack_reserved_zone() {
2601   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2602   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2603 
2604   // Simply return if called for a thread that does not use guard pages.
2605   if (_stack_guard_state == stack_guard_unused) return;
2606 
2607   // The base notation is from the stack's point of view, growing downward.
2608   // We need to adjust it to work correctly with guard_memory()
2609   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2610 
2611   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2612     _stack_guard_state = stack_guard_reserved_disabled;
2613   } else {
2614     warning("Attempt to unguard stack reserved zone failed.");
2615   }
2616   disable_register_stack_guard();
2617 }
2618 
2619 void JavaThread::enable_stack_yellow_reserved_zone() {
2620   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2621   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2622 
2623   // The base notation is from the stacks point of view, growing downward.
2624   // We need to adjust it to work correctly with guard_memory()
2625   address base = stack_red_zone_base();
2626 
2627   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2628   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2629 
2630   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2631     _stack_guard_state = stack_guard_enabled;
2632   } else {
2633     warning("Attempt to guard stack yellow zone failed.");
2634   }
2635   enable_register_stack_guard();
2636 }
2637 
2638 void JavaThread::disable_stack_yellow_reserved_zone() {
2639   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2640   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2641 
2642   // Simply return if called for a thread that does not use guard pages.
2643   if (_stack_guard_state == stack_guard_unused) return;
2644 
2645   // The base notation is from the stacks point of view, growing downward.
2646   // We need to adjust it to work correctly with guard_memory()
2647   address base = stack_red_zone_base();
2648 
2649   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2650     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2651   } else {
2652     warning("Attempt to unguard stack yellow zone failed.");
2653   }
2654   disable_register_stack_guard();
2655 }
2656 
2657 void JavaThread::enable_stack_red_zone() {
2658   // The base notation is from the stacks point of view, growing downward.
2659   // We need to adjust it to work correctly with guard_memory()
2660   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2661   address base = stack_red_zone_base() - stack_red_zone_size();
2662 
2663   guarantee(base < stack_base(), "Error calculating stack red zone");
2664   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2665 
2666   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2667     warning("Attempt to guard stack red zone failed.");
2668   }
2669 }
2670 
2671 void JavaThread::disable_stack_red_zone() {
2672   // The base notation is from the stacks point of view, growing downward.
2673   // We need to adjust it to work correctly with guard_memory()
2674   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2675   address base = stack_red_zone_base() - stack_red_zone_size();
2676   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2677     warning("Attempt to unguard stack red zone failed.");
2678   }
2679 }
2680 
2681 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2682   // ignore is there is no stack
2683   if (!has_last_Java_frame()) return;
2684   // traverse the stack frames. Starts from top frame.
2685   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2686     frame* fr = fst.current();
2687     f(fr, fst.register_map());
2688   }
2689 }
2690 
2691 
2692 #ifndef PRODUCT
2693 // Deoptimization
2694 // Function for testing deoptimization
2695 void JavaThread::deoptimize() {
2696   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2697   StackFrameStream fst(this, UseBiasedLocking);
2698   bool deopt = false;           // Dump stack only if a deopt actually happens.
2699   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2700   // Iterate over all frames in the thread and deoptimize
2701   for (; !fst.is_done(); fst.next()) {
2702     if (fst.current()->can_be_deoptimized()) {
2703 
2704       if (only_at) {
2705         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2706         // consists of comma or carriage return separated numbers so
2707         // search for the current bci in that string.
2708         address pc = fst.current()->pc();
2709         nmethod* nm =  (nmethod*) fst.current()->cb();
2710         ScopeDesc* sd = nm->scope_desc_at(pc);
2711         char buffer[8];
2712         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2713         size_t len = strlen(buffer);
2714         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2715         while (found != NULL) {
2716           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2717               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2718             // Check that the bci found is bracketed by terminators.
2719             break;
2720           }
2721           found = strstr(found + 1, buffer);
2722         }
2723         if (!found) {
2724           continue;
2725         }
2726       }
2727 
2728       if (DebugDeoptimization && !deopt) {
2729         deopt = true; // One-time only print before deopt
2730         tty->print_cr("[BEFORE Deoptimization]");
2731         trace_frames();
2732         trace_stack();
2733       }
2734       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2735     }
2736   }
2737 
2738   if (DebugDeoptimization && deopt) {
2739     tty->print_cr("[AFTER Deoptimization]");
2740     trace_frames();
2741   }
2742 }
2743 
2744 
2745 // Make zombies
2746 void JavaThread::make_zombies() {
2747   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2748     if (fst.current()->can_be_deoptimized()) {
2749       // it is a Java nmethod
2750       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2751       nm->make_not_entrant();
2752     }
2753   }
2754 }
2755 #endif // PRODUCT
2756 
2757 
2758 void JavaThread::deoptimized_wrt_marked_nmethods() {
2759   if (!has_last_Java_frame()) return;
2760   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2761   StackFrameStream fst(this, UseBiasedLocking);
2762   for (; !fst.is_done(); fst.next()) {
2763     if (fst.current()->should_be_deoptimized()) {
2764       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2765     }
2766   }
2767 }
2768 
2769 
2770 // If the caller is a NamedThread, then remember, in the current scope,
2771 // the given JavaThread in its _processed_thread field.
2772 class RememberProcessedThread: public StackObj {
2773   NamedThread* _cur_thr;
2774  public:
2775   RememberProcessedThread(JavaThread* jthr) {
2776     Thread* thread = Thread::current();
2777     if (thread->is_Named_thread()) {
2778       _cur_thr = (NamedThread *)thread;
2779       _cur_thr->set_processed_thread(jthr);
2780     } else {
2781       _cur_thr = NULL;
2782     }
2783   }
2784 
2785   ~RememberProcessedThread() {
2786     if (_cur_thr) {
2787       _cur_thr->set_processed_thread(NULL);
2788     }
2789   }
2790 };
2791 
2792 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2793   // Verify that the deferred card marks have been flushed.
2794   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2795 
2796   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2797   // since there may be more than one thread using each ThreadProfiler.
2798 
2799   // Traverse the GCHandles
2800   Thread::oops_do(f, cf);
2801 
2802   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2803 
2804   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2805          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2806 
2807   if (has_last_Java_frame()) {
2808     // Record JavaThread to GC thread
2809     RememberProcessedThread rpt(this);
2810 
2811     // Traverse the privileged stack
2812     if (_privileged_stack_top != NULL) {
2813       _privileged_stack_top->oops_do(f);
2814     }
2815 
2816     // traverse the registered growable array
2817     if (_array_for_gc != NULL) {
2818       for (int index = 0; index < _array_for_gc->length(); index++) {
2819         f->do_oop(_array_for_gc->adr_at(index));
2820       }
2821     }
2822 
2823     // Traverse the monitor chunks
2824     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2825       chunk->oops_do(f);
2826     }
2827 
2828     // Traverse the execution stack
2829     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2830       fst.current()->oops_do(f, cf, fst.register_map());
2831     }
2832   }
2833 
2834   // callee_target is never live across a gc point so NULL it here should
2835   // it still contain a methdOop.
2836 
2837   set_callee_target(NULL);
2838 
2839   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2840   // If we have deferred set_locals there might be oops waiting to be
2841   // written
2842   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2843   if (list != NULL) {
2844     for (int i = 0; i < list->length(); i++) {
2845       list->at(i)->oops_do(f);
2846     }
2847   }
2848 
2849   // Traverse instance variables at the end since the GC may be moving things
2850   // around using this function
2851   f->do_oop((oop*) &_threadObj);
2852   f->do_oop((oop*) &_vm_result);
2853   f->do_oop((oop*) &_exception_oop);
2854   f->do_oop((oop*) &_pending_async_exception);
2855 
2856   if (jvmti_thread_state() != NULL) {
2857     jvmti_thread_state()->oops_do(f);
2858   }
2859 }
2860 
2861 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2862   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2863          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2864 
2865   if (has_last_Java_frame()) {
2866     // Traverse the execution stack
2867     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2868       fst.current()->nmethods_do(cf);
2869     }
2870   }
2871 }
2872 
2873 void JavaThread::metadata_do(void f(Metadata*)) {
2874   if (has_last_Java_frame()) {
2875     // Traverse the execution stack to call f() on the methods in the stack
2876     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2877       fst.current()->metadata_do(f);
2878     }
2879   } else if (is_Compiler_thread()) {
2880     // need to walk ciMetadata in current compile tasks to keep alive.
2881     CompilerThread* ct = (CompilerThread*)this;
2882     if (ct->env() != NULL) {
2883       ct->env()->metadata_do(f);
2884     }
2885     if (ct->task() != NULL) {
2886       ct->task()->metadata_do(f);
2887     }
2888   }
2889 }
2890 
2891 // Printing
2892 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2893   switch (_thread_state) {
2894   case _thread_uninitialized:     return "_thread_uninitialized";
2895   case _thread_new:               return "_thread_new";
2896   case _thread_new_trans:         return "_thread_new_trans";
2897   case _thread_in_native:         return "_thread_in_native";
2898   case _thread_in_native_trans:   return "_thread_in_native_trans";
2899   case _thread_in_vm:             return "_thread_in_vm";
2900   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2901   case _thread_in_Java:           return "_thread_in_Java";
2902   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2903   case _thread_blocked:           return "_thread_blocked";
2904   case _thread_blocked_trans:     return "_thread_blocked_trans";
2905   default:                        return "unknown thread state";
2906   }
2907 }
2908 
2909 #ifndef PRODUCT
2910 void JavaThread::print_thread_state_on(outputStream *st) const {
2911   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2912 };
2913 void JavaThread::print_thread_state() const {
2914   print_thread_state_on(tty);
2915 }
2916 #endif // PRODUCT
2917 
2918 // Called by Threads::print() for VM_PrintThreads operation
2919 void JavaThread::print_on(outputStream *st) const {
2920   st->print_raw("\"");
2921   st->print_raw(get_thread_name());
2922   st->print_raw("\" ");
2923   oop thread_oop = threadObj();
2924   if (thread_oop != NULL) {
2925     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2926     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2927     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2928   }
2929   Thread::print_on(st);
2930   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2931   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2932   if (thread_oop != NULL) {
2933     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2934   }
2935 #ifndef PRODUCT
2936   print_thread_state_on(st);
2937   _safepoint_state->print_on(st);
2938 #endif // PRODUCT
2939   if (is_Compiler_thread()) {
2940     CompilerThread* ct = (CompilerThread*)this;
2941     if (ct->task() != NULL) {
2942       st->print("   Compiling: ");
2943       ct->task()->print(st, NULL, true, false);
2944     } else {
2945       st->print("   No compile task");
2946     }
2947     st->cr();
2948   }
2949 }
2950 
2951 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2952   st->print("%s", get_thread_name_string(buf, buflen));
2953 }
2954 
2955 // Called by fatal error handler. The difference between this and
2956 // JavaThread::print() is that we can't grab lock or allocate memory.
2957 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2958   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2959   oop thread_obj = threadObj();
2960   if (thread_obj != NULL) {
2961     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2962   }
2963   st->print(" [");
2964   st->print("%s", _get_thread_state_name(_thread_state));
2965   if (osthread()) {
2966     st->print(", id=%d", osthread()->thread_id());
2967   }
2968   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2969             p2i(stack_end()), p2i(stack_base()));
2970   st->print("]");
2971   return;
2972 }
2973 
2974 // Verification
2975 
2976 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2977 
2978 void JavaThread::verify() {
2979   // Verify oops in the thread.
2980   oops_do(&VerifyOopClosure::verify_oop, NULL);
2981 
2982   // Verify the stack frames.
2983   frames_do(frame_verify);
2984 }
2985 
2986 // CR 6300358 (sub-CR 2137150)
2987 // Most callers of this method assume that it can't return NULL but a
2988 // thread may not have a name whilst it is in the process of attaching to
2989 // the VM - see CR 6412693, and there are places where a JavaThread can be
2990 // seen prior to having it's threadObj set (eg JNI attaching threads and
2991 // if vm exit occurs during initialization). These cases can all be accounted
2992 // for such that this method never returns NULL.
2993 const char* JavaThread::get_thread_name() const {
2994 #ifdef ASSERT
2995   // early safepoints can hit while current thread does not yet have TLS
2996   if (!SafepointSynchronize::is_at_safepoint()) {
2997     Thread *cur = Thread::current();
2998     if (!(cur->is_Java_thread() && cur == this)) {
2999       // Current JavaThreads are allowed to get their own name without
3000       // the Threads_lock.
3001       assert_locked_or_safepoint(Threads_lock);
3002     }
3003   }
3004 #endif // ASSERT
3005   return get_thread_name_string();
3006 }
3007 
3008 // Returns a non-NULL representation of this thread's name, or a suitable
3009 // descriptive string if there is no set name
3010 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3011   const char* name_str;
3012   oop thread_obj = threadObj();
3013   if (thread_obj != NULL) {
3014     oop name = java_lang_Thread::name(thread_obj);
3015     if (name != NULL) {
3016       if (buf == NULL) {
3017         name_str = java_lang_String::as_utf8_string(name);
3018       } else {
3019         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3020       }
3021     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3022       name_str = "<no-name - thread is attaching>";
3023     } else {
3024       name_str = Thread::name();
3025     }
3026   } else {
3027     name_str = Thread::name();
3028   }
3029   assert(name_str != NULL, "unexpected NULL thread name");
3030   return name_str;
3031 }
3032 
3033 
3034 const char* JavaThread::get_threadgroup_name() const {
3035   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3036   oop thread_obj = threadObj();
3037   if (thread_obj != NULL) {
3038     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3039     if (thread_group != NULL) {
3040       // ThreadGroup.name can be null
3041       return java_lang_ThreadGroup::name(thread_group);
3042     }
3043   }
3044   return NULL;
3045 }
3046 
3047 const char* JavaThread::get_parent_name() const {
3048   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3049   oop thread_obj = threadObj();
3050   if (thread_obj != NULL) {
3051     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3052     if (thread_group != NULL) {
3053       oop parent = java_lang_ThreadGroup::parent(thread_group);
3054       if (parent != NULL) {
3055         // ThreadGroup.name can be null
3056         return java_lang_ThreadGroup::name(parent);
3057       }
3058     }
3059   }
3060   return NULL;
3061 }
3062 
3063 ThreadPriority JavaThread::java_priority() const {
3064   oop thr_oop = threadObj();
3065   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3066   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3067   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3068   return priority;
3069 }
3070 
3071 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3072 
3073   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3074   // Link Java Thread object <-> C++ Thread
3075 
3076   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3077   // and put it into a new Handle.  The Handle "thread_oop" can then
3078   // be used to pass the C++ thread object to other methods.
3079 
3080   // Set the Java level thread object (jthread) field of the
3081   // new thread (a JavaThread *) to C++ thread object using the
3082   // "thread_oop" handle.
3083 
3084   // Set the thread field (a JavaThread *) of the
3085   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3086 
3087   Handle thread_oop(Thread::current(),
3088                     JNIHandles::resolve_non_null(jni_thread));
3089   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3090          "must be initialized");
3091   set_threadObj(thread_oop());
3092   java_lang_Thread::set_thread(thread_oop(), this);
3093 
3094   if (prio == NoPriority) {
3095     prio = java_lang_Thread::priority(thread_oop());
3096     assert(prio != NoPriority, "A valid priority should be present");
3097   }
3098 
3099   // Push the Java priority down to the native thread; needs Threads_lock
3100   Thread::set_priority(this, prio);
3101 
3102   prepare_ext();
3103 
3104   // Add the new thread to the Threads list and set it in motion.
3105   // We must have threads lock in order to call Threads::add.
3106   // It is crucial that we do not block before the thread is
3107   // added to the Threads list for if a GC happens, then the java_thread oop
3108   // will not be visited by GC.
3109   Threads::add(this);
3110 }
3111 
3112 oop JavaThread::current_park_blocker() {
3113   // Support for JSR-166 locks
3114   oop thread_oop = threadObj();
3115   if (thread_oop != NULL &&
3116       JDK_Version::current().supports_thread_park_blocker()) {
3117     return java_lang_Thread::park_blocker(thread_oop);
3118   }
3119   return NULL;
3120 }
3121 
3122 
3123 void JavaThread::print_stack_on(outputStream* st) {
3124   if (!has_last_Java_frame()) return;
3125   ResourceMark rm;
3126   HandleMark   hm;
3127 
3128   RegisterMap reg_map(this);
3129   vframe* start_vf = last_java_vframe(&reg_map);
3130   int count = 0;
3131   for (vframe* f = start_vf; f; f = f->sender()) {
3132     if (f->is_java_frame()) {
3133       javaVFrame* jvf = javaVFrame::cast(f);
3134       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3135 
3136       // Print out lock information
3137       if (JavaMonitorsInStackTrace) {
3138         jvf->print_lock_info_on(st, count);
3139       }
3140     } else {
3141       // Ignore non-Java frames
3142     }
3143 
3144     // Bail-out case for too deep stacks
3145     count++;
3146     if (MaxJavaStackTraceDepth == count) return;
3147   }
3148 }
3149 
3150 
3151 // JVMTI PopFrame support
3152 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3153   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3154   if (in_bytes(size_in_bytes) != 0) {
3155     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3156     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3157     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3158   }
3159 }
3160 
3161 void* JavaThread::popframe_preserved_args() {
3162   return _popframe_preserved_args;
3163 }
3164 
3165 ByteSize JavaThread::popframe_preserved_args_size() {
3166   return in_ByteSize(_popframe_preserved_args_size);
3167 }
3168 
3169 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3170   int sz = in_bytes(popframe_preserved_args_size());
3171   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3172   return in_WordSize(sz / wordSize);
3173 }
3174 
3175 void JavaThread::popframe_free_preserved_args() {
3176   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3177   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3178   _popframe_preserved_args = NULL;
3179   _popframe_preserved_args_size = 0;
3180 }
3181 
3182 #ifndef PRODUCT
3183 
3184 void JavaThread::trace_frames() {
3185   tty->print_cr("[Describe stack]");
3186   int frame_no = 1;
3187   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3188     tty->print("  %d. ", frame_no++);
3189     fst.current()->print_value_on(tty, this);
3190     tty->cr();
3191   }
3192 }
3193 
3194 class PrintAndVerifyOopClosure: public OopClosure {
3195  protected:
3196   template <class T> inline void do_oop_work(T* p) {
3197     oop obj = oopDesc::load_decode_heap_oop(p);
3198     if (obj == NULL) return;
3199     tty->print(INTPTR_FORMAT ": ", p2i(p));
3200     if (obj->is_oop_or_null()) {
3201       if (obj->is_objArray()) {
3202         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3203       } else {
3204         obj->print();
3205       }
3206     } else {
3207       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3208     }
3209     tty->cr();
3210   }
3211  public:
3212   virtual void do_oop(oop* p) { do_oop_work(p); }
3213   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3214 };
3215 
3216 
3217 static void oops_print(frame* f, const RegisterMap *map) {
3218   PrintAndVerifyOopClosure print;
3219   f->print_value();
3220   f->oops_do(&print, NULL, (RegisterMap*)map);
3221 }
3222 
3223 // Print our all the locations that contain oops and whether they are
3224 // valid or not.  This useful when trying to find the oldest frame
3225 // where an oop has gone bad since the frame walk is from youngest to
3226 // oldest.
3227 void JavaThread::trace_oops() {
3228   tty->print_cr("[Trace oops]");
3229   frames_do(oops_print);
3230 }
3231 
3232 
3233 #ifdef ASSERT
3234 // Print or validate the layout of stack frames
3235 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3236   ResourceMark rm;
3237   PRESERVE_EXCEPTION_MARK;
3238   FrameValues values;
3239   int frame_no = 0;
3240   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3241     fst.current()->describe(values, ++frame_no);
3242     if (depth == frame_no) break;
3243   }
3244   if (validate_only) {
3245     values.validate();
3246   } else {
3247     tty->print_cr("[Describe stack layout]");
3248     values.print(this);
3249   }
3250 }
3251 #endif
3252 
3253 void JavaThread::trace_stack_from(vframe* start_vf) {
3254   ResourceMark rm;
3255   int vframe_no = 1;
3256   for (vframe* f = start_vf; f; f = f->sender()) {
3257     if (f->is_java_frame()) {
3258       javaVFrame::cast(f)->print_activation(vframe_no++);
3259     } else {
3260       f->print();
3261     }
3262     if (vframe_no > StackPrintLimit) {
3263       tty->print_cr("...<more frames>...");
3264       return;
3265     }
3266   }
3267 }
3268 
3269 
3270 void JavaThread::trace_stack() {
3271   if (!has_last_Java_frame()) return;
3272   ResourceMark rm;
3273   HandleMark   hm;
3274   RegisterMap reg_map(this);
3275   trace_stack_from(last_java_vframe(&reg_map));
3276 }
3277 
3278 
3279 #endif // PRODUCT
3280 
3281 
3282 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3283   assert(reg_map != NULL, "a map must be given");
3284   frame f = last_frame();
3285   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3286     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3287   }
3288   return NULL;
3289 }
3290 
3291 
3292 Klass* JavaThread::security_get_caller_class(int depth) {
3293   vframeStream vfst(this);
3294   vfst.security_get_caller_frame(depth);
3295   if (!vfst.at_end()) {
3296     return vfst.method()->method_holder();
3297   }
3298   return NULL;
3299 }
3300 
3301 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3302   assert(thread->is_Compiler_thread(), "must be compiler thread");
3303   CompileBroker::compiler_thread_loop();
3304 }
3305 
3306 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3307   NMethodSweeper::sweeper_loop();
3308 }
3309 
3310 // Create a CompilerThread
3311 CompilerThread::CompilerThread(CompileQueue* queue,
3312                                CompilerCounters* counters)
3313                                : JavaThread(&compiler_thread_entry) {
3314   _env   = NULL;
3315   _log   = NULL;
3316   _task  = NULL;
3317   _queue = queue;
3318   _counters = counters;
3319   _buffer_blob = NULL;
3320   _compiler = NULL;
3321 
3322 #ifndef PRODUCT
3323   _ideal_graph_printer = NULL;
3324 #endif
3325 }
3326 
3327 bool CompilerThread::can_call_java() const {
3328   return _compiler != NULL && _compiler->is_jvmci();
3329 }
3330 
3331 // Create sweeper thread
3332 CodeCacheSweeperThread::CodeCacheSweeperThread()
3333 : JavaThread(&sweeper_thread_entry) {
3334   _scanned_compiled_method = NULL;
3335 }
3336 
3337 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3338   JavaThread::oops_do(f, cf);
3339   if (_scanned_compiled_method != NULL && cf != NULL) {
3340     // Safepoints can occur when the sweeper is scanning an nmethod so
3341     // process it here to make sure it isn't unloaded in the middle of
3342     // a scan.
3343     cf->do_code_blob(_scanned_compiled_method);
3344   }
3345 }
3346 
3347 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3348   JavaThread::nmethods_do(cf);
3349   if (_scanned_compiled_method != NULL && cf != NULL) {
3350     // Safepoints can occur when the sweeper is scanning an nmethod so
3351     // process it here to make sure it isn't unloaded in the middle of
3352     // a scan.
3353     cf->do_code_blob(_scanned_compiled_method);
3354   }
3355 }
3356 
3357 
3358 // ======= Threads ========
3359 
3360 // The Threads class links together all active threads, and provides
3361 // operations over all threads.  It is protected by its own Mutex
3362 // lock, which is also used in other contexts to protect thread
3363 // operations from having the thread being operated on from exiting
3364 // and going away unexpectedly (e.g., safepoint synchronization)
3365 
3366 JavaThread* Threads::_thread_list = NULL;
3367 int         Threads::_number_of_threads = 0;
3368 int         Threads::_number_of_non_daemon_threads = 0;
3369 int         Threads::_return_code = 0;
3370 int         Threads::_thread_claim_parity = 0;
3371 size_t      JavaThread::_stack_size_at_create = 0;
3372 #ifdef ASSERT
3373 bool        Threads::_vm_complete = false;
3374 #endif
3375 
3376 // All JavaThreads
3377 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3378 
3379 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3380 void Threads::threads_do(ThreadClosure* tc) {
3381   assert_locked_or_safepoint(Threads_lock);
3382   // ALL_JAVA_THREADS iterates through all JavaThreads
3383   ALL_JAVA_THREADS(p) {
3384     tc->do_thread(p);
3385   }
3386   // Someday we could have a table or list of all non-JavaThreads.
3387   // For now, just manually iterate through them.
3388   tc->do_thread(VMThread::vm_thread());
3389   Universe::heap()->gc_threads_do(tc);
3390   WatcherThread *wt = WatcherThread::watcher_thread();
3391   // Strictly speaking, the following NULL check isn't sufficient to make sure
3392   // the data for WatcherThread is still valid upon being examined. However,
3393   // considering that WatchThread terminates when the VM is on the way to
3394   // exit at safepoint, the chance of the above is extremely small. The right
3395   // way to prevent termination of WatcherThread would be to acquire
3396   // Terminator_lock, but we can't do that without violating the lock rank
3397   // checking in some cases.
3398   if (wt != NULL) {
3399     tc->do_thread(wt);
3400   }
3401 
3402   // If CompilerThreads ever become non-JavaThreads, add them here
3403 }
3404 
3405 // The system initialization in the library has three phases.
3406 //
3407 // Phase 1: java.lang.System class initialization
3408 //     java.lang.System is a primordial class loaded and initialized
3409 //     by the VM early during startup.  java.lang.System.<clinit>
3410 //     only does registerNatives and keeps the rest of the class
3411 //     initialization work later until thread initialization completes.
3412 //
3413 //     System.initPhase1 initializes the system properties, the static
3414 //     fields in, out, and err. Set up java signal handlers, OS-specific
3415 //     system settings, and thread group of the main thread.
3416 static void call_initPhase1(TRAPS) {
3417   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3418   instanceKlassHandle klass (THREAD, k);
3419 
3420   JavaValue result(T_VOID);
3421   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3422                                          vmSymbols::void_method_signature(), CHECK);
3423 }
3424 
3425 // Phase 2. Module system initialization
3426 //     This will initialize the module system.  Only java.base classes
3427 //     can be loaded until phase 2 completes.
3428 //
3429 //     Call System.initPhase2 after the compiler initialization and jsr292
3430 //     classes get initialized because module initialization runs a lot of java
3431 //     code, that for performance reasons, should be compiled.  Also, this will
3432 //     enable the startup code to use lambda and other language features in this
3433 //     phase and onward.
3434 //
3435 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3436 static void call_initPhase2(TRAPS) {
3437   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3438 
3439   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3440   instanceKlassHandle klass (THREAD, k);
3441 
3442   JavaValue result(T_VOID);
3443   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3444                                          vmSymbols::void_method_signature(), CHECK);
3445   universe_post_module_init();
3446 }
3447 
3448 // Phase 3. final setup - set security manager, system class loader and TCCL
3449 //
3450 //     This will instantiate and set the security manager, set the system class
3451 //     loader as well as the thread context class loader.  The security manager
3452 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3453 //     other modules or the application's classpath.
3454 static void call_initPhase3(TRAPS) {
3455   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3456   instanceKlassHandle klass (THREAD, k);
3457 
3458   JavaValue result(T_VOID);
3459   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3460                                          vmSymbols::void_method_signature(), CHECK);
3461 }
3462 
3463 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3464   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3465 
3466   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3467     create_vm_init_libraries();
3468   }
3469 
3470   initialize_class(vmSymbols::java_lang_String(), CHECK);
3471 
3472   // Inject CompactStrings value after the static initializers for String ran.
3473   java_lang_String::set_compact_strings(CompactStrings);
3474 
3475   // Initialize java_lang.System (needed before creating the thread)
3476   initialize_class(vmSymbols::java_lang_System(), CHECK);
3477   // The VM creates & returns objects of this class. Make sure it's initialized.
3478   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3479   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3480   Handle thread_group = create_initial_thread_group(CHECK);
3481   Universe::set_main_thread_group(thread_group());
3482   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3483   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3484   main_thread->set_threadObj(thread_object);
3485   // Set thread status to running since main thread has
3486   // been started and running.
3487   java_lang_Thread::set_thread_status(thread_object,
3488                                       java_lang_Thread::RUNNABLE);
3489 
3490   // The VM creates objects of this class.
3491   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3492 
3493   // The VM preresolves methods to these classes. Make sure that they get initialized
3494   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3495   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3496 
3497   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3498   call_initPhase1(CHECK);
3499 
3500   // get the Java runtime name after java.lang.System is initialized
3501   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3502   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3503 
3504   // an instance of OutOfMemory exception has been allocated earlier
3505   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3506   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3507   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3508   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3509   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3510   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3511   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3512   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3513 }
3514 
3515 void Threads::initialize_jsr292_core_classes(TRAPS) {
3516   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3517 
3518   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3519   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3520   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3521 }
3522 
3523 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3524   extern void JDK_Version_init();
3525 
3526   // Preinitialize version info.
3527   VM_Version::early_initialize();
3528 
3529   // Check version
3530   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3531 
3532   // Initialize library-based TLS
3533   ThreadLocalStorage::init();
3534 
3535   // Initialize the output stream module
3536   ostream_init();
3537 
3538   // Process java launcher properties.
3539   Arguments::process_sun_java_launcher_properties(args);
3540 
3541   // Initialize the os module
3542   os::init();
3543 
3544   // Record VM creation timing statistics
3545   TraceVmCreationTime create_vm_timer;
3546   create_vm_timer.start();
3547 
3548   // Initialize system properties.
3549   Arguments::init_system_properties();
3550 
3551   // So that JDK version can be used as a discriminator when parsing arguments
3552   JDK_Version_init();
3553 
3554   // Update/Initialize System properties after JDK version number is known
3555   Arguments::init_version_specific_system_properties();
3556 
3557   // Make sure to initialize log configuration *before* parsing arguments
3558   LogConfiguration::initialize(create_vm_timer.begin_time());
3559 
3560   // Parse arguments
3561   jint parse_result = Arguments::parse(args);
3562   if (parse_result != JNI_OK) return parse_result;
3563 
3564   os::init_before_ergo();
3565 
3566   jint ergo_result = Arguments::apply_ergo();
3567   if (ergo_result != JNI_OK) return ergo_result;
3568 
3569   // Final check of all ranges after ergonomics which may change values.
3570   if (!CommandLineFlagRangeList::check_ranges()) {
3571     return JNI_EINVAL;
3572   }
3573 
3574   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3575   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3576   if (!constraint_result) {
3577     return JNI_EINVAL;
3578   }
3579 
3580   CommandLineFlagWriteableList::mark_startup();
3581 
3582   if (PauseAtStartup) {
3583     os::pause();
3584   }
3585 
3586   HOTSPOT_VM_INIT_BEGIN();
3587 
3588   // Timing (must come after argument parsing)
3589   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3590 
3591   // Initialize the os module after parsing the args
3592   jint os_init_2_result = os::init_2();
3593   if (os_init_2_result != JNI_OK) return os_init_2_result;
3594 
3595   jint adjust_after_os_result = Arguments::adjust_after_os();
3596   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3597 
3598   // Initialize output stream logging
3599   ostream_init_log();
3600 
3601   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3602   // Must be before create_vm_init_agents()
3603   if (Arguments::init_libraries_at_startup()) {
3604     convert_vm_init_libraries_to_agents();
3605   }
3606 
3607   // Launch -agentlib/-agentpath and converted -Xrun agents
3608   if (Arguments::init_agents_at_startup()) {
3609     create_vm_init_agents();
3610   }
3611 
3612   // Initialize Threads state
3613   _thread_list = NULL;
3614   _number_of_threads = 0;
3615   _number_of_non_daemon_threads = 0;
3616 
3617   // Initialize global data structures and create system classes in heap
3618   vm_init_globals();
3619 
3620 #if INCLUDE_JVMCI
3621   if (JVMCICounterSize > 0) {
3622     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3623     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3624   } else {
3625     JavaThread::_jvmci_old_thread_counters = NULL;
3626   }
3627 #endif // INCLUDE_JVMCI
3628 
3629   // Attach the main thread to this os thread
3630   JavaThread* main_thread = new JavaThread();
3631   main_thread->set_thread_state(_thread_in_vm);
3632   main_thread->initialize_thread_current();
3633   // must do this before set_active_handles
3634   main_thread->record_stack_base_and_size();
3635   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3636 
3637   if (!main_thread->set_as_starting_thread()) {
3638     vm_shutdown_during_initialization(
3639                                       "Failed necessary internal allocation. Out of swap space");
3640     delete main_thread;
3641     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3642     return JNI_ENOMEM;
3643   }
3644 
3645   // Enable guard page *after* os::create_main_thread(), otherwise it would
3646   // crash Linux VM, see notes in os_linux.cpp.
3647   main_thread->create_stack_guard_pages();
3648 
3649   // Initialize Java-Level synchronization subsystem
3650   ObjectMonitor::Initialize();
3651 
3652   // Initialize global modules
3653   jint status = init_globals();
3654   if (status != JNI_OK) {
3655     delete main_thread;
3656     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3657     return status;
3658   }
3659 
3660   if (TRACE_INITIALIZE() != JNI_OK) {
3661     vm_exit_during_initialization("Failed to initialize tracing backend");
3662   }
3663 
3664   // Should be done after the heap is fully created
3665   main_thread->cache_global_variables();
3666 
3667   HandleMark hm;
3668 
3669   { MutexLocker mu(Threads_lock);
3670     Threads::add(main_thread);
3671   }
3672 
3673   // Any JVMTI raw monitors entered in onload will transition into
3674   // real raw monitor. VM is setup enough here for raw monitor enter.
3675   JvmtiExport::transition_pending_onload_raw_monitors();
3676 
3677   // Create the VMThread
3678   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3679 
3680   VMThread::create();
3681     Thread* vmthread = VMThread::vm_thread();
3682 
3683     if (!os::create_thread(vmthread, os::vm_thread)) {
3684       vm_exit_during_initialization("Cannot create VM thread. "
3685                                     "Out of system resources.");
3686     }
3687 
3688     // Wait for the VM thread to become ready, and VMThread::run to initialize
3689     // Monitors can have spurious returns, must always check another state flag
3690     {
3691       MutexLocker ml(Notify_lock);
3692       os::start_thread(vmthread);
3693       while (vmthread->active_handles() == NULL) {
3694         Notify_lock->wait();
3695       }
3696     }
3697   }
3698 
3699   assert(Universe::is_fully_initialized(), "not initialized");
3700   if (VerifyDuringStartup) {
3701     // Make sure we're starting with a clean slate.
3702     VM_Verify verify_op;
3703     VMThread::execute(&verify_op);
3704   }
3705 
3706   Thread* THREAD = Thread::current();
3707 
3708   // At this point, the Universe is initialized, but we have not executed
3709   // any byte code.  Now is a good time (the only time) to dump out the
3710   // internal state of the JVM for sharing.
3711   if (DumpSharedSpaces) {
3712     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3713     ShouldNotReachHere();
3714   }
3715 
3716   // Always call even when there are not JVMTI environments yet, since environments
3717   // may be attached late and JVMTI must track phases of VM execution
3718   JvmtiExport::enter_early_start_phase();
3719 
3720   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3721   JvmtiExport::post_early_vm_start();
3722 
3723   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3724 
3725   // We need this for ClassDataSharing - the initial vm.info property is set
3726   // with the default value of CDS "sharing" which may be reset through
3727   // command line options.
3728   reset_vm_info_property(CHECK_JNI_ERR);
3729 
3730   quicken_jni_functions();
3731 
3732   // No more stub generation allowed after that point.
3733   StubCodeDesc::freeze();
3734 
3735   // Set flag that basic initialization has completed. Used by exceptions and various
3736   // debug stuff, that does not work until all basic classes have been initialized.
3737   set_init_completed();
3738 
3739   LogConfiguration::post_initialize();
3740   Metaspace::post_initialize();
3741 
3742   HOTSPOT_VM_INIT_END();
3743 
3744   // record VM initialization completion time
3745 #if INCLUDE_MANAGEMENT
3746   Management::record_vm_init_completed();
3747 #endif // INCLUDE_MANAGEMENT
3748 
3749   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3750   // set_init_completed has just been called, causing exceptions not to be shortcut
3751   // anymore. We call vm_exit_during_initialization directly instead.
3752 
3753   // Initialize reference pending list locker
3754   bool needs_locker_thread = Universe::heap()->needs_reference_pending_list_locker_thread();
3755   ReferencePendingListLocker::initialize(needs_locker_thread, CHECK_JNI_ERR);
3756 
3757   // Signal Dispatcher needs to be started before VMInit event is posted
3758   os::signal_init();
3759 
3760   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3761   if (!DisableAttachMechanism) {
3762     AttachListener::vm_start();
3763     if (StartAttachListener || AttachListener::init_at_startup()) {
3764       AttachListener::init();
3765     }
3766   }
3767 
3768   // Launch -Xrun agents
3769   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3770   // back-end can launch with -Xdebug -Xrunjdwp.
3771   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3772     create_vm_init_libraries();
3773   }
3774 
3775   if (CleanChunkPoolAsync) {
3776     Chunk::start_chunk_pool_cleaner_task();
3777   }
3778 
3779   // initialize compiler(s)
3780 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3781   CompileBroker::compilation_init(CHECK_JNI_ERR);
3782 #endif
3783 
3784   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3785   // It is done after compilers are initialized, because otherwise compilations of
3786   // signature polymorphic MH intrinsics can be missed
3787   // (see SystemDictionary::find_method_handle_intrinsic).
3788   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3789 
3790   // This will initialize the module system.  Only java.base classes can be
3791   // loaded until phase 2 completes
3792   call_initPhase2(CHECK_JNI_ERR);
3793 
3794   // Always call even when there are not JVMTI environments yet, since environments
3795   // may be attached late and JVMTI must track phases of VM execution
3796   JvmtiExport::enter_start_phase();
3797 
3798   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3799   JvmtiExport::post_vm_start();
3800 
3801   // Final system initialization including security manager and system class loader
3802   call_initPhase3(CHECK_JNI_ERR);
3803 
3804   // cache the system class loader
3805   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3806 
3807 #if INCLUDE_JVMCI
3808   if (EnableJVMCI && UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation)) {
3809     // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3810     // compilations via JVMCI will not actually block until JVMCI is initialized.
3811     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3812   }
3813 #endif
3814 
3815   // Always call even when there are not JVMTI environments yet, since environments
3816   // may be attached late and JVMTI must track phases of VM execution
3817   JvmtiExport::enter_live_phase();
3818 
3819   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3820   JvmtiExport::post_vm_initialized();
3821 
3822   if (TRACE_START() != JNI_OK) {
3823     vm_exit_during_initialization("Failed to start tracing backend.");
3824   }
3825 
3826 #if INCLUDE_MANAGEMENT
3827   Management::initialize(THREAD);
3828 
3829   if (HAS_PENDING_EXCEPTION) {
3830     // management agent fails to start possibly due to
3831     // configuration problem and is responsible for printing
3832     // stack trace if appropriate. Simply exit VM.
3833     vm_exit(1);
3834   }
3835 #endif // INCLUDE_MANAGEMENT
3836 
3837   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3838   if (MemProfiling)                   MemProfiler::engage();
3839   StatSampler::engage();
3840   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3841 
3842   BiasedLocking::init();
3843 
3844 #if INCLUDE_RTM_OPT
3845   RTMLockingCounters::init();
3846 #endif
3847 
3848   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3849     call_postVMInitHook(THREAD);
3850     // The Java side of PostVMInitHook.run must deal with all
3851     // exceptions and provide means of diagnosis.
3852     if (HAS_PENDING_EXCEPTION) {
3853       CLEAR_PENDING_EXCEPTION;
3854     }
3855   }
3856 
3857   {
3858     MutexLocker ml(PeriodicTask_lock);
3859     // Make sure the WatcherThread can be started by WatcherThread::start()
3860     // or by dynamic enrollment.
3861     WatcherThread::make_startable();
3862     // Start up the WatcherThread if there are any periodic tasks
3863     // NOTE:  All PeriodicTasks should be registered by now. If they
3864     //   aren't, late joiners might appear to start slowly (we might
3865     //   take a while to process their first tick).
3866     if (PeriodicTask::num_tasks() > 0) {
3867       WatcherThread::start();
3868     }
3869   }
3870 
3871   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3872 
3873   create_vm_timer.end();
3874 #ifdef ASSERT
3875   _vm_complete = true;
3876 #endif
3877   return JNI_OK;
3878 }
3879 
3880 // type for the Agent_OnLoad and JVM_OnLoad entry points
3881 extern "C" {
3882   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3883 }
3884 // Find a command line agent library and return its entry point for
3885 //         -agentlib:  -agentpath:   -Xrun
3886 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3887 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3888                                     const char *on_load_symbols[],
3889                                     size_t num_symbol_entries) {
3890   OnLoadEntry_t on_load_entry = NULL;
3891   void *library = NULL;
3892 
3893   if (!agent->valid()) {
3894     char buffer[JVM_MAXPATHLEN];
3895     char ebuf[1024] = "";
3896     const char *name = agent->name();
3897     const char *msg = "Could not find agent library ";
3898 
3899     // First check to see if agent is statically linked into executable
3900     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3901       library = agent->os_lib();
3902     } else if (agent->is_absolute_path()) {
3903       library = os::dll_load(name, ebuf, sizeof ebuf);
3904       if (library == NULL) {
3905         const char *sub_msg = " in absolute path, with error: ";
3906         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3907         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3908         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3909         // If we can't find the agent, exit.
3910         vm_exit_during_initialization(buf, NULL);
3911         FREE_C_HEAP_ARRAY(char, buf);
3912       }
3913     } else {
3914       // Try to load the agent from the standard dll directory
3915       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3916                              name)) {
3917         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3918       }
3919       if (library == NULL) { // Try the local directory
3920         char ns[1] = {0};
3921         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3922           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3923         }
3924         if (library == NULL) {
3925           const char *sub_msg = " on the library path, with error: ";
3926           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3927           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3928           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3929           // If we can't find the agent, exit.
3930           vm_exit_during_initialization(buf, NULL);
3931           FREE_C_HEAP_ARRAY(char, buf);
3932         }
3933       }
3934     }
3935     agent->set_os_lib(library);
3936     agent->set_valid();
3937   }
3938 
3939   // Find the OnLoad function.
3940   on_load_entry =
3941     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3942                                                           false,
3943                                                           on_load_symbols,
3944                                                           num_symbol_entries));
3945   return on_load_entry;
3946 }
3947 
3948 // Find the JVM_OnLoad entry point
3949 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3950   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3951   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3952 }
3953 
3954 // Find the Agent_OnLoad entry point
3955 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3956   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3957   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3958 }
3959 
3960 // For backwards compatibility with -Xrun
3961 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3962 // treated like -agentpath:
3963 // Must be called before agent libraries are created
3964 void Threads::convert_vm_init_libraries_to_agents() {
3965   AgentLibrary* agent;
3966   AgentLibrary* next;
3967 
3968   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3969     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3970     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3971 
3972     // If there is an JVM_OnLoad function it will get called later,
3973     // otherwise see if there is an Agent_OnLoad
3974     if (on_load_entry == NULL) {
3975       on_load_entry = lookup_agent_on_load(agent);
3976       if (on_load_entry != NULL) {
3977         // switch it to the agent list -- so that Agent_OnLoad will be called,
3978         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3979         Arguments::convert_library_to_agent(agent);
3980       } else {
3981         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3982       }
3983     }
3984   }
3985 }
3986 
3987 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3988 // Invokes Agent_OnLoad
3989 // Called very early -- before JavaThreads exist
3990 void Threads::create_vm_init_agents() {
3991   extern struct JavaVM_ main_vm;
3992   AgentLibrary* agent;
3993 
3994   JvmtiExport::enter_onload_phase();
3995 
3996   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3997     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3998 
3999     if (on_load_entry != NULL) {
4000       // Invoke the Agent_OnLoad function
4001       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4002       if (err != JNI_OK) {
4003         vm_exit_during_initialization("agent library failed to init", agent->name());
4004       }
4005     } else {
4006       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4007     }
4008   }
4009   JvmtiExport::enter_primordial_phase();
4010 }
4011 
4012 extern "C" {
4013   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4014 }
4015 
4016 void Threads::shutdown_vm_agents() {
4017   // Send any Agent_OnUnload notifications
4018   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4019   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4020   extern struct JavaVM_ main_vm;
4021   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4022 
4023     // Find the Agent_OnUnload function.
4024     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4025                                                    os::find_agent_function(agent,
4026                                                    false,
4027                                                    on_unload_symbols,
4028                                                    num_symbol_entries));
4029 
4030     // Invoke the Agent_OnUnload function
4031     if (unload_entry != NULL) {
4032       JavaThread* thread = JavaThread::current();
4033       ThreadToNativeFromVM ttn(thread);
4034       HandleMark hm(thread);
4035       (*unload_entry)(&main_vm);
4036     }
4037   }
4038 }
4039 
4040 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4041 // Invokes JVM_OnLoad
4042 void Threads::create_vm_init_libraries() {
4043   extern struct JavaVM_ main_vm;
4044   AgentLibrary* agent;
4045 
4046   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4047     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4048 
4049     if (on_load_entry != NULL) {
4050       // Invoke the JVM_OnLoad function
4051       JavaThread* thread = JavaThread::current();
4052       ThreadToNativeFromVM ttn(thread);
4053       HandleMark hm(thread);
4054       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4055       if (err != JNI_OK) {
4056         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4057       }
4058     } else {
4059       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4060     }
4061   }
4062 }
4063 
4064 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4065   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4066 
4067   JavaThread* java_thread = NULL;
4068   // Sequential search for now.  Need to do better optimization later.
4069   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4070     oop tobj = thread->threadObj();
4071     if (!thread->is_exiting() &&
4072         tobj != NULL &&
4073         java_tid == java_lang_Thread::thread_id(tobj)) {
4074       java_thread = thread;
4075       break;
4076     }
4077   }
4078   return java_thread;
4079 }
4080 
4081 
4082 // Last thread running calls java.lang.Shutdown.shutdown()
4083 void JavaThread::invoke_shutdown_hooks() {
4084   HandleMark hm(this);
4085 
4086   // We could get here with a pending exception, if so clear it now.
4087   if (this->has_pending_exception()) {
4088     this->clear_pending_exception();
4089   }
4090 
4091   EXCEPTION_MARK;
4092   Klass* k =
4093     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4094                                       THREAD);
4095   if (k != NULL) {
4096     // SystemDictionary::resolve_or_null will return null if there was
4097     // an exception.  If we cannot load the Shutdown class, just don't
4098     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4099     // and finalizers (if runFinalizersOnExit is set) won't be run.
4100     // Note that if a shutdown hook was registered or runFinalizersOnExit
4101     // was called, the Shutdown class would have already been loaded
4102     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4103     instanceKlassHandle shutdown_klass (THREAD, k);
4104     JavaValue result(T_VOID);
4105     JavaCalls::call_static(&result,
4106                            shutdown_klass,
4107                            vmSymbols::shutdown_method_name(),
4108                            vmSymbols::void_method_signature(),
4109                            THREAD);
4110   }
4111   CLEAR_PENDING_EXCEPTION;
4112 }
4113 
4114 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4115 // the program falls off the end of main(). Another VM exit path is through
4116 // vm_exit() when the program calls System.exit() to return a value or when
4117 // there is a serious error in VM. The two shutdown paths are not exactly
4118 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4119 // and VM_Exit op at VM level.
4120 //
4121 // Shutdown sequence:
4122 //   + Shutdown native memory tracking if it is on
4123 //   + Wait until we are the last non-daemon thread to execute
4124 //     <-- every thing is still working at this moment -->
4125 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4126 //        shutdown hooks, run finalizers if finalization-on-exit
4127 //   + Call before_exit(), prepare for VM exit
4128 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4129 //        currently the only user of this mechanism is File.deleteOnExit())
4130 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4131 //        post thread end and vm death events to JVMTI,
4132 //        stop signal thread
4133 //   + Call JavaThread::exit(), it will:
4134 //      > release JNI handle blocks, remove stack guard pages
4135 //      > remove this thread from Threads list
4136 //     <-- no more Java code from this thread after this point -->
4137 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4138 //     the compiler threads at safepoint
4139 //     <-- do not use anything that could get blocked by Safepoint -->
4140 //   + Disable tracing at JNI/JVM barriers
4141 //   + Set _vm_exited flag for threads that are still running native code
4142 //   + Delete this thread
4143 //   + Call exit_globals()
4144 //      > deletes tty
4145 //      > deletes PerfMemory resources
4146 //   + Return to caller
4147 
4148 bool Threads::destroy_vm() {
4149   JavaThread* thread = JavaThread::current();
4150 
4151 #ifdef ASSERT
4152   _vm_complete = false;
4153 #endif
4154   // Wait until we are the last non-daemon thread to execute
4155   { MutexLocker nu(Threads_lock);
4156     while (Threads::number_of_non_daemon_threads() > 1)
4157       // This wait should make safepoint checks, wait without a timeout,
4158       // and wait as a suspend-equivalent condition.
4159       //
4160       // Note: If the FlatProfiler is running and this thread is waiting
4161       // for another non-daemon thread to finish, then the FlatProfiler
4162       // is waiting for the external suspend request on this thread to
4163       // complete. wait_for_ext_suspend_completion() will eventually
4164       // timeout, but that takes time. Making this wait a suspend-
4165       // equivalent condition solves that timeout problem.
4166       //
4167       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4168                          Mutex::_as_suspend_equivalent_flag);
4169   }
4170 
4171   // Hang forever on exit if we are reporting an error.
4172   if (ShowMessageBoxOnError && is_error_reported()) {
4173     os::infinite_sleep();
4174   }
4175   os::wait_for_keypress_at_exit();
4176 
4177   // run Java level shutdown hooks
4178   thread->invoke_shutdown_hooks();
4179 
4180   before_exit(thread);
4181 
4182   thread->exit(true);
4183 
4184   // Stop VM thread.
4185   {
4186     // 4945125 The vm thread comes to a safepoint during exit.
4187     // GC vm_operations can get caught at the safepoint, and the
4188     // heap is unparseable if they are caught. Grab the Heap_lock
4189     // to prevent this. The GC vm_operations will not be able to
4190     // queue until after the vm thread is dead. After this point,
4191     // we'll never emerge out of the safepoint before the VM exits.
4192 
4193     MutexLocker ml(Heap_lock);
4194 
4195     VMThread::wait_for_vm_thread_exit();
4196     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4197     VMThread::destroy();
4198   }
4199 
4200   // clean up ideal graph printers
4201 #if defined(COMPILER2) && !defined(PRODUCT)
4202   IdealGraphPrinter::clean_up();
4203 #endif
4204 
4205   // Now, all Java threads are gone except daemon threads. Daemon threads
4206   // running Java code or in VM are stopped by the Safepoint. However,
4207   // daemon threads executing native code are still running.  But they
4208   // will be stopped at native=>Java/VM barriers. Note that we can't
4209   // simply kill or suspend them, as it is inherently deadlock-prone.
4210 
4211   VM_Exit::set_vm_exited();
4212 
4213   notify_vm_shutdown();
4214 
4215   delete thread;
4216 
4217 #if INCLUDE_JVMCI
4218   if (JVMCICounterSize > 0) {
4219     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4220   }
4221 #endif
4222 
4223   // exit_globals() will delete tty
4224   exit_globals();
4225 
4226   LogConfiguration::finalize();
4227 
4228   return true;
4229 }
4230 
4231 
4232 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4233   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4234   return is_supported_jni_version(version);
4235 }
4236 
4237 
4238 jboolean Threads::is_supported_jni_version(jint version) {
4239   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4240   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4241   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4242   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4243   if (version == JNI_VERSION_9) return JNI_TRUE;
4244   return JNI_FALSE;
4245 }
4246 
4247 
4248 void Threads::add(JavaThread* p, bool force_daemon) {
4249   // The threads lock must be owned at this point
4250   assert_locked_or_safepoint(Threads_lock);
4251 
4252   // See the comment for this method in thread.hpp for its purpose and
4253   // why it is called here.
4254   p->initialize_queues();
4255   p->set_next(_thread_list);
4256   _thread_list = p;
4257   _number_of_threads++;
4258   oop threadObj = p->threadObj();
4259   bool daemon = true;
4260   // Bootstrapping problem: threadObj can be null for initial
4261   // JavaThread (or for threads attached via JNI)
4262   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4263     _number_of_non_daemon_threads++;
4264     daemon = false;
4265   }
4266 
4267   ThreadService::add_thread(p, daemon);
4268 
4269   // Possible GC point.
4270   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4271 }
4272 
4273 void Threads::remove(JavaThread* p) {
4274   // Extra scope needed for Thread_lock, so we can check
4275   // that we do not remove thread without safepoint code notice
4276   { MutexLocker ml(Threads_lock);
4277 
4278     assert(includes(p), "p must be present");
4279 
4280     JavaThread* current = _thread_list;
4281     JavaThread* prev    = NULL;
4282 
4283     while (current != p) {
4284       prev    = current;
4285       current = current->next();
4286     }
4287 
4288     if (prev) {
4289       prev->set_next(current->next());
4290     } else {
4291       _thread_list = p->next();
4292     }
4293     _number_of_threads--;
4294     oop threadObj = p->threadObj();
4295     bool daemon = true;
4296     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4297       _number_of_non_daemon_threads--;
4298       daemon = false;
4299 
4300       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4301       // on destroy_vm will wake up.
4302       if (number_of_non_daemon_threads() == 1) {
4303         Threads_lock->notify_all();
4304       }
4305     }
4306     ThreadService::remove_thread(p, daemon);
4307 
4308     // Make sure that safepoint code disregard this thread. This is needed since
4309     // the thread might mess around with locks after this point. This can cause it
4310     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4311     // of this thread since it is removed from the queue.
4312     p->set_terminated_value();
4313   } // unlock Threads_lock
4314 
4315   // Since Events::log uses a lock, we grab it outside the Threads_lock
4316   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4317 }
4318 
4319 // Threads_lock must be held when this is called (or must be called during a safepoint)
4320 bool Threads::includes(JavaThread* p) {
4321   assert(Threads_lock->is_locked(), "sanity check");
4322   ALL_JAVA_THREADS(q) {
4323     if (q == p) {
4324       return true;
4325     }
4326   }
4327   return false;
4328 }
4329 
4330 // Operations on the Threads list for GC.  These are not explicitly locked,
4331 // but the garbage collector must provide a safe context for them to run.
4332 // In particular, these things should never be called when the Threads_lock
4333 // is held by some other thread. (Note: the Safepoint abstraction also
4334 // uses the Threads_lock to guarantee this property. It also makes sure that
4335 // all threads gets blocked when exiting or starting).
4336 
4337 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4338   ALL_JAVA_THREADS(p) {
4339     p->oops_do(f, cf);
4340   }
4341   VMThread::vm_thread()->oops_do(f, cf);
4342 }
4343 
4344 void Threads::change_thread_claim_parity() {
4345   // Set the new claim parity.
4346   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4347          "Not in range.");
4348   _thread_claim_parity++;
4349   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4350   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4351          "Not in range.");
4352 }
4353 
4354 #ifdef ASSERT
4355 void Threads::assert_all_threads_claimed() {
4356   ALL_JAVA_THREADS(p) {
4357     const int thread_parity = p->oops_do_parity();
4358     assert((thread_parity == _thread_claim_parity),
4359            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4360   }
4361 }
4362 #endif // ASSERT
4363 
4364 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4365   int cp = Threads::thread_claim_parity();
4366   ALL_JAVA_THREADS(p) {
4367     if (p->claim_oops_do(is_par, cp)) {
4368       p->oops_do(f, cf);
4369     }
4370   }
4371   VMThread* vmt = VMThread::vm_thread();
4372   if (vmt->claim_oops_do(is_par, cp)) {
4373     vmt->oops_do(f, cf);
4374   }
4375 }
4376 
4377 #if INCLUDE_ALL_GCS
4378 // Used by ParallelScavenge
4379 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4380   ALL_JAVA_THREADS(p) {
4381     q->enqueue(new ThreadRootsTask(p));
4382   }
4383   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4384 }
4385 
4386 // Used by Parallel Old
4387 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4388   ALL_JAVA_THREADS(p) {
4389     q->enqueue(new ThreadRootsMarkingTask(p));
4390   }
4391   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4392 }
4393 #endif // INCLUDE_ALL_GCS
4394 
4395 void Threads::nmethods_do(CodeBlobClosure* cf) {
4396   ALL_JAVA_THREADS(p) {
4397     // This is used by the code cache sweeper to mark nmethods that are active
4398     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4399     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4400     if(!p->is_Code_cache_sweeper_thread()) {
4401       p->nmethods_do(cf);
4402     }
4403   }
4404 }
4405 
4406 void Threads::metadata_do(void f(Metadata*)) {
4407   ALL_JAVA_THREADS(p) {
4408     p->metadata_do(f);
4409   }
4410 }
4411 
4412 class ThreadHandlesClosure : public ThreadClosure {
4413   void (*_f)(Metadata*);
4414  public:
4415   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4416   virtual void do_thread(Thread* thread) {
4417     thread->metadata_handles_do(_f);
4418   }
4419 };
4420 
4421 void Threads::metadata_handles_do(void f(Metadata*)) {
4422   // Only walk the Handles in Thread.
4423   ThreadHandlesClosure handles_closure(f);
4424   threads_do(&handles_closure);
4425 }
4426 
4427 void Threads::deoptimized_wrt_marked_nmethods() {
4428   ALL_JAVA_THREADS(p) {
4429     p->deoptimized_wrt_marked_nmethods();
4430   }
4431 }
4432 
4433 
4434 // Get count Java threads that are waiting to enter the specified monitor.
4435 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4436                                                          address monitor,
4437                                                          bool doLock) {
4438   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4439          "must grab Threads_lock or be at safepoint");
4440   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4441 
4442   int i = 0;
4443   {
4444     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4445     ALL_JAVA_THREADS(p) {
4446       if (!p->can_call_java()) continue;
4447 
4448       address pending = (address)p->current_pending_monitor();
4449       if (pending == monitor) {             // found a match
4450         if (i < count) result->append(p);   // save the first count matches
4451         i++;
4452       }
4453     }
4454   }
4455   return result;
4456 }
4457 
4458 
4459 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4460                                                       bool doLock) {
4461   assert(doLock ||
4462          Threads_lock->owned_by_self() ||
4463          SafepointSynchronize::is_at_safepoint(),
4464          "must grab Threads_lock or be at safepoint");
4465 
4466   // NULL owner means not locked so we can skip the search
4467   if (owner == NULL) return NULL;
4468 
4469   {
4470     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4471     ALL_JAVA_THREADS(p) {
4472       // first, see if owner is the address of a Java thread
4473       if (owner == (address)p) return p;
4474     }
4475   }
4476   // Cannot assert on lack of success here since this function may be
4477   // used by code that is trying to report useful problem information
4478   // like deadlock detection.
4479   if (UseHeavyMonitors) return NULL;
4480 
4481   // If we didn't find a matching Java thread and we didn't force use of
4482   // heavyweight monitors, then the owner is the stack address of the
4483   // Lock Word in the owning Java thread's stack.
4484   //
4485   JavaThread* the_owner = NULL;
4486   {
4487     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4488     ALL_JAVA_THREADS(q) {
4489       if (q->is_lock_owned(owner)) {
4490         the_owner = q;
4491         break;
4492       }
4493     }
4494   }
4495   // cannot assert on lack of success here; see above comment
4496   return the_owner;
4497 }
4498 
4499 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4500 void Threads::print_on(outputStream* st, bool print_stacks,
4501                        bool internal_format, bool print_concurrent_locks) {
4502   char buf[32];
4503   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4504 
4505   st->print_cr("Full thread dump %s (%s %s):",
4506                Abstract_VM_Version::vm_name(),
4507                Abstract_VM_Version::vm_release(),
4508                Abstract_VM_Version::vm_info_string());
4509   st->cr();
4510 
4511 #if INCLUDE_SERVICES
4512   // Dump concurrent locks
4513   ConcurrentLocksDump concurrent_locks;
4514   if (print_concurrent_locks) {
4515     concurrent_locks.dump_at_safepoint();
4516   }
4517 #endif // INCLUDE_SERVICES
4518 
4519   ALL_JAVA_THREADS(p) {
4520     ResourceMark rm;
4521     p->print_on(st);
4522     if (print_stacks) {
4523       if (internal_format) {
4524         p->trace_stack();
4525       } else {
4526         p->print_stack_on(st);
4527       }
4528     }
4529     st->cr();
4530 #if INCLUDE_SERVICES
4531     if (print_concurrent_locks) {
4532       concurrent_locks.print_locks_on(p, st);
4533     }
4534 #endif // INCLUDE_SERVICES
4535   }
4536 
4537   VMThread::vm_thread()->print_on(st);
4538   st->cr();
4539   Universe::heap()->print_gc_threads_on(st);
4540   WatcherThread* wt = WatcherThread::watcher_thread();
4541   if (wt != NULL) {
4542     wt->print_on(st);
4543     st->cr();
4544   }
4545   st->flush();
4546 }
4547 
4548 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4549                              int buflen, bool* found_current) {
4550   if (this_thread != NULL) {
4551     bool is_current = (current == this_thread);
4552     *found_current = *found_current || is_current;
4553     st->print("%s", is_current ? "=>" : "  ");
4554 
4555     st->print(PTR_FORMAT, p2i(this_thread));
4556     st->print(" ");
4557     this_thread->print_on_error(st, buf, buflen);
4558     st->cr();
4559   }
4560 }
4561 
4562 class PrintOnErrorClosure : public ThreadClosure {
4563   outputStream* _st;
4564   Thread* _current;
4565   char* _buf;
4566   int _buflen;
4567   bool* _found_current;
4568  public:
4569   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4570                       int buflen, bool* found_current) :
4571    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4572 
4573   virtual void do_thread(Thread* thread) {
4574     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4575   }
4576 };
4577 
4578 // Threads::print_on_error() is called by fatal error handler. It's possible
4579 // that VM is not at safepoint and/or current thread is inside signal handler.
4580 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4581 // memory (even in resource area), it might deadlock the error handler.
4582 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4583                              int buflen) {
4584   bool found_current = false;
4585   st->print_cr("Java Threads: ( => current thread )");
4586   ALL_JAVA_THREADS(thread) {
4587     print_on_error(thread, st, current, buf, buflen, &found_current);
4588   }
4589   st->cr();
4590 
4591   st->print_cr("Other Threads:");
4592   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4593   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4594 
4595   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4596   Universe::heap()->gc_threads_do(&print_closure);
4597 
4598   if (!found_current) {
4599     st->cr();
4600     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4601     current->print_on_error(st, buf, buflen);
4602     st->cr();
4603   }
4604   st->cr();
4605   st->print_cr("Threads with active compile tasks:");
4606   print_threads_compiling(st, buf, buflen);
4607 }
4608 
4609 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4610   ALL_JAVA_THREADS(thread) {
4611     if (thread->is_Compiler_thread()) {
4612       CompilerThread* ct = (CompilerThread*) thread;
4613       if (ct->task() != NULL) {
4614         thread->print_name_on_error(st, buf, buflen);
4615         ct->task()->print(st, NULL, true, true);
4616       }
4617     }
4618   }
4619 }
4620 
4621 
4622 // Internal SpinLock and Mutex
4623 // Based on ParkEvent
4624 
4625 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4626 //
4627 // We employ SpinLocks _only for low-contention, fixed-length
4628 // short-duration critical sections where we're concerned
4629 // about native mutex_t or HotSpot Mutex:: latency.
4630 // The mux construct provides a spin-then-block mutual exclusion
4631 // mechanism.
4632 //
4633 // Testing has shown that contention on the ListLock guarding gFreeList
4634 // is common.  If we implement ListLock as a simple SpinLock it's common
4635 // for the JVM to devolve to yielding with little progress.  This is true
4636 // despite the fact that the critical sections protected by ListLock are
4637 // extremely short.
4638 //
4639 // TODO-FIXME: ListLock should be of type SpinLock.
4640 // We should make this a 1st-class type, integrated into the lock
4641 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4642 // should have sufficient padding to avoid false-sharing and excessive
4643 // cache-coherency traffic.
4644 
4645 
4646 typedef volatile int SpinLockT;
4647 
4648 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4649   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4650     return;   // normal fast-path return
4651   }
4652 
4653   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4654   TEVENT(SpinAcquire - ctx);
4655   int ctr = 0;
4656   int Yields = 0;
4657   for (;;) {
4658     while (*adr != 0) {
4659       ++ctr;
4660       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4661         if (Yields > 5) {
4662           os::naked_short_sleep(1);
4663         } else {
4664           os::naked_yield();
4665           ++Yields;
4666         }
4667       } else {
4668         SpinPause();
4669       }
4670     }
4671     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4672   }
4673 }
4674 
4675 void Thread::SpinRelease(volatile int * adr) {
4676   assert(*adr != 0, "invariant");
4677   OrderAccess::fence();      // guarantee at least release consistency.
4678   // Roach-motel semantics.
4679   // It's safe if subsequent LDs and STs float "up" into the critical section,
4680   // but prior LDs and STs within the critical section can't be allowed
4681   // to reorder or float past the ST that releases the lock.
4682   // Loads and stores in the critical section - which appear in program
4683   // order before the store that releases the lock - must also appear
4684   // before the store that releases the lock in memory visibility order.
4685   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4686   // the ST of 0 into the lock-word which releases the lock, so fence
4687   // more than covers this on all platforms.
4688   *adr = 0;
4689 }
4690 
4691 // muxAcquire and muxRelease:
4692 //
4693 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4694 //    The LSB of the word is set IFF the lock is held.
4695 //    The remainder of the word points to the head of a singly-linked list
4696 //    of threads blocked on the lock.
4697 //
4698 // *  The current implementation of muxAcquire-muxRelease uses its own
4699 //    dedicated Thread._MuxEvent instance.  If we're interested in
4700 //    minimizing the peak number of extant ParkEvent instances then
4701 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4702 //    as certain invariants were satisfied.  Specifically, care would need
4703 //    to be taken with regards to consuming unpark() "permits".
4704 //    A safe rule of thumb is that a thread would never call muxAcquire()
4705 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4706 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4707 //    consume an unpark() permit intended for monitorenter, for instance.
4708 //    One way around this would be to widen the restricted-range semaphore
4709 //    implemented in park().  Another alternative would be to provide
4710 //    multiple instances of the PlatformEvent() for each thread.  One
4711 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4712 //
4713 // *  Usage:
4714 //    -- Only as leaf locks
4715 //    -- for short-term locking only as muxAcquire does not perform
4716 //       thread state transitions.
4717 //
4718 // Alternatives:
4719 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4720 //    but with parking or spin-then-park instead of pure spinning.
4721 // *  Use Taura-Oyama-Yonenzawa locks.
4722 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4723 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4724 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4725 //    acquiring threads use timers (ParkTimed) to detect and recover from
4726 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4727 //    boundaries by using placement-new.
4728 // *  Augment MCS with advisory back-link fields maintained with CAS().
4729 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4730 //    The validity of the backlinks must be ratified before we trust the value.
4731 //    If the backlinks are invalid the exiting thread must back-track through the
4732 //    the forward links, which are always trustworthy.
4733 // *  Add a successor indication.  The LockWord is currently encoded as
4734 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4735 //    to provide the usual futile-wakeup optimization.
4736 //    See RTStt for details.
4737 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4738 //
4739 
4740 
4741 typedef volatile intptr_t MutexT;      // Mux Lock-word
4742 enum MuxBits { LOCKBIT = 1 };
4743 
4744 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4745   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4746   if (w == 0) return;
4747   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4748     return;
4749   }
4750 
4751   TEVENT(muxAcquire - Contention);
4752   ParkEvent * const Self = Thread::current()->_MuxEvent;
4753   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4754   for (;;) {
4755     int its = (os::is_MP() ? 100 : 0) + 1;
4756 
4757     // Optional spin phase: spin-then-park strategy
4758     while (--its >= 0) {
4759       w = *Lock;
4760       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4761         return;
4762       }
4763     }
4764 
4765     Self->reset();
4766     Self->OnList = intptr_t(Lock);
4767     // The following fence() isn't _strictly necessary as the subsequent
4768     // CAS() both serializes execution and ratifies the fetched *Lock value.
4769     OrderAccess::fence();
4770     for (;;) {
4771       w = *Lock;
4772       if ((w & LOCKBIT) == 0) {
4773         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4774           Self->OnList = 0;   // hygiene - allows stronger asserts
4775           return;
4776         }
4777         continue;      // Interference -- *Lock changed -- Just retry
4778       }
4779       assert(w & LOCKBIT, "invariant");
4780       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4781       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4782     }
4783 
4784     while (Self->OnList != 0) {
4785       Self->park();
4786     }
4787   }
4788 }
4789 
4790 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4791   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4792   if (w == 0) return;
4793   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4794     return;
4795   }
4796 
4797   TEVENT(muxAcquire - Contention);
4798   ParkEvent * ReleaseAfter = NULL;
4799   if (ev == NULL) {
4800     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4801   }
4802   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4803   for (;;) {
4804     guarantee(ev->OnList == 0, "invariant");
4805     int its = (os::is_MP() ? 100 : 0) + 1;
4806 
4807     // Optional spin phase: spin-then-park strategy
4808     while (--its >= 0) {
4809       w = *Lock;
4810       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4811         if (ReleaseAfter != NULL) {
4812           ParkEvent::Release(ReleaseAfter);
4813         }
4814         return;
4815       }
4816     }
4817 
4818     ev->reset();
4819     ev->OnList = intptr_t(Lock);
4820     // The following fence() isn't _strictly necessary as the subsequent
4821     // CAS() both serializes execution and ratifies the fetched *Lock value.
4822     OrderAccess::fence();
4823     for (;;) {
4824       w = *Lock;
4825       if ((w & LOCKBIT) == 0) {
4826         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4827           ev->OnList = 0;
4828           // We call ::Release while holding the outer lock, thus
4829           // artificially lengthening the critical section.
4830           // Consider deferring the ::Release() until the subsequent unlock(),
4831           // after we've dropped the outer lock.
4832           if (ReleaseAfter != NULL) {
4833             ParkEvent::Release(ReleaseAfter);
4834           }
4835           return;
4836         }
4837         continue;      // Interference -- *Lock changed -- Just retry
4838       }
4839       assert(w & LOCKBIT, "invariant");
4840       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4841       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4842     }
4843 
4844     while (ev->OnList != 0) {
4845       ev->park();
4846     }
4847   }
4848 }
4849 
4850 // Release() must extract a successor from the list and then wake that thread.
4851 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4852 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4853 // Release() would :
4854 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4855 // (B) Extract a successor from the private list "in-hand"
4856 // (C) attempt to CAS() the residual back into *Lock over null.
4857 //     If there were any newly arrived threads and the CAS() would fail.
4858 //     In that case Release() would detach the RATs, re-merge the list in-hand
4859 //     with the RATs and repeat as needed.  Alternately, Release() might
4860 //     detach and extract a successor, but then pass the residual list to the wakee.
4861 //     The wakee would be responsible for reattaching and remerging before it
4862 //     competed for the lock.
4863 //
4864 // Both "pop" and DMR are immune from ABA corruption -- there can be
4865 // multiple concurrent pushers, but only one popper or detacher.
4866 // This implementation pops from the head of the list.  This is unfair,
4867 // but tends to provide excellent throughput as hot threads remain hot.
4868 // (We wake recently run threads first).
4869 //
4870 // All paths through muxRelease() will execute a CAS.
4871 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4872 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4873 // executed within the critical section are complete and globally visible before the
4874 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4875 void Thread::muxRelease(volatile intptr_t * Lock)  {
4876   for (;;) {
4877     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4878     assert(w & LOCKBIT, "invariant");
4879     if (w == LOCKBIT) return;
4880     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4881     assert(List != NULL, "invariant");
4882     assert(List->OnList == intptr_t(Lock), "invariant");
4883     ParkEvent * const nxt = List->ListNext;
4884     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4885 
4886     // The following CAS() releases the lock and pops the head element.
4887     // The CAS() also ratifies the previously fetched lock-word value.
4888     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4889       continue;
4890     }
4891     List->OnList = 0;
4892     OrderAccess::fence();
4893     List->unpark();
4894     return;
4895   }
4896 }
4897 
4898 
4899 void Threads::verify() {
4900   ALL_JAVA_THREADS(p) {
4901     p->verify();
4902   }
4903   VMThread* thread = VMThread::vm_thread();
4904   if (thread != NULL) thread->verify();
4905 }