1 /*
   2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "memory/cardTableModRefBS.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/threadCritical.hpp"
  43 #include "utilities/exceptions.hpp"
  44 #ifdef TARGET_OS_ARCH_linux_x86
  45 # include "orderAccess_linux_x86.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_ARCH_linux_sparc
  48 # include "orderAccess_linux_sparc.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_ARCH_linux_zero
  51 # include "orderAccess_linux_zero.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_ARCH_solaris_x86
  54 # include "orderAccess_solaris_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_ARCH_solaris_sparc
  57 # include "orderAccess_solaris_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_OS_ARCH_windows_x86
  60 # include "orderAccess_windows_x86.inline.hpp"
  61 #endif
  62 #ifdef TARGET_OS_ARCH_linux_arm
  63 # include "orderAccess_linux_arm.inline.hpp"
  64 #endif
  65 #ifdef TARGET_OS_ARCH_linux_ppc
  66 # include "orderAccess_linux_ppc.inline.hpp"
  67 #endif
  68 #ifdef TARGET_OS_ARCH_bsd_x86
  69 # include "orderAccess_bsd_x86.inline.hpp"
  70 #endif
  71 #ifdef TARGET_OS_ARCH_bsd_zero
  72 # include "orderAccess_bsd_zero.inline.hpp"
  73 #endif
  74 
  75 
  76 // no precompiled headers
  77 #ifdef CC_INTERP
  78 
  79 /*
  80  * USELABELS - If using GCC, then use labels for the opcode dispatching
  81  * rather -then a switch statement. This improves performance because it
  82  * gives us the oportunity to have the instructions that calculate the
  83  * next opcode to jump to be intermixed with the rest of the instructions
  84  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  85  */
  86 #undef USELABELS
  87 #ifdef __GNUC__
  88 /*
  89    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  90    don't use the computed goto approach.
  91 */
  92 #ifndef ASSERT
  93 #define USELABELS
  94 #endif
  95 #endif
  96 
  97 #undef CASE
  98 #ifdef USELABELS
  99 #define CASE(opcode) opc ## opcode
 100 #define DEFAULT opc_default
 101 #else
 102 #define CASE(opcode) case Bytecodes:: opcode
 103 #define DEFAULT default
 104 #endif
 105 
 106 /*
 107  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
 108  * opcode before going back to the top of the while loop, rather then having
 109  * the top of the while loop handle it. This provides a better opportunity
 110  * for instruction scheduling. Some compilers just do this prefetch
 111  * automatically. Some actually end up with worse performance if you
 112  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
 113  */
 114 #undef PREFETCH_OPCCODE
 115 #define PREFETCH_OPCCODE
 116 
 117 /*
 118   Interpreter safepoint: it is expected that the interpreter will have no live
 119   handles of its own creation live at an interpreter safepoint. Therefore we
 120   run a HandleMarkCleaner and trash all handles allocated in the call chain
 121   since the JavaCalls::call_helper invocation that initiated the chain.
 122   There really shouldn't be any handles remaining to trash but this is cheap
 123   in relation to a safepoint.
 124 */
 125 #define SAFEPOINT                                                                 \
 126     if ( SafepointSynchronize::is_synchronizing()) {                              \
 127         {                                                                         \
 128           /* zap freed handles rather than GC'ing them */                         \
 129           HandleMarkCleaner __hmc(THREAD);                                        \
 130         }                                                                         \
 131         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 132     }
 133 
 134 /*
 135  * VM_JAVA_ERROR - Macro for throwing a java exception from
 136  * the interpreter loop. Should really be a CALL_VM but there
 137  * is no entry point to do the transition to vm so we just
 138  * do it by hand here.
 139  */
 140 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
 141     DECACHE_STATE();                                                              \
 142     SET_LAST_JAVA_FRAME();                                                        \
 143     {                                                                             \
 144        ThreadInVMfromJava trans(THREAD);                                          \
 145        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 146     }                                                                             \
 147     RESET_LAST_JAVA_FRAME();                                                      \
 148     CACHE_STATE();
 149 
 150 // Normal throw of a java error
 151 #define VM_JAVA_ERROR(name, msg)                                                  \
 152     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
 153     goto handle_exception;
 154 
 155 #ifdef PRODUCT
 156 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 157 #else
 158 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 159 {                                                                                                    \
 160     BytecodeCounter::_counter_value++;                                                               \
 161     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 162     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 163     if (TraceBytecodes) {                                                                            \
 164       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 165                                    topOfStack[Interpreter::expr_index_at(1)],   \
 166                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 167                                    handle_exception);                      \
 168     }                                                                      \
 169 }
 170 #endif
 171 
 172 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 173 #ifdef VM_JVMTI
 174 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 175    incremented. JvmtiExport::at_single_stepping_point() may cause a
 176    breakpoint opcode to get inserted at the current PC to allow the
 177    debugger to coalesce single-step events.
 178 
 179    As a result if we call at_single_stepping_point() we refetch opcode
 180    to get the current opcode. This will override any other prefetching
 181    that might have occurred.
 182 */
 183 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 184 {                                                                                \
 185       if (_jvmti_interp_events) {                                                \
 186         if (JvmtiExport::should_post_single_step()) {                            \
 187           DECACHE_STATE();                                                       \
 188           SET_LAST_JAVA_FRAME();                                                 \
 189           ThreadInVMfromJava trans(THREAD);                                      \
 190           JvmtiExport::at_single_stepping_point(THREAD,                          \
 191                                           istate->method(),                      \
 192                                           pc);                                   \
 193           RESET_LAST_JAVA_FRAME();                                               \
 194           CACHE_STATE();                                                         \
 195           if (THREAD->pop_frame_pending() &&                                     \
 196               !THREAD->pop_frame_in_process()) {                                 \
 197             goto handle_Pop_Frame;                                               \
 198           }                                                                      \
 199           opcode = *pc;                                                          \
 200         }                                                                        \
 201       }                                                                          \
 202 }
 203 #else
 204 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 205 #endif
 206 
 207 /*
 208  * CONTINUE - Macro for executing the next opcode.
 209  */
 210 #undef CONTINUE
 211 #ifdef USELABELS
 212 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 213 // initialization (which is is the initialization of the table pointer...)
 214 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 215 #define CONTINUE {                              \
 216         opcode = *pc;                           \
 217         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 218         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 219         DISPATCH(opcode);                       \
 220     }
 221 #else
 222 #ifdef PREFETCH_OPCCODE
 223 #define CONTINUE {                              \
 224         opcode = *pc;                           \
 225         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 226         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 227         continue;                               \
 228     }
 229 #else
 230 #define CONTINUE {                              \
 231         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 232         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 233         continue;                               \
 234     }
 235 #endif
 236 #endif
 237 
 238 
 239 #define UPDATE_PC(opsize) {pc += opsize; }
 240 /*
 241  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 242  */
 243 #undef UPDATE_PC_AND_TOS
 244 #define UPDATE_PC_AND_TOS(opsize, stack) \
 245     {pc += opsize; MORE_STACK(stack); }
 246 
 247 /*
 248  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 249  * and executing the next opcode. It's somewhat similar to the combination
 250  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 251  */
 252 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 253 #ifdef USELABELS
 254 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 255         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 256         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 257         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 258         DISPATCH(opcode);                                       \
 259     }
 260 
 261 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 262         pc += opsize; opcode = *pc;                             \
 263         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 264         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 265         DISPATCH(opcode);                                       \
 266     }
 267 #else
 268 #ifdef PREFETCH_OPCCODE
 269 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 270         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 271         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 272         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 273         goto do_continue;                                       \
 274     }
 275 
 276 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 277         pc += opsize; opcode = *pc;                             \
 278         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 279         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 280         goto do_continue;                                       \
 281     }
 282 #else
 283 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 284         pc += opsize; MORE_STACK(stack);                \
 285         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 286         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 287         goto do_continue;                               \
 288     }
 289 
 290 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 291         pc += opsize;                                   \
 292         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 293         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 294         goto do_continue;                               \
 295     }
 296 #endif /* PREFETCH_OPCCODE */
 297 #endif /* USELABELS */
 298 
 299 // About to call a new method, update the save the adjusted pc and return to frame manager
 300 #define UPDATE_PC_AND_RETURN(opsize)  \
 301    DECACHE_TOS();                     \
 302    istate->set_bcp(pc+opsize);        \
 303    return;
 304 
 305 
 306 #define METHOD istate->method()
 307 #define INVOCATION_COUNT METHOD->invocation_counter()
 308 #define BACKEDGE_COUNT METHOD->backedge_counter()
 309 
 310 
 311 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
 312 #define OSR_REQUEST(res, branch_pc) \
 313             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 314 /*
 315  * For those opcodes that need to have a GC point on a backwards branch
 316  */
 317 
 318 // Backedge counting is kind of strange. The asm interpreter will increment
 319 // the backedge counter as a separate counter but it does it's comparisons
 320 // to the sum (scaled) of invocation counter and backedge count to make
 321 // a decision. Seems kind of odd to sum them together like that
 322 
 323 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 324 
 325 
 326 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 327     if ((skip) <= 0) {                                                                              \
 328       if (UseLoopCounter) {                                                                         \
 329         bool do_OSR = UseOnStackReplacement;                                                        \
 330         BACKEDGE_COUNT->increment();                                                                \
 331         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
 332         if (do_OSR) {                                                                               \
 333           nmethod*  osr_nmethod;                                                                    \
 334           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 335           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 336             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
 337             istate->set_msg(do_osr);                                                                \
 338             istate->set_osr_buf((address)buf);                                                      \
 339             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 340             return;                                                                                 \
 341           }                                                                                         \
 342         }                                                                                           \
 343       }  /* UseCompiler ... */                                                                      \
 344       INCR_INVOCATION_COUNT;                                                                        \
 345       SAFEPOINT;                                                                                    \
 346     }
 347 
 348 /*
 349  * For those opcodes that need to have a GC point on a backwards branch
 350  */
 351 
 352 /*
 353  * Macros for caching and flushing the interpreter state. Some local
 354  * variables need to be flushed out to the frame before we do certain
 355  * things (like pushing frames or becomming gc safe) and some need to
 356  * be recached later (like after popping a frame). We could use one
 357  * macro to cache or decache everything, but this would be less then
 358  * optimal because we don't always need to cache or decache everything
 359  * because some things we know are already cached or decached.
 360  */
 361 #undef DECACHE_TOS
 362 #undef CACHE_TOS
 363 #undef CACHE_PREV_TOS
 364 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 365 
 366 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 367 
 368 #undef DECACHE_PC
 369 #undef CACHE_PC
 370 #define DECACHE_PC()    istate->set_bcp(pc);
 371 #define CACHE_PC()      pc = istate->bcp();
 372 #define CACHE_CP()      cp = istate->constants();
 373 #define CACHE_LOCALS()  locals = istate->locals();
 374 #undef CACHE_FRAME
 375 #define CACHE_FRAME()
 376 
 377 /*
 378  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 379  * passed is a null ref.
 380  * On some architectures/platforms it should be possible to do this implicitly
 381  */
 382 #undef CHECK_NULL
 383 #define CHECK_NULL(obj_)                                                 \
 384     if ((obj_) == NULL) {                                                \
 385         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
 386     }                                                                    \
 387     VERIFY_OOP(obj_)
 388 
 389 #define VMdoubleConstZero() 0.0
 390 #define VMdoubleConstOne() 1.0
 391 #define VMlongConstZero() (max_jlong-max_jlong)
 392 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 393 
 394 /*
 395  * Alignment
 396  */
 397 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 398 
 399 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 400 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 401 
 402 // Reload interpreter state after calling the VM or a possible GC
 403 #define CACHE_STATE()   \
 404         CACHE_TOS();    \
 405         CACHE_PC();     \
 406         CACHE_CP();     \
 407         CACHE_LOCALS();
 408 
 409 // Call the VM don't check for pending exceptions
 410 #define CALL_VM_NOCHECK(func)                                     \
 411           DECACHE_STATE();                                        \
 412           SET_LAST_JAVA_FRAME();                                  \
 413           func;                                                   \
 414           RESET_LAST_JAVA_FRAME();                                \
 415           CACHE_STATE();                                          \
 416           if (THREAD->pop_frame_pending() &&                      \
 417               !THREAD->pop_frame_in_process()) {                  \
 418             goto handle_Pop_Frame;                                \
 419           }
 420 
 421 // Call the VM and check for pending exceptions
 422 #define CALL_VM(func, label) {                                    \
 423           CALL_VM_NOCHECK(func);                                  \
 424           if (THREAD->has_pending_exception()) goto label;        \
 425         }
 426 
 427 
 428 #ifdef VM_JVMTI
 429 #define MAYBE_POST_FIELD_ACCESS() {                                 \
 430   if (_jvmti_interp_events) {                                       \
 431     int *count_addr;                                                \
 432     oop obj;                                                        \
 433     /* Check to see if a field modification watch has been set */   \
 434     /* before we take the time to call into the VM. */              \
 435     count_addr = (int *)JvmtiExport::get_field_access_count_addr(); \
 436     if ( *count_addr > 0 ) {                                        \
 437       if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {       \
 438         obj = (oop)NULL;                                            \
 439       } else {                                                      \
 440         obj = (oop) STACK_OBJECT(-1);                               \
 441         VERIFY_OOP(obj);                                            \
 442       }                                                             \
 443       CALL_VM(InterpreterRuntime::post_field_access(THREAD, obj, cache), handle_exception); \
 444     }                                                               \
 445   }                                                                 \
 446 }
 447 #define MAYBE_POST_FIELD_MODIFICATION() {                           \
 448   if (_jvmti_interp_events) {                                       \
 449     int *count_addr;                                                \
 450     oop obj;                                                        \
 451     /* Check to see if a field modification watch has been set */   \
 452     /* before we take the time to call into the VM.            */   \
 453     count_addr = (int *)JvmtiExport::get_field_modification_count_addr(); \
 454     if ( *count_addr > 0 ) {                                        \
 455       if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {       \
 456         obj = (oop)NULL;                                            \
 457       }                                                             \
 458       else {                                                        \
 459         if (cache->is_long() || cache->is_double()) {               \
 460           obj = (oop) STACK_OBJECT(-3);                             \
 461         } else {                                                    \
 462           obj = (oop) STACK_OBJECT(-2);                             \
 463         }                                                           \
 464         VERIFY_OOP(obj);                                            \
 465       }                                                             \
 466        CALL_VM(InterpreterRuntime::post_field_modification(THREAD,  \
 467                                   obj,                              \
 468                                   cache,                            \
 469                                   (jvalue *)STACK_SLOT(-1)),        \
 470                                   handle_exception);                \
 471     }                                                               \
 472   }                                                                 \
 473 }
 474 #else
 475 #define MAYBE_POST_FIELD_ACCESS() {}
 476 #define MAYBE_POST_FIELD_MODIFICATION() {}
 477 #endif /* VM_JVMTI */
 478 
 479 static inline int tosstate_to_bc_offset(TosState tos) {
 480    switch (tos) {
 481    case btos: return Bytecodes::_fast_bgetfield - Bytecodes::_fast_agetfield;
 482    case ctos: return Bytecodes::_fast_cgetfield - Bytecodes::_fast_agetfield;
 483    case stos: return Bytecodes::_fast_sgetfield - Bytecodes::_fast_agetfield;
 484    case itos: return Bytecodes::_fast_igetfield - Bytecodes::_fast_agetfield;
 485    case ltos: return Bytecodes::_fast_lgetfield - Bytecodes::_fast_agetfield;
 486    case ftos: return Bytecodes::_fast_fgetfield - Bytecodes::_fast_agetfield;
 487    case dtos: return Bytecodes::_fast_dgetfield - Bytecodes::_fast_agetfield;
 488    case atos: return Bytecodes::_fast_agetfield - Bytecodes::_fast_agetfield;
 489    default: ShouldNotReachHere();
 490    }
 491    return ilgl;
 492  }
 493 
 494 /*
 495  * BytecodeInterpreter::run(interpreterState istate)
 496  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 497  *
 498  * The real deal. This is where byte codes actually get interpreted.
 499  * Basically it's a big while loop that iterates until we return from
 500  * the method passed in.
 501  *
 502  * The runWithChecks is used if JVMTI is enabled.
 503  *
 504  */
 505 #if defined(VM_JVMTI)
 506 void
 507 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 508 #else
 509 void
 510 BytecodeInterpreter::run(interpreterState istate) {
 511 #endif
 512 
 513   // In order to simplify some tests based on switches set at runtime
 514   // we invoke the interpreter a single time after switches are enabled
 515   // and set simpler to to test variables rather than method calls or complex
 516   // boolean expressions.
 517 
 518   static int initialized = 0;
 519   static int checkit = 0;
 520   static intptr_t* c_addr = NULL;
 521   static intptr_t  c_value;
 522 
 523   if (checkit && *c_addr != c_value) {
 524     os::breakpoint();
 525   }
 526 #ifdef VM_JVMTI
 527   static bool _jvmti_interp_events = 0;
 528 #endif
 529 
 530   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 531 
 532 #ifdef ASSERT
 533   if (istate->_msg != initialize) {
 534     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 535 #ifndef SHARK
 536     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 537 #endif // !SHARK
 538   }
 539   // Verify linkages.
 540   interpreterState l = istate;
 541   do {
 542     assert(l == l->_self_link, "bad link");
 543     l = l->_prev_link;
 544   } while (l != NULL);
 545   // Screwups with stack management usually cause us to overwrite istate
 546   // save a copy so we can verify it.
 547   interpreterState orig = istate;
 548 #endif
 549 
 550   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
 551 
 552   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 553   register address          pc = istate->bcp();
 554   register jubyte opcode;
 555   register intptr_t*        locals = istate->locals();
 556   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 557 #ifdef LOTS_OF_REGS
 558   register JavaThread*      THREAD = istate->thread();
 559   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
 560 #else
 561 #undef THREAD
 562 #define THREAD istate->thread()
 563 #undef BYTE_MAP_BASE
 564 #define BYTE_MAP_BASE _byte_map_base
 565 #endif
 566 
 567 #ifdef USELABELS
 568   const static void* const opclabels_data[256] = {
 569 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 570 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 571 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 572 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 573 
 574 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 575 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 576 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 577 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 578 
 579 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 580 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 581 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 582 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 583 
 584 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 585 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 586 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 587 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 588 
 589 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 590 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 591 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 592 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 593 
 594 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 595 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 596 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 597 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 598 
 599 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 600 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 601 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 602 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 603 
 604 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 605 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 606 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 607 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 608 
 609 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 610 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 611 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 612 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 613 
 614 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 615 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 616 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 617 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 618 
 619 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 620 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 621 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 622 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 623 
 624 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 625 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 626 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 627 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 628 
 629 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 630 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 631 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_fast_agetfield,
 632 /* 0xCC */ &&opc_fast_bgetfield, &&opc_fast_cgetfield, &&opc_fast_dgetfield, &&opc_fast_fgetfield,
 633 
 634 /* 0xD0 */ &&opc_fast_igetfield, &&opc_fast_lgetfield, &&opc_fast_sgetfield, &&opc_fast_aputfield,
 635 /* 0xD4 */ &&opc_fast_bputfield, &&opc_fast_cputfield, &&opc_fast_dputfield, &&opc_fast_fputfield,
 636 /* 0xD8 */ &&opc_fast_iputfield, &&opc_fast_lputfield, &&opc_fast_sputfield, &&opc_fast_aload_0,
 637 /* 0xDC */ &&opc_fast_iaccess_0, &&opc_fast_aaccess_0, &&opc_fast_faccess_0, &&opc_fast_iload,
 638 
 639 /* 0xE0 */ &&opc_fast_iload2, &&opc_fast_icaload,   &&opc_fast_invokevfinal, &&opc_default,
 640 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
 641 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,      &&opc_default,
 642 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 643 
 644 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 645 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 646 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 647 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 648   };
 649   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 650 #endif /* USELABELS */
 651 
 652 #ifdef ASSERT
 653   // this will trigger a VERIFY_OOP on entry
 654   if (istate->msg() != initialize && ! METHOD->is_static()) {
 655     oop rcvr = LOCALS_OBJECT(0);
 656     VERIFY_OOP(rcvr);
 657   }
 658 #endif
 659 // #define HACK
 660 #ifdef HACK
 661   bool interesting = false;
 662 #endif // HACK
 663 
 664   /* QQQ this should be a stack method so we don't know actual direction */
 665   guarantee(istate->msg() == initialize ||
 666          topOfStack >= istate->stack_limit() &&
 667          topOfStack < istate->stack_base(),
 668          "Stack top out of range");
 669 
 670   switch (istate->msg()) {
 671     case initialize: {
 672       if (initialized++) ShouldNotReachHere(); // Only one initialize call
 673       _compiling = (UseCompiler || CountCompiledCalls);
 674 #ifdef VM_JVMTI
 675       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 676 #endif
 677       BarrierSet* bs = Universe::heap()->barrier_set();
 678       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
 679       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
 680       return;
 681     }
 682     break;
 683     case method_entry: {
 684       THREAD->set_do_not_unlock();
 685       // count invocations
 686       assert(initialized, "Interpreter not initialized");
 687       if (_compiling) {
 688         if (ProfileInterpreter) {
 689           METHOD->increment_interpreter_invocation_count();
 690         }
 691         INCR_INVOCATION_COUNT;
 692         if (INVOCATION_COUNT->reached_InvocationLimit()) {
 693             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 694 
 695             // We no longer retry on a counter overflow
 696 
 697             // istate->set_msg(retry_method);
 698             // THREAD->clr_do_not_unlock();
 699             // return;
 700         }
 701         SAFEPOINT;
 702       }
 703 
 704       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 705         // initialize
 706         os::breakpoint();
 707       }
 708 
 709 #ifdef HACK
 710       {
 711         ResourceMark rm;
 712         char *method_name = istate->method()->name_and_sig_as_C_string();
 713         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 714           tty->print_cr("entering: depth %d bci: %d",
 715                          (istate->_stack_base - istate->_stack),
 716                          istate->_bcp - istate->_method->code_base());
 717           interesting = true;
 718         }
 719       }
 720 #endif // HACK
 721 
 722 
 723       // lock method if synchronized
 724       if (METHOD->is_synchronized()) {
 725           // oop rcvr = locals[0].j.r;
 726           oop rcvr;
 727           if (METHOD->is_static()) {
 728             rcvr = METHOD->constants()->pool_holder()->java_mirror();
 729           } else {
 730             rcvr = LOCALS_OBJECT(0);
 731             VERIFY_OOP(rcvr);
 732           }
 733           // The initial monitor is ours for the taking
 734           BasicObjectLock* mon = &istate->monitor_base()[-1];
 735           oop monobj = mon->obj();
 736           assert(mon->obj() == rcvr, "method monitor mis-initialized");
 737 
 738           bool success = UseBiasedLocking;
 739           if (UseBiasedLocking) {
 740             markOop mark = rcvr->mark();
 741             if (mark->has_bias_pattern()) {
 742               // The bias pattern is present in the object's header. Need to check
 743               // whether the bias owner and the epoch are both still current.
 744               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
 745               xx = (intptr_t) rcvr->klass()->prototype_header() ^ xx;
 746               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
 747               if (yy != 0 ) {
 748                 // At this point we know that the header has the bias pattern and
 749                 // that we are not the bias owner in the current epoch. We need to
 750                 // figure out more details about the state of the header in order to
 751                 // know what operations can be legally performed on the object's
 752                 // header.
 753 
 754                 // If the low three bits in the xor result aren't clear, that means
 755                 // the prototype header is no longer biased and we have to revoke
 756                 // the bias on this object.
 757 
 758                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
 759                   // Biasing is still enabled for this data type. See whether the
 760                   // epoch of the current bias is still valid, meaning that the epoch
 761                   // bits of the mark word are equal to the epoch bits of the
 762                   // prototype header. (Note that the prototype header's epoch bits
 763                   // only change at a safepoint.) If not, attempt to rebias the object
 764                   // toward the current thread. Note that we must be absolutely sure
 765                   // that the current epoch is invalid in order to do this because
 766                   // otherwise the manipulations it performs on the mark word are
 767                   // illegal.
 768                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
 769                     // The epoch of the current bias is still valid but we know nothing
 770                     // about the owner; it might be set or it might be clear. Try to
 771                     // acquire the bias of the object using an atomic operation. If this
 772                     // fails we will go in to the runtime to revoke the object's bias.
 773                     // Note that we first construct the presumed unbiased header so we
 774                     // don't accidentally blow away another thread's valid bias.
 775                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
 776                                                            markOopDesc::age_mask_in_place |
 777                                                            markOopDesc::epoch_mask_in_place);
 778                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
 779                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 780                     }
 781                   } else {
 782                     try_rebias:
 783                     // At this point we know the epoch has expired, meaning that the
 784                     // current "bias owner", if any, is actually invalid. Under these
 785                     // circumstances _only_, we are allowed to use the current header's
 786                     // value as the comparison value when doing the cas to acquire the
 787                     // bias in the current epoch. In other words, we allow transfer of
 788                     // the bias from one thread to another directly in this situation.
 789                     xx = (intptr_t) rcvr->klass()->prototype_header() | (intptr_t) THREAD;
 790                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->prototype_header(),
 791                                             (intptr_t*) rcvr->mark_addr(),
 792                                             (intptr_t) mark) != (intptr_t) mark) {
 793                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 794                     }
 795                   }
 796                 } else {
 797                   try_revoke_bias:
 798                   // The prototype mark in the klass doesn't have the bias bit set any
 799                   // more, indicating that objects of this data type are not supposed
 800                   // to be biased any more. We are going to try to reset the mark of
 801                   // this object to the prototype value and fall through to the
 802                   // CAS-based locking scheme. Note that if our CAS fails, it means
 803                   // that another thread raced us for the privilege of revoking the
 804                   // bias of this particular object, so it's okay to continue in the
 805                   // normal locking code.
 806                   //
 807                   xx = (intptr_t) rcvr->klass()->prototype_header() | (intptr_t) THREAD;
 808                   if (Atomic::cmpxchg_ptr(rcvr->klass()->prototype_header(),
 809                                           (intptr_t*) rcvr->mark_addr(),
 810                                           mark) == mark) {
 811                     // (*counters->revoked_lock_entry_count_addr())++;
 812                   success = false;
 813                   }
 814                 }
 815               }
 816             } else {
 817               cas_label:
 818               success = false;
 819             }
 820           }
 821           if (!success) {
 822             markOop displaced = rcvr->mark()->set_unlocked();
 823             mon->lock()->set_displaced_header(displaced);
 824             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 825               // Is it simple recursive case?
 826               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 827                 mon->lock()->set_displaced_header(NULL);
 828               } else {
 829                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 830               }
 831             }
 832           }
 833       }
 834       THREAD->clr_do_not_unlock();
 835 
 836       // Notify jvmti
 837 #ifdef VM_JVMTI
 838       if (_jvmti_interp_events) {
 839         // Whenever JVMTI puts a thread in interp_only_mode, method
 840         // entry/exit events are sent for that thread to track stack depth.
 841         if (THREAD->is_interp_only_mode()) {
 842           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 843                   handle_exception);
 844         }
 845       }
 846 #endif /* VM_JVMTI */
 847 
 848       goto run;
 849     }
 850 
 851     case popping_frame: {
 852       // returned from a java call to pop the frame, restart the call
 853       // clear the message so we don't confuse ourselves later
 854       ShouldNotReachHere();  // we don't return this.
 855       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 856       istate->set_msg(no_request);
 857       THREAD->clr_pop_frame_in_process();
 858       goto run;
 859     }
 860 
 861     case method_resume: {
 862       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 863         // resume
 864         os::breakpoint();
 865       }
 866 #ifdef HACK
 867       {
 868         ResourceMark rm;
 869         char *method_name = istate->method()->name_and_sig_as_C_string();
 870         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 871           tty->print_cr("resume: depth %d bci: %d",
 872                          (istate->_stack_base - istate->_stack) ,
 873                          istate->_bcp - istate->_method->code_base());
 874           interesting = true;
 875         }
 876       }
 877 #endif // HACK
 878       // returned from a java call, continue executing.
 879       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 880         goto handle_Pop_Frame;
 881       }
 882 
 883       if (THREAD->has_pending_exception()) goto handle_exception;
 884       // Update the pc by the saved amount of the invoke bytecode size
 885       UPDATE_PC(istate->bcp_advance());
 886       goto run;
 887     }
 888 
 889     case deopt_resume2: {
 890       // Returned from an opcode that will reexecute. Deopt was
 891       // a result of a PopFrame request.
 892       //
 893       goto run;
 894     }
 895 
 896     case deopt_resume: {
 897       // Returned from an opcode that has completed. The stack has
 898       // the result all we need to do is skip across the bytecode
 899       // and continue (assuming there is no exception pending)
 900       //
 901       // compute continuation length
 902       //
 903       // Note: it is possible to deopt at a return_register_finalizer opcode
 904       // because this requires entering the vm to do the registering. While the
 905       // opcode is complete we can't advance because there are no more opcodes
 906       // much like trying to deopt at a poll return. In that has we simply
 907       // get out of here
 908       //
 909       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 910         // this will do the right thing even if an exception is pending.
 911         goto handle_return;
 912       }
 913       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 914       if (THREAD->has_pending_exception()) goto handle_exception;
 915       goto run;
 916     }
 917     case got_monitors: {
 918       // continue locking now that we have a monitor to use
 919       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 920       oop lockee = STACK_OBJECT(-1);
 921       VERIFY_OOP(lockee);
 922       // derefing's lockee ought to provoke implicit null check
 923       // find a free monitor
 924       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 925       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 926       entry->set_obj(lockee);
 927 
 928       markOop displaced = lockee->mark()->set_unlocked();
 929       entry->lock()->set_displaced_header(displaced);
 930       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 931         // Is it simple recursive case?
 932         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 933           entry->lock()->set_displaced_header(NULL);
 934         } else {
 935           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 936         }
 937       }
 938       UPDATE_PC_AND_TOS(1, -1);
 939       goto run;
 940     }
 941     default: {
 942       fatal("Unexpected message from frame manager");
 943     }
 944   }
 945 
 946 run:
 947 
 948   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 949   DEBUGGER_SINGLE_STEP_NOTIFY();
 950 #ifdef PREFETCH_OPCCODE
 951   opcode = *pc;  /* prefetch first opcode */
 952 #endif
 953 
 954 #ifndef USELABELS
 955   while (1)
 956 #endif
 957   {
 958 #ifndef PREFETCH_OPCCODE
 959       opcode = *pc;
 960 #endif
 961       // Seems like this happens twice per opcode. At worst this is only
 962       // need at entry to the loop.
 963       // DEBUGGER_SINGLE_STEP_NOTIFY();
 964       /* Using this labels avoids double breakpoints when quickening and
 965        * when returing from transition frames.
 966        */
 967   opcode_switch:
 968       assert(istate == orig, "Corrupted istate");
 969       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 970       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 971       assert(topOfStack < istate->stack_base(), "Stack underrun");
 972 
 973 #ifdef USELABELS
 974       DISPATCH(opcode);
 975 #else
 976       switch (opcode)
 977 #endif
 978       {
 979       CASE(_nop):
 980           UPDATE_PC_AND_CONTINUE(1);
 981 
 982           /* Push miscellaneous constants onto the stack. */
 983 
 984       CASE(_aconst_null):
 985           SET_STACK_OBJECT(NULL, 0);
 986           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 987 
 988 #undef  OPC_CONST_n
 989 #define OPC_CONST_n(opcode, const_type, value)                          \
 990       CASE(opcode):                                                     \
 991           SET_STACK_ ## const_type(value, 0);                           \
 992           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 993 
 994           OPC_CONST_n(_iconst_m1,   INT,       -1);
 995           OPC_CONST_n(_iconst_0,    INT,        0);
 996           OPC_CONST_n(_iconst_1,    INT,        1);
 997           OPC_CONST_n(_iconst_2,    INT,        2);
 998           OPC_CONST_n(_iconst_3,    INT,        3);
 999           OPC_CONST_n(_iconst_4,    INT,        4);
1000           OPC_CONST_n(_iconst_5,    INT,        5);
1001           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1002           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1003           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1004 
1005 #undef  OPC_CONST2_n
1006 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1007       CASE(_##opcname):                                                 \
1008       {                                                                 \
1009           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1010           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1011       }
1012          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1013          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1014          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1015          OPC_CONST2_n(lconst_1, One,  long, LONG);
1016 
1017          /* Load constant from constant pool: */
1018 
1019           /* Push a 1-byte signed integer value onto the stack. */
1020       CASE(_bipush):
1021           SET_STACK_INT((jbyte)(pc[1]), 0);
1022           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1023 
1024           /* Push a 2-byte signed integer constant onto the stack. */
1025       CASE(_sipush):
1026           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1027           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1028 
1029           /* load from local variable */
1030 
1031       CASE(_aload):
1032           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1033           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1034           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1035 
1036       CASE(_iload): {
1037         // Attempt to rewrite iload, iload -> fast_iload2
1038         //                    iload, caload -> fast_icaload
1039         // Normal iloads will be rewritten to fast_iload to avoid checking again.
1040         Bytecodes::Code next = (Bytecodes::Code) *(pc + 2);
1041         switch (next) {
1042         case Bytecodes::_fast_iload:
1043           *(pc) = Bytecodes::_fast_iload2;
1044           break;
1045         case Bytecodes::_caload:
1046           *(pc) = Bytecodes::_fast_icaload;
1047           break;
1048         case Bytecodes::_iload:
1049           // Wait until rewritten to _fast_iload.
1050           break;
1051         default:
1052           // Last iload in a (potential) series, don't check again.
1053           *(pc) = Bytecodes::_fast_iload;
1054         }
1055         // Normal iload handling.
1056         SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1057         UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1058       }
1059       CASE(_fast_iload):
1060       CASE(_fload):
1061           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1062           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1063 
1064       CASE(_fast_iload2):
1065         SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1066         SET_STACK_SLOT(LOCALS_SLOT(pc[3]), 1);
1067         UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1068       CASE(_lload):
1069           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1070           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1071 
1072       CASE(_dload):
1073           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1074           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1075 
1076 #undef  OPC_LOAD_n
1077 #define OPC_LOAD_n(num)                                                 \
1078       CASE(_iload_##num):                                               \
1079       CASE(_fload_##num):                                               \
1080           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1081           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1082                                                                         \
1083       CASE(_lload_##num):                                               \
1084           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1085           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1086       CASE(_dload_##num):                                               \
1087           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1088           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1089 
1090           OPC_LOAD_n(0);
1091           OPC_LOAD_n(1);
1092           OPC_LOAD_n(2);
1093           OPC_LOAD_n(3);
1094 
1095       CASE(_aload_0): {
1096         {
1097           /* Maybe rewrite if following bytecode is one of the supported _fast_Xgetfield bytecodes. */
1098           switch (*(pc + 1)) {
1099           case Bytecodes::_fast_agetfield:
1100             *pc = Bytecodes::_fast_aaccess_0;
1101             break;
1102           case Bytecodes::_fast_fgetfield:
1103             *pc = Bytecodes::_fast_faccess_0;
1104             break;
1105           case Bytecodes::_fast_igetfield:
1106             *pc = Bytecodes::_fast_iaccess_0;
1107             break;
1108           case Bytecodes::_getfield: {
1109             /* Otherwise, do nothing here, wait until it gets rewritten to _fast_Xgetfield.
1110              * Unfortunately, this punishes volatile field access, because it never gets
1111              * rewritten. */
1112             break;
1113           }
1114           default:
1115             *pc = Bytecodes::_fast_aload_0;
1116             break;
1117           }
1118         }
1119         VERIFY_OOP(LOCALS_OBJECT(0));
1120         SET_STACK_OBJECT(LOCALS_OBJECT(0), 0);
1121         UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1122       }
1123 #undef  OPC_ALOAD_n
1124 #define OPC_ALOAD_n(num)                                              \
1125     CASE(_aload_##num):                                               \
1126         VERIFY_OOP(LOCALS_OBJECT(num));                               \
1127         SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1128         UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1129 
1130           OPC_ALOAD_n(1);
1131           OPC_ALOAD_n(2);
1132           OPC_ALOAD_n(3);
1133 
1134           /* store to a local variable */
1135 
1136       CASE(_astore):
1137           astore(topOfStack, -1, locals, pc[1]);
1138           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1139 
1140       CASE(_istore):
1141       CASE(_fstore):
1142           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1143           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1144 
1145       CASE(_lstore):
1146           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1147           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1148 
1149       CASE(_dstore):
1150           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1151           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1152 
1153       CASE(_wide): {
1154           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1155 
1156           opcode = pc[1];
1157           switch(opcode) {
1158               case Bytecodes::_aload:
1159                   VERIFY_OOP(LOCALS_OBJECT(reg));
1160                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1161                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1162 
1163               case Bytecodes::_iload:
1164               case Bytecodes::_fload:
1165                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1166                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1167 
1168               case Bytecodes::_lload:
1169                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1170                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1171 
1172               case Bytecodes::_dload:
1173                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1174                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1175 
1176               case Bytecodes::_astore:
1177                   astore(topOfStack, -1, locals, reg);
1178                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1179 
1180               case Bytecodes::_istore:
1181               case Bytecodes::_fstore:
1182                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1183                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1184 
1185               case Bytecodes::_lstore:
1186                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1187                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1188 
1189               case Bytecodes::_dstore:
1190                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1191                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1192 
1193               case Bytecodes::_iinc: {
1194                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1195                   // Be nice to see what this generates.... QQQ
1196                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1197                   UPDATE_PC_AND_CONTINUE(6);
1198               }
1199               case Bytecodes::_ret:
1200                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1201                   UPDATE_PC_AND_CONTINUE(0);
1202               default:
1203                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1204           }
1205       }
1206 
1207 
1208 #undef  OPC_STORE_n
1209 #define OPC_STORE_n(num)                                                \
1210       CASE(_astore_##num):                                              \
1211           astore(topOfStack, -1, locals, num);                          \
1212           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1213       CASE(_istore_##num):                                              \
1214       CASE(_fstore_##num):                                              \
1215           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1216           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1217 
1218           OPC_STORE_n(0);
1219           OPC_STORE_n(1);
1220           OPC_STORE_n(2);
1221           OPC_STORE_n(3);
1222 
1223 #undef  OPC_DSTORE_n
1224 #define OPC_DSTORE_n(num)                                               \
1225       CASE(_dstore_##num):                                              \
1226           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1227           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1228       CASE(_lstore_##num):                                              \
1229           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1230           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1231 
1232           OPC_DSTORE_n(0);
1233           OPC_DSTORE_n(1);
1234           OPC_DSTORE_n(2);
1235           OPC_DSTORE_n(3);
1236 
1237           /* stack pop, dup, and insert opcodes */
1238 
1239 
1240       CASE(_pop):                /* Discard the top item on the stack */
1241           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1242 
1243 
1244       CASE(_pop2):               /* Discard the top 2 items on the stack */
1245           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1246 
1247 
1248       CASE(_dup):               /* Duplicate the top item on the stack */
1249           dup(topOfStack);
1250           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1251 
1252       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1253           dup2(topOfStack);
1254           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1255 
1256       CASE(_dup_x1):    /* insert top word two down */
1257           dup_x1(topOfStack);
1258           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1259 
1260       CASE(_dup_x2):    /* insert top word three down  */
1261           dup_x2(topOfStack);
1262           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1263 
1264       CASE(_dup2_x1):   /* insert top 2 slots three down */
1265           dup2_x1(topOfStack);
1266           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1267 
1268       CASE(_dup2_x2):   /* insert top 2 slots four down */
1269           dup2_x2(topOfStack);
1270           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1271 
1272       CASE(_swap): {        /* swap top two elements on the stack */
1273           swap(topOfStack);
1274           UPDATE_PC_AND_CONTINUE(1);
1275       }
1276 
1277           /* Perform various binary integer operations */
1278 
1279 #undef  OPC_INT_BINARY
1280 #define OPC_INT_BINARY(opcname, opname, test)                           \
1281       CASE(_i##opcname):                                                \
1282           if (test && (STACK_INT(-1) == 0)) {                           \
1283               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1284                             "/ by zero");                               \
1285           }                                                             \
1286           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1287                                       STACK_INT(-1)),                   \
1288                                       -2);                              \
1289           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1290       CASE(_l##opcname):                                                \
1291       {                                                                 \
1292           if (test) {                                                   \
1293             jlong l1 = STACK_LONG(-1);                                  \
1294             if (VMlongEqz(l1)) {                                        \
1295               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1296                             "/ by long zero");                          \
1297             }                                                           \
1298           }                                                             \
1299           /* First long at (-1,-2) next long at (-3,-4) */              \
1300           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1301                                         STACK_LONG(-1)),                \
1302                                         -3);                            \
1303           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1304       }
1305 
1306       OPC_INT_BINARY(add, Add, 0);
1307       OPC_INT_BINARY(sub, Sub, 0);
1308       OPC_INT_BINARY(mul, Mul, 0);
1309       OPC_INT_BINARY(and, And, 0);
1310       OPC_INT_BINARY(or,  Or,  0);
1311       OPC_INT_BINARY(xor, Xor, 0);
1312       OPC_INT_BINARY(div, Div, 1);
1313       OPC_INT_BINARY(rem, Rem, 1);
1314 
1315 
1316       /* Perform various binary floating number operations */
1317       /* On some machine/platforms/compilers div zero check can be implicit */
1318 
1319 #undef  OPC_FLOAT_BINARY
1320 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1321       CASE(_d##opcname): {                                                 \
1322           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1323                                             STACK_DOUBLE(-1)),             \
1324                                             -3);                           \
1325           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1326       }                                                                    \
1327       CASE(_f##opcname):                                                   \
1328           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1329                                           STACK_FLOAT(-1)),                \
1330                                           -2);                             \
1331           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1332 
1333 
1334      OPC_FLOAT_BINARY(add, Add);
1335      OPC_FLOAT_BINARY(sub, Sub);
1336      OPC_FLOAT_BINARY(mul, Mul);
1337      OPC_FLOAT_BINARY(div, Div);
1338      OPC_FLOAT_BINARY(rem, Rem);
1339 
1340       /* Shift operations
1341        * Shift left int and long: ishl, lshl
1342        * Logical shift right int and long w/zero extension: iushr, lushr
1343        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1344        */
1345 
1346 #undef  OPC_SHIFT_BINARY
1347 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1348       CASE(_i##opcname):                                                \
1349          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1350                                      STACK_INT(-1)),                    \
1351                                      -2);                               \
1352          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1353       CASE(_l##opcname):                                                \
1354       {                                                                 \
1355          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1356                                        STACK_INT(-1)),                  \
1357                                        -2);                             \
1358          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1359       }
1360 
1361       OPC_SHIFT_BINARY(shl, Shl);
1362       OPC_SHIFT_BINARY(shr, Shr);
1363       OPC_SHIFT_BINARY(ushr, Ushr);
1364 
1365      /* Increment local variable by constant */
1366       CASE(_iinc):
1367       {
1368           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1369           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1370           UPDATE_PC_AND_CONTINUE(3);
1371       }
1372 
1373      /* negate the value on the top of the stack */
1374 
1375       CASE(_ineg):
1376          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1377          UPDATE_PC_AND_CONTINUE(1);
1378 
1379       CASE(_fneg):
1380          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1381          UPDATE_PC_AND_CONTINUE(1);
1382 
1383       CASE(_lneg):
1384       {
1385          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1386          UPDATE_PC_AND_CONTINUE(1);
1387       }
1388 
1389       CASE(_dneg):
1390       {
1391          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1392          UPDATE_PC_AND_CONTINUE(1);
1393       }
1394 
1395       /* Conversion operations */
1396 
1397       CASE(_i2f):       /* convert top of stack int to float */
1398          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1399          UPDATE_PC_AND_CONTINUE(1);
1400 
1401       CASE(_i2l):       /* convert top of stack int to long */
1402       {
1403           // this is ugly QQQ
1404           jlong r = VMint2Long(STACK_INT(-1));
1405           MORE_STACK(-1); // Pop
1406           SET_STACK_LONG(r, 1);
1407 
1408           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1409       }
1410 
1411       CASE(_i2d):       /* convert top of stack int to double */
1412       {
1413           // this is ugly QQQ (why cast to jlong?? )
1414           jdouble r = (jlong)STACK_INT(-1);
1415           MORE_STACK(-1); // Pop
1416           SET_STACK_DOUBLE(r, 1);
1417 
1418           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1419       }
1420 
1421       CASE(_l2i):       /* convert top of stack long to int */
1422       {
1423           jint r = VMlong2Int(STACK_LONG(-1));
1424           MORE_STACK(-2); // Pop
1425           SET_STACK_INT(r, 0);
1426           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1427       }
1428 
1429       CASE(_l2f):   /* convert top of stack long to float */
1430       {
1431           jlong r = STACK_LONG(-1);
1432           MORE_STACK(-2); // Pop
1433           SET_STACK_FLOAT(VMlong2Float(r), 0);
1434           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1435       }
1436 
1437       CASE(_l2d):       /* convert top of stack long to double */
1438       {
1439           jlong r = STACK_LONG(-1);
1440           MORE_STACK(-2); // Pop
1441           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1442           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1443       }
1444 
1445       CASE(_f2i):  /* Convert top of stack float to int */
1446           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1447           UPDATE_PC_AND_CONTINUE(1);
1448 
1449       CASE(_f2l):  /* convert top of stack float to long */
1450       {
1451           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1452           MORE_STACK(-1); // POP
1453           SET_STACK_LONG(r, 1);
1454           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1455       }
1456 
1457       CASE(_f2d):  /* convert top of stack float to double */
1458       {
1459           jfloat f;
1460           jdouble r;
1461           f = STACK_FLOAT(-1);
1462           r = (jdouble) f;
1463           MORE_STACK(-1); // POP
1464           SET_STACK_DOUBLE(r, 1);
1465           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1466       }
1467 
1468       CASE(_d2i): /* convert top of stack double to int */
1469       {
1470           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1471           MORE_STACK(-2);
1472           SET_STACK_INT(r1, 0);
1473           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1474       }
1475 
1476       CASE(_d2f): /* convert top of stack double to float */
1477       {
1478           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1479           MORE_STACK(-2);
1480           SET_STACK_FLOAT(r1, 0);
1481           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1482       }
1483 
1484       CASE(_d2l): /* convert top of stack double to long */
1485       {
1486           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1487           MORE_STACK(-2);
1488           SET_STACK_LONG(r1, 1);
1489           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1490       }
1491 
1492       CASE(_i2b):
1493           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1494           UPDATE_PC_AND_CONTINUE(1);
1495 
1496       CASE(_i2c):
1497           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1498           UPDATE_PC_AND_CONTINUE(1);
1499 
1500       CASE(_i2s):
1501           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1502           UPDATE_PC_AND_CONTINUE(1);
1503 
1504       /* comparison operators */
1505 
1506 
1507 #define COMPARISON_OP(name, comparison)                                      \
1508       CASE(_if_icmp##name): {                                                \
1509           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1510                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1511           address branch_pc = pc;                                            \
1512           UPDATE_PC_AND_TOS(skip, -2);                                       \
1513           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1514           CONTINUE;                                                          \
1515       }                                                                      \
1516       CASE(_if##name): {                                                     \
1517           int skip = (STACK_INT(-1) comparison 0)                            \
1518                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1519           address branch_pc = pc;                                            \
1520           UPDATE_PC_AND_TOS(skip, -1);                                       \
1521           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1522           CONTINUE;                                                          \
1523       }
1524 
1525 #define COMPARISON_OP2(name, comparison)                                     \
1526       COMPARISON_OP(name, comparison)                                        \
1527       CASE(_if_acmp##name): {                                                \
1528           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1529                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1530           address branch_pc = pc;                                            \
1531           UPDATE_PC_AND_TOS(skip, -2);                                       \
1532           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1533           CONTINUE;                                                          \
1534       }
1535 
1536 #define NULL_COMPARISON_NOT_OP(name)                                         \
1537       CASE(_if##name): {                                                     \
1538           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1539                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1540           address branch_pc = pc;                                            \
1541           UPDATE_PC_AND_TOS(skip, -1);                                       \
1542           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1543           CONTINUE;                                                          \
1544       }
1545 
1546 #define NULL_COMPARISON_OP(name)                                             \
1547       CASE(_if##name): {                                                     \
1548           int skip = ((STACK_OBJECT(-1) == NULL))                            \
1549                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1550           address branch_pc = pc;                                            \
1551           UPDATE_PC_AND_TOS(skip, -1);                                       \
1552           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1553           CONTINUE;                                                          \
1554       }
1555       COMPARISON_OP(lt, <);
1556       COMPARISON_OP(gt, >);
1557       COMPARISON_OP(le, <=);
1558       COMPARISON_OP(ge, >=);
1559       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1560       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1561       NULL_COMPARISON_OP(null);
1562       NULL_COMPARISON_NOT_OP(nonnull);
1563 
1564       /* Goto pc at specified offset in switch table. */
1565 
1566       CASE(_tableswitch): {
1567           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1568           int32_t  key  = STACK_INT(-1);
1569           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1570           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1571           int32_t  skip;
1572           key -= low;
1573           skip = ((uint32_t) key > (uint32_t)(high - low))
1574                       ? Bytes::get_Java_u4((address)&lpc[0])
1575                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
1576           // Does this really need a full backedge check (osr?)
1577           address branch_pc = pc;
1578           UPDATE_PC_AND_TOS(skip, -1);
1579           DO_BACKEDGE_CHECKS(skip, branch_pc);
1580           CONTINUE;
1581       }
1582 
1583       /* Goto pc whose table entry matches specified key */
1584 
1585       CASE(_lookupswitch): {
1586           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1587           int32_t  key  = STACK_INT(-1);
1588           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1589           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1590           while (--npairs >= 0) {
1591               lpc += 2;
1592               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1593                   skip = Bytes::get_Java_u4((address)&lpc[1]);
1594                   break;
1595               }
1596           }
1597           address branch_pc = pc;
1598           UPDATE_PC_AND_TOS(skip, -1);
1599           DO_BACKEDGE_CHECKS(skip, branch_pc);
1600           CONTINUE;
1601       }
1602 
1603       CASE(_fcmpl):
1604       CASE(_fcmpg):
1605       {
1606           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1607                                         STACK_FLOAT(-1),
1608                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1609                         -2);
1610           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1611       }
1612 
1613       CASE(_dcmpl):
1614       CASE(_dcmpg):
1615       {
1616           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1617                                   STACK_DOUBLE(-1),
1618                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1619           MORE_STACK(-4); // Pop
1620           SET_STACK_INT(r, 0);
1621           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1622       }
1623 
1624       CASE(_lcmp):
1625       {
1626           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1627           MORE_STACK(-4);
1628           SET_STACK_INT(r, 0);
1629           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1630       }
1631 
1632 
1633       /* Return from a method */
1634 
1635       CASE(_areturn):
1636       CASE(_ireturn):
1637       CASE(_freturn):
1638       {
1639           // Allow a safepoint before returning to frame manager.
1640           SAFEPOINT;
1641 
1642           goto handle_return;
1643       }
1644 
1645       CASE(_lreturn):
1646       CASE(_dreturn):
1647       {
1648           // Allow a safepoint before returning to frame manager.
1649           SAFEPOINT;
1650           goto handle_return;
1651       }
1652 
1653       CASE(_return_register_finalizer): {
1654 
1655           oop rcvr = LOCALS_OBJECT(0);
1656           VERIFY_OOP(rcvr);
1657           if (rcvr->klass()->has_finalizer()) {
1658             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1659           }
1660           goto handle_return;
1661       }
1662       CASE(_return): {
1663 
1664           // Allow a safepoint before returning to frame manager.
1665           SAFEPOINT;
1666           goto handle_return;
1667       }
1668 
1669       /* Array access byte-codes */
1670 
1671       CASE(_fast_icaload): {
1672         // Custom fast access for iload,caload pair.
1673         arrayOop arrObj = (arrayOop) STACK_OBJECT(-1);
1674         jint index = LOCALS_INT(pc[1]);
1675         CHECK_NULL(arrObj);
1676         if ((uint32_t) index >= (uint32_t) arrObj->length()) {
1677           char message[jintAsStringSize];
1678           sprintf(message, "%d", index);
1679           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
1680         }
1681         SET_STACK_INT(*(jchar *)(((address) arrObj->base(T_CHAR)) + index * sizeof(jchar)), -1);
1682         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 0);
1683       }
1684       /* Every array access byte-code starts out like this */
1685 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1686 #define ARRAY_INTRO(arrayOff)                                                  \
1687       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1688       jint     index  = STACK_INT(arrayOff + 1);                               \
1689       char message[jintAsStringSize];                                          \
1690       CHECK_NULL(arrObj);                                                      \
1691       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1692           sprintf(message, "%d", index);                                       \
1693           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1694                         message);                                              \
1695       }
1696 
1697       /* 32-bit loads. These handle conversion from < 32-bit types */
1698 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1699       {                                                                               \
1700           ARRAY_INTRO(-2);                                                            \
1701           extra;                                                                      \
1702           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1703                            -2);                                                       \
1704           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1705       }
1706 
1707       /* 64-bit loads */
1708 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1709       {                                                                                    \
1710           ARRAY_INTRO(-2);                                                                 \
1711           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1712           extra;                                                                           \
1713           UPDATE_PC_AND_CONTINUE(1);                                            \
1714       }
1715 
1716       CASE(_iaload):
1717           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1718       CASE(_faload):
1719           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1720       CASE(_aaload):
1721           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
1722       CASE(_baload):
1723           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1724       CASE(_caload):
1725           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1726       CASE(_saload):
1727           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1728       CASE(_laload):
1729           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1730       CASE(_daload):
1731           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1732 
1733       /* 32-bit stores. These handle conversion to < 32-bit types */
1734 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1735       {                                                                              \
1736           ARRAY_INTRO(-3);                                                           \
1737           extra;                                                                     \
1738           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1739           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1740       }
1741 
1742       /* 64-bit stores */
1743 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1744       {                                                                              \
1745           ARRAY_INTRO(-4);                                                           \
1746           extra;                                                                     \
1747           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1748           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1749       }
1750 
1751       CASE(_iastore):
1752           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1753       CASE(_fastore):
1754           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1755       /*
1756        * This one looks different because of the assignability check
1757        */
1758       CASE(_aastore): {
1759           oop rhsObject = STACK_OBJECT(-1);
1760           VERIFY_OOP(rhsObject);
1761           ARRAY_INTRO( -3);
1762           // arrObj, index are set
1763           if (rhsObject != NULL) {
1764             /* Check assignability of rhsObject into arrObj */
1765             Klass* rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1766             Klass* elemKlassOop = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1767             //
1768             // Check for compatibilty. This check must not GC!!
1769             // Seems way more expensive now that we must dispatch
1770             //
1771             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->is_subtype_of(elemKlassOop)) { // ebx->is...
1772               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1773             }
1774           }
1775           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
1776           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
1777           *elem_loc = rhsObject;
1778           // Mark the card
1779           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
1780           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1781       }
1782       CASE(_bastore):
1783           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1784       CASE(_castore):
1785           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1786       CASE(_sastore):
1787           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1788       CASE(_lastore):
1789           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1790       CASE(_dastore):
1791           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1792 
1793       CASE(_arraylength):
1794       {
1795           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1796           CHECK_NULL(ary);
1797           SET_STACK_INT(ary->length(), -1);
1798           UPDATE_PC_AND_CONTINUE(1);
1799       }
1800 
1801       /* monitorenter and monitorexit for locking/unlocking an object */
1802 
1803       CASE(_monitorenter): {
1804         oop lockee = STACK_OBJECT(-1);
1805         // derefing's lockee ought to provoke implicit null check
1806         CHECK_NULL(lockee);
1807         // find a free monitor or one already allocated for this object
1808         // if we find a matching object then we need a new monitor
1809         // since this is recursive enter
1810         BasicObjectLock* limit = istate->monitor_base();
1811         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1812         BasicObjectLock* entry = NULL;
1813         while (most_recent != limit ) {
1814           if (most_recent->obj() == NULL) entry = most_recent;
1815           else if (most_recent->obj() == lockee) break;
1816           most_recent++;
1817         }
1818         if (entry != NULL) {
1819           entry->set_obj(lockee);
1820           markOop displaced = lockee->mark()->set_unlocked();
1821           entry->lock()->set_displaced_header(displaced);
1822           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1823             // Is it simple recursive case?
1824             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1825               entry->lock()->set_displaced_header(NULL);
1826             } else {
1827               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1828             }
1829           }
1830           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1831         } else {
1832           istate->set_msg(more_monitors);
1833           UPDATE_PC_AND_RETURN(0); // Re-execute
1834         }
1835       }
1836 
1837       CASE(_monitorexit): {
1838         oop lockee = STACK_OBJECT(-1);
1839         CHECK_NULL(lockee);
1840         // derefing's lockee ought to provoke implicit null check
1841         // find our monitor slot
1842         BasicObjectLock* limit = istate->monitor_base();
1843         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1844         while (most_recent != limit ) {
1845           if ((most_recent)->obj() == lockee) {
1846             BasicLock* lock = most_recent->lock();
1847             markOop header = lock->displaced_header();
1848             most_recent->set_obj(NULL);
1849             // If it isn't recursive we either must swap old header or call the runtime
1850             if (header != NULL) {
1851               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1852                 // restore object for the slow case
1853                 most_recent->set_obj(lockee);
1854                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1855               }
1856             }
1857             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1858           }
1859           most_recent++;
1860         }
1861         // Need to throw illegal monitor state exception
1862         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1863         ShouldNotReachHere();
1864       }
1865 
1866       /* All of the non-quick opcodes. */
1867 
1868       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1869        *  constant pool index in the instruction.
1870        */
1871       CASE(_getfield):
1872       CASE(_getstatic):
1873         {
1874           u2 index;
1875           ConstantPoolCacheEntry* cache;
1876           index = Bytes::get_native_u2(pc+1);
1877 
1878           // QQQ Need to make this as inlined as possible. Probably need to
1879           // split all the bytecode cases out so c++ compiler has a chance
1880           // for constant prop to fold everything possible away.
1881 
1882           cache = cp->entry_at(index);
1883           if (! cache->is_resolved((Bytecodes::Code) opcode)) {
1884             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code) opcode), handle_exception);
1885             cache = cp->entry_at(index);
1886           }
1887 
1888           MAYBE_POST_FIELD_ACCESS();
1889 
1890           oop obj;
1891           if ((Bytecodes::Code) opcode == Bytecodes::_getstatic) {
1892             Klass* k = cache->f1_as_klass();
1893             obj = k->java_mirror();
1894             MORE_STACK(1);  // Assume single slot push
1895           } else {
1896             obj = (oop) STACK_OBJECT(-1);
1897             CHECK_NULL(obj);
1898 
1899             // Check if we can rewrite non-volatile _getfield to one of the _fast_Xgetfield.
1900             if (! cache->is_volatile()) {
1901               // Rewrite current BC to _fast_Xgetfield.
1902               TosState tos_type = cache->flag_state();
1903               *pc = Bytecodes::_fast_agetfield + tosstate_to_bc_offset(tos_type);
1904             }
1905           }
1906 
1907           //
1908           // Now store the result on the stack
1909           //
1910           TosState tos_type = cache->flag_state();
1911           int field_offset = cache->f2_as_index();
1912           if (cache->is_volatile()) {
1913             switch (tos_type) {
1914             case atos:
1915               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1916               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1917               break;
1918             case itos:
1919               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1920               break;
1921             case ltos:
1922               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1923               MORE_STACK(1);
1924               break;
1925             case btos:
1926               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1927               break;
1928             case ctos:
1929               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1930               break;
1931             case stos:
1932               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1933               break;
1934             case ftos:
1935               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1936               break;
1937             case dtos:
1938               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1939               MORE_STACK(1);
1940               break;
1941             default:
1942               ShouldNotReachHere();
1943             }
1944           } else {
1945             switch (tos_type) {
1946             case atos:
1947               VERIFY_OOP(obj->obj_field(field_offset));
1948               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1949               break;
1950             case itos:
1951               SET_STACK_INT(obj->int_field(field_offset), -1);
1952               break;
1953             case ltos:
1954               SET_STACK_LONG(obj->long_field(field_offset), 0);
1955               MORE_STACK(1);
1956               break;
1957             case btos:
1958               SET_STACK_INT(obj->byte_field(field_offset), -1);
1959               break;
1960             case ctos:
1961               SET_STACK_INT(obj->char_field(field_offset), -1);
1962               break;
1963             case stos:
1964               SET_STACK_INT(obj->short_field(field_offset), -1);
1965               break;
1966             case ftos:
1967               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1968               break;
1969             case dtos:
1970               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1971               MORE_STACK(1);
1972               break;
1973             default:
1974               ShouldNotReachHere();
1975             }
1976           }
1977 
1978           UPDATE_PC_AND_CONTINUE(3);
1979          }
1980 
1981       CASE(_putfield):
1982       CASE(_putstatic):
1983         {
1984           u2 index = Bytes::get_native_u2(pc+1);
1985           ConstantPoolCacheEntry* cache = cp->entry_at(index);
1986           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1987             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1988                     handle_exception);
1989             cache = cp->entry_at(index);
1990           }
1991 
1992           MAYBE_POST_FIELD_MODIFICATION();
1993 
1994           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1995           // out so c++ compiler has a chance for constant prop to fold everything possible away.
1996 
1997           oop obj;
1998           int count;
1999           TosState tos_type = cache->flag_state();
2000 
2001           count = -1;
2002           if (tos_type == ltos || tos_type == dtos) {
2003             --count;
2004           }
2005           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2006             Klass* k = cache->f1_as_klass();
2007             obj = k->java_mirror();
2008           } else {
2009             --count;
2010             obj = (oop) STACK_OBJECT(count);
2011             CHECK_NULL(obj);
2012 
2013             // Check if we can rewrite non-volatile _putfield to one of the _fast_Xputfield.
2014             if (! cache->is_volatile()) {
2015               // Rewrite current BC to _fast_Xputfield.
2016               TosState tos_type = cache->flag_state();
2017               *pc = Bytecodes::_fast_aputfield + tosstate_to_bc_offset(tos_type);
2018             }
2019           }
2020 
2021           //
2022           // Now store the result
2023           //
2024           int field_offset = cache->f2_as_index();
2025           if (cache->is_volatile()) {
2026             switch (tos_type) {
2027             case itos:
2028               obj->release_int_field_put(field_offset, STACK_INT(-1));
2029               break;
2030             case atos:
2031               VERIFY_OOP(STACK_OBJECT(-1));
2032               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2033               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
2034               break;
2035             case btos:
2036               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2037               break;
2038             case ltos:
2039               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2040               break;
2041             case ctos:
2042               obj->release_char_field_put(field_offset, STACK_INT(-1));
2043               break;
2044             case stos:
2045               obj->release_short_field_put(field_offset, STACK_INT(-1));
2046               break;
2047             case ftos:
2048               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2049               break;
2050             case dtos:
2051               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2052               break;
2053             default:
2054               ShouldNotReachHere();
2055             }
2056             OrderAccess::storeload();
2057           } else {
2058             switch (tos_type) {
2059             case itos:
2060               obj->int_field_put(field_offset, STACK_INT(-1));
2061               break;
2062             case atos:
2063               VERIFY_OOP(STACK_OBJECT(-1));
2064               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2065               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
2066               break;
2067             case btos:
2068               obj->byte_field_put(field_offset, STACK_INT(-1));
2069               break;
2070             case ltos:
2071               obj->long_field_put(field_offset, STACK_LONG(-1));
2072               break;
2073             case ctos:
2074               obj->char_field_put(field_offset, STACK_INT(-1));
2075               break;
2076             case stos:
2077               obj->short_field_put(field_offset, STACK_INT(-1));
2078               break;
2079             case ftos:
2080               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2081               break;
2082             case dtos:
2083               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2084               break;
2085             default:
2086               ShouldNotReachHere();
2087             }
2088           }
2089 
2090           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2091         }
2092 
2093       CASE(_new): {
2094         u2 index = Bytes::get_Java_u2(pc+1);
2095         ConstantPool* constants = istate->method()->constants();
2096         if (!constants->tag_at(index).is_unresolved_klass()) {
2097           // Make sure klass is initialized and doesn't have a finalizer
2098           Klass* entry = constants->slot_at(index).get_klass();
2099           assert(entry->is_klass(), "Should be resolved klass");
2100           Klass* k_entry = (Klass*) entry;
2101           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
2102           InstanceKlass* ik = (InstanceKlass*) k_entry;
2103           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2104             size_t obj_size = ik->size_helper();
2105             oop result = NULL;
2106             // If the TLAB isn't pre-zeroed then we'll have to do it
2107             bool need_zero = !ZeroTLAB;
2108             if (UseTLAB) {
2109               result = (oop) THREAD->tlab().allocate(obj_size);
2110             }
2111             if (result == NULL) {
2112               need_zero = true;
2113               // Try allocate in shared eden
2114         retry:
2115               HeapWord* compare_to = *Universe::heap()->top_addr();
2116               HeapWord* new_top = compare_to + obj_size;
2117               if (new_top <= *Universe::heap()->end_addr()) {
2118                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2119                   goto retry;
2120                 }
2121                 result = (oop) compare_to;
2122               }
2123             }
2124             if (result != NULL) {
2125               // Initialize object (if nonzero size and need) and then the header
2126               if (need_zero ) {
2127                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2128                 obj_size -= sizeof(oopDesc) / oopSize;
2129                 if (obj_size > 0 ) {
2130                   memset(to_zero, 0, obj_size * HeapWordSize);
2131                 }
2132               }
2133               if (UseBiasedLocking) {
2134                 result->set_mark(ik->prototype_header());
2135               } else {
2136                 result->set_mark(markOopDesc::prototype());
2137               }
2138               result->set_klass_gap(0);
2139               result->set_klass(k_entry);
2140               SET_STACK_OBJECT(result, 0);
2141               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2142             }
2143           }
2144         }
2145         // Slow case allocation
2146         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2147                 handle_exception);
2148         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2149         THREAD->set_vm_result(NULL);
2150         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2151       }
2152       CASE(_anewarray): {
2153         u2 index = Bytes::get_Java_u2(pc+1);
2154         jint size = STACK_INT(-1);
2155         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2156                 handle_exception);
2157         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2158         THREAD->set_vm_result(NULL);
2159         UPDATE_PC_AND_CONTINUE(3);
2160       }
2161       CASE(_multianewarray): {
2162         jint dims = *(pc+3);
2163         jint size = STACK_INT(-1);
2164         // stack grows down, dimensions are up!
2165         jint *dimarray =
2166                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2167                                       Interpreter::stackElementWords-1];
2168         //adjust pointer to start of stack element
2169         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2170                 handle_exception);
2171         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2172         THREAD->set_vm_result(NULL);
2173         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2174       }
2175       CASE(_checkcast):
2176           if (STACK_OBJECT(-1) != NULL) {
2177             VERIFY_OOP(STACK_OBJECT(-1));
2178             u2 index = Bytes::get_Java_u2(pc+1);
2179             if (ProfileInterpreter) {
2180               // needs Profile_checkcast QQQ
2181               ShouldNotReachHere();
2182             }
2183             // Constant pool may have actual klass or unresolved klass. If it is
2184             // unresolved we must resolve it
2185             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2186               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2187             }
2188             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2189             Klass* objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
2190             //
2191             // Check for compatibilty. This check must not GC!!
2192             // Seems way more expensive now that we must dispatch
2193             //
2194             if (objKlassOop != klassOf &&
2195                 !objKlassOop->is_subtype_of(klassOf)) {
2196               ResourceMark rm(THREAD);
2197               const char* objName = objKlassOop->external_name();
2198               const char* klassName = klassOf->external_name();
2199               char* message = SharedRuntime::generate_class_cast_message(
2200                 objName, klassName);
2201               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2202             }
2203           } else {
2204             if (UncommonNullCast) {
2205 //              istate->method()->set_null_cast_seen();
2206 // [RGV] Not sure what to do here!
2207 
2208             }
2209           }
2210           UPDATE_PC_AND_CONTINUE(3);
2211 
2212       CASE(_instanceof):
2213           if (STACK_OBJECT(-1) == NULL) {
2214             SET_STACK_INT(0, -1);
2215           } else {
2216             VERIFY_OOP(STACK_OBJECT(-1));
2217             u2 index = Bytes::get_Java_u2(pc+1);
2218             // Constant pool may have actual klass or unresolved klass. If it is
2219             // unresolved we must resolve it
2220             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2221               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2222             }
2223             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2224             Klass* objKlassOop = STACK_OBJECT(-1)->klass();
2225             //
2226             // Check for compatibilty. This check must not GC!!
2227             // Seems way more expensive now that we must dispatch
2228             //
2229             if ( objKlassOop == klassOf || objKlassOop->is_subtype_of(klassOf)) {
2230               SET_STACK_INT(1, -1);
2231             } else {
2232               SET_STACK_INT(0, -1);
2233             }
2234           }
2235           UPDATE_PC_AND_CONTINUE(3);
2236 
2237       CASE(_ldc_w):
2238       CASE(_ldc):
2239         {
2240           u2 index;
2241           bool wide = false;
2242           int incr = 2; // frequent case
2243           if (opcode == Bytecodes::_ldc) {
2244             index = pc[1];
2245           } else {
2246             index = Bytes::get_Java_u2(pc+1);
2247             incr = 3;
2248             wide = true;
2249           }
2250 
2251           ConstantPool* constants = METHOD->constants();
2252           switch (constants->tag_at(index).value()) {
2253           case JVM_CONSTANT_Integer:
2254             SET_STACK_INT(constants->int_at(index), 0);
2255             break;
2256 
2257           case JVM_CONSTANT_Float:
2258             SET_STACK_FLOAT(constants->float_at(index), 0);
2259             break;
2260 
2261           case JVM_CONSTANT_String:
2262             {
2263               oop result = constants->resolved_references()->obj_at(index);
2264               if (result == NULL) {
2265                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2266                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2267                 THREAD->set_vm_result(NULL);
2268               } else {
2269                 VERIFY_OOP(result);
2270                 SET_STACK_OBJECT(result, 0);
2271               }
2272             break;
2273             }
2274 
2275           case JVM_CONSTANT_Class:
2276             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2277             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2278             break;
2279 
2280           case JVM_CONSTANT_UnresolvedClass:
2281           case JVM_CONSTANT_UnresolvedClassInError:
2282             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2283             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2284             THREAD->set_vm_result(NULL);
2285             break;
2286 
2287           default:  ShouldNotReachHere();
2288           }
2289           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2290         }
2291 
2292       CASE(_ldc2_w):
2293         {
2294           u2 index = Bytes::get_Java_u2(pc+1);
2295 
2296           ConstantPool* constants = METHOD->constants();
2297           switch (constants->tag_at(index).value()) {
2298 
2299           case JVM_CONSTANT_Long:
2300              SET_STACK_LONG(constants->long_at(index), 1);
2301             break;
2302 
2303           case JVM_CONSTANT_Double:
2304              SET_STACK_DOUBLE(constants->double_at(index), 1);
2305             break;
2306           default:  ShouldNotReachHere();
2307           }
2308           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2309         }
2310 
2311       CASE(_fast_aldc_w):
2312       CASE(_fast_aldc): {
2313         u2 index;
2314         int incr;
2315         if (opcode == Bytecodes::_fast_aldc) {
2316           index = pc[1];
2317           incr = 2;
2318         } else {
2319           index = Bytes::get_native_u2(pc+1);
2320           incr = 3;
2321         }
2322 
2323         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2324         // This kind of CP cache entry does not need to match the flags byte, because
2325         // there is a 1-1 relation between bytecode type and CP entry type.
2326         ConstantPool* constants = METHOD->constants();
2327         oop result = constants->resolved_references()->obj_at(index);
2328         if (result == NULL) {
2329           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2330                   handle_exception);
2331           result = THREAD->vm_result();
2332         }
2333 
2334         VERIFY_OOP(result);
2335         SET_STACK_OBJECT(result, 0);
2336         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2337       }
2338 
2339       CASE(_invokedynamic): {
2340 
2341         if (!EnableInvokeDynamic) {
2342           // We should not encounter this bytecode if !EnableInvokeDynamic.
2343           // The verifier will stop it.  However, if we get past the verifier,
2344           // this will stop the thread in a reasonable way, without crashing the JVM.
2345           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2346                   handle_exception);
2347           ShouldNotReachHere();
2348         }
2349 
2350         u4 index = Bytes::get_native_u4(pc+1);
2351         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2352 
2353         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2354         // This kind of CP cache entry does not need to match the flags byte, because
2355         // there is a 1-1 relation between bytecode type and CP entry type.
2356         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2357           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2358                   handle_exception);
2359           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2360         }
2361 
2362         Method* method = cache->f1_as_method();
2363         VERIFY_OOP(method);
2364 
2365         if (cache->has_appendix()) {
2366           ConstantPool* constants = METHOD->constants();
2367           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2368           MORE_STACK(1);
2369         }
2370 
2371         istate->set_msg(call_method);
2372         istate->set_callee(method);
2373         istate->set_callee_entry_point(method->from_interpreted_entry());
2374         istate->set_bcp_advance(5);
2375 
2376         UPDATE_PC_AND_RETURN(0); // I'll be back...
2377       }
2378 
2379       CASE(_invokehandle): {
2380 
2381         if (!EnableInvokeDynamic) {
2382           ShouldNotReachHere();
2383         }
2384 
2385         u2 index = Bytes::get_native_u2(pc+1);
2386         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2387 
2388         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2389           CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
2390                   handle_exception);
2391           cache = cp->entry_at(index);
2392         }
2393 
2394         Method* method = cache->f1_as_method();
2395 
2396         VERIFY_OOP(method);
2397 
2398         if (cache->has_appendix()) {
2399           ConstantPool* constants = METHOD->constants();
2400           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2401           MORE_STACK(1);
2402         }
2403 
2404         istate->set_msg(call_method);
2405         istate->set_callee(method);
2406         istate->set_callee_entry_point(method->from_interpreted_entry());
2407         istate->set_bcp_advance(3);
2408 
2409         UPDATE_PC_AND_RETURN(0); // I'll be back...
2410       }
2411 
2412       CASE(_invokeinterface): {
2413         u2 index = Bytes::get_native_u2(pc+1);
2414 
2415         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2416         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2417 
2418         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2419         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2420           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2421                   handle_exception);
2422           cache = cp->entry_at(index);
2423         }
2424 
2425         istate->set_msg(call_method);
2426 
2427         // Special case of invokeinterface called for virtual method of
2428         // java.lang.Object.  See cpCacheOop.cpp for details.
2429         // This code isn't produced by javac, but could be produced by
2430         // another compliant java compiler.
2431         if (cache->is_forced_virtual()) {
2432           Method* callee;
2433           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2434           if (cache->is_vfinal()) {
2435             callee = cache->f2_as_vfinal_method();
2436           } else {
2437             // get receiver
2438             int parms = cache->parameter_size();
2439             // Same comments as invokevirtual apply here
2440             VERIFY_OOP(STACK_OBJECT(-parms));
2441             InstanceKlass* rcvrKlass = (InstanceKlass*)
2442                                  STACK_OBJECT(-parms)->klass();
2443             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2444           }
2445           istate->set_callee(callee);
2446           istate->set_callee_entry_point(callee->from_interpreted_entry());
2447 #ifdef VM_JVMTI
2448           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2449             istate->set_callee_entry_point(callee->interpreter_entry());
2450           }
2451 #endif /* VM_JVMTI */
2452           istate->set_bcp_advance(5);
2453           UPDATE_PC_AND_RETURN(0); // I'll be back...
2454         }
2455 
2456         // this could definitely be cleaned up QQQ
2457         Method* callee;
2458         Klass* iclass = cache->f1_as_klass();
2459         // InstanceKlass* interface = (InstanceKlass*) iclass;
2460         // get receiver
2461         int parms = cache->parameter_size();
2462         oop rcvr = STACK_OBJECT(-parms);
2463         CHECK_NULL(rcvr);
2464         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2465         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2466         int i;
2467         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2468           if (ki->interface_klass() == iclass) break;
2469         }
2470         // If the interface isn't found, this class doesn't implement this
2471         // interface.  The link resolver checks this but only for the first
2472         // time this interface is called.
2473         if (i == int2->itable_length()) {
2474           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2475         }
2476         int mindex = cache->f2_as_index();
2477         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2478         callee = im[mindex].method();
2479         if (callee == NULL) {
2480           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2481         }
2482 
2483         istate->set_callee(callee);
2484         istate->set_callee_entry_point(callee->from_interpreted_entry());
2485 #ifdef VM_JVMTI
2486         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2487           istate->set_callee_entry_point(callee->interpreter_entry());
2488         }
2489 #endif /* VM_JVMTI */
2490         istate->set_bcp_advance(5);
2491         UPDATE_PC_AND_RETURN(0); // I'll be back...
2492       }
2493 
2494       CASE(_invokevirtual):
2495       CASE(_invokespecial):
2496       CASE(_invokestatic): {
2497         u2 index = Bytes::get_native_u2(pc+1);
2498 
2499         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2500         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2501         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2502 
2503         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2504           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2505                   handle_exception);
2506           cache = cp->entry_at(index);
2507         }
2508 
2509         istate->set_msg(call_method);
2510         {
2511           Method* callee;
2512           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2513             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2514             if (cache->is_vfinal()) {
2515               callee = cache->f2_as_vfinal_method();
2516               // Rewrite to _fast_invokevfinal.
2517               *pc = Bytecodes::_fast_invokevfinal;
2518             }
2519             else {
2520               // get receiver
2521               int parms = cache->parameter_size();
2522               // this works but needs a resourcemark and seems to create a vtable on every call:
2523               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2524               //
2525               // this fails with an assert
2526               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2527               // but this works
2528               VERIFY_OOP(STACK_OBJECT(-parms));
2529               InstanceKlass* rcvrKlass = (InstanceKlass*) STACK_OBJECT(-parms)->klass();
2530               /*
2531                 Executing this code in java.lang.String:
2532                     public String(char value[]) {
2533                           this.count = value.length;
2534                           this.value = (char[])value.clone();
2535                      }
2536 
2537                  a find on rcvr->klass() reports:
2538                  {type array char}{type array class}
2539                   - klass: {other class}
2540 
2541                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2542                   because rcvr->klass()->oop_is_instance() == 0
2543                   However it seems to have a vtable in the right location. Huh?
2544 
2545               */
2546               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2547             }
2548           } else {
2549             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2550               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2551             }
2552             callee = cache->f1_as_method();
2553           }
2554 
2555           istate->set_callee(callee);
2556           istate->set_callee_entry_point(callee->from_interpreted_entry());
2557 #ifdef VM_JVMTI
2558           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2559             istate->set_callee_entry_point(callee->interpreter_entry());
2560           }
2561 #endif /* VM_JVMTI */
2562           istate->set_bcp_advance(3);
2563           UPDATE_PC_AND_RETURN(0); // I'll be back...
2564         }
2565       }
2566 
2567       /* Allocate memory for a new java object. */
2568 
2569       CASE(_newarray): {
2570         BasicType atype = (BasicType) *(pc+1);
2571         jint size = STACK_INT(-1);
2572         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2573                 handle_exception);
2574         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2575         THREAD->set_vm_result(NULL);
2576 
2577         UPDATE_PC_AND_CONTINUE(2);
2578       }
2579 
2580       /* Throw an exception. */
2581 
2582       CASE(_athrow): {
2583           oop except_oop = STACK_OBJECT(-1);
2584           CHECK_NULL(except_oop);
2585           // set pending_exception so we use common code
2586           THREAD->set_pending_exception(except_oop, NULL, 0);
2587           goto handle_exception;
2588       }
2589 
2590       /* goto and jsr. They are exactly the same except jsr pushes
2591        * the address of the next instruction first.
2592        */
2593 
2594       CASE(_jsr): {
2595           /* push bytecode index on stack */
2596           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2597           MORE_STACK(1);
2598           /* FALL THROUGH */
2599       }
2600 
2601       CASE(_goto):
2602       {
2603           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2604           address branch_pc = pc;
2605           UPDATE_PC(offset);
2606           DO_BACKEDGE_CHECKS(offset, branch_pc);
2607           CONTINUE;
2608       }
2609 
2610       CASE(_jsr_w): {
2611           /* push return address on the stack */
2612           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2613           MORE_STACK(1);
2614           /* FALL THROUGH */
2615       }
2616 
2617       CASE(_goto_w):
2618       {
2619           int32_t offset = Bytes::get_Java_u4(pc + 1);
2620           address branch_pc = pc;
2621           UPDATE_PC(offset);
2622           DO_BACKEDGE_CHECKS(offset, branch_pc);
2623           CONTINUE;
2624       }
2625 
2626       /* return from a jsr or jsr_w */
2627 
2628       CASE(_ret): {
2629           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2630           UPDATE_PC_AND_CONTINUE(0);
2631       }
2632 
2633       /* debugger breakpoint */
2634 
2635       CASE(_breakpoint): {
2636           Bytecodes::Code original_bytecode;
2637           DECACHE_STATE();
2638           SET_LAST_JAVA_FRAME();
2639           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2640                               METHOD, pc);
2641           RESET_LAST_JAVA_FRAME();
2642           CACHE_STATE();
2643           if (THREAD->has_pending_exception()) goto handle_exception;
2644             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2645                                                     handle_exception);
2646 
2647           opcode = (jubyte)original_bytecode;
2648           goto opcode_switch;
2649       }
2650       CASE(_fast_agetfield): {
2651         u2 index = Bytes::get_native_u2(pc+1);
2652         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2653         int field_offset = cache->f2_as_index();
2654 
2655         MAYBE_POST_FIELD_ACCESS();
2656 
2657         oop obj = (oop) STACK_OBJECT(-1);
2658         CHECK_NULL(obj);
2659 
2660         VERIFY_OOP(obj->obj_field(field_offset));
2661         SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2662 
2663         UPDATE_PC_AND_CONTINUE(3);
2664       }
2665       CASE(_fast_bgetfield): {
2666         u2 index = Bytes::get_native_u2(pc+1);
2667         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2668         int field_offset = cache->f2_as_index();
2669 
2670         MAYBE_POST_FIELD_ACCESS();
2671 
2672         oop obj = (oop) STACK_OBJECT(-1);
2673         CHECK_NULL(obj);
2674 
2675         SET_STACK_INT(obj->byte_field(field_offset), -1);
2676 
2677         UPDATE_PC_AND_CONTINUE(3);
2678       }
2679       CASE(_fast_cgetfield): {
2680         u2 index = Bytes::get_native_u2(pc+1);
2681         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2682         int field_offset = cache->f2_as_index();
2683 
2684         MAYBE_POST_FIELD_ACCESS();
2685 
2686         oop obj = (oop) STACK_OBJECT(-1);
2687         CHECK_NULL(obj);
2688 
2689         SET_STACK_INT(obj->char_field(field_offset), -1);
2690 
2691         UPDATE_PC_AND_CONTINUE(3);
2692       }
2693       CASE(_fast_dgetfield): {
2694         u2 index = Bytes::get_native_u2(pc+1);
2695         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2696         int field_offset = cache->f2_as_index();
2697 
2698         MAYBE_POST_FIELD_ACCESS();
2699 
2700         oop obj = (oop) STACK_OBJECT(-1);
2701         CHECK_NULL(obj);
2702 
2703         SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2704         MORE_STACK(1);
2705 
2706         UPDATE_PC_AND_CONTINUE(3);
2707       }
2708       CASE(_fast_fgetfield): {
2709         u2 index = Bytes::get_native_u2(pc+1);
2710         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2711         int field_offset = cache->f2_as_index();
2712 
2713         MAYBE_POST_FIELD_ACCESS();
2714 
2715         oop obj = (oop) STACK_OBJECT(-1);
2716         CHECK_NULL(obj);
2717 
2718         SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2719 
2720         UPDATE_PC_AND_CONTINUE(3);
2721       }
2722       CASE(_fast_igetfield): {
2723         u2 index = Bytes::get_native_u2(pc+1);
2724         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2725         int field_offset = cache->f2_as_index();
2726 
2727         MAYBE_POST_FIELD_ACCESS();
2728 
2729         oop obj = (oop) STACK_OBJECT(-1);
2730         CHECK_NULL(obj);
2731 
2732         SET_STACK_INT(obj->int_field(field_offset), -1);
2733 
2734         UPDATE_PC_AND_CONTINUE(3);
2735       }
2736       CASE(_fast_lgetfield): {
2737         u2 index = Bytes::get_native_u2(pc+1);
2738         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2739         int field_offset = cache->f2_as_index();
2740 
2741         MAYBE_POST_FIELD_ACCESS();
2742 
2743         oop obj = (oop) STACK_OBJECT(-1);
2744         CHECK_NULL(obj);
2745 
2746         SET_STACK_LONG(obj->long_field(field_offset), 0);
2747         MORE_STACK(1);
2748 
2749         UPDATE_PC_AND_CONTINUE(3);
2750       }
2751       CASE(_fast_sgetfield): {
2752         u2 index = Bytes::get_native_u2(pc+1);
2753         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2754         int field_offset = cache->f2_as_index();
2755 
2756         MAYBE_POST_FIELD_ACCESS();
2757 
2758         oop obj = (oop) STACK_OBJECT(-1);
2759         CHECK_NULL(obj);
2760 
2761         SET_STACK_INT(obj->short_field(field_offset), -1);
2762 
2763         UPDATE_PC_AND_CONTINUE(3);
2764       }
2765       CASE(_fast_aputfield): {
2766         u2 index = Bytes::get_native_u2(pc+1);
2767         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2768 
2769         oop obj = (oop) STACK_OBJECT(-2);
2770         CHECK_NULL(obj);
2771 
2772         MAYBE_POST_FIELD_MODIFICATION();
2773 
2774         int field_offset = cache->f2_as_index();
2775         VERIFY_OOP(STACK_OBJECT(-1));
2776         obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2777         OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
2778 
2779         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2780       }
2781       CASE(_fast_bputfield): {
2782         u2 index = Bytes::get_native_u2(pc+1);
2783         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2784 
2785         oop obj = (oop) STACK_OBJECT(-2);
2786         CHECK_NULL(obj);
2787 
2788         MAYBE_POST_FIELD_MODIFICATION();
2789 
2790         int field_offset = cache->f2_as_index();
2791         obj->byte_field_put(field_offset, STACK_INT(-1));
2792 
2793         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2794       }
2795       CASE(_fast_cputfield): {
2796         u2 index = Bytes::get_native_u2(pc+1);
2797         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2798 
2799         oop obj = (oop) STACK_OBJECT(-2);
2800         CHECK_NULL(obj);
2801 
2802         MAYBE_POST_FIELD_MODIFICATION();
2803 
2804         int field_offset = cache->f2_as_index();
2805         obj->char_field_put(field_offset, STACK_INT(-1));
2806 
2807         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2808       }
2809       CASE(_fast_dputfield): {
2810         u2 index = Bytes::get_native_u2(pc+1);
2811         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2812 
2813         oop obj = (oop) STACK_OBJECT(-3);
2814         CHECK_NULL(obj);
2815 
2816         MAYBE_POST_FIELD_MODIFICATION();
2817 
2818         int field_offset = cache->f2_as_index();
2819         obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2820 
2821         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3);
2822       }
2823       CASE(_fast_fputfield): {
2824         u2 index = Bytes::get_native_u2(pc+1);
2825         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2826 
2827         oop obj = (oop) STACK_OBJECT(-2);
2828         CHECK_NULL(obj);
2829 
2830         MAYBE_POST_FIELD_MODIFICATION();
2831 
2832         int field_offset = cache->f2_as_index();
2833         obj->float_field_put(field_offset, STACK_FLOAT(-1));
2834 
2835         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2836       }
2837       CASE(_fast_iputfield): {
2838         u2 index = Bytes::get_native_u2(pc+1);
2839         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2840 
2841         oop obj = (oop) STACK_OBJECT(-2);
2842         CHECK_NULL(obj);
2843 
2844         MAYBE_POST_FIELD_MODIFICATION();
2845 
2846         int field_offset = cache->f2_as_index();
2847         obj->int_field_put(field_offset, STACK_INT(-1));
2848 
2849         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2850       }
2851       CASE(_fast_lputfield): {
2852         u2 index = Bytes::get_native_u2(pc+1);
2853         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2854 
2855         oop obj = (oop) STACK_OBJECT(-3);
2856         CHECK_NULL(obj);
2857 
2858         MAYBE_POST_FIELD_MODIFICATION();
2859 
2860         int field_offset = cache->f2_as_index();
2861         obj->long_field_put(field_offset, STACK_LONG(-1));
2862 
2863         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3);
2864       }
2865       CASE(_fast_sputfield): {
2866         u2 index = Bytes::get_native_u2(pc+1);
2867         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2868 
2869         oop obj = (oop) STACK_OBJECT(-2);
2870         CHECK_NULL(obj);
2871 
2872         MAYBE_POST_FIELD_MODIFICATION();
2873 
2874         int field_offset = cache->f2_as_index();
2875         obj->short_field_put(field_offset, STACK_INT(-1));
2876 
2877         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2878       }
2879       CASE(_fast_aload_0): {
2880         VERIFY_OOP(LOCALS_OBJECT(0));
2881         SET_STACK_OBJECT(LOCALS_OBJECT(0), 0);
2882         UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
2883       }
2884       CASE(_fast_aaccess_0): {
2885         u2 index = Bytes::get_native_u2(pc+2);
2886         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2887         int field_offset = cache->f2_as_index();
2888 
2889         VERIFY_OOP(LOCALS_OBJECT(0));
2890 
2891         MAYBE_POST_FIELD_ACCESS();
2892 
2893         oop obj = (oop) LOCALS_OBJECT(0);
2894         CHECK_NULL(obj);
2895 
2896         VERIFY_OOP(obj->obj_field(field_offset));
2897         SET_STACK_OBJECT(obj->obj_field(field_offset), 0);
2898 
2899         UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2900       }
2901       CASE(_fast_faccess_0): {
2902         u2 index = Bytes::get_native_u2(pc+2);
2903         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2904         int field_offset = cache->f2_as_index();
2905 
2906         VERIFY_OOP(LOCALS_OBJECT(0));
2907 
2908         MAYBE_POST_FIELD_ACCESS();
2909 
2910         oop obj = (oop) LOCALS_OBJECT(0);
2911         CHECK_NULL(obj);
2912 
2913         SET_STACK_INT(obj->int_field(field_offset), 0);
2914 
2915         UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2916       }
2917       CASE(_fast_iaccess_0): {
2918         u2 index = Bytes::get_native_u2(pc+2);
2919         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2920         int field_offset = cache->f2_as_index();
2921 
2922         VERIFY_OOP(LOCALS_OBJECT(0));
2923 
2924         MAYBE_POST_FIELD_ACCESS();
2925 
2926         oop obj = (oop) LOCALS_OBJECT(0);
2927         CHECK_NULL(obj);
2928 
2929         SET_STACK_FLOAT(obj->float_field(field_offset), 0);
2930 
2931         UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2932       }
2933       CASE(_fast_invokevfinal): {
2934         u2 index = Bytes::get_native_u2(pc+1);
2935         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2936 
2937         assert (cache->is_resolved(Bytecodes::_invokevirtual), "Should be resolved before rewriting");
2938 
2939         istate->set_msg(call_method);
2940 
2941         CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2942         Method* callee = cache->f2_as_vfinal_method();
2943         istate->set_callee(callee);
2944         istate->set_callee_entry_point(callee->from_interpreted_entry());
2945 #ifdef VM_JVMTI
2946         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2947           istate->set_callee_entry_point(callee->interpreter_entry());
2948         }
2949 #endif /* VM_JVMTI */
2950         istate->set_bcp_advance(3);
2951         UPDATE_PC_AND_RETURN(0); // I'll be back...
2952       }
2953       DEFAULT:
2954           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2955                         Bytecodes::name((Bytecodes::Code)opcode)));
2956           goto finish;
2957 
2958       } /* switch(opc) */
2959 
2960 
2961 #ifdef USELABELS
2962     check_for_exception:
2963 #endif
2964     {
2965       if (!THREAD->has_pending_exception()) {
2966         CONTINUE;
2967       }
2968       /* We will be gcsafe soon, so flush our state. */
2969       DECACHE_PC();
2970       goto handle_exception;
2971     }
2972   do_continue: ;
2973 
2974   } /* while (1) interpreter loop */
2975 
2976 
2977   // An exception exists in the thread state see whether this activation can handle it
2978   handle_exception: {
2979 
2980     HandleMarkCleaner __hmc(THREAD);
2981     Handle except_oop(THREAD, THREAD->pending_exception());
2982     // Prevent any subsequent HandleMarkCleaner in the VM
2983     // from freeing the except_oop handle.
2984     HandleMark __hm(THREAD);
2985 
2986     THREAD->clear_pending_exception();
2987     assert(except_oop(), "No exception to process");
2988     intptr_t continuation_bci;
2989     // expression stack is emptied
2990     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2991     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2992             handle_exception);
2993 
2994     except_oop = THREAD->vm_result();
2995     THREAD->set_vm_result(NULL);
2996     if (continuation_bci >= 0) {
2997       // Place exception on top of stack
2998       SET_STACK_OBJECT(except_oop(), 0);
2999       MORE_STACK(1);
3000       pc = METHOD->code_base() + continuation_bci;
3001       if (TraceExceptions) {
3002         ttyLocker ttyl;
3003         ResourceMark rm;
3004         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
3005         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
3006         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
3007                       pc - (intptr_t)METHOD->code_base(),
3008                       continuation_bci, THREAD);
3009       }
3010       // for AbortVMOnException flag
3011       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
3012       goto run;
3013     }
3014     if (TraceExceptions) {
3015       ttyLocker ttyl;
3016       ResourceMark rm;
3017       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
3018       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
3019       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
3020                     pc  - (intptr_t) METHOD->code_base(),
3021                     THREAD);
3022     }
3023     // for AbortVMOnException flag
3024     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
3025     // No handler in this activation, unwind and try again
3026     THREAD->set_pending_exception(except_oop(), NULL, 0);
3027     goto handle_return;
3028   }  /* handle_exception: */
3029 
3030 
3031 
3032   // Return from an interpreter invocation with the result of the interpretation
3033   // on the top of the Java Stack (or a pending exception)
3034 
3035 handle_Pop_Frame:
3036 
3037   // We don't really do anything special here except we must be aware
3038   // that we can get here without ever locking the method (if sync).
3039   // Also we skip the notification of the exit.
3040 
3041   istate->set_msg(popping_frame);
3042   // Clear pending so while the pop is in process
3043   // we don't start another one if a call_vm is done.
3044   THREAD->clr_pop_frame_pending();
3045   // Let interpreter (only) see the we're in the process of popping a frame
3046   THREAD->set_pop_frame_in_process();
3047 
3048 handle_return:
3049   {
3050     DECACHE_STATE();
3051 
3052     bool suppress_error = istate->msg() == popping_frame;
3053     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
3054     Handle original_exception(THREAD, THREAD->pending_exception());
3055     Handle illegal_state_oop(THREAD, NULL);
3056 
3057     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
3058     // in any following VM entries from freeing our live handles, but illegal_state_oop
3059     // isn't really allocated yet and so doesn't become live until later and
3060     // in unpredicatable places. Instead we must protect the places where we enter the
3061     // VM. It would be much simpler (and safer) if we could allocate a real handle with
3062     // a NULL oop in it and then overwrite the oop later as needed. This isn't
3063     // unfortunately isn't possible.
3064 
3065     THREAD->clear_pending_exception();
3066 
3067     //
3068     // As far as we are concerned we have returned. If we have a pending exception
3069     // that will be returned as this invocation's result. However if we get any
3070     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
3071     // will be our final result (i.e. monitor exception trumps a pending exception).
3072     //
3073 
3074     // If we never locked the method (or really passed the point where we would have),
3075     // there is no need to unlock it (or look for other monitors), since that
3076     // could not have happened.
3077 
3078     if (THREAD->do_not_unlock()) {
3079 
3080       // Never locked, reset the flag now because obviously any caller must
3081       // have passed their point of locking for us to have gotten here.
3082 
3083       THREAD->clr_do_not_unlock();
3084     } else {
3085       // At this point we consider that we have returned. We now check that the
3086       // locks were properly block structured. If we find that they were not
3087       // used properly we will return with an illegal monitor exception.
3088       // The exception is checked by the caller not the callee since this
3089       // checking is considered to be part of the invocation and therefore
3090       // in the callers scope (JVM spec 8.13).
3091       //
3092       // Another weird thing to watch for is if the method was locked
3093       // recursively and then not exited properly. This means we must
3094       // examine all the entries in reverse time(and stack) order and
3095       // unlock as we find them. If we find the method monitor before
3096       // we are at the initial entry then we should throw an exception.
3097       // It is not clear the template based interpreter does this
3098       // correctly
3099 
3100       BasicObjectLock* base = istate->monitor_base();
3101       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
3102       bool method_unlock_needed = METHOD->is_synchronized();
3103       // We know the initial monitor was used for the method don't check that
3104       // slot in the loop
3105       if (method_unlock_needed) base--;
3106 
3107       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
3108       while (end < base) {
3109         oop lockee = end->obj();
3110         if (lockee != NULL) {
3111           BasicLock* lock = end->lock();
3112           markOop header = lock->displaced_header();
3113           end->set_obj(NULL);
3114           // If it isn't recursive we either must swap old header or call the runtime
3115           if (header != NULL) {
3116             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
3117               // restore object for the slow case
3118               end->set_obj(lockee);
3119               {
3120                 // Prevent any HandleMarkCleaner from freeing our live handles
3121                 HandleMark __hm(THREAD);
3122                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
3123               }
3124             }
3125           }
3126           // One error is plenty
3127           if (illegal_state_oop() == NULL && !suppress_error) {
3128             {
3129               // Prevent any HandleMarkCleaner from freeing our live handles
3130               HandleMark __hm(THREAD);
3131               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3132             }
3133             assert(THREAD->has_pending_exception(), "Lost our exception!");
3134             illegal_state_oop = THREAD->pending_exception();
3135             THREAD->clear_pending_exception();
3136           }
3137         }
3138         end++;
3139       }
3140       // Unlock the method if needed
3141       if (method_unlock_needed) {
3142         if (base->obj() == NULL) {
3143           // The method is already unlocked this is not good.
3144           if (illegal_state_oop() == NULL && !suppress_error) {
3145             {
3146               // Prevent any HandleMarkCleaner from freeing our live handles
3147               HandleMark __hm(THREAD);
3148               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3149             }
3150             assert(THREAD->has_pending_exception(), "Lost our exception!");
3151             illegal_state_oop = THREAD->pending_exception();
3152             THREAD->clear_pending_exception();
3153           }
3154         } else {
3155           //
3156           // The initial monitor is always used for the method
3157           // However if that slot is no longer the oop for the method it was unlocked
3158           // and reused by something that wasn't unlocked!
3159           //
3160           // deopt can come in with rcvr dead because c2 knows
3161           // its value is preserved in the monitor. So we can't use locals[0] at all
3162           // and must use first monitor slot.
3163           //
3164           oop rcvr = base->obj();
3165           if (rcvr == NULL) {
3166             if (!suppress_error) {
3167               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
3168               illegal_state_oop = THREAD->pending_exception();
3169               THREAD->clear_pending_exception();
3170             }
3171           } else {
3172             BasicLock* lock = base->lock();
3173             markOop header = lock->displaced_header();
3174             base->set_obj(NULL);
3175             // If it isn't recursive we either must swap old header or call the runtime
3176             if (header != NULL) {
3177               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3178                 // restore object for the slow case
3179                 base->set_obj(rcvr);
3180                 {
3181                   // Prevent any HandleMarkCleaner from freeing our live handles
3182                   HandleMark __hm(THREAD);
3183                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3184                 }
3185                 if (THREAD->has_pending_exception()) {
3186                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3187                   THREAD->clear_pending_exception();
3188                 }
3189               }
3190             }
3191           }
3192         }
3193       }
3194     }
3195 
3196     //
3197     // Notify jvmti/jvmdi
3198     //
3199     // NOTE: we do not notify a method_exit if we have a pending exception,
3200     // including an exception we generate for unlocking checks.  In the former
3201     // case, JVMDI has already been notified by our call for the exception handler
3202     // and in both cases as far as JVMDI is concerned we have already returned.
3203     // If we notify it again JVMDI will be all confused about how many frames
3204     // are still on the stack (4340444).
3205     //
3206     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3207     // method_exit events whenever we leave an activation unless it was done
3208     // for popframe. This is nothing like jvmdi. However we are passing the
3209     // tests at the moment (apparently because they are jvmdi based) so rather
3210     // than change this code and possibly fail tests we will leave it alone
3211     // (with this note) in anticipation of changing the vm and the tests
3212     // simultaneously.
3213 
3214 
3215     //
3216     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3217 
3218 
3219 
3220 #ifdef VM_JVMTI
3221       if (_jvmti_interp_events) {
3222         // Whenever JVMTI puts a thread in interp_only_mode, method
3223         // entry/exit events are sent for that thread to track stack depth.
3224         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3225           {
3226             // Prevent any HandleMarkCleaner from freeing our live handles
3227             HandleMark __hm(THREAD);
3228             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3229           }
3230         }
3231       }
3232 #endif /* VM_JVMTI */
3233 
3234     //
3235     // See if we are returning any exception
3236     // A pending exception that was pending prior to a possible popping frame
3237     // overrides the popping frame.
3238     //
3239     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
3240     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3241       // inform the frame manager we have no result
3242       istate->set_msg(throwing_exception);
3243       if (illegal_state_oop() != NULL)
3244         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3245       else
3246         THREAD->set_pending_exception(original_exception(), NULL, 0);
3247       istate->set_return_kind((Bytecodes::Code)opcode);
3248       UPDATE_PC_AND_RETURN(0);
3249     }
3250 
3251     if (istate->msg() == popping_frame) {
3252       // Make it simpler on the assembly code and set the message for the frame pop.
3253       // returns
3254       if (istate->prev() == NULL) {
3255         // We must be returning to a deoptimized frame (because popframe only happens between
3256         // two interpreted frames). We need to save the current arguments in C heap so that
3257         // the deoptimized frame when it restarts can copy the arguments to its expression
3258         // stack and re-execute the call. We also have to notify deoptimization that this
3259         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3260         // java expression stack. Yuck.
3261         //
3262         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3263                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3264         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3265       }
3266       THREAD->clr_pop_frame_in_process();
3267     }
3268 
3269     // Normal return
3270     // Advance the pc and return to frame manager
3271     istate->set_msg(return_from_method);
3272     istate->set_return_kind((Bytecodes::Code)opcode);
3273     UPDATE_PC_AND_RETURN(1);
3274   } /* handle_return: */
3275 
3276 // This is really a fatal error return
3277 
3278 finish:
3279   DECACHE_TOS();
3280   DECACHE_PC();
3281 
3282   return;
3283 }
3284 
3285 /*
3286  * All the code following this point is only produced once and is not present
3287  * in the JVMTI version of the interpreter
3288 */
3289 
3290 #ifndef VM_JVMTI
3291 
3292 // This constructor should only be used to contruct the object to signal
3293 // interpreter initialization. All other instances should be created by
3294 // the frame manager.
3295 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3296   if (msg != initialize) ShouldNotReachHere();
3297   _msg = msg;
3298   _self_link = this;
3299   _prev_link = NULL;
3300 }
3301 
3302 // Inline static functions for Java Stack and Local manipulation
3303 
3304 // The implementations are platform dependent. We have to worry about alignment
3305 // issues on some machines which can change on the same platform depending on
3306 // whether it is an LP64 machine also.
3307 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3308   return (address) tos[Interpreter::expr_index_at(-offset)];
3309 }
3310 
3311 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3312   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3313 }
3314 
3315 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3316   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3317 }
3318 
3319 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3320   return (oop)tos [Interpreter::expr_index_at(-offset)];
3321 }
3322 
3323 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3324   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3325 }
3326 
3327 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3328   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3329 }
3330 
3331 // only used for value types
3332 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3333                                                         int offset) {
3334   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3335 }
3336 
3337 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3338                                                        int offset) {
3339   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3340 }
3341 
3342 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3343                                                          int offset) {
3344   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3345 }
3346 
3347 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3348                                                           int offset) {
3349   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3350 }
3351 
3352 // needs to be platform dep for the 32 bit platforms.
3353 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3354                                                           int offset) {
3355   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3356 }
3357 
3358 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3359                                               address addr, int offset) {
3360   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3361                         ((VMJavaVal64*)addr)->d);
3362 }
3363 
3364 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3365                                                         int offset) {
3366   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3367   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3368 }
3369 
3370 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3371                                             address addr, int offset) {
3372   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3373   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3374                         ((VMJavaVal64*)addr)->l;
3375 }
3376 
3377 // Locals
3378 
3379 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3380   return (address)locals[Interpreter::local_index_at(-offset)];
3381 }
3382 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3383   return (jint)locals[Interpreter::local_index_at(-offset)];
3384 }
3385 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3386   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3387 }
3388 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3389   return (oop)locals[Interpreter::local_index_at(-offset)];
3390 }
3391 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3392   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3393 }
3394 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3395   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3396 }
3397 
3398 // Returns the address of locals value.
3399 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3400   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3401 }
3402 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3403   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3404 }
3405 
3406 // Used for local value or returnAddress
3407 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3408                                    address value, int offset) {
3409   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3410 }
3411 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3412                                    jint value, int offset) {
3413   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3414 }
3415 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3416                                    jfloat value, int offset) {
3417   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3418 }
3419 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3420                                    oop value, int offset) {
3421   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3422 }
3423 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3424                                    jdouble value, int offset) {
3425   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3426 }
3427 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3428                                    jlong value, int offset) {
3429   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3430 }
3431 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3432                                    address addr, int offset) {
3433   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3434 }
3435 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3436                                    address addr, int offset) {
3437   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3438 }
3439 
3440 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3441                           intptr_t* locals, int locals_offset) {
3442   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3443   locals[Interpreter::local_index_at(-locals_offset)] = value;
3444 }
3445 
3446 
3447 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3448                                    int to_offset) {
3449   tos[Interpreter::expr_index_at(-to_offset)] =
3450                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3451 }
3452 
3453 void BytecodeInterpreter::dup(intptr_t *tos) {
3454   copy_stack_slot(tos, -1, 0);
3455 }
3456 void BytecodeInterpreter::dup2(intptr_t *tos) {
3457   copy_stack_slot(tos, -2, 0);
3458   copy_stack_slot(tos, -1, 1);
3459 }
3460 
3461 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3462   /* insert top word two down */
3463   copy_stack_slot(tos, -1, 0);
3464   copy_stack_slot(tos, -2, -1);
3465   copy_stack_slot(tos, 0, -2);
3466 }
3467 
3468 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3469   /* insert top word three down  */
3470   copy_stack_slot(tos, -1, 0);
3471   copy_stack_slot(tos, -2, -1);
3472   copy_stack_slot(tos, -3, -2);
3473   copy_stack_slot(tos, 0, -3);
3474 }
3475 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3476   /* insert top 2 slots three down */
3477   copy_stack_slot(tos, -1, 1);
3478   copy_stack_slot(tos, -2, 0);
3479   copy_stack_slot(tos, -3, -1);
3480   copy_stack_slot(tos, 1, -2);
3481   copy_stack_slot(tos, 0, -3);
3482 }
3483 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3484   /* insert top 2 slots four down */
3485   copy_stack_slot(tos, -1, 1);
3486   copy_stack_slot(tos, -2, 0);
3487   copy_stack_slot(tos, -3, -1);
3488   copy_stack_slot(tos, -4, -2);
3489   copy_stack_slot(tos, 1, -3);
3490   copy_stack_slot(tos, 0, -4);
3491 }
3492 
3493 
3494 void BytecodeInterpreter::swap(intptr_t *tos) {
3495   // swap top two elements
3496   intptr_t val = tos[Interpreter::expr_index_at(1)];
3497   // Copy -2 entry to -1
3498   copy_stack_slot(tos, -2, -1);
3499   // Store saved -1 entry into -2
3500   tos[Interpreter::expr_index_at(2)] = val;
3501 }
3502 // --------------------------------------------------------------------------------
3503 // Non-product code
3504 #ifndef PRODUCT
3505 
3506 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3507   switch (msg) {
3508      case BytecodeInterpreter::no_request:  return("no_request");
3509      case BytecodeInterpreter::initialize:  return("initialize");
3510      // status message to C++ interpreter
3511      case BytecodeInterpreter::method_entry:  return("method_entry");
3512      case BytecodeInterpreter::method_resume:  return("method_resume");
3513      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3514      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3515      // requests to frame manager from C++ interpreter
3516      case BytecodeInterpreter::call_method:  return("call_method");
3517      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3518      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3519      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3520      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3521      case BytecodeInterpreter::do_osr:  return("do_osr");
3522      // deopt
3523      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3524      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3525      default: return("BAD MSG");
3526   }
3527 }
3528 void
3529 BytecodeInterpreter::print() {
3530   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3531   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3532   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3533   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3534   {
3535     ResourceMark rm;
3536     char *method_name = _method->name_and_sig_as_C_string();
3537     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3538   }
3539   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3540   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3541   tty->print_cr("msg: %s", C_msg(this->_msg));
3542   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3543   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3544   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3545   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3546   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3547   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
3548   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3549   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
3550   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3551   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3552   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3553 #ifdef SPARC
3554   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3555   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3556   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3557   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3558 #endif
3559 #if !defined(ZERO)
3560   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3561 #endif // !ZERO
3562   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3563 }
3564 
3565 extern "C" {
3566     void PI(uintptr_t arg) {
3567         ((BytecodeInterpreter*)arg)->print();
3568     }
3569 }
3570 #endif // PRODUCT
3571 
3572 #endif // JVMTI
3573 #endif // CC_INTERP