1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780     case 0xFE: // paddd
 781       debug_only(has_disp32 = true);
 782       break;
 783 
 784     case 0xAD: // shrd r, a, %cl
 785     case 0xAF: // imul r, a
 786     case 0xBE: // movsbl r, a (movsxb)
 787     case 0xBF: // movswl r, a (movsxw)
 788     case 0xB6: // movzbl r, a (movzxb)
 789     case 0xB7: // movzwl r, a (movzxw)
 790     case REP16(0x40): // cmovl cc, r, a
 791     case 0xB0: // cmpxchgb
 792     case 0xB1: // cmpxchg
 793     case 0xC1: // xaddl
 794     case 0xC7: // cmpxchg8
 795     case REP16(0x90): // setcc a
 796       debug_only(has_disp32 = true);
 797       // fall out of the switch to decode the address
 798       break;
 799 
 800     case 0xC4: // pinsrw r, a, #8
 801       debug_only(has_disp32 = true);
 802     case 0xC5: // pextrw r, r, #8
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case 0xAC: // shrd r, a, #8
 807       debug_only(has_disp32 = true);
 808       tail_size = 1;  // the imm8
 809       break;
 810 
 811     case REP16(0x80): // jcc rdisp32
 812       if (which == end_pc_operand)  return ip + 4;
 813       assert(which == call32_operand, "jcc has no disp32 or imm");
 814       return ip;
 815     default:
 816       ShouldNotReachHere();
 817     }
 818     break;
 819 
 820   case 0x81: // addl a, #32; addl r, #32
 821     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 822     // on 32bit in the case of cmpl, the imm might be an oop
 823     tail_size = 4;
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     break;
 826 
 827   case 0x83: // addl a, #8; addl r, #8
 828     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 829     debug_only(has_disp32 = true); // has both kinds of operands!
 830     tail_size = 1;
 831     break;
 832 
 833   case 0x9B:
 834     switch (0xFF & *ip++) {
 835     case 0xD9: // fnstcw a
 836       debug_only(has_disp32 = true);
 837       break;
 838     default:
 839       ShouldNotReachHere();
 840     }
 841     break;
 842 
 843   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 844   case REP4(0x10): // adc...
 845   case REP4(0x20): // and...
 846   case REP4(0x30): // xor...
 847   case REP4(0x08): // or...
 848   case REP4(0x18): // sbb...
 849   case REP4(0x28): // sub...
 850   case 0xF7: // mull a
 851   case 0x8D: // lea r, a
 852   case 0x87: // xchg r, a
 853   case REP4(0x38): // cmp...
 854   case 0x85: // test r, a
 855     debug_only(has_disp32 = true); // has both kinds of operands!
 856     break;
 857 
 858   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 859   case 0xC6: // movb a, #8
 860   case 0x80: // cmpb a, #8
 861   case 0x6B: // imul r, a, #8
 862     debug_only(has_disp32 = true); // has both kinds of operands!
 863     tail_size = 1; // the imm8
 864     break;
 865 
 866   case 0xC4: // VEX_3bytes
 867   case 0xC5: // VEX_2bytes
 868     assert((UseAVX > 0), "shouldn't have VEX prefix");
 869     assert(ip == inst+1, "no prefixes allowed");
 870     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 871     // but they have prefix 0x0F and processed when 0x0F processed above.
 872     //
 873     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 874     // instructions (these instructions are not supported in 64-bit mode).
 875     // To distinguish them bits [7:6] are set in the VEX second byte since
 876     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 877     // those VEX bits REX and vvvv bits are inverted.
 878     //
 879     // Fortunately C2 doesn't generate these instructions so we don't need
 880     // to check for them in product version.
 881 
 882     // Check second byte
 883     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 884 
 885     int vex_opcode;
 886     // First byte
 887     if ((0xFF & *inst) == VEX_3bytes) {
 888       vex_opcode = VEX_OPCODE_MASK & *ip;
 889       ip++; // third byte
 890       is_64bit = ((VEX_W & *ip) == VEX_W);
 891     } else {
 892       vex_opcode = VEX_OPCODE_0F;
 893     }
 894     ip++; // opcode
 895     // To find the end of instruction (which == end_pc_operand).
 896     switch (vex_opcode) {
 897       case VEX_OPCODE_0F:
 898         switch (0xFF & *ip) {
 899         case 0x70: // pshufd r, r/a, #8
 900         case 0x71: // ps[rl|ra|ll]w r, #8
 901         case 0x72: // ps[rl|ra|ll]d r, #8
 902         case 0x73: // ps[rl|ra|ll]q r, #8
 903         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 904         case 0xC4: // pinsrw r, r, r/a, #8
 905         case 0xC5: // pextrw r/a, r, #8
 906         case 0xC6: // shufp[s|d] r, r, r/a, #8
 907           tail_size = 1;  // the imm8
 908           break;
 909         }
 910         break;
 911       case VEX_OPCODE_0F_3A:
 912         tail_size = 1;
 913         break;
 914     }
 915     ip++; // skip opcode
 916     debug_only(has_disp32 = true); // has both kinds of operands!
 917     break;
 918 
 919   case 0x62: // EVEX_4bytes
 920     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 921     assert(ip == inst+1, "no prefixes allowed");
 922     // no EVEX collisions, all instructions that have 0x62 opcodes
 923     // have EVEX versions and are subopcodes of 0x66
 924     ip++; // skip P0 and exmaine W in P1
 925     is_64bit = ((VEX_W & *ip) == VEX_W);
 926     ip++; // move to P2
 927     ip++; // skip P2, move to opcode
 928     // To find the end of instruction (which == end_pc_operand).
 929     switch (0xFF & *ip) {
 930     case 0x22: // pinsrd r, r/a, #8
 931     case 0x61: // pcmpestri r, r/a, #8
 932     case 0x70: // pshufd r, r/a, #8
 933     case 0x73: // psrldq r, #8
 934       tail_size = 1;  // the imm8
 935       break;
 936     default:
 937       break;
 938     }
 939     ip++; // skip opcode
 940     debug_only(has_disp32 = true); // has both kinds of operands!
 941     break;
 942 
 943   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 944   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 945   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 946   case 0xDD: // fld_d a; fst_d a; fstp_d a
 947   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 948   case 0xDF: // fild_d a; fistp_d a
 949   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 950   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 951   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 952     debug_only(has_disp32 = true);
 953     break;
 954 
 955   case 0xE8: // call rdisp32
 956   case 0xE9: // jmp  rdisp32
 957     if (which == end_pc_operand)  return ip + 4;
 958     assert(which == call32_operand, "call has no disp32 or imm");
 959     return ip;
 960 
 961   case 0xF0:                    // Lock
 962     assert(os::is_MP(), "only on MP");
 963     goto again_after_prefix;
 964 
 965   case 0xF3:                    // For SSE
 966   case 0xF2:                    // For SSE2
 967     switch (0xFF & *ip++) {
 968     case REX:
 969     case REX_B:
 970     case REX_X:
 971     case REX_XB:
 972     case REX_R:
 973     case REX_RB:
 974     case REX_RX:
 975     case REX_RXB:
 976     case REX_W:
 977     case REX_WB:
 978     case REX_WX:
 979     case REX_WXB:
 980     case REX_WR:
 981     case REX_WRB:
 982     case REX_WRX:
 983     case REX_WRXB:
 984       NOT_LP64(assert(false, "found 64bit prefix"));
 985       ip++;
 986     default:
 987       ip++;
 988     }
 989     debug_only(has_disp32 = true); // has both kinds of operands!
 990     break;
 991 
 992   default:
 993     ShouldNotReachHere();
 994 
 995 #undef REP8
 996 #undef REP16
 997   }
 998 
 999   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1000 #ifdef _LP64
1001   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1002 #else
1003   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1004   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1005 #endif // LP64
1006   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1007 
1008   // parse the output of emit_operand
1009   int op2 = 0xFF & *ip++;
1010   int base = op2 & 0x07;
1011   int op3 = -1;
1012   const int b100 = 4;
1013   const int b101 = 5;
1014   if (base == b100 && (op2 >> 6) != 3) {
1015     op3 = 0xFF & *ip++;
1016     base = op3 & 0x07;   // refetch the base
1017   }
1018   // now ip points at the disp (if any)
1019 
1020   switch (op2 >> 6) {
1021   case 0:
1022     // [00 reg  100][ss index base]
1023     // [00 reg  100][00   100  esp]
1024     // [00 reg base]
1025     // [00 reg  100][ss index  101][disp32]
1026     // [00 reg  101]               [disp32]
1027 
1028     if (base == b101) {
1029       if (which == disp32_operand)
1030         return ip;              // caller wants the disp32
1031       ip += 4;                  // skip the disp32
1032     }
1033     break;
1034 
1035   case 1:
1036     // [01 reg  100][ss index base][disp8]
1037     // [01 reg  100][00   100  esp][disp8]
1038     // [01 reg base]               [disp8]
1039     ip += 1;                    // skip the disp8
1040     break;
1041 
1042   case 2:
1043     // [10 reg  100][ss index base][disp32]
1044     // [10 reg  100][00   100  esp][disp32]
1045     // [10 reg base]               [disp32]
1046     if (which == disp32_operand)
1047       return ip;                // caller wants the disp32
1048     ip += 4;                    // skip the disp32
1049     break;
1050 
1051   case 3:
1052     // [11 reg base]  (not a memory addressing mode)
1053     break;
1054   }
1055 
1056   if (which == end_pc_operand) {
1057     return ip + tail_size;
1058   }
1059 
1060 #ifdef _LP64
1061   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1062 #else
1063   assert(which == imm_operand, "instruction has only an imm field");
1064 #endif // LP64
1065   return ip;
1066 }
1067 
1068 address Assembler::locate_next_instruction(address inst) {
1069   // Secretly share code with locate_operand:
1070   return locate_operand(inst, end_pc_operand);
1071 }
1072 
1073 
1074 #ifdef ASSERT
1075 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1076   address inst = inst_mark();
1077   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1078   address opnd;
1079 
1080   Relocation* r = rspec.reloc();
1081   if (r->type() == relocInfo::none) {
1082     return;
1083   } else if (r->is_call() || format == call32_operand) {
1084     // assert(format == imm32_operand, "cannot specify a nonzero format");
1085     opnd = locate_operand(inst, call32_operand);
1086   } else if (r->is_data()) {
1087     assert(format == imm_operand || format == disp32_operand
1088            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1089     opnd = locate_operand(inst, (WhichOperand)format);
1090   } else {
1091     assert(format == imm_operand, "cannot specify a format");
1092     return;
1093   }
1094   assert(opnd == pc(), "must put operand where relocs can find it");
1095 }
1096 #endif // ASSERT
1097 
1098 void Assembler::emit_operand32(Register reg, Address adr) {
1099   assert(reg->encoding() < 8, "no extended registers");
1100   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1101   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1102                adr._rspec);
1103 }
1104 
1105 void Assembler::emit_operand(Register reg, Address adr,
1106                              int rip_relative_correction) {
1107   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1108                adr._rspec,
1109                rip_relative_correction);
1110 }
1111 
1112 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 // MMX operations
1118 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1119   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1120   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1121 }
1122 
1123 // work around gcc (3.2.1-7a) bug
1124 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1125   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1126   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1127 }
1128 
1129 
1130 void Assembler::emit_farith(int b1, int b2, int i) {
1131   assert(isByte(b1) && isByte(b2), "wrong opcode");
1132   assert(0 <= i &&  i < 8, "illegal stack offset");
1133   emit_int8(b1);
1134   emit_int8(b2 + i);
1135 }
1136 
1137 
1138 // Now the Assembler instructions (identical for 32/64 bits)
1139 
1140 void Assembler::adcl(Address dst, int32_t imm32) {
1141   InstructionMark im(this);
1142   prefix(dst);
1143   emit_arith_operand(0x81, rdx, dst, imm32);
1144 }
1145 
1146 void Assembler::adcl(Address dst, Register src) {
1147   InstructionMark im(this);
1148   prefix(dst, src);
1149   emit_int8(0x11);
1150   emit_operand(src, dst);
1151 }
1152 
1153 void Assembler::adcl(Register dst, int32_t imm32) {
1154   prefix(dst);
1155   emit_arith(0x81, 0xD0, dst, imm32);
1156 }
1157 
1158 void Assembler::adcl(Register dst, Address src) {
1159   InstructionMark im(this);
1160   prefix(src, dst);
1161   emit_int8(0x13);
1162   emit_operand(dst, src);
1163 }
1164 
1165 void Assembler::adcl(Register dst, Register src) {
1166   (void) prefix_and_encode(dst->encoding(), src->encoding());
1167   emit_arith(0x13, 0xC0, dst, src);
1168 }
1169 
1170 void Assembler::addl(Address dst, int32_t imm32) {
1171   InstructionMark im(this);
1172   prefix(dst);
1173   emit_arith_operand(0x81, rax, dst, imm32);
1174 }
1175 
1176 void Assembler::addb(Address dst, int imm8) {
1177   InstructionMark im(this);
1178   prefix(dst);
1179   emit_int8((unsigned char)0x80);
1180   emit_operand(rax, dst, 1);
1181   emit_int8(imm8);
1182 }
1183 
1184 void Assembler::addw(Address dst, int imm16) {
1185   InstructionMark im(this);
1186   emit_int8(0x66);
1187   prefix(dst);
1188   emit_int8((unsigned char)0x81);
1189   emit_operand(rax, dst, 2);
1190   emit_int16(imm16);
1191 }
1192 
1193 void Assembler::addl(Address dst, Register src) {
1194   InstructionMark im(this);
1195   prefix(dst, src);
1196   emit_int8(0x01);
1197   emit_operand(src, dst);
1198 }
1199 
1200 void Assembler::addl(Register dst, int32_t imm32) {
1201   prefix(dst);
1202   emit_arith(0x81, 0xC0, dst, imm32);
1203 }
1204 
1205 void Assembler::addl(Register dst, Address src) {
1206   InstructionMark im(this);
1207   prefix(src, dst);
1208   emit_int8(0x03);
1209   emit_operand(dst, src);
1210 }
1211 
1212 void Assembler::addl(Register dst, Register src) {
1213   (void) prefix_and_encode(dst->encoding(), src->encoding());
1214   emit_arith(0x03, 0xC0, dst, src);
1215 }
1216 
1217 void Assembler::addr_nop_4() {
1218   assert(UseAddressNop, "no CPU support");
1219   // 4 bytes: NOP DWORD PTR [EAX+0]
1220   emit_int8(0x0F);
1221   emit_int8(0x1F);
1222   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1223   emit_int8(0);    // 8-bits offset (1 byte)
1224 }
1225 
1226 void Assembler::addr_nop_5() {
1227   assert(UseAddressNop, "no CPU support");
1228   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1229   emit_int8(0x0F);
1230   emit_int8(0x1F);
1231   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1232   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1233   emit_int8(0);    // 8-bits offset (1 byte)
1234 }
1235 
1236 void Assembler::addr_nop_7() {
1237   assert(UseAddressNop, "no CPU support");
1238   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1239   emit_int8(0x0F);
1240   emit_int8(0x1F);
1241   emit_int8((unsigned char)0x80);
1242                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1243   emit_int32(0);   // 32-bits offset (4 bytes)
1244 }
1245 
1246 void Assembler::addr_nop_8() {
1247   assert(UseAddressNop, "no CPU support");
1248   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1249   emit_int8(0x0F);
1250   emit_int8(0x1F);
1251   emit_int8((unsigned char)0x84);
1252                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1253   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1254   emit_int32(0);   // 32-bits offset (4 bytes)
1255 }
1256 
1257 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1258   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1259   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1260   attributes.set_rex_vex_w_reverted();
1261   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1262   emit_int8(0x58);
1263   emit_int8((unsigned char)(0xC0 | encode));
1264 }
1265 
1266 void Assembler::addsd(XMMRegister dst, Address src) {
1267   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1268   InstructionMark im(this);
1269   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1270   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1271   attributes.set_rex_vex_w_reverted();
1272   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1273   emit_int8(0x58);
1274   emit_operand(dst, src);
1275 }
1276 
1277 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1278   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1279   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1280   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1281   emit_int8(0x58);
1282   emit_int8((unsigned char)(0xC0 | encode));
1283 }
1284 
1285 void Assembler::addss(XMMRegister dst, Address src) {
1286   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1287   InstructionMark im(this);
1288   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1289   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1290   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1291   emit_int8(0x58);
1292   emit_operand(dst, src);
1293 }
1294 
1295 void Assembler::aesdec(XMMRegister dst, Address src) {
1296   assert(VM_Version::supports_aes(), "");
1297   InstructionMark im(this);
1298   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1299   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1300   emit_int8((unsigned char)0xDE);
1301   emit_operand(dst, src);
1302 }
1303 
1304 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1305   assert(VM_Version::supports_aes(), "");
1306   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1307   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1308   emit_int8((unsigned char)0xDE);
1309   emit_int8(0xC0 | encode);
1310 }
1311 
1312 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1313   assert(VM_Version::supports_aes(), "");
1314   InstructionMark im(this);
1315   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1316   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1317   emit_int8((unsigned char)0xDF);
1318   emit_operand(dst, src);
1319 }
1320 
1321 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1322   assert(VM_Version::supports_aes(), "");
1323   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1324   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1325   emit_int8((unsigned char)0xDF);
1326   emit_int8((unsigned char)(0xC0 | encode));
1327 }
1328 
1329 void Assembler::aesenc(XMMRegister dst, Address src) {
1330   assert(VM_Version::supports_aes(), "");
1331   InstructionMark im(this);
1332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1333   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1334   emit_int8((unsigned char)0xDC);
1335   emit_operand(dst, src);
1336 }
1337 
1338 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1339   assert(VM_Version::supports_aes(), "");
1340   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1341   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1342   emit_int8((unsigned char)0xDC);
1343   emit_int8(0xC0 | encode);
1344 }
1345 
1346 void Assembler::aesenclast(XMMRegister dst, Address src) {
1347   assert(VM_Version::supports_aes(), "");
1348   InstructionMark im(this);
1349   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1350   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1351   emit_int8((unsigned char)0xDD);
1352   emit_operand(dst, src);
1353 }
1354 
1355 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1356   assert(VM_Version::supports_aes(), "");
1357   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1358   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1359   emit_int8((unsigned char)0xDD);
1360   emit_int8((unsigned char)(0xC0 | encode));
1361 }
1362 
1363 void Assembler::andl(Address dst, int32_t imm32) {
1364   InstructionMark im(this);
1365   prefix(dst);
1366   emit_int8((unsigned char)0x81);
1367   emit_operand(rsp, dst, 4);
1368   emit_int32(imm32);
1369 }
1370 
1371 void Assembler::andl(Register dst, int32_t imm32) {
1372   prefix(dst);
1373   emit_arith(0x81, 0xE0, dst, imm32);
1374 }
1375 
1376 void Assembler::andl(Register dst, Address src) {
1377   InstructionMark im(this);
1378   prefix(src, dst);
1379   emit_int8(0x23);
1380   emit_operand(dst, src);
1381 }
1382 
1383 void Assembler::andl(Register dst, Register src) {
1384   (void) prefix_and_encode(dst->encoding(), src->encoding());
1385   emit_arith(0x23, 0xC0, dst, src);
1386 }
1387 
1388 void Assembler::andnl(Register dst, Register src1, Register src2) {
1389   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1390   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1391   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1392   emit_int8((unsigned char)0xF2);
1393   emit_int8((unsigned char)(0xC0 | encode));
1394 }
1395 
1396 void Assembler::andnl(Register dst, Register src1, Address src2) {
1397   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1398   InstructionMark im(this);
1399   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1400   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1401   emit_int8((unsigned char)0xF2);
1402   emit_operand(dst, src2);
1403 }
1404 
1405 void Assembler::bsfl(Register dst, Register src) {
1406   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1407   emit_int8(0x0F);
1408   emit_int8((unsigned char)0xBC);
1409   emit_int8((unsigned char)(0xC0 | encode));
1410 }
1411 
1412 void Assembler::bsrl(Register dst, Register src) {
1413   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1414   emit_int8(0x0F);
1415   emit_int8((unsigned char)0xBD);
1416   emit_int8((unsigned char)(0xC0 | encode));
1417 }
1418 
1419 void Assembler::bswapl(Register reg) { // bswap
1420   int encode = prefix_and_encode(reg->encoding());
1421   emit_int8(0x0F);
1422   emit_int8((unsigned char)(0xC8 | encode));
1423 }
1424 
1425 void Assembler::blsil(Register dst, Register src) {
1426   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1427   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1428   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1429   emit_int8((unsigned char)0xF3);
1430   emit_int8((unsigned char)(0xC0 | encode));
1431 }
1432 
1433 void Assembler::blsil(Register dst, Address src) {
1434   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1435   InstructionMark im(this);
1436   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1437   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1438   emit_int8((unsigned char)0xF3);
1439   emit_operand(rbx, src);
1440 }
1441 
1442 void Assembler::blsmskl(Register dst, Register src) {
1443   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1444   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1445   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1446   emit_int8((unsigned char)0xF3);
1447   emit_int8((unsigned char)(0xC0 | encode));
1448 }
1449 
1450 void Assembler::blsmskl(Register dst, Address src) {
1451   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1452   InstructionMark im(this);
1453   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1454   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1455   emit_int8((unsigned char)0xF3);
1456   emit_operand(rdx, src);
1457 }
1458 
1459 void Assembler::blsrl(Register dst, Register src) {
1460   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1461   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1462   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1463   emit_int8((unsigned char)0xF3);
1464   emit_int8((unsigned char)(0xC0 | encode));
1465 }
1466 
1467 void Assembler::blsrl(Register dst, Address src) {
1468   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1469   InstructionMark im(this);
1470   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1471   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1472   emit_int8((unsigned char)0xF3);
1473   emit_operand(rcx, src);
1474 }
1475 
1476 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1477   // suspect disp32 is always good
1478   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1479 
1480   if (L.is_bound()) {
1481     const int long_size = 5;
1482     int offs = (int)( target(L) - pc() );
1483     assert(offs <= 0, "assembler error");
1484     InstructionMark im(this);
1485     // 1110 1000 #32-bit disp
1486     emit_int8((unsigned char)0xE8);
1487     emit_data(offs - long_size, rtype, operand);
1488   } else {
1489     InstructionMark im(this);
1490     // 1110 1000 #32-bit disp
1491     L.add_patch_at(code(), locator());
1492 
1493     emit_int8((unsigned char)0xE8);
1494     emit_data(int(0), rtype, operand);
1495   }
1496 }
1497 
1498 void Assembler::call(Register dst) {
1499   int encode = prefix_and_encode(dst->encoding());
1500   emit_int8((unsigned char)0xFF);
1501   emit_int8((unsigned char)(0xD0 | encode));
1502 }
1503 
1504 
1505 void Assembler::call(Address adr) {
1506   InstructionMark im(this);
1507   prefix(adr);
1508   emit_int8((unsigned char)0xFF);
1509   emit_operand(rdx, adr);
1510 }
1511 
1512 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1513   assert(entry != NULL, "call most probably wrong");
1514   InstructionMark im(this);
1515   emit_int8((unsigned char)0xE8);
1516   intptr_t disp = entry - (pc() + sizeof(int32_t));
1517   assert(is_simm32(disp), "must be 32bit offset (call2)");
1518   // Technically, should use call32_operand, but this format is
1519   // implied by the fact that we're emitting a call instruction.
1520 
1521   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1522   emit_data((int) disp, rspec, operand);
1523 }
1524 
1525 void Assembler::cdql() {
1526   emit_int8((unsigned char)0x99);
1527 }
1528 
1529 void Assembler::cld() {
1530   emit_int8((unsigned char)0xFC);
1531 }
1532 
1533 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1534   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1535   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1536   emit_int8(0x0F);
1537   emit_int8(0x40 | cc);
1538   emit_int8((unsigned char)(0xC0 | encode));
1539 }
1540 
1541 
1542 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1543   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1544   prefix(src, dst);
1545   emit_int8(0x0F);
1546   emit_int8(0x40 | cc);
1547   emit_operand(dst, src);
1548 }
1549 
1550 void Assembler::cmpb(Address dst, int imm8) {
1551   InstructionMark im(this);
1552   prefix(dst);
1553   emit_int8((unsigned char)0x80);
1554   emit_operand(rdi, dst, 1);
1555   emit_int8(imm8);
1556 }
1557 
1558 void Assembler::cmpl(Address dst, int32_t imm32) {
1559   InstructionMark im(this);
1560   prefix(dst);
1561   emit_int8((unsigned char)0x81);
1562   emit_operand(rdi, dst, 4);
1563   emit_int32(imm32);
1564 }
1565 
1566 void Assembler::cmpl(Register dst, int32_t imm32) {
1567   prefix(dst);
1568   emit_arith(0x81, 0xF8, dst, imm32);
1569 }
1570 
1571 void Assembler::cmpl(Register dst, Register src) {
1572   (void) prefix_and_encode(dst->encoding(), src->encoding());
1573   emit_arith(0x3B, 0xC0, dst, src);
1574 }
1575 
1576 void Assembler::cmpl(Register dst, Address  src) {
1577   InstructionMark im(this);
1578   prefix(src, dst);
1579   emit_int8((unsigned char)0x3B);
1580   emit_operand(dst, src);
1581 }
1582 
1583 void Assembler::cmpw(Address dst, int imm16) {
1584   InstructionMark im(this);
1585   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1586   emit_int8(0x66);
1587   emit_int8((unsigned char)0x81);
1588   emit_operand(rdi, dst, 2);
1589   emit_int16(imm16);
1590 }
1591 
1592 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1593 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1594 // The ZF is set if the compared values were equal, and cleared otherwise.
1595 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1596   InstructionMark im(this);
1597   prefix(adr, reg);
1598   emit_int8(0x0F);
1599   emit_int8((unsigned char)0xB1);
1600   emit_operand(reg, adr);
1601 }
1602 
1603 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1604 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1605 // The ZF is set if the compared values were equal, and cleared otherwise.
1606 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1607   InstructionMark im(this);
1608   prefix(adr, reg, true);
1609   emit_int8(0x0F);
1610   emit_int8((unsigned char)0xB0);
1611   emit_operand(reg, adr);
1612 }
1613 
1614 void Assembler::comisd(XMMRegister dst, Address src) {
1615   // NOTE: dbx seems to decode this as comiss even though the
1616   // 0x66 is there. Strangly ucomisd comes out correct
1617   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1618   InstructionMark im(this);
1619   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1620   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1621   attributes.set_rex_vex_w_reverted();
1622   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1623   emit_int8(0x2F);
1624   emit_operand(dst, src);
1625 }
1626 
1627 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1630   attributes.set_rex_vex_w_reverted();
1631   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1632   emit_int8(0x2F);
1633   emit_int8((unsigned char)(0xC0 | encode));
1634 }
1635 
1636 void Assembler::comiss(XMMRegister dst, Address src) {
1637   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1638   InstructionMark im(this);
1639   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1640   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1641   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1642   emit_int8(0x2F);
1643   emit_operand(dst, src);
1644 }
1645 
1646 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1647   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1648   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1649   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1650   emit_int8(0x2F);
1651   emit_int8((unsigned char)(0xC0 | encode));
1652 }
1653 
1654 void Assembler::cpuid() {
1655   emit_int8(0x0F);
1656   emit_int8((unsigned char)0xA2);
1657 }
1658 
1659 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1660 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1661 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1662 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1663 //
1664 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1665 //
1666 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1667 //
1668 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1669 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1670   assert(VM_Version::supports_sse4_2(), "");
1671   int8_t w = 0x01;
1672   Prefix p = Prefix_EMPTY;
1673 
1674   emit_int8((int8_t)0xF2);
1675   switch (sizeInBytes) {
1676   case 1:
1677     w = 0;
1678     break;
1679   case 2:
1680   case 4:
1681     break;
1682   LP64_ONLY(case 8:)
1683     // This instruction is not valid in 32 bits
1684     // Note:
1685     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1686     //
1687     // Page B - 72   Vol. 2C says
1688     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1689     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1690     //                                                                            F0!!!
1691     // while 3 - 208 Vol. 2A
1692     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1693     //
1694     // the 0 on a last bit is reserved for a different flavor of this instruction :
1695     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1696     p = REX_W;
1697     break;
1698   default:
1699     assert(0, "Unsupported value for a sizeInBytes argument");
1700     break;
1701   }
1702   LP64_ONLY(prefix(crc, v, p);)
1703   emit_int8((int8_t)0x0F);
1704   emit_int8(0x38);
1705   emit_int8((int8_t)(0xF0 | w));
1706   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1707 }
1708 
1709 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1710   assert(VM_Version::supports_sse4_2(), "");
1711   InstructionMark im(this);
1712   int8_t w = 0x01;
1713   Prefix p = Prefix_EMPTY;
1714 
1715   emit_int8((int8_t)0xF2);
1716   switch (sizeInBytes) {
1717   case 1:
1718     w = 0;
1719     break;
1720   case 2:
1721   case 4:
1722     break;
1723   LP64_ONLY(case 8:)
1724     // This instruction is not valid in 32 bits
1725     p = REX_W;
1726     break;
1727   default:
1728     assert(0, "Unsupported value for a sizeInBytes argument");
1729     break;
1730   }
1731   LP64_ONLY(prefix(crc, adr, p);)
1732   emit_int8((int8_t)0x0F);
1733   emit_int8(0x38);
1734   emit_int8((int8_t)(0xF0 | w));
1735   emit_operand(crc, adr);
1736 }
1737 
1738 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1739   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1740   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1741   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1742   emit_int8((unsigned char)0xE6);
1743   emit_int8((unsigned char)(0xC0 | encode));
1744 }
1745 
1746 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1747   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1748   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1749   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1750   emit_int8(0x5B);
1751   emit_int8((unsigned char)(0xC0 | encode));
1752 }
1753 
1754 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1756   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1757   attributes.set_rex_vex_w_reverted();
1758   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1759   emit_int8(0x5A);
1760   emit_int8((unsigned char)(0xC0 | encode));
1761 }
1762 
1763 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1764   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1765   InstructionMark im(this);
1766   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1767   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1768   attributes.set_rex_vex_w_reverted();
1769   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1770   emit_int8(0x5A);
1771   emit_operand(dst, src);
1772 }
1773 
1774 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1775   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1776   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1777   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1778   emit_int8(0x2A);
1779   emit_int8((unsigned char)(0xC0 | encode));
1780 }
1781 
1782 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1784   InstructionMark im(this);
1785   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1786   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1787   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1788   emit_int8(0x2A);
1789   emit_operand(dst, src);
1790 }
1791 
1792 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1793   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1794   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1795   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1796   emit_int8(0x2A);
1797   emit_int8((unsigned char)(0xC0 | encode));
1798 }
1799 
1800 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1801   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1802   InstructionMark im(this);
1803   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1804   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1805   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1806   emit_int8(0x2A);
1807   emit_operand(dst, src);
1808 }
1809 
1810 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1811   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1812   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1813   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1814   emit_int8(0x2A);
1815   emit_int8((unsigned char)(0xC0 | encode));
1816 }
1817 
1818 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1819   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1820   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1821   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1822   emit_int8(0x5A);
1823   emit_int8((unsigned char)(0xC0 | encode));
1824 }
1825 
1826 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1827   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1828   InstructionMark im(this);
1829   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1830   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1831   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1832   emit_int8(0x5A);
1833   emit_operand(dst, src);
1834 }
1835 
1836 
1837 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1838   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1839   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1840   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1841   emit_int8(0x2C);
1842   emit_int8((unsigned char)(0xC0 | encode));
1843 }
1844 
1845 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1846   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1847   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1848   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1849   emit_int8(0x2C);
1850   emit_int8((unsigned char)(0xC0 | encode));
1851 }
1852 
1853 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1855   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1856   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1857   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1858   emit_int8((unsigned char)0xE6);
1859   emit_int8((unsigned char)(0xC0 | encode));
1860 }
1861 
1862 void Assembler::decl(Address dst) {
1863   // Don't use it directly. Use MacroAssembler::decrement() instead.
1864   InstructionMark im(this);
1865   prefix(dst);
1866   emit_int8((unsigned char)0xFF);
1867   emit_operand(rcx, dst);
1868 }
1869 
1870 void Assembler::divsd(XMMRegister dst, Address src) {
1871   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1872   InstructionMark im(this);
1873   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1874   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1875   attributes.set_rex_vex_w_reverted();
1876   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1877   emit_int8(0x5E);
1878   emit_operand(dst, src);
1879 }
1880 
1881 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1882   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1883   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1884   attributes.set_rex_vex_w_reverted();
1885   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1886   emit_int8(0x5E);
1887   emit_int8((unsigned char)(0xC0 | encode));
1888 }
1889 
1890 void Assembler::divss(XMMRegister dst, Address src) {
1891   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1892   InstructionMark im(this);
1893   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1894   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1895   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1896   emit_int8(0x5E);
1897   emit_operand(dst, src);
1898 }
1899 
1900 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1901   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1902   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1903   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1904   emit_int8(0x5E);
1905   emit_int8((unsigned char)(0xC0 | encode));
1906 }
1907 
1908 void Assembler::emms() {
1909   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1910   emit_int8(0x0F);
1911   emit_int8(0x77);
1912 }
1913 
1914 void Assembler::hlt() {
1915   emit_int8((unsigned char)0xF4);
1916 }
1917 
1918 void Assembler::idivl(Register src) {
1919   int encode = prefix_and_encode(src->encoding());
1920   emit_int8((unsigned char)0xF7);
1921   emit_int8((unsigned char)(0xF8 | encode));
1922 }
1923 
1924 void Assembler::divl(Register src) { // Unsigned
1925   int encode = prefix_and_encode(src->encoding());
1926   emit_int8((unsigned char)0xF7);
1927   emit_int8((unsigned char)(0xF0 | encode));
1928 }
1929 
1930 void Assembler::imull(Register src) {
1931   int encode = prefix_and_encode(src->encoding());
1932   emit_int8((unsigned char)0xF7);
1933   emit_int8((unsigned char)(0xE8 | encode));
1934 }
1935 
1936 void Assembler::imull(Register dst, Register src) {
1937   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1938   emit_int8(0x0F);
1939   emit_int8((unsigned char)0xAF);
1940   emit_int8((unsigned char)(0xC0 | encode));
1941 }
1942 
1943 
1944 void Assembler::imull(Register dst, Register src, int value) {
1945   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1946   if (is8bit(value)) {
1947     emit_int8(0x6B);
1948     emit_int8((unsigned char)(0xC0 | encode));
1949     emit_int8(value & 0xFF);
1950   } else {
1951     emit_int8(0x69);
1952     emit_int8((unsigned char)(0xC0 | encode));
1953     emit_int32(value);
1954   }
1955 }
1956 
1957 void Assembler::imull(Register dst, Address src) {
1958   InstructionMark im(this);
1959   prefix(src, dst);
1960   emit_int8(0x0F);
1961   emit_int8((unsigned char) 0xAF);
1962   emit_operand(dst, src);
1963 }
1964 
1965 
1966 void Assembler::incl(Address dst) {
1967   // Don't use it directly. Use MacroAssembler::increment() instead.
1968   InstructionMark im(this);
1969   prefix(dst);
1970   emit_int8((unsigned char)0xFF);
1971   emit_operand(rax, dst);
1972 }
1973 
1974 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1975   InstructionMark im(this);
1976   assert((0 <= cc) && (cc < 16), "illegal cc");
1977   if (L.is_bound()) {
1978     address dst = target(L);
1979     assert(dst != NULL, "jcc most probably wrong");
1980 
1981     const int short_size = 2;
1982     const int long_size = 6;
1983     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1984     if (maybe_short && is8bit(offs - short_size)) {
1985       // 0111 tttn #8-bit disp
1986       emit_int8(0x70 | cc);
1987       emit_int8((offs - short_size) & 0xFF);
1988     } else {
1989       // 0000 1111 1000 tttn #32-bit disp
1990       assert(is_simm32(offs - long_size),
1991              "must be 32bit offset (call4)");
1992       emit_int8(0x0F);
1993       emit_int8((unsigned char)(0x80 | cc));
1994       emit_int32(offs - long_size);
1995     }
1996   } else {
1997     // Note: could eliminate cond. jumps to this jump if condition
1998     //       is the same however, seems to be rather unlikely case.
1999     // Note: use jccb() if label to be bound is very close to get
2000     //       an 8-bit displacement
2001     L.add_patch_at(code(), locator());
2002     emit_int8(0x0F);
2003     emit_int8((unsigned char)(0x80 | cc));
2004     emit_int32(0);
2005   }
2006 }
2007 
2008 void Assembler::jccb(Condition cc, Label& L) {
2009   if (L.is_bound()) {
2010     const int short_size = 2;
2011     address entry = target(L);
2012 #ifdef ASSERT
2013     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2014     intptr_t delta = short_branch_delta();
2015     if (delta != 0) {
2016       dist += (dist < 0 ? (-delta) :delta);
2017     }
2018     assert(is8bit(dist), "Dispacement too large for a short jmp");
2019 #endif
2020     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2021     // 0111 tttn #8-bit disp
2022     emit_int8(0x70 | cc);
2023     emit_int8((offs - short_size) & 0xFF);
2024   } else {
2025     InstructionMark im(this);
2026     L.add_patch_at(code(), locator());
2027     emit_int8(0x70 | cc);
2028     emit_int8(0);
2029   }
2030 }
2031 
2032 void Assembler::jmp(Address adr) {
2033   InstructionMark im(this);
2034   prefix(adr);
2035   emit_int8((unsigned char)0xFF);
2036   emit_operand(rsp, adr);
2037 }
2038 
2039 void Assembler::jmp(Label& L, bool maybe_short) {
2040   if (L.is_bound()) {
2041     address entry = target(L);
2042     assert(entry != NULL, "jmp most probably wrong");
2043     InstructionMark im(this);
2044     const int short_size = 2;
2045     const int long_size = 5;
2046     intptr_t offs = entry - pc();
2047     if (maybe_short && is8bit(offs - short_size)) {
2048       emit_int8((unsigned char)0xEB);
2049       emit_int8((offs - short_size) & 0xFF);
2050     } else {
2051       emit_int8((unsigned char)0xE9);
2052       emit_int32(offs - long_size);
2053     }
2054   } else {
2055     // By default, forward jumps are always 32-bit displacements, since
2056     // we can't yet know where the label will be bound.  If you're sure that
2057     // the forward jump will not run beyond 256 bytes, use jmpb to
2058     // force an 8-bit displacement.
2059     InstructionMark im(this);
2060     L.add_patch_at(code(), locator());
2061     emit_int8((unsigned char)0xE9);
2062     emit_int32(0);
2063   }
2064 }
2065 
2066 void Assembler::jmp(Register entry) {
2067   int encode = prefix_and_encode(entry->encoding());
2068   emit_int8((unsigned char)0xFF);
2069   emit_int8((unsigned char)(0xE0 | encode));
2070 }
2071 
2072 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2073   InstructionMark im(this);
2074   emit_int8((unsigned char)0xE9);
2075   assert(dest != NULL, "must have a target");
2076   intptr_t disp = dest - (pc() + sizeof(int32_t));
2077   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2078   emit_data(disp, rspec.reloc(), call32_operand);
2079 }
2080 
2081 void Assembler::jmpb(Label& L) {
2082   if (L.is_bound()) {
2083     const int short_size = 2;
2084     address entry = target(L);
2085     assert(entry != NULL, "jmp most probably wrong");
2086 #ifdef ASSERT
2087     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2088     intptr_t delta = short_branch_delta();
2089     if (delta != 0) {
2090       dist += (dist < 0 ? (-delta) :delta);
2091     }
2092     assert(is8bit(dist), "Dispacement too large for a short jmp");
2093 #endif
2094     intptr_t offs = entry - pc();
2095     emit_int8((unsigned char)0xEB);
2096     emit_int8((offs - short_size) & 0xFF);
2097   } else {
2098     InstructionMark im(this);
2099     L.add_patch_at(code(), locator());
2100     emit_int8((unsigned char)0xEB);
2101     emit_int8(0);
2102   }
2103 }
2104 
2105 void Assembler::ldmxcsr( Address src) {
2106   if (UseAVX > 0 ) {
2107     InstructionMark im(this);
2108     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
2109     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2110     emit_int8((unsigned char)0xAE);
2111     emit_operand(as_Register(2), src);
2112   } else {
2113     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2114     InstructionMark im(this);
2115     prefix(src);
2116     emit_int8(0x0F);
2117     emit_int8((unsigned char)0xAE);
2118     emit_operand(as_Register(2), src);
2119   }
2120 }
2121 
2122 void Assembler::leal(Register dst, Address src) {
2123   InstructionMark im(this);
2124 #ifdef _LP64
2125   emit_int8(0x67); // addr32
2126   prefix(src, dst);
2127 #endif // LP64
2128   emit_int8((unsigned char)0x8D);
2129   emit_operand(dst, src);
2130 }
2131 
2132 void Assembler::lfence() {
2133   emit_int8(0x0F);
2134   emit_int8((unsigned char)0xAE);
2135   emit_int8((unsigned char)0xE8);
2136 }
2137 
2138 void Assembler::lock() {
2139   emit_int8((unsigned char)0xF0);
2140 }
2141 
2142 void Assembler::lzcntl(Register dst, Register src) {
2143   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2144   emit_int8((unsigned char)0xF3);
2145   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2146   emit_int8(0x0F);
2147   emit_int8((unsigned char)0xBD);
2148   emit_int8((unsigned char)(0xC0 | encode));
2149 }
2150 
2151 // Emit mfence instruction
2152 void Assembler::mfence() {
2153   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2154   emit_int8(0x0F);
2155   emit_int8((unsigned char)0xAE);
2156   emit_int8((unsigned char)0xF0);
2157 }
2158 
2159 void Assembler::mov(Register dst, Register src) {
2160   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2161 }
2162 
2163 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2164   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2165   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2166   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2167   attributes.set_rex_vex_w_reverted();
2168   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2169   emit_int8(0x28);
2170   emit_int8((unsigned char)(0xC0 | encode));
2171 }
2172 
2173 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2174   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2175   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2176   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2177   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2178   emit_int8(0x28);
2179   emit_int8((unsigned char)(0xC0 | encode));
2180 }
2181 
2182 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2183   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2184   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2185   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2186   emit_int8(0x16);
2187   emit_int8((unsigned char)(0xC0 | encode));
2188 }
2189 
2190 void Assembler::movb(Register dst, Address src) {
2191   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2192   InstructionMark im(this);
2193   prefix(src, dst, true);
2194   emit_int8((unsigned char)0x8A);
2195   emit_operand(dst, src);
2196 }
2197 
2198 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2199   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2200   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2201   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2202   attributes.set_rex_vex_w_reverted();
2203   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2204   emit_int8(0x12);
2205   emit_int8(0xC0 | encode);
2206 }
2207 
2208 void Assembler::kmovbl(KRegister dst, Register src) {
2209   assert(VM_Version::supports_avx512dq(), "");
2210   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2211   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2212   emit_int8((unsigned char)0x92);
2213   emit_int8((unsigned char)(0xC0 | encode));
2214 }
2215 
2216 void Assembler::kmovbl(Register dst, KRegister src) {
2217   assert(VM_Version::supports_avx512dq(), "");
2218   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2219   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2220   emit_int8((unsigned char)0x93);
2221   emit_int8((unsigned char)(0xC0 | encode));
2222 }
2223 
2224 void Assembler::kmovwl(KRegister dst, Register src) {
2225   assert(VM_Version::supports_evex(), "");
2226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2227   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2228   emit_int8((unsigned char)0x92);
2229   emit_int8((unsigned char)(0xC0 | encode));
2230 }
2231 
2232 void Assembler::kmovwl(Register dst, KRegister src) {
2233   assert(VM_Version::supports_evex(), "");
2234   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2235   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2236   emit_int8((unsigned char)0x93);
2237   emit_int8((unsigned char)(0xC0 | encode));
2238 }
2239 
2240 void Assembler::kmovwl(KRegister dst, Address src) {
2241   assert(VM_Version::supports_evex(), "");
2242   InstructionMark im(this);
2243   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2244   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2245   emit_int8((unsigned char)0x90);
2246   emit_operand((Register)dst, src);
2247 }
2248 
2249 void Assembler::kmovdl(KRegister dst, Register src) {
2250   assert(VM_Version::supports_avx512bw(), "");
2251   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2252   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2253   emit_int8((unsigned char)0x92);
2254   emit_int8((unsigned char)(0xC0 | encode));
2255 }
2256 
2257 void Assembler::kmovdl(Register dst, KRegister src) {
2258   assert(VM_Version::supports_avx512bw(), "");
2259   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2260   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2261   emit_int8((unsigned char)0x93);
2262   emit_int8((unsigned char)(0xC0 | encode));
2263 }
2264 
2265 void Assembler::kmovql(KRegister dst, KRegister src) {
2266   assert(VM_Version::supports_avx512bw(), "");
2267   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2268   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2269   emit_int8((unsigned char)0x90);
2270   emit_int8((unsigned char)(0xC0 | encode));
2271 }
2272 
2273 void Assembler::kmovql(KRegister dst, Address src) {
2274   assert(VM_Version::supports_avx512bw(), "");
2275   InstructionMark im(this);
2276   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2277   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2278   emit_int8((unsigned char)0x90);
2279   emit_operand((Register)dst, src);
2280 }
2281 
2282 void Assembler::kmovql(Address dst, KRegister src) {
2283   assert(VM_Version::supports_avx512bw(), "");
2284   InstructionMark im(this);
2285   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2286   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2287   emit_int8((unsigned char)0x90);
2288   emit_operand((Register)src, dst);
2289 }
2290 
2291 void Assembler::kmovql(KRegister dst, Register src) {
2292   assert(VM_Version::supports_avx512bw(), "");
2293   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2294   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2295   emit_int8((unsigned char)0x92);
2296   emit_int8((unsigned char)(0xC0 | encode));
2297 }
2298 
2299 void Assembler::kmovql(Register dst, KRegister src) {
2300   assert(VM_Version::supports_avx512bw(), "");
2301   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2302   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2303   emit_int8((unsigned char)0x93);
2304   emit_int8((unsigned char)(0xC0 | encode));
2305 }
2306 
2307 void Assembler::knotwl(KRegister dst, KRegister src) {
2308   assert(VM_Version::supports_evex(), "");
2309   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2310   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2311   emit_int8((unsigned char)0x44);
2312   emit_int8((unsigned char)(0xC0 | encode));
2313 }
2314 
2315 // This instruction produces ZF or CF flags
2316 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2317   assert(VM_Version::supports_avx512dq(), "");
2318   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2319   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2320   emit_int8((unsigned char)0x98);
2321   emit_int8((unsigned char)(0xC0 | encode));
2322 }
2323 
2324 // This instruction produces ZF or CF flags
2325 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2326   assert(VM_Version::supports_evex(), "");
2327   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2328   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2329   emit_int8((unsigned char)0x98);
2330   emit_int8((unsigned char)(0xC0 | encode));
2331 }
2332 
2333 // This instruction produces ZF or CF flags
2334 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2335   assert(VM_Version::supports_avx512bw(), "");
2336   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2337   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2338   emit_int8((unsigned char)0x98);
2339   emit_int8((unsigned char)(0xC0 | encode));
2340 }
2341 
2342 // This instruction produces ZF or CF flags
2343 void Assembler::kortestql(KRegister src1, KRegister src2) {
2344   assert(VM_Version::supports_avx512bw(), "");
2345   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2346   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2347   emit_int8((unsigned char)0x98);
2348   emit_int8((unsigned char)(0xC0 | encode));
2349 }
2350 
2351 // This instruction produces ZF or CF flags
2352 void Assembler::ktestql(KRegister src1, KRegister src2) {
2353   assert(VM_Version::supports_avx512bw(), "");
2354   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2355   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2356   emit_int8((unsigned char)0x99);
2357   emit_int8((unsigned char)(0xC0 | encode));
2358 }
2359 
2360 void Assembler::ktestq(KRegister src1, KRegister src2) {
2361   assert(VM_Version::supports_avx512bw(), "");
2362   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2363   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2364   emit_int8((unsigned char)0x99);
2365   emit_int8((unsigned char)(0xC0 | encode));
2366 }
2367 
2368 void Assembler::ktestd(KRegister src1, KRegister src2) {
2369   assert(VM_Version::supports_avx512bw(), "");
2370   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2371   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2372   emit_int8((unsigned char)0x99);
2373   emit_int8((unsigned char)(0xC0 | encode));
2374 }
2375 
2376 void Assembler::movb(Address dst, int imm8) {
2377   InstructionMark im(this);
2378    prefix(dst);
2379   emit_int8((unsigned char)0xC6);
2380   emit_operand(rax, dst, 1);
2381   emit_int8(imm8);
2382 }
2383 
2384 
2385 void Assembler::movb(Address dst, Register src) {
2386   assert(src->has_byte_register(), "must have byte register");
2387   InstructionMark im(this);
2388   prefix(dst, src, true);
2389   emit_int8((unsigned char)0x88);
2390   emit_operand(src, dst);
2391 }
2392 
2393 void Assembler::movdl(XMMRegister dst, Register src) {
2394   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2395   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2396   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2397   emit_int8(0x6E);
2398   emit_int8((unsigned char)(0xC0 | encode));
2399 }
2400 
2401 void Assembler::movdl(Register dst, XMMRegister src) {
2402   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2403   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2404   // swap src/dst to get correct prefix
2405   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2406   emit_int8(0x7E);
2407   emit_int8((unsigned char)(0xC0 | encode));
2408 }
2409 
2410 void Assembler::movdl(XMMRegister dst, Address src) {
2411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2412   InstructionMark im(this);
2413   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2414   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2415   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2416   emit_int8(0x6E);
2417   emit_operand(dst, src);
2418 }
2419 
2420 void Assembler::movdl(Address dst, XMMRegister src) {
2421   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2422   InstructionMark im(this);
2423   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2424   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2425   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2426   emit_int8(0x7E);
2427   emit_operand(src, dst);
2428 }
2429 
2430 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2431   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2432   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2433   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2434   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2435   emit_int8(0x6F);
2436   emit_int8((unsigned char)(0xC0 | encode));
2437 }
2438 
2439 void Assembler::movdqa(XMMRegister dst, Address src) {
2440   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2441   InstructionMark im(this);
2442   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2443   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2444   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2445   emit_int8(0x6F);
2446   emit_operand(dst, src);
2447 }
2448 
2449 void Assembler::movdqu(XMMRegister dst, Address src) {
2450   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2451   InstructionMark im(this);
2452   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2453   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2454   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2455   emit_int8(0x6F);
2456   emit_operand(dst, src);
2457 }
2458 
2459 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2460   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2461   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2462   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2463   emit_int8(0x6F);
2464   emit_int8((unsigned char)(0xC0 | encode));
2465 }
2466 
2467 void Assembler::movdqu(Address dst, XMMRegister src) {
2468   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2469   InstructionMark im(this);
2470   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2471   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2472   attributes.reset_is_clear_context();
2473   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2474   emit_int8(0x7F);
2475   emit_operand(src, dst);
2476 }
2477 
2478 // Move Unaligned 256bit Vector
2479 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2480   assert(UseAVX > 0, "");
2481   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2482   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2483   emit_int8(0x6F);
2484   emit_int8((unsigned char)(0xC0 | encode));
2485 }
2486 
2487 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2488   assert(UseAVX > 0, "");
2489   InstructionMark im(this);
2490   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2491   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2492   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2493   emit_int8(0x6F);
2494   emit_operand(dst, src);
2495 }
2496 
2497 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2498   assert(UseAVX > 0, "");
2499   InstructionMark im(this);
2500   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2501   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2502   attributes.reset_is_clear_context();
2503   // swap src<->dst for encoding
2504   assert(src != xnoreg, "sanity");
2505   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2506   emit_int8(0x7F);
2507   emit_operand(src, dst);
2508 }
2509 
2510 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2511 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2512   assert(VM_Version::supports_evex(), "");
2513   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2514   attributes.set_is_evex_instruction();
2515   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2516   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2517   emit_int8(0x6F);
2518   emit_int8((unsigned char)(0xC0 | encode));
2519 }
2520 
2521 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2522   assert(VM_Version::supports_evex(), "");
2523   InstructionMark im(this);
2524   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2525   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2526   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2527   attributes.set_is_evex_instruction();
2528   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2529   emit_int8(0x6F);
2530   emit_operand(dst, src);
2531 }
2532 
2533 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2534   assert(VM_Version::supports_evex(), "");
2535   assert(src != xnoreg, "sanity");
2536   InstructionMark im(this);
2537   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2538   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2539   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2540   attributes.set_is_evex_instruction();
2541   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2542   emit_int8(0x7F);
2543   emit_operand(src, dst);
2544 }
2545 
2546 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2547   assert(VM_Version::supports_avx512vlbw(), "");
2548   assert(is_vector_masking(), "");    // For stub code use only
2549   InstructionMark im(this);
2550   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2551   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2552   attributes.set_embedded_opmask_register_specifier(mask);
2553   attributes.set_is_evex_instruction();
2554   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2555   emit_int8(0x6F);
2556   emit_operand(dst, src);
2557 }
2558 
2559 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2560   assert(VM_Version::supports_evex(), "");
2561   InstructionMark im(this);
2562   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2563   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2564   attributes.set_is_evex_instruction();
2565   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2566   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2567   emit_int8(0x6F);
2568   emit_operand(dst, src);
2569 }
2570 
2571 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2572   assert(is_vector_masking(), "");
2573   assert(VM_Version::supports_avx512vlbw(), "");
2574   InstructionMark im(this);
2575   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2576   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2577   attributes.set_embedded_opmask_register_specifier(mask);
2578   attributes.set_is_evex_instruction();
2579   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2580   emit_int8(0x6F);
2581   emit_operand(dst, src);
2582 }
2583 
2584 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2585   assert(VM_Version::supports_evex(), "");
2586   assert(src != xnoreg, "sanity");
2587   InstructionMark im(this);
2588   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2589   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2590   attributes.set_is_evex_instruction();
2591   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2592   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2593   emit_int8(0x7F);
2594   emit_operand(src, dst);
2595 }
2596 
2597 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2598   assert(VM_Version::supports_avx512vlbw(), "");
2599   assert(src != xnoreg, "sanity");
2600   InstructionMark im(this);
2601   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2602   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2603   attributes.reset_is_clear_context();
2604   attributes.set_embedded_opmask_register_specifier(mask);
2605   attributes.set_is_evex_instruction();
2606   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2607   emit_int8(0x7F);
2608   emit_operand(src, dst);
2609 }
2610 
2611 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2612   assert(VM_Version::supports_evex(), "");
2613   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2614   attributes.set_is_evex_instruction();
2615   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2616   emit_int8(0x6F);
2617   emit_int8((unsigned char)(0xC0 | encode));
2618 }
2619 
2620 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2621   assert(VM_Version::supports_evex(), "");
2622   InstructionMark im(this);
2623   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2624   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2625   attributes.set_is_evex_instruction();
2626   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2627   emit_int8(0x6F);
2628   emit_operand(dst, src);
2629 }
2630 
2631 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2632   assert(VM_Version::supports_evex(), "");
2633   assert(src != xnoreg, "sanity");
2634   InstructionMark im(this);
2635   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2636   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2637   attributes.reset_is_clear_context();
2638   attributes.set_is_evex_instruction();
2639   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2640   emit_int8(0x7F);
2641   emit_operand(src, dst);
2642 }
2643 
2644 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2645   assert(VM_Version::supports_evex(), "");
2646   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2647   attributes.set_is_evex_instruction();
2648   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2649   emit_int8(0x6F);
2650   emit_int8((unsigned char)(0xC0 | encode));
2651 }
2652 
2653 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2654   assert(VM_Version::supports_evex(), "");
2655   InstructionMark im(this);
2656   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2657   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2658   attributes.set_is_evex_instruction();
2659   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2660   emit_int8(0x6F);
2661   emit_operand(dst, src);
2662 }
2663 
2664 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2665   assert(VM_Version::supports_evex(), "");
2666   assert(src != xnoreg, "sanity");
2667   InstructionMark im(this);
2668   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2669   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2670   attributes.reset_is_clear_context();
2671   attributes.set_is_evex_instruction();
2672   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2673   emit_int8(0x7F);
2674   emit_operand(src, dst);
2675 }
2676 
2677 // Uses zero extension on 64bit
2678 
2679 void Assembler::movl(Register dst, int32_t imm32) {
2680   int encode = prefix_and_encode(dst->encoding());
2681   emit_int8((unsigned char)(0xB8 | encode));
2682   emit_int32(imm32);
2683 }
2684 
2685 void Assembler::movl(Register dst, Register src) {
2686   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2687   emit_int8((unsigned char)0x8B);
2688   emit_int8((unsigned char)(0xC0 | encode));
2689 }
2690 
2691 void Assembler::movl(Register dst, Address src) {
2692   InstructionMark im(this);
2693   prefix(src, dst);
2694   emit_int8((unsigned char)0x8B);
2695   emit_operand(dst, src);
2696 }
2697 
2698 void Assembler::movl(Address dst, int32_t imm32) {
2699   InstructionMark im(this);
2700   prefix(dst);
2701   emit_int8((unsigned char)0xC7);
2702   emit_operand(rax, dst, 4);
2703   emit_int32(imm32);
2704 }
2705 
2706 void Assembler::movl(Address dst, Register src) {
2707   InstructionMark im(this);
2708   prefix(dst, src);
2709   emit_int8((unsigned char)0x89);
2710   emit_operand(src, dst);
2711 }
2712 
2713 // New cpus require to use movsd and movss to avoid partial register stall
2714 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2715 // The selection is done in MacroAssembler::movdbl() and movflt().
2716 void Assembler::movlpd(XMMRegister dst, Address src) {
2717   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2718   InstructionMark im(this);
2719   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2720   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2721   attributes.set_rex_vex_w_reverted();
2722   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2723   emit_int8(0x12);
2724   emit_operand(dst, src);
2725 }
2726 
2727 void Assembler::movq( MMXRegister dst, Address src ) {
2728   assert( VM_Version::supports_mmx(), "" );
2729   emit_int8(0x0F);
2730   emit_int8(0x6F);
2731   emit_operand(dst, src);
2732 }
2733 
2734 void Assembler::movq( Address dst, MMXRegister src ) {
2735   assert( VM_Version::supports_mmx(), "" );
2736   emit_int8(0x0F);
2737   emit_int8(0x7F);
2738   // workaround gcc (3.2.1-7a) bug
2739   // In that version of gcc with only an emit_operand(MMX, Address)
2740   // gcc will tail jump and try and reverse the parameters completely
2741   // obliterating dst in the process. By having a version available
2742   // that doesn't need to swap the args at the tail jump the bug is
2743   // avoided.
2744   emit_operand(dst, src);
2745 }
2746 
2747 void Assembler::movq(XMMRegister dst, Address src) {
2748   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2749   InstructionMark im(this);
2750   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2751   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2752   attributes.set_rex_vex_w_reverted();
2753   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2754   emit_int8(0x7E);
2755   emit_operand(dst, src);
2756 }
2757 
2758 void Assembler::movq(Address dst, XMMRegister src) {
2759   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2760   InstructionMark im(this);
2761   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2762   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2763   attributes.set_rex_vex_w_reverted();
2764   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2765   emit_int8((unsigned char)0xD6);
2766   emit_operand(src, dst);
2767 }
2768 
2769 void Assembler::movsbl(Register dst, Address src) { // movsxb
2770   InstructionMark im(this);
2771   prefix(src, dst);
2772   emit_int8(0x0F);
2773   emit_int8((unsigned char)0xBE);
2774   emit_operand(dst, src);
2775 }
2776 
2777 void Assembler::movsbl(Register dst, Register src) { // movsxb
2778   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2779   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2780   emit_int8(0x0F);
2781   emit_int8((unsigned char)0xBE);
2782   emit_int8((unsigned char)(0xC0 | encode));
2783 }
2784 
2785 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2786   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2787   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2788   attributes.set_rex_vex_w_reverted();
2789   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2790   emit_int8(0x10);
2791   emit_int8((unsigned char)(0xC0 | encode));
2792 }
2793 
2794 void Assembler::movsd(XMMRegister dst, Address src) {
2795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2796   InstructionMark im(this);
2797   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2798   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2799   attributes.set_rex_vex_w_reverted();
2800   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2801   emit_int8(0x10);
2802   emit_operand(dst, src);
2803 }
2804 
2805 void Assembler::movsd(Address dst, XMMRegister src) {
2806   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2807   InstructionMark im(this);
2808   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2809   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2810   attributes.reset_is_clear_context();
2811   attributes.set_rex_vex_w_reverted();
2812   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2813   emit_int8(0x11);
2814   emit_operand(src, dst);
2815 }
2816 
2817 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2818   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2819   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2820   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2821   emit_int8(0x10);
2822   emit_int8((unsigned char)(0xC0 | encode));
2823 }
2824 
2825 void Assembler::movss(XMMRegister dst, Address src) {
2826   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2827   InstructionMark im(this);
2828   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2829   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2830   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2831   emit_int8(0x10);
2832   emit_operand(dst, src);
2833 }
2834 
2835 void Assembler::movss(Address dst, XMMRegister src) {
2836   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2837   InstructionMark im(this);
2838   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2839   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2840   attributes.reset_is_clear_context();
2841   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2842   emit_int8(0x11);
2843   emit_operand(src, dst);
2844 }
2845 
2846 void Assembler::movswl(Register dst, Address src) { // movsxw
2847   InstructionMark im(this);
2848   prefix(src, dst);
2849   emit_int8(0x0F);
2850   emit_int8((unsigned char)0xBF);
2851   emit_operand(dst, src);
2852 }
2853 
2854 void Assembler::movswl(Register dst, Register src) { // movsxw
2855   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2856   emit_int8(0x0F);
2857   emit_int8((unsigned char)0xBF);
2858   emit_int8((unsigned char)(0xC0 | encode));
2859 }
2860 
2861 void Assembler::movw(Address dst, int imm16) {
2862   InstructionMark im(this);
2863 
2864   emit_int8(0x66); // switch to 16-bit mode
2865   prefix(dst);
2866   emit_int8((unsigned char)0xC7);
2867   emit_operand(rax, dst, 2);
2868   emit_int16(imm16);
2869 }
2870 
2871 void Assembler::movw(Register dst, Address src) {
2872   InstructionMark im(this);
2873   emit_int8(0x66);
2874   prefix(src, dst);
2875   emit_int8((unsigned char)0x8B);
2876   emit_operand(dst, src);
2877 }
2878 
2879 void Assembler::movw(Address dst, Register src) {
2880   InstructionMark im(this);
2881   emit_int8(0x66);
2882   prefix(dst, src);
2883   emit_int8((unsigned char)0x89);
2884   emit_operand(src, dst);
2885 }
2886 
2887 void Assembler::movzbl(Register dst, Address src) { // movzxb
2888   InstructionMark im(this);
2889   prefix(src, dst);
2890   emit_int8(0x0F);
2891   emit_int8((unsigned char)0xB6);
2892   emit_operand(dst, src);
2893 }
2894 
2895 void Assembler::movzbl(Register dst, Register src) { // movzxb
2896   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2897   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2898   emit_int8(0x0F);
2899   emit_int8((unsigned char)0xB6);
2900   emit_int8(0xC0 | encode);
2901 }
2902 
2903 void Assembler::movzwl(Register dst, Address src) { // movzxw
2904   InstructionMark im(this);
2905   prefix(src, dst);
2906   emit_int8(0x0F);
2907   emit_int8((unsigned char)0xB7);
2908   emit_operand(dst, src);
2909 }
2910 
2911 void Assembler::movzwl(Register dst, Register src) { // movzxw
2912   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2913   emit_int8(0x0F);
2914   emit_int8((unsigned char)0xB7);
2915   emit_int8(0xC0 | encode);
2916 }
2917 
2918 void Assembler::mull(Address src) {
2919   InstructionMark im(this);
2920   prefix(src);
2921   emit_int8((unsigned char)0xF7);
2922   emit_operand(rsp, src);
2923 }
2924 
2925 void Assembler::mull(Register src) {
2926   int encode = prefix_and_encode(src->encoding());
2927   emit_int8((unsigned char)0xF7);
2928   emit_int8((unsigned char)(0xE0 | encode));
2929 }
2930 
2931 void Assembler::mulsd(XMMRegister dst, Address src) {
2932   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2933   InstructionMark im(this);
2934   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2935   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2936   attributes.set_rex_vex_w_reverted();
2937   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2938   emit_int8(0x59);
2939   emit_operand(dst, src);
2940 }
2941 
2942 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2943   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2944   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2945   attributes.set_rex_vex_w_reverted();
2946   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2947   emit_int8(0x59);
2948   emit_int8((unsigned char)(0xC0 | encode));
2949 }
2950 
2951 void Assembler::mulss(XMMRegister dst, Address src) {
2952   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2953   InstructionMark im(this);
2954   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2955   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2956   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2957   emit_int8(0x59);
2958   emit_operand(dst, src);
2959 }
2960 
2961 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2962   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2963   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2964   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2965   emit_int8(0x59);
2966   emit_int8((unsigned char)(0xC0 | encode));
2967 }
2968 
2969 void Assembler::negl(Register dst) {
2970   int encode = prefix_and_encode(dst->encoding());
2971   emit_int8((unsigned char)0xF7);
2972   emit_int8((unsigned char)(0xD8 | encode));
2973 }
2974 
2975 void Assembler::nop(int i) {
2976 #ifdef ASSERT
2977   assert(i > 0, " ");
2978   // The fancy nops aren't currently recognized by debuggers making it a
2979   // pain to disassemble code while debugging. If asserts are on clearly
2980   // speed is not an issue so simply use the single byte traditional nop
2981   // to do alignment.
2982 
2983   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2984   return;
2985 
2986 #endif // ASSERT
2987 
2988   if (UseAddressNop && VM_Version::is_intel()) {
2989     //
2990     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2991     //  1: 0x90
2992     //  2: 0x66 0x90
2993     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2994     //  4: 0x0F 0x1F 0x40 0x00
2995     //  5: 0x0F 0x1F 0x44 0x00 0x00
2996     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2997     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2998     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2999     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3000     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3001     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3002 
3003     // The rest coding is Intel specific - don't use consecutive address nops
3004 
3005     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3006     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3007     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3008     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3009 
3010     while(i >= 15) {
3011       // For Intel don't generate consecutive addess nops (mix with regular nops)
3012       i -= 15;
3013       emit_int8(0x66);   // size prefix
3014       emit_int8(0x66);   // size prefix
3015       emit_int8(0x66);   // size prefix
3016       addr_nop_8();
3017       emit_int8(0x66);   // size prefix
3018       emit_int8(0x66);   // size prefix
3019       emit_int8(0x66);   // size prefix
3020       emit_int8((unsigned char)0x90);
3021                          // nop
3022     }
3023     switch (i) {
3024       case 14:
3025         emit_int8(0x66); // size prefix
3026       case 13:
3027         emit_int8(0x66); // size prefix
3028       case 12:
3029         addr_nop_8();
3030         emit_int8(0x66); // size prefix
3031         emit_int8(0x66); // size prefix
3032         emit_int8(0x66); // size prefix
3033         emit_int8((unsigned char)0x90);
3034                          // nop
3035         break;
3036       case 11:
3037         emit_int8(0x66); // size prefix
3038       case 10:
3039         emit_int8(0x66); // size prefix
3040       case 9:
3041         emit_int8(0x66); // size prefix
3042       case 8:
3043         addr_nop_8();
3044         break;
3045       case 7:
3046         addr_nop_7();
3047         break;
3048       case 6:
3049         emit_int8(0x66); // size prefix
3050       case 5:
3051         addr_nop_5();
3052         break;
3053       case 4:
3054         addr_nop_4();
3055         break;
3056       case 3:
3057         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3058         emit_int8(0x66); // size prefix
3059       case 2:
3060         emit_int8(0x66); // size prefix
3061       case 1:
3062         emit_int8((unsigned char)0x90);
3063                          // nop
3064         break;
3065       default:
3066         assert(i == 0, " ");
3067     }
3068     return;
3069   }
3070   if (UseAddressNop && VM_Version::is_amd()) {
3071     //
3072     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3073     //  1: 0x90
3074     //  2: 0x66 0x90
3075     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3076     //  4: 0x0F 0x1F 0x40 0x00
3077     //  5: 0x0F 0x1F 0x44 0x00 0x00
3078     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3079     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3080     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3081     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3082     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3083     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3084 
3085     // The rest coding is AMD specific - use consecutive address nops
3086 
3087     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3088     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3089     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3090     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3091     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3092     //     Size prefixes (0x66) are added for larger sizes
3093 
3094     while(i >= 22) {
3095       i -= 11;
3096       emit_int8(0x66); // size prefix
3097       emit_int8(0x66); // size prefix
3098       emit_int8(0x66); // size prefix
3099       addr_nop_8();
3100     }
3101     // Generate first nop for size between 21-12
3102     switch (i) {
3103       case 21:
3104         i -= 1;
3105         emit_int8(0x66); // size prefix
3106       case 20:
3107       case 19:
3108         i -= 1;
3109         emit_int8(0x66); // size prefix
3110       case 18:
3111       case 17:
3112         i -= 1;
3113         emit_int8(0x66); // size prefix
3114       case 16:
3115       case 15:
3116         i -= 8;
3117         addr_nop_8();
3118         break;
3119       case 14:
3120       case 13:
3121         i -= 7;
3122         addr_nop_7();
3123         break;
3124       case 12:
3125         i -= 6;
3126         emit_int8(0x66); // size prefix
3127         addr_nop_5();
3128         break;
3129       default:
3130         assert(i < 12, " ");
3131     }
3132 
3133     // Generate second nop for size between 11-1
3134     switch (i) {
3135       case 11:
3136         emit_int8(0x66); // size prefix
3137       case 10:
3138         emit_int8(0x66); // size prefix
3139       case 9:
3140         emit_int8(0x66); // size prefix
3141       case 8:
3142         addr_nop_8();
3143         break;
3144       case 7:
3145         addr_nop_7();
3146         break;
3147       case 6:
3148         emit_int8(0x66); // size prefix
3149       case 5:
3150         addr_nop_5();
3151         break;
3152       case 4:
3153         addr_nop_4();
3154         break;
3155       case 3:
3156         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3157         emit_int8(0x66); // size prefix
3158       case 2:
3159         emit_int8(0x66); // size prefix
3160       case 1:
3161         emit_int8((unsigned char)0x90);
3162                          // nop
3163         break;
3164       default:
3165         assert(i == 0, " ");
3166     }
3167     return;
3168   }
3169 
3170   // Using nops with size prefixes "0x66 0x90".
3171   // From AMD Optimization Guide:
3172   //  1: 0x90
3173   //  2: 0x66 0x90
3174   //  3: 0x66 0x66 0x90
3175   //  4: 0x66 0x66 0x66 0x90
3176   //  5: 0x66 0x66 0x90 0x66 0x90
3177   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3178   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3179   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3180   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3181   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3182   //
3183   while(i > 12) {
3184     i -= 4;
3185     emit_int8(0x66); // size prefix
3186     emit_int8(0x66);
3187     emit_int8(0x66);
3188     emit_int8((unsigned char)0x90);
3189                      // nop
3190   }
3191   // 1 - 12 nops
3192   if(i > 8) {
3193     if(i > 9) {
3194       i -= 1;
3195       emit_int8(0x66);
3196     }
3197     i -= 3;
3198     emit_int8(0x66);
3199     emit_int8(0x66);
3200     emit_int8((unsigned char)0x90);
3201   }
3202   // 1 - 8 nops
3203   if(i > 4) {
3204     if(i > 6) {
3205       i -= 1;
3206       emit_int8(0x66);
3207     }
3208     i -= 3;
3209     emit_int8(0x66);
3210     emit_int8(0x66);
3211     emit_int8((unsigned char)0x90);
3212   }
3213   switch (i) {
3214     case 4:
3215       emit_int8(0x66);
3216     case 3:
3217       emit_int8(0x66);
3218     case 2:
3219       emit_int8(0x66);
3220     case 1:
3221       emit_int8((unsigned char)0x90);
3222       break;
3223     default:
3224       assert(i == 0, " ");
3225   }
3226 }
3227 
3228 void Assembler::notl(Register dst) {
3229   int encode = prefix_and_encode(dst->encoding());
3230   emit_int8((unsigned char)0xF7);
3231   emit_int8((unsigned char)(0xD0 | encode));
3232 }
3233 
3234 void Assembler::orl(Address dst, int32_t imm32) {
3235   InstructionMark im(this);
3236   prefix(dst);
3237   emit_arith_operand(0x81, rcx, dst, imm32);
3238 }
3239 
3240 void Assembler::orl(Register dst, int32_t imm32) {
3241   prefix(dst);
3242   emit_arith(0x81, 0xC8, dst, imm32);
3243 }
3244 
3245 void Assembler::orl(Register dst, Address src) {
3246   InstructionMark im(this);
3247   prefix(src, dst);
3248   emit_int8(0x0B);
3249   emit_operand(dst, src);
3250 }
3251 
3252 void Assembler::orl(Register dst, Register src) {
3253   (void) prefix_and_encode(dst->encoding(), src->encoding());
3254   emit_arith(0x0B, 0xC0, dst, src);
3255 }
3256 
3257 void Assembler::orl(Address dst, Register src) {
3258   InstructionMark im(this);
3259   prefix(dst, src);
3260   emit_int8(0x09);
3261   emit_operand(src, dst);
3262 }
3263 
3264 void Assembler::packuswb(XMMRegister dst, Address src) {
3265   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3266   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3267   InstructionMark im(this);
3268   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3269   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3270   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3271   emit_int8(0x67);
3272   emit_operand(dst, src);
3273 }
3274 
3275 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3277   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3278   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3279   emit_int8(0x67);
3280   emit_int8((unsigned char)(0xC0 | encode));
3281 }
3282 
3283 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3284   assert(UseAVX > 0, "some form of AVX must be enabled");
3285   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3286   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3287   emit_int8(0x67);
3288   emit_int8((unsigned char)(0xC0 | encode));
3289 }
3290 
3291 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3292   assert(VM_Version::supports_avx2(), "");
3293   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3294   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3295   emit_int8(0x00);
3296   emit_int8(0xC0 | encode);
3297   emit_int8(imm8);
3298 }
3299 
3300 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3301   assert(VM_Version::supports_avx2(), "");
3302   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3303   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3304   emit_int8(0x46);
3305   emit_int8(0xC0 | encode);
3306   emit_int8(imm8);
3307 }
3308 
3309 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3310   assert(VM_Version::supports_avx(), "");
3311   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3312   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3313   emit_int8(0x06);
3314   emit_int8(0xC0 | encode);
3315   emit_int8(imm8);
3316 }
3317 
3318 
3319 void Assembler::pause() {
3320   emit_int8((unsigned char)0xF3);
3321   emit_int8((unsigned char)0x90);
3322 }
3323 
3324 void Assembler::ud2() {
3325   emit_int8(0x0F);
3326   emit_int8(0x0B);
3327 }
3328 
3329 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3330   assert(VM_Version::supports_sse4_2(), "");
3331   InstructionMark im(this);
3332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3333   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3334   emit_int8(0x61);
3335   emit_operand(dst, src);
3336   emit_int8(imm8);
3337 }
3338 
3339 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3340   assert(VM_Version::supports_sse4_2(), "");
3341   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3342   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3343   emit_int8(0x61);
3344   emit_int8((unsigned char)(0xC0 | encode));
3345   emit_int8(imm8);
3346 }
3347 
3348 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3349 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3350   assert(VM_Version::supports_sse2(), "");
3351   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3352   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3353   emit_int8(0x74);
3354   emit_int8((unsigned char)(0xC0 | encode));
3355 }
3356 
3357 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3358 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3359   assert(VM_Version::supports_avx(), "");
3360   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3361   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3362   emit_int8(0x74);
3363   emit_int8((unsigned char)(0xC0 | encode));
3364 }
3365 
3366 // In this context, kdst is written the mask used to process the equal components
3367 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3368   assert(VM_Version::supports_avx512bw(), "");
3369   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3370   attributes.set_is_evex_instruction();
3371   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3372   emit_int8(0x74);
3373   emit_int8((unsigned char)(0xC0 | encode));
3374 }
3375 
3376 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3377   assert(VM_Version::supports_avx512vlbw(), "");
3378   InstructionMark im(this);
3379   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3380   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3381   attributes.set_is_evex_instruction();
3382   int dst_enc = kdst->encoding();
3383   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3384   emit_int8(0x64);
3385   emit_operand(as_Register(dst_enc), src);
3386 }
3387 
3388 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3389   assert(is_vector_masking(), "");
3390   assert(VM_Version::supports_avx512vlbw(), "");
3391   InstructionMark im(this);
3392   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3393   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3394   attributes.reset_is_clear_context();
3395   attributes.set_embedded_opmask_register_specifier(mask);
3396   attributes.set_is_evex_instruction();
3397   int dst_enc = kdst->encoding();
3398   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3399   emit_int8(0x64);
3400   emit_operand(as_Register(dst_enc), src);
3401 }
3402 
3403 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3404   assert(VM_Version::supports_avx512vlbw(), "");
3405   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3406   attributes.set_is_evex_instruction();
3407   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3408   emit_int8(0x3E);
3409   emit_int8((unsigned char)(0xC0 | encode));
3410   emit_int8(vcc);
3411 }
3412 
3413 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3414   assert(is_vector_masking(), "");
3415   assert(VM_Version::supports_avx512vlbw(), "");
3416   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3417   attributes.reset_is_clear_context();
3418   attributes.set_embedded_opmask_register_specifier(mask);
3419   attributes.set_is_evex_instruction();
3420   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3421   emit_int8(0x3E);
3422   emit_int8((unsigned char)(0xC0 | encode));
3423   emit_int8(vcc);
3424 }
3425 
3426 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3427   assert(VM_Version::supports_avx512vlbw(), "");
3428   InstructionMark im(this);
3429   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3430   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3431   attributes.set_is_evex_instruction();
3432   int dst_enc = kdst->encoding();
3433   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3434   emit_int8(0x3E);
3435   emit_operand(as_Register(dst_enc), src);
3436   emit_int8(vcc);
3437 }
3438 
3439 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3440   assert(VM_Version::supports_avx512bw(), "");
3441   InstructionMark im(this);
3442   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3443   attributes.set_is_evex_instruction();
3444   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3445   int dst_enc = kdst->encoding();
3446   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3447   emit_int8(0x74);
3448   emit_operand(as_Register(dst_enc), src);
3449 }
3450 
3451 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3452   assert(VM_Version::supports_avx512vlbw(), "");
3453   assert(is_vector_masking(), "");    // For stub code use only
3454   InstructionMark im(this);
3455   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ false);
3456   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3457   attributes.reset_is_clear_context();
3458   attributes.set_embedded_opmask_register_specifier(mask);
3459   attributes.set_is_evex_instruction();
3460   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3461   emit_int8(0x74);
3462   emit_operand(as_Register(kdst->encoding()), src);
3463 }
3464 
3465 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3466 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3467   assert(VM_Version::supports_sse2(), "");
3468   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3469   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3470   emit_int8(0x75);
3471   emit_int8((unsigned char)(0xC0 | encode));
3472 }
3473 
3474 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3475 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3476   assert(VM_Version::supports_avx(), "");
3477   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3478   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3479   emit_int8(0x75);
3480   emit_int8((unsigned char)(0xC0 | encode));
3481 }
3482 
3483 // In this context, kdst is written the mask used to process the equal components
3484 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3485   assert(VM_Version::supports_avx512bw(), "");
3486   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3487   attributes.set_is_evex_instruction();
3488   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3489   emit_int8(0x75);
3490   emit_int8((unsigned char)(0xC0 | encode));
3491 }
3492 
3493 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3494   assert(VM_Version::supports_avx512bw(), "");
3495   InstructionMark im(this);
3496   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3497   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3498   attributes.set_is_evex_instruction();
3499   int dst_enc = kdst->encoding();
3500   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3501   emit_int8(0x75);
3502   emit_operand(as_Register(dst_enc), src);
3503 }
3504 
3505 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3506 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3507   assert(VM_Version::supports_sse2(), "");
3508   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3509   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3510   emit_int8(0x76);
3511   emit_int8((unsigned char)(0xC0 | encode));
3512 }
3513 
3514 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3515 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3516   assert(VM_Version::supports_avx(), "");
3517   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3518   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3519   emit_int8(0x76);
3520   emit_int8((unsigned char)(0xC0 | encode));
3521 }
3522 
3523 // In this context, kdst is written the mask used to process the equal components
3524 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3525   assert(VM_Version::supports_evex(), "");
3526   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3527   attributes.set_is_evex_instruction();
3528   attributes.reset_is_clear_context();
3529   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3530   emit_int8(0x76);
3531   emit_int8((unsigned char)(0xC0 | encode));
3532 }
3533 
3534 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3535   assert(VM_Version::supports_evex(), "");
3536   InstructionMark im(this);
3537   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3538   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3539   attributes.reset_is_clear_context();
3540   attributes.set_is_evex_instruction();
3541   int dst_enc = kdst->encoding();
3542   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3543   emit_int8(0x76);
3544   emit_operand(as_Register(dst_enc), src);
3545 }
3546 
3547 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3548 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3549   assert(VM_Version::supports_sse4_1(), "");
3550   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3551   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3552   emit_int8(0x29);
3553   emit_int8((unsigned char)(0xC0 | encode));
3554 }
3555 
3556 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3557 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3558   assert(VM_Version::supports_avx(), "");
3559   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3560   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3561   emit_int8(0x29);
3562   emit_int8((unsigned char)(0xC0 | encode));
3563 }
3564 
3565 // In this context, kdst is written the mask used to process the equal components
3566 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3567   assert(VM_Version::supports_evex(), "");
3568   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3569   attributes.reset_is_clear_context();
3570   attributes.set_is_evex_instruction();
3571   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3572   emit_int8(0x29);
3573   emit_int8((unsigned char)(0xC0 | encode));
3574 }
3575 
3576 // In this context, kdst is written the mask used to process the equal components
3577 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3578   assert(VM_Version::supports_evex(), "");
3579   InstructionMark im(this);
3580   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3581   attributes.reset_is_clear_context();
3582   attributes.set_is_evex_instruction();
3583   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3584   int dst_enc = kdst->encoding();
3585   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3586   emit_int8(0x29);
3587   emit_operand(as_Register(dst_enc), src);
3588 }
3589 
3590 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3591   assert(VM_Version::supports_sse2(), "");
3592   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3593   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3594   emit_int8((unsigned char)0xD7);
3595   emit_int8((unsigned char)(0xC0 | encode));
3596 }
3597 
3598 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3599   assert(VM_Version::supports_avx2(), "");
3600   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3601   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3602   emit_int8((unsigned char)0xD7);
3603   emit_int8((unsigned char)(0xC0 | encode));
3604 }
3605 
3606 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3607   assert(VM_Version::supports_sse4_1(), "");
3608   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3609   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3610   emit_int8(0x16);
3611   emit_int8((unsigned char)(0xC0 | encode));
3612   emit_int8(imm8);
3613 }
3614 
3615 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3616   assert(VM_Version::supports_sse4_1(), "");
3617   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3618   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3619   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3620   emit_int8(0x16);
3621   emit_operand(src, dst);
3622   emit_int8(imm8);
3623 }
3624 
3625 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3626   assert(VM_Version::supports_sse4_1(), "");
3627   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3628   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3629   emit_int8(0x16);
3630   emit_int8((unsigned char)(0xC0 | encode));
3631   emit_int8(imm8);
3632 }
3633 
3634 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3635   assert(VM_Version::supports_sse4_1(), "");
3636   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3637   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3638   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3639   emit_int8(0x16);
3640   emit_operand(src, dst);
3641   emit_int8(imm8);
3642 }
3643 
3644 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3645   assert(VM_Version::supports_sse2(), "");
3646   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3647   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3648   emit_int8((unsigned char)0xC5);
3649   emit_int8((unsigned char)(0xC0 | encode));
3650   emit_int8(imm8);
3651 }
3652 
3653 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3654   assert(VM_Version::supports_sse4_1(), "");
3655   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3656   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3657   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3658   emit_int8((unsigned char)0x15);
3659   emit_operand(src, dst);
3660   emit_int8(imm8);
3661 }
3662 
3663 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3664   assert(VM_Version::supports_sse4_1(), "");
3665   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3666   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3667   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3668   emit_int8(0x14);
3669   emit_operand(src, dst);
3670   emit_int8(imm8);
3671 }
3672 
3673 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3674   assert(VM_Version::supports_sse4_1(), "");
3675   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3676   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3677   emit_int8(0x22);
3678   emit_int8((unsigned char)(0xC0 | encode));
3679   emit_int8(imm8);
3680 }
3681 
3682 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3683   assert(VM_Version::supports_sse4_1(), "");
3684   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3685   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3686   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3687   emit_int8(0x22);
3688   emit_operand(dst,src);
3689   emit_int8(imm8);
3690 }
3691 
3692 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3693   assert(VM_Version::supports_sse4_1(), "");
3694   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3695   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3696   emit_int8(0x22);
3697   emit_int8((unsigned char)(0xC0 | encode));
3698   emit_int8(imm8);
3699 }
3700 
3701 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3702   assert(VM_Version::supports_sse4_1(), "");
3703   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3704   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3705   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3706   emit_int8(0x22);
3707   emit_operand(dst, src);
3708   emit_int8(imm8);
3709 }
3710 
3711 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3712   assert(VM_Version::supports_sse2(), "");
3713   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3714   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3715   emit_int8((unsigned char)0xC4);
3716   emit_int8((unsigned char)(0xC0 | encode));
3717   emit_int8(imm8);
3718 }
3719 
3720 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3721   assert(VM_Version::supports_sse2(), "");
3722   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3723   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3724   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3725   emit_int8((unsigned char)0xC4);
3726   emit_operand(dst, src);
3727   emit_int8(imm8);
3728 }
3729 
3730 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3731   assert(VM_Version::supports_sse4_1(), "");
3732   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3733   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3734   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3735   emit_int8(0x20);
3736   emit_operand(dst, src);
3737   emit_int8(imm8);
3738 }
3739 
3740 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3741   assert(VM_Version::supports_sse4_1(), "");
3742   InstructionMark im(this);
3743   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3744   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3745   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3746   emit_int8(0x30);
3747   emit_operand(dst, src);
3748 }
3749 
3750 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3751   assert(VM_Version::supports_sse4_1(), "");
3752   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3753   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3754   emit_int8(0x30);
3755   emit_int8((unsigned char)(0xC0 | encode));
3756 }
3757 
3758 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3759   assert(VM_Version::supports_avx(), "");
3760   InstructionMark im(this);
3761   assert(dst != xnoreg, "sanity");
3762   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3763   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3764   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3765   emit_int8(0x30);
3766   emit_operand(dst, src);
3767 }
3768 
3769 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3770   assert(is_vector_masking(), "");
3771   assert(VM_Version::supports_avx512vlbw(), "");
3772   assert(dst != xnoreg, "sanity");
3773   InstructionMark im(this);
3774   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3775   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3776   attributes.set_embedded_opmask_register_specifier(mask);
3777   attributes.set_is_evex_instruction();
3778   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3779   emit_int8(0x30);
3780   emit_operand(dst, src);
3781 }
3782 
3783 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3784   assert(VM_Version::supports_avx512vlbw(), "");
3785   assert(src != xnoreg, "sanity");
3786   InstructionMark im(this);
3787   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3788   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3789   attributes.set_is_evex_instruction();
3790   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3791   emit_int8(0x30);
3792   emit_operand(src, dst);
3793 }
3794 
3795 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3796   assert(is_vector_masking(), "");
3797   assert(VM_Version::supports_avx512vlbw(), "");
3798   assert(src != xnoreg, "sanity");
3799   InstructionMark im(this);
3800   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3801   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3802   attributes.reset_is_clear_context();
3803   attributes.set_embedded_opmask_register_specifier(mask);
3804   attributes.set_is_evex_instruction();
3805   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3806   emit_int8(0x30);
3807   emit_operand(src, dst);
3808 }
3809 
3810 // generic
3811 void Assembler::pop(Register dst) {
3812   int encode = prefix_and_encode(dst->encoding());
3813   emit_int8(0x58 | encode);
3814 }
3815 
3816 void Assembler::popcntl(Register dst, Address src) {
3817   assert(VM_Version::supports_popcnt(), "must support");
3818   InstructionMark im(this);
3819   emit_int8((unsigned char)0xF3);
3820   prefix(src, dst);
3821   emit_int8(0x0F);
3822   emit_int8((unsigned char)0xB8);
3823   emit_operand(dst, src);
3824 }
3825 
3826 void Assembler::popcntl(Register dst, Register src) {
3827   assert(VM_Version::supports_popcnt(), "must support");
3828   emit_int8((unsigned char)0xF3);
3829   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3830   emit_int8(0x0F);
3831   emit_int8((unsigned char)0xB8);
3832   emit_int8((unsigned char)(0xC0 | encode));
3833 }
3834 
3835 void Assembler::popf() {
3836   emit_int8((unsigned char)0x9D);
3837 }
3838 
3839 #ifndef _LP64 // no 32bit push/pop on amd64
3840 void Assembler::popl(Address dst) {
3841   // NOTE: this will adjust stack by 8byte on 64bits
3842   InstructionMark im(this);
3843   prefix(dst);
3844   emit_int8((unsigned char)0x8F);
3845   emit_operand(rax, dst);
3846 }
3847 #endif
3848 
3849 void Assembler::prefetch_prefix(Address src) {
3850   prefix(src);
3851   emit_int8(0x0F);
3852 }
3853 
3854 void Assembler::prefetchnta(Address src) {
3855   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3856   InstructionMark im(this);
3857   prefetch_prefix(src);
3858   emit_int8(0x18);
3859   emit_operand(rax, src); // 0, src
3860 }
3861 
3862 void Assembler::prefetchr(Address src) {
3863   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3864   InstructionMark im(this);
3865   prefetch_prefix(src);
3866   emit_int8(0x0D);
3867   emit_operand(rax, src); // 0, src
3868 }
3869 
3870 void Assembler::prefetcht0(Address src) {
3871   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3872   InstructionMark im(this);
3873   prefetch_prefix(src);
3874   emit_int8(0x18);
3875   emit_operand(rcx, src); // 1, src
3876 }
3877 
3878 void Assembler::prefetcht1(Address src) {
3879   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3880   InstructionMark im(this);
3881   prefetch_prefix(src);
3882   emit_int8(0x18);
3883   emit_operand(rdx, src); // 2, src
3884 }
3885 
3886 void Assembler::prefetcht2(Address src) {
3887   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3888   InstructionMark im(this);
3889   prefetch_prefix(src);
3890   emit_int8(0x18);
3891   emit_operand(rbx, src); // 3, src
3892 }
3893 
3894 void Assembler::prefetchw(Address src) {
3895   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3896   InstructionMark im(this);
3897   prefetch_prefix(src);
3898   emit_int8(0x0D);
3899   emit_operand(rcx, src); // 1, src
3900 }
3901 
3902 void Assembler::prefix(Prefix p) {
3903   emit_int8(p);
3904 }
3905 
3906 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3907   assert(VM_Version::supports_ssse3(), "");
3908   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3909   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3910   emit_int8(0x00);
3911   emit_int8((unsigned char)(0xC0 | encode));
3912 }
3913 
3914 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3915   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3916          vector_len == AVX_256bit? VM_Version::supports_avx2() :
3917          0, "");
3918   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3919   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3920   emit_int8(0x00);
3921   emit_int8((unsigned char)(0xC0 | encode));
3922 }
3923 
3924 void Assembler::pshufb(XMMRegister dst, Address src) {
3925   assert(VM_Version::supports_ssse3(), "");
3926   InstructionMark im(this);
3927   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3928   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3929   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3930   emit_int8(0x00);
3931   emit_operand(dst, src);
3932 }
3933 
3934 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3935   assert(isByte(mode), "invalid value");
3936   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3937   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
3938   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3939   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3940   emit_int8(0x70);
3941   emit_int8((unsigned char)(0xC0 | encode));
3942   emit_int8(mode & 0xFF);
3943 }
3944 
3945 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
3946   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3947          vector_len == AVX_256bit? VM_Version::supports_avx2() :
3948          0, "");
3949   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3950   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3951   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3952   emit_int8(0x70);
3953   emit_int8((unsigned char)(0xC0 | encode));
3954   emit_int8(mode & 0xFF);
3955 }
3956 
3957 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3958   assert(isByte(mode), "invalid value");
3959   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3960   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3961   InstructionMark im(this);
3962   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3963   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3964   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3965   emit_int8(0x70);
3966   emit_operand(dst, src);
3967   emit_int8(mode & 0xFF);
3968 }
3969 
3970 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3971   assert(isByte(mode), "invalid value");
3972   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3973   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3974   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3975   emit_int8(0x70);
3976   emit_int8((unsigned char)(0xC0 | encode));
3977   emit_int8(mode & 0xFF);
3978 }
3979 
3980 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3981   assert(isByte(mode), "invalid value");
3982   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3983   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3984   InstructionMark im(this);
3985   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3986   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3987   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3988   emit_int8(0x70);
3989   emit_operand(dst, src);
3990   emit_int8(mode & 0xFF);
3991 }
3992 
3993 void Assembler::psrldq(XMMRegister dst, int shift) {
3994   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3995   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3996   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3997   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3998   emit_int8(0x73);
3999   emit_int8((unsigned char)(0xC0 | encode));
4000   emit_int8(shift);
4001 }
4002 
4003 void Assembler::pslldq(XMMRegister dst, int shift) {
4004   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4005   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4006   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4007   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4008   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4009   emit_int8(0x73);
4010   emit_int8((unsigned char)(0xC0 | encode));
4011   emit_int8(shift);
4012 }
4013 
4014 void Assembler::ptest(XMMRegister dst, Address src) {
4015   assert(VM_Version::supports_sse4_1(), "");
4016   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4017   InstructionMark im(this);
4018   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4019   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4020   emit_int8(0x17);
4021   emit_operand(dst, src);
4022 }
4023 
4024 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4025   assert(VM_Version::supports_sse4_1(), "");
4026   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4027   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4028   emit_int8(0x17);
4029   emit_int8((unsigned char)(0xC0 | encode));
4030 }
4031 
4032 void Assembler::vptest(XMMRegister dst, Address src) {
4033   assert(VM_Version::supports_avx(), "");
4034   InstructionMark im(this);
4035   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4036   assert(dst != xnoreg, "sanity");
4037   // swap src<->dst for encoding
4038   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4039   emit_int8(0x17);
4040   emit_operand(dst, src);
4041 }
4042 
4043 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4044   assert(VM_Version::supports_avx(), "");
4045   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4046   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4047   emit_int8(0x17);
4048   emit_int8((unsigned char)(0xC0 | encode));
4049 }
4050 
4051 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4052   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4053   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4054   InstructionMark im(this);
4055   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4056   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4057   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4058   emit_int8(0x60);
4059   emit_operand(dst, src);
4060 }
4061 
4062 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4063   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4064   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4065   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4066   emit_int8(0x60);
4067   emit_int8((unsigned char)(0xC0 | encode));
4068 }
4069 
4070 void Assembler::punpckldq(XMMRegister dst, Address src) {
4071   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4072   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4073   InstructionMark im(this);
4074   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4075   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4076   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4077   emit_int8(0x62);
4078   emit_operand(dst, src);
4079 }
4080 
4081 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4082   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4083   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4084   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4085   emit_int8(0x62);
4086   emit_int8((unsigned char)(0xC0 | encode));
4087 }
4088 
4089 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4091   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4092   attributes.set_rex_vex_w_reverted();
4093   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4094   emit_int8(0x6C);
4095   emit_int8((unsigned char)(0xC0 | encode));
4096 }
4097 
4098 void Assembler::push(int32_t imm32) {
4099   // in 64bits we push 64bits onto the stack but only
4100   // take a 32bit immediate
4101   emit_int8(0x68);
4102   emit_int32(imm32);
4103 }
4104 
4105 void Assembler::push(Register src) {
4106   int encode = prefix_and_encode(src->encoding());
4107 
4108   emit_int8(0x50 | encode);
4109 }
4110 
4111 void Assembler::pushf() {
4112   emit_int8((unsigned char)0x9C);
4113 }
4114 
4115 #ifndef _LP64 // no 32bit push/pop on amd64
4116 void Assembler::pushl(Address src) {
4117   // Note this will push 64bit on 64bit
4118   InstructionMark im(this);
4119   prefix(src);
4120   emit_int8((unsigned char)0xFF);
4121   emit_operand(rsi, src);
4122 }
4123 #endif
4124 
4125 void Assembler::rcll(Register dst, int imm8) {
4126   assert(isShiftCount(imm8), "illegal shift count");
4127   int encode = prefix_and_encode(dst->encoding());
4128   if (imm8 == 1) {
4129     emit_int8((unsigned char)0xD1);
4130     emit_int8((unsigned char)(0xD0 | encode));
4131   } else {
4132     emit_int8((unsigned char)0xC1);
4133     emit_int8((unsigned char)0xD0 | encode);
4134     emit_int8(imm8);
4135   }
4136 }
4137 
4138 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4139   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4140   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4141   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4142   emit_int8(0x53);
4143   emit_int8((unsigned char)(0xC0 | encode));
4144 }
4145 
4146 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4147   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4148   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4149   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4150   emit_int8(0x53);
4151   emit_int8((unsigned char)(0xC0 | encode));
4152 }
4153 
4154 void Assembler::rdtsc() {
4155   emit_int8((unsigned char)0x0F);
4156   emit_int8((unsigned char)0x31);
4157 }
4158 
4159 // copies data from [esi] to [edi] using rcx pointer sized words
4160 // generic
4161 void Assembler::rep_mov() {
4162   emit_int8((unsigned char)0xF3);
4163   // MOVSQ
4164   LP64_ONLY(prefix(REX_W));
4165   emit_int8((unsigned char)0xA5);
4166 }
4167 
4168 // sets rcx bytes with rax, value at [edi]
4169 void Assembler::rep_stosb() {
4170   emit_int8((unsigned char)0xF3); // REP
4171   LP64_ONLY(prefix(REX_W));
4172   emit_int8((unsigned char)0xAA); // STOSB
4173 }
4174 
4175 // sets rcx pointer sized words with rax, value at [edi]
4176 // generic
4177 void Assembler::rep_stos() {
4178   emit_int8((unsigned char)0xF3); // REP
4179   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
4180   emit_int8((unsigned char)0xAB);
4181 }
4182 
4183 // scans rcx pointer sized words at [edi] for occurance of rax,
4184 // generic
4185 void Assembler::repne_scan() { // repne_scan
4186   emit_int8((unsigned char)0xF2);
4187   // SCASQ
4188   LP64_ONLY(prefix(REX_W));
4189   emit_int8((unsigned char)0xAF);
4190 }
4191 
4192 #ifdef _LP64
4193 // scans rcx 4 byte words at [edi] for occurance of rax,
4194 // generic
4195 void Assembler::repne_scanl() { // repne_scan
4196   emit_int8((unsigned char)0xF2);
4197   // SCASL
4198   emit_int8((unsigned char)0xAF);
4199 }
4200 #endif
4201 
4202 void Assembler::ret(int imm16) {
4203   if (imm16 == 0) {
4204     emit_int8((unsigned char)0xC3);
4205   } else {
4206     emit_int8((unsigned char)0xC2);
4207     emit_int16(imm16);
4208   }
4209 }
4210 
4211 void Assembler::sahf() {
4212 #ifdef _LP64
4213   // Not supported in 64bit mode
4214   ShouldNotReachHere();
4215 #endif
4216   emit_int8((unsigned char)0x9E);
4217 }
4218 
4219 void Assembler::sarl(Register dst, int imm8) {
4220   int encode = prefix_and_encode(dst->encoding());
4221   assert(isShiftCount(imm8), "illegal shift count");
4222   if (imm8 == 1) {
4223     emit_int8((unsigned char)0xD1);
4224     emit_int8((unsigned char)(0xF8 | encode));
4225   } else {
4226     emit_int8((unsigned char)0xC1);
4227     emit_int8((unsigned char)(0xF8 | encode));
4228     emit_int8(imm8);
4229   }
4230 }
4231 
4232 void Assembler::sarl(Register dst) {
4233   int encode = prefix_and_encode(dst->encoding());
4234   emit_int8((unsigned char)0xD3);
4235   emit_int8((unsigned char)(0xF8 | encode));
4236 }
4237 
4238 void Assembler::sbbl(Address dst, int32_t imm32) {
4239   InstructionMark im(this);
4240   prefix(dst);
4241   emit_arith_operand(0x81, rbx, dst, imm32);
4242 }
4243 
4244 void Assembler::sbbl(Register dst, int32_t imm32) {
4245   prefix(dst);
4246   emit_arith(0x81, 0xD8, dst, imm32);
4247 }
4248 
4249 
4250 void Assembler::sbbl(Register dst, Address src) {
4251   InstructionMark im(this);
4252   prefix(src, dst);
4253   emit_int8(0x1B);
4254   emit_operand(dst, src);
4255 }
4256 
4257 void Assembler::sbbl(Register dst, Register src) {
4258   (void) prefix_and_encode(dst->encoding(), src->encoding());
4259   emit_arith(0x1B, 0xC0, dst, src);
4260 }
4261 
4262 void Assembler::setb(Condition cc, Register dst) {
4263   assert(0 <= cc && cc < 16, "illegal cc");
4264   int encode = prefix_and_encode(dst->encoding(), true);
4265   emit_int8(0x0F);
4266   emit_int8((unsigned char)0x90 | cc);
4267   emit_int8((unsigned char)(0xC0 | encode));
4268 }
4269 
4270 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4271   assert(VM_Version::supports_ssse3(), "");
4272   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
4273   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4274   emit_int8((unsigned char)0x0F);
4275   emit_int8((unsigned char)(0xC0 | encode));
4276   emit_int8(imm8);
4277 }
4278 
4279 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4280   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4281          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4282          0, "");
4283   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4284   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4285   emit_int8((unsigned char)0x0F);
4286   emit_int8((unsigned char)(0xC0 | encode));
4287   emit_int8(imm8);
4288 }
4289 
4290 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4291   assert(VM_Version::supports_sse4_1(), "");
4292   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4293   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4294   emit_int8((unsigned char)0x0E);
4295   emit_int8((unsigned char)(0xC0 | encode));
4296   emit_int8(imm8);
4297 }
4298 
4299 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4300   assert(VM_Version::supports_sha(), "");
4301   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4302   emit_int8((unsigned char)0xCC);
4303   emit_int8((unsigned char)(0xC0 | encode));
4304   emit_int8((unsigned char)imm8);
4305 }
4306 
4307 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4308   assert(VM_Version::supports_sha(), "");
4309   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4310   emit_int8((unsigned char)0xC8);
4311   emit_int8((unsigned char)(0xC0 | encode));
4312 }
4313 
4314 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4315   assert(VM_Version::supports_sha(), "");
4316   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4317   emit_int8((unsigned char)0xC9);
4318   emit_int8((unsigned char)(0xC0 | encode));
4319 }
4320 
4321 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4322   assert(VM_Version::supports_sha(), "");
4323   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4324   emit_int8((unsigned char)0xCA);
4325   emit_int8((unsigned char)(0xC0 | encode));
4326 }
4327 
4328 // xmm0 is implicit additional source to this instruction.
4329 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4330   assert(VM_Version::supports_sha(), "");
4331   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4332   emit_int8((unsigned char)0xCB);
4333   emit_int8((unsigned char)(0xC0 | encode));
4334 }
4335 
4336 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4337   assert(VM_Version::supports_sha(), "");
4338   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4339   emit_int8((unsigned char)0xCC);
4340   emit_int8((unsigned char)(0xC0 | encode));
4341 }
4342 
4343 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4344   assert(VM_Version::supports_sha(), "");
4345   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4346   emit_int8((unsigned char)0xCD);
4347   emit_int8((unsigned char)(0xC0 | encode));
4348 }
4349 
4350 
4351 void Assembler::shll(Register dst, int imm8) {
4352   assert(isShiftCount(imm8), "illegal shift count");
4353   int encode = prefix_and_encode(dst->encoding());
4354   if (imm8 == 1 ) {
4355     emit_int8((unsigned char)0xD1);
4356     emit_int8((unsigned char)(0xE0 | encode));
4357   } else {
4358     emit_int8((unsigned char)0xC1);
4359     emit_int8((unsigned char)(0xE0 | encode));
4360     emit_int8(imm8);
4361   }
4362 }
4363 
4364 void Assembler::shll(Register dst) {
4365   int encode = prefix_and_encode(dst->encoding());
4366   emit_int8((unsigned char)0xD3);
4367   emit_int8((unsigned char)(0xE0 | encode));
4368 }
4369 
4370 void Assembler::shrl(Register dst, int imm8) {
4371   assert(isShiftCount(imm8), "illegal shift count");
4372   int encode = prefix_and_encode(dst->encoding());
4373   emit_int8((unsigned char)0xC1);
4374   emit_int8((unsigned char)(0xE8 | encode));
4375   emit_int8(imm8);
4376 }
4377 
4378 void Assembler::shrl(Register dst) {
4379   int encode = prefix_and_encode(dst->encoding());
4380   emit_int8((unsigned char)0xD3);
4381   emit_int8((unsigned char)(0xE8 | encode));
4382 }
4383 
4384 // copies a single word from [esi] to [edi]
4385 void Assembler::smovl() {
4386   emit_int8((unsigned char)0xA5);
4387 }
4388 
4389 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4390   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4391   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4392   attributes.set_rex_vex_w_reverted();
4393   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4394   emit_int8(0x51);
4395   emit_int8((unsigned char)(0xC0 | encode));
4396 }
4397 
4398 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4399   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4400   InstructionMark im(this);
4401   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4402   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4403   attributes.set_rex_vex_w_reverted();
4404   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4405   emit_int8(0x51);
4406   emit_operand(dst, src);
4407 }
4408 
4409 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4410   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4411   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4412   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4413   emit_int8(0x51);
4414   emit_int8((unsigned char)(0xC0 | encode));
4415 }
4416 
4417 void Assembler::std() {
4418   emit_int8((unsigned char)0xFD);
4419 }
4420 
4421 void Assembler::sqrtss(XMMRegister dst, Address src) {
4422   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4423   InstructionMark im(this);
4424   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4425   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4426   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4427   emit_int8(0x51);
4428   emit_operand(dst, src);
4429 }
4430 
4431 void Assembler::stmxcsr( Address dst) {
4432   if (UseAVX > 0 ) {
4433     assert(VM_Version::supports_avx(), "");
4434     InstructionMark im(this);
4435     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4436     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4437     emit_int8((unsigned char)0xAE);
4438     emit_operand(as_Register(3), dst);
4439   } else {
4440     NOT_LP64(assert(VM_Version::supports_sse(), ""));
4441     InstructionMark im(this);
4442     prefix(dst);
4443     emit_int8(0x0F);
4444     emit_int8((unsigned char)0xAE);
4445     emit_operand(as_Register(3), dst);
4446   }
4447 }
4448 
4449 void Assembler::subl(Address dst, int32_t imm32) {
4450   InstructionMark im(this);
4451   prefix(dst);
4452   emit_arith_operand(0x81, rbp, dst, imm32);
4453 }
4454 
4455 void Assembler::subl(Address dst, Register src) {
4456   InstructionMark im(this);
4457   prefix(dst, src);
4458   emit_int8(0x29);
4459   emit_operand(src, dst);
4460 }
4461 
4462 void Assembler::subl(Register dst, int32_t imm32) {
4463   prefix(dst);
4464   emit_arith(0x81, 0xE8, dst, imm32);
4465 }
4466 
4467 // Force generation of a 4 byte immediate value even if it fits into 8bit
4468 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4469   prefix(dst);
4470   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4471 }
4472 
4473 void Assembler::subl(Register dst, Address src) {
4474   InstructionMark im(this);
4475   prefix(src, dst);
4476   emit_int8(0x2B);
4477   emit_operand(dst, src);
4478 }
4479 
4480 void Assembler::subl(Register dst, Register src) {
4481   (void) prefix_and_encode(dst->encoding(), src->encoding());
4482   emit_arith(0x2B, 0xC0, dst, src);
4483 }
4484 
4485 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4486   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4487   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4488   attributes.set_rex_vex_w_reverted();
4489   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4490   emit_int8(0x5C);
4491   emit_int8((unsigned char)(0xC0 | encode));
4492 }
4493 
4494 void Assembler::subsd(XMMRegister dst, Address src) {
4495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4496   InstructionMark im(this);
4497   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4498   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4499   attributes.set_rex_vex_w_reverted();
4500   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4501   emit_int8(0x5C);
4502   emit_operand(dst, src);
4503 }
4504 
4505 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4506   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4507   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ false);
4508   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4509   emit_int8(0x5C);
4510   emit_int8((unsigned char)(0xC0 | encode));
4511 }
4512 
4513 void Assembler::subss(XMMRegister dst, Address src) {
4514   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4515   InstructionMark im(this);
4516   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4517   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4518   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4519   emit_int8(0x5C);
4520   emit_operand(dst, src);
4521 }
4522 
4523 void Assembler::testb(Register dst, int imm8) {
4524   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4525   (void) prefix_and_encode(dst->encoding(), true);
4526   emit_arith_b(0xF6, 0xC0, dst, imm8);
4527 }
4528 
4529 void Assembler::testb(Address dst, int imm8) {
4530   InstructionMark im(this);
4531   prefix(dst);
4532   emit_int8((unsigned char)0xF6);
4533   emit_operand(rax, dst, 1);
4534   emit_int8(imm8);
4535 }
4536 
4537 void Assembler::testl(Register dst, int32_t imm32) {
4538   // not using emit_arith because test
4539   // doesn't support sign-extension of
4540   // 8bit operands
4541   int encode = dst->encoding();
4542   if (encode == 0) {
4543     emit_int8((unsigned char)0xA9);
4544   } else {
4545     encode = prefix_and_encode(encode);
4546     emit_int8((unsigned char)0xF7);
4547     emit_int8((unsigned char)(0xC0 | encode));
4548   }
4549   emit_int32(imm32);
4550 }
4551 
4552 void Assembler::testl(Register dst, Register src) {
4553   (void) prefix_and_encode(dst->encoding(), src->encoding());
4554   emit_arith(0x85, 0xC0, dst, src);
4555 }
4556 
4557 void Assembler::testl(Register dst, Address src) {
4558   InstructionMark im(this);
4559   prefix(src, dst);
4560   emit_int8((unsigned char)0x85);
4561   emit_operand(dst, src);
4562 }
4563 
4564 void Assembler::tzcntl(Register dst, Register src) {
4565   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4566   emit_int8((unsigned char)0xF3);
4567   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4568   emit_int8(0x0F);
4569   emit_int8((unsigned char)0xBC);
4570   emit_int8((unsigned char)0xC0 | encode);
4571 }
4572 
4573 void Assembler::tzcntq(Register dst, Register src) {
4574   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4575   emit_int8((unsigned char)0xF3);
4576   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4577   emit_int8(0x0F);
4578   emit_int8((unsigned char)0xBC);
4579   emit_int8((unsigned char)(0xC0 | encode));
4580 }
4581 
4582 void Assembler::ucomisd(XMMRegister dst, Address src) {
4583   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4584   InstructionMark im(this);
4585   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4586   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4587   attributes.set_rex_vex_w_reverted();
4588   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4589   emit_int8(0x2E);
4590   emit_operand(dst, src);
4591 }
4592 
4593 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4594   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4595   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4596   attributes.set_rex_vex_w_reverted();
4597   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4598   emit_int8(0x2E);
4599   emit_int8((unsigned char)(0xC0 | encode));
4600 }
4601 
4602 void Assembler::ucomiss(XMMRegister dst, Address src) {
4603   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4604   InstructionMark im(this);
4605   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4606   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4607   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4608   emit_int8(0x2E);
4609   emit_operand(dst, src);
4610 }
4611 
4612 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4613   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4614   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4615   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4616   emit_int8(0x2E);
4617   emit_int8((unsigned char)(0xC0 | encode));
4618 }
4619 
4620 void Assembler::xabort(int8_t imm8) {
4621   emit_int8((unsigned char)0xC6);
4622   emit_int8((unsigned char)0xF8);
4623   emit_int8((unsigned char)(imm8 & 0xFF));
4624 }
4625 
4626 void Assembler::xaddb(Address dst, Register src) {
4627   InstructionMark im(this);
4628   prefix(dst, src, true);
4629   emit_int8(0x0F);
4630   emit_int8((unsigned char)0xC0);
4631   emit_operand(src, dst);
4632 }
4633 
4634 void Assembler::xaddw(Address dst, Register src) {
4635   InstructionMark im(this);
4636   emit_int8(0x66);
4637   prefix(dst, src);
4638   emit_int8(0x0F);
4639   emit_int8((unsigned char)0xC1);
4640   emit_operand(src, dst);
4641 }
4642 
4643 void Assembler::xaddl(Address dst, Register src) {
4644   InstructionMark im(this);
4645   prefix(dst, src);
4646   emit_int8(0x0F);
4647   emit_int8((unsigned char)0xC1);
4648   emit_operand(src, dst);
4649 }
4650 
4651 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4652   InstructionMark im(this);
4653   relocate(rtype);
4654   if (abort.is_bound()) {
4655     address entry = target(abort);
4656     assert(entry != NULL, "abort entry NULL");
4657     intptr_t offset = entry - pc();
4658     emit_int8((unsigned char)0xC7);
4659     emit_int8((unsigned char)0xF8);
4660     emit_int32(offset - 6); // 2 opcode + 4 address
4661   } else {
4662     abort.add_patch_at(code(), locator());
4663     emit_int8((unsigned char)0xC7);
4664     emit_int8((unsigned char)0xF8);
4665     emit_int32(0);
4666   }
4667 }
4668 
4669 void Assembler::xchgb(Register dst, Address src) { // xchg
4670   InstructionMark im(this);
4671   prefix(src, dst, true);
4672   emit_int8((unsigned char)0x86);
4673   emit_operand(dst, src);
4674 }
4675 
4676 void Assembler::xchgw(Register dst, Address src) { // xchg
4677   InstructionMark im(this);
4678   emit_int8(0x66);
4679   prefix(src, dst);
4680   emit_int8((unsigned char)0x87);
4681   emit_operand(dst, src);
4682 }
4683 
4684 void Assembler::xchgl(Register dst, Address src) { // xchg
4685   InstructionMark im(this);
4686   prefix(src, dst);
4687   emit_int8((unsigned char)0x87);
4688   emit_operand(dst, src);
4689 }
4690 
4691 void Assembler::xchgl(Register dst, Register src) {
4692   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4693   emit_int8((unsigned char)0x87);
4694   emit_int8((unsigned char)(0xC0 | encode));
4695 }
4696 
4697 void Assembler::xend() {
4698   emit_int8((unsigned char)0x0F);
4699   emit_int8((unsigned char)0x01);
4700   emit_int8((unsigned char)0xD5);
4701 }
4702 
4703 void Assembler::xgetbv() {
4704   emit_int8(0x0F);
4705   emit_int8(0x01);
4706   emit_int8((unsigned char)0xD0);
4707 }
4708 
4709 void Assembler::xorl(Register dst, int32_t imm32) {
4710   prefix(dst);
4711   emit_arith(0x81, 0xF0, dst, imm32);
4712 }
4713 
4714 void Assembler::xorl(Register dst, Address src) {
4715   InstructionMark im(this);
4716   prefix(src, dst);
4717   emit_int8(0x33);
4718   emit_operand(dst, src);
4719 }
4720 
4721 void Assembler::xorl(Register dst, Register src) {
4722   (void) prefix_and_encode(dst->encoding(), src->encoding());
4723   emit_arith(0x33, 0xC0, dst, src);
4724 }
4725 
4726 void Assembler::xorb(Register dst, Address src) {
4727   InstructionMark im(this);
4728   prefix(src, dst);
4729   emit_int8(0x32);
4730   emit_operand(dst, src);
4731 }
4732 
4733 // AVX 3-operands scalar float-point arithmetic instructions
4734 
4735 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4736   assert(VM_Version::supports_avx(), "");
4737   InstructionMark im(this);
4738   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4739   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4740   attributes.set_rex_vex_w_reverted();
4741   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4742   emit_int8(0x58);
4743   emit_operand(dst, src);
4744 }
4745 
4746 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4747   assert(VM_Version::supports_avx(), "");
4748   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4749   attributes.set_rex_vex_w_reverted();
4750   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4751   emit_int8(0x58);
4752   emit_int8((unsigned char)(0xC0 | encode));
4753 }
4754 
4755 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4756   assert(VM_Version::supports_avx(), "");
4757   InstructionMark im(this);
4758   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4759   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4760   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4761   emit_int8(0x58);
4762   emit_operand(dst, src);
4763 }
4764 
4765 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4766   assert(VM_Version::supports_avx(), "");
4767   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4768   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4769   emit_int8(0x58);
4770   emit_int8((unsigned char)(0xC0 | encode));
4771 }
4772 
4773 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4774   assert(VM_Version::supports_avx(), "");
4775   InstructionMark im(this);
4776   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4777   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4778   attributes.set_rex_vex_w_reverted();
4779   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4780   emit_int8(0x5E);
4781   emit_operand(dst, src);
4782 }
4783 
4784 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4785   assert(VM_Version::supports_avx(), "");
4786   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4787   attributes.set_rex_vex_w_reverted();
4788   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4789   emit_int8(0x5E);
4790   emit_int8((unsigned char)(0xC0 | encode));
4791 }
4792 
4793 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4794   assert(VM_Version::supports_avx(), "");
4795   InstructionMark im(this);
4796   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4797   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4798   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4799   emit_int8(0x5E);
4800   emit_operand(dst, src);
4801 }
4802 
4803 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4804   assert(VM_Version::supports_avx(), "");
4805   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4806   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4807   emit_int8(0x5E);
4808   emit_int8((unsigned char)(0xC0 | encode));
4809 }
4810 
4811 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4812   assert(VM_Version::supports_fma(), "");
4813   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4814   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4815   emit_int8((unsigned char)0xB9);
4816   emit_int8((unsigned char)(0xC0 | encode));
4817 }
4818 
4819 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4820   assert(VM_Version::supports_fma(), "");
4821   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4822   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4823   emit_int8((unsigned char)0xB9);
4824   emit_int8((unsigned char)(0xC0 | encode));
4825 }
4826 
4827 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4828   assert(VM_Version::supports_avx(), "");
4829   InstructionMark im(this);
4830   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4831   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4832   attributes.set_rex_vex_w_reverted();
4833   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4834   emit_int8(0x59);
4835   emit_operand(dst, src);
4836 }
4837 
4838 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4839   assert(VM_Version::supports_avx(), "");
4840   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4841   attributes.set_rex_vex_w_reverted();
4842   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4843   emit_int8(0x59);
4844   emit_int8((unsigned char)(0xC0 | encode));
4845 }
4846 
4847 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4848   assert(VM_Version::supports_avx(), "");
4849   InstructionMark im(this);
4850   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4851   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4852   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4853   emit_int8(0x59);
4854   emit_operand(dst, src);
4855 }
4856 
4857 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4858   assert(VM_Version::supports_avx(), "");
4859   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4860   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4861   emit_int8(0x59);
4862   emit_int8((unsigned char)(0xC0 | encode));
4863 }
4864 
4865 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4866   assert(VM_Version::supports_avx(), "");
4867   InstructionMark im(this);
4868   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4869   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4870   attributes.set_rex_vex_w_reverted();
4871   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4872   emit_int8(0x5C);
4873   emit_operand(dst, src);
4874 }
4875 
4876 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4877   assert(VM_Version::supports_avx(), "");
4878   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4879   attributes.set_rex_vex_w_reverted();
4880   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4881   emit_int8(0x5C);
4882   emit_int8((unsigned char)(0xC0 | encode));
4883 }
4884 
4885 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4886   assert(VM_Version::supports_avx(), "");
4887   InstructionMark im(this);
4888   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4889   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4890   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4891   emit_int8(0x5C);
4892   emit_operand(dst, src);
4893 }
4894 
4895 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4896   assert(VM_Version::supports_avx(), "");
4897   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4898   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4899   emit_int8(0x5C);
4900   emit_int8((unsigned char)(0xC0 | encode));
4901 }
4902 
4903 //====================VECTOR ARITHMETIC=====================================
4904 
4905 // Float-point vector arithmetic
4906 
4907 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4908   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4909   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4910   attributes.set_rex_vex_w_reverted();
4911   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4912   emit_int8(0x58);
4913   emit_int8((unsigned char)(0xC0 | encode));
4914 }
4915 
4916 void Assembler::addpd(XMMRegister dst, Address src) {
4917   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4918   InstructionMark im(this);
4919   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4920   attributes.set_rex_vex_w_reverted();
4921   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4922   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4923   emit_int8(0x58);
4924   emit_operand(dst, src);
4925 }
4926 
4927 
4928 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4930   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4931   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4932   emit_int8(0x58);
4933   emit_int8((unsigned char)(0xC0 | encode));
4934 }
4935 
4936 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4937   assert(VM_Version::supports_avx(), "");
4938   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4939   attributes.set_rex_vex_w_reverted();
4940   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4941   emit_int8(0x58);
4942   emit_int8((unsigned char)(0xC0 | encode));
4943 }
4944 
4945 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4946   assert(VM_Version::supports_avx(), "");
4947   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4948   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4949   emit_int8(0x58);
4950   emit_int8((unsigned char)(0xC0 | encode));
4951 }
4952 
4953 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4954   assert(VM_Version::supports_avx(), "");
4955   InstructionMark im(this);
4956   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4957   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4958   attributes.set_rex_vex_w_reverted();
4959   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4960   emit_int8(0x58);
4961   emit_operand(dst, src);
4962 }
4963 
4964 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4965   assert(VM_Version::supports_avx(), "");
4966   InstructionMark im(this);
4967   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4968   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4969   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4970   emit_int8(0x58);
4971   emit_operand(dst, src);
4972 }
4973 
4974 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4976   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4977   attributes.set_rex_vex_w_reverted();
4978   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4979   emit_int8(0x5C);
4980   emit_int8((unsigned char)(0xC0 | encode));
4981 }
4982 
4983 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4984   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4985   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4986   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4987   emit_int8(0x5C);
4988   emit_int8((unsigned char)(0xC0 | encode));
4989 }
4990 
4991 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4992   assert(VM_Version::supports_avx(), "");
4993   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4994   attributes.set_rex_vex_w_reverted();
4995   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4996   emit_int8(0x5C);
4997   emit_int8((unsigned char)(0xC0 | encode));
4998 }
4999 
5000 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5001   assert(VM_Version::supports_avx(), "");
5002   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5003   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5004   emit_int8(0x5C);
5005   emit_int8((unsigned char)(0xC0 | encode));
5006 }
5007 
5008 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5009   assert(VM_Version::supports_avx(), "");
5010   InstructionMark im(this);
5011   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5012   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5013   attributes.set_rex_vex_w_reverted();
5014   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5015   emit_int8(0x5C);
5016   emit_operand(dst, src);
5017 }
5018 
5019 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5020   assert(VM_Version::supports_avx(), "");
5021   InstructionMark im(this);
5022   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5023   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5024   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5025   emit_int8(0x5C);
5026   emit_operand(dst, src);
5027 }
5028 
5029 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5030   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5031   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5032   attributes.set_rex_vex_w_reverted();
5033   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5034   emit_int8(0x59);
5035   emit_int8((unsigned char)(0xC0 | encode));
5036 }
5037 
5038 void Assembler::mulpd(XMMRegister dst, Address src) {
5039   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5040   InstructionMark im(this);
5041   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5042   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5043   attributes.set_rex_vex_w_reverted();
5044   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5045   emit_int8(0x59);
5046   emit_operand(dst, src);
5047 }
5048 
5049 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5050   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5051   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5052   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5053   emit_int8(0x59);
5054   emit_int8((unsigned char)(0xC0 | encode));
5055 }
5056 
5057 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5058   assert(VM_Version::supports_avx(), "");
5059   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5060   attributes.set_rex_vex_w_reverted();
5061   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5062   emit_int8(0x59);
5063   emit_int8((unsigned char)(0xC0 | encode));
5064 }
5065 
5066 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5067   assert(VM_Version::supports_avx(), "");
5068   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5069   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5070   emit_int8(0x59);
5071   emit_int8((unsigned char)(0xC0 | encode));
5072 }
5073 
5074 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5075   assert(VM_Version::supports_avx(), "");
5076   InstructionMark im(this);
5077   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5078   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5079   attributes.set_rex_vex_w_reverted();
5080   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5081   emit_int8(0x59);
5082   emit_operand(dst, src);
5083 }
5084 
5085 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5086   assert(VM_Version::supports_avx(), "");
5087   InstructionMark im(this);
5088   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5089   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5090   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5091   emit_int8(0x59);
5092   emit_operand(dst, src);
5093 }
5094 
5095 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5096   assert(VM_Version::supports_fma(), "");
5097   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5098   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5099   emit_int8((unsigned char)0xB8);
5100   emit_int8((unsigned char)(0xC0 | encode));
5101 }
5102 
5103 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5104   assert(VM_Version::supports_fma(), "");
5105   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5106   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5107   emit_int8((unsigned char)0xB8);
5108   emit_int8((unsigned char)(0xC0 | encode));
5109 }
5110 
5111 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5112   assert(VM_Version::supports_fma(), "");
5113   InstructionMark im(this);
5114   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5115   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5116   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5117   emit_int8((unsigned char)0xB8);
5118   emit_operand(dst, src2);
5119 }
5120 
5121 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5122   assert(VM_Version::supports_fma(), "");
5123   InstructionMark im(this);
5124   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5125   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5126   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5127   emit_int8((unsigned char)0xB8);
5128   emit_operand(dst, src2);
5129 }
5130 
5131 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5132   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5133   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5134   attributes.set_rex_vex_w_reverted();
5135   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5136   emit_int8(0x5E);
5137   emit_int8((unsigned char)(0xC0 | encode));
5138 }
5139 
5140 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5141   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5142   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5143   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5144   emit_int8(0x5E);
5145   emit_int8((unsigned char)(0xC0 | encode));
5146 }
5147 
5148 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5149   assert(VM_Version::supports_avx(), "");
5150   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5151   attributes.set_rex_vex_w_reverted();
5152   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5153   emit_int8(0x5E);
5154   emit_int8((unsigned char)(0xC0 | encode));
5155 }
5156 
5157 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5158   assert(VM_Version::supports_avx(), "");
5159   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5160   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5161   emit_int8(0x5E);
5162   emit_int8((unsigned char)(0xC0 | encode));
5163 }
5164 
5165 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5166   assert(VM_Version::supports_avx(), "");
5167   InstructionMark im(this);
5168   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5169   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5170   attributes.set_rex_vex_w_reverted();
5171   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5172   emit_int8(0x5E);
5173   emit_operand(dst, src);
5174 }
5175 
5176 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5177   assert(VM_Version::supports_avx(), "");
5178   InstructionMark im(this);
5179   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5180   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5181   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5182   emit_int8(0x5E);
5183   emit_operand(dst, src);
5184 }
5185 
5186 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5187   assert(VM_Version::supports_avx(), "");
5188   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5189   attributes.set_rex_vex_w_reverted();
5190   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5191   emit_int8(0x51);
5192   emit_int8((unsigned char)(0xC0 | encode));
5193 }
5194 
5195 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5196   assert(VM_Version::supports_avx(), "");
5197   InstructionMark im(this);
5198   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5199   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5200   attributes.set_rex_vex_w_reverted();
5201   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5202   emit_int8(0x51);
5203   emit_operand(dst, src);
5204 }
5205 
5206 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5207   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5208   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5209   attributes.set_rex_vex_w_reverted();
5210   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5211   emit_int8(0x54);
5212   emit_int8((unsigned char)(0xC0 | encode));
5213 }
5214 
5215 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5216   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5217   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5218   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5219   emit_int8(0x54);
5220   emit_int8((unsigned char)(0xC0 | encode));
5221 }
5222 
5223 void Assembler::andps(XMMRegister dst, Address src) {
5224   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5225   InstructionMark im(this);
5226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5227   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5228   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5229   emit_int8(0x54);
5230   emit_operand(dst, src);
5231 }
5232 
5233 void Assembler::andpd(XMMRegister dst, Address src) {
5234   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5235   InstructionMark im(this);
5236   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5237   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5238   attributes.set_rex_vex_w_reverted();
5239   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5240   emit_int8(0x54);
5241   emit_operand(dst, src);
5242 }
5243 
5244 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5245   assert(VM_Version::supports_avx(), "");
5246   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5247   attributes.set_rex_vex_w_reverted();
5248   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5249   emit_int8(0x54);
5250   emit_int8((unsigned char)(0xC0 | encode));
5251 }
5252 
5253 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5254   assert(VM_Version::supports_avx(), "");
5255   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5256   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5257   emit_int8(0x54);
5258   emit_int8((unsigned char)(0xC0 | encode));
5259 }
5260 
5261 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5262   assert(VM_Version::supports_avx(), "");
5263   InstructionMark im(this);
5264   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5265   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5266   attributes.set_rex_vex_w_reverted();
5267   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5268   emit_int8(0x54);
5269   emit_operand(dst, src);
5270 }
5271 
5272 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5273   assert(VM_Version::supports_avx(), "");
5274   InstructionMark im(this);
5275   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5276   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5277   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5278   emit_int8(0x54);
5279   emit_operand(dst, src);
5280 }
5281 
5282 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5284   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5285   attributes.set_rex_vex_w_reverted();
5286   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5287   emit_int8(0x15);
5288   emit_int8((unsigned char)(0xC0 | encode));
5289 }
5290 
5291 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5292   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5293   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5294   attributes.set_rex_vex_w_reverted();
5295   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5296   emit_int8(0x14);
5297   emit_int8((unsigned char)(0xC0 | encode));
5298 }
5299 
5300 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5301   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5302   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5303   attributes.set_rex_vex_w_reverted();
5304   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5305   emit_int8(0x57);
5306   emit_int8((unsigned char)(0xC0 | encode));
5307 }
5308 
5309 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5310   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5311   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5312   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5313   emit_int8(0x57);
5314   emit_int8((unsigned char)(0xC0 | encode));
5315 }
5316 
5317 void Assembler::xorpd(XMMRegister dst, Address src) {
5318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5319   InstructionMark im(this);
5320   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5321   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5322   attributes.set_rex_vex_w_reverted();
5323   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5324   emit_int8(0x57);
5325   emit_operand(dst, src);
5326 }
5327 
5328 void Assembler::xorps(XMMRegister dst, Address src) {
5329   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5330   InstructionMark im(this);
5331   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5332   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5333   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5334   emit_int8(0x57);
5335   emit_operand(dst, src);
5336 }
5337 
5338 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5339   assert(VM_Version::supports_avx(), "");
5340   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5341   attributes.set_rex_vex_w_reverted();
5342   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5343   emit_int8(0x57);
5344   emit_int8((unsigned char)(0xC0 | encode));
5345 }
5346 
5347 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5348   assert(VM_Version::supports_avx(), "");
5349   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5350   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5351   emit_int8(0x57);
5352   emit_int8((unsigned char)(0xC0 | encode));
5353 }
5354 
5355 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5356   assert(VM_Version::supports_avx(), "");
5357   InstructionMark im(this);
5358   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5359   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5360   attributes.set_rex_vex_w_reverted();
5361   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5362   emit_int8(0x57);
5363   emit_operand(dst, src);
5364 }
5365 
5366 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5367   assert(VM_Version::supports_avx(), "");
5368   InstructionMark im(this);
5369   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5370   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5371   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5372   emit_int8(0x57);
5373   emit_operand(dst, src);
5374 }
5375 
5376 // Integer vector arithmetic
5377 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5378   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5379          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5380   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5381   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5382   emit_int8(0x01);
5383   emit_int8((unsigned char)(0xC0 | encode));
5384 }
5385 
5386 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5387   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5388          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5389   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5390   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5391   emit_int8(0x02);
5392   emit_int8((unsigned char)(0xC0 | encode));
5393 }
5394 
5395 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5396   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5397   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5398   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5399   emit_int8((unsigned char)0xFC);
5400   emit_int8((unsigned char)(0xC0 | encode));
5401 }
5402 
5403 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5404   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5405   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5406   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5407   emit_int8((unsigned char)0xFD);
5408   emit_int8((unsigned char)(0xC0 | encode));
5409 }
5410 
5411 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5413   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5414   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5415   emit_int8((unsigned char)0xFE);
5416   emit_int8((unsigned char)(0xC0 | encode));
5417 }
5418 
5419 void Assembler::paddd(XMMRegister dst, Address src) {
5420   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5421   InstructionMark im(this);
5422   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5423   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5424   emit_int8((unsigned char)0xFE);
5425   emit_operand(dst, src);
5426 }
5427 
5428 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5429   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5430   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5431   attributes.set_rex_vex_w_reverted();
5432   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5433   emit_int8((unsigned char)0xD4);
5434   emit_int8((unsigned char)(0xC0 | encode));
5435 }
5436 
5437 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5438   assert(VM_Version::supports_sse3(), "");
5439   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5440   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5441   emit_int8(0x01);
5442   emit_int8((unsigned char)(0xC0 | encode));
5443 }
5444 
5445 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5446   assert(VM_Version::supports_sse3(), "");
5447   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5448   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5449   emit_int8(0x02);
5450   emit_int8((unsigned char)(0xC0 | encode));
5451 }
5452 
5453 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5454   assert(UseAVX > 0, "requires some form of AVX");
5455   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5456   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5457   emit_int8((unsigned char)0xFC);
5458   emit_int8((unsigned char)(0xC0 | encode));
5459 }
5460 
5461 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5462   assert(UseAVX > 0, "requires some form of AVX");
5463   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5464   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5465   emit_int8((unsigned char)0xFD);
5466   emit_int8((unsigned char)(0xC0 | encode));
5467 }
5468 
5469 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5470   assert(UseAVX > 0, "requires some form of AVX");
5471   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5472   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5473   emit_int8((unsigned char)0xFE);
5474   emit_int8((unsigned char)(0xC0 | encode));
5475 }
5476 
5477 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5478   assert(UseAVX > 0, "requires some form of AVX");
5479   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5480   attributes.set_rex_vex_w_reverted();
5481   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5482   emit_int8((unsigned char)0xD4);
5483   emit_int8((unsigned char)(0xC0 | encode));
5484 }
5485 
5486 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5487   assert(UseAVX > 0, "requires some form of AVX");
5488   InstructionMark im(this);
5489   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5490   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5491   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5492   emit_int8((unsigned char)0xFC);
5493   emit_operand(dst, src);
5494 }
5495 
5496 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5497   assert(UseAVX > 0, "requires some form of AVX");
5498   InstructionMark im(this);
5499   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5500   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5501   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5502   emit_int8((unsigned char)0xFD);
5503   emit_operand(dst, src);
5504 }
5505 
5506 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5507   assert(UseAVX > 0, "requires some form of AVX");
5508   InstructionMark im(this);
5509   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5510   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5511   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5512   emit_int8((unsigned char)0xFE);
5513   emit_operand(dst, src);
5514 }
5515 
5516 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5517   assert(UseAVX > 0, "requires some form of AVX");
5518   InstructionMark im(this);
5519   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5520   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5521   attributes.set_rex_vex_w_reverted();
5522   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5523   emit_int8((unsigned char)0xD4);
5524   emit_operand(dst, src);
5525 }
5526 
5527 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5528   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5529   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5530   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5531   emit_int8((unsigned char)0xF8);
5532   emit_int8((unsigned char)(0xC0 | encode));
5533 }
5534 
5535 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5536   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5537   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5538   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5539   emit_int8((unsigned char)0xF9);
5540   emit_int8((unsigned char)(0xC0 | encode));
5541 }
5542 
5543 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5544   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5545   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5546   emit_int8((unsigned char)0xFA);
5547   emit_int8((unsigned char)(0xC0 | encode));
5548 }
5549 
5550 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5551   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5552   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5553   attributes.set_rex_vex_w_reverted();
5554   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5555   emit_int8((unsigned char)0xFB);
5556   emit_int8((unsigned char)(0xC0 | encode));
5557 }
5558 
5559 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5560   assert(UseAVX > 0, "requires some form of AVX");
5561   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5562   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5563   emit_int8((unsigned char)0xF8);
5564   emit_int8((unsigned char)(0xC0 | encode));
5565 }
5566 
5567 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5568   assert(UseAVX > 0, "requires some form of AVX");
5569   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5570   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5571   emit_int8((unsigned char)0xF9);
5572   emit_int8((unsigned char)(0xC0 | encode));
5573 }
5574 
5575 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5576   assert(UseAVX > 0, "requires some form of AVX");
5577   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5578   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5579   emit_int8((unsigned char)0xFA);
5580   emit_int8((unsigned char)(0xC0 | encode));
5581 }
5582 
5583 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5584   assert(UseAVX > 0, "requires some form of AVX");
5585   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5586   attributes.set_rex_vex_w_reverted();
5587   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5588   emit_int8((unsigned char)0xFB);
5589   emit_int8((unsigned char)(0xC0 | encode));
5590 }
5591 
5592 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5593   assert(UseAVX > 0, "requires some form of AVX");
5594   InstructionMark im(this);
5595   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5596   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5597   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5598   emit_int8((unsigned char)0xF8);
5599   emit_operand(dst, src);
5600 }
5601 
5602 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5603   assert(UseAVX > 0, "requires some form of AVX");
5604   InstructionMark im(this);
5605   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5606   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5607   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5608   emit_int8((unsigned char)0xF9);
5609   emit_operand(dst, src);
5610 }
5611 
5612 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5613   assert(UseAVX > 0, "requires some form of AVX");
5614   InstructionMark im(this);
5615   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5616   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5617   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5618   emit_int8((unsigned char)0xFA);
5619   emit_operand(dst, src);
5620 }
5621 
5622 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5623   assert(UseAVX > 0, "requires some form of AVX");
5624   InstructionMark im(this);
5625   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5626   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5627   attributes.set_rex_vex_w_reverted();
5628   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5629   emit_int8((unsigned char)0xFB);
5630   emit_operand(dst, src);
5631 }
5632 
5633 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5634   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5635   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5636   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5637   emit_int8((unsigned char)0xD5);
5638   emit_int8((unsigned char)(0xC0 | encode));
5639 }
5640 
5641 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5642   assert(VM_Version::supports_sse4_1(), "");
5643   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5644   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5645   emit_int8(0x40);
5646   emit_int8((unsigned char)(0xC0 | encode));
5647 }
5648 
5649 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5650   assert(UseAVX > 0, "requires some form of AVX");
5651   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5652   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5653   emit_int8((unsigned char)0xD5);
5654   emit_int8((unsigned char)(0xC0 | encode));
5655 }
5656 
5657 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5658   assert(UseAVX > 0, "requires some form of AVX");
5659   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5660   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5661   emit_int8(0x40);
5662   emit_int8((unsigned char)(0xC0 | encode));
5663 }
5664 
5665 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5666   assert(UseAVX > 2, "requires some form of EVEX");
5667   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5668   attributes.set_is_evex_instruction();
5669   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5670   emit_int8(0x40);
5671   emit_int8((unsigned char)(0xC0 | encode));
5672 }
5673 
5674 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5675   assert(UseAVX > 0, "requires some form of AVX");
5676   InstructionMark im(this);
5677   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5678   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5679   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5680   emit_int8((unsigned char)0xD5);
5681   emit_operand(dst, src);
5682 }
5683 
5684 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5685   assert(UseAVX > 0, "requires some form of AVX");
5686   InstructionMark im(this);
5687   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5688   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5689   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5690   emit_int8(0x40);
5691   emit_operand(dst, src);
5692 }
5693 
5694 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5695   assert(UseAVX > 2, "requires some form of EVEX");
5696   InstructionMark im(this);
5697   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5698   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5699   attributes.set_is_evex_instruction();
5700   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5701   emit_int8(0x40);
5702   emit_operand(dst, src);
5703 }
5704 
5705 // Shift packed integers left by specified number of bits.
5706 void Assembler::psllw(XMMRegister dst, int shift) {
5707   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5708   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5709   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5710   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5711   emit_int8(0x71);
5712   emit_int8((unsigned char)(0xC0 | encode));
5713   emit_int8(shift & 0xFF);
5714 }
5715 
5716 void Assembler::pslld(XMMRegister dst, int shift) {
5717   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5718   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5719   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5720   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5721   emit_int8(0x72);
5722   emit_int8((unsigned char)(0xC0 | encode));
5723   emit_int8(shift & 0xFF);
5724 }
5725 
5726 void Assembler::psllq(XMMRegister dst, int shift) {
5727   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5728   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5729   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5730   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5731   emit_int8(0x73);
5732   emit_int8((unsigned char)(0xC0 | encode));
5733   emit_int8(shift & 0xFF);
5734 }
5735 
5736 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5737   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5738   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5739   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5740   emit_int8((unsigned char)0xF1);
5741   emit_int8((unsigned char)(0xC0 | encode));
5742 }
5743 
5744 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5746   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5747   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5748   emit_int8((unsigned char)0xF2);
5749   emit_int8((unsigned char)(0xC0 | encode));
5750 }
5751 
5752 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5753   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5754   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5755   attributes.set_rex_vex_w_reverted();
5756   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5757   emit_int8((unsigned char)0xF3);
5758   emit_int8((unsigned char)(0xC0 | encode));
5759 }
5760 
5761 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5762   assert(UseAVX > 0, "requires some form of AVX");
5763   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5764   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5765   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5766   emit_int8(0x71);
5767   emit_int8((unsigned char)(0xC0 | encode));
5768   emit_int8(shift & 0xFF);
5769 }
5770 
5771 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5772   assert(UseAVX > 0, "requires some form of AVX");
5773   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5774   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5775   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5776   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5777   emit_int8(0x72);
5778   emit_int8((unsigned char)(0xC0 | encode));
5779   emit_int8(shift & 0xFF);
5780 }
5781 
5782 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5783   assert(UseAVX > 0, "requires some form of AVX");
5784   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5785   attributes.set_rex_vex_w_reverted();
5786   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5787   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5788   emit_int8(0x73);
5789   emit_int8((unsigned char)(0xC0 | encode));
5790   emit_int8(shift & 0xFF);
5791 }
5792 
5793 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5794   assert(UseAVX > 0, "requires some form of AVX");
5795   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5796   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5797   emit_int8((unsigned char)0xF1);
5798   emit_int8((unsigned char)(0xC0 | encode));
5799 }
5800 
5801 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5802   assert(UseAVX > 0, "requires some form of AVX");
5803   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5804   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5805   emit_int8((unsigned char)0xF2);
5806   emit_int8((unsigned char)(0xC0 | encode));
5807 }
5808 
5809 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5810   assert(UseAVX > 0, "requires some form of AVX");
5811   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5812   attributes.set_rex_vex_w_reverted();
5813   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5814   emit_int8((unsigned char)0xF3);
5815   emit_int8((unsigned char)(0xC0 | encode));
5816 }
5817 
5818 // Shift packed integers logically right by specified number of bits.
5819 void Assembler::psrlw(XMMRegister dst, int shift) {
5820   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5821   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5822   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5823   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5824   emit_int8(0x71);
5825   emit_int8((unsigned char)(0xC0 | encode));
5826   emit_int8(shift & 0xFF);
5827 }
5828 
5829 void Assembler::psrld(XMMRegister dst, int shift) {
5830   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5831   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5832   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5833   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5834   emit_int8(0x72);
5835   emit_int8((unsigned char)(0xC0 | encode));
5836   emit_int8(shift & 0xFF);
5837 }
5838 
5839 void Assembler::psrlq(XMMRegister dst, int shift) {
5840   // Do not confuse it with psrldq SSE2 instruction which
5841   // shifts 128 bit value in xmm register by number of bytes.
5842   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5843   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5844   attributes.set_rex_vex_w_reverted();
5845   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5846   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5847   emit_int8(0x73);
5848   emit_int8((unsigned char)(0xC0 | encode));
5849   emit_int8(shift & 0xFF);
5850 }
5851 
5852 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5853   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5854   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5855   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5856   emit_int8((unsigned char)0xD1);
5857   emit_int8((unsigned char)(0xC0 | encode));
5858 }
5859 
5860 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5861   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5862   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5863   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5864   emit_int8((unsigned char)0xD2);
5865   emit_int8((unsigned char)(0xC0 | encode));
5866 }
5867 
5868 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5870   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5871   attributes.set_rex_vex_w_reverted();
5872   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5873   emit_int8((unsigned char)0xD3);
5874   emit_int8((unsigned char)(0xC0 | encode));
5875 }
5876 
5877 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5878   assert(UseAVX > 0, "requires some form of AVX");
5879   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5880   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5881   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5882   emit_int8(0x71);
5883   emit_int8((unsigned char)(0xC0 | encode));
5884   emit_int8(shift & 0xFF);
5885 }
5886 
5887 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5888   assert(UseAVX > 0, "requires some form of AVX");
5889   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5890   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5891   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5892   emit_int8(0x72);
5893   emit_int8((unsigned char)(0xC0 | encode));
5894   emit_int8(shift & 0xFF);
5895 }
5896 
5897 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5898   assert(UseAVX > 0, "requires some form of AVX");
5899   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5900   attributes.set_rex_vex_w_reverted();
5901   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5902   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5903   emit_int8(0x73);
5904   emit_int8((unsigned char)(0xC0 | encode));
5905   emit_int8(shift & 0xFF);
5906 }
5907 
5908 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5909   assert(UseAVX > 0, "requires some form of AVX");
5910   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5911   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5912   emit_int8((unsigned char)0xD1);
5913   emit_int8((unsigned char)(0xC0 | encode));
5914 }
5915 
5916 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5917   assert(UseAVX > 0, "requires some form of AVX");
5918   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5919   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5920   emit_int8((unsigned char)0xD2);
5921   emit_int8((unsigned char)(0xC0 | encode));
5922 }
5923 
5924 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5925   assert(UseAVX > 0, "requires some form of AVX");
5926   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5927   attributes.set_rex_vex_w_reverted();
5928   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5929   emit_int8((unsigned char)0xD3);
5930   emit_int8((unsigned char)(0xC0 | encode));
5931 }
5932 
5933 // Shift packed integers arithmetically right by specified number of bits.
5934 void Assembler::psraw(XMMRegister dst, int shift) {
5935   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5936   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5937   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5938   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5939   emit_int8(0x71);
5940   emit_int8((unsigned char)(0xC0 | encode));
5941   emit_int8(shift & 0xFF);
5942 }
5943 
5944 void Assembler::psrad(XMMRegister dst, int shift) {
5945   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5946   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5947   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5948   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5949   emit_int8(0x72);
5950   emit_int8((unsigned char)(0xC0 | encode));
5951   emit_int8(shift & 0xFF);
5952 }
5953 
5954 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5955   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5956   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5957   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5958   emit_int8((unsigned char)0xE1);
5959   emit_int8((unsigned char)(0xC0 | encode));
5960 }
5961 
5962 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5963   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5964   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5965   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5966   emit_int8((unsigned char)0xE2);
5967   emit_int8((unsigned char)(0xC0 | encode));
5968 }
5969 
5970 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5971   assert(UseAVX > 0, "requires some form of AVX");
5972   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5973   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5974   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5975   emit_int8(0x71);
5976   emit_int8((unsigned char)(0xC0 | encode));
5977   emit_int8(shift & 0xFF);
5978 }
5979 
5980 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5981   assert(UseAVX > 0, "requires some form of AVX");
5982   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5983   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5984   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5985   emit_int8(0x72);
5986   emit_int8((unsigned char)(0xC0 | encode));
5987   emit_int8(shift & 0xFF);
5988 }
5989 
5990 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5991   assert(UseAVX > 0, "requires some form of AVX");
5992   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5993   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5994   emit_int8((unsigned char)0xE1);
5995   emit_int8((unsigned char)(0xC0 | encode));
5996 }
5997 
5998 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5999   assert(UseAVX > 0, "requires some form of AVX");
6000   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6001   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6002   emit_int8((unsigned char)0xE2);
6003   emit_int8((unsigned char)(0xC0 | encode));
6004 }
6005 
6006 
6007 // logical operations packed integers
6008 void Assembler::pand(XMMRegister dst, XMMRegister src) {
6009   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6010   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6011   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6012   emit_int8((unsigned char)0xDB);
6013   emit_int8((unsigned char)(0xC0 | encode));
6014 }
6015 
6016 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6017   assert(UseAVX > 0, "requires some form of AVX");
6018   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6019   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6020   emit_int8((unsigned char)0xDB);
6021   emit_int8((unsigned char)(0xC0 | encode));
6022 }
6023 
6024 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6025   assert(UseAVX > 0, "requires some form of AVX");
6026   InstructionMark im(this);
6027   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6028   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6029   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6030   emit_int8((unsigned char)0xDB);
6031   emit_operand(dst, src);
6032 }
6033 
6034 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
6035   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6036   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6037   attributes.set_rex_vex_w_reverted();
6038   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6039   emit_int8((unsigned char)0xDF);
6040   emit_int8((unsigned char)(0xC0 | encode));
6041 }
6042 
6043 void Assembler::por(XMMRegister dst, XMMRegister src) {
6044   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6045   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6047   emit_int8((unsigned char)0xEB);
6048   emit_int8((unsigned char)(0xC0 | encode));
6049 }
6050 
6051 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6052   assert(UseAVX > 0, "requires some form of AVX");
6053   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6054   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6055   emit_int8((unsigned char)0xEB);
6056   emit_int8((unsigned char)(0xC0 | encode));
6057 }
6058 
6059 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6060   assert(UseAVX > 0, "requires some form of AVX");
6061   InstructionMark im(this);
6062   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6063   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6064   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6065   emit_int8((unsigned char)0xEB);
6066   emit_operand(dst, src);
6067 }
6068 
6069 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6070   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6071   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6072   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6073   emit_int8((unsigned char)0xEF);
6074   emit_int8((unsigned char)(0xC0 | encode));
6075 }
6076 
6077 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6078   assert(UseAVX > 0, "requires some form of AVX");
6079   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6080   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6081   emit_int8((unsigned char)0xEF);
6082   emit_int8((unsigned char)(0xC0 | encode));
6083 }
6084 
6085 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6086   assert(UseAVX > 0, "requires some form of AVX");
6087   InstructionMark im(this);
6088   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6089   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6090   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6091   emit_int8((unsigned char)0xEF);
6092   emit_operand(dst, src);
6093 }
6094 
6095 
6096 // vinserti forms
6097 
6098 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6099   assert(VM_Version::supports_avx2(), "");
6100   assert(imm8 <= 0x01, "imm8: %u", imm8);
6101   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6102   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6103   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6104   emit_int8(0x38);
6105   emit_int8((unsigned char)(0xC0 | encode));
6106   // 0x00 - insert into lower 128 bits
6107   // 0x01 - insert into upper 128 bits
6108   emit_int8(imm8 & 0x01);
6109 }
6110 
6111 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6112   assert(VM_Version::supports_avx2(), "");
6113   assert(dst != xnoreg, "sanity");
6114   assert(imm8 <= 0x01, "imm8: %u", imm8);
6115   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6116   InstructionMark im(this);
6117   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6118   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6119   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6120   emit_int8(0x38);
6121   emit_operand(dst, src);
6122   // 0x00 - insert into lower 128 bits
6123   // 0x01 - insert into upper 128 bits
6124   emit_int8(imm8 & 0x01);
6125 }
6126 
6127 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6128   assert(VM_Version::supports_evex(), "");
6129   assert(imm8 <= 0x03, "imm8: %u", imm8);
6130   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6131   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6132   emit_int8(0x38);
6133   emit_int8((unsigned char)(0xC0 | encode));
6134   // 0x00 - insert into q0 128 bits (0..127)
6135   // 0x01 - insert into q1 128 bits (128..255)
6136   // 0x02 - insert into q2 128 bits (256..383)
6137   // 0x03 - insert into q3 128 bits (384..511)
6138   emit_int8(imm8 & 0x03);
6139 }
6140 
6141 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6142   assert(VM_Version::supports_avx(), "");
6143   assert(dst != xnoreg, "sanity");
6144   assert(imm8 <= 0x03, "imm8: %u", imm8);
6145   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6146   InstructionMark im(this);
6147   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6148   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6149   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6150   emit_int8(0x18);
6151   emit_operand(dst, src);
6152   // 0x00 - insert into q0 128 bits (0..127)
6153   // 0x01 - insert into q1 128 bits (128..255)
6154   // 0x02 - insert into q2 128 bits (256..383)
6155   // 0x03 - insert into q3 128 bits (384..511)
6156   emit_int8(imm8 & 0x03);
6157 }
6158 
6159 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6160   assert(VM_Version::supports_evex(), "");
6161   assert(imm8 <= 0x01, "imm8: %u", imm8);
6162   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6163   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6164   emit_int8(0x38);
6165   emit_int8((unsigned char)(0xC0 | encode));
6166   // 0x00 - insert into lower 256 bits
6167   // 0x01 - insert into upper 256 bits
6168   emit_int8(imm8 & 0x01);
6169 }
6170 
6171 
6172 // vinsertf forms
6173 
6174 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6175   assert(VM_Version::supports_avx(), "");
6176   assert(imm8 <= 0x01, "imm8: %u", imm8);
6177   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6178   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6179   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6180   emit_int8(0x18);
6181   emit_int8((unsigned char)(0xC0 | encode));
6182   // 0x00 - insert into lower 128 bits
6183   // 0x01 - insert into upper 128 bits
6184   emit_int8(imm8 & 0x01);
6185 }
6186 
6187 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6188   assert(VM_Version::supports_avx(), "");
6189   assert(dst != xnoreg, "sanity");
6190   assert(imm8 <= 0x01, "imm8: %u", imm8);
6191   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6192   InstructionMark im(this);
6193   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6194   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6195   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6196   emit_int8(0x18);
6197   emit_operand(dst, src);
6198   // 0x00 - insert into lower 128 bits
6199   // 0x01 - insert into upper 128 bits
6200   emit_int8(imm8 & 0x01);
6201 }
6202 
6203 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6204   assert(VM_Version::supports_evex(), "");
6205   assert(imm8 <= 0x03, "imm8: %u", imm8);
6206   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6207   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6208   emit_int8(0x18);
6209   emit_int8((unsigned char)(0xC0 | encode));
6210   // 0x00 - insert into q0 128 bits (0..127)
6211   // 0x01 - insert into q1 128 bits (128..255)
6212   // 0x02 - insert into q2 128 bits (256..383)
6213   // 0x03 - insert into q3 128 bits (384..511)
6214   emit_int8(imm8 & 0x03);
6215 }
6216 
6217 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6218   assert(VM_Version::supports_avx(), "");
6219   assert(dst != xnoreg, "sanity");
6220   assert(imm8 <= 0x03, "imm8: %u", imm8);
6221   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6222   InstructionMark im(this);
6223   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6224   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6225   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6226   emit_int8(0x18);
6227   emit_operand(dst, src);
6228   // 0x00 - insert into q0 128 bits (0..127)
6229   // 0x01 - insert into q1 128 bits (128..255)
6230   // 0x02 - insert into q2 128 bits (256..383)
6231   // 0x03 - insert into q3 128 bits (384..511)
6232   emit_int8(imm8 & 0x03);
6233 }
6234 
6235 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6236   assert(VM_Version::supports_evex(), "");
6237   assert(imm8 <= 0x01, "imm8: %u", imm8);
6238   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6239   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6240   emit_int8(0x1A);
6241   emit_int8((unsigned char)(0xC0 | encode));
6242   // 0x00 - insert into lower 256 bits
6243   // 0x01 - insert into upper 256 bits
6244   emit_int8(imm8 & 0x01);
6245 }
6246 
6247 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6248   assert(VM_Version::supports_evex(), "");
6249   assert(dst != xnoreg, "sanity");
6250   assert(imm8 <= 0x01, "imm8: %u", imm8);
6251   InstructionMark im(this);
6252   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6253   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6254   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6255   emit_int8(0x1A);
6256   emit_operand(dst, src);
6257   // 0x00 - insert into lower 256 bits
6258   // 0x01 - insert into upper 256 bits
6259   emit_int8(imm8 & 0x01);
6260 }
6261 
6262 
6263 // vextracti forms
6264 
6265 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6266   assert(VM_Version::supports_avx(), "");
6267   assert(imm8 <= 0x01, "imm8: %u", imm8);
6268   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6269   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6270   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6271   emit_int8(0x39);
6272   emit_int8((unsigned char)(0xC0 | encode));
6273   // 0x00 - extract from lower 128 bits
6274   // 0x01 - extract from upper 128 bits
6275   emit_int8(imm8 & 0x01);
6276 }
6277 
6278 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6279   assert(VM_Version::supports_avx2(), "");
6280   assert(src != xnoreg, "sanity");
6281   assert(imm8 <= 0x01, "imm8: %u", imm8);
6282   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6283   InstructionMark im(this);
6284   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6285   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6286   attributes.reset_is_clear_context();
6287   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6288   emit_int8(0x39);
6289   emit_operand(src, dst);
6290   // 0x00 - extract from lower 128 bits
6291   // 0x01 - extract from upper 128 bits
6292   emit_int8(imm8 & 0x01);
6293 }
6294 
6295 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6296   assert(VM_Version::supports_avx(), "");
6297   assert(imm8 <= 0x03, "imm8: %u", imm8);
6298   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6299   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6300   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6301   emit_int8(0x39);
6302   emit_int8((unsigned char)(0xC0 | encode));
6303   // 0x00 - extract from bits 127:0
6304   // 0x01 - extract from bits 255:128
6305   // 0x02 - extract from bits 383:256
6306   // 0x03 - extract from bits 511:384
6307   emit_int8(imm8 & 0x03);
6308 }
6309 
6310 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6311   assert(VM_Version::supports_evex(), "");
6312   assert(src != xnoreg, "sanity");
6313   assert(imm8 <= 0x03, "imm8: %u", imm8);
6314   InstructionMark im(this);
6315   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6316   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6317   attributes.reset_is_clear_context();
6318   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6319   emit_int8(0x39);
6320   emit_operand(src, dst);
6321   // 0x00 - extract from bits 127:0
6322   // 0x01 - extract from bits 255:128
6323   // 0x02 - extract from bits 383:256
6324   // 0x03 - extract from bits 511:384
6325   emit_int8(imm8 & 0x03);
6326 }
6327 
6328 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6329   assert(VM_Version::supports_avx512dq(), "");
6330   assert(imm8 <= 0x03, "imm8: %u", imm8);
6331   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6332   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6333   emit_int8(0x39);
6334   emit_int8((unsigned char)(0xC0 | encode));
6335   // 0x00 - extract from bits 127:0
6336   // 0x01 - extract from bits 255:128
6337   // 0x02 - extract from bits 383:256
6338   // 0x03 - extract from bits 511:384
6339   emit_int8(imm8 & 0x03);
6340 }
6341 
6342 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6343   assert(VM_Version::supports_evex(), "");
6344   assert(imm8 <= 0x01, "imm8: %u", imm8);
6345   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6346   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6347   emit_int8(0x3B);
6348   emit_int8((unsigned char)(0xC0 | encode));
6349   // 0x00 - extract from lower 256 bits
6350   // 0x01 - extract from upper 256 bits
6351   emit_int8(imm8 & 0x01);
6352 }
6353 
6354 
6355 // vextractf forms
6356 
6357 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6358   assert(VM_Version::supports_avx(), "");
6359   assert(imm8 <= 0x01, "imm8: %u", imm8);
6360   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6361   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6362   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6363   emit_int8(0x19);
6364   emit_int8((unsigned char)(0xC0 | encode));
6365   // 0x00 - extract from lower 128 bits
6366   // 0x01 - extract from upper 128 bits
6367   emit_int8(imm8 & 0x01);
6368 }
6369 
6370 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6371   assert(VM_Version::supports_avx(), "");
6372   assert(src != xnoreg, "sanity");
6373   assert(imm8 <= 0x01, "imm8: %u", imm8);
6374   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6375   InstructionMark im(this);
6376   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6377   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6378   attributes.reset_is_clear_context();
6379   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6380   emit_int8(0x19);
6381   emit_operand(src, dst);
6382   // 0x00 - extract from lower 128 bits
6383   // 0x01 - extract from upper 128 bits
6384   emit_int8(imm8 & 0x01);
6385 }
6386 
6387 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6388   assert(VM_Version::supports_avx(), "");
6389   assert(imm8 <= 0x03, "imm8: %u", imm8);
6390   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6391   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6392   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6393   emit_int8(0x19);
6394   emit_int8((unsigned char)(0xC0 | encode));
6395   // 0x00 - extract from bits 127:0
6396   // 0x01 - extract from bits 255:128
6397   // 0x02 - extract from bits 383:256
6398   // 0x03 - extract from bits 511:384
6399   emit_int8(imm8 & 0x03);
6400 }
6401 
6402 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6403   assert(VM_Version::supports_evex(), "");
6404   assert(src != xnoreg, "sanity");
6405   assert(imm8 <= 0x03, "imm8: %u", imm8);
6406   InstructionMark im(this);
6407   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6408   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6409   attributes.reset_is_clear_context();
6410   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6411   emit_int8(0x19);
6412   emit_operand(src, dst);
6413   // 0x00 - extract from bits 127:0
6414   // 0x01 - extract from bits 255:128
6415   // 0x02 - extract from bits 383:256
6416   // 0x03 - extract from bits 511:384
6417   emit_int8(imm8 & 0x03);
6418 }
6419 
6420 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6421   assert(VM_Version::supports_avx512dq(), "");
6422   assert(imm8 <= 0x03, "imm8: %u", imm8);
6423   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6424   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6425   emit_int8(0x19);
6426   emit_int8((unsigned char)(0xC0 | encode));
6427   // 0x00 - extract from bits 127:0
6428   // 0x01 - extract from bits 255:128
6429   // 0x02 - extract from bits 383:256
6430   // 0x03 - extract from bits 511:384
6431   emit_int8(imm8 & 0x03);
6432 }
6433 
6434 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6435   assert(VM_Version::supports_evex(), "");
6436   assert(imm8 <= 0x01, "imm8: %u", imm8);
6437   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6438   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6439   emit_int8(0x1B);
6440   emit_int8((unsigned char)(0xC0 | encode));
6441   // 0x00 - extract from lower 256 bits
6442   // 0x01 - extract from upper 256 bits
6443   emit_int8(imm8 & 0x01);
6444 }
6445 
6446 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6447   assert(VM_Version::supports_evex(), "");
6448   assert(src != xnoreg, "sanity");
6449   assert(imm8 <= 0x01, "imm8: %u", imm8);
6450   InstructionMark im(this);
6451   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6452   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6453   attributes.reset_is_clear_context();
6454   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6455   emit_int8(0x1B);
6456   emit_operand(src, dst);
6457   // 0x00 - extract from lower 256 bits
6458   // 0x01 - extract from upper 256 bits
6459   emit_int8(imm8 & 0x01);
6460 }
6461 
6462 
6463 // legacy word/dword replicate
6464 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6465   assert(VM_Version::supports_avx2(), "");
6466   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6467   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6468   emit_int8(0x79);
6469   emit_int8((unsigned char)(0xC0 | encode));
6470 }
6471 
6472 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6473   assert(VM_Version::supports_avx2(), "");
6474   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6475   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6476   emit_int8(0x58);
6477   emit_int8((unsigned char)(0xC0 | encode));
6478 }
6479 
6480 
6481 // xmm/mem sourced byte/word/dword/qword replicate
6482 
6483 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6484 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6485   assert(VM_Version::supports_evex(), "");
6486   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6487   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6488   emit_int8(0x78);
6489   emit_int8((unsigned char)(0xC0 | encode));
6490 }
6491 
6492 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6493   assert(VM_Version::supports_evex(), "");
6494   assert(dst != xnoreg, "sanity");
6495   InstructionMark im(this);
6496   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6497   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6498   // swap src<->dst for encoding
6499   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6500   emit_int8(0x78);
6501   emit_operand(dst, src);
6502 }
6503 
6504 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6505 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6506   assert(VM_Version::supports_evex(), "");
6507   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6508   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6509   emit_int8(0x79);
6510   emit_int8((unsigned char)(0xC0 | encode));
6511 }
6512 
6513 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6514   assert(VM_Version::supports_evex(), "");
6515   assert(dst != xnoreg, "sanity");
6516   InstructionMark im(this);
6517   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6518   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6519   // swap src<->dst for encoding
6520   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6521   emit_int8(0x79);
6522   emit_operand(dst, src);
6523 }
6524 
6525 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6526 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6527   assert(VM_Version::supports_evex(), "");
6528   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6529   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6530   emit_int8(0x58);
6531   emit_int8((unsigned char)(0xC0 | encode));
6532 }
6533 
6534 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6535   assert(VM_Version::supports_evex(), "");
6536   assert(dst != xnoreg, "sanity");
6537   InstructionMark im(this);
6538   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6539   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6540   // swap src<->dst for encoding
6541   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6542   emit_int8(0x58);
6543   emit_operand(dst, src);
6544 }
6545 
6546 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6547 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6548   assert(VM_Version::supports_evex(), "");
6549   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6550   attributes.set_rex_vex_w_reverted();
6551   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6552   emit_int8(0x59);
6553   emit_int8((unsigned char)(0xC0 | encode));
6554 }
6555 
6556 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6557   assert(VM_Version::supports_evex(), "");
6558   assert(dst != xnoreg, "sanity");
6559   InstructionMark im(this);
6560   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6561   attributes.set_rex_vex_w_reverted();
6562   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6563   // swap src<->dst for encoding
6564   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6565   emit_int8(0x59);
6566   emit_operand(dst, src);
6567 }
6568 
6569 
6570 // scalar single/double precision replicate
6571 
6572 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6573 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6574   assert(VM_Version::supports_evex(), "");
6575   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6576   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6577   emit_int8(0x18);
6578   emit_int8((unsigned char)(0xC0 | encode));
6579 }
6580 
6581 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6582   assert(VM_Version::supports_evex(), "");
6583   assert(dst != xnoreg, "sanity");
6584   InstructionMark im(this);
6585   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6586   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6587   // swap src<->dst for encoding
6588   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6589   emit_int8(0x18);
6590   emit_operand(dst, src);
6591 }
6592 
6593 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6594 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6595   assert(VM_Version::supports_evex(), "");
6596   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6597   attributes.set_rex_vex_w_reverted();
6598   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6599   emit_int8(0x19);
6600   emit_int8((unsigned char)(0xC0 | encode));
6601 }
6602 
6603 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6604   assert(VM_Version::supports_evex(), "");
6605   assert(dst != xnoreg, "sanity");
6606   InstructionMark im(this);
6607   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6608   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6609   attributes.set_rex_vex_w_reverted();
6610   // swap src<->dst for encoding
6611   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6612   emit_int8(0x19);
6613   emit_operand(dst, src);
6614 }
6615 
6616 
6617 // gpr source broadcast forms
6618 
6619 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6620 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6621   assert(VM_Version::supports_evex(), "");
6622   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6623   attributes.set_is_evex_instruction();
6624   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6625   emit_int8(0x7A);
6626   emit_int8((unsigned char)(0xC0 | encode));
6627 }
6628 
6629 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6630 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6631   assert(VM_Version::supports_evex(), "");
6632   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6633   attributes.set_is_evex_instruction();
6634   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6635   emit_int8(0x7B);
6636   emit_int8((unsigned char)(0xC0 | encode));
6637 }
6638 
6639 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6640 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6641   assert(VM_Version::supports_evex(), "");
6642   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6643   attributes.set_is_evex_instruction();
6644   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6645   emit_int8(0x7C);
6646   emit_int8((unsigned char)(0xC0 | encode));
6647 }
6648 
6649 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6650 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6651   assert(VM_Version::supports_evex(), "");
6652   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6653   attributes.set_is_evex_instruction();
6654   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6655   emit_int8(0x7C);
6656   emit_int8((unsigned char)(0xC0 | encode));
6657 }
6658 
6659 
6660 // Carry-Less Multiplication Quadword
6661 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6662   assert(VM_Version::supports_clmul(), "");
6663   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6664   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6665   emit_int8(0x44);
6666   emit_int8((unsigned char)(0xC0 | encode));
6667   emit_int8((unsigned char)mask);
6668 }
6669 
6670 // Carry-Less Multiplication Quadword
6671 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6672   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6673   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6674   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6675   emit_int8(0x44);
6676   emit_int8((unsigned char)(0xC0 | encode));
6677   emit_int8((unsigned char)mask);
6678 }
6679 
6680 void Assembler::vzeroupper() {
6681   if (VM_Version::supports_vzeroupper()) {
6682     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6683     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6684     emit_int8(0x77);
6685   }
6686 }
6687 
6688 #ifndef _LP64
6689 // 32bit only pieces of the assembler
6690 
6691 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6692   // NO PREFIX AS NEVER 64BIT
6693   InstructionMark im(this);
6694   emit_int8((unsigned char)0x81);
6695   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6696   emit_data(imm32, rspec, 0);
6697 }
6698 
6699 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6700   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6701   InstructionMark im(this);
6702   emit_int8((unsigned char)0x81);
6703   emit_operand(rdi, src1);
6704   emit_data(imm32, rspec, 0);
6705 }
6706 
6707 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6708 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6709 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6710 void Assembler::cmpxchg8(Address adr) {
6711   InstructionMark im(this);
6712   emit_int8(0x0F);
6713   emit_int8((unsigned char)0xC7);
6714   emit_operand(rcx, adr);
6715 }
6716 
6717 void Assembler::decl(Register dst) {
6718   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6719  emit_int8(0x48 | dst->encoding());
6720 }
6721 
6722 #endif // _LP64
6723 
6724 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6725 
6726 void Assembler::fabs() {
6727   emit_int8((unsigned char)0xD9);
6728   emit_int8((unsigned char)0xE1);
6729 }
6730 
6731 void Assembler::fadd(int i) {
6732   emit_farith(0xD8, 0xC0, i);
6733 }
6734 
6735 void Assembler::fadd_d(Address src) {
6736   InstructionMark im(this);
6737   emit_int8((unsigned char)0xDC);
6738   emit_operand32(rax, src);
6739 }
6740 
6741 void Assembler::fadd_s(Address src) {
6742   InstructionMark im(this);
6743   emit_int8((unsigned char)0xD8);
6744   emit_operand32(rax, src);
6745 }
6746 
6747 void Assembler::fadda(int i) {
6748   emit_farith(0xDC, 0xC0, i);
6749 }
6750 
6751 void Assembler::faddp(int i) {
6752   emit_farith(0xDE, 0xC0, i);
6753 }
6754 
6755 void Assembler::fchs() {
6756   emit_int8((unsigned char)0xD9);
6757   emit_int8((unsigned char)0xE0);
6758 }
6759 
6760 void Assembler::fcom(int i) {
6761   emit_farith(0xD8, 0xD0, i);
6762 }
6763 
6764 void Assembler::fcomp(int i) {
6765   emit_farith(0xD8, 0xD8, i);
6766 }
6767 
6768 void Assembler::fcomp_d(Address src) {
6769   InstructionMark im(this);
6770   emit_int8((unsigned char)0xDC);
6771   emit_operand32(rbx, src);
6772 }
6773 
6774 void Assembler::fcomp_s(Address src) {
6775   InstructionMark im(this);
6776   emit_int8((unsigned char)0xD8);
6777   emit_operand32(rbx, src);
6778 }
6779 
6780 void Assembler::fcompp() {
6781   emit_int8((unsigned char)0xDE);
6782   emit_int8((unsigned char)0xD9);
6783 }
6784 
6785 void Assembler::fcos() {
6786   emit_int8((unsigned char)0xD9);
6787   emit_int8((unsigned char)0xFF);
6788 }
6789 
6790 void Assembler::fdecstp() {
6791   emit_int8((unsigned char)0xD9);
6792   emit_int8((unsigned char)0xF6);
6793 }
6794 
6795 void Assembler::fdiv(int i) {
6796   emit_farith(0xD8, 0xF0, i);
6797 }
6798 
6799 void Assembler::fdiv_d(Address src) {
6800   InstructionMark im(this);
6801   emit_int8((unsigned char)0xDC);
6802   emit_operand32(rsi, src);
6803 }
6804 
6805 void Assembler::fdiv_s(Address src) {
6806   InstructionMark im(this);
6807   emit_int8((unsigned char)0xD8);
6808   emit_operand32(rsi, src);
6809 }
6810 
6811 void Assembler::fdiva(int i) {
6812   emit_farith(0xDC, 0xF8, i);
6813 }
6814 
6815 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6816 //       is erroneous for some of the floating-point instructions below.
6817 
6818 void Assembler::fdivp(int i) {
6819   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6820 }
6821 
6822 void Assembler::fdivr(int i) {
6823   emit_farith(0xD8, 0xF8, i);
6824 }
6825 
6826 void Assembler::fdivr_d(Address src) {
6827   InstructionMark im(this);
6828   emit_int8((unsigned char)0xDC);
6829   emit_operand32(rdi, src);
6830 }
6831 
6832 void Assembler::fdivr_s(Address src) {
6833   InstructionMark im(this);
6834   emit_int8((unsigned char)0xD8);
6835   emit_operand32(rdi, src);
6836 }
6837 
6838 void Assembler::fdivra(int i) {
6839   emit_farith(0xDC, 0xF0, i);
6840 }
6841 
6842 void Assembler::fdivrp(int i) {
6843   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6844 }
6845 
6846 void Assembler::ffree(int i) {
6847   emit_farith(0xDD, 0xC0, i);
6848 }
6849 
6850 void Assembler::fild_d(Address adr) {
6851   InstructionMark im(this);
6852   emit_int8((unsigned char)0xDF);
6853   emit_operand32(rbp, adr);
6854 }
6855 
6856 void Assembler::fild_s(Address adr) {
6857   InstructionMark im(this);
6858   emit_int8((unsigned char)0xDB);
6859   emit_operand32(rax, adr);
6860 }
6861 
6862 void Assembler::fincstp() {
6863   emit_int8((unsigned char)0xD9);
6864   emit_int8((unsigned char)0xF7);
6865 }
6866 
6867 void Assembler::finit() {
6868   emit_int8((unsigned char)0x9B);
6869   emit_int8((unsigned char)0xDB);
6870   emit_int8((unsigned char)0xE3);
6871 }
6872 
6873 void Assembler::fist_s(Address adr) {
6874   InstructionMark im(this);
6875   emit_int8((unsigned char)0xDB);
6876   emit_operand32(rdx, adr);
6877 }
6878 
6879 void Assembler::fistp_d(Address adr) {
6880   InstructionMark im(this);
6881   emit_int8((unsigned char)0xDF);
6882   emit_operand32(rdi, adr);
6883 }
6884 
6885 void Assembler::fistp_s(Address adr) {
6886   InstructionMark im(this);
6887   emit_int8((unsigned char)0xDB);
6888   emit_operand32(rbx, adr);
6889 }
6890 
6891 void Assembler::fld1() {
6892   emit_int8((unsigned char)0xD9);
6893   emit_int8((unsigned char)0xE8);
6894 }
6895 
6896 void Assembler::fld_d(Address adr) {
6897   InstructionMark im(this);
6898   emit_int8((unsigned char)0xDD);
6899   emit_operand32(rax, adr);
6900 }
6901 
6902 void Assembler::fld_s(Address adr) {
6903   InstructionMark im(this);
6904   emit_int8((unsigned char)0xD9);
6905   emit_operand32(rax, adr);
6906 }
6907 
6908 
6909 void Assembler::fld_s(int index) {
6910   emit_farith(0xD9, 0xC0, index);
6911 }
6912 
6913 void Assembler::fld_x(Address adr) {
6914   InstructionMark im(this);
6915   emit_int8((unsigned char)0xDB);
6916   emit_operand32(rbp, adr);
6917 }
6918 
6919 void Assembler::fldcw(Address src) {
6920   InstructionMark im(this);
6921   emit_int8((unsigned char)0xD9);
6922   emit_operand32(rbp, src);
6923 }
6924 
6925 void Assembler::fldenv(Address src) {
6926   InstructionMark im(this);
6927   emit_int8((unsigned char)0xD9);
6928   emit_operand32(rsp, src);
6929 }
6930 
6931 void Assembler::fldlg2() {
6932   emit_int8((unsigned char)0xD9);
6933   emit_int8((unsigned char)0xEC);
6934 }
6935 
6936 void Assembler::fldln2() {
6937   emit_int8((unsigned char)0xD9);
6938   emit_int8((unsigned char)0xED);
6939 }
6940 
6941 void Assembler::fldz() {
6942   emit_int8((unsigned char)0xD9);
6943   emit_int8((unsigned char)0xEE);
6944 }
6945 
6946 void Assembler::flog() {
6947   fldln2();
6948   fxch();
6949   fyl2x();
6950 }
6951 
6952 void Assembler::flog10() {
6953   fldlg2();
6954   fxch();
6955   fyl2x();
6956 }
6957 
6958 void Assembler::fmul(int i) {
6959   emit_farith(0xD8, 0xC8, i);
6960 }
6961 
6962 void Assembler::fmul_d(Address src) {
6963   InstructionMark im(this);
6964   emit_int8((unsigned char)0xDC);
6965   emit_operand32(rcx, src);
6966 }
6967 
6968 void Assembler::fmul_s(Address src) {
6969   InstructionMark im(this);
6970   emit_int8((unsigned char)0xD8);
6971   emit_operand32(rcx, src);
6972 }
6973 
6974 void Assembler::fmula(int i) {
6975   emit_farith(0xDC, 0xC8, i);
6976 }
6977 
6978 void Assembler::fmulp(int i) {
6979   emit_farith(0xDE, 0xC8, i);
6980 }
6981 
6982 void Assembler::fnsave(Address dst) {
6983   InstructionMark im(this);
6984   emit_int8((unsigned char)0xDD);
6985   emit_operand32(rsi, dst);
6986 }
6987 
6988 void Assembler::fnstcw(Address src) {
6989   InstructionMark im(this);
6990   emit_int8((unsigned char)0x9B);
6991   emit_int8((unsigned char)0xD9);
6992   emit_operand32(rdi, src);
6993 }
6994 
6995 void Assembler::fnstsw_ax() {
6996   emit_int8((unsigned char)0xDF);
6997   emit_int8((unsigned char)0xE0);
6998 }
6999 
7000 void Assembler::fprem() {
7001   emit_int8((unsigned char)0xD9);
7002   emit_int8((unsigned char)0xF8);
7003 }
7004 
7005 void Assembler::fprem1() {
7006   emit_int8((unsigned char)0xD9);
7007   emit_int8((unsigned char)0xF5);
7008 }
7009 
7010 void Assembler::frstor(Address src) {
7011   InstructionMark im(this);
7012   emit_int8((unsigned char)0xDD);
7013   emit_operand32(rsp, src);
7014 }
7015 
7016 void Assembler::fsin() {
7017   emit_int8((unsigned char)0xD9);
7018   emit_int8((unsigned char)0xFE);
7019 }
7020 
7021 void Assembler::fsqrt() {
7022   emit_int8((unsigned char)0xD9);
7023   emit_int8((unsigned char)0xFA);
7024 }
7025 
7026 void Assembler::fst_d(Address adr) {
7027   InstructionMark im(this);
7028   emit_int8((unsigned char)0xDD);
7029   emit_operand32(rdx, adr);
7030 }
7031 
7032 void Assembler::fst_s(Address adr) {
7033   InstructionMark im(this);
7034   emit_int8((unsigned char)0xD9);
7035   emit_operand32(rdx, adr);
7036 }
7037 
7038 void Assembler::fstp_d(Address adr) {
7039   InstructionMark im(this);
7040   emit_int8((unsigned char)0xDD);
7041   emit_operand32(rbx, adr);
7042 }
7043 
7044 void Assembler::fstp_d(int index) {
7045   emit_farith(0xDD, 0xD8, index);
7046 }
7047 
7048 void Assembler::fstp_s(Address adr) {
7049   InstructionMark im(this);
7050   emit_int8((unsigned char)0xD9);
7051   emit_operand32(rbx, adr);
7052 }
7053 
7054 void Assembler::fstp_x(Address adr) {
7055   InstructionMark im(this);
7056   emit_int8((unsigned char)0xDB);
7057   emit_operand32(rdi, adr);
7058 }
7059 
7060 void Assembler::fsub(int i) {
7061   emit_farith(0xD8, 0xE0, i);
7062 }
7063 
7064 void Assembler::fsub_d(Address src) {
7065   InstructionMark im(this);
7066   emit_int8((unsigned char)0xDC);
7067   emit_operand32(rsp, src);
7068 }
7069 
7070 void Assembler::fsub_s(Address src) {
7071   InstructionMark im(this);
7072   emit_int8((unsigned char)0xD8);
7073   emit_operand32(rsp, src);
7074 }
7075 
7076 void Assembler::fsuba(int i) {
7077   emit_farith(0xDC, 0xE8, i);
7078 }
7079 
7080 void Assembler::fsubp(int i) {
7081   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7082 }
7083 
7084 void Assembler::fsubr(int i) {
7085   emit_farith(0xD8, 0xE8, i);
7086 }
7087 
7088 void Assembler::fsubr_d(Address src) {
7089   InstructionMark im(this);
7090   emit_int8((unsigned char)0xDC);
7091   emit_operand32(rbp, src);
7092 }
7093 
7094 void Assembler::fsubr_s(Address src) {
7095   InstructionMark im(this);
7096   emit_int8((unsigned char)0xD8);
7097   emit_operand32(rbp, src);
7098 }
7099 
7100 void Assembler::fsubra(int i) {
7101   emit_farith(0xDC, 0xE0, i);
7102 }
7103 
7104 void Assembler::fsubrp(int i) {
7105   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7106 }
7107 
7108 void Assembler::ftan() {
7109   emit_int8((unsigned char)0xD9);
7110   emit_int8((unsigned char)0xF2);
7111   emit_int8((unsigned char)0xDD);
7112   emit_int8((unsigned char)0xD8);
7113 }
7114 
7115 void Assembler::ftst() {
7116   emit_int8((unsigned char)0xD9);
7117   emit_int8((unsigned char)0xE4);
7118 }
7119 
7120 void Assembler::fucomi(int i) {
7121   // make sure the instruction is supported (introduced for P6, together with cmov)
7122   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7123   emit_farith(0xDB, 0xE8, i);
7124 }
7125 
7126 void Assembler::fucomip(int i) {
7127   // make sure the instruction is supported (introduced for P6, together with cmov)
7128   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7129   emit_farith(0xDF, 0xE8, i);
7130 }
7131 
7132 void Assembler::fwait() {
7133   emit_int8((unsigned char)0x9B);
7134 }
7135 
7136 void Assembler::fxch(int i) {
7137   emit_farith(0xD9, 0xC8, i);
7138 }
7139 
7140 void Assembler::fyl2x() {
7141   emit_int8((unsigned char)0xD9);
7142   emit_int8((unsigned char)0xF1);
7143 }
7144 
7145 void Assembler::frndint() {
7146   emit_int8((unsigned char)0xD9);
7147   emit_int8((unsigned char)0xFC);
7148 }
7149 
7150 void Assembler::f2xm1() {
7151   emit_int8((unsigned char)0xD9);
7152   emit_int8((unsigned char)0xF0);
7153 }
7154 
7155 void Assembler::fldl2e() {
7156   emit_int8((unsigned char)0xD9);
7157   emit_int8((unsigned char)0xEA);
7158 }
7159 
7160 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7161 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7162 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7163 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7164 
7165 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7166 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7167   if (pre > 0) {
7168     emit_int8(simd_pre[pre]);
7169   }
7170   if (rex_w) {
7171     prefixq(adr, xreg);
7172   } else {
7173     prefix(adr, xreg);
7174   }
7175   if (opc > 0) {
7176     emit_int8(0x0F);
7177     int opc2 = simd_opc[opc];
7178     if (opc2 > 0) {
7179       emit_int8(opc2);
7180     }
7181   }
7182 }
7183 
7184 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7185   if (pre > 0) {
7186     emit_int8(simd_pre[pre]);
7187   }
7188   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7189   if (opc > 0) {
7190     emit_int8(0x0F);
7191     int opc2 = simd_opc[opc];
7192     if (opc2 > 0) {
7193       emit_int8(opc2);
7194     }
7195   }
7196   return encode;
7197 }
7198 
7199 
7200 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7201   int vector_len = _attributes->get_vector_len();
7202   bool vex_w = _attributes->is_rex_vex_w();
7203   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7204     prefix(VEX_3bytes);
7205 
7206     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7207     byte1 = (~byte1) & 0xE0;
7208     byte1 |= opc;
7209     emit_int8(byte1);
7210 
7211     int byte2 = ((~nds_enc) & 0xf) << 3;
7212     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7213     emit_int8(byte2);
7214   } else {
7215     prefix(VEX_2bytes);
7216 
7217     int byte1 = vex_r ? VEX_R : 0;
7218     byte1 = (~byte1) & 0x80;
7219     byte1 |= ((~nds_enc) & 0xf) << 3;
7220     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7221     emit_int8(byte1);
7222   }
7223 }
7224 
7225 // This is a 4 byte encoding
7226 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7227   // EVEX 0x62 prefix
7228   prefix(EVEX_4bytes);
7229   bool vex_w = _attributes->is_rex_vex_w();
7230   int evex_encoding = (vex_w ? VEX_W : 0);
7231   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7232   _attributes->set_evex_encoding(evex_encoding);
7233 
7234   // P0: byte 2, initialized to RXBR`00mm
7235   // instead of not'd
7236   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7237   byte2 = (~byte2) & 0xF0;
7238   // confine opc opcode extensions in mm bits to lower two bits
7239   // of form {0F, 0F_38, 0F_3A}
7240   byte2 |= opc;
7241   emit_int8(byte2);
7242 
7243   // P1: byte 3 as Wvvvv1pp
7244   int byte3 = ((~nds_enc) & 0xf) << 3;
7245   // p[10] is always 1
7246   byte3 |= EVEX_F;
7247   byte3 |= (vex_w & 1) << 7;
7248   // confine pre opcode extensions in pp bits to lower two bits
7249   // of form {66, F3, F2}
7250   byte3 |= pre;
7251   emit_int8(byte3);
7252 
7253   // P2: byte 4 as zL'Lbv'aaa
7254   // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
7255   int byte4 = (_attributes->is_no_reg_mask()) ?
7256               0 :
7257               _attributes->get_embedded_opmask_register_specifier();
7258   // EVEX.v` for extending EVEX.vvvv or VIDX
7259   byte4 |= (evex_v ? 0: EVEX_V);
7260   // third EXEC.b for broadcast actions
7261   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7262   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7263   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7264   // last is EVEX.z for zero/merge actions
7265   if (_attributes->is_no_reg_mask() == false) {
7266     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7267   }
7268   emit_int8(byte4);
7269 }
7270 
7271 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7272   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
7273   bool vex_b = adr.base_needs_rex();
7274   bool vex_x = adr.index_needs_rex();
7275   set_attributes(attributes);
7276   attributes->set_current_assembler(this);
7277 
7278   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7279   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7280     switch (attributes->get_vector_len()) {
7281     case AVX_128bit:
7282     case AVX_256bit:
7283       attributes->set_is_legacy_mode();
7284       break;
7285     }
7286   }
7287 
7288   // For pure EVEX check and see if this instruction
7289   // is allowed in legacy mode and has resources which will
7290   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7291   // else that field is set when we encode to EVEX
7292   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7293       !_is_managed && !attributes->is_evex_instruction()) {
7294     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7295       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7296       if (check_register_bank) {
7297         // check nds_enc and xreg_enc for upper bank usage
7298         if (nds_enc < 16 && xreg_enc < 16) {
7299           attributes->set_is_legacy_mode();
7300         }
7301       } else {
7302         attributes->set_is_legacy_mode();
7303       }
7304     }
7305   }
7306 
7307   _is_managed = false;
7308   if (UseAVX > 2 && !attributes->is_legacy_mode())
7309   {
7310     bool evex_r = (xreg_enc >= 16);
7311     bool evex_v = (nds_enc >= 16);
7312     attributes->set_is_evex_instruction();
7313     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7314   } else {
7315     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7316       attributes->set_rex_vex_w(false);
7317     }
7318     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7319   }
7320 }
7321 
7322 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7323   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7324   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7325   bool vex_x = false;
7326   set_attributes(attributes);
7327   attributes->set_current_assembler(this);
7328   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7329 
7330   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7331   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7332     switch (attributes->get_vector_len()) {
7333     case AVX_128bit:
7334     case AVX_256bit:
7335       if (check_register_bank) {
7336         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
7337           // up propagate arithmetic instructions to meet RA requirements
7338           attributes->set_vector_len(AVX_512bit);
7339         } else {
7340           attributes->set_is_legacy_mode();
7341         }
7342       } else {
7343         attributes->set_is_legacy_mode();
7344       }
7345       break;
7346     }
7347   }
7348 
7349   // For pure EVEX check and see if this instruction
7350   // is allowed in legacy mode and has resources which will
7351   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7352   // else that field is set when we encode to EVEX
7353   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7354       !_is_managed && !attributes->is_evex_instruction()) {
7355     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7356       if (check_register_bank) {
7357         // check dst_enc, nds_enc and src_enc for upper bank usage
7358         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
7359           attributes->set_is_legacy_mode();
7360         }
7361       } else {
7362         attributes->set_is_legacy_mode();
7363       }
7364     }
7365   }
7366 
7367   _is_managed = false;
7368   if (UseAVX > 2 && !attributes->is_legacy_mode())
7369   {
7370     bool evex_r = (dst_enc >= 16);
7371     bool evex_v = (nds_enc >= 16);
7372     // can use vex_x as bank extender on rm encoding
7373     vex_x = (src_enc >= 16);
7374     attributes->set_is_evex_instruction();
7375     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7376   } else {
7377     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7378       attributes->set_rex_vex_w(false);
7379     }
7380     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7381   }
7382 
7383   // return modrm byte components for operands
7384   return (((dst_enc & 7) << 3) | (src_enc & 7));
7385 }
7386 
7387 
7388 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7389                             VexOpcode opc, InstructionAttr *attributes) {
7390   if (UseAVX > 0) {
7391     int xreg_enc = xreg->encoding();
7392     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7393     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7394   } else {
7395     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7396     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7397   }
7398 }
7399 
7400 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7401                                       VexOpcode opc, InstructionAttr *attributes) {
7402   int dst_enc = dst->encoding();
7403   int src_enc = src->encoding();
7404   if (UseAVX > 0) {
7405     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7406     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7407   } else {
7408     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7409     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7410   }
7411 }
7412 
7413 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7414   assert(VM_Version::supports_avx(), "");
7415   assert(!VM_Version::supports_evex(), "");
7416   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7417   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7418   emit_int8((unsigned char)0xC2);
7419   emit_int8((unsigned char)(0xC0 | encode));
7420   emit_int8((unsigned char)(0xF & cop));
7421 }
7422 
7423 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7424   assert(VM_Version::supports_avx(), "");
7425   assert(!VM_Version::supports_evex(), "");
7426   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7427   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7428   emit_int8((unsigned char)0x4B);
7429   emit_int8((unsigned char)(0xC0 | encode));
7430   int src2_enc = src2->encoding();
7431   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7432 }
7433 
7434 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7435   assert(VM_Version::supports_avx2(), "");
7436   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7437   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7438   emit_int8((unsigned char)0x02);
7439   emit_int8((unsigned char)(0xC0 | encode));
7440   emit_int8((unsigned char)imm8);
7441 }
7442 
7443 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7444   assert(VM_Version::supports_bmi2(), "");
7445   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7446   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7447   emit_int8((unsigned char)0xF7);
7448   emit_int8((unsigned char)(0xC0 | encode));
7449 }
7450 
7451 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7452   assert(VM_Version::supports_bmi2(), "");
7453   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7454   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7455   emit_int8((unsigned char)0xF7);
7456   emit_int8((unsigned char)(0xC0 | encode));
7457 }
7458 
7459 #ifndef _LP64
7460 
7461 void Assembler::incl(Register dst) {
7462   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7463   emit_int8(0x40 | dst->encoding());
7464 }
7465 
7466 void Assembler::lea(Register dst, Address src) {
7467   leal(dst, src);
7468 }
7469 
7470 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7471   InstructionMark im(this);
7472   emit_int8((unsigned char)0xC7);
7473   emit_operand(rax, dst);
7474   emit_data((int)imm32, rspec, 0);
7475 }
7476 
7477 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7478   InstructionMark im(this);
7479   int encode = prefix_and_encode(dst->encoding());
7480   emit_int8((unsigned char)(0xB8 | encode));
7481   emit_data((int)imm32, rspec, 0);
7482 }
7483 
7484 void Assembler::popa() { // 32bit
7485   emit_int8(0x61);
7486 }
7487 
7488 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7489   InstructionMark im(this);
7490   emit_int8(0x68);
7491   emit_data(imm32, rspec, 0);
7492 }
7493 
7494 void Assembler::pusha() { // 32bit
7495   emit_int8(0x60);
7496 }
7497 
7498 void Assembler::set_byte_if_not_zero(Register dst) {
7499   emit_int8(0x0F);
7500   emit_int8((unsigned char)0x95);
7501   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7502 }
7503 
7504 void Assembler::shldl(Register dst, Register src) {
7505   emit_int8(0x0F);
7506   emit_int8((unsigned char)0xA5);
7507   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7508 }
7509 
7510 // 0F A4 / r ib
7511 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7512   emit_int8(0x0F);
7513   emit_int8((unsigned char)0xA4);
7514   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7515   emit_int8(imm8);
7516 }
7517 
7518 void Assembler::shrdl(Register dst, Register src) {
7519   emit_int8(0x0F);
7520   emit_int8((unsigned char)0xAD);
7521   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7522 }
7523 
7524 #else // LP64
7525 
7526 void Assembler::set_byte_if_not_zero(Register dst) {
7527   int enc = prefix_and_encode(dst->encoding(), true);
7528   emit_int8(0x0F);
7529   emit_int8((unsigned char)0x95);
7530   emit_int8((unsigned char)(0xE0 | enc));
7531 }
7532 
7533 // 64bit only pieces of the assembler
7534 // This should only be used by 64bit instructions that can use rip-relative
7535 // it cannot be used by instructions that want an immediate value.
7536 
7537 bool Assembler::reachable(AddressLiteral adr) {
7538   int64_t disp;
7539   // None will force a 64bit literal to the code stream. Likely a placeholder
7540   // for something that will be patched later and we need to certain it will
7541   // always be reachable.
7542   if (adr.reloc() == relocInfo::none) {
7543     return false;
7544   }
7545   if (adr.reloc() == relocInfo::internal_word_type) {
7546     // This should be rip relative and easily reachable.
7547     return true;
7548   }
7549   if (adr.reloc() == relocInfo::virtual_call_type ||
7550       adr.reloc() == relocInfo::opt_virtual_call_type ||
7551       adr.reloc() == relocInfo::static_call_type ||
7552       adr.reloc() == relocInfo::static_stub_type ) {
7553     // This should be rip relative within the code cache and easily
7554     // reachable until we get huge code caches. (At which point
7555     // ic code is going to have issues).
7556     return true;
7557   }
7558   if (adr.reloc() != relocInfo::external_word_type &&
7559       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7560       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7561       adr.reloc() != relocInfo::runtime_call_type ) {
7562     return false;
7563   }
7564 
7565   // Stress the correction code
7566   if (ForceUnreachable) {
7567     // Must be runtimecall reloc, see if it is in the codecache
7568     // Flipping stuff in the codecache to be unreachable causes issues
7569     // with things like inline caches where the additional instructions
7570     // are not handled.
7571     if (CodeCache::find_blob(adr._target) == NULL) {
7572       return false;
7573     }
7574   }
7575   // For external_word_type/runtime_call_type if it is reachable from where we
7576   // are now (possibly a temp buffer) and where we might end up
7577   // anywhere in the codeCache then we are always reachable.
7578   // This would have to change if we ever save/restore shared code
7579   // to be more pessimistic.
7580   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7581   if (!is_simm32(disp)) return false;
7582   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7583   if (!is_simm32(disp)) return false;
7584 
7585   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7586 
7587   // Because rip relative is a disp + address_of_next_instruction and we
7588   // don't know the value of address_of_next_instruction we apply a fudge factor
7589   // to make sure we will be ok no matter the size of the instruction we get placed into.
7590   // We don't have to fudge the checks above here because they are already worst case.
7591 
7592   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7593   // + 4 because better safe than sorry.
7594   const int fudge = 12 + 4;
7595   if (disp < 0) {
7596     disp -= fudge;
7597   } else {
7598     disp += fudge;
7599   }
7600   return is_simm32(disp);
7601 }
7602 
7603 // Check if the polling page is not reachable from the code cache using rip-relative
7604 // addressing.
7605 bool Assembler::is_polling_page_far() {
7606   intptr_t addr = (intptr_t)os::get_polling_page();
7607   return ForceUnreachable ||
7608          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7609          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7610 }
7611 
7612 void Assembler::emit_data64(jlong data,
7613                             relocInfo::relocType rtype,
7614                             int format) {
7615   if (rtype == relocInfo::none) {
7616     emit_int64(data);
7617   } else {
7618     emit_data64(data, Relocation::spec_simple(rtype), format);
7619   }
7620 }
7621 
7622 void Assembler::emit_data64(jlong data,
7623                             RelocationHolder const& rspec,
7624                             int format) {
7625   assert(imm_operand == 0, "default format must be immediate in this file");
7626   assert(imm_operand == format, "must be immediate");
7627   assert(inst_mark() != NULL, "must be inside InstructionMark");
7628   // Do not use AbstractAssembler::relocate, which is not intended for
7629   // embedded words.  Instead, relocate to the enclosing instruction.
7630   code_section()->relocate(inst_mark(), rspec, format);
7631 #ifdef ASSERT
7632   check_relocation(rspec, format);
7633 #endif
7634   emit_int64(data);
7635 }
7636 
7637 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7638   if (reg_enc >= 8) {
7639     prefix(REX_B);
7640     reg_enc -= 8;
7641   } else if (byteinst && reg_enc >= 4) {
7642     prefix(REX);
7643   }
7644   return reg_enc;
7645 }
7646 
7647 int Assembler::prefixq_and_encode(int reg_enc) {
7648   if (reg_enc < 8) {
7649     prefix(REX_W);
7650   } else {
7651     prefix(REX_WB);
7652     reg_enc -= 8;
7653   }
7654   return reg_enc;
7655 }
7656 
7657 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7658   if (dst_enc < 8) {
7659     if (src_enc >= 8) {
7660       prefix(REX_B);
7661       src_enc -= 8;
7662     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7663       prefix(REX);
7664     }
7665   } else {
7666     if (src_enc < 8) {
7667       prefix(REX_R);
7668     } else {
7669       prefix(REX_RB);
7670       src_enc -= 8;
7671     }
7672     dst_enc -= 8;
7673   }
7674   return dst_enc << 3 | src_enc;
7675 }
7676 
7677 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7678   if (dst_enc < 8) {
7679     if (src_enc < 8) {
7680       prefix(REX_W);
7681     } else {
7682       prefix(REX_WB);
7683       src_enc -= 8;
7684     }
7685   } else {
7686     if (src_enc < 8) {
7687       prefix(REX_WR);
7688     } else {
7689       prefix(REX_WRB);
7690       src_enc -= 8;
7691     }
7692     dst_enc -= 8;
7693   }
7694   return dst_enc << 3 | src_enc;
7695 }
7696 
7697 void Assembler::prefix(Register reg) {
7698   if (reg->encoding() >= 8) {
7699     prefix(REX_B);
7700   }
7701 }
7702 
7703 void Assembler::prefix(Register dst, Register src, Prefix p) {
7704   if (src->encoding() >= 8) {
7705     p = (Prefix)(p | REX_B);
7706   }
7707   if (dst->encoding() >= 8) {
7708     p = (Prefix)( p | REX_R);
7709   }
7710   if (p != Prefix_EMPTY) {
7711     // do not generate an empty prefix
7712     prefix(p);
7713   }
7714 }
7715 
7716 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7717   if (adr.base_needs_rex()) {
7718     if (adr.index_needs_rex()) {
7719       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7720     } else {
7721       prefix(REX_B);
7722     }
7723   } else {
7724     if (adr.index_needs_rex()) {
7725       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7726     }
7727   }
7728   if (dst->encoding() >= 8) {
7729     p = (Prefix)(p | REX_R);
7730   }
7731   if (p != Prefix_EMPTY) {
7732     // do not generate an empty prefix
7733     prefix(p);
7734   }
7735 }
7736 
7737 void Assembler::prefix(Address adr) {
7738   if (adr.base_needs_rex()) {
7739     if (adr.index_needs_rex()) {
7740       prefix(REX_XB);
7741     } else {
7742       prefix(REX_B);
7743     }
7744   } else {
7745     if (adr.index_needs_rex()) {
7746       prefix(REX_X);
7747     }
7748   }
7749 }
7750 
7751 void Assembler::prefixq(Address adr) {
7752   if (adr.base_needs_rex()) {
7753     if (adr.index_needs_rex()) {
7754       prefix(REX_WXB);
7755     } else {
7756       prefix(REX_WB);
7757     }
7758   } else {
7759     if (adr.index_needs_rex()) {
7760       prefix(REX_WX);
7761     } else {
7762       prefix(REX_W);
7763     }
7764   }
7765 }
7766 
7767 
7768 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7769   if (reg->encoding() < 8) {
7770     if (adr.base_needs_rex()) {
7771       if (adr.index_needs_rex()) {
7772         prefix(REX_XB);
7773       } else {
7774         prefix(REX_B);
7775       }
7776     } else {
7777       if (adr.index_needs_rex()) {
7778         prefix(REX_X);
7779       } else if (byteinst && reg->encoding() >= 4 ) {
7780         prefix(REX);
7781       }
7782     }
7783   } else {
7784     if (adr.base_needs_rex()) {
7785       if (adr.index_needs_rex()) {
7786         prefix(REX_RXB);
7787       } else {
7788         prefix(REX_RB);
7789       }
7790     } else {
7791       if (adr.index_needs_rex()) {
7792         prefix(REX_RX);
7793       } else {
7794         prefix(REX_R);
7795       }
7796     }
7797   }
7798 }
7799 
7800 void Assembler::prefixq(Address adr, Register src) {
7801   if (src->encoding() < 8) {
7802     if (adr.base_needs_rex()) {
7803       if (adr.index_needs_rex()) {
7804         prefix(REX_WXB);
7805       } else {
7806         prefix(REX_WB);
7807       }
7808     } else {
7809       if (adr.index_needs_rex()) {
7810         prefix(REX_WX);
7811       } else {
7812         prefix(REX_W);
7813       }
7814     }
7815   } else {
7816     if (adr.base_needs_rex()) {
7817       if (adr.index_needs_rex()) {
7818         prefix(REX_WRXB);
7819       } else {
7820         prefix(REX_WRB);
7821       }
7822     } else {
7823       if (adr.index_needs_rex()) {
7824         prefix(REX_WRX);
7825       } else {
7826         prefix(REX_WR);
7827       }
7828     }
7829   }
7830 }
7831 
7832 void Assembler::prefix(Address adr, XMMRegister reg) {
7833   if (reg->encoding() < 8) {
7834     if (adr.base_needs_rex()) {
7835       if (adr.index_needs_rex()) {
7836         prefix(REX_XB);
7837       } else {
7838         prefix(REX_B);
7839       }
7840     } else {
7841       if (adr.index_needs_rex()) {
7842         prefix(REX_X);
7843       }
7844     }
7845   } else {
7846     if (adr.base_needs_rex()) {
7847       if (adr.index_needs_rex()) {
7848         prefix(REX_RXB);
7849       } else {
7850         prefix(REX_RB);
7851       }
7852     } else {
7853       if (adr.index_needs_rex()) {
7854         prefix(REX_RX);
7855       } else {
7856         prefix(REX_R);
7857       }
7858     }
7859   }
7860 }
7861 
7862 void Assembler::prefixq(Address adr, XMMRegister src) {
7863   if (src->encoding() < 8) {
7864     if (adr.base_needs_rex()) {
7865       if (adr.index_needs_rex()) {
7866         prefix(REX_WXB);
7867       } else {
7868         prefix(REX_WB);
7869       }
7870     } else {
7871       if (adr.index_needs_rex()) {
7872         prefix(REX_WX);
7873       } else {
7874         prefix(REX_W);
7875       }
7876     }
7877   } else {
7878     if (adr.base_needs_rex()) {
7879       if (adr.index_needs_rex()) {
7880         prefix(REX_WRXB);
7881       } else {
7882         prefix(REX_WRB);
7883       }
7884     } else {
7885       if (adr.index_needs_rex()) {
7886         prefix(REX_WRX);
7887       } else {
7888         prefix(REX_WR);
7889       }
7890     }
7891   }
7892 }
7893 
7894 void Assembler::adcq(Register dst, int32_t imm32) {
7895   (void) prefixq_and_encode(dst->encoding());
7896   emit_arith(0x81, 0xD0, dst, imm32);
7897 }
7898 
7899 void Assembler::adcq(Register dst, Address src) {
7900   InstructionMark im(this);
7901   prefixq(src, dst);
7902   emit_int8(0x13);
7903   emit_operand(dst, src);
7904 }
7905 
7906 void Assembler::adcq(Register dst, Register src) {
7907   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7908   emit_arith(0x13, 0xC0, dst, src);
7909 }
7910 
7911 void Assembler::addq(Address dst, int32_t imm32) {
7912   InstructionMark im(this);
7913   prefixq(dst);
7914   emit_arith_operand(0x81, rax, dst,imm32);
7915 }
7916 
7917 void Assembler::addq(Address dst, Register src) {
7918   InstructionMark im(this);
7919   prefixq(dst, src);
7920   emit_int8(0x01);
7921   emit_operand(src, dst);
7922 }
7923 
7924 void Assembler::addq(Register dst, int32_t imm32) {
7925   (void) prefixq_and_encode(dst->encoding());
7926   emit_arith(0x81, 0xC0, dst, imm32);
7927 }
7928 
7929 void Assembler::addq(Register dst, Address src) {
7930   InstructionMark im(this);
7931   prefixq(src, dst);
7932   emit_int8(0x03);
7933   emit_operand(dst, src);
7934 }
7935 
7936 void Assembler::addq(Register dst, Register src) {
7937   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7938   emit_arith(0x03, 0xC0, dst, src);
7939 }
7940 
7941 void Assembler::adcxq(Register dst, Register src) {
7942   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7943   emit_int8((unsigned char)0x66);
7944   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7945   emit_int8(0x0F);
7946   emit_int8(0x38);
7947   emit_int8((unsigned char)0xF6);
7948   emit_int8((unsigned char)(0xC0 | encode));
7949 }
7950 
7951 void Assembler::adoxq(Register dst, Register src) {
7952   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7953   emit_int8((unsigned char)0xF3);
7954   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7955   emit_int8(0x0F);
7956   emit_int8(0x38);
7957   emit_int8((unsigned char)0xF6);
7958   emit_int8((unsigned char)(0xC0 | encode));
7959 }
7960 
7961 void Assembler::andq(Address dst, int32_t imm32) {
7962   InstructionMark im(this);
7963   prefixq(dst);
7964   emit_int8((unsigned char)0x81);
7965   emit_operand(rsp, dst, 4);
7966   emit_int32(imm32);
7967 }
7968 
7969 void Assembler::andq(Register dst, int32_t imm32) {
7970   (void) prefixq_and_encode(dst->encoding());
7971   emit_arith(0x81, 0xE0, dst, imm32);
7972 }
7973 
7974 void Assembler::andq(Register dst, Address src) {
7975   InstructionMark im(this);
7976   prefixq(src, dst);
7977   emit_int8(0x23);
7978   emit_operand(dst, src);
7979 }
7980 
7981 void Assembler::andq(Register dst, Register src) {
7982   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7983   emit_arith(0x23, 0xC0, dst, src);
7984 }
7985 
7986 void Assembler::andnq(Register dst, Register src1, Register src2) {
7987   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7988   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7989   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7990   emit_int8((unsigned char)0xF2);
7991   emit_int8((unsigned char)(0xC0 | encode));
7992 }
7993 
7994 void Assembler::andnq(Register dst, Register src1, Address src2) {
7995   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7996   InstructionMark im(this);
7997   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7998   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7999   emit_int8((unsigned char)0xF2);
8000   emit_operand(dst, src2);
8001 }
8002 
8003 void Assembler::bsfq(Register dst, Register src) {
8004   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8005   emit_int8(0x0F);
8006   emit_int8((unsigned char)0xBC);
8007   emit_int8((unsigned char)(0xC0 | encode));
8008 }
8009 
8010 void Assembler::bsrq(Register dst, Register src) {
8011   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8012   emit_int8(0x0F);
8013   emit_int8((unsigned char)0xBD);
8014   emit_int8((unsigned char)(0xC0 | encode));
8015 }
8016 
8017 void Assembler::bswapq(Register reg) {
8018   int encode = prefixq_and_encode(reg->encoding());
8019   emit_int8(0x0F);
8020   emit_int8((unsigned char)(0xC8 | encode));
8021 }
8022 
8023 void Assembler::blsiq(Register dst, Register src) {
8024   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8025   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8026   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8027   emit_int8((unsigned char)0xF3);
8028   emit_int8((unsigned char)(0xC0 | encode));
8029 }
8030 
8031 void Assembler::blsiq(Register dst, Address src) {
8032   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8033   InstructionMark im(this);
8034   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8035   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8036   emit_int8((unsigned char)0xF3);
8037   emit_operand(rbx, src);
8038 }
8039 
8040 void Assembler::blsmskq(Register dst, Register src) {
8041   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8042   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8043   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8044   emit_int8((unsigned char)0xF3);
8045   emit_int8((unsigned char)(0xC0 | encode));
8046 }
8047 
8048 void Assembler::blsmskq(Register dst, Address src) {
8049   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8050   InstructionMark im(this);
8051   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8052   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8053   emit_int8((unsigned char)0xF3);
8054   emit_operand(rdx, src);
8055 }
8056 
8057 void Assembler::blsrq(Register dst, Register src) {
8058   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8059   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8060   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8061   emit_int8((unsigned char)0xF3);
8062   emit_int8((unsigned char)(0xC0 | encode));
8063 }
8064 
8065 void Assembler::blsrq(Register dst, Address src) {
8066   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8067   InstructionMark im(this);
8068   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8069   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8070   emit_int8((unsigned char)0xF3);
8071   emit_operand(rcx, src);
8072 }
8073 
8074 void Assembler::cdqq() {
8075   prefix(REX_W);
8076   emit_int8((unsigned char)0x99);
8077 }
8078 
8079 void Assembler::clflush(Address adr) {
8080   prefix(adr);
8081   emit_int8(0x0F);
8082   emit_int8((unsigned char)0xAE);
8083   emit_operand(rdi, adr);
8084 }
8085 
8086 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8087   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8088   emit_int8(0x0F);
8089   emit_int8(0x40 | cc);
8090   emit_int8((unsigned char)(0xC0 | encode));
8091 }
8092 
8093 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8094   InstructionMark im(this);
8095   prefixq(src, dst);
8096   emit_int8(0x0F);
8097   emit_int8(0x40 | cc);
8098   emit_operand(dst, src);
8099 }
8100 
8101 void Assembler::cmpq(Address dst, int32_t imm32) {
8102   InstructionMark im(this);
8103   prefixq(dst);
8104   emit_int8((unsigned char)0x81);
8105   emit_operand(rdi, dst, 4);
8106   emit_int32(imm32);
8107 }
8108 
8109 void Assembler::cmpq(Register dst, int32_t imm32) {
8110   (void) prefixq_and_encode(dst->encoding());
8111   emit_arith(0x81, 0xF8, dst, imm32);
8112 }
8113 
8114 void Assembler::cmpq(Address dst, Register src) {
8115   InstructionMark im(this);
8116   prefixq(dst, src);
8117   emit_int8(0x3B);
8118   emit_operand(src, dst);
8119 }
8120 
8121 void Assembler::cmpq(Register dst, Register src) {
8122   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8123   emit_arith(0x3B, 0xC0, dst, src);
8124 }
8125 
8126 void Assembler::cmpq(Register dst, Address  src) {
8127   InstructionMark im(this);
8128   prefixq(src, dst);
8129   emit_int8(0x3B);
8130   emit_operand(dst, src);
8131 }
8132 
8133 void Assembler::cmpxchgq(Register reg, Address adr) {
8134   InstructionMark im(this);
8135   prefixq(adr, reg);
8136   emit_int8(0x0F);
8137   emit_int8((unsigned char)0xB1);
8138   emit_operand(reg, adr);
8139 }
8140 
8141 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8142   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8143   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8144   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8145   emit_int8(0x2A);
8146   emit_int8((unsigned char)(0xC0 | encode));
8147 }
8148 
8149 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8150   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8151   InstructionMark im(this);
8152   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8153   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8154   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8155   emit_int8(0x2A);
8156   emit_operand(dst, src);
8157 }
8158 
8159 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8160   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8161   InstructionMark im(this);
8162   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8163   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8164   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8165   emit_int8(0x2A);
8166   emit_operand(dst, src);
8167 }
8168 
8169 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8170   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8171   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8172   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8173   emit_int8(0x2C);
8174   emit_int8((unsigned char)(0xC0 | encode));
8175 }
8176 
8177 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8178   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8179   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8180   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8181   emit_int8(0x2C);
8182   emit_int8((unsigned char)(0xC0 | encode));
8183 }
8184 
8185 void Assembler::decl(Register dst) {
8186   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8187   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8188   int encode = prefix_and_encode(dst->encoding());
8189   emit_int8((unsigned char)0xFF);
8190   emit_int8((unsigned char)(0xC8 | encode));
8191 }
8192 
8193 void Assembler::decq(Register dst) {
8194   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8195   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8196   int encode = prefixq_and_encode(dst->encoding());
8197   emit_int8((unsigned char)0xFF);
8198   emit_int8(0xC8 | encode);
8199 }
8200 
8201 void Assembler::decq(Address dst) {
8202   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8203   InstructionMark im(this);
8204   prefixq(dst);
8205   emit_int8((unsigned char)0xFF);
8206   emit_operand(rcx, dst);
8207 }
8208 
8209 void Assembler::fxrstor(Address src) {
8210   prefixq(src);
8211   emit_int8(0x0F);
8212   emit_int8((unsigned char)0xAE);
8213   emit_operand(as_Register(1), src);
8214 }
8215 
8216 void Assembler::xrstor(Address src) {
8217   prefixq(src);
8218   emit_int8(0x0F);
8219   emit_int8((unsigned char)0xAE);
8220   emit_operand(as_Register(5), src);
8221 }
8222 
8223 void Assembler::fxsave(Address dst) {
8224   prefixq(dst);
8225   emit_int8(0x0F);
8226   emit_int8((unsigned char)0xAE);
8227   emit_operand(as_Register(0), dst);
8228 }
8229 
8230 void Assembler::xsave(Address dst) {
8231   prefixq(dst);
8232   emit_int8(0x0F);
8233   emit_int8((unsigned char)0xAE);
8234   emit_operand(as_Register(4), dst);
8235 }
8236 
8237 void Assembler::idivq(Register src) {
8238   int encode = prefixq_and_encode(src->encoding());
8239   emit_int8((unsigned char)0xF7);
8240   emit_int8((unsigned char)(0xF8 | encode));
8241 }
8242 
8243 void Assembler::imulq(Register dst, Register src) {
8244   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8245   emit_int8(0x0F);
8246   emit_int8((unsigned char)0xAF);
8247   emit_int8((unsigned char)(0xC0 | encode));
8248 }
8249 
8250 void Assembler::imulq(Register dst, Register src, int value) {
8251   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8252   if (is8bit(value)) {
8253     emit_int8(0x6B);
8254     emit_int8((unsigned char)(0xC0 | encode));
8255     emit_int8(value & 0xFF);
8256   } else {
8257     emit_int8(0x69);
8258     emit_int8((unsigned char)(0xC0 | encode));
8259     emit_int32(value);
8260   }
8261 }
8262 
8263 void Assembler::imulq(Register dst, Address src) {
8264   InstructionMark im(this);
8265   prefixq(src, dst);
8266   emit_int8(0x0F);
8267   emit_int8((unsigned char) 0xAF);
8268   emit_operand(dst, src);
8269 }
8270 
8271 void Assembler::incl(Register dst) {
8272   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8273   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8274   int encode = prefix_and_encode(dst->encoding());
8275   emit_int8((unsigned char)0xFF);
8276   emit_int8((unsigned char)(0xC0 | encode));
8277 }
8278 
8279 void Assembler::incq(Register dst) {
8280   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8281   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8282   int encode = prefixq_and_encode(dst->encoding());
8283   emit_int8((unsigned char)0xFF);
8284   emit_int8((unsigned char)(0xC0 | encode));
8285 }
8286 
8287 void Assembler::incq(Address dst) {
8288   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8289   InstructionMark im(this);
8290   prefixq(dst);
8291   emit_int8((unsigned char)0xFF);
8292   emit_operand(rax, dst);
8293 }
8294 
8295 void Assembler::lea(Register dst, Address src) {
8296   leaq(dst, src);
8297 }
8298 
8299 void Assembler::leaq(Register dst, Address src) {
8300   InstructionMark im(this);
8301   prefixq(src, dst);
8302   emit_int8((unsigned char)0x8D);
8303   emit_operand(dst, src);
8304 }
8305 
8306 void Assembler::mov64(Register dst, int64_t imm64) {
8307   InstructionMark im(this);
8308   int encode = prefixq_and_encode(dst->encoding());
8309   emit_int8((unsigned char)(0xB8 | encode));
8310   emit_int64(imm64);
8311 }
8312 
8313 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8314   InstructionMark im(this);
8315   int encode = prefixq_and_encode(dst->encoding());
8316   emit_int8(0xB8 | encode);
8317   emit_data64(imm64, rspec);
8318 }
8319 
8320 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8321   InstructionMark im(this);
8322   int encode = prefix_and_encode(dst->encoding());
8323   emit_int8((unsigned char)(0xB8 | encode));
8324   emit_data((int)imm32, rspec, narrow_oop_operand);
8325 }
8326 
8327 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8328   InstructionMark im(this);
8329   prefix(dst);
8330   emit_int8((unsigned char)0xC7);
8331   emit_operand(rax, dst, 4);
8332   emit_data((int)imm32, rspec, narrow_oop_operand);
8333 }
8334 
8335 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8336   InstructionMark im(this);
8337   int encode = prefix_and_encode(src1->encoding());
8338   emit_int8((unsigned char)0x81);
8339   emit_int8((unsigned char)(0xF8 | encode));
8340   emit_data((int)imm32, rspec, narrow_oop_operand);
8341 }
8342 
8343 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8344   InstructionMark im(this);
8345   prefix(src1);
8346   emit_int8((unsigned char)0x81);
8347   emit_operand(rax, src1, 4);
8348   emit_data((int)imm32, rspec, narrow_oop_operand);
8349 }
8350 
8351 void Assembler::lzcntq(Register dst, Register src) {
8352   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8353   emit_int8((unsigned char)0xF3);
8354   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8355   emit_int8(0x0F);
8356   emit_int8((unsigned char)0xBD);
8357   emit_int8((unsigned char)(0xC0 | encode));
8358 }
8359 
8360 void Assembler::movdq(XMMRegister dst, Register src) {
8361   // table D-1 says MMX/SSE2
8362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8363   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8364   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8365   emit_int8(0x6E);
8366   emit_int8((unsigned char)(0xC0 | encode));
8367 }
8368 
8369 void Assembler::movdq(Register dst, XMMRegister src) {
8370   // table D-1 says MMX/SSE2
8371   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8372   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8373   // swap src/dst to get correct prefix
8374   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8375   emit_int8(0x7E);
8376   emit_int8((unsigned char)(0xC0 | encode));
8377 }
8378 
8379 void Assembler::movq(Register dst, Register src) {
8380   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8381   emit_int8((unsigned char)0x8B);
8382   emit_int8((unsigned char)(0xC0 | encode));
8383 }
8384 
8385 void Assembler::movq(Register dst, Address src) {
8386   InstructionMark im(this);
8387   prefixq(src, dst);
8388   emit_int8((unsigned char)0x8B);
8389   emit_operand(dst, src);
8390 }
8391 
8392 void Assembler::movq(Address dst, Register src) {
8393   InstructionMark im(this);
8394   prefixq(dst, src);
8395   emit_int8((unsigned char)0x89);
8396   emit_operand(src, dst);
8397 }
8398 
8399 void Assembler::movsbq(Register dst, Address src) {
8400   InstructionMark im(this);
8401   prefixq(src, dst);
8402   emit_int8(0x0F);
8403   emit_int8((unsigned char)0xBE);
8404   emit_operand(dst, src);
8405 }
8406 
8407 void Assembler::movsbq(Register dst, Register src) {
8408   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8409   emit_int8(0x0F);
8410   emit_int8((unsigned char)0xBE);
8411   emit_int8((unsigned char)(0xC0 | encode));
8412 }
8413 
8414 void Assembler::movslq(Register dst, int32_t imm32) {
8415   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8416   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8417   // as a result we shouldn't use until tested at runtime...
8418   ShouldNotReachHere();
8419   InstructionMark im(this);
8420   int encode = prefixq_and_encode(dst->encoding());
8421   emit_int8((unsigned char)(0xC7 | encode));
8422   emit_int32(imm32);
8423 }
8424 
8425 void Assembler::movslq(Address dst, int32_t imm32) {
8426   assert(is_simm32(imm32), "lost bits");
8427   InstructionMark im(this);
8428   prefixq(dst);
8429   emit_int8((unsigned char)0xC7);
8430   emit_operand(rax, dst, 4);
8431   emit_int32(imm32);
8432 }
8433 
8434 void Assembler::movslq(Register dst, Address src) {
8435   InstructionMark im(this);
8436   prefixq(src, dst);
8437   emit_int8(0x63);
8438   emit_operand(dst, src);
8439 }
8440 
8441 void Assembler::movslq(Register dst, Register src) {
8442   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8443   emit_int8(0x63);
8444   emit_int8((unsigned char)(0xC0 | encode));
8445 }
8446 
8447 void Assembler::movswq(Register dst, Address src) {
8448   InstructionMark im(this);
8449   prefixq(src, dst);
8450   emit_int8(0x0F);
8451   emit_int8((unsigned char)0xBF);
8452   emit_operand(dst, src);
8453 }
8454 
8455 void Assembler::movswq(Register dst, Register src) {
8456   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8457   emit_int8((unsigned char)0x0F);
8458   emit_int8((unsigned char)0xBF);
8459   emit_int8((unsigned char)(0xC0 | encode));
8460 }
8461 
8462 void Assembler::movzbq(Register dst, Address src) {
8463   InstructionMark im(this);
8464   prefixq(src, dst);
8465   emit_int8((unsigned char)0x0F);
8466   emit_int8((unsigned char)0xB6);
8467   emit_operand(dst, src);
8468 }
8469 
8470 void Assembler::movzbq(Register dst, Register src) {
8471   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8472   emit_int8(0x0F);
8473   emit_int8((unsigned char)0xB6);
8474   emit_int8(0xC0 | encode);
8475 }
8476 
8477 void Assembler::movzwq(Register dst, Address src) {
8478   InstructionMark im(this);
8479   prefixq(src, dst);
8480   emit_int8((unsigned char)0x0F);
8481   emit_int8((unsigned char)0xB7);
8482   emit_operand(dst, src);
8483 }
8484 
8485 void Assembler::movzwq(Register dst, Register src) {
8486   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8487   emit_int8((unsigned char)0x0F);
8488   emit_int8((unsigned char)0xB7);
8489   emit_int8((unsigned char)(0xC0 | encode));
8490 }
8491 
8492 void Assembler::mulq(Address src) {
8493   InstructionMark im(this);
8494   prefixq(src);
8495   emit_int8((unsigned char)0xF7);
8496   emit_operand(rsp, src);
8497 }
8498 
8499 void Assembler::mulq(Register src) {
8500   int encode = prefixq_and_encode(src->encoding());
8501   emit_int8((unsigned char)0xF7);
8502   emit_int8((unsigned char)(0xE0 | encode));
8503 }
8504 
8505 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8506   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8507   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8508   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8509   emit_int8((unsigned char)0xF6);
8510   emit_int8((unsigned char)(0xC0 | encode));
8511 }
8512 
8513 void Assembler::negq(Register dst) {
8514   int encode = prefixq_and_encode(dst->encoding());
8515   emit_int8((unsigned char)0xF7);
8516   emit_int8((unsigned char)(0xD8 | encode));
8517 }
8518 
8519 void Assembler::notq(Register dst) {
8520   int encode = prefixq_and_encode(dst->encoding());
8521   emit_int8((unsigned char)0xF7);
8522   emit_int8((unsigned char)(0xD0 | encode));
8523 }
8524 
8525 void Assembler::orq(Address dst, int32_t imm32) {
8526   InstructionMark im(this);
8527   prefixq(dst);
8528   emit_int8((unsigned char)0x81);
8529   emit_operand(rcx, dst, 4);
8530   emit_int32(imm32);
8531 }
8532 
8533 void Assembler::orq(Register dst, int32_t imm32) {
8534   (void) prefixq_and_encode(dst->encoding());
8535   emit_arith(0x81, 0xC8, dst, imm32);
8536 }
8537 
8538 void Assembler::orq(Register dst, Address src) {
8539   InstructionMark im(this);
8540   prefixq(src, dst);
8541   emit_int8(0x0B);
8542   emit_operand(dst, src);
8543 }
8544 
8545 void Assembler::orq(Register dst, Register src) {
8546   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8547   emit_arith(0x0B, 0xC0, dst, src);
8548 }
8549 
8550 void Assembler::popa() { // 64bit
8551   movq(r15, Address(rsp, 0));
8552   movq(r14, Address(rsp, wordSize));
8553   movq(r13, Address(rsp, 2 * wordSize));
8554   movq(r12, Address(rsp, 3 * wordSize));
8555   movq(r11, Address(rsp, 4 * wordSize));
8556   movq(r10, Address(rsp, 5 * wordSize));
8557   movq(r9,  Address(rsp, 6 * wordSize));
8558   movq(r8,  Address(rsp, 7 * wordSize));
8559   movq(rdi, Address(rsp, 8 * wordSize));
8560   movq(rsi, Address(rsp, 9 * wordSize));
8561   movq(rbp, Address(rsp, 10 * wordSize));
8562   // skip rsp
8563   movq(rbx, Address(rsp, 12 * wordSize));
8564   movq(rdx, Address(rsp, 13 * wordSize));
8565   movq(rcx, Address(rsp, 14 * wordSize));
8566   movq(rax, Address(rsp, 15 * wordSize));
8567 
8568   addq(rsp, 16 * wordSize);
8569 }
8570 
8571 void Assembler::popcntq(Register dst, Address src) {
8572   assert(VM_Version::supports_popcnt(), "must support");
8573   InstructionMark im(this);
8574   emit_int8((unsigned char)0xF3);
8575   prefixq(src, dst);
8576   emit_int8((unsigned char)0x0F);
8577   emit_int8((unsigned char)0xB8);
8578   emit_operand(dst, src);
8579 }
8580 
8581 void Assembler::popcntq(Register dst, Register src) {
8582   assert(VM_Version::supports_popcnt(), "must support");
8583   emit_int8((unsigned char)0xF3);
8584   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8585   emit_int8((unsigned char)0x0F);
8586   emit_int8((unsigned char)0xB8);
8587   emit_int8((unsigned char)(0xC0 | encode));
8588 }
8589 
8590 void Assembler::popq(Address dst) {
8591   InstructionMark im(this);
8592   prefixq(dst);
8593   emit_int8((unsigned char)0x8F);
8594   emit_operand(rax, dst);
8595 }
8596 
8597 void Assembler::pusha() { // 64bit
8598   // we have to store original rsp.  ABI says that 128 bytes
8599   // below rsp are local scratch.
8600   movq(Address(rsp, -5 * wordSize), rsp);
8601 
8602   subq(rsp, 16 * wordSize);
8603 
8604   movq(Address(rsp, 15 * wordSize), rax);
8605   movq(Address(rsp, 14 * wordSize), rcx);
8606   movq(Address(rsp, 13 * wordSize), rdx);
8607   movq(Address(rsp, 12 * wordSize), rbx);
8608   // skip rsp
8609   movq(Address(rsp, 10 * wordSize), rbp);
8610   movq(Address(rsp, 9 * wordSize), rsi);
8611   movq(Address(rsp, 8 * wordSize), rdi);
8612   movq(Address(rsp, 7 * wordSize), r8);
8613   movq(Address(rsp, 6 * wordSize), r9);
8614   movq(Address(rsp, 5 * wordSize), r10);
8615   movq(Address(rsp, 4 * wordSize), r11);
8616   movq(Address(rsp, 3 * wordSize), r12);
8617   movq(Address(rsp, 2 * wordSize), r13);
8618   movq(Address(rsp, wordSize), r14);
8619   movq(Address(rsp, 0), r15);
8620 }
8621 
8622 void Assembler::pushq(Address src) {
8623   InstructionMark im(this);
8624   prefixq(src);
8625   emit_int8((unsigned char)0xFF);
8626   emit_operand(rsi, src);
8627 }
8628 
8629 void Assembler::rclq(Register dst, int imm8) {
8630   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8631   int encode = prefixq_and_encode(dst->encoding());
8632   if (imm8 == 1) {
8633     emit_int8((unsigned char)0xD1);
8634     emit_int8((unsigned char)(0xD0 | encode));
8635   } else {
8636     emit_int8((unsigned char)0xC1);
8637     emit_int8((unsigned char)(0xD0 | encode));
8638     emit_int8(imm8);
8639   }
8640 }
8641 
8642 void Assembler::rcrq(Register dst, int imm8) {
8643   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8644   int encode = prefixq_and_encode(dst->encoding());
8645   if (imm8 == 1) {
8646     emit_int8((unsigned char)0xD1);
8647     emit_int8((unsigned char)(0xD8 | encode));
8648   } else {
8649     emit_int8((unsigned char)0xC1);
8650     emit_int8((unsigned char)(0xD8 | encode));
8651     emit_int8(imm8);
8652   }
8653 }
8654 
8655 void Assembler::rorq(Register dst, int imm8) {
8656   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8657   int encode = prefixq_and_encode(dst->encoding());
8658   if (imm8 == 1) {
8659     emit_int8((unsigned char)0xD1);
8660     emit_int8((unsigned char)(0xC8 | encode));
8661   } else {
8662     emit_int8((unsigned char)0xC1);
8663     emit_int8((unsigned char)(0xc8 | encode));
8664     emit_int8(imm8);
8665   }
8666 }
8667 
8668 void Assembler::rorxq(Register dst, Register src, int imm8) {
8669   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8670   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8671   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8672   emit_int8((unsigned char)0xF0);
8673   emit_int8((unsigned char)(0xC0 | encode));
8674   emit_int8(imm8);
8675 }
8676 
8677 void Assembler::rorxd(Register dst, Register src, int imm8) {
8678   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8679   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8680   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8681   emit_int8((unsigned char)0xF0);
8682   emit_int8((unsigned char)(0xC0 | encode));
8683   emit_int8(imm8);
8684 }
8685 
8686 void Assembler::sarq(Register dst, int imm8) {
8687   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8688   int encode = prefixq_and_encode(dst->encoding());
8689   if (imm8 == 1) {
8690     emit_int8((unsigned char)0xD1);
8691     emit_int8((unsigned char)(0xF8 | encode));
8692   } else {
8693     emit_int8((unsigned char)0xC1);
8694     emit_int8((unsigned char)(0xF8 | encode));
8695     emit_int8(imm8);
8696   }
8697 }
8698 
8699 void Assembler::sarq(Register dst) {
8700   int encode = prefixq_and_encode(dst->encoding());
8701   emit_int8((unsigned char)0xD3);
8702   emit_int8((unsigned char)(0xF8 | encode));
8703 }
8704 
8705 void Assembler::sbbq(Address dst, int32_t imm32) {
8706   InstructionMark im(this);
8707   prefixq(dst);
8708   emit_arith_operand(0x81, rbx, dst, imm32);
8709 }
8710 
8711 void Assembler::sbbq(Register dst, int32_t imm32) {
8712   (void) prefixq_and_encode(dst->encoding());
8713   emit_arith(0x81, 0xD8, dst, imm32);
8714 }
8715 
8716 void Assembler::sbbq(Register dst, Address src) {
8717   InstructionMark im(this);
8718   prefixq(src, dst);
8719   emit_int8(0x1B);
8720   emit_operand(dst, src);
8721 }
8722 
8723 void Assembler::sbbq(Register dst, Register src) {
8724   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8725   emit_arith(0x1B, 0xC0, dst, src);
8726 }
8727 
8728 void Assembler::shlq(Register dst, int imm8) {
8729   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8730   int encode = prefixq_and_encode(dst->encoding());
8731   if (imm8 == 1) {
8732     emit_int8((unsigned char)0xD1);
8733     emit_int8((unsigned char)(0xE0 | encode));
8734   } else {
8735     emit_int8((unsigned char)0xC1);
8736     emit_int8((unsigned char)(0xE0 | encode));
8737     emit_int8(imm8);
8738   }
8739 }
8740 
8741 void Assembler::shlq(Register dst) {
8742   int encode = prefixq_and_encode(dst->encoding());
8743   emit_int8((unsigned char)0xD3);
8744   emit_int8((unsigned char)(0xE0 | encode));
8745 }
8746 
8747 void Assembler::shrq(Register dst, int imm8) {
8748   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8749   int encode = prefixq_and_encode(dst->encoding());
8750   emit_int8((unsigned char)0xC1);
8751   emit_int8((unsigned char)(0xE8 | encode));
8752   emit_int8(imm8);
8753 }
8754 
8755 void Assembler::shrq(Register dst) {
8756   int encode = prefixq_and_encode(dst->encoding());
8757   emit_int8((unsigned char)0xD3);
8758   emit_int8(0xE8 | encode);
8759 }
8760 
8761 void Assembler::subq(Address dst, int32_t imm32) {
8762   InstructionMark im(this);
8763   prefixq(dst);
8764   emit_arith_operand(0x81, rbp, dst, imm32);
8765 }
8766 
8767 void Assembler::subq(Address dst, Register src) {
8768   InstructionMark im(this);
8769   prefixq(dst, src);
8770   emit_int8(0x29);
8771   emit_operand(src, dst);
8772 }
8773 
8774 void Assembler::subq(Register dst, int32_t imm32) {
8775   (void) prefixq_and_encode(dst->encoding());
8776   emit_arith(0x81, 0xE8, dst, imm32);
8777 }
8778 
8779 // Force generation of a 4 byte immediate value even if it fits into 8bit
8780 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8781   (void) prefixq_and_encode(dst->encoding());
8782   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8783 }
8784 
8785 void Assembler::subq(Register dst, Address src) {
8786   InstructionMark im(this);
8787   prefixq(src, dst);
8788   emit_int8(0x2B);
8789   emit_operand(dst, src);
8790 }
8791 
8792 void Assembler::subq(Register dst, Register src) {
8793   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8794   emit_arith(0x2B, 0xC0, dst, src);
8795 }
8796 
8797 void Assembler::testq(Register dst, int32_t imm32) {
8798   // not using emit_arith because test
8799   // doesn't support sign-extension of
8800   // 8bit operands
8801   int encode = dst->encoding();
8802   if (encode == 0) {
8803     prefix(REX_W);
8804     emit_int8((unsigned char)0xA9);
8805   } else {
8806     encode = prefixq_and_encode(encode);
8807     emit_int8((unsigned char)0xF7);
8808     emit_int8((unsigned char)(0xC0 | encode));
8809   }
8810   emit_int32(imm32);
8811 }
8812 
8813 void Assembler::testq(Register dst, Register src) {
8814   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8815   emit_arith(0x85, 0xC0, dst, src);
8816 }
8817 
8818 void Assembler::xaddq(Address dst, Register src) {
8819   InstructionMark im(this);
8820   prefixq(dst, src);
8821   emit_int8(0x0F);
8822   emit_int8((unsigned char)0xC1);
8823   emit_operand(src, dst);
8824 }
8825 
8826 void Assembler::xchgq(Register dst, Address src) {
8827   InstructionMark im(this);
8828   prefixq(src, dst);
8829   emit_int8((unsigned char)0x87);
8830   emit_operand(dst, src);
8831 }
8832 
8833 void Assembler::xchgq(Register dst, Register src) {
8834   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8835   emit_int8((unsigned char)0x87);
8836   emit_int8((unsigned char)(0xc0 | encode));
8837 }
8838 
8839 void Assembler::xorq(Register dst, Register src) {
8840   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8841   emit_arith(0x33, 0xC0, dst, src);
8842 }
8843 
8844 void Assembler::xorq(Register dst, Address src) {
8845   InstructionMark im(this);
8846   prefixq(src, dst);
8847   emit_int8(0x33);
8848   emit_operand(dst, src);
8849 }
8850 
8851 #endif // !LP64