1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc/g1/heapRegion.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/cardTableModRefBS.hpp"
  31 #include "gc/shared/collectedHeap.hpp"
  32 #include "gc/shenandoah/brooksPointer.hpp"
  33 #include "gc/shenandoah/shenandoahConnectionMatrix.hpp"
  34 #include "gc/shenandoah/shenandoahHeap.hpp"
  35 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/locknode.hpp"
  44 #include "opto/machnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/shenandoahSupport.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn())
  59 {
  60   _exceptions = jvms->map()->next_exception();
  61   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  62   set_jvms(jvms);
  63 }
  64 
  65 // Private constructor for parser.
  66 GraphKit::GraphKit()
  67   : Phase(Phase::Parser),
  68     _env(C->env()),
  69     _gvn(*C->initial_gvn())
  70 {
  71   _exceptions = NULL;
  72   set_map(NULL);
  73   debug_only(_sp = -99);
  74   debug_only(set_bci(-99));
  75 }
  76 
  77 
  78 
  79 //---------------------------clean_stack---------------------------------------
  80 // Clear away rubbish from the stack area of the JVM state.
  81 // This destroys any arguments that may be waiting on the stack.
  82 void GraphKit::clean_stack(int from_sp) {
  83   SafePointNode* map      = this->map();
  84   JVMState*      jvms     = this->jvms();
  85   int            stk_size = jvms->stk_size();
  86   int            stkoff   = jvms->stkoff();
  87   Node*          top      = this->top();
  88   for (int i = from_sp; i < stk_size; i++) {
  89     if (map->in(stkoff + i) != top) {
  90       map->set_req(stkoff + i, top);
  91     }
  92   }
  93 }
  94 
  95 
  96 //--------------------------------sync_jvms-----------------------------------
  97 // Make sure our current jvms agrees with our parse state.
  98 JVMState* GraphKit::sync_jvms() const {
  99   JVMState* jvms = this->jvms();
 100   jvms->set_bci(bci());       // Record the new bci in the JVMState
 101   jvms->set_sp(sp());         // Record the new sp in the JVMState
 102   assert(jvms_in_sync(), "jvms is now in sync");
 103   return jvms;
 104 }
 105 
 106 //--------------------------------sync_jvms_for_reexecute---------------------
 107 // Make sure our current jvms agrees with our parse state.  This version
 108 // uses the reexecute_sp for reexecuting bytecodes.
 109 JVMState* GraphKit::sync_jvms_for_reexecute() {
 110   JVMState* jvms = this->jvms();
 111   jvms->set_bci(bci());          // Record the new bci in the JVMState
 112   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 113   return jvms;
 114 }
 115 
 116 #ifdef ASSERT
 117 bool GraphKit::jvms_in_sync() const {
 118   Parse* parse = is_Parse();
 119   if (parse == NULL) {
 120     if (bci() !=      jvms()->bci())          return false;
 121     if (sp()  != (int)jvms()->sp())           return false;
 122     return true;
 123   }
 124   if (jvms()->method() != parse->method())    return false;
 125   if (jvms()->bci()    != parse->bci())       return false;
 126   int jvms_sp = jvms()->sp();
 127   if (jvms_sp          != parse->sp())        return false;
 128   int jvms_depth = jvms()->depth();
 129   if (jvms_depth       != parse->depth())     return false;
 130   return true;
 131 }
 132 
 133 // Local helper checks for special internal merge points
 134 // used to accumulate and merge exception states.
 135 // They are marked by the region's in(0) edge being the map itself.
 136 // Such merge points must never "escape" into the parser at large,
 137 // until they have been handed to gvn.transform.
 138 static bool is_hidden_merge(Node* reg) {
 139   if (reg == NULL)  return false;
 140   if (reg->is_Phi()) {
 141     reg = reg->in(0);
 142     if (reg == NULL)  return false;
 143   }
 144   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 145 }
 146 
 147 void GraphKit::verify_map() const {
 148   if (map() == NULL)  return;  // null map is OK
 149   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 150   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 151   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 152 }
 153 
 154 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 155   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 156   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 157 }
 158 #endif
 159 
 160 //---------------------------stop_and_kill_map---------------------------------
 161 // Set _map to NULL, signalling a stop to further bytecode execution.
 162 // First smash the current map's control to a constant, to mark it dead.
 163 void GraphKit::stop_and_kill_map() {
 164   SafePointNode* dead_map = stop();
 165   if (dead_map != NULL) {
 166     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 167     assert(dead_map->is_killed(), "must be so marked");
 168   }
 169 }
 170 
 171 
 172 //--------------------------------stopped--------------------------------------
 173 // Tell if _map is NULL, or control is top.
 174 bool GraphKit::stopped() {
 175   if (map() == NULL)           return true;
 176   else if (control() == top()) return true;
 177   else                         return false;
 178 }
 179 
 180 
 181 //-----------------------------has_ex_handler----------------------------------
 182 // Tell if this method or any caller method has exception handlers.
 183 bool GraphKit::has_ex_handler() {
 184   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 185     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 186       return true;
 187     }
 188   }
 189   return false;
 190 }
 191 
 192 //------------------------------save_ex_oop------------------------------------
 193 // Save an exception without blowing stack contents or other JVM state.
 194 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 195   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 196   ex_map->add_req(ex_oop);
 197   debug_only(verify_exception_state(ex_map));
 198 }
 199 
 200 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 201   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 202   Node* ex_oop = ex_map->in(ex_map->req()-1);
 203   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 204   return ex_oop;
 205 }
 206 
 207 //-----------------------------saved_ex_oop------------------------------------
 208 // Recover a saved exception from its map.
 209 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 210   return common_saved_ex_oop(ex_map, false);
 211 }
 212 
 213 //--------------------------clear_saved_ex_oop---------------------------------
 214 // Erase a previously saved exception from its map.
 215 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 216   return common_saved_ex_oop(ex_map, true);
 217 }
 218 
 219 #ifdef ASSERT
 220 //---------------------------has_saved_ex_oop----------------------------------
 221 // Erase a previously saved exception from its map.
 222 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 223   return ex_map->req() == ex_map->jvms()->endoff()+1;
 224 }
 225 #endif
 226 
 227 //-------------------------make_exception_state--------------------------------
 228 // Turn the current JVM state into an exception state, appending the ex_oop.
 229 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 230   sync_jvms();
 231   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 232   set_saved_ex_oop(ex_map, ex_oop);
 233   return ex_map;
 234 }
 235 
 236 
 237 //--------------------------add_exception_state--------------------------------
 238 // Add an exception to my list of exceptions.
 239 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 240   if (ex_map == NULL || ex_map->control() == top()) {
 241     return;
 242   }
 243 #ifdef ASSERT
 244   verify_exception_state(ex_map);
 245   if (has_exceptions()) {
 246     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 247   }
 248 #endif
 249 
 250   // If there is already an exception of exactly this type, merge with it.
 251   // In particular, null-checks and other low-level exceptions common up here.
 252   Node*       ex_oop  = saved_ex_oop(ex_map);
 253   const Type* ex_type = _gvn.type(ex_oop);
 254   if (ex_oop == top()) {
 255     // No action needed.
 256     return;
 257   }
 258   assert(ex_type->isa_instptr(), "exception must be an instance");
 259   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 260     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 261     // We check sp also because call bytecodes can generate exceptions
 262     // both before and after arguments are popped!
 263     if (ex_type2 == ex_type
 264         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 265       combine_exception_states(ex_map, e2);
 266       return;
 267     }
 268   }
 269 
 270   // No pre-existing exception of the same type.  Chain it on the list.
 271   push_exception_state(ex_map);
 272 }
 273 
 274 //-----------------------add_exception_states_from-----------------------------
 275 void GraphKit::add_exception_states_from(JVMState* jvms) {
 276   SafePointNode* ex_map = jvms->map()->next_exception();
 277   if (ex_map != NULL) {
 278     jvms->map()->set_next_exception(NULL);
 279     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 280       next_map = ex_map->next_exception();
 281       ex_map->set_next_exception(NULL);
 282       add_exception_state(ex_map);
 283     }
 284   }
 285 }
 286 
 287 //-----------------------transfer_exceptions_into_jvms-------------------------
 288 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 289   if (map() == NULL) {
 290     // We need a JVMS to carry the exceptions, but the map has gone away.
 291     // Create a scratch JVMS, cloned from any of the exception states...
 292     if (has_exceptions()) {
 293       _map = _exceptions;
 294       _map = clone_map();
 295       _map->set_next_exception(NULL);
 296       clear_saved_ex_oop(_map);
 297       debug_only(verify_map());
 298     } else {
 299       // ...or created from scratch
 300       JVMState* jvms = new (C) JVMState(_method, NULL);
 301       jvms->set_bci(_bci);
 302       jvms->set_sp(_sp);
 303       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 304       set_jvms(jvms);
 305       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 306       set_all_memory(top());
 307       while (map()->req() < jvms->endoff())  map()->add_req(top());
 308     }
 309     // (This is a kludge, in case you didn't notice.)
 310     set_control(top());
 311   }
 312   JVMState* jvms = sync_jvms();
 313   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 314   jvms->map()->set_next_exception(_exceptions);
 315   _exceptions = NULL;   // done with this set of exceptions
 316   return jvms;
 317 }
 318 
 319 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 320   assert(is_hidden_merge(dstphi), "must be a special merge node");
 321   assert(is_hidden_merge(srcphi), "must be a special merge node");
 322   uint limit = srcphi->req();
 323   for (uint i = PhiNode::Input; i < limit; i++) {
 324     dstphi->add_req(srcphi->in(i));
 325   }
 326 }
 327 static inline void add_one_req(Node* dstphi, Node* src) {
 328   assert(is_hidden_merge(dstphi), "must be a special merge node");
 329   assert(!is_hidden_merge(src), "must not be a special merge node");
 330   dstphi->add_req(src);
 331 }
 332 
 333 //-----------------------combine_exception_states------------------------------
 334 // This helper function combines exception states by building phis on a
 335 // specially marked state-merging region.  These regions and phis are
 336 // untransformed, and can build up gradually.  The region is marked by
 337 // having a control input of its exception map, rather than NULL.  Such
 338 // regions do not appear except in this function, and in use_exception_state.
 339 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 340   if (failing())  return;  // dying anyway...
 341   JVMState* ex_jvms = ex_map->_jvms;
 342   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 343   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 344   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 345   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 346   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 347   assert(ex_map->req() == phi_map->req(), "matching maps");
 348   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 349   Node*         hidden_merge_mark = root();
 350   Node*         region  = phi_map->control();
 351   MergeMemNode* phi_mem = phi_map->merged_memory();
 352   MergeMemNode* ex_mem  = ex_map->merged_memory();
 353   if (region->in(0) != hidden_merge_mark) {
 354     // The control input is not (yet) a specially-marked region in phi_map.
 355     // Make it so, and build some phis.
 356     region = new RegionNode(2);
 357     _gvn.set_type(region, Type::CONTROL);
 358     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 359     region->init_req(1, phi_map->control());
 360     phi_map->set_control(region);
 361     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 362     record_for_igvn(io_phi);
 363     _gvn.set_type(io_phi, Type::ABIO);
 364     phi_map->set_i_o(io_phi);
 365     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 366       Node* m = mms.memory();
 367       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 368       record_for_igvn(m_phi);
 369       _gvn.set_type(m_phi, Type::MEMORY);
 370       mms.set_memory(m_phi);
 371     }
 372   }
 373 
 374   // Either or both of phi_map and ex_map might already be converted into phis.
 375   Node* ex_control = ex_map->control();
 376   // if there is special marking on ex_map also, we add multiple edges from src
 377   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 378   // how wide was the destination phi_map, originally?
 379   uint orig_width = region->req();
 380 
 381   if (add_multiple) {
 382     add_n_reqs(region, ex_control);
 383     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 384   } else {
 385     // ex_map has no merges, so we just add single edges everywhere
 386     add_one_req(region, ex_control);
 387     add_one_req(phi_map->i_o(), ex_map->i_o());
 388   }
 389   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 390     if (mms.is_empty()) {
 391       // get a copy of the base memory, and patch some inputs into it
 392       const TypePtr* adr_type = mms.adr_type(C);
 393       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 394       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 395       mms.set_memory(phi);
 396       // Prepare to append interesting stuff onto the newly sliced phi:
 397       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 398     }
 399     // Append stuff from ex_map:
 400     if (add_multiple) {
 401       add_n_reqs(mms.memory(), mms.memory2());
 402     } else {
 403       add_one_req(mms.memory(), mms.memory2());
 404     }
 405   }
 406   uint limit = ex_map->req();
 407   for (uint i = TypeFunc::Parms; i < limit; i++) {
 408     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 409     if (i == tos)  i = ex_jvms->monoff();
 410     Node* src = ex_map->in(i);
 411     Node* dst = phi_map->in(i);
 412     if (src != dst) {
 413       PhiNode* phi;
 414       if (dst->in(0) != region) {
 415         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 416         record_for_igvn(phi);
 417         _gvn.set_type(phi, phi->type());
 418         phi_map->set_req(i, dst);
 419         // Prepare to append interesting stuff onto the new phi:
 420         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 421       } else {
 422         assert(dst->is_Phi(), "nobody else uses a hidden region");
 423         phi = dst->as_Phi();
 424       }
 425       if (add_multiple && src->in(0) == ex_control) {
 426         // Both are phis.
 427         add_n_reqs(dst, src);
 428       } else {
 429         while (dst->req() < region->req())  add_one_req(dst, src);
 430       }
 431       const Type* srctype = _gvn.type(src);
 432       if (phi->type() != srctype) {
 433         const Type* dsttype = phi->type()->meet_speculative(srctype);
 434         if (phi->type() != dsttype) {
 435           phi->set_type(dsttype);
 436           _gvn.set_type(phi, dsttype);
 437         }
 438       }
 439     }
 440   }
 441   phi_map->merge_replaced_nodes_with(ex_map);
 442 }
 443 
 444 //--------------------------use_exception_state--------------------------------
 445 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 446   if (failing()) { stop(); return top(); }
 447   Node* region = phi_map->control();
 448   Node* hidden_merge_mark = root();
 449   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 450   Node* ex_oop = clear_saved_ex_oop(phi_map);
 451   if (region->in(0) == hidden_merge_mark) {
 452     // Special marking for internal ex-states.  Process the phis now.
 453     region->set_req(0, region);  // now it's an ordinary region
 454     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 455     // Note: Setting the jvms also sets the bci and sp.
 456     set_control(_gvn.transform(region));
 457     uint tos = jvms()->stkoff() + sp();
 458     for (uint i = 1; i < tos; i++) {
 459       Node* x = phi_map->in(i);
 460       if (x->in(0) == region) {
 461         assert(x->is_Phi(), "expected a special phi");
 462         phi_map->set_req(i, _gvn.transform(x));
 463       }
 464     }
 465     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 466       Node* x = mms.memory();
 467       if (x->in(0) == region) {
 468         assert(x->is_Phi(), "nobody else uses a hidden region");
 469         mms.set_memory(_gvn.transform(x));
 470       }
 471     }
 472     if (ex_oop->in(0) == region) {
 473       assert(ex_oop->is_Phi(), "expected a special phi");
 474       ex_oop = _gvn.transform(ex_oop);
 475     }
 476   } else {
 477     set_jvms(phi_map->jvms());
 478   }
 479 
 480   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 481   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 482   return ex_oop;
 483 }
 484 
 485 //---------------------------------java_bc-------------------------------------
 486 Bytecodes::Code GraphKit::java_bc() const {
 487   ciMethod* method = this->method();
 488   int       bci    = this->bci();
 489   if (method != NULL && bci != InvocationEntryBci)
 490     return method->java_code_at_bci(bci);
 491   else
 492     return Bytecodes::_illegal;
 493 }
 494 
 495 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 496                                                           bool must_throw) {
 497     // if the exception capability is set, then we will generate code
 498     // to check the JavaThread.should_post_on_exceptions flag to see
 499     // if we actually need to report exception events (for this
 500     // thread).  If we don't need to report exception events, we will
 501     // take the normal fast path provided by add_exception_events.  If
 502     // exception event reporting is enabled for this thread, we will
 503     // take the uncommon_trap in the BuildCutout below.
 504 
 505     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 506     Node* jthread = _gvn.transform(new ThreadLocalNode());
 507     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 508     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 509 
 510     // Test the should_post_on_exceptions_flag vs. 0
 511     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 512     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 513 
 514     // Branch to slow_path if should_post_on_exceptions_flag was true
 515     { BuildCutout unless(this, tst, PROB_MAX);
 516       // Do not try anything fancy if we're notifying the VM on every throw.
 517       // Cf. case Bytecodes::_athrow in parse2.cpp.
 518       uncommon_trap(reason, Deoptimization::Action_none,
 519                     (ciKlass*)NULL, (char*)NULL, must_throw);
 520     }
 521 
 522 }
 523 
 524 //------------------------------builtin_throw----------------------------------
 525 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 526   bool must_throw = true;
 527 
 528   if (env()->jvmti_can_post_on_exceptions()) {
 529     // check if we must post exception events, take uncommon trap if so
 530     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 531     // here if should_post_on_exceptions is false
 532     // continue on with the normal codegen
 533   }
 534 
 535   // If this particular condition has not yet happened at this
 536   // bytecode, then use the uncommon trap mechanism, and allow for
 537   // a future recompilation if several traps occur here.
 538   // If the throw is hot, try to use a more complicated inline mechanism
 539   // which keeps execution inside the compiled code.
 540   bool treat_throw_as_hot = false;
 541   ciMethodData* md = method()->method_data();
 542 
 543   if (ProfileTraps) {
 544     if (too_many_traps(reason)) {
 545       treat_throw_as_hot = true;
 546     }
 547     // (If there is no MDO at all, assume it is early in
 548     // execution, and that any deopts are part of the
 549     // startup transient, and don't need to be remembered.)
 550 
 551     // Also, if there is a local exception handler, treat all throws
 552     // as hot if there has been at least one in this method.
 553     if (C->trap_count(reason) != 0
 554         && method()->method_data()->trap_count(reason) != 0
 555         && has_ex_handler()) {
 556         treat_throw_as_hot = true;
 557     }
 558   }
 559 
 560   // If this throw happens frequently, an uncommon trap might cause
 561   // a performance pothole.  If there is a local exception handler,
 562   // and if this particular bytecode appears to be deoptimizing often,
 563   // let us handle the throw inline, with a preconstructed instance.
 564   // Note:   If the deopt count has blown up, the uncommon trap
 565   // runtime is going to flush this nmethod, not matter what.
 566   if (treat_throw_as_hot
 567       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 568     // If the throw is local, we use a pre-existing instance and
 569     // punt on the backtrace.  This would lead to a missing backtrace
 570     // (a repeat of 4292742) if the backtrace object is ever asked
 571     // for its backtrace.
 572     // Fixing this remaining case of 4292742 requires some flavor of
 573     // escape analysis.  Leave that for the future.
 574     ciInstance* ex_obj = NULL;
 575     switch (reason) {
 576     case Deoptimization::Reason_null_check:
 577       ex_obj = env()->NullPointerException_instance();
 578       break;
 579     case Deoptimization::Reason_div0_check:
 580       ex_obj = env()->ArithmeticException_instance();
 581       break;
 582     case Deoptimization::Reason_range_check:
 583       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 584       break;
 585     case Deoptimization::Reason_class_check:
 586       if (java_bc() == Bytecodes::_aastore) {
 587         ex_obj = env()->ArrayStoreException_instance();
 588       } else {
 589         ex_obj = env()->ClassCastException_instance();
 590       }
 591       break;
 592     }
 593     if (failing()) { stop(); return; }  // exception allocation might fail
 594     if (ex_obj != NULL) {
 595       // Cheat with a preallocated exception object.
 596       if (C->log() != NULL)
 597         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 598                        Deoptimization::trap_reason_name(reason));
 599       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 600       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 601 
 602       // Clear the detail message of the preallocated exception object.
 603       // Weblogic sometimes mutates the detail message of exceptions
 604       // using reflection.
 605       int offset = java_lang_Throwable::get_detailMessage_offset();
 606       const TypePtr* adr_typ = ex_con->add_offset(offset);
 607 
 608       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 609       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 610       // Conservatively release stores of object references.
 611       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 612 
 613       add_exception_state(make_exception_state(ex_node));
 614       return;
 615     }
 616   }
 617 
 618   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 619   // It won't be much cheaper than bailing to the interp., since we'll
 620   // have to pass up all the debug-info, and the runtime will have to
 621   // create the stack trace.
 622 
 623   // Usual case:  Bail to interpreter.
 624   // Reserve the right to recompile if we haven't seen anything yet.
 625 
 626   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 627   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 628   if (treat_throw_as_hot
 629       && (method()->method_data()->trap_recompiled_at(bci(), m)
 630           || C->too_many_traps(reason))) {
 631     // We cannot afford to take more traps here.  Suffer in the interpreter.
 632     if (C->log() != NULL)
 633       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 634                      Deoptimization::trap_reason_name(reason),
 635                      C->trap_count(reason));
 636     action = Deoptimization::Action_none;
 637   }
 638 
 639   // "must_throw" prunes the JVM state to include only the stack, if there
 640   // are no local exception handlers.  This should cut down on register
 641   // allocation time and code size, by drastically reducing the number
 642   // of in-edges on the call to the uncommon trap.
 643 
 644   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 645 }
 646 
 647 
 648 //----------------------------PreserveJVMState---------------------------------
 649 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 650   debug_only(kit->verify_map());
 651   _kit    = kit;
 652   _map    = kit->map();   // preserve the map
 653   _sp     = kit->sp();
 654   kit->set_map(clone_map ? kit->clone_map() : NULL);
 655 #ifdef ASSERT
 656   _bci    = kit->bci();
 657   Parse* parser = kit->is_Parse();
 658   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 659   _block  = block;
 660 #endif
 661 }
 662 PreserveJVMState::~PreserveJVMState() {
 663   GraphKit* kit = _kit;
 664 #ifdef ASSERT
 665   assert(kit->bci() == _bci, "bci must not shift");
 666   Parse* parser = kit->is_Parse();
 667   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 668   assert(block == _block,    "block must not shift");
 669 #endif
 670   kit->set_map(_map);
 671   kit->set_sp(_sp);
 672 }
 673 
 674 
 675 //-----------------------------BuildCutout-------------------------------------
 676 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 677   : PreserveJVMState(kit)
 678 {
 679   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 680   SafePointNode* outer_map = _map;   // preserved map is caller's
 681   SafePointNode* inner_map = kit->map();
 682   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 683   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 684   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 685 }
 686 BuildCutout::~BuildCutout() {
 687   GraphKit* kit = _kit;
 688   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 689 }
 690 
 691 //---------------------------PreserveReexecuteState----------------------------
 692 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 693   assert(!kit->stopped(), "must call stopped() before");
 694   _kit    =    kit;
 695   _sp     =    kit->sp();
 696   _reexecute = kit->jvms()->_reexecute;
 697 }
 698 PreserveReexecuteState::~PreserveReexecuteState() {
 699   if (_kit->stopped()) return;
 700   _kit->jvms()->_reexecute = _reexecute;
 701   _kit->set_sp(_sp);
 702 }
 703 
 704 //------------------------------clone_map--------------------------------------
 705 // Implementation of PreserveJVMState
 706 //
 707 // Only clone_map(...) here. If this function is only used in the
 708 // PreserveJVMState class we may want to get rid of this extra
 709 // function eventually and do it all there.
 710 
 711 SafePointNode* GraphKit::clone_map() {
 712   if (map() == NULL)  return NULL;
 713 
 714   // Clone the memory edge first
 715   Node* mem = MergeMemNode::make(map()->memory());
 716   gvn().set_type_bottom(mem);
 717 
 718   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 719   JVMState* jvms = this->jvms();
 720   JVMState* clonejvms = jvms->clone_shallow(C);
 721   clonemap->set_memory(mem);
 722   clonemap->set_jvms(clonejvms);
 723   clonejvms->set_map(clonemap);
 724   record_for_igvn(clonemap);
 725   gvn().set_type_bottom(clonemap);
 726   return clonemap;
 727 }
 728 
 729 
 730 //-----------------------------set_map_clone-----------------------------------
 731 void GraphKit::set_map_clone(SafePointNode* m) {
 732   _map = m;
 733   _map = clone_map();
 734   _map->set_next_exception(NULL);
 735   debug_only(verify_map());
 736 }
 737 
 738 
 739 //----------------------------kill_dead_locals---------------------------------
 740 // Detect any locals which are known to be dead, and force them to top.
 741 void GraphKit::kill_dead_locals() {
 742   // Consult the liveness information for the locals.  If any
 743   // of them are unused, then they can be replaced by top().  This
 744   // should help register allocation time and cut down on the size
 745   // of the deoptimization information.
 746 
 747   // This call is made from many of the bytecode handling
 748   // subroutines called from the Big Switch in do_one_bytecode.
 749   // Every bytecode which might include a slow path is responsible
 750   // for killing its dead locals.  The more consistent we
 751   // are about killing deads, the fewer useless phis will be
 752   // constructed for them at various merge points.
 753 
 754   // bci can be -1 (InvocationEntryBci).  We return the entry
 755   // liveness for the method.
 756 
 757   if (method() == NULL || method()->code_size() == 0) {
 758     // We are building a graph for a call to a native method.
 759     // All locals are live.
 760     return;
 761   }
 762 
 763   ResourceMark rm;
 764 
 765   // Consult the liveness information for the locals.  If any
 766   // of them are unused, then they can be replaced by top().  This
 767   // should help register allocation time and cut down on the size
 768   // of the deoptimization information.
 769   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 770 
 771   int len = (int)live_locals.size();
 772   assert(len <= jvms()->loc_size(), "too many live locals");
 773   for (int local = 0; local < len; local++) {
 774     if (!live_locals.at(local)) {
 775       set_local(local, top());
 776     }
 777   }
 778 }
 779 
 780 #ifdef ASSERT
 781 //-------------------------dead_locals_are_killed------------------------------
 782 // Return true if all dead locals are set to top in the map.
 783 // Used to assert "clean" debug info at various points.
 784 bool GraphKit::dead_locals_are_killed() {
 785   if (method() == NULL || method()->code_size() == 0) {
 786     // No locals need to be dead, so all is as it should be.
 787     return true;
 788   }
 789 
 790   // Make sure somebody called kill_dead_locals upstream.
 791   ResourceMark rm;
 792   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 793     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 794     SafePointNode* map = jvms->map();
 795     ciMethod* method = jvms->method();
 796     int       bci    = jvms->bci();
 797     if (jvms == this->jvms()) {
 798       bci = this->bci();  // it might not yet be synched
 799     }
 800     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 801     int len = (int)live_locals.size();
 802     if (!live_locals.is_valid() || len == 0)
 803       // This method is trivial, or is poisoned by a breakpoint.
 804       return true;
 805     assert(len == jvms->loc_size(), "live map consistent with locals map");
 806     for (int local = 0; local < len; local++) {
 807       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 808         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 809           tty->print_cr("Zombie local %d: ", local);
 810           jvms->dump();
 811         }
 812         return false;
 813       }
 814     }
 815   }
 816   return true;
 817 }
 818 
 819 #endif //ASSERT
 820 
 821 // Helper function for enforcing certain bytecodes to reexecute if
 822 // deoptimization happens
 823 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 824   ciMethod* cur_method = jvms->method();
 825   int       cur_bci   = jvms->bci();
 826   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 827     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 828     return Interpreter::bytecode_should_reexecute(code) ||
 829            is_anewarray && code == Bytecodes::_multianewarray;
 830     // Reexecute _multianewarray bytecode which was replaced with
 831     // sequence of [a]newarray. See Parse::do_multianewarray().
 832     //
 833     // Note: interpreter should not have it set since this optimization
 834     // is limited by dimensions and guarded by flag so in some cases
 835     // multianewarray() runtime calls will be generated and
 836     // the bytecode should not be reexecutes (stack will not be reset).
 837   } else
 838     return false;
 839 }
 840 
 841 // Helper function for adding JVMState and debug information to node
 842 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 843   // Add the safepoint edges to the call (or other safepoint).
 844 
 845   // Make sure dead locals are set to top.  This
 846   // should help register allocation time and cut down on the size
 847   // of the deoptimization information.
 848   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 849 
 850   // Walk the inline list to fill in the correct set of JVMState's
 851   // Also fill in the associated edges for each JVMState.
 852 
 853   // If the bytecode needs to be reexecuted we need to put
 854   // the arguments back on the stack.
 855   const bool should_reexecute = jvms()->should_reexecute();
 856   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 857 
 858   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 859   // undefined if the bci is different.  This is normal for Parse but it
 860   // should not happen for LibraryCallKit because only one bci is processed.
 861   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 862          "in LibraryCallKit the reexecute bit should not change");
 863 
 864   // If we are guaranteed to throw, we can prune everything but the
 865   // input to the current bytecode.
 866   bool can_prune_locals = false;
 867   uint stack_slots_not_pruned = 0;
 868   int inputs = 0, depth = 0;
 869   if (must_throw) {
 870     assert(method() == youngest_jvms->method(), "sanity");
 871     if (compute_stack_effects(inputs, depth)) {
 872       can_prune_locals = true;
 873       stack_slots_not_pruned = inputs;
 874     }
 875   }
 876 
 877   if (env()->should_retain_local_variables()) {
 878     // At any safepoint, this method can get breakpointed, which would
 879     // then require an immediate deoptimization.
 880     can_prune_locals = false;  // do not prune locals
 881     stack_slots_not_pruned = 0;
 882   }
 883 
 884   // do not scribble on the input jvms
 885   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 886   call->set_jvms(out_jvms); // Start jvms list for call node
 887 
 888   // For a known set of bytecodes, the interpreter should reexecute them if
 889   // deoptimization happens. We set the reexecute state for them here
 890   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 891       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 892     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 893   }
 894 
 895   // Presize the call:
 896   DEBUG_ONLY(uint non_debug_edges = call->req());
 897   call->add_req_batch(top(), youngest_jvms->debug_depth());
 898   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 899 
 900   // Set up edges so that the call looks like this:
 901   //  Call [state:] ctl io mem fptr retadr
 902   //       [parms:] parm0 ... parmN
 903   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 904   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 905   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 906   // Note that caller debug info precedes callee debug info.
 907 
 908   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 909   uint debug_ptr = call->req();
 910 
 911   // Loop over the map input edges associated with jvms, add them
 912   // to the call node, & reset all offsets to match call node array.
 913   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 914     uint debug_end   = debug_ptr;
 915     uint debug_start = debug_ptr - in_jvms->debug_size();
 916     debug_ptr = debug_start;  // back up the ptr
 917 
 918     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 919     uint j, k, l;
 920     SafePointNode* in_map = in_jvms->map();
 921     out_jvms->set_map(call);
 922 
 923     if (can_prune_locals) {
 924       assert(in_jvms->method() == out_jvms->method(), "sanity");
 925       // If the current throw can reach an exception handler in this JVMS,
 926       // then we must keep everything live that can reach that handler.
 927       // As a quick and dirty approximation, we look for any handlers at all.
 928       if (in_jvms->method()->has_exception_handlers()) {
 929         can_prune_locals = false;
 930       }
 931     }
 932 
 933     // Add the Locals
 934     k = in_jvms->locoff();
 935     l = in_jvms->loc_size();
 936     out_jvms->set_locoff(p);
 937     if (!can_prune_locals) {
 938       for (j = 0; j < l; j++)
 939         call->set_req(p++, in_map->in(k+j));
 940     } else {
 941       p += l;  // already set to top above by add_req_batch
 942     }
 943 
 944     // Add the Expression Stack
 945     k = in_jvms->stkoff();
 946     l = in_jvms->sp();
 947     out_jvms->set_stkoff(p);
 948     if (!can_prune_locals) {
 949       for (j = 0; j < l; j++)
 950         call->set_req(p++, in_map->in(k+j));
 951     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 952       // Divide stack into {S0,...,S1}, where S0 is set to top.
 953       uint s1 = stack_slots_not_pruned;
 954       stack_slots_not_pruned = 0;  // for next iteration
 955       if (s1 > l)  s1 = l;
 956       uint s0 = l - s1;
 957       p += s0;  // skip the tops preinstalled by add_req_batch
 958       for (j = s0; j < l; j++)
 959         call->set_req(p++, in_map->in(k+j));
 960     } else {
 961       p += l;  // already set to top above by add_req_batch
 962     }
 963 
 964     // Add the Monitors
 965     k = in_jvms->monoff();
 966     l = in_jvms->mon_size();
 967     out_jvms->set_monoff(p);
 968     for (j = 0; j < l; j++)
 969       call->set_req(p++, in_map->in(k+j));
 970 
 971     // Copy any scalar object fields.
 972     k = in_jvms->scloff();
 973     l = in_jvms->scl_size();
 974     out_jvms->set_scloff(p);
 975     for (j = 0; j < l; j++)
 976       call->set_req(p++, in_map->in(k+j));
 977 
 978     // Finish the new jvms.
 979     out_jvms->set_endoff(p);
 980 
 981     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 982     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 983     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 984     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 985     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 986     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 987 
 988     // Update the two tail pointers in parallel.
 989     out_jvms = out_jvms->caller();
 990     in_jvms  = in_jvms->caller();
 991   }
 992 
 993   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 994 
 995   // Test the correctness of JVMState::debug_xxx accessors:
 996   assert(call->jvms()->debug_start() == non_debug_edges, "");
 997   assert(call->jvms()->debug_end()   == call->req(), "");
 998   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 999 }
1000 
1001 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1002   Bytecodes::Code code = java_bc();
1003   if (code == Bytecodes::_wide) {
1004     code = method()->java_code_at_bci(bci() + 1);
1005   }
1006 
1007   BasicType rtype = T_ILLEGAL;
1008   int       rsize = 0;
1009 
1010   if (code != Bytecodes::_illegal) {
1011     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1012     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1013     if (rtype < T_CONFLICT)
1014       rsize = type2size[rtype];
1015   }
1016 
1017   switch (code) {
1018   case Bytecodes::_illegal:
1019     return false;
1020 
1021   case Bytecodes::_ldc:
1022   case Bytecodes::_ldc_w:
1023   case Bytecodes::_ldc2_w:
1024     inputs = 0;
1025     break;
1026 
1027   case Bytecodes::_dup:         inputs = 1;  break;
1028   case Bytecodes::_dup_x1:      inputs = 2;  break;
1029   case Bytecodes::_dup_x2:      inputs = 3;  break;
1030   case Bytecodes::_dup2:        inputs = 2;  break;
1031   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1032   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1033   case Bytecodes::_swap:        inputs = 2;  break;
1034   case Bytecodes::_arraylength: inputs = 1;  break;
1035 
1036   case Bytecodes::_getstatic:
1037   case Bytecodes::_putstatic:
1038   case Bytecodes::_getfield:
1039   case Bytecodes::_putfield:
1040     {
1041       bool ignored_will_link;
1042       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1043       int      size  = field->type()->size();
1044       bool is_get = (depth >= 0), is_static = (depth & 1);
1045       inputs = (is_static ? 0 : 1);
1046       if (is_get) {
1047         depth = size - inputs;
1048       } else {
1049         inputs += size;        // putxxx pops the value from the stack
1050         depth = - inputs;
1051       }
1052     }
1053     break;
1054 
1055   case Bytecodes::_invokevirtual:
1056   case Bytecodes::_invokespecial:
1057   case Bytecodes::_invokestatic:
1058   case Bytecodes::_invokedynamic:
1059   case Bytecodes::_invokeinterface:
1060     {
1061       bool ignored_will_link;
1062       ciSignature* declared_signature = NULL;
1063       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1064       assert(declared_signature != NULL, "cannot be null");
1065       inputs   = declared_signature->arg_size_for_bc(code);
1066       int size = declared_signature->return_type()->size();
1067       depth = size - inputs;
1068     }
1069     break;
1070 
1071   case Bytecodes::_multianewarray:
1072     {
1073       ciBytecodeStream iter(method());
1074       iter.reset_to_bci(bci());
1075       iter.next();
1076       inputs = iter.get_dimensions();
1077       assert(rsize == 1, "");
1078       depth = rsize - inputs;
1079     }
1080     break;
1081 
1082   case Bytecodes::_ireturn:
1083   case Bytecodes::_lreturn:
1084   case Bytecodes::_freturn:
1085   case Bytecodes::_dreturn:
1086   case Bytecodes::_areturn:
1087     assert(rsize == -depth, "");
1088     inputs = rsize;
1089     break;
1090 
1091   case Bytecodes::_jsr:
1092   case Bytecodes::_jsr_w:
1093     inputs = 0;
1094     depth  = 1;                  // S.B. depth=1, not zero
1095     break;
1096 
1097   default:
1098     // bytecode produces a typed result
1099     inputs = rsize - depth;
1100     assert(inputs >= 0, "");
1101     break;
1102   }
1103 
1104 #ifdef ASSERT
1105   // spot check
1106   int outputs = depth + inputs;
1107   assert(outputs >= 0, "sanity");
1108   switch (code) {
1109   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1110   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1111   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1112   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1113   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1114   }
1115 #endif //ASSERT
1116 
1117   return true;
1118 }
1119 
1120 
1121 
1122 //------------------------------basic_plus_adr---------------------------------
1123 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1124   // short-circuit a common case
1125   if (offset == intcon(0))  return ptr;
1126   return _gvn.transform( new AddPNode(base, ptr, offset) );
1127 }
1128 
1129 Node* GraphKit::ConvI2L(Node* offset) {
1130   // short-circuit a common case
1131   jint offset_con = find_int_con(offset, Type::OffsetBot);
1132   if (offset_con != Type::OffsetBot) {
1133     return longcon((jlong) offset_con);
1134   }
1135   return _gvn.transform( new ConvI2LNode(offset));
1136 }
1137 
1138 Node* GraphKit::ConvI2UL(Node* offset) {
1139   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1140   if (offset_con != (juint) Type::OffsetBot) {
1141     return longcon((julong) offset_con);
1142   }
1143   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1144   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1145   return _gvn.transform( new AndLNode(conv, mask) );
1146 }
1147 
1148 Node* GraphKit::ConvL2I(Node* offset) {
1149   // short-circuit a common case
1150   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1151   if (offset_con != (jlong)Type::OffsetBot) {
1152     return intcon((int) offset_con);
1153   }
1154   return _gvn.transform( new ConvL2INode(offset));
1155 }
1156 
1157 //-------------------------load_object_klass-----------------------------------
1158 Node* GraphKit::load_object_klass(Node* obj) {
1159   // Special-case a fresh allocation to avoid building nodes:
1160   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1161   if (akls != NULL)  return akls;
1162   if (ShenandoahVerifyReadsToFromSpace) {
1163     obj = shenandoah_read_barrier(obj);
1164   }
1165   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1166   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1167 }
1168 
1169 //-------------------------load_array_length-----------------------------------
1170 Node* GraphKit::load_array_length(Node* array) {
1171   // Special-case a fresh allocation to avoid building nodes:
1172   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1173   Node *alen;
1174   if (alloc == NULL) {
1175     if (ShenandoahVerifyReadsToFromSpace) {
1176       array = shenandoah_read_barrier(array);
1177     }
1178 
1179     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1180     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1181   } else {
1182     alen = alloc->Ideal_length();
1183     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1184     if (ccast != alen) {
1185       alen = _gvn.transform(ccast);
1186     }
1187   }
1188   return alen;
1189 }
1190 
1191 //------------------------------do_null_check----------------------------------
1192 // Helper function to do a NULL pointer check.  Returned value is
1193 // the incoming address with NULL casted away.  You are allowed to use the
1194 // not-null value only if you are control dependent on the test.
1195 #ifndef PRODUCT
1196 extern int explicit_null_checks_inserted,
1197            explicit_null_checks_elided;
1198 #endif
1199 Node* GraphKit::null_check_common(Node* value, BasicType type,
1200                                   // optional arguments for variations:
1201                                   bool assert_null,
1202                                   Node* *null_control,
1203                                   bool speculative) {
1204   assert(!assert_null || null_control == NULL, "not both at once");
1205   if (stopped())  return top();
1206   NOT_PRODUCT(explicit_null_checks_inserted++);
1207 
1208   // Construct NULL check
1209   Node *chk = NULL;
1210   switch(type) {
1211     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1212     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1213     case T_ARRAY  : // fall through
1214       type = T_OBJECT;  // simplify further tests
1215     case T_OBJECT : {
1216       const Type *t = _gvn.type( value );
1217 
1218       const TypeOopPtr* tp = t->isa_oopptr();
1219       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1220           // Only for do_null_check, not any of its siblings:
1221           && !assert_null && null_control == NULL) {
1222         // Usually, any field access or invocation on an unloaded oop type
1223         // will simply fail to link, since the statically linked class is
1224         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1225         // the static class is loaded but the sharper oop type is not.
1226         // Rather than checking for this obscure case in lots of places,
1227         // we simply observe that a null check on an unloaded class
1228         // will always be followed by a nonsense operation, so we
1229         // can just issue the uncommon trap here.
1230         // Our access to the unloaded class will only be correct
1231         // after it has been loaded and initialized, which requires
1232         // a trip through the interpreter.
1233 #ifndef PRODUCT
1234         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1235 #endif
1236         uncommon_trap(Deoptimization::Reason_unloaded,
1237                       Deoptimization::Action_reinterpret,
1238                       tp->klass(), "!loaded");
1239         return top();
1240       }
1241 
1242       if (assert_null) {
1243         // See if the type is contained in NULL_PTR.
1244         // If so, then the value is already null.
1245         if (t->higher_equal(TypePtr::NULL_PTR)) {
1246           NOT_PRODUCT(explicit_null_checks_elided++);
1247           return value;           // Elided null assert quickly!
1248         }
1249       } else {
1250         // See if mixing in the NULL pointer changes type.
1251         // If so, then the NULL pointer was not allowed in the original
1252         // type.  In other words, "value" was not-null.
1253         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1254           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1255           NOT_PRODUCT(explicit_null_checks_elided++);
1256           return value;           // Elided null check quickly!
1257         }
1258       }
1259       chk = new CmpPNode( value, null() );
1260       break;
1261     }
1262 
1263     default:
1264       fatal("unexpected type: %s", type2name(type));
1265   }
1266   assert(chk != NULL, "sanity check");
1267   chk = _gvn.transform(chk);
1268 
1269   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1270   BoolNode *btst = new BoolNode( chk, btest);
1271   Node   *tst = _gvn.transform( btst );
1272 
1273   //-----------
1274   // if peephole optimizations occurred, a prior test existed.
1275   // If a prior test existed, maybe it dominates as we can avoid this test.
1276   if (tst != btst && type == T_OBJECT) {
1277     // At this point we want to scan up the CFG to see if we can
1278     // find an identical test (and so avoid this test altogether).
1279     Node *cfg = control();
1280     int depth = 0;
1281     while( depth < 16 ) {       // Limit search depth for speed
1282       if( cfg->Opcode() == Op_IfTrue &&
1283           cfg->in(0)->in(1) == tst ) {
1284         // Found prior test.  Use "cast_not_null" to construct an identical
1285         // CastPP (and hence hash to) as already exists for the prior test.
1286         // Return that casted value.
1287         if (assert_null) {
1288           replace_in_map(value, null());
1289           return null();  // do not issue the redundant test
1290         }
1291         Node *oldcontrol = control();
1292         set_control(cfg);
1293         Node *res = cast_not_null(value);
1294         set_control(oldcontrol);
1295         NOT_PRODUCT(explicit_null_checks_elided++);
1296         return res;
1297       }
1298       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1299       if (cfg == NULL)  break;  // Quit at region nodes
1300       depth++;
1301     }
1302   }
1303 
1304   //-----------
1305   // Branch to failure if null
1306   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1307   Deoptimization::DeoptReason reason;
1308   if (assert_null) {
1309     reason = Deoptimization::Reason_null_assert;
1310   } else if (type == T_OBJECT) {
1311     reason = Deoptimization::reason_null_check(speculative);
1312   } else {
1313     reason = Deoptimization::Reason_div0_check;
1314   }
1315   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1316   // ciMethodData::has_trap_at will return a conservative -1 if any
1317   // must-be-null assertion has failed.  This could cause performance
1318   // problems for a method after its first do_null_assert failure.
1319   // Consider using 'Reason_class_check' instead?
1320 
1321   // To cause an implicit null check, we set the not-null probability
1322   // to the maximum (PROB_MAX).  For an explicit check the probability
1323   // is set to a smaller value.
1324   if (null_control != NULL || too_many_traps(reason)) {
1325     // probability is less likely
1326     ok_prob =  PROB_LIKELY_MAG(3);
1327   } else if (!assert_null &&
1328              (ImplicitNullCheckThreshold > 0) &&
1329              method() != NULL &&
1330              (method()->method_data()->trap_count(reason)
1331               >= (uint)ImplicitNullCheckThreshold)) {
1332     ok_prob =  PROB_LIKELY_MAG(3);
1333   }
1334 
1335   if (null_control != NULL) {
1336     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1337     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1338     set_control(      _gvn.transform( new IfTrueNode(iff)));
1339 #ifndef PRODUCT
1340     if (null_true == top()) {
1341       explicit_null_checks_elided++;
1342     }
1343 #endif
1344     (*null_control) = null_true;
1345   } else {
1346     BuildCutout unless(this, tst, ok_prob);
1347     // Check for optimizer eliding test at parse time
1348     if (stopped()) {
1349       // Failure not possible; do not bother making uncommon trap.
1350       NOT_PRODUCT(explicit_null_checks_elided++);
1351     } else if (assert_null) {
1352       uncommon_trap(reason,
1353                     Deoptimization::Action_make_not_entrant,
1354                     NULL, "assert_null");
1355     } else {
1356       replace_in_map(value, zerocon(type));
1357       builtin_throw(reason);
1358     }
1359   }
1360 
1361   // Must throw exception, fall-thru not possible?
1362   if (stopped()) {
1363     return top();               // No result
1364   }
1365 
1366   if (assert_null) {
1367     // Cast obj to null on this path.
1368     replace_in_map(value, zerocon(type));
1369     return zerocon(type);
1370   }
1371 
1372   // Cast obj to not-null on this path, if there is no null_control.
1373   // (If there is a null_control, a non-null value may come back to haunt us.)
1374   if (type == T_OBJECT) {
1375     Node* cast = cast_not_null(value, false);
1376     if (null_control == NULL || (*null_control) == top())
1377       replace_in_map(value, cast);
1378     value = cast;
1379   }
1380 
1381   return value;
1382 }
1383 
1384 
1385 //------------------------------cast_not_null----------------------------------
1386 // Cast obj to not-null on this path
1387 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1388   const Type *t = _gvn.type(obj);
1389   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1390   // Object is already not-null?
1391   if( t == t_not_null ) return obj;
1392 
1393   Node *cast = new CastPPNode(obj,t_not_null);
1394   cast->init_req(0, control());
1395   cast = _gvn.transform( cast );
1396 
1397   // Scan for instances of 'obj' in the current JVM mapping.
1398   // These instances are known to be not-null after the test.
1399   if (do_replace_in_map)
1400     replace_in_map(obj, cast);
1401 
1402   return cast;                  // Return casted value
1403 }
1404 
1405 
1406 //--------------------------replace_in_map-------------------------------------
1407 void GraphKit::replace_in_map(Node* old, Node* neww) {
1408   if (old == neww) {
1409     return;
1410   }
1411 
1412   map()->replace_edge(old, neww);
1413 
1414   // Note: This operation potentially replaces any edge
1415   // on the map.  This includes locals, stack, and monitors
1416   // of the current (innermost) JVM state.
1417 
1418   // don't let inconsistent types from profiling escape this
1419   // method
1420 
1421   const Type* told = _gvn.type(old);
1422   const Type* tnew = _gvn.type(neww);
1423 
1424   if (!tnew->higher_equal(told)) {
1425     return;
1426   }
1427 
1428   map()->record_replaced_node(old, neww);
1429 }
1430 
1431 
1432 //=============================================================================
1433 //--------------------------------memory---------------------------------------
1434 Node* GraphKit::memory(uint alias_idx) {
1435   MergeMemNode* mem = merged_memory();
1436   Node* p = mem->memory_at(alias_idx);
1437   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1438   return p;
1439 }
1440 
1441 //-----------------------------reset_memory------------------------------------
1442 Node* GraphKit::reset_memory() {
1443   Node* mem = map()->memory();
1444   // do not use this node for any more parsing!
1445   debug_only( map()->set_memory((Node*)NULL) );
1446   return _gvn.transform( mem );
1447 }
1448 
1449 //------------------------------set_all_memory---------------------------------
1450 void GraphKit::set_all_memory(Node* newmem) {
1451   Node* mergemem = MergeMemNode::make(newmem);
1452   gvn().set_type_bottom(mergemem);
1453   map()->set_memory(mergemem);
1454 }
1455 
1456 //------------------------------set_all_memory_call----------------------------
1457 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1458   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1459   set_all_memory(newmem);
1460 }
1461 
1462 //=============================================================================
1463 //
1464 // parser factory methods for MemNodes
1465 //
1466 // These are layered on top of the factory methods in LoadNode and StoreNode,
1467 // and integrate with the parser's memory state and _gvn engine.
1468 //
1469 
1470 // factory methods in "int adr_idx"
1471 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1472                           int adr_idx,
1473                           MemNode::MemOrd mo,
1474                           LoadNode::ControlDependency control_dependency,
1475                           bool require_atomic_access,
1476                           bool unaligned,
1477                           bool mismatched) {
1478   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1479   const TypePtr* adr_type = NULL; // debug-mode-only argument
1480   debug_only(adr_type = C->get_adr_type(adr_idx));
1481   Node* mem = memory(adr_idx);
1482   Node* ld;
1483   if (require_atomic_access && bt == T_LONG) {
1484     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1485   } else if (require_atomic_access && bt == T_DOUBLE) {
1486     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1487   } else {
1488     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1489   }
1490   ld = _gvn.transform(ld);
1491   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1492     // Improve graph before escape analysis and boxing elimination.
1493     record_for_igvn(ld);
1494   }
1495   return ld;
1496 }
1497 
1498 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1499                                 int adr_idx,
1500                                 MemNode::MemOrd mo,
1501                                 bool require_atomic_access,
1502                                 bool unaligned,
1503                                 bool mismatched) {
1504   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1505   const TypePtr* adr_type = NULL;
1506   debug_only(adr_type = C->get_adr_type(adr_idx));
1507   Node *mem = memory(adr_idx);
1508   Node* st;
1509   if (require_atomic_access && bt == T_LONG) {
1510     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1511   } else if (require_atomic_access && bt == T_DOUBLE) {
1512     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1513   } else {
1514     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1515   }
1516   if (unaligned) {
1517     st->as_Store()->set_unaligned_access();
1518   }
1519   if (mismatched) {
1520     st->as_Store()->set_mismatched_access();
1521   }
1522   st = _gvn.transform(st);
1523   set_memory(st, adr_idx);
1524   // Back-to-back stores can only remove intermediate store with DU info
1525   // so push on worklist for optimizer.
1526   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1527     record_for_igvn(st);
1528 
1529   return st;
1530 }
1531 
1532 
1533 Node* GraphKit::pre_barrier(bool do_load,
1534                            Node* ctl,
1535                            Node* obj,
1536                            Node* adr,
1537                            uint  adr_idx,
1538                            Node* val,
1539                            const TypeOopPtr* val_type,
1540                            Node* pre_val,
1541                            BasicType bt) {
1542 
1543   BarrierSet* bs = Universe::heap()->barrier_set();
1544   set_control(ctl);
1545   switch (bs->kind()) {
1546     case BarrierSet::G1SATBCTLogging:
1547       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1548       return val;
1549     case BarrierSet::ShenandoahBarrierSet:
1550       return shenandoah_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1551       break;
1552 
1553     case BarrierSet::CardTableForRS:
1554     case BarrierSet::CardTableExtension:
1555     case BarrierSet::ModRef:
1556       break;
1557 
1558     default      :
1559       ShouldNotReachHere();
1560 
1561   }
1562   return val;
1563 }
1564 
1565 bool GraphKit::can_move_pre_barrier() const {
1566   BarrierSet* bs = Universe::heap()->barrier_set();
1567   switch (bs->kind()) {
1568     case BarrierSet::G1SATBCTLogging:
1569     case BarrierSet::ShenandoahBarrierSet:
1570       return true; // Can move it if no safepoint
1571 
1572     case BarrierSet::CardTableForRS:
1573     case BarrierSet::CardTableExtension:
1574     case BarrierSet::ModRef:
1575       return true; // There is no pre-barrier
1576 
1577     default      :
1578       ShouldNotReachHere();
1579   }
1580   return false;
1581 }
1582 
1583 void GraphKit::post_barrier(Node* ctl,
1584                             Node* store,
1585                             Node* obj,
1586                             Node* adr,
1587                             uint  adr_idx,
1588                             Node* val,
1589                             BasicType bt,
1590                             bool use_precise) {
1591   BarrierSet* bs = Universe::heap()->barrier_set();
1592   set_control(ctl);
1593   switch (bs->kind()) {
1594     case BarrierSet::G1SATBCTLogging:
1595       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1596       break;
1597 
1598     case BarrierSet::CardTableForRS:
1599     case BarrierSet::CardTableExtension:
1600       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1601       break;
1602 
1603     case BarrierSet::ModRef:
1604     case BarrierSet::ShenandoahBarrierSet:
1605       break;
1606 
1607     default      :
1608       ShouldNotReachHere();
1609 
1610   }
1611 }
1612 
1613 Node* GraphKit::store_oop(Node* ctl,
1614                           Node* obj,
1615                           Node* adr,
1616                           const TypePtr* adr_type,
1617                           Node* val,
1618                           const TypeOopPtr* val_type,
1619                           BasicType bt,
1620                           bool use_precise,
1621                           MemNode::MemOrd mo,
1622                           bool mismatched) {
1623   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1624   // could be delayed during Parse (for example, in adjust_map_after_if()).
1625   // Execute transformation here to avoid barrier generation in such case.
1626   if (_gvn.type(val) == TypePtr::NULL_PTR)
1627     val = _gvn.makecon(TypePtr::NULL_PTR);
1628 
1629   set_control(ctl);
1630   if (stopped()) return top(); // Dead path ?
1631 
1632   assert(bt == T_OBJECT, "sanity");
1633   assert(val != NULL, "not dead path");
1634   uint adr_idx = C->get_alias_index(adr_type);
1635   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1636 
1637   val = pre_barrier(true /* do_load */,
1638               control(), obj, adr, adr_idx, val, val_type,
1639               NULL /* pre_val */,
1640               bt);
1641 
1642   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
1643   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1644   return store;
1645 }
1646 
1647 // Could be an array or object we don't know at compile time (unsafe ref.)
1648 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1649                              Node* obj,   // containing obj
1650                              Node* adr,  // actual adress to store val at
1651                              const TypePtr* adr_type,
1652                              Node* val,
1653                              BasicType bt,
1654                              MemNode::MemOrd mo,
1655                              bool mismatched) {
1656   Compile::AliasType* at = C->alias_type(adr_type);
1657   const TypeOopPtr* val_type = NULL;
1658   if (adr_type->isa_instptr()) {
1659     if (at->field() != NULL) {
1660       // known field.  This code is a copy of the do_put_xxx logic.
1661       ciField* field = at->field();
1662       if (!field->type()->is_loaded()) {
1663         val_type = TypeInstPtr::BOTTOM;
1664       } else {
1665         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1666       }
1667     }
1668   } else if (adr_type->isa_aryptr()) {
1669     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1670   }
1671   if (val_type == NULL) {
1672     val_type = TypeInstPtr::BOTTOM;
1673   }
1674   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
1675 }
1676 
1677 
1678 //-------------------------array_element_address-------------------------
1679 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1680                                       const TypeInt* sizetype, Node* ctrl) {
1681   uint shift  = exact_log2(type2aelembytes(elembt));
1682   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1683 
1684   // short-circuit a common case (saves lots of confusing waste motion)
1685   jint idx_con = find_int_con(idx, -1);
1686   if (idx_con >= 0) {
1687     intptr_t offset = header + ((intptr_t)idx_con << shift);
1688     return basic_plus_adr(ary, offset);
1689   }
1690 
1691   // must be correct type for alignment purposes
1692   Node* base  = basic_plus_adr(ary, header);
1693   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1694   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1695   return basic_plus_adr(ary, base, scale);
1696 }
1697 
1698 //-------------------------load_array_element-------------------------
1699 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1700   const Type* elemtype = arytype->elem();
1701   BasicType elembt = elemtype->array_element_basic_type();
1702   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1703   if (elembt == T_NARROWOOP) {
1704     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1705   }
1706   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1707   return ld;
1708 }
1709 
1710 //-------------------------set_arguments_for_java_call-------------------------
1711 // Arguments (pre-popped from the stack) are taken from the JVMS.
1712 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1713   // Add the call arguments:
1714   uint nargs = call->method()->arg_size();
1715   for (uint i = 0; i < nargs; i++) {
1716     Node* arg = argument(i);
1717     if (ShenandoahVerifyReadsToFromSpace && call->is_CallDynamicJava() && i == 0) {
1718       arg = shenandoah_read_barrier(arg);
1719     }
1720     call->init_req(i + TypeFunc::Parms, arg);
1721   }
1722 }
1723 
1724 //---------------------------set_edges_for_java_call---------------------------
1725 // Connect a newly created call into the current JVMS.
1726 // A return value node (if any) is returned from set_edges_for_java_call.
1727 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1728 
1729   // Add the predefined inputs:
1730   call->init_req( TypeFunc::Control, control() );
1731   call->init_req( TypeFunc::I_O    , i_o() );
1732   call->init_req( TypeFunc::Memory , reset_memory() );
1733   call->init_req( TypeFunc::FramePtr, frameptr() );
1734   call->init_req( TypeFunc::ReturnAdr, top() );
1735 
1736   add_safepoint_edges(call, must_throw);
1737 
1738   Node* xcall = _gvn.transform(call);
1739 
1740   if (xcall == top()) {
1741     set_control(top());
1742     return;
1743   }
1744   assert(xcall == call, "call identity is stable");
1745 
1746   // Re-use the current map to produce the result.
1747 
1748   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1749   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1750   set_all_memory_call(xcall, separate_io_proj);
1751 
1752   //return xcall;   // no need, caller already has it
1753 }
1754 
1755 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1756   if (stopped())  return top();  // maybe the call folded up?
1757 
1758   // Capture the return value, if any.
1759   Node* ret;
1760   if (call->method() == NULL ||
1761       call->method()->return_type()->basic_type() == T_VOID)
1762         ret = top();
1763   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1764 
1765   // Note:  Since any out-of-line call can produce an exception,
1766   // we always insert an I_O projection from the call into the result.
1767 
1768   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1769 
1770   if (separate_io_proj) {
1771     // The caller requested separate projections be used by the fall
1772     // through and exceptional paths, so replace the projections for
1773     // the fall through path.
1774     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1775     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1776   }
1777   return ret;
1778 }
1779 
1780 //--------------------set_predefined_input_for_runtime_call--------------------
1781 // Reading and setting the memory state is way conservative here.
1782 // The real problem is that I am not doing real Type analysis on memory,
1783 // so I cannot distinguish card mark stores from other stores.  Across a GC
1784 // point the Store Barrier and the card mark memory has to agree.  I cannot
1785 // have a card mark store and its barrier split across the GC point from
1786 // either above or below.  Here I get that to happen by reading ALL of memory.
1787 // A better answer would be to separate out card marks from other memory.
1788 // For now, return the input memory state, so that it can be reused
1789 // after the call, if this call has restricted memory effects.
1790 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1791   // Set fixed predefined input arguments
1792   Node* memory = reset_memory();
1793   call->init_req( TypeFunc::Control,   control()  );
1794   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1795   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1796   call->init_req( TypeFunc::FramePtr,  frameptr() );
1797   call->init_req( TypeFunc::ReturnAdr, top()      );
1798   return memory;
1799 }
1800 
1801 //-------------------set_predefined_output_for_runtime_call--------------------
1802 // Set control and memory (not i_o) from the call.
1803 // If keep_mem is not NULL, use it for the output state,
1804 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1805 // If hook_mem is NULL, this call produces no memory effects at all.
1806 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1807 // then only that memory slice is taken from the call.
1808 // In the last case, we must put an appropriate memory barrier before
1809 // the call, so as to create the correct anti-dependencies on loads
1810 // preceding the call.
1811 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1812                                                       Node* keep_mem,
1813                                                       const TypePtr* hook_mem) {
1814   // no i/o
1815   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1816   if (keep_mem) {
1817     // First clone the existing memory state
1818     set_all_memory(keep_mem);
1819     if (hook_mem != NULL) {
1820       // Make memory for the call
1821       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1822       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1823       // We also use hook_mem to extract specific effects from arraycopy stubs.
1824       set_memory(mem, hook_mem);
1825     }
1826     // ...else the call has NO memory effects.
1827 
1828     // Make sure the call advertises its memory effects precisely.
1829     // This lets us build accurate anti-dependences in gcm.cpp.
1830     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1831            "call node must be constructed correctly");
1832   } else {
1833     assert(hook_mem == NULL, "");
1834     // This is not a "slow path" call; all memory comes from the call.
1835     set_all_memory_call(call);
1836   }
1837 }
1838 
1839 
1840 // Replace the call with the current state of the kit.
1841 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1842   JVMState* ejvms = NULL;
1843   if (has_exceptions()) {
1844     ejvms = transfer_exceptions_into_jvms();
1845   }
1846 
1847   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1848   ReplacedNodes replaced_nodes_exception;
1849   Node* ex_ctl = top();
1850 
1851   SafePointNode* final_state = stop();
1852 
1853   // Find all the needed outputs of this call
1854   CallProjections callprojs;
1855   call->extract_projections(&callprojs, true);
1856 
1857   Node* init_mem = call->in(TypeFunc::Memory);
1858   Node* final_mem = final_state->in(TypeFunc::Memory);
1859   Node* final_ctl = final_state->in(TypeFunc::Control);
1860   Node* final_io = final_state->in(TypeFunc::I_O);
1861 
1862   // Replace all the old call edges with the edges from the inlining result
1863   if (callprojs.fallthrough_catchproj != NULL) {
1864     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1865   }
1866   if (callprojs.fallthrough_memproj != NULL) {
1867     if (final_mem->is_MergeMem()) {
1868       // Parser's exits MergeMem was not transformed but may be optimized
1869       final_mem = _gvn.transform(final_mem);
1870     }
1871     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1872   }
1873   if (callprojs.fallthrough_ioproj != NULL) {
1874     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1875   }
1876 
1877   // Replace the result with the new result if it exists and is used
1878   if (callprojs.resproj != NULL && result != NULL) {
1879     C->gvn_replace_by(callprojs.resproj, result);
1880   }
1881 
1882   if (ejvms == NULL) {
1883     // No exception edges to simply kill off those paths
1884     if (callprojs.catchall_catchproj != NULL) {
1885       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1886     }
1887     if (callprojs.catchall_memproj != NULL) {
1888       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1889     }
1890     if (callprojs.catchall_ioproj != NULL) {
1891       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1892     }
1893     // Replace the old exception object with top
1894     if (callprojs.exobj != NULL) {
1895       C->gvn_replace_by(callprojs.exobj, C->top());
1896     }
1897   } else {
1898     GraphKit ekit(ejvms);
1899 
1900     // Load my combined exception state into the kit, with all phis transformed:
1901     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1902     replaced_nodes_exception = ex_map->replaced_nodes();
1903 
1904     Node* ex_oop = ekit.use_exception_state(ex_map);
1905 
1906     if (callprojs.catchall_catchproj != NULL) {
1907       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1908       ex_ctl = ekit.control();
1909     }
1910     if (callprojs.catchall_memproj != NULL) {
1911       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1912     }
1913     if (callprojs.catchall_ioproj != NULL) {
1914       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1915     }
1916 
1917     // Replace the old exception object with the newly created one
1918     if (callprojs.exobj != NULL) {
1919       C->gvn_replace_by(callprojs.exobj, ex_oop);
1920     }
1921   }
1922 
1923   // Disconnect the call from the graph
1924   call->disconnect_inputs(NULL, C);
1925   C->gvn_replace_by(call, C->top());
1926 
1927   // Clean up any MergeMems that feed other MergeMems since the
1928   // optimizer doesn't like that.
1929   if (final_mem->is_MergeMem()) {
1930     Node_List wl;
1931     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1932       Node* m = i.get();
1933       if (m->is_MergeMem() && !wl.contains(m)) {
1934         wl.push(m);
1935       }
1936     }
1937     while (wl.size()  > 0) {
1938       _gvn.transform(wl.pop());
1939     }
1940   }
1941 
1942   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1943     replaced_nodes.apply(C, final_ctl);
1944   }
1945   if (!ex_ctl->is_top() && do_replaced_nodes) {
1946     replaced_nodes_exception.apply(C, ex_ctl);
1947   }
1948 }
1949 
1950 
1951 //------------------------------increment_counter------------------------------
1952 // for statistics: increment a VM counter by 1
1953 
1954 void GraphKit::increment_counter(address counter_addr) {
1955   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1956   increment_counter(adr1);
1957 }
1958 
1959 void GraphKit::increment_counter(Node* counter_addr) {
1960   int adr_type = Compile::AliasIdxRaw;
1961   Node* ctrl = control();
1962   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1963   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1964   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1965 }
1966 
1967 
1968 //------------------------------uncommon_trap----------------------------------
1969 // Bail out to the interpreter in mid-method.  Implemented by calling the
1970 // uncommon_trap blob.  This helper function inserts a runtime call with the
1971 // right debug info.
1972 void GraphKit::uncommon_trap(int trap_request,
1973                              ciKlass* klass, const char* comment,
1974                              bool must_throw,
1975                              bool keep_exact_action) {
1976   if (failing())  stop();
1977   if (stopped())  return; // trap reachable?
1978 
1979   // Note:  If ProfileTraps is true, and if a deopt. actually
1980   // occurs here, the runtime will make sure an MDO exists.  There is
1981   // no need to call method()->ensure_method_data() at this point.
1982 
1983   // Set the stack pointer to the right value for reexecution:
1984   set_sp(reexecute_sp());
1985 
1986 #ifdef ASSERT
1987   if (!must_throw) {
1988     // Make sure the stack has at least enough depth to execute
1989     // the current bytecode.
1990     int inputs, ignored_depth;
1991     if (compute_stack_effects(inputs, ignored_depth)) {
1992       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1993              Bytecodes::name(java_bc()), sp(), inputs);
1994     }
1995   }
1996 #endif
1997 
1998   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1999   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2000 
2001   switch (action) {
2002   case Deoptimization::Action_maybe_recompile:
2003   case Deoptimization::Action_reinterpret:
2004     // Temporary fix for 6529811 to allow virtual calls to be sure they
2005     // get the chance to go from mono->bi->mega
2006     if (!keep_exact_action &&
2007         Deoptimization::trap_request_index(trap_request) < 0 &&
2008         too_many_recompiles(reason)) {
2009       // This BCI is causing too many recompilations.
2010       if (C->log() != NULL) {
2011         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2012                 Deoptimization::trap_reason_name(reason),
2013                 Deoptimization::trap_action_name(action));
2014       }
2015       action = Deoptimization::Action_none;
2016       trap_request = Deoptimization::make_trap_request(reason, action);
2017     } else {
2018       C->set_trap_can_recompile(true);
2019     }
2020     break;
2021   case Deoptimization::Action_make_not_entrant:
2022     C->set_trap_can_recompile(true);
2023     break;
2024 #ifdef ASSERT
2025   case Deoptimization::Action_none:
2026   case Deoptimization::Action_make_not_compilable:
2027     break;
2028   default:
2029     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2030     break;
2031 #endif
2032   }
2033 
2034   if (TraceOptoParse) {
2035     char buf[100];
2036     tty->print_cr("Uncommon trap %s at bci:%d",
2037                   Deoptimization::format_trap_request(buf, sizeof(buf),
2038                                                       trap_request), bci());
2039   }
2040 
2041   CompileLog* log = C->log();
2042   if (log != NULL) {
2043     int kid = (klass == NULL)? -1: log->identify(klass);
2044     log->begin_elem("uncommon_trap bci='%d'", bci());
2045     char buf[100];
2046     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2047                                                           trap_request));
2048     if (kid >= 0)         log->print(" klass='%d'", kid);
2049     if (comment != NULL)  log->print(" comment='%s'", comment);
2050     log->end_elem();
2051   }
2052 
2053   // Make sure any guarding test views this path as very unlikely
2054   Node *i0 = control()->in(0);
2055   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2056     IfNode *iff = i0->as_If();
2057     float f = iff->_prob;   // Get prob
2058     if (control()->Opcode() == Op_IfTrue) {
2059       if (f > PROB_UNLIKELY_MAG(4))
2060         iff->_prob = PROB_MIN;
2061     } else {
2062       if (f < PROB_LIKELY_MAG(4))
2063         iff->_prob = PROB_MAX;
2064     }
2065   }
2066 
2067   // Clear out dead values from the debug info.
2068   kill_dead_locals();
2069 
2070   // Now insert the uncommon trap subroutine call
2071   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2072   const TypePtr* no_memory_effects = NULL;
2073   // Pass the index of the class to be loaded
2074   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2075                                  (must_throw ? RC_MUST_THROW : 0),
2076                                  OptoRuntime::uncommon_trap_Type(),
2077                                  call_addr, "uncommon_trap", no_memory_effects,
2078                                  intcon(trap_request));
2079   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2080          "must extract request correctly from the graph");
2081   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2082 
2083   call->set_req(TypeFunc::ReturnAdr, returnadr());
2084   // The debug info is the only real input to this call.
2085 
2086   // Halt-and-catch fire here.  The above call should never return!
2087   HaltNode* halt = new HaltNode(control(), frameptr());
2088   _gvn.set_type_bottom(halt);
2089   root()->add_req(halt);
2090 
2091   stop_and_kill_map();
2092 }
2093 
2094 
2095 //--------------------------just_allocated_object------------------------------
2096 // Report the object that was just allocated.
2097 // It must be the case that there are no intervening safepoints.
2098 // We use this to determine if an object is so "fresh" that
2099 // it does not require card marks.
2100 Node* GraphKit::just_allocated_object(Node* current_control) {
2101   if (C->recent_alloc_ctl() == current_control)
2102     return C->recent_alloc_obj();
2103   return NULL;
2104 }
2105 
2106 
2107 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2108   // (Note:  TypeFunc::make has a cache that makes this fast.)
2109   const TypeFunc* tf    = TypeFunc::make(dest_method);
2110   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2111   for (int j = 0; j < nargs; j++) {
2112     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2113     if( targ->basic_type() == T_DOUBLE ) {
2114       // If any parameters are doubles, they must be rounded before
2115       // the call, dstore_rounding does gvn.transform
2116       Node *arg = argument(j);
2117       arg = dstore_rounding(arg);
2118       set_argument(j, arg);
2119     }
2120   }
2121 }
2122 
2123 /**
2124  * Record profiling data exact_kls for Node n with the type system so
2125  * that it can propagate it (speculation)
2126  *
2127  * @param n          node that the type applies to
2128  * @param exact_kls  type from profiling
2129  * @param maybe_null did profiling see null?
2130  *
2131  * @return           node with improved type
2132  */
2133 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null) {
2134   const Type* current_type = _gvn.type(n);
2135   assert(UseTypeSpeculation, "type speculation must be on");
2136 
2137   const TypePtr* speculative = current_type->speculative();
2138 
2139   // Should the klass from the profile be recorded in the speculative type?
2140   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2141     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2142     const TypeOopPtr* xtype = tklass->as_instance_type();
2143     assert(xtype->klass_is_exact(), "Should be exact");
2144     // Any reason to believe n is not null (from this profiling or a previous one)?
2145     const TypePtr* ptr = (maybe_null && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2146     // record the new speculative type's depth
2147     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2148     speculative = speculative->with_inline_depth(jvms()->depth());
2149   } else if (current_type->would_improve_ptr(maybe_null)) {
2150     // Profiling report that null was never seen so we can change the
2151     // speculative type to non null ptr.
2152     assert(!maybe_null, "nothing to improve");
2153     if (speculative == NULL) {
2154       speculative = TypePtr::NOTNULL;
2155     } else {
2156       const TypePtr* ptr = TypePtr::NOTNULL;
2157       speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2158     }
2159   }
2160 
2161   if (speculative != current_type->speculative()) {
2162     // Build a type with a speculative type (what we think we know
2163     // about the type but will need a guard when we use it)
2164     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2165     // We're changing the type, we need a new CheckCast node to carry
2166     // the new type. The new type depends on the control: what
2167     // profiling tells us is only valid from here as far as we can
2168     // tell.
2169     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2170     cast = _gvn.transform(cast);
2171     replace_in_map(n, cast);
2172     n = cast;
2173   }
2174 
2175   return n;
2176 }
2177 
2178 /**
2179  * Record profiling data from receiver profiling at an invoke with the
2180  * type system so that it can propagate it (speculation)
2181  *
2182  * @param n  receiver node
2183  *
2184  * @return   node with improved type
2185  */
2186 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2187   if (!UseTypeSpeculation) {
2188     return n;
2189   }
2190   ciKlass* exact_kls = profile_has_unique_klass();
2191   bool maybe_null = true;
2192   if (java_bc() == Bytecodes::_checkcast ||
2193       java_bc() == Bytecodes::_instanceof ||
2194       java_bc() == Bytecodes::_aastore) {
2195     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2196     maybe_null = data == NULL ? true : data->as_BitData()->null_seen();
2197   }
2198   return record_profile_for_speculation(n, exact_kls, maybe_null);
2199 }
2200 
2201 /**
2202  * Record profiling data from argument profiling at an invoke with the
2203  * type system so that it can propagate it (speculation)
2204  *
2205  * @param dest_method  target method for the call
2206  * @param bc           what invoke bytecode is this?
2207  */
2208 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2209   if (!UseTypeSpeculation) {
2210     return;
2211   }
2212   const TypeFunc* tf    = TypeFunc::make(dest_method);
2213   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2214   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2215   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2216     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2217     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2218       bool maybe_null = true;
2219       ciKlass* better_type = NULL;
2220       if (method()->argument_profiled_type(bci(), i, better_type, maybe_null)) {
2221         record_profile_for_speculation(argument(j), better_type, maybe_null);
2222       }
2223       i++;
2224     }
2225   }
2226 }
2227 
2228 /**
2229  * Record profiling data from parameter profiling at an invoke with
2230  * the type system so that it can propagate it (speculation)
2231  */
2232 void GraphKit::record_profiled_parameters_for_speculation() {
2233   if (!UseTypeSpeculation) {
2234     return;
2235   }
2236   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2237     if (_gvn.type(local(i))->isa_oopptr()) {
2238       bool maybe_null = true;
2239       ciKlass* better_type = NULL;
2240       if (method()->parameter_profiled_type(j, better_type, maybe_null)) {
2241         record_profile_for_speculation(local(i), better_type, maybe_null);
2242       }
2243       j++;
2244     }
2245   }
2246 }
2247 
2248 /**
2249  * Record profiling data from return value profiling at an invoke with
2250  * the type system so that it can propagate it (speculation)
2251  */
2252 void GraphKit::record_profiled_return_for_speculation() {
2253   if (!UseTypeSpeculation) {
2254     return;
2255   }
2256   bool maybe_null = true;
2257   ciKlass* better_type = NULL;
2258   if (method()->return_profiled_type(bci(), better_type, maybe_null)) {
2259     // If profiling reports a single type for the return value,
2260     // feed it to the type system so it can propagate it as a
2261     // speculative type
2262     record_profile_for_speculation(stack(sp()-1), better_type, maybe_null);
2263   }
2264 }
2265 
2266 void GraphKit::round_double_result(ciMethod* dest_method) {
2267   // A non-strict method may return a double value which has an extended
2268   // exponent, but this must not be visible in a caller which is 'strict'
2269   // If a strict caller invokes a non-strict callee, round a double result
2270 
2271   BasicType result_type = dest_method->return_type()->basic_type();
2272   assert( method() != NULL, "must have caller context");
2273   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2274     // Destination method's return value is on top of stack
2275     // dstore_rounding() does gvn.transform
2276     Node *result = pop_pair();
2277     result = dstore_rounding(result);
2278     push_pair(result);
2279   }
2280 }
2281 
2282 // rounding for strict float precision conformance
2283 Node* GraphKit::precision_rounding(Node* n) {
2284   return UseStrictFP && _method->flags().is_strict()
2285     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2286     ? _gvn.transform( new RoundFloatNode(0, n) )
2287     : n;
2288 }
2289 
2290 // rounding for strict double precision conformance
2291 Node* GraphKit::dprecision_rounding(Node *n) {
2292   return UseStrictFP && _method->flags().is_strict()
2293     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2294     ? _gvn.transform( new RoundDoubleNode(0, n) )
2295     : n;
2296 }
2297 
2298 // rounding for non-strict double stores
2299 Node* GraphKit::dstore_rounding(Node* n) {
2300   return Matcher::strict_fp_requires_explicit_rounding
2301     && UseSSE <= 1
2302     ? _gvn.transform( new RoundDoubleNode(0, n) )
2303     : n;
2304 }
2305 
2306 //=============================================================================
2307 // Generate a fast path/slow path idiom.  Graph looks like:
2308 // [foo] indicates that 'foo' is a parameter
2309 //
2310 //              [in]     NULL
2311 //                 \    /
2312 //                  CmpP
2313 //                  Bool ne
2314 //                   If
2315 //                  /  \
2316 //              True    False-<2>
2317 //              / |
2318 //             /  cast_not_null
2319 //           Load  |    |   ^
2320 //        [fast_test]   |   |
2321 // gvn to   opt_test    |   |
2322 //          /    \      |  <1>
2323 //      True     False  |
2324 //        |         \\  |
2325 //   [slow_call]     \[fast_result]
2326 //    Ctl   Val       \      \
2327 //     |               \      \
2328 //    Catch       <1>   \      \
2329 //   /    \        ^     \      \
2330 //  Ex    No_Ex    |      \      \
2331 //  |       \   \  |       \ <2>  \
2332 //  ...      \  [slow_res] |  |    \   [null_result]
2333 //            \         \--+--+---  |  |
2334 //             \           | /    \ | /
2335 //              --------Region     Phi
2336 //
2337 //=============================================================================
2338 // Code is structured as a series of driver functions all called 'do_XXX' that
2339 // call a set of helper functions.  Helper functions first, then drivers.
2340 
2341 //------------------------------null_check_oop---------------------------------
2342 // Null check oop.  Set null-path control into Region in slot 3.
2343 // Make a cast-not-nullness use the other not-null control.  Return cast.
2344 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2345                                bool never_see_null,
2346                                bool safe_for_replace,
2347                                bool speculative) {
2348   // Initial NULL check taken path
2349   (*null_control) = top();
2350   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2351 
2352   // Generate uncommon_trap:
2353   if (never_see_null && (*null_control) != top()) {
2354     // If we see an unexpected null at a check-cast we record it and force a
2355     // recompile; the offending check-cast will be compiled to handle NULLs.
2356     // If we see more than one offending BCI, then all checkcasts in the
2357     // method will be compiled to handle NULLs.
2358     PreserveJVMState pjvms(this);
2359     set_control(*null_control);
2360     replace_in_map(value, null());
2361     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2362     uncommon_trap(reason,
2363                   Deoptimization::Action_make_not_entrant);
2364     (*null_control) = top();    // NULL path is dead
2365   }
2366   if ((*null_control) == top() && safe_for_replace) {
2367     replace_in_map(value, cast);
2368   }
2369 
2370   // Cast away null-ness on the result
2371   return cast;
2372 }
2373 
2374 //------------------------------opt_iff----------------------------------------
2375 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2376 // Return slow-path control.
2377 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2378   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2379 
2380   // Fast path taken; set region slot 2
2381   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2382   region->init_req(2,fast_taken); // Capture fast-control
2383 
2384   // Fast path not-taken, i.e. slow path
2385   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2386   return slow_taken;
2387 }
2388 
2389 //-----------------------------make_runtime_call-------------------------------
2390 Node* GraphKit::make_runtime_call(int flags,
2391                                   const TypeFunc* call_type, address call_addr,
2392                                   const char* call_name,
2393                                   const TypePtr* adr_type,
2394                                   // The following parms are all optional.
2395                                   // The first NULL ends the list.
2396                                   Node* parm0, Node* parm1,
2397                                   Node* parm2, Node* parm3,
2398                                   Node* parm4, Node* parm5,
2399                                   Node* parm6, Node* parm7) {
2400   // Slow-path call
2401   bool is_leaf = !(flags & RC_NO_LEAF);
2402   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2403   if (call_name == NULL) {
2404     assert(!is_leaf, "must supply name for leaf");
2405     call_name = OptoRuntime::stub_name(call_addr);
2406   }
2407   CallNode* call;
2408   if (!is_leaf) {
2409     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2410                                            bci(), adr_type);
2411   } else if (flags & RC_NO_FP) {
2412     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2413   } else {
2414     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2415   }
2416 
2417   // The following is similar to set_edges_for_java_call,
2418   // except that the memory effects of the call are restricted to AliasIdxRaw.
2419 
2420   // Slow path call has no side-effects, uses few values
2421   bool wide_in  = !(flags & RC_NARROW_MEM);
2422   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2423 
2424   Node* prev_mem = NULL;
2425   if (wide_in) {
2426     prev_mem = set_predefined_input_for_runtime_call(call);
2427   } else {
2428     assert(!wide_out, "narrow in => narrow out");
2429     Node* narrow_mem = memory(adr_type);
2430     prev_mem = reset_memory();
2431     map()->set_memory(narrow_mem);
2432     set_predefined_input_for_runtime_call(call);
2433   }
2434 
2435   // Hook each parm in order.  Stop looking at the first NULL.
2436   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2437   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2438   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2439   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2440   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2441   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2442   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2443   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2444     /* close each nested if ===> */  } } } } } } } }
2445   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2446 
2447   if (!is_leaf) {
2448     // Non-leaves can block and take safepoints:
2449     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2450   }
2451   // Non-leaves can throw exceptions:
2452   if (has_io) {
2453     call->set_req(TypeFunc::I_O, i_o());
2454   }
2455 
2456   if (flags & RC_UNCOMMON) {
2457     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2458     // (An "if" probability corresponds roughly to an unconditional count.
2459     // Sort of.)
2460     call->set_cnt(PROB_UNLIKELY_MAG(4));
2461   }
2462 
2463   Node* c = _gvn.transform(call);
2464   assert(c == call, "cannot disappear");
2465 
2466   if (wide_out) {
2467     // Slow path call has full side-effects.
2468     set_predefined_output_for_runtime_call(call);
2469   } else {
2470     // Slow path call has few side-effects, and/or sets few values.
2471     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2472   }
2473 
2474   if (has_io) {
2475     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2476   }
2477   return call;
2478 
2479 }
2480 
2481 //------------------------------merge_memory-----------------------------------
2482 // Merge memory from one path into the current memory state.
2483 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2484   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2485     Node* old_slice = mms.force_memory();
2486     Node* new_slice = mms.memory2();
2487     if (old_slice != new_slice) {
2488       PhiNode* phi;
2489       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2490         if (mms.is_empty()) {
2491           // clone base memory Phi's inputs for this memory slice
2492           assert(old_slice == mms.base_memory(), "sanity");
2493           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2494           _gvn.set_type(phi, Type::MEMORY);
2495           for (uint i = 1; i < phi->req(); i++) {
2496             phi->init_req(i, old_slice->in(i));
2497           }
2498         } else {
2499           phi = old_slice->as_Phi(); // Phi was generated already
2500         }
2501       } else {
2502         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2503         _gvn.set_type(phi, Type::MEMORY);
2504       }
2505       phi->set_req(new_path, new_slice);
2506       mms.set_memory(phi);
2507     }
2508   }
2509 }
2510 
2511 //------------------------------make_slow_call_ex------------------------------
2512 // Make the exception handler hookups for the slow call
2513 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2514   if (stopped())  return;
2515 
2516   // Make a catch node with just two handlers:  fall-through and catch-all
2517   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2518   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2519   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2520   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2521 
2522   { PreserveJVMState pjvms(this);
2523     set_control(excp);
2524     set_i_o(i_o);
2525 
2526     if (excp != top()) {
2527       if (deoptimize) {
2528         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2529         uncommon_trap(Deoptimization::Reason_unhandled,
2530                       Deoptimization::Action_none);
2531       } else {
2532         // Create an exception state also.
2533         // Use an exact type if the caller has specified a specific exception.
2534         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2535         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2536         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2537       }
2538     }
2539   }
2540 
2541   // Get the no-exception control from the CatchNode.
2542   set_control(norm);
2543 }
2544 
2545 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2546   Node* cmp = NULL;
2547   switch(bt) {
2548   case T_INT: cmp = new CmpINode(in1, in2); break;
2549   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2550   default: fatal("unexpected comparison type %s", type2name(bt));
2551   }
2552   gvn->transform(cmp);
2553   Node* bol = gvn->transform(new BoolNode(cmp, test));
2554   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2555   gvn->transform(iff);
2556   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2557   return iff;
2558 }
2559 
2560 
2561 //-------------------------------gen_subtype_check-----------------------------
2562 // Generate a subtyping check.  Takes as input the subtype and supertype.
2563 // Returns 2 values: sets the default control() to the true path and returns
2564 // the false path.  Only reads invariant memory; sets no (visible) memory.
2565 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2566 // but that's not exposed to the optimizer.  This call also doesn't take in an
2567 // Object; if you wish to check an Object you need to load the Object's class
2568 // prior to coming here.
2569 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2570   Compile* C = gvn->C;
2571 
2572   if ((*ctrl)->is_top()) {
2573     return C->top();
2574   }
2575 
2576   // Fast check for identical types, perhaps identical constants.
2577   // The types can even be identical non-constants, in cases
2578   // involving Array.newInstance, Object.clone, etc.
2579   if (subklass == superklass)
2580     return C->top();             // false path is dead; no test needed.
2581 
2582   if (gvn->type(superklass)->singleton()) {
2583     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2584     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2585 
2586     // In the common case of an exact superklass, try to fold up the
2587     // test before generating code.  You may ask, why not just generate
2588     // the code and then let it fold up?  The answer is that the generated
2589     // code will necessarily include null checks, which do not always
2590     // completely fold away.  If they are also needless, then they turn
2591     // into a performance loss.  Example:
2592     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2593     // Here, the type of 'fa' is often exact, so the store check
2594     // of fa[1]=x will fold up, without testing the nullness of x.
2595     switch (C->static_subtype_check(superk, subk)) {
2596     case Compile::SSC_always_false:
2597       {
2598         Node* always_fail = *ctrl;
2599         *ctrl = gvn->C->top();
2600         return always_fail;
2601       }
2602     case Compile::SSC_always_true:
2603       return C->top();
2604     case Compile::SSC_easy_test:
2605       {
2606         // Just do a direct pointer compare and be done.
2607         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2608         *ctrl = gvn->transform(new IfTrueNode(iff));
2609         return gvn->transform(new IfFalseNode(iff));
2610       }
2611     case Compile::SSC_full_test:
2612       break;
2613     default:
2614       ShouldNotReachHere();
2615     }
2616   }
2617 
2618   // %%% Possible further optimization:  Even if the superklass is not exact,
2619   // if the subklass is the unique subtype of the superklass, the check
2620   // will always succeed.  We could leave a dependency behind to ensure this.
2621 
2622   // First load the super-klass's check-offset
2623   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2624   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2625   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2626   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2627   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2628 
2629   // Load from the sub-klass's super-class display list, or a 1-word cache of
2630   // the secondary superclass list, or a failing value with a sentinel offset
2631   // if the super-klass is an interface or exceptionally deep in the Java
2632   // hierarchy and we have to scan the secondary superclass list the hard way.
2633   // Worst-case type is a little odd: NULL is allowed as a result (usually
2634   // klass loads can never produce a NULL).
2635   Node *chk_off_X = chk_off;
2636 #ifdef _LP64
2637   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2638 #endif
2639   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2640   // For some types like interfaces the following loadKlass is from a 1-word
2641   // cache which is mutable so can't use immutable memory.  Other
2642   // types load from the super-class display table which is immutable.
2643   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2644   Node *kmem = might_be_cache ? m : C->immutable_memory();
2645   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2646 
2647   // Compile speed common case: ARE a subtype and we canNOT fail
2648   if( superklass == nkls )
2649     return C->top();             // false path is dead; no test needed.
2650 
2651   // See if we get an immediate positive hit.  Happens roughly 83% of the
2652   // time.  Test to see if the value loaded just previously from the subklass
2653   // is exactly the superklass.
2654   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2655   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2656   *ctrl = gvn->transform(new IfFalseNode(iff1));
2657 
2658   // Compile speed common case: Check for being deterministic right now.  If
2659   // chk_off is a constant and not equal to cacheoff then we are NOT a
2660   // subklass.  In this case we need exactly the 1 test above and we can
2661   // return those results immediately.
2662   if (!might_be_cache) {
2663     Node* not_subtype_ctrl = *ctrl;
2664     *ctrl = iftrue1; // We need exactly the 1 test above
2665     return not_subtype_ctrl;
2666   }
2667 
2668   // Gather the various success & failures here
2669   RegionNode *r_ok_subtype = new RegionNode(4);
2670   gvn->record_for_igvn(r_ok_subtype);
2671   RegionNode *r_not_subtype = new RegionNode(3);
2672   gvn->record_for_igvn(r_not_subtype);
2673 
2674   r_ok_subtype->init_req(1, iftrue1);
2675 
2676   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2677   // is roughly 63% of the remaining cases).  Test to see if the loaded
2678   // check-offset points into the subklass display list or the 1-element
2679   // cache.  If it points to the display (and NOT the cache) and the display
2680   // missed then it's not a subtype.
2681   Node *cacheoff = gvn->intcon(cacheoff_con);
2682   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2683   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2684   *ctrl = gvn->transform(new IfFalseNode(iff2));
2685 
2686   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2687   // No performance impact (too rare) but allows sharing of secondary arrays
2688   // which has some footprint reduction.
2689   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2690   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2691   *ctrl = gvn->transform(new IfFalseNode(iff3));
2692 
2693   // -- Roads not taken here: --
2694   // We could also have chosen to perform the self-check at the beginning
2695   // of this code sequence, as the assembler does.  This would not pay off
2696   // the same way, since the optimizer, unlike the assembler, can perform
2697   // static type analysis to fold away many successful self-checks.
2698   // Non-foldable self checks work better here in second position, because
2699   // the initial primary superclass check subsumes a self-check for most
2700   // types.  An exception would be a secondary type like array-of-interface,
2701   // which does not appear in its own primary supertype display.
2702   // Finally, we could have chosen to move the self-check into the
2703   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2704   // dependent manner.  But it is worthwhile to have the check here,
2705   // where it can be perhaps be optimized.  The cost in code space is
2706   // small (register compare, branch).
2707 
2708   // Now do a linear scan of the secondary super-klass array.  Again, no real
2709   // performance impact (too rare) but it's gotta be done.
2710   // Since the code is rarely used, there is no penalty for moving it
2711   // out of line, and it can only improve I-cache density.
2712   // The decision to inline or out-of-line this final check is platform
2713   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2714   Node* psc = gvn->transform(
2715     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2716 
2717   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2718   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2719   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2720 
2721   // Return false path; set default control to true path.
2722   *ctrl = gvn->transform(r_ok_subtype);
2723   return gvn->transform(r_not_subtype);
2724 }
2725 
2726 // Profile-driven exact type check:
2727 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2728                                     float prob,
2729                                     Node* *casted_receiver) {
2730   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2731   Node* recv_klass = load_object_klass(receiver);
2732   Node* want_klass = makecon(tklass);
2733   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2734   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2735   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2736   set_control( _gvn.transform( new IfTrueNode (iff) ));
2737   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2738 
2739   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2740   assert(recv_xtype->klass_is_exact(), "");
2741 
2742   // Subsume downstream occurrences of receiver with a cast to
2743   // recv_xtype, since now we know what the type will be.
2744   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2745   (*casted_receiver) = _gvn.transform(cast);
2746   // (User must make the replace_in_map call.)
2747 
2748   return fail;
2749 }
2750 
2751 
2752 //------------------------------seems_never_null-------------------------------
2753 // Use null_seen information if it is available from the profile.
2754 // If we see an unexpected null at a type check we record it and force a
2755 // recompile; the offending check will be recompiled to handle NULLs.
2756 // If we see several offending BCIs, then all checks in the
2757 // method will be recompiled.
2758 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2759   speculating = !_gvn.type(obj)->speculative_maybe_null();
2760   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2761   if (UncommonNullCast               // Cutout for this technique
2762       && obj != null()               // And not the -Xcomp stupid case?
2763       && !too_many_traps(reason)
2764       ) {
2765     if (speculating) {
2766       return true;
2767     }
2768     if (data == NULL)
2769       // Edge case:  no mature data.  Be optimistic here.
2770       return true;
2771     // If the profile has not seen a null, assume it won't happen.
2772     assert(java_bc() == Bytecodes::_checkcast ||
2773            java_bc() == Bytecodes::_instanceof ||
2774            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2775     return !data->as_BitData()->null_seen();
2776   }
2777   speculating = false;
2778   return false;
2779 }
2780 
2781 //------------------------maybe_cast_profiled_receiver-------------------------
2782 // If the profile has seen exactly one type, narrow to exactly that type.
2783 // Subsequent type checks will always fold up.
2784 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2785                                              ciKlass* require_klass,
2786                                              ciKlass* spec_klass,
2787                                              bool safe_for_replace) {
2788   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2789 
2790   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2791 
2792   // Make sure we haven't already deoptimized from this tactic.
2793   if (too_many_traps(reason) || too_many_recompiles(reason))
2794     return NULL;
2795 
2796   // (No, this isn't a call, but it's enough like a virtual call
2797   // to use the same ciMethod accessor to get the profile info...)
2798   // If we have a speculative type use it instead of profiling (which
2799   // may not help us)
2800   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2801   if (exact_kls != NULL) {// no cast failures here
2802     if (require_klass == NULL ||
2803         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2804       // If we narrow the type to match what the type profile sees or
2805       // the speculative type, we can then remove the rest of the
2806       // cast.
2807       // This is a win, even if the exact_kls is very specific,
2808       // because downstream operations, such as method calls,
2809       // will often benefit from the sharper type.
2810       Node* exact_obj = not_null_obj; // will get updated in place...
2811       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2812                                             &exact_obj);
2813       { PreserveJVMState pjvms(this);
2814         set_control(slow_ctl);
2815         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2816       }
2817       if (safe_for_replace) {
2818         replace_in_map(not_null_obj, exact_obj);
2819       }
2820       return exact_obj;
2821     }
2822     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2823   }
2824 
2825   return NULL;
2826 }
2827 
2828 /**
2829  * Cast obj to type and emit guard unless we had too many traps here
2830  * already
2831  *
2832  * @param obj       node being casted
2833  * @param type      type to cast the node to
2834  * @param not_null  true if we know node cannot be null
2835  */
2836 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2837                                         ciKlass* type,
2838                                         bool not_null) {
2839   if (stopped()) {
2840     return obj;
2841   }
2842 
2843   // type == NULL if profiling tells us this object is always null
2844   if (type != NULL) {
2845     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2846     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2847 
2848     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2849         !too_many_traps(class_reason) &&
2850         !too_many_recompiles(class_reason)) {
2851       Node* not_null_obj = NULL;
2852       // not_null is true if we know the object is not null and
2853       // there's no need for a null check
2854       if (!not_null) {
2855         Node* null_ctl = top();
2856         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2857         assert(null_ctl->is_top(), "no null control here");
2858       } else {
2859         not_null_obj = obj;
2860       }
2861 
2862       Node* exact_obj = not_null_obj;
2863       ciKlass* exact_kls = type;
2864       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2865                                             &exact_obj);
2866       {
2867         PreserveJVMState pjvms(this);
2868         set_control(slow_ctl);
2869         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2870       }
2871       replace_in_map(not_null_obj, exact_obj);
2872       obj = exact_obj;
2873     }
2874   } else {
2875     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2876         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2877       Node* exact_obj = null_assert(obj);
2878       replace_in_map(obj, exact_obj);
2879       obj = exact_obj;
2880     }
2881   }
2882   return obj;
2883 }
2884 
2885 //-------------------------------gen_instanceof--------------------------------
2886 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2887 // and the reflective instance-of call.
2888 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2889   kill_dead_locals();           // Benefit all the uncommon traps
2890   assert( !stopped(), "dead parse path should be checked in callers" );
2891   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2892          "must check for not-null not-dead klass in callers");
2893 
2894   // Make the merge point
2895   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2896   RegionNode* region = new RegionNode(PATH_LIMIT);
2897   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2898   C->set_has_split_ifs(true); // Has chance for split-if optimization
2899 
2900   ciProfileData* data = NULL;
2901   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2902     data = method()->method_data()->bci_to_data(bci());
2903   }
2904   bool speculative_not_null = false;
2905   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2906                          && seems_never_null(obj, data, speculative_not_null));
2907 
2908   // Null check; get casted pointer; set region slot 3
2909   Node* null_ctl = top();
2910   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2911 
2912   // If not_null_obj is dead, only null-path is taken
2913   if (stopped()) {              // Doing instance-of on a NULL?
2914     set_control(null_ctl);
2915     return intcon(0);
2916   }
2917   region->init_req(_null_path, null_ctl);
2918   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2919   if (null_ctl == top()) {
2920     // Do this eagerly, so that pattern matches like is_diamond_phi
2921     // will work even during parsing.
2922     assert(_null_path == PATH_LIMIT-1, "delete last");
2923     region->del_req(_null_path);
2924     phi   ->del_req(_null_path);
2925   }
2926 
2927   // Do we know the type check always succeed?
2928   bool known_statically = false;
2929   if (_gvn.type(superklass)->singleton()) {
2930     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2931     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2932     if (subk != NULL && subk->is_loaded()) {
2933       int static_res = C->static_subtype_check(superk, subk);
2934       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2935     }
2936   }
2937 
2938   if (known_statically && UseTypeSpeculation) {
2939     // If we know the type check always succeeds then we don't use the
2940     // profiling data at this bytecode. Don't lose it, feed it to the
2941     // type system as a speculative type.
2942     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2943   } else {
2944     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2945     // We may not have profiling here or it may not help us. If we
2946     // have a speculative type use it to perform an exact cast.
2947     ciKlass* spec_obj_type = obj_type->speculative_type();
2948     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2949       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2950       if (stopped()) {            // Profile disagrees with this path.
2951         set_control(null_ctl);    // Null is the only remaining possibility.
2952         return intcon(0);
2953       }
2954       if (cast_obj != NULL) {
2955         not_null_obj = cast_obj;
2956       }
2957     }
2958   }
2959 
2960   if (ShenandoahVerifyReadsToFromSpace) {
2961     not_null_obj = shenandoah_read_barrier(not_null_obj);
2962   }
2963 
2964   // Load the object's klass
2965   Node* obj_klass = load_object_klass(not_null_obj);
2966 
2967   // Generate the subtype check
2968   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2969 
2970   // Plug in the success path to the general merge in slot 1.
2971   region->init_req(_obj_path, control());
2972   phi   ->init_req(_obj_path, intcon(1));
2973 
2974   // Plug in the failing path to the general merge in slot 2.
2975   region->init_req(_fail_path, not_subtype_ctrl);
2976   phi   ->init_req(_fail_path, intcon(0));
2977 
2978   // Return final merged results
2979   set_control( _gvn.transform(region) );
2980   record_for_igvn(region);
2981   return _gvn.transform(phi);
2982 }
2983 
2984 //-------------------------------gen_checkcast---------------------------------
2985 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2986 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2987 // uncommon-trap paths work.  Adjust stack after this call.
2988 // If failure_control is supplied and not null, it is filled in with
2989 // the control edge for the cast failure.  Otherwise, an appropriate
2990 // uncommon trap or exception is thrown.
2991 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2992                               Node* *failure_control) {
2993   kill_dead_locals();           // Benefit all the uncommon traps
2994   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2995   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2996 
2997   // Fast cutout:  Check the case that the cast is vacuously true.
2998   // This detects the common cases where the test will short-circuit
2999   // away completely.  We do this before we perform the null check,
3000   // because if the test is going to turn into zero code, we don't
3001   // want a residual null check left around.  (Causes a slowdown,
3002   // for example, in some objArray manipulations, such as a[i]=a[j].)
3003   if (tk->singleton()) {
3004     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3005     if (objtp != NULL && objtp->klass() != NULL) {
3006       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
3007       case Compile::SSC_always_true:
3008         // If we know the type check always succeed then we don't use
3009         // the profiling data at this bytecode. Don't lose it, feed it
3010         // to the type system as a speculative type.
3011         return record_profiled_receiver_for_speculation(obj);
3012       case Compile::SSC_always_false:
3013         // It needs a null check because a null will *pass* the cast check.
3014         // A non-null value will always produce an exception.
3015         return null_assert(obj);
3016       }
3017     }
3018   }
3019 
3020   ciProfileData* data = NULL;
3021   bool safe_for_replace = false;
3022   if (failure_control == NULL) {        // use MDO in regular case only
3023     assert(java_bc() == Bytecodes::_aastore ||
3024            java_bc() == Bytecodes::_checkcast,
3025            "interpreter profiles type checks only for these BCs");
3026     data = method()->method_data()->bci_to_data(bci());
3027     safe_for_replace = true;
3028   }
3029 
3030   // Make the merge point
3031   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3032   RegionNode* region = new RegionNode(PATH_LIMIT);
3033   Node*       phi    = new PhiNode(region, toop);
3034   C->set_has_split_ifs(true); // Has chance for split-if optimization
3035 
3036   // Use null-cast information if it is available
3037   bool speculative_not_null = false;
3038   bool never_see_null = ((failure_control == NULL)  // regular case only
3039                          && seems_never_null(obj, data, speculative_not_null));
3040 
3041   // Null check; get casted pointer; set region slot 3
3042   Node* null_ctl = top();
3043   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3044 
3045   if (ShenandoahVerifyReadsToFromSpace) {
3046     not_null_obj = shenandoah_read_barrier(not_null_obj);
3047   }
3048 
3049   // If not_null_obj is dead, only null-path is taken
3050   if (stopped()) {              // Doing instance-of on a NULL?
3051     set_control(null_ctl);
3052     return null();
3053   }
3054   region->init_req(_null_path, null_ctl);
3055   phi   ->init_req(_null_path, null());  // Set null path value
3056   if (null_ctl == top()) {
3057     // Do this eagerly, so that pattern matches like is_diamond_phi
3058     // will work even during parsing.
3059     assert(_null_path == PATH_LIMIT-1, "delete last");
3060     region->del_req(_null_path);
3061     phi   ->del_req(_null_path);
3062   }
3063 
3064   Node* cast_obj = NULL;
3065   if (tk->klass_is_exact()) {
3066     // The following optimization tries to statically cast the speculative type of the object
3067     // (for example obtained during profiling) to the type of the superklass and then do a
3068     // dynamic check that the type of the object is what we expect. To work correctly
3069     // for checkcast and aastore the type of superklass should be exact.
3070     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3071     // We may not have profiling here or it may not help us. If we have
3072     // a speculative type use it to perform an exact cast.
3073     ciKlass* spec_obj_type = obj_type->speculative_type();
3074     if (spec_obj_type != NULL || data != NULL) {
3075       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3076       if (cast_obj != NULL) {
3077         if (failure_control != NULL) // failure is now impossible
3078           (*failure_control) = top();
3079         // adjust the type of the phi to the exact klass:
3080         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3081       }
3082     }
3083   }
3084 
3085   if (cast_obj == NULL) {
3086     // Load the object's klass
3087     Node* obj_klass = load_object_klass(not_null_obj);
3088 
3089     // Generate the subtype check
3090     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3091 
3092     // Plug in success path into the merge
3093     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3094     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3095     if (failure_control == NULL) {
3096       if (not_subtype_ctrl != top()) { // If failure is possible
3097         PreserveJVMState pjvms(this);
3098         set_control(not_subtype_ctrl);
3099         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3100       }
3101     } else {
3102       (*failure_control) = not_subtype_ctrl;
3103     }
3104   }
3105 
3106   region->init_req(_obj_path, control());
3107   phi   ->init_req(_obj_path, cast_obj);
3108 
3109   // A merge of NULL or Casted-NotNull obj
3110   Node* res = _gvn.transform(phi);
3111 
3112   // Note I do NOT always 'replace_in_map(obj,result)' here.
3113   //  if( tk->klass()->can_be_primary_super()  )
3114     // This means that if I successfully store an Object into an array-of-String
3115     // I 'forget' that the Object is really now known to be a String.  I have to
3116     // do this because we don't have true union types for interfaces - if I store
3117     // a Baz into an array-of-Interface and then tell the optimizer it's an
3118     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3119     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3120   //  replace_in_map( obj, res );
3121 
3122   // Return final merged results
3123   set_control( _gvn.transform(region) );
3124   record_for_igvn(region);
3125   return res;
3126 }
3127 
3128 //------------------------------next_monitor-----------------------------------
3129 // What number should be given to the next monitor?
3130 int GraphKit::next_monitor() {
3131   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3132   int next = current + C->sync_stack_slots();
3133   // Keep the toplevel high water mark current:
3134   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3135   return current;
3136 }
3137 
3138 //------------------------------insert_mem_bar---------------------------------
3139 // Memory barrier to avoid floating things around
3140 // The membar serves as a pinch point between both control and all memory slices.
3141 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3142   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3143   mb->init_req(TypeFunc::Control, control());
3144   mb->init_req(TypeFunc::Memory,  reset_memory());
3145   Node* membar = _gvn.transform(mb);
3146   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3147   set_all_memory_call(membar);
3148   return membar;
3149 }
3150 
3151 //-------------------------insert_mem_bar_volatile----------------------------
3152 // Memory barrier to avoid floating things around
3153 // The membar serves as a pinch point between both control and memory(alias_idx).
3154 // If you want to make a pinch point on all memory slices, do not use this
3155 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3156 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3157   // When Parse::do_put_xxx updates a volatile field, it appends a series
3158   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3159   // The first membar is on the same memory slice as the field store opcode.
3160   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3161   // All the other membars (for other volatile slices, including AliasIdxBot,
3162   // which stands for all unknown volatile slices) are control-dependent
3163   // on the first membar.  This prevents later volatile loads or stores
3164   // from sliding up past the just-emitted store.
3165 
3166   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3167   mb->set_req(TypeFunc::Control,control());
3168   if (alias_idx == Compile::AliasIdxBot) {
3169     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3170   } else {
3171     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3172     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3173   }
3174   Node* membar = _gvn.transform(mb);
3175   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3176   if (alias_idx == Compile::AliasIdxBot) {
3177     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3178   } else {
3179     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3180   }
3181   return membar;
3182 }
3183 
3184 //------------------------------shared_lock------------------------------------
3185 // Emit locking code.
3186 FastLockNode* GraphKit::shared_lock(Node* obj) {
3187   // bci is either a monitorenter bc or InvocationEntryBci
3188   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3189   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3190 
3191   if( !GenerateSynchronizationCode )
3192     return NULL;                // Not locking things?
3193   if (stopped())                // Dead monitor?
3194     return NULL;
3195 
3196   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3197 
3198   obj = shenandoah_write_barrier(obj);
3199 
3200   // Box the stack location
3201   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3202   Node* mem = reset_memory();
3203 
3204   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3205   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3206     // Create the counters for this fast lock.
3207     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3208   }
3209 
3210   // Create the rtm counters for this fast lock if needed.
3211   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3212 
3213   // Add monitor to debug info for the slow path.  If we block inside the
3214   // slow path and de-opt, we need the monitor hanging around
3215   map()->push_monitor( flock );
3216 
3217   const TypeFunc *tf = LockNode::lock_type();
3218   LockNode *lock = new LockNode(C, tf);
3219 
3220   lock->init_req( TypeFunc::Control, control() );
3221   lock->init_req( TypeFunc::Memory , mem );
3222   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3223   lock->init_req( TypeFunc::FramePtr, frameptr() );
3224   lock->init_req( TypeFunc::ReturnAdr, top() );
3225 
3226   lock->init_req(TypeFunc::Parms + 0, obj);
3227   lock->init_req(TypeFunc::Parms + 1, box);
3228   lock->init_req(TypeFunc::Parms + 2, flock);
3229   add_safepoint_edges(lock);
3230 
3231   lock = _gvn.transform( lock )->as_Lock();
3232 
3233   // lock has no side-effects, sets few values
3234   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3235 
3236   insert_mem_bar(Op_MemBarAcquireLock);
3237 
3238   // Add this to the worklist so that the lock can be eliminated
3239   record_for_igvn(lock);
3240 
3241 #ifndef PRODUCT
3242   if (PrintLockStatistics) {
3243     // Update the counter for this lock.  Don't bother using an atomic
3244     // operation since we don't require absolute accuracy.
3245     lock->create_lock_counter(map()->jvms());
3246     increment_counter(lock->counter()->addr());
3247   }
3248 #endif
3249 
3250   return flock;
3251 }
3252 
3253 
3254 //------------------------------shared_unlock----------------------------------
3255 // Emit unlocking code.
3256 void GraphKit::shared_unlock(Node* box, Node* obj) {
3257   // bci is either a monitorenter bc or InvocationEntryBci
3258   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3259   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3260 
3261   if( !GenerateSynchronizationCode )
3262     return;
3263   if (stopped()) {               // Dead monitor?
3264     map()->pop_monitor();        // Kill monitor from debug info
3265     return;
3266   }
3267 
3268   // Memory barrier to avoid floating things down past the locked region
3269   insert_mem_bar(Op_MemBarReleaseLock);
3270 
3271   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3272   UnlockNode *unlock = new UnlockNode(C, tf);
3273 #ifdef ASSERT
3274   unlock->set_dbg_jvms(sync_jvms());
3275 #endif
3276   uint raw_idx = Compile::AliasIdxRaw;
3277   unlock->init_req( TypeFunc::Control, control() );
3278   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3279   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3280   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3281   unlock->init_req( TypeFunc::ReturnAdr, top() );
3282 
3283   unlock->init_req(TypeFunc::Parms + 0, obj);
3284   unlock->init_req(TypeFunc::Parms + 1, box);
3285   unlock = _gvn.transform(unlock)->as_Unlock();
3286 
3287   Node* mem = reset_memory();
3288 
3289   // unlock has no side-effects, sets few values
3290   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3291 
3292   // Kill monitor from debug info
3293   map()->pop_monitor( );
3294 }
3295 
3296 //-------------------------------get_layout_helper-----------------------------
3297 // If the given klass is a constant or known to be an array,
3298 // fetch the constant layout helper value into constant_value
3299 // and return (Node*)NULL.  Otherwise, load the non-constant
3300 // layout helper value, and return the node which represents it.
3301 // This two-faced routine is useful because allocation sites
3302 // almost always feature constant types.
3303 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3304   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3305   if (!StressReflectiveCode && inst_klass != NULL) {
3306     ciKlass* klass = inst_klass->klass();
3307     bool    xklass = inst_klass->klass_is_exact();
3308     if (xklass || klass->is_array_klass()) {
3309       jint lhelper = klass->layout_helper();
3310       if (lhelper != Klass::_lh_neutral_value) {
3311         constant_value = lhelper;
3312         return (Node*) NULL;
3313       }
3314     }
3315   }
3316   constant_value = Klass::_lh_neutral_value;  // put in a known value
3317   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3318   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3319 }
3320 
3321 // We just put in an allocate/initialize with a big raw-memory effect.
3322 // Hook selected additional alias categories on the initialization.
3323 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3324                                 MergeMemNode* init_in_merge,
3325                                 Node* init_out_raw) {
3326   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3327   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3328 
3329   Node* prevmem = kit.memory(alias_idx);
3330   init_in_merge->set_memory_at(alias_idx, prevmem);
3331   kit.set_memory(init_out_raw, alias_idx);
3332 }
3333 
3334 //---------------------------set_output_for_allocation-------------------------
3335 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3336                                           const TypeOopPtr* oop_type,
3337                                           bool deoptimize_on_exception) {
3338   int rawidx = Compile::AliasIdxRaw;
3339   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3340   add_safepoint_edges(alloc);
3341   Node* allocx = _gvn.transform(alloc);
3342   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3343   // create memory projection for i_o
3344   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3345   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3346 
3347   // create a memory projection as for the normal control path
3348   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3349   set_memory(malloc, rawidx);
3350 
3351   // a normal slow-call doesn't change i_o, but an allocation does
3352   // we create a separate i_o projection for the normal control path
3353   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3354   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3355 
3356   // put in an initialization barrier
3357   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3358                                                  rawoop)->as_Initialize();
3359   assert(alloc->initialization() == init,  "2-way macro link must work");
3360   assert(init ->allocation()     == alloc, "2-way macro link must work");
3361   {
3362     // Extract memory strands which may participate in the new object's
3363     // initialization, and source them from the new InitializeNode.
3364     // This will allow us to observe initializations when they occur,
3365     // and link them properly (as a group) to the InitializeNode.
3366     assert(init->in(InitializeNode::Memory) == malloc, "");
3367     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3368     init->set_req(InitializeNode::Memory, minit_in);
3369     record_for_igvn(minit_in); // fold it up later, if possible
3370     Node* minit_out = memory(rawidx);
3371     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3372     if (oop_type->isa_aryptr()) {
3373       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3374       int            elemidx  = C->get_alias_index(telemref);
3375       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3376     } else if (oop_type->isa_instptr()) {
3377       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3378       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3379         ciField* field = ik->nonstatic_field_at(i);
3380         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3381           continue;  // do not bother to track really large numbers of fields
3382         // Find (or create) the alias category for this field:
3383         int fieldidx = C->alias_type(field)->index();
3384         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3385       }
3386     }
3387   }
3388 
3389   // Cast raw oop to the real thing...
3390   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3391   javaoop = _gvn.transform(javaoop);
3392   C->set_recent_alloc(control(), javaoop);
3393   assert(just_allocated_object(control()) == javaoop, "just allocated");
3394 
3395 #ifdef ASSERT
3396   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3397     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3398            "Ideal_allocation works");
3399     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3400            "Ideal_allocation works");
3401     if (alloc->is_AllocateArray()) {
3402       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3403              "Ideal_allocation works");
3404       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3405              "Ideal_allocation works");
3406     } else {
3407       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3408     }
3409   }
3410 #endif //ASSERT
3411 
3412   return javaoop;
3413 }
3414 
3415 //---------------------------new_instance--------------------------------------
3416 // This routine takes a klass_node which may be constant (for a static type)
3417 // or may be non-constant (for reflective code).  It will work equally well
3418 // for either, and the graph will fold nicely if the optimizer later reduces
3419 // the type to a constant.
3420 // The optional arguments are for specialized use by intrinsics:
3421 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3422 //  - If 'return_size_val', report the the total object size to the caller.
3423 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3424 Node* GraphKit::new_instance(Node* klass_node,
3425                              Node* extra_slow_test,
3426                              Node* *return_size_val,
3427                              bool deoptimize_on_exception) {
3428   // Compute size in doublewords
3429   // The size is always an integral number of doublewords, represented
3430   // as a positive bytewise size stored in the klass's layout_helper.
3431   // The layout_helper also encodes (in a low bit) the need for a slow path.
3432   jint  layout_con = Klass::_lh_neutral_value;
3433   Node* layout_val = get_layout_helper(klass_node, layout_con);
3434   int   layout_is_con = (layout_val == NULL);
3435 
3436   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3437   // Generate the initial go-slow test.  It's either ALWAYS (return a
3438   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3439   // case) a computed value derived from the layout_helper.
3440   Node* initial_slow_test = NULL;
3441   if (layout_is_con) {
3442     assert(!StressReflectiveCode, "stress mode does not use these paths");
3443     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3444     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3445   } else {   // reflective case
3446     // This reflective path is used by Unsafe.allocateInstance.
3447     // (It may be stress-tested by specifying StressReflectiveCode.)
3448     // Basically, we want to get into the VM is there's an illegal argument.
3449     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3450     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3451     if (extra_slow_test != intcon(0)) {
3452       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3453     }
3454     // (Macro-expander will further convert this to a Bool, if necessary.)
3455   }
3456 
3457   // Find the size in bytes.  This is easy; it's the layout_helper.
3458   // The size value must be valid even if the slow path is taken.
3459   Node* size = NULL;
3460   if (layout_is_con) {
3461     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3462   } else {   // reflective case
3463     // This reflective path is used by clone and Unsafe.allocateInstance.
3464     size = ConvI2X(layout_val);
3465 
3466     // Clear the low bits to extract layout_helper_size_in_bytes:
3467     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3468     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3469     size = _gvn.transform( new AndXNode(size, mask) );
3470   }
3471   if (return_size_val != NULL) {
3472     (*return_size_val) = size;
3473   }
3474 
3475   // This is a precise notnull oop of the klass.
3476   // (Actually, it need not be precise if this is a reflective allocation.)
3477   // It's what we cast the result to.
3478   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3479   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3480   const TypeOopPtr* oop_type = tklass->as_instance_type();
3481 
3482   // Now generate allocation code
3483 
3484   // The entire memory state is needed for slow path of the allocation
3485   // since GC and deoptimization can happened.
3486   Node *mem = reset_memory();
3487   set_all_memory(mem); // Create new memory state
3488 
3489   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3490                                          control(), mem, i_o(),
3491                                          size, klass_node,
3492                                          initial_slow_test);
3493 
3494   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3495 }
3496 
3497 //-------------------------------new_array-------------------------------------
3498 // helper for both newarray and anewarray
3499 // The 'length' parameter is (obviously) the length of the array.
3500 // See comments on new_instance for the meaning of the other arguments.
3501 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3502                           Node* length,         // number of array elements
3503                           int   nargs,          // number of arguments to push back for uncommon trap
3504                           Node* *return_size_val,
3505                           bool deoptimize_on_exception) {
3506   jint  layout_con = Klass::_lh_neutral_value;
3507   Node* layout_val = get_layout_helper(klass_node, layout_con);
3508   int   layout_is_con = (layout_val == NULL);
3509 
3510   if (!layout_is_con && !StressReflectiveCode &&
3511       !too_many_traps(Deoptimization::Reason_class_check)) {
3512     // This is a reflective array creation site.
3513     // Optimistically assume that it is a subtype of Object[],
3514     // so that we can fold up all the address arithmetic.
3515     layout_con = Klass::array_layout_helper(T_OBJECT);
3516     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3517     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3518     { BuildCutout unless(this, bol_lh, PROB_MAX);
3519       inc_sp(nargs);
3520       uncommon_trap(Deoptimization::Reason_class_check,
3521                     Deoptimization::Action_maybe_recompile);
3522     }
3523     layout_val = NULL;
3524     layout_is_con = true;
3525   }
3526 
3527   // Generate the initial go-slow test.  Make sure we do not overflow
3528   // if length is huge (near 2Gig) or negative!  We do not need
3529   // exact double-words here, just a close approximation of needed
3530   // double-words.  We can't add any offset or rounding bits, lest we
3531   // take a size -1 of bytes and make it positive.  Use an unsigned
3532   // compare, so negative sizes look hugely positive.
3533   int fast_size_limit = FastAllocateSizeLimit;
3534   if (layout_is_con) {
3535     assert(!StressReflectiveCode, "stress mode does not use these paths");
3536     // Increase the size limit if we have exact knowledge of array type.
3537     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3538     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3539   }
3540 
3541   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3542   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3543 
3544   // --- Size Computation ---
3545   // array_size = round_to_heap(array_header + (length << elem_shift));
3546   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3547   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3548   // The rounding mask is strength-reduced, if possible.
3549   int round_mask = MinObjAlignmentInBytes - 1;
3550   Node* header_size = NULL;
3551   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3552   // (T_BYTE has the weakest alignment and size restrictions...)
3553   if (layout_is_con) {
3554     int       hsize  = Klass::layout_helper_header_size(layout_con);
3555     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3556     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3557     if ((round_mask & ~right_n_bits(eshift)) == 0)
3558       round_mask = 0;  // strength-reduce it if it goes away completely
3559     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3560     assert(header_size_min <= hsize, "generic minimum is smallest");
3561     header_size_min = hsize;
3562     header_size = intcon(hsize + round_mask);
3563   } else {
3564     Node* hss   = intcon(Klass::_lh_header_size_shift);
3565     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3566     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3567     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3568     Node* mask  = intcon(round_mask);
3569     header_size = _gvn.transform( new AddINode(hsize, mask) );
3570   }
3571 
3572   Node* elem_shift = NULL;
3573   if (layout_is_con) {
3574     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3575     if (eshift != 0)
3576       elem_shift = intcon(eshift);
3577   } else {
3578     // There is no need to mask or shift this value.
3579     // The semantics of LShiftINode include an implicit mask to 0x1F.
3580     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3581     elem_shift = layout_val;
3582   }
3583 
3584   // Transition to native address size for all offset calculations:
3585   Node* lengthx = ConvI2X(length);
3586   Node* headerx = ConvI2X(header_size);
3587 #ifdef _LP64
3588   { const TypeInt* tilen = _gvn.find_int_type(length);
3589     if (tilen != NULL && tilen->_lo < 0) {
3590       // Add a manual constraint to a positive range.  Cf. array_element_address.
3591       jint size_max = fast_size_limit;
3592       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3593       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3594 
3595       // Only do a narrow I2L conversion if the range check passed.
3596       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3597       _gvn.transform(iff);
3598       RegionNode* region = new RegionNode(3);
3599       _gvn.set_type(region, Type::CONTROL);
3600       lengthx = new PhiNode(region, TypeLong::LONG);
3601       _gvn.set_type(lengthx, TypeLong::LONG);
3602 
3603       // Range check passed. Use ConvI2L node with narrow type.
3604       Node* passed = IfFalse(iff);
3605       region->init_req(1, passed);
3606       // Make I2L conversion control dependent to prevent it from
3607       // floating above the range check during loop optimizations.
3608       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3609 
3610       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3611       region->init_req(2, IfTrue(iff));
3612       lengthx->init_req(2, ConvI2X(length));
3613 
3614       set_control(region);
3615       record_for_igvn(region);
3616       record_for_igvn(lengthx);
3617     }
3618   }
3619 #endif
3620 
3621   // Combine header size (plus rounding) and body size.  Then round down.
3622   // This computation cannot overflow, because it is used only in two
3623   // places, one where the length is sharply limited, and the other
3624   // after a successful allocation.
3625   Node* abody = lengthx;
3626   if (elem_shift != NULL)
3627     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3628   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3629   if (round_mask != 0) {
3630     Node* mask = MakeConX(~round_mask);
3631     size       = _gvn.transform( new AndXNode(size, mask) );
3632   }
3633   // else if round_mask == 0, the size computation is self-rounding
3634 
3635   if (return_size_val != NULL) {
3636     // This is the size
3637     (*return_size_val) = size;
3638   }
3639 
3640   // Now generate allocation code
3641 
3642   // The entire memory state is needed for slow path of the allocation
3643   // since GC and deoptimization can happened.
3644   Node *mem = reset_memory();
3645   set_all_memory(mem); // Create new memory state
3646 
3647   if (initial_slow_test->is_Bool()) {
3648     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3649     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3650   }
3651 
3652   // Create the AllocateArrayNode and its result projections
3653   AllocateArrayNode* alloc
3654     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3655                             control(), mem, i_o(),
3656                             size, klass_node,
3657                             initial_slow_test,
3658                             length);
3659 
3660   // Cast to correct type.  Note that the klass_node may be constant or not,
3661   // and in the latter case the actual array type will be inexact also.
3662   // (This happens via a non-constant argument to inline_native_newArray.)
3663   // In any case, the value of klass_node provides the desired array type.
3664   const TypeInt* length_type = _gvn.find_int_type(length);
3665   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3666   if (ary_type->isa_aryptr() && length_type != NULL) {
3667     // Try to get a better type than POS for the size
3668     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3669   }
3670 
3671   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3672 
3673   // Cast length on remaining path to be as narrow as possible
3674   if (map()->find_edge(length) >= 0) {
3675     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3676     if (ccast != length) {
3677       _gvn.set_type_bottom(ccast);
3678       record_for_igvn(ccast);
3679       replace_in_map(length, ccast);
3680     }
3681   }
3682 
3683   return javaoop;
3684 }
3685 
3686 // The following "Ideal_foo" functions are placed here because they recognize
3687 // the graph shapes created by the functions immediately above.
3688 
3689 //---------------------------Ideal_allocation----------------------------------
3690 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3691 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3692   if (ptr == NULL) {     // reduce dumb test in callers
3693     return NULL;
3694   }
3695 
3696   // Attempt to see through Shenandoah barriers.
3697   ptr = ShenandoahBarrierNode::skip_through_barrier(ptr);
3698 
3699   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3700     ptr = ptr->in(1);
3701     if (ptr == NULL) return NULL;
3702   }
3703   // Return NULL for allocations with several casts:
3704   //   j.l.reflect.Array.newInstance(jobject, jint)
3705   //   Object.clone()
3706   // to keep more precise type from last cast.
3707   if (ptr->is_Proj()) {
3708     Node* allo = ptr->in(0);
3709     if (allo != NULL && allo->is_Allocate()) {
3710       return allo->as_Allocate();
3711     }
3712   }
3713   // Report failure to match.
3714   return NULL;
3715 }
3716 
3717 // Fancy version which also strips off an offset (and reports it to caller).
3718 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3719                                              intptr_t& offset) {
3720   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3721   if (base == NULL)  return NULL;
3722   return Ideal_allocation(base, phase);
3723 }
3724 
3725 // Trace Initialize <- Proj[Parm] <- Allocate
3726 AllocateNode* InitializeNode::allocation() {
3727   Node* rawoop = in(InitializeNode::RawAddress);
3728   if (rawoop->is_Proj()) {
3729     Node* alloc = rawoop->in(0);
3730     if (alloc->is_Allocate()) {
3731       return alloc->as_Allocate();
3732     }
3733   }
3734   return NULL;
3735 }
3736 
3737 // Trace Allocate -> Proj[Parm] -> Initialize
3738 InitializeNode* AllocateNode::initialization() {
3739   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3740   if (rawoop == NULL)  return NULL;
3741   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3742     Node* init = rawoop->fast_out(i);
3743     if (init->is_Initialize()) {
3744       assert(init->as_Initialize()->allocation() == this, "2-way link");
3745       return init->as_Initialize();
3746     }
3747   }
3748   return NULL;
3749 }
3750 
3751 //----------------------------- loop predicates ---------------------------
3752 
3753 //------------------------------add_predicate_impl----------------------------
3754 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3755   // Too many traps seen?
3756   if (too_many_traps(reason)) {
3757 #ifdef ASSERT
3758     if (TraceLoopPredicate) {
3759       int tc = C->trap_count(reason);
3760       tty->print("too many traps=%s tcount=%d in ",
3761                     Deoptimization::trap_reason_name(reason), tc);
3762       method()->print(); // which method has too many predicate traps
3763       tty->cr();
3764     }
3765 #endif
3766     // We cannot afford to take more traps here,
3767     // do not generate predicate.
3768     return;
3769   }
3770 
3771   Node *cont    = _gvn.intcon(1);
3772   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3773   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3774   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3775   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3776   C->add_predicate_opaq(opq);
3777   {
3778     PreserveJVMState pjvms(this);
3779     set_control(iffalse);
3780     inc_sp(nargs);
3781     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3782   }
3783   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3784   set_control(iftrue);
3785 }
3786 
3787 //------------------------------add_predicate---------------------------------
3788 void GraphKit::add_predicate(int nargs) {
3789   if (UseLoopPredicate) {
3790     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3791   }
3792   // loop's limit check predicate should be near the loop.
3793   add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3794 }
3795 
3796 //----------------------------- store barriers ----------------------------
3797 #define __ ideal.
3798 
3799 void GraphKit::sync_kit(IdealKit& ideal) {
3800   set_all_memory(__ merged_memory());
3801   set_i_o(__ i_o());
3802   set_control(__ ctrl());
3803 }
3804 
3805 void GraphKit::final_sync(IdealKit& ideal) {
3806   // Final sync IdealKit and graphKit.
3807   sync_kit(ideal);
3808 }
3809 
3810 Node* GraphKit::byte_map_base_node() {
3811   // Get base of card map
3812   CardTableModRefBS* ct =
3813     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3814   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code");
3815   if (ct->byte_map_base != NULL) {
3816     return makecon(TypeRawPtr::make((address)ct->byte_map_base));
3817   } else {
3818     return null();
3819   }
3820 }
3821 
3822 // vanilla/CMS post barrier
3823 // Insert a write-barrier store.  This is to let generational GC work; we have
3824 // to flag all oop-stores before the next GC point.
3825 void GraphKit::write_barrier_post(Node* oop_store,
3826                                   Node* obj,
3827                                   Node* adr,
3828                                   uint  adr_idx,
3829                                   Node* val,
3830                                   bool use_precise) {
3831   // No store check needed if we're storing a NULL or an old object
3832   // (latter case is probably a string constant). The concurrent
3833   // mark sweep garbage collector, however, needs to have all nonNull
3834   // oop updates flagged via card-marks.
3835   if (val != NULL && val->is_Con()) {
3836     // must be either an oop or NULL
3837     const Type* t = val->bottom_type();
3838     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3839       // stores of null never (?) need barriers
3840       return;
3841   }
3842 
3843   if (use_ReduceInitialCardMarks()
3844       && obj == just_allocated_object(control())) {
3845     // We can skip marks on a freshly-allocated object in Eden.
3846     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3847     // That routine informs GC to take appropriate compensating steps,
3848     // upon a slow-path allocation, so as to make this card-mark
3849     // elision safe.
3850     return;
3851   }
3852 
3853   if (!use_precise) {
3854     // All card marks for a (non-array) instance are in one place:
3855     adr = obj;
3856   }
3857   // (Else it's an array (or unknown), and we want more precise card marks.)
3858   assert(adr != NULL, "");
3859 
3860   IdealKit ideal(this, true);
3861 
3862   // Convert the pointer to an int prior to doing math on it
3863   Node* cast = __ CastPX(__ ctrl(), adr);
3864 
3865   // Divide by card size
3866   assert(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableModRef),
3867          "Only one we handle so far.");
3868   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3869 
3870   // Combine card table base and card offset
3871   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3872 
3873   // Get the alias_index for raw card-mark memory
3874   int adr_type = Compile::AliasIdxRaw;
3875   Node*   zero = __ ConI(0); // Dirty card value
3876   BasicType bt = T_BYTE;
3877 
3878   if (UseConcMarkSweepGC && UseCondCardMark) {
3879     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
3880     __ sync_kit(this);
3881   }
3882 
3883   if (UseCondCardMark) {
3884     // The classic GC reference write barrier is typically implemented
3885     // as a store into the global card mark table.  Unfortunately
3886     // unconditional stores can result in false sharing and excessive
3887     // coherence traffic as well as false transactional aborts.
3888     // UseCondCardMark enables MP "polite" conditional card mark
3889     // stores.  In theory we could relax the load from ctrl() to
3890     // no_ctrl, but that doesn't buy much latitude.
3891     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3892     __ if_then(card_val, BoolTest::ne, zero);
3893   }
3894 
3895   // Smash zero into card
3896   if( !UseConcMarkSweepGC ) {
3897     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered);
3898   } else {
3899     // Specialized path for CM store barrier
3900     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3901   }
3902 
3903   if (UseCondCardMark) {
3904     __ end_if();
3905   }
3906 
3907   // Final sync IdealKit and GraphKit.
3908   final_sync(ideal);
3909 }
3910 /*
3911  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
3912  * required by SATB to make sure all objects live at the start of the
3913  * marking are kept alive, all reference updates need to any previous
3914  * reference stored before writing.
3915  *
3916  * If the previous value is NULL there is no need to save the old value.
3917  * References that are NULL are filtered during runtime by the barrier
3918  * code to avoid unnecessary queuing.
3919  *
3920  * However in the case of newly allocated objects it might be possible to
3921  * prove that the reference about to be overwritten is NULL during compile
3922  * time and avoid adding the barrier code completely.
3923  *
3924  * The compiler needs to determine that the object in which a field is about
3925  * to be written is newly allocated, and that no prior store to the same field
3926  * has happened since the allocation.
3927  *
3928  * Returns true if the pre-barrier can be removed
3929  */
3930 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr,
3931                                          BasicType bt, uint adr_idx) {
3932   intptr_t offset = 0;
3933   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
3934   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
3935 
3936   if (offset == Type::OffsetBot) {
3937     return false; // cannot unalias unless there are precise offsets
3938   }
3939 
3940   if (alloc == NULL) {
3941     return false; // No allocation found
3942   }
3943 
3944   intptr_t size_in_bytes = type2aelembytes(bt);
3945 
3946   Node* mem = memory(adr_idx); // start searching here...
3947 
3948   for (int cnt = 0; cnt < 50; cnt++) {
3949 
3950     if (mem->is_Store()) {
3951 
3952       Node* st_adr = mem->in(MemNode::Address);
3953       intptr_t st_offset = 0;
3954       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
3955 
3956       if (st_base == NULL) {
3957         break; // inscrutable pointer
3958       }
3959 
3960       // Break we have found a store with same base and offset as ours so break
3961       if (st_base == base && st_offset == offset) {
3962         break;
3963       }
3964 
3965       if (st_offset != offset && st_offset != Type::OffsetBot) {
3966         const int MAX_STORE = BytesPerLong;
3967         if (st_offset >= offset + size_in_bytes ||
3968             st_offset <= offset - MAX_STORE ||
3969             st_offset <= offset - mem->as_Store()->memory_size()) {
3970           // Success:  The offsets are provably independent.
3971           // (You may ask, why not just test st_offset != offset and be done?
3972           // The answer is that stores of different sizes can co-exist
3973           // in the same sequence of RawMem effects.  We sometimes initialize
3974           // a whole 'tile' of array elements with a single jint or jlong.)
3975           mem = mem->in(MemNode::Memory);
3976           continue; // advance through independent store memory
3977         }
3978       }
3979 
3980       if (st_base != base
3981           && MemNode::detect_ptr_independence(base, alloc, st_base,
3982                                               AllocateNode::Ideal_allocation(st_base, phase),
3983                                               phase)) {
3984         // Success:  The bases are provably independent.
3985         mem = mem->in(MemNode::Memory);
3986         continue; // advance through independent store memory
3987       }
3988     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
3989 
3990       InitializeNode* st_init = mem->in(0)->as_Initialize();
3991       AllocateNode* st_alloc = st_init->allocation();
3992 
3993       // Make sure that we are looking at the same allocation site.
3994       // The alloc variable is guaranteed to not be null here from earlier check.
3995       if (alloc == st_alloc) {
3996         // Check that the initialization is storing NULL so that no previous store
3997         // has been moved up and directly write a reference
3998         Node* captured_store = st_init->find_captured_store(offset,
3999                                                             type2aelembytes(T_OBJECT),
4000                                                             phase);
4001         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
4002           return true;
4003         }
4004       }
4005     }
4006 
4007     // Unless there is an explicit 'continue', we must bail out here,
4008     // because 'mem' is an inscrutable memory state (e.g., a call).
4009     break;
4010   }
4011 
4012   return false;
4013 }
4014 
4015 static void g1_write_barrier_pre_helper(const GraphKit& kit, Node* adr) {
4016   if (UseShenandoahGC && ShenandoahWriteBarrier && adr != NULL) {
4017     Node* c = kit.control();
4018     Node* call = c->in(1)->in(1)->in(1)->in(0);
4019     assert(call->is_g1_wb_pre_call(), "g1_wb_pre call expected");
4020     call->add_req(adr);
4021   }
4022 }
4023 
4024 // G1 pre/post barriers
4025 void GraphKit::g1_write_barrier_pre(bool do_load,
4026                                     Node* obj,
4027                                     Node* adr,
4028                                     uint alias_idx,
4029                                     Node* val,
4030                                     const TypeOopPtr* val_type,
4031                                     Node* pre_val,
4032                                     BasicType bt) {
4033 
4034   // Some sanity checks
4035   // Note: val is unused in this routine.
4036 
4037   if (do_load) {
4038     // We need to generate the load of the previous value
4039     assert(obj != NULL, "must have a base");
4040     assert(adr != NULL, "where are loading from?");
4041     assert(pre_val == NULL, "loaded already?");
4042     assert(val_type != NULL, "need a type");
4043 
4044     if (use_ReduceInitialCardMarks()
4045         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4046       return;
4047     }
4048 
4049   } else {
4050     // In this case both val_type and alias_idx are unused.
4051     assert(pre_val != NULL, "must be loaded already");
4052     // Nothing to be done if pre_val is null.
4053     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
4054     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4055   }
4056   assert(bt == T_OBJECT, "or we shouldn't be here");
4057 
4058   IdealKit ideal(this, true);
4059 
4060   Node* tls = __ thread(); // ThreadLocalStorage
4061 
4062   Node* no_ctrl = NULL;
4063   Node* no_base = __ top();
4064   Node* zero  = __ ConI(0);
4065   Node* zeroX = __ ConX(0);
4066 
4067   float likely  = PROB_LIKELY(0.999);
4068   float unlikely  = PROB_UNLIKELY(0.999);
4069 
4070   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4071   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4072 
4073   // Offsets into the thread
4074   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4075                                           SATBMarkQueue::byte_offset_of_active());
4076   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4077                                           SATBMarkQueue::byte_offset_of_index());
4078   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4079                                           SATBMarkQueue::byte_offset_of_buf());
4080 
4081   // Now the actual pointers into the thread
4082   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4083   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4084   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4085 
4086   // Now some of the values
4087   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4088 
4089   // if (!marking)
4090   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4091     BasicType index_bt = TypeX_X->basic_type();
4092     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4093     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4094 
4095     if (do_load) {
4096       // load original value
4097       // alias_idx correct??
4098       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4099     }
4100 
4101     // if (pre_val != NULL)
4102     __ if_then(pre_val, BoolTest::ne, null()); {
4103       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4104 
4105       // is the queue for this thread full?
4106       __ if_then(index, BoolTest::ne, zeroX, likely); {
4107 
4108         // decrement the index
4109         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4110 
4111         // Now get the buffer location we will log the previous value into and store it
4112         Node *log_addr = __ AddP(no_base, buffer, next_index);
4113         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4114         // update the index
4115         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4116 
4117       } __ else_(); {
4118 
4119         // logging buffer is full, call the runtime
4120         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4121         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4122       } __ end_if();  // (!index)
4123     } __ end_if();  // (pre_val != NULL)
4124   } __ end_if();  // (!marking)
4125 
4126   // Final sync IdealKit and GraphKit.
4127   final_sync(ideal);
4128   g1_write_barrier_pre_helper(*this, adr);
4129 }
4130 
4131 Node* GraphKit::shenandoah_write_barrier_pre(bool do_load,
4132                                     Node* obj,
4133                                     Node* adr,
4134                                     uint alias_idx,
4135                                     Node* val,
4136                                     const TypeOopPtr* val_type,
4137                                     Node* pre_val,
4138                                     BasicType bt) {
4139 
4140   // Some sanity checks
4141   // Note: val is unused in this routine.
4142 
4143   if (val == NULL) {
4144     g1_write_barrier_pre(do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
4145     return NULL;
4146   }
4147 
4148   if (! ShenandoahReduceStoreValBarrier) {
4149     val = shenandoah_read_barrier_storeval(val);
4150     shenandoah_update_matrix(adr, val);
4151     g1_write_barrier_pre(do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
4152     return val;
4153   }
4154 
4155   if (do_load) {
4156     // We need to generate the load of the previous value
4157     assert(obj != NULL, "must have a base");
4158     assert(adr != NULL, "where are loading from?");
4159     assert(pre_val == NULL, "loaded already?");
4160     assert(val_type != NULL, "need a type");
4161 
4162     if (use_ReduceInitialCardMarks()
4163         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4164       return shenandoah_read_barrier_storeval(val);
4165     }
4166 
4167   } else {
4168     // In this case both val_type and alias_idx are unused.
4169     assert(pre_val != NULL, "must be loaded already");
4170     // Nothing to be done if pre_val is null.
4171     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return val;
4172     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4173   }
4174   assert(bt == T_OBJECT, "or we shouldn't be here");
4175 
4176   IdealKit ideal(this, true, true);
4177   IdealVariable ival(ideal);
4178   __ declarations_done();
4179   __  set(ival, val);
4180   Node* tls = __ thread(); // ThreadLocalStorage
4181 
4182   Node* no_ctrl = NULL;
4183   Node* no_base = __ top();
4184   Node* zero  = __ ConI(0);
4185   Node* zeroX = __ ConX(0);
4186 
4187   float likely  = PROB_LIKELY(0.999);
4188   float unlikely  = PROB_UNLIKELY(0.999);
4189 
4190   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4191   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4192 
4193   // Offsets into the thread
4194   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4195                                           SATBMarkQueue::byte_offset_of_active());
4196   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4197                                           SATBMarkQueue::byte_offset_of_index());
4198   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4199                                           SATBMarkQueue::byte_offset_of_buf());
4200 
4201   // Now the actual pointers into the thread
4202   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4203   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4204   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4205 
4206   // Now some of the values
4207   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4208 
4209   // if (!marking)
4210   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4211 
4212     Node* storeval = ideal.value(ival);
4213     sync_kit(ideal);
4214     storeval = shenandoah_read_barrier_storeval(storeval);
4215     __ sync_kit(this);
4216     __ set(ival, storeval);
4217 
4218     BasicType index_bt = TypeX_X->basic_type();
4219     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4220     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4221 
4222     if (do_load) {
4223       // load original value
4224       // alias_idx correct??
4225       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4226     }
4227 
4228     // if (pre_val != NULL)
4229     __ if_then(pre_val, BoolTest::ne, null()); {
4230       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4231 
4232       // is the queue for this thread full?
4233       __ if_then(index, BoolTest::ne, zeroX, likely); {
4234 
4235         // decrement the index
4236         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4237 
4238         // Now get the buffer location we will log the previous value into and store it
4239         Node *log_addr = __ AddP(no_base, buffer, next_index);
4240         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4241         // update the index
4242         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4243 
4244       } __ else_(); {
4245 
4246         // logging buffer is full, call the runtime
4247         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4248         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4249       } __ end_if();  // (!index)
4250     } __ end_if();  // (pre_val != NULL)
4251   } __ end_if();  // (!marking)
4252   Node* new_val = __ value(ival);
4253   // IdealKit generates a Phi with very conservative type, and even
4254   // turns array types into TypeInstPtr (see type.cpp, _const_basic_type[T_ARRAY]).
4255   // We're forcing the result to be the original type.
4256   if (new_val != val) {
4257     const Type* t = _gvn.type(val);
4258     if (new_val->isa_Type()) {
4259       new_val->as_Type()->set_type(t);
4260     }
4261     _gvn.set_type(new_val, t);
4262   }
4263   val = new_val;
4264   __ dead(ival);
4265   // Final sync IdealKit and GraphKit.
4266   final_sync(ideal);
4267   g1_write_barrier_pre_helper(*this, adr);
4268   return val;
4269 }
4270 
4271 void GraphKit::shenandoah_update_matrix(Node* adr, Node* val) {
4272   assert(val != NULL, "checked before");
4273   if (adr == NULL) {
4274     return; // Nothing to do
4275   }
4276   assert(adr != NULL, "must not happen");
4277   if (val->bottom_type()->higher_equal(TypePtr::NULL_PTR)) {
4278     // Nothing to do.
4279     return;
4280   }
4281 
4282   ShenandoahConnectionMatrix* matrix = ShenandoahHeap::heap()->connection_matrix();
4283 
4284   enum { _not_null_path = 1, _null_path, PATH_LIMIT };
4285   RegionNode* region = new RegionNode(PATH_LIMIT);
4286   Node* prev_mem = memory(Compile::AliasIdxRaw);
4287   Node* memphi    = PhiNode::make(region, prev_mem, Type::MEMORY, TypeRawPtr::BOTTOM);
4288   Node* null_ctrl = top();
4289   Node* not_null_val = null_check_oop(val, &null_ctrl);
4290 
4291   // Null path: nothing to do.
4292   region->init_req(_null_path, null_ctrl);
4293   memphi->init_req(_null_path, prev_mem);
4294 
4295   // Not null path. Update the matrix.
4296   Node* heapbase = MakeConX((intx) ShenandoahHeap::heap()->first_region_bottom());
4297   Node* region_size_shift = intcon((jint) ShenandoahHeapRegion::RegionSizeShift);
4298   Node* stride = MakeConX((intx) matrix->stride());
4299   Node* matrix_base = makecon(TypeRawPtr::make(matrix->matrix_addr()));
4300   // Compute region index for adr.
4301   Node* adr_idx = _gvn.transform(new CastP2XNode(control(), adr));
4302   adr_idx = _gvn.transform(new SubXNode(adr_idx, heapbase));
4303   adr_idx = _gvn.transform(new URShiftXNode(adr_idx, region_size_shift));
4304   // Compute region index for val.
4305   Node* val_idx = _gvn.transform(new CastP2XNode(control(), not_null_val));
4306   val_idx = _gvn.transform(new SubXNode(val_idx, heapbase));
4307   val_idx = _gvn.transform(new URShiftXNode(val_idx, region_size_shift));
4308   // Compute matrix index & address.
4309   Node* matrix_idx = _gvn.transform(new MulXNode(adr_idx, stride));
4310   matrix_idx = _gvn.transform(new AddXNode(matrix_idx, val_idx));
4311   Node* matrix_adr = basic_plus_adr(top(), matrix_base, matrix_idx);
4312   // Do the store.
4313   const TypePtr* adr_type = TypeRawPtr::BOTTOM;
4314   Node* store = _gvn.transform(StoreNode::make(_gvn, control(), memory(Compile::AliasIdxRaw), matrix_adr, adr_type, intcon(1), T_BOOLEAN, MemNode::unordered));
4315 
4316   region->init_req(_not_null_path, control());
4317   memphi->init_req(_not_null_path, store);
4318 
4319   // Merge control flows and memory.
4320   set_control(_gvn.transform(region));
4321   record_for_igvn(region);
4322   set_memory(_gvn.transform(memphi), Compile::AliasIdxRaw);
4323 }
4324 
4325 /*
4326  * G1 similar to any GC with a Young Generation requires a way to keep track of
4327  * references from Old Generation to Young Generation to make sure all live
4328  * objects are found. G1 also requires to keep track of object references
4329  * between different regions to enable evacuation of old regions, which is done
4330  * as part of mixed collections. References are tracked in remembered sets and
4331  * is continuously updated as reference are written to with the help of the
4332  * post-barrier.
4333  *
4334  * To reduce the number of updates to the remembered set the post-barrier
4335  * filters updates to fields in objects located in the Young Generation,
4336  * the same region as the reference, when the NULL is being written or
4337  * if the card is already marked as dirty by an earlier write.
4338  *
4339  * Under certain circumstances it is possible to avoid generating the
4340  * post-barrier completely if it is possible during compile time to prove
4341  * the object is newly allocated and that no safepoint exists between the
4342  * allocation and the store.
4343  *
4344  * In the case of slow allocation the allocation code must handle the barrier
4345  * as part of the allocation in the case the allocated object is not located
4346  * in the nursery, this would happen for humongous objects. This is similar to
4347  * how CMS is required to handle this case, see the comments for the method
4348  * CollectedHeap::new_store_pre_barrier and OptoRuntime::new_store_pre_barrier.
4349  * A deferred card mark is required for these objects and handled in the above
4350  * mentioned methods.
4351  *
4352  * Returns true if the post barrier can be removed
4353  */
4354 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store,
4355                                           Node* adr) {
4356   intptr_t      offset = 0;
4357   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
4358   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
4359 
4360   if (offset == Type::OffsetBot) {
4361     return false; // cannot unalias unless there are precise offsets
4362   }
4363 
4364   if (alloc == NULL) {
4365      return false; // No allocation found
4366   }
4367 
4368   // Start search from Store node
4369   Node* mem = store->in(MemNode::Control);
4370   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4371 
4372     InitializeNode* st_init = mem->in(0)->as_Initialize();
4373     AllocateNode*  st_alloc = st_init->allocation();
4374 
4375     // Make sure we are looking at the same allocation
4376     if (alloc == st_alloc) {
4377       return true;
4378     }
4379   }
4380 
4381   return false;
4382 }
4383 
4384 //
4385 // Update the card table and add card address to the queue
4386 //
4387 void GraphKit::g1_mark_card(IdealKit& ideal,
4388                             Node* card_adr,
4389                             Node* oop_store,
4390                             uint oop_alias_idx,
4391                             Node* index,
4392                             Node* index_adr,
4393                             Node* buffer,
4394                             const TypeFunc* tf) {
4395 
4396   Node* zero  = __ ConI(0);
4397   Node* zeroX = __ ConX(0);
4398   Node* no_base = __ top();
4399   BasicType card_bt = T_BYTE;
4400   // Smash zero into card. MUST BE ORDERED WRT TO STORE
4401   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
4402 
4403   //  Now do the queue work
4404   __ if_then(index, BoolTest::ne, zeroX); {
4405 
4406     Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4407     Node* log_addr = __ AddP(no_base, buffer, next_index);
4408 
4409     // Order, see storeCM.
4410     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4411     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4412 
4413   } __ else_(); {
4414     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4415   } __ end_if();
4416 
4417 }
4418 
4419 void GraphKit::g1_write_barrier_post(Node* oop_store,
4420                                      Node* obj,
4421                                      Node* adr,
4422                                      uint alias_idx,
4423                                      Node* val,
4424                                      BasicType bt,
4425                                      bool use_precise) {
4426   // If we are writing a NULL then we need no post barrier
4427 
4428   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4429     // Must be NULL
4430     const Type* t = val->bottom_type();
4431     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4432     // No post barrier if writing NULLx
4433     return;
4434   }
4435 
4436   if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) {
4437     // We can skip marks on a freshly-allocated object in Eden.
4438     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
4439     // That routine informs GC to take appropriate compensating steps,
4440     // upon a slow-path allocation, so as to make this card-mark
4441     // elision safe.
4442     return;
4443   }
4444 
4445   if (use_ReduceInitialCardMarks()
4446       && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) {
4447     return;
4448   }
4449 
4450   if (!use_precise) {
4451     // All card marks for a (non-array) instance are in one place:
4452     adr = obj;
4453   }
4454   // (Else it's an array (or unknown), and we want more precise card marks.)
4455   assert(adr != NULL, "");
4456 
4457   IdealKit ideal(this, true);
4458 
4459   Node* tls = __ thread(); // ThreadLocalStorage
4460 
4461   Node* no_base = __ top();
4462   float likely  = PROB_LIKELY(0.999);
4463   float unlikely  = PROB_UNLIKELY(0.999);
4464   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
4465   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
4466   Node* zeroX = __ ConX(0);
4467 
4468   // Get the alias_index for raw card-mark memory
4469   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4470 
4471   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4472 
4473   // Offsets into the thread
4474   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4475                                      DirtyCardQueue::byte_offset_of_index());
4476   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4477                                      DirtyCardQueue::byte_offset_of_buf());
4478 
4479   // Pointers into the thread
4480 
4481   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4482   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4483 
4484   // Now some values
4485   // Use ctrl to avoid hoisting these values past a safepoint, which could
4486   // potentially reset these fields in the JavaThread.
4487   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4488   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4489 
4490   // Convert the store obj pointer to an int prior to doing math on it
4491   // Must use ctrl to prevent "integerized oop" existing across safepoint
4492   Node* cast =  __ CastPX(__ ctrl(), adr);
4493 
4494   // Divide pointer by card size
4495   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4496 
4497   // Combine card table base and card offset
4498   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4499 
4500   // If we know the value being stored does it cross regions?
4501 
4502   if (val != NULL) {
4503     // Does the store cause us to cross regions?
4504 
4505     // Should be able to do an unsigned compare of region_size instead of
4506     // and extra shift. Do we have an unsigned compare??
4507     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4508     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4509 
4510     // if (xor_res == 0) same region so skip
4511     __ if_then(xor_res, BoolTest::ne, zeroX); {
4512 
4513       // No barrier if we are storing a NULL
4514       __ if_then(val, BoolTest::ne, null(), unlikely); {
4515 
4516         // Ok must mark the card if not already dirty
4517 
4518         // load the original value of the card
4519         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4520 
4521         __ if_then(card_val, BoolTest::ne, young_card); {
4522           sync_kit(ideal);
4523           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4524           insert_mem_bar(Op_MemBarVolatile, oop_store);
4525           __ sync_kit(this);
4526 
4527           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4528           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4529             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4530           } __ end_if();
4531         } __ end_if();
4532       } __ end_if();
4533     } __ end_if();
4534   } else {
4535     // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
4536     // We don't need a barrier here if the destination is a newly allocated object
4537     // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
4538     // are set to 'g1_young_gen' (see G1SATBCardTableModRefBS::verify_g1_young_region()).
4539     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
4540     Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4541     __ if_then(card_val, BoolTest::ne, young_card); {
4542       g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4543     } __ end_if();
4544   }
4545 
4546   // Final sync IdealKit and GraphKit.
4547   final_sync(ideal);
4548 }
4549 #undef __
4550 
4551 
4552 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4553   Node* len = load_array_length(load_String_value(ctrl, str));
4554   Node* coder = load_String_coder(ctrl, str);
4555   // Divide length by 2 if coder is UTF16
4556   return _gvn.transform(new RShiftINode(len, coder));
4557 }
4558 
4559 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4560   int value_offset = java_lang_String::value_offset_in_bytes();
4561   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4562                                                      false, NULL, 0);
4563   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4564   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4565                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4566                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4567   int value_field_idx = C->get_alias_index(value_field_type);
4568 
4569   if (! ShenandoahOptimizeFinals) {
4570     str = shenandoah_read_barrier(str);
4571   }
4572 
4573   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4574                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4575   // String.value field is known to be @Stable.
4576   if (UseImplicitStableValues) {
4577     load = cast_array_to_stable(load, value_type);
4578   }
4579   return load;
4580 }
4581 
4582 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) {
4583   if (!CompactStrings) {
4584     return intcon(java_lang_String::CODER_UTF16);
4585   }
4586   int coder_offset = java_lang_String::coder_offset_in_bytes();
4587   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4588                                                      false, NULL, 0);
4589   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4590   int coder_field_idx = C->get_alias_index(coder_field_type);
4591 
4592   if (! ShenandoahOptimizeFinals) {
4593     str = shenandoah_read_barrier(str);
4594   }
4595 
4596   return make_load(ctrl, basic_plus_adr(str, str, coder_offset),
4597                    TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered);
4598 }
4599 
4600 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4601   int value_offset = java_lang_String::value_offset_in_bytes();
4602   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4603                                                      false, NULL, 0);
4604   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4605 
4606   str = shenandoah_write_barrier(str);
4607 
4608   store_oop_to_object(control(), str,  basic_plus_adr(str, value_offset), value_field_type,
4609       value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered);
4610 }
4611 
4612 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) {
4613   int coder_offset = java_lang_String::coder_offset_in_bytes();
4614   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4615                                                      false, NULL, 0);
4616 
4617   str = shenandoah_write_barrier(str);
4618 
4619   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4620   int coder_field_idx = C->get_alias_index(coder_field_type);
4621   store_to_memory(control(), basic_plus_adr(str, coder_offset),
4622                   value, T_BYTE, coder_field_idx, MemNode::unordered);
4623 }
4624 
4625 // Capture src and dst memory state with a MergeMemNode
4626 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4627   if (src_type == dst_type) {
4628     // Types are equal, we don't need a MergeMemNode
4629     return memory(src_type);
4630   }
4631   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4632   record_for_igvn(merge); // fold it up later, if possible
4633   int src_idx = C->get_alias_index(src_type);
4634   int dst_idx = C->get_alias_index(dst_type);
4635   merge->set_memory_at(src_idx, memory(src_idx));
4636   merge->set_memory_at(dst_idx, memory(dst_idx));
4637   return merge;
4638 }
4639 
4640 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4641   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4642   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4643   // If input and output memory types differ, capture both states to preserve
4644   // the dependency between preceding and subsequent loads/stores.
4645   // For example, the following program:
4646   //  StoreB
4647   //  compress_string
4648   //  LoadB
4649   // has this memory graph (use->def):
4650   //  LoadB -> compress_string -> CharMem
4651   //             ... -> StoreB -> ByteMem
4652   // The intrinsic hides the dependency between LoadB and StoreB, causing
4653   // the load to read from memory not containing the result of the StoreB.
4654   // The correct memory graph should look like this:
4655   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4656   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4657   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4658   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4659   set_memory(res_mem, TypeAryPtr::BYTES);
4660   return str;
4661 }
4662 
4663 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4664   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4665   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4666   // Capture src and dst memory (see comment in 'compress_string').
4667   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4668   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4669   set_memory(_gvn.transform(str), dst_type);
4670 }
4671 
4672 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4673 
4674   src = shenandoah_read_barrier(src);
4675   dst = shenandoah_write_barrier(dst);
4676 
4677   /**
4678    * int i_char = start;
4679    * for (int i_byte = 0; i_byte < count; i_byte++) {
4680    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4681    * }
4682    */
4683   add_predicate();
4684   RegionNode* head = new RegionNode(3);
4685   head->init_req(1, control());
4686   gvn().set_type(head, Type::CONTROL);
4687   record_for_igvn(head);
4688 
4689   Node* i_byte = new PhiNode(head, TypeInt::INT);
4690   i_byte->init_req(1, intcon(0));
4691   gvn().set_type(i_byte, TypeInt::INT);
4692   record_for_igvn(i_byte);
4693 
4694   Node* i_char = new PhiNode(head, TypeInt::INT);
4695   i_char->init_req(1, start);
4696   gvn().set_type(i_char, TypeInt::INT);
4697   record_for_igvn(i_char);
4698 
4699   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4700   gvn().set_type(mem, Type::MEMORY);
4701   record_for_igvn(mem);
4702   set_control(head);
4703   set_memory(mem, TypeAryPtr::BYTES);
4704   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4705   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4706                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4707                              false, false, true /* mismatched */);
4708 
4709   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4710   head->init_req(2, IfTrue(iff));
4711   mem->init_req(2, st);
4712   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4713   i_char->init_req(2, AddI(i_char, intcon(2)));
4714 
4715   set_control(IfFalse(iff));
4716   set_memory(st, TypeAryPtr::BYTES);
4717 }
4718 
4719 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4720   if (!field->is_constant()) {
4721     return NULL; // Field not marked as constant.
4722   }
4723   ciInstance* holder = NULL;
4724   if (!field->is_static()) {
4725     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4726     if (const_oop != NULL && const_oop->is_instance()) {
4727       holder = const_oop->as_instance();
4728     }
4729   }
4730   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4731                                                         /*is_unsigned_load=*/false);
4732   if (con_type != NULL) {
4733     return makecon(con_type);
4734   }
4735   return NULL;
4736 }
4737 
4738 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4739   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4740   // assumption of CCP analysis.
4741   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4742 }
4743 
4744 Node* GraphKit::shenandoah_read_barrier(Node* obj) {
4745   return shenandoah_read_barrier_impl(obj, false, true, true);
4746 }
4747 
4748 Node* GraphKit::shenandoah_read_barrier_storeval(Node* obj) {
4749   return shenandoah_read_barrier_impl(obj, true, false, false);
4750 }
4751 
4752 Node* GraphKit::shenandoah_read_barrier_impl(Node* obj, bool use_ctrl, bool use_mem, bool allow_fromspace) {
4753 
4754   if (UseShenandoahGC && ShenandoahReadBarrier) {
4755     const Type* obj_type = obj->bottom_type();
4756     if (obj_type->higher_equal(TypePtr::NULL_PTR)) {
4757       return obj;
4758     }
4759     const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type);
4760     Node* mem = use_mem ? memory(adr_type) : immutable_memory();
4761 
4762     if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, mem, allow_fromspace)) {
4763       // We know it is null, no barrier needed.
4764       return obj;
4765     }
4766 
4767 
4768     if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) {
4769 
4770       // We don't know if it's null or not. Need null-check.
4771       enum { _not_null_path = 1, _null_path, PATH_LIMIT };
4772       RegionNode* region = new RegionNode(PATH_LIMIT);
4773       Node*       phi    = new PhiNode(region, obj_type);
4774       Node* null_ctrl = top();
4775       Node* not_null_obj = null_check_oop(obj, &null_ctrl);
4776 
4777       region->init_req(_null_path, null_ctrl);
4778       phi   ->init_req(_null_path, zerocon(T_OBJECT));
4779 
4780       Node* ctrl = use_ctrl ? control() : NULL;
4781       ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, not_null_obj, allow_fromspace);
4782       Node* n = _gvn.transform(rb);
4783 
4784       region->init_req(_not_null_path, control());
4785       phi   ->init_req(_not_null_path, n);
4786 
4787       set_control(_gvn.transform(region));
4788       record_for_igvn(region);
4789       return _gvn.transform(phi);
4790 
4791     } else {
4792       // We know it is not null. Simple barrier is sufficient.
4793       Node* ctrl = use_ctrl ? control() : NULL;
4794       ShenandoahReadBarrierNode* rb = new ShenandoahReadBarrierNode(ctrl, mem, obj, allow_fromspace);
4795       Node* n = _gvn.transform(rb);
4796       record_for_igvn(n);
4797       return n;
4798     }
4799 
4800   } else {
4801     return obj;
4802   }
4803 }
4804 
4805 static Node* shenandoah_write_barrier_helper(GraphKit& kit, Node* obj, const TypePtr* adr_type) {
4806   ShenandoahWriteBarrierNode* wb = new ShenandoahWriteBarrierNode(kit.C, kit.control(), kit.memory(adr_type), obj);
4807   Node* n = kit.gvn().transform(wb);
4808   if (n == wb) { // New barrier needs memory projection.
4809     Node* proj = kit.gvn().transform(new ShenandoahWBMemProjNode(n));
4810     kit.set_memory(proj, adr_type);
4811   }
4812 
4813   return n;
4814 }
4815 
4816 Node* GraphKit::shenandoah_write_barrier(Node* obj) {
4817 
4818   if (UseShenandoahGC && ShenandoahWriteBarrier) {
4819 
4820     if (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, obj, NULL, true)) {
4821       return obj;
4822     }
4823     const Type* obj_type = obj->bottom_type();
4824     const TypePtr* adr_type = ShenandoahBarrierNode::brooks_pointer_type(obj_type);
4825     if (obj_type->meet(TypePtr::NULL_PTR) == obj_type->remove_speculative()) {
4826       // We don't know if it's null or not. Need null-check.
4827       enum { _not_null_path = 1, _null_path, PATH_LIMIT };
4828       RegionNode* region = new RegionNode(PATH_LIMIT);
4829       Node*       phi    = new PhiNode(region, obj_type);
4830       Node*    memphi    = PhiNode::make(region, memory(adr_type), Type::MEMORY, C->alias_type(adr_type)->adr_type());
4831 
4832       Node* prev_mem = memory(adr_type);
4833       Node* null_ctrl = top();
4834       Node* not_null_obj = null_check_oop(obj, &null_ctrl);
4835 
4836       region->init_req(_null_path, null_ctrl);
4837       phi   ->init_req(_null_path, zerocon(T_OBJECT));
4838       memphi->init_req(_null_path, prev_mem);
4839 
4840       Node* n = shenandoah_write_barrier_helper(*this, not_null_obj, adr_type);
4841 
4842       region->init_req(_not_null_path, control());
4843       phi   ->init_req(_not_null_path, n);
4844       memphi->init_req(_not_null_path, memory(adr_type));
4845 
4846       set_control(_gvn.transform(region));
4847       record_for_igvn(region);
4848       set_memory(_gvn.transform(memphi), adr_type);
4849 
4850       Node* res_val = _gvn.transform(phi);
4851       // replace_in_map(obj, res_val);
4852       return res_val;
4853     } else {
4854       // We know it is not null. Simple barrier is sufficient.
4855       Node* n = shenandoah_write_barrier_helper(*this, obj, adr_type);
4856       // replace_in_map(obj, n);
4857       record_for_igvn(n);
4858       return n;
4859     }
4860 
4861   } else {
4862     return obj;
4863   }
4864 }
4865 
4866 /**
4867  * In Shenandoah, we need barriers on acmp (and similar instructions that compare two
4868  * oops) to avoid false negatives. If it compares a from-space and a to-space
4869  * copy of an object, a regular acmp would return false, even though both are
4870  * the same. The acmp barrier compares the two objects, and when they are
4871  * *not equal* it does a read-barrier on both, and compares them again. When it
4872  * failed because of different copies of the object, we know that the object
4873  * must already have been evacuated (and therefore doesn't require a write-barrier).
4874  */
4875 Node* GraphKit::cmp_objects(Node* a, Node* b) {
4876   // TODO: Refactor into proper GC interface.
4877   if (UseShenandoahGC && ShenandoahAcmpBarrier) {
4878     const Type* a_type = a->bottom_type();
4879     const Type* b_type = b->bottom_type();
4880     if (a_type->higher_equal(TypePtr::NULL_PTR) || b_type->higher_equal(TypePtr::NULL_PTR)) {
4881       // We know one arg is gonna be null. No need for barriers.
4882       return _gvn.transform(new CmpPNode(b, a));
4883     }
4884 
4885     const TypePtr* a_adr_type = ShenandoahBarrierNode::brooks_pointer_type(a_type);
4886     const TypePtr* b_adr_type = ShenandoahBarrierNode::brooks_pointer_type(b_type);
4887     if ((! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, a, memory(a_adr_type), false)) &&
4888         (! ShenandoahBarrierNode::needs_barrier(&_gvn, NULL, b, memory(b_adr_type), false))) {
4889       // We know both args are in to-space already. No acmp barrier needed.
4890       return _gvn.transform(new CmpPNode(b, a));
4891     }
4892 
4893     C->set_has_split_ifs(true);
4894 
4895     if (ShenandoahVerifyOptoBarriers) {
4896       a = shenandoah_write_barrier(a);
4897       b = shenandoah_write_barrier(b);
4898       return _gvn.transform(new CmpPNode(b, a));
4899     }
4900 
4901     enum { _equal = 1, _not_equal, PATH_LIMIT };
4902     RegionNode* region = new RegionNode(PATH_LIMIT);
4903     PhiNode* phiA = PhiNode::make(region, a, _gvn.type(a)->is_oopptr()->cast_to_nonconst());
4904     PhiNode* phiB = PhiNode::make(region, b, _gvn.type(b)->is_oopptr()->cast_to_nonconst());
4905 
4906     Node* cmp = _gvn.transform(new CmpPNode(b, a));
4907     Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
4908 
4909     // TODO: Use profiling data.
4910     IfNode* iff = create_and_map_if(control(), tst, PROB_FAIR, COUNT_UNKNOWN);
4911     Node* iftrue = _gvn.transform(new IfTrueNode(iff));
4912     Node* iffalse = _gvn.transform(new IfFalseNode(iff));
4913 
4914     // Equal path: Use original values.
4915     region->init_req(_equal, iftrue);
4916     phiA->init_req(_equal, a);
4917     phiB->init_req(_equal, b);
4918 
4919     uint alias_a = C->get_alias_index(a_adr_type);
4920     uint alias_b = C->get_alias_index(b_adr_type);
4921     PhiNode* mem_phi = NULL;
4922     if (alias_a == alias_b) {
4923       mem_phi = PhiNode::make(region, memory(alias_a), Type::MEMORY, C->get_adr_type(alias_a));
4924     } else {
4925       mem_phi = PhiNode::make(region, map()->memory(), Type::MEMORY, TypePtr::BOTTOM);
4926     }
4927 
4928     // Unequal path: retry after read barriers.
4929     set_control(iffalse);
4930     if (!iffalse->is_top()) {
4931       Node* mb = NULL;
4932       if (alias_a == alias_b) {
4933         Node* mem = reset_memory();
4934         mb = MemBarNode::make(C, Op_MemBarAcquire, alias_a);
4935         mb->init_req(TypeFunc::Control, control());
4936         mb->init_req(TypeFunc::Memory, mem);
4937         Node* membar = _gvn.transform(mb);
4938         set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
4939         Node* newmem = _gvn.transform(new ProjNode(membar, TypeFunc::Memory));
4940         set_all_memory(mem);
4941         set_memory(newmem, alias_a);
4942       } else {
4943         mb = insert_mem_bar(Op_MemBarAcquire);
4944       }
4945     } else {
4946       a = top();
4947       b = top();
4948     }
4949 
4950     a = shenandoah_read_barrier_impl(a, true, true, false);
4951     b = shenandoah_read_barrier_impl(b, true, true, false);
4952 
4953     region->init_req(_not_equal, control());
4954     phiA->init_req(_not_equal, a);
4955     phiB->init_req(_not_equal, b);
4956     if (alias_a == alias_b) {
4957       mem_phi->init_req(_not_equal, memory(alias_a));
4958       set_memory(mem_phi, alias_a);
4959     } else {
4960       mem_phi->init_req(_not_equal, reset_memory());
4961       set_all_memory(mem_phi);
4962     }
4963     record_for_igvn(mem_phi);
4964     _gvn.set_type(mem_phi, Type::MEMORY);
4965     set_control(_gvn.transform(region));
4966     record_for_igvn(region);
4967 
4968     a = _gvn.transform(phiA);
4969     b = _gvn.transform(phiB);
4970     return _gvn.transform(new CmpPNode(b, a));
4971   } else {
4972     return _gvn.transform(new CmpPNode(b, a));
4973   }
4974 }