1 /*
   2  * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have
  23  * questions.
  24  */
  25 package jdk.incubator.vector;
  26 
  27 import jdk.internal.vm.annotation.ForceInline;
  28 
  29 import java.nio.ByteBuffer;
  30 import java.nio.ByteOrder;
  31 import java.nio.DoubleBuffer;
  32 import java.util.Objects;
  33 import java.util.concurrent.ThreadLocalRandom;
  34 
  35 
  36 /**
  37  * A specialized {@link Vector} representing an ordered immutable sequence of
  38  * {@code double} values.
  39  *
  40  * @param <S> the type of shape of this vector
  41  */
  42 @SuppressWarnings("cast")
  43 public abstract class DoubleVector<S extends Vector.Shape> extends Vector<Double,S> {
  44 
  45     DoubleVector() {}
  46 
  47     // Unary operator
  48 
  49     interface FUnOp {
  50         double apply(int i, double a);
  51     }
  52 
  53     abstract DoubleVector<S> uOp(FUnOp f);
  54 
  55     abstract DoubleVector<S> uOp(Mask<Double, S> m, FUnOp f);
  56 
  57     // Binary operator
  58 
  59     interface FBinOp {
  60         double apply(int i, double a, double b);
  61     }
  62 
  63     abstract DoubleVector<S> bOp(Vector<Double,S> o, FBinOp f);
  64 
  65     abstract DoubleVector<S> bOp(Vector<Double,S> o, Mask<Double, S> m, FBinOp f);
  66 
  67     // Trinary operator
  68 
  69     interface FTriOp {
  70         double apply(int i, double a, double b, double c);
  71     }
  72 
  73     abstract DoubleVector<S> tOp(Vector<Double,S> o1, Vector<Double,S> o2, FTriOp f);
  74 
  75     abstract DoubleVector<S> tOp(Vector<Double,S> o1, Vector<Double,S> o2, Mask<Double, S> m, FTriOp f);
  76 
  77     // Reduction operator
  78 
  79     abstract double rOp(double v, FBinOp f);
  80 
  81     // Binary test
  82 
  83     interface FBinTest {
  84         boolean apply(int i, double a, double b);
  85     }
  86 
  87     abstract Mask<Double, S> bTest(Vector<Double,S> o, FBinTest f);
  88 
  89     // Foreach
  90 
  91     interface FUnCon {
  92         void apply(int i, double a);
  93     }
  94 
  95     abstract void forEach(FUnCon f);
  96 
  97     abstract void forEach(Mask<Double, S> m, FUnCon f);
  98 
  99     //
 100 
 101     @Override
 102     public DoubleVector<S> add(Vector<Double,S> o) {
 103         return bOp(o, (i, a, b) -> (double) (a + b));
 104     }
 105 
 106     /**
 107      * Adds this vector to the result of broadcasting an input scalar.
 108      * <p>
 109      * This is a vector binary operation where the primitive addition operation
 110      * ({@code +}) is applied to lane elements.
 111      *
 112      * @param b the input scalar
 113      * @return the result of adding this vector to the broadcast of an input
 114      * scalar
 115      */
 116     public abstract DoubleVector<S> add(double b);
 117 
 118     @Override
 119     public DoubleVector<S> add(Vector<Double,S> o, Mask<Double, S> m) {
 120         return bOp(o, m, (i, a, b) -> (double) (a + b));
 121     }
 122 
 123     /**
 124      * Adds this vector to the result of broadcasting an input scalar,
 125      * selecting lane elements controlled by a mask.
 126      * <p>
 127      * This is a vector binary operation where the primitive addition operation
 128      * ({@code +}) is applied to lane elements.
 129      *
 130      * @param b the input vector
 131      * @param m the mask controlling lane selection
 132      * @return the result of adding this vector to the broadcast of an input
 133      * scalar
 134      */
 135     public abstract DoubleVector<S> add(double b, Mask<Double, S> m);
 136 
 137     @Override
 138     public DoubleVector<S> addSaturate(Vector<Double,S> o) {
 139         return bOp(o, (i, a, b) -> (double) ((a >= Integer.MAX_VALUE || Integer.MAX_VALUE - b > a) ? Integer.MAX_VALUE : a + b));
 140     }
 141 
 142     public abstract DoubleVector<S> addSaturate(double o);
 143 
 144     @Override
 145     public DoubleVector<S> addSaturate(Vector<Double,S> o, Mask<Double, S> m) {
 146         return bOp(o, m, (i, a, b) -> (double) ((a >= Integer.MAX_VALUE || Integer.MAX_VALUE - b > a) ? Integer.MAX_VALUE : a + b));
 147     }
 148 
 149     public abstract DoubleVector<S> addSaturate(double o, Mask<Double, S> m);
 150 
 151     @Override
 152     public DoubleVector<S> sub(Vector<Double,S> o) {
 153         return bOp(o, (i, a, b) -> (double) (a - b));
 154     }
 155 
 156     public abstract DoubleVector<S> sub(double o);
 157 
 158     @Override
 159     public DoubleVector<S> sub(Vector<Double,S> o, Mask<Double, S> m) {
 160         return bOp(o, m, (i, a, b) -> (double) (a - b));
 161     }
 162 
 163     public abstract DoubleVector<S> sub(double o, Mask<Double, S> m);
 164 
 165     @Override
 166     public DoubleVector<S> subSaturate(Vector<Double,S> o) {
 167         return bOp(o, (i, a, b) -> (double) ((a >= Double.MIN_VALUE || Double.MIN_VALUE + b > a) ? Double.MAX_VALUE : a - b));
 168     }
 169 
 170     public abstract DoubleVector<S> subSaturate(double o);
 171 
 172     @Override
 173     public DoubleVector<S> subSaturate(Vector<Double,S> o, Mask<Double, S> m) {
 174         return bOp(o, m, (i, a, b) -> (double) ((a >= Double.MIN_VALUE || Double.MIN_VALUE + b > a) ? Double.MAX_VALUE : a - b));
 175     }
 176 
 177     public abstract DoubleVector<S> subSaturate(double o, Mask<Double, S> m);
 178 
 179     @Override
 180     public DoubleVector<S> mul(Vector<Double,S> o) {
 181         return bOp(o, (i, a, b) -> (double) (a * b));
 182     }
 183 
 184     public abstract DoubleVector<S> mul(double o);
 185 
 186     @Override
 187     public DoubleVector<S> mul(Vector<Double,S> o, Mask<Double, S> m) {
 188         return bOp(o, m, (i, a, b) -> (double) (a * b));
 189     }
 190 
 191     public abstract DoubleVector<S> mul(double o, Mask<Double, S> m);
 192 
 193     @Override
 194     public DoubleVector<S> neg() {
 195         return uOp((i, a) -> (double) (-a));
 196     }
 197 
 198     @Override
 199     public DoubleVector<S> neg(Mask<Double, S> m) {
 200         return uOp(m, (i, a) -> (double) (-a));
 201     }
 202 
 203     @Override
 204     public DoubleVector<S> abs() {
 205         return uOp((i, a) -> (double) Math.abs(a));
 206     }
 207 
 208     @Override
 209     public DoubleVector<S> abs(Mask<Double, S> m) {
 210         return uOp(m, (i, a) -> (double) Math.abs(a));
 211     }
 212 
 213     @Override
 214     public DoubleVector<S> min(Vector<Double,S> o) {
 215         return bOp(o, (i, a, b) -> (a <= b) ? a : b);
 216     }
 217 
 218     public abstract DoubleVector<S> min(double o);
 219 
 220     @Override
 221     public DoubleVector<S> max(Vector<Double,S> o) {
 222         return bOp(o, (i, a, b) -> (a >= b) ? a : b);
 223     }
 224 
 225     public abstract DoubleVector<S> max(double o);
 226 
 227     @Override
 228     public Mask<Double, S> equal(Vector<Double,S> o) {
 229         return bTest(o, (i, a, b) -> a == b);
 230     }
 231 
 232     public abstract Mask<Double, S> equal(double o);
 233 
 234     @Override
 235     public Mask<Double, S> notEqual(Vector<Double,S> o) {
 236         return bTest(o, (i, a, b) -> a != b);
 237     }
 238 
 239     public abstract Mask<Double, S> notEqual(double o);
 240 
 241     @Override
 242     public Mask<Double, S> lessThan(Vector<Double,S> o) {
 243         return bTest(o, (i, a, b) -> a < b);
 244     }
 245 
 246     public abstract Mask<Double, S> lessThan(double o);
 247 
 248     @Override
 249     public Mask<Double, S> lessThanEq(Vector<Double,S> o) {
 250         return bTest(o, (i, a, b) -> a <= b);
 251     }
 252 
 253     public abstract Mask<Double, S> lessThanEq(double o);
 254 
 255     @Override
 256     public Mask<Double, S> greaterThan(Vector<Double,S> o) {
 257         return bTest(o, (i, a, b) -> a > b);
 258     }
 259 
 260     public abstract Mask<Double, S> greaterThan(double o);
 261 
 262     @Override
 263     public Mask<Double, S> greaterThanEq(Vector<Double,S> o) {
 264         return bTest(o, (i, a, b) -> a >= b);
 265     }
 266 
 267     public abstract Mask<Double, S> greaterThanEq(double o);
 268 
 269     @Override
 270     public DoubleVector<S> blend(Vector<Double,S> o, Mask<Double, S> m) {
 271         return bOp(o, (i, a, b) -> m.getElement(i) ? b : a);
 272     }
 273 
 274     public abstract DoubleVector<S> blend(double o, Mask<Double, S> m);
 275 
 276     @Override
 277     public abstract DoubleVector<S> shuffle(Vector<Double,S> o, Shuffle<Double, S> m);
 278 
 279     @Override
 280     public abstract DoubleVector<S> swizzle(Shuffle<Double, S> m);
 281 
 282     @Override
 283     @ForceInline
 284     public <T extends Shape> DoubleVector<T> resize(Species<Double, T> species) {
 285         return (DoubleVector<T>) species.reshape(this);
 286     }
 287 
 288     @Override
 289     public abstract DoubleVector<S> rotateEL(int i);
 290 
 291     @Override
 292     public abstract DoubleVector<S> rotateER(int i);
 293 
 294     @Override
 295     public abstract DoubleVector<S> shiftEL(int i);
 296 
 297     @Override
 298     public abstract DoubleVector<S> shiftER(int i);
 299 
 300     public DoubleVector<S> div(Vector<Double,S> o) {
 301         return bOp(o, (i, a, b) -> (double) (a / b));
 302     }
 303 
 304     public abstract DoubleVector<S> div(double o);
 305 
 306     public DoubleVector<S> div(Vector<Double,S> o, Mask<Double, S> m) {
 307         return bOp(o, m, (i, a, b) -> (double) (a / b));
 308     }
 309 
 310     public abstract DoubleVector<S> div(double o, Mask<Double, S> m);
 311 
 312     public DoubleVector<S> sqrt() {
 313         return uOp((i, a) -> (double) Math.sqrt((double) a));
 314     }
 315 
 316     public DoubleVector<S> sqrt(Mask<Double,S> m) {
 317         return uOp(m, (i, a) -> (double) Math.sqrt((double) a));
 318     }
 319 
 320     public DoubleVector<S> tan() {
 321         return uOp((i, a) -> (double) Math.tan((double) a));
 322     }
 323 
 324     public DoubleVector<S> tan(Mask<Double,S> m) {
 325         return uOp(m, (i, a) -> (double) Math.tan((double) a));
 326     }
 327 
 328     public DoubleVector<S> tanh() {
 329         return uOp((i, a) -> (double) Math.tanh((double) a));
 330     }
 331 
 332     public DoubleVector<S> tanh(Mask<Double,S> m) {
 333         return uOp(m, (i, a) -> (double) Math.tanh((double) a));
 334     }
 335 
 336     public DoubleVector<S> sin() {
 337         return uOp((i, a) -> (double) Math.sin((double) a));
 338     }
 339 
 340     public DoubleVector<S> sin(Mask<Double,S> m) {
 341         return uOp(m, (i, a) -> (double) Math.sin((double) a));
 342     }
 343 
 344     public DoubleVector<S> sinh() {
 345         return uOp((i, a) -> (double) Math.sinh((double) a));
 346     }
 347 
 348     public DoubleVector<S> sinh(Mask<Double,S> m) {
 349         return uOp(m, (i, a) -> (double) Math.sinh((double) a));
 350     }
 351 
 352     public DoubleVector<S> cos() {
 353         return uOp((i, a) -> (double) Math.cos((double) a));
 354     }
 355 
 356     public DoubleVector<S> cos(Mask<Double,S> m) {
 357         return uOp(m, (i, a) -> (double) Math.cos((double) a));
 358     }
 359 
 360     public DoubleVector<S> cosh() {
 361         return uOp((i, a) -> (double) Math.cosh((double) a));
 362     }
 363 
 364     public DoubleVector<S> cosh(Mask<Double,S> m) {
 365         return uOp(m, (i, a) -> (double) Math.cosh((double) a));
 366     }
 367 
 368     public DoubleVector<S> asin() {
 369         return uOp((i, a) -> (double) Math.asin((double) a));
 370     }
 371 
 372     public DoubleVector<S> asin(Mask<Double,S> m) {
 373         return uOp(m, (i, a) -> (double) Math.asin((double) a));
 374     }
 375 
 376     public DoubleVector<S> acos() {
 377         return uOp((i, a) -> (double) Math.acos((double) a));
 378     }
 379 
 380     public DoubleVector<S> acos(Mask<Double,S> m) {
 381         return uOp(m, (i, a) -> (double) Math.acos((double) a));
 382     }
 383 
 384     public DoubleVector<S> atan() {
 385         return uOp((i, a) -> (double) Math.atan((double) a));
 386     }
 387 
 388     public DoubleVector<S> atan(Mask<Double,S> m) {
 389         return uOp(m, (i, a) -> (double) Math.atan((double) a));
 390     }
 391 
 392     public DoubleVector<S> atan2(Vector<Double,S> o) {
 393         return bOp(o, (i, a, b) -> (double) Math.atan2((double) a, (double) b));
 394     }
 395 
 396     public abstract DoubleVector<S> atan2(double o);
 397 
 398     public DoubleVector<S> atan2(Vector<Double,S> o, Mask<Double,S> m) {
 399         return bOp(o, m, (i, a, b) -> (double) Math.atan2((double) a, (double) b));
 400     }
 401 
 402     public abstract DoubleVector<S> atan2(double o, Mask<Double,S> m);
 403 
 404     public DoubleVector<S> cbrt() {
 405         return uOp((i, a) -> (double) Math.cbrt((double) a));
 406     }
 407 
 408     public DoubleVector<S> cbrt(Mask<Double,S> m) {
 409         return uOp(m, (i, a) -> (double) Math.cbrt((double) a));
 410     }
 411 
 412     public DoubleVector<S> log() {
 413         return uOp((i, a) -> (double) Math.log((double) a));
 414     }
 415 
 416     public DoubleVector<S> log(Mask<Double,S> m) {
 417         return uOp(m, (i, a) -> (double) Math.log((double) a));
 418     }
 419 
 420     public DoubleVector<S> log10() {
 421         return uOp((i, a) -> (double) Math.log10((double) a));
 422     }
 423 
 424     public DoubleVector<S> log10(Mask<Double,S> m) {
 425         return uOp(m, (i, a) -> (double) Math.log10((double) a));
 426     }
 427 
 428     public DoubleVector<S> log1p() {
 429         return uOp((i, a) -> (double) Math.log1p((double) a));
 430     }
 431 
 432     public DoubleVector<S> log1p(Mask<Double,S> m) {
 433         return uOp(m, (i, a) -> (double) Math.log1p((double) a));
 434     }
 435 
 436     public DoubleVector<S> pow(Vector<Double,S> o) {
 437         return bOp(o, (i, a, b) -> (double) Math.pow((double) a, (double) b));
 438     }
 439 
 440     public abstract DoubleVector<S> pow(double o);
 441 
 442     public DoubleVector<S> pow(Vector<Double,S> o, Mask<Double,S> m) {
 443         return bOp(o, m, (i, a, b) -> (double) Math.pow((double) a, (double) b));
 444     }
 445 
 446     public abstract DoubleVector<S> pow(double o, Mask<Double,S> m);
 447 
 448     public DoubleVector<S> exp() {
 449         return uOp((i, a) -> (double) Math.exp((double) a));
 450     }
 451 
 452     public DoubleVector<S> exp(Mask<Double,S> m) {
 453         return uOp(m, (i, a) -> (double) Math.exp((double) a));
 454     }
 455 
 456     public DoubleVector<S> expm1() {
 457         return uOp((i, a) -> (double) Math.expm1((double) a));
 458     }
 459 
 460     public DoubleVector<S> expm1(Mask<Double,S> m) {
 461         return uOp(m, (i, a) -> (double) Math.expm1((double) a));
 462     }
 463 
 464     public DoubleVector<S> fma(Vector<Double,S> o1, Vector<Double,S> o2) {
 465         return tOp(o1, o2, (i, a, b, c) -> Math.fma(a, b, c));
 466     }
 467 
 468     public abstract DoubleVector<S> fma(double o1, double o2);
 469 
 470     public DoubleVector<S> fma(Vector<Double,S> o1, Vector<Double,S> o2, Mask<Double,S> m) {
 471         return tOp(o1, o2, m, (i, a, b, c) -> Math.fma(a, b, c));
 472     }
 473 
 474     public abstract DoubleVector<S> fma(double o1, double o2, Mask<Double,S> m);
 475 
 476     public DoubleVector<S> hypot(Vector<Double,S> o) {
 477         return bOp(o, (i, a, b) -> (double) Math.hypot((double) a, (double) b));
 478     }
 479 
 480     public abstract DoubleVector<S> hypot(double o);
 481 
 482     public DoubleVector<S> hypot(Vector<Double,S> o, Mask<Double,S> m) {
 483         return bOp(o, m, (i, a, b) -> (double) Math.hypot((double) a, (double) b));
 484     }
 485 
 486     public abstract DoubleVector<S> hypot(double o, Mask<Double,S> m);
 487 
 488 
 489     @Override
 490     public void intoByteArray(byte[] a, int ix) {
 491         ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix).order(ByteOrder.nativeOrder());
 492         intoByteBuffer(bb);
 493     }
 494 
 495     @Override
 496     public void intoByteArray(byte[] a, int ix, Mask<Double, S> m) {
 497         ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix).order(ByteOrder.nativeOrder());
 498         intoByteBuffer(bb, m);
 499     }
 500 
 501     @Override
 502     public void intoByteBuffer(ByteBuffer bb) {
 503         DoubleBuffer fb = bb.asDoubleBuffer();
 504         forEach((i, a) -> fb.put(a));
 505     }
 506 
 507     @Override
 508     public void intoByteBuffer(ByteBuffer bb, Mask<Double, S> m) {
 509         DoubleBuffer fb = bb.asDoubleBuffer();
 510         forEach((i, a) -> {
 511             if (m.getElement(i))
 512                 fb.put(a);
 513             else
 514                 fb.position(fb.position() + 1);
 515         });
 516     }
 517 
 518     @Override
 519     public void intoByteBuffer(ByteBuffer bb, int ix) {
 520         bb = bb.duplicate().position(ix);
 521         DoubleBuffer fb = bb.asDoubleBuffer();
 522         forEach((i, a) -> fb.put(i, a));
 523     }
 524 
 525     @Override
 526     public void intoByteBuffer(ByteBuffer bb, int ix, Mask<Double, S> m) {
 527         bb = bb.duplicate().position(ix);
 528         DoubleBuffer fb = bb.asDoubleBuffer();
 529         forEach(m, (i, a) -> fb.put(i, a));
 530     }
 531 
 532 
 533     // Type specific horizontal reductions
 534 
 535     public double addAll() {
 536         return rOp((double) 0, (i, a, b) -> (double) (a + b));
 537     }
 538 
 539     public double subAll() {
 540         return rOp((double) 0, (i, a, b) -> (double) (a - b));
 541     }
 542 
 543     public double mulAll() {
 544         return rOp((double) 1, (i, a, b) -> (double) (a * b));
 545     }
 546 
 547     public double minAll() {
 548         return rOp(Double.MAX_VALUE, (i, a, b) -> a > b ? b : a);
 549     }
 550 
 551     public double maxAll() {
 552         return rOp(Double.MIN_VALUE, (i, a, b) -> a < b ? b : a);
 553     }
 554 
 555 
 556     // Type specific accessors
 557 
 558     /**
 559      * Gets the lane element at lane index {@code i}
 560      *
 561      * @param i the lane index
 562      * @return the lane element at lane index {@code i}
 563      */
 564     public abstract double get(int i);
 565 
 566     /**
 567      * Replaces the lane element of this vector at lane index {@code i} with
 568      * value {@code e}.
 569      * <p>
 570      * This is a cross-lane operation and behaves it returns the result of
 571      * blending this vector with an input vector that is the result of
 572      * broadcasting {@code e} and a mask that has only one lane set at lane
 573      * index {@code i}.
 574      *
 575      * @param i the lane index of the lane element to be replaced
 576      * @param e the value to be placed
 577      * @return the result of replacing the lane element of this vector at lane
 578      * index {@code i} with value {@code e}.
 579      */
 580     public abstract DoubleVector<S> with(int i, double e);
 581 
 582     // Type specific extractors
 583 
 584     /**
 585      * Returns an array containing the lane elements of this vector.
 586      * <p>
 587      * This method behaves as if it {@link #intoArray(double[], int)} stores}
 588      * this vector into an allocated array and returns the array as follows:
 589      * <pre>{@code
 590      *   double[] a = new double[this.length()];
 591      *   this.intoArray(a, 0);
 592      *   return a;
 593      * }</pre>
 594      *
 595      * @return an array containing the the lane elements of this vector
 596      */
 597     @ForceInline
 598     public double[] toArray() {
 599         double[] a = new double[species().length()];
 600         intoArray(a, 0);
 601         return a;
 602     }
 603 
 604     /**
 605      * Stores this vector into an array starting at offset.
 606      * <p>
 607      * For each vector lane, where {@code N} is the vector lane index,
 608      * the lane element at index {@code N} is stored into the array at index
 609      * {@code i + N}.
 610      *
 611      * @param a the array
 612      * @param i the offset into the array
 613      * @throws IndexOutOfBoundsException if {@code i < 0}, or
 614      * {@code i > a.length - this.length()}
 615      */
 616     public void intoArray(double[] a, int i) {
 617         forEach((n, e) -> a[i + n] = e);
 618     }
 619 
 620     /**
 621      * Stores this vector into an array starting at offset and using a mask.
 622      * <p>
 623      * For each vector lane, where {@code N} is the vector lane index,
 624      * if the mask lane at index {@code N} is set then the lane element at
 625      * index {@code N} is stored into the array index {@code i + N}.
 626      *
 627      * @param a the array
 628      * @param i the offset into the array
 629      * @param m the mask
 630      * @throws IndexOutOfBoundsException if {@code i < 0}, or
 631      * for any vector lane index {@code N} where the mask at lane {@code N}
 632      * is set {@code i >= a.length - N}
 633      */
 634     public void intoArray(double[] a, int i, Mask<Double, S> m) {
 635         forEach(m, (n, e) -> a[i + n] = e);
 636     }
 637 
 638     /**
 639      * Stores this vector into an array using indexes obtained from an index
 640      * map.
 641      * <p>
 642      * For each vector lane, where {@code N} is the vector lane index, the
 643      * lane element at index {@code N} is stored into the array at index
 644      * {@code i + indexMap[j + N]}.
 645      *
 646      * @param a the array
 647      * @param i the offset into the array, may be negative if relative
 648      * indexes in the index map compensate to produce a value within the
 649      * array bounds
 650      * @param indexMap the index map
 651      * @param j the offset into the index map
 652      * @throws IndexOutOfBoundsException if {@code j < 0}, or
 653      * {@code j > indexMap.length - this.length()},
 654      * or for any vector lane index {@code N} the result of
 655      * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length}
 656      */
 657     public void intoArray(double[] a, int i, int[] indexMap, int j) {
 658         forEach((n, e) -> a[i + indexMap[j + n]] = e);
 659     }
 660 
 661     /**
 662      * Stores this vector into an array using indexes obtained from an index
 663      * map and using a mask.
 664      * <p>
 665      * For each vector lane, where {@code N} is the vector lane index,
 666      * if the mask lane at index {@code N} is set then the lane element at
 667      * index {@code N} is stored into the array at index
 668      * {@code i + indexMap[j + N]}.
 669      *
 670      * @param a the array
 671      * @param i the offset into the array, may be negative if relative
 672      * indexes in the index map compensate to produce a value within the
 673      * array bounds
 674      * @param m the mask
 675      * @param indexMap the index map
 676      * @param j the offset into the index map
 677      * @throws IndexOutOfBoundsException if {@code j < 0}, or
 678      * {@code j > indexMap.length - this.length()},
 679      * or for any vector lane index {@code N} where the mask at lane
 680      * {@code N} is set the result of {@code i + indexMap[j + N]} is
 681      * {@code < 0} or {@code >= a.length}
 682      */
 683     public void intoArray(double[] a, int i, Mask<Double, S> m, int[] indexMap, int j) {
 684         forEach(m, (n, e) -> a[i + indexMap[j + n]] = e);
 685     }
 686 
 687     // Species
 688 
 689     @Override
 690     public abstract DoubleSpecies<S> species();
 691 
 692     /**
 693      * A specialized factory for creating {@link DoubleVector} value of the same
 694      * shape, and a {@link Mask} and {@link Shuffle} values of the same shape
 695      * and {@code int} element type.
 696      *
 697      * @param <S> the type of shape of this species
 698      */
 699     public static abstract class DoubleSpecies<S extends Vector.Shape> extends Vector.Species<Double, S> {
 700         interface FOp {
 701             double apply(int i);
 702         }
 703 
 704         abstract DoubleVector<S> op(FOp f);
 705 
 706         abstract DoubleVector<S> op(Mask<Double, S> m, FOp f);
 707 
 708         // Factories
 709 
 710         @Override
 711         public DoubleVector<S> zero() {
 712             return op(i -> 0);
 713         }
 714 
 715         /**
 716          * Returns a vector where all lane elements are set to the primitive
 717          * value {@code e}.
 718          *
 719          * @param e the value
 720          * @return a vector of vector where all lane elements are set to
 721          * the primitive value {@code e}
 722          */
 723         public DoubleVector<S> broadcast(double e) {
 724             return op(i -> e);
 725         }
 726 
 727         /**
 728          * Returns a vector where the first lane element is set to the primtive
 729          * value {@code e}, all other lane elements are set to the default
 730          * value.
 731          *
 732          * @param e the value
 733          * @return a vector where the first lane element is set to the primitive
 734          * value {@code e}
 735          */
 736         public DoubleVector<S> single(double e) {
 737             return op(i -> i == 0 ? e : (double) 0);
 738         }
 739 
 740         /**
 741          * Returns a vector where each lane element is set to a randomly
 742          * generated primitive value.
 743          * @@@ what are the properties of the random number generator?
 744          *
 745          * @return a vector where each lane elements is set to a randomly
 746          * generated primitive value
 747          */
 748         public DoubleVector<S> random() {
 749             ThreadLocalRandom r = ThreadLocalRandom.current();
 750             return op(i -> r.nextDouble());
 751         }
 752 
 753         /**
 754          * Returns a vector where each lane element is set to a given
 755          * primitive value.
 756          * <p>
 757          * For each vector lane, where {@code N} is the vector lane index, the
 758          * the primitive value at index {@code N} is placed into the resulting
 759          * vector at lane index {@code N}.
 760          *
 761          * @@@ What should happen if es.length < this.length() ? use the default
 762          * value or throw IndexOutOfBoundsException
 763          *
 764          * @param es the given primitive values
 765          * @return a vector where each lane element is set to a given primitive
 766          * value
 767          */
 768         public DoubleVector<S> scalars(double... es) {
 769             return op(i -> es[i]);
 770         }
 771 
 772         /**
 773          * Loads a vector from an array starting at offset.
 774          * <p>
 775          * For each vector lane, where {@code N} is the vector lane index, the
 776          * array element at index {@code i + N} is placed into the
 777          * resulting vector at lane index {@code N}.
 778          *
 779          * @param a the array
 780          * @param i the offset into the array
 781          * @return the vector loaded from an array
 782          * @throws IndexOutOfBoundsException if {@code i < 0}, or
 783          * {@code i > a.length - this.length()}
 784          */
 785         public DoubleVector<S> fromArray(double[] a, int i) {
 786             return op(n -> a[i + n]);
 787         }
 788 
 789         /**
 790          * Loads a vector from an array starting at offset and using a mask.
 791          * <p>
 792          * For each vector lane, where {@code N} is the vector lane index,
 793          * if the mask lane at index {@code N} is set then the array element at
 794          * index {@code i + N} is placed into the resulting vector at lane index
 795          * {@code N}, otherwise the default element value is placed into the
 796          * resulting vector at lane index {@code N}.
 797          *
 798          * @param a the array
 799          * @param i the offset into the array
 800          * @param m the mask
 801          * @return the vector loaded from an array
 802          * @throws IndexOutOfBoundsException if {@code i < 0}, or
 803          * for any vector lane index {@code N} where the mask at lane {@code N}
 804          * is set {@code i > a.length - N}
 805          */
 806         public DoubleVector<S> fromArray(double[] a, int i, Mask<Double, S> m) {
 807             return op(m, n -> a[i + n]);
 808         }
 809 
 810         /**
 811          * Loads a vector from an array using indexes obtained from an index
 812          * map.
 813          * <p>
 814          * For each vector lane, where {@code N} is the vector lane index, the
 815          * array element at index {@code i + indexMap[j + N]} is placed into the
 816          * resulting vector at lane index {@code N}.
 817          *
 818          * @param a the array
 819          * @param i the offset into the array, may be negative if relative
 820          * indexes in the index map compensate to produce a value within the
 821          * array bounds
 822          * @param indexMap the index map
 823          * @param j the offset into the index map
 824          * @return the vector loaded from an array
 825          * @throws IndexOutOfBoundsException if {@code j < 0}, or
 826          * {@code j > indexMap.length - this.length()},
 827          * or for any vector lane index {@code N} the result of
 828          * {@code i + indexMap[j + N]} is {@code < 0} or {@code >= a.length}
 829          */
 830         public DoubleVector<S> fromArray(double[] a, int i, int[] indexMap, int j) {
 831             return op(n -> a[i + indexMap[j + n]]);
 832         }
 833 
 834         /**
 835          * Loads a vector from an array using indexes obtained from an index
 836          * map and using a mask.
 837          * <p>
 838          * For each vector lane, where {@code N} is the vector lane index,
 839          * if the mask lane at index {@code N} is set then the array element at
 840          * index {@code i + indexMap[j + N]} is placed into the resulting vector
 841          * at lane index {@code N}.
 842          *
 843          * @param a the array
 844          * @param i the offset into the array, may be negative if relative
 845          * indexes in the index map compensate to produce a value within the
 846          * array bounds
 847          * @param indexMap the index map
 848          * @param j the offset into the index map
 849          * @return the vector loaded from an array
 850          * @throws IndexOutOfBoundsException if {@code j < 0}, or
 851          * {@code j > indexMap.length - this.length()},
 852          * or for any vector lane index {@code N} where the mask at lane
 853          * {@code N} is set the result of {@code i + indexMap[j + N]} is
 854          * {@code < 0} or {@code >= a.length}
 855          */
 856         public DoubleVector<S> fromArray(double[] a, int i, Mask<Double, S> m, int[] indexMap, int j) {
 857             return op(m, n -> a[i + indexMap[j + n]]);
 858         }
 859 
 860         @Override
 861         public DoubleVector<S> fromByteArray(byte[] a, int ix) {
 862             ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix).order(ByteOrder.nativeOrder());
 863             return fromByteBuffer(bb);
 864         }
 865 
 866         @Override
 867         public DoubleVector<S> fromByteArray(byte[] a, int ix, Mask<Double, S> m) {
 868             ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix).order(ByteOrder.nativeOrder());
 869             return fromByteBuffer(bb, m);
 870         }
 871 
 872         @Override
 873         public DoubleVector<S> fromByteBuffer(ByteBuffer bb) {
 874             DoubleBuffer fb = bb.asDoubleBuffer();
 875             return op(i -> fb.get());
 876         }
 877 
 878         @Override
 879         public DoubleVector<S> fromByteBuffer(ByteBuffer bb, Mask<Double, S> m) {
 880             DoubleBuffer fb = bb.asDoubleBuffer();
 881             return op(i -> {
 882                 if(m.getElement(i))
 883                     return fb.get();
 884                 else {
 885                     fb.position(fb.position() + 1);
 886                     return (double) 0;
 887                 }
 888             });
 889         }
 890 
 891         @Override
 892         public DoubleVector<S> fromByteBuffer(ByteBuffer bb, int ix) {
 893             bb = bb.duplicate().order(ByteOrder.nativeOrder()).position(ix);
 894             DoubleBuffer fb = bb.asDoubleBuffer();
 895             return op(i -> fb.get(i));
 896         }
 897 
 898         @Override
 899         public DoubleVector<S> fromByteBuffer(ByteBuffer bb, int ix, Mask<Double, S> m) {
 900             bb = bb.duplicate().order(ByteOrder.nativeOrder()).position(ix);
 901             DoubleBuffer fb = bb.asDoubleBuffer();
 902             return op(m, i -> fb.get(i));
 903         }
 904 
 905         @Override
 906         public <F, T extends Shape> DoubleVector<S> reshape(Vector<F, T> o) {
 907             int blen = Math.max(o.species().bitSize(), bitSize()) / Byte.SIZE;
 908             ByteBuffer bb = ByteBuffer.allocate(blen).order(ByteOrder.nativeOrder());
 909             o.intoByteBuffer(bb, 0);
 910             return fromByteBuffer(bb, 0);
 911         }
 912 
 913         @Override
 914         @ForceInline
 915         public <F> DoubleVector<S> rebracket(Vector<F, S> o) {
 916             return reshape(o);
 917         }
 918 
 919         @Override
 920         @ForceInline
 921         public <T extends Shape> DoubleVector<S> resize(Vector<Double, T> o) {
 922             return reshape(o);
 923         }
 924 
 925         @Override
 926         @SuppressWarnings("unchecked")
 927         public <F, T extends Shape> DoubleVector<S> cast(Vector<F, T> v) {
 928             // Allocate array of required size
 929             double[] a = new double[length()];
 930 
 931             Class<?> vtype = v.species().elementType();
 932             int limit = Math.min(v.species().length(), length());
 933             if (vtype == byte.class) {
 934                 ByteVector<T> tv = (ByteVector<T>)v;
 935                 for (int i = 0; i < limit; i++) {
 936                     a[i] = (double) tv.get(i);
 937                 }
 938             } else if (vtype == short.class) {
 939                 ShortVector<T> tv = (ShortVector<T>)v;
 940                 for (int i = 0; i < limit; i++) {
 941                     a[i] = (double) tv.get(i);
 942                 }
 943             } else if (vtype == int.class) {
 944                 IntVector<T> tv = (IntVector<T>)v;
 945                 for (int i = 0; i < limit; i++) {
 946                     a[i] = (double) tv.get(i);
 947                 }
 948             } else if (vtype == long.class){
 949                 LongVector<T> tv = (LongVector<T>)v;
 950                 for (int i = 0; i < limit; i++) {
 951                     a[i] = (double) tv.get(i);
 952                 }
 953             } else if (vtype == float.class){
 954                 FloatVector<T> tv = (FloatVector<T>)v;
 955                 for (int i = 0; i < limit; i++) {
 956                     a[i] = (double) tv.get(i);
 957                 }
 958             } else if (vtype == double.class){
 959                 DoubleVector<T> tv = (DoubleVector<T>)v;
 960                 for (int i = 0; i < limit; i++) {
 961                     a[i] = (double) tv.get(i);
 962                 }
 963             } else {
 964                 throw new UnsupportedOperationException("Bad lane type for casting.");
 965             }
 966 
 967             return scalars(a);
 968         }
 969 
 970     }
 971 
 972     /**
 973      * Finds the preferred species for an element type of {@code double}.
 974      * <p>
 975      * A preferred species is a species chosen by the platform that has a
 976      * shape of maximal bit size.  A preferred species for different element
 977      * types will have the same shape, and therefore vectors, masks, and
 978      * shuffles created from such species will be shape compatible.
 979      *
 980      * @return the preferred species for an element type of {@code double}
 981      */
 982     @SuppressWarnings("unchecked")
 983     public static DoubleSpecies<?> preferredSpeciesInstance() {
 984         return (DoubleSpecies<?>) Vector.preferredSpeciesInstance(double.class);
 985     }
 986 
 987     /**
 988      * Finds a species for an element type of {@code double} and shape.
 989      *
 990      * @param s the shape
 991      * @param <S> the type of shape
 992      * @return a species for an element type of {@code double} and shape
 993      * @throws IllegalArgumentException if no such species exists for the shape
 994      */
 995     @SuppressWarnings("unchecked")
 996     public static <S extends Shape> DoubleSpecies<S> speciesInstance(S s) {
 997         Objects.requireNonNull(s);
 998         if (s == Shapes.S_64_BIT) {
 999             return (DoubleSpecies<S>) Double64Vector.SPECIES;
1000         } else if (s == Shapes.S_128_BIT) {
1001             return (DoubleSpecies<S>) Double128Vector.SPECIES;
1002         } else if (s == Shapes.S_256_BIT) {
1003             return (DoubleSpecies<S>) Double256Vector.SPECIES;
1004         } else if (s == Shapes.S_512_BIT) {
1005             return (DoubleSpecies<S>) Double512Vector.SPECIES;
1006         } else {
1007             throw new IllegalArgumentException("Bad shape: " + s);
1008         }
1009     }
1010 }