1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300   void resolve_jobject(Register value, Register thread, Register tmp);
 301   void clear_jweak_tag(Register possibly_jweak);
 302 
 303 #if INCLUDE_ALL_GCS
 304 
 305   void g1_write_barrier_pre(Register obj,
 306                             Register pre_val,
 307                             Register thread,
 308                             Register tmp,
 309                             bool tosca_live,
 310                             bool expand_call);
 311 
 312   void g1_write_barrier_post(Register store_addr,
 313                              Register new_val,
 314                              Register thread,
 315                              Register tmp,
 316                              Register tmp2);
 317 
 318 #endif // INCLUDE_ALL_GCS
 319 
 320   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 321   void c2bool(Register x);
 322 
 323   // C++ bool manipulation
 324 
 325   void movbool(Register dst, Address src);
 326   void movbool(Address dst, bool boolconst);
 327   void movbool(Address dst, Register src);
 328   void testbool(Register dst);
 329 
 330   void resolve_oop_handle(Register result);
 331   void load_mirror(Register mirror, Register method);
 332 
 333   // oop manipulations
 334   void load_klass(Register dst, Register src);
 335   void store_klass(Register dst, Register src);
 336 
 337   void load_heap_oop(Register dst, Address src);
 338   void load_heap_oop_not_null(Register dst, Address src);
 339   void store_heap_oop(Address dst, Register src);
 340   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 341 
 342   // Used for storing NULL. All other oop constants should be
 343   // stored using routines that take a jobject.
 344   void store_heap_oop_null(Address dst);
 345 
 346   void load_prototype_header(Register dst, Register src);
 347 
 348 #ifdef _LP64
 349   void store_klass_gap(Register dst, Register src);
 350 
 351   // This dummy is to prevent a call to store_heap_oop from
 352   // converting a zero (like NULL) into a Register by giving
 353   // the compiler two choices it can't resolve
 354 
 355   void store_heap_oop(Address dst, void* dummy);
 356 
 357   void encode_heap_oop(Register r);
 358   void decode_heap_oop(Register r);
 359   void encode_heap_oop_not_null(Register r);
 360   void decode_heap_oop_not_null(Register r);
 361   void encode_heap_oop_not_null(Register dst, Register src);
 362   void decode_heap_oop_not_null(Register dst, Register src);
 363 
 364   void set_narrow_oop(Register dst, jobject obj);
 365   void set_narrow_oop(Address dst, jobject obj);
 366   void cmp_narrow_oop(Register dst, jobject obj);
 367   void cmp_narrow_oop(Address dst, jobject obj);
 368 
 369   void encode_klass_not_null(Register r);
 370   void decode_klass_not_null(Register r);
 371   void encode_klass_not_null(Register dst, Register src);
 372   void decode_klass_not_null(Register dst, Register src);
 373   void set_narrow_klass(Register dst, Klass* k);
 374   void set_narrow_klass(Address dst, Klass* k);
 375   void cmp_narrow_klass(Register dst, Klass* k);
 376   void cmp_narrow_klass(Address dst, Klass* k);
 377 
 378   // Returns the byte size of the instructions generated by decode_klass_not_null()
 379   // when compressed klass pointers are being used.
 380   static int instr_size_for_decode_klass_not_null();
 381 
 382   // if heap base register is used - reinit it with the correct value
 383   void reinit_heapbase();
 384 
 385   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 386 
 387 #endif // _LP64
 388 
 389   // Int division/remainder for Java
 390   // (as idivl, but checks for special case as described in JVM spec.)
 391   // returns idivl instruction offset for implicit exception handling
 392   int corrected_idivl(Register reg);
 393 
 394   // Long division/remainder for Java
 395   // (as idivq, but checks for special case as described in JVM spec.)
 396   // returns idivq instruction offset for implicit exception handling
 397   int corrected_idivq(Register reg);
 398 
 399   void int3();
 400 
 401   // Long operation macros for a 32bit cpu
 402   // Long negation for Java
 403   void lneg(Register hi, Register lo);
 404 
 405   // Long multiplication for Java
 406   // (destroys contents of eax, ebx, ecx and edx)
 407   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 408 
 409   // Long shifts for Java
 410   // (semantics as described in JVM spec.)
 411   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 412   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 413 
 414   // Long compare for Java
 415   // (semantics as described in JVM spec.)
 416   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 417 
 418 
 419   // misc
 420 
 421   // Sign extension
 422   void sign_extend_short(Register reg);
 423   void sign_extend_byte(Register reg);
 424 
 425   // Division by power of 2, rounding towards 0
 426   void division_with_shift(Register reg, int shift_value);
 427 
 428   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 429   //
 430   // CF (corresponds to C0) if x < y
 431   // PF (corresponds to C2) if unordered
 432   // ZF (corresponds to C3) if x = y
 433   //
 434   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 435   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 436   void fcmp(Register tmp);
 437   // Variant of the above which allows y to be further down the stack
 438   // and which only pops x and y if specified. If pop_right is
 439   // specified then pop_left must also be specified.
 440   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 441 
 442   // Floating-point comparison for Java
 443   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 444   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 445   // (semantics as described in JVM spec.)
 446   void fcmp2int(Register dst, bool unordered_is_less);
 447   // Variant of the above which allows y to be further down the stack
 448   // and which only pops x and y if specified. If pop_right is
 449   // specified then pop_left must also be specified.
 450   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 451 
 452   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 453   // tmp is a temporary register, if none is available use noreg
 454   void fremr(Register tmp);
 455 
 456   // dst = c = a * b + c
 457   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 458   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 459 
 460   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 461   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 462   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 463   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 464 
 465 
 466   // same as fcmp2int, but using SSE2
 467   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 468   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 469 
 470   // branch to L if FPU flag C2 is set/not set
 471   // tmp is a temporary register, if none is available use noreg
 472   void jC2 (Register tmp, Label& L);
 473   void jnC2(Register tmp, Label& L);
 474 
 475   // Pop ST (ffree & fincstp combined)
 476   void fpop();
 477 
 478   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 479   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 480   void load_float(Address src);
 481 
 482   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 483   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 484   void store_float(Address dst);
 485 
 486   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 487   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 488   void load_double(Address src);
 489 
 490   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 491   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 492   void store_double(Address dst);
 493 
 494   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 495   void push_fTOS();
 496 
 497   // pops double TOS element from CPU stack and pushes on FPU stack
 498   void pop_fTOS();
 499 
 500   void empty_FPU_stack();
 501 
 502   void push_IU_state();
 503   void pop_IU_state();
 504 
 505   void push_FPU_state();
 506   void pop_FPU_state();
 507 
 508   void push_CPU_state();
 509   void pop_CPU_state();
 510 
 511   // Round up to a power of two
 512   void round_to(Register reg, int modulus);
 513 
 514   // Callee saved registers handling
 515   void push_callee_saved_registers();
 516   void pop_callee_saved_registers();
 517 
 518   // allocation
 519   void eden_allocate(
 520     Register obj,                      // result: pointer to object after successful allocation
 521     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 522     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 523     Register t1,                       // temp register
 524     Label&   slow_case                 // continuation point if fast allocation fails
 525   );
 526   void tlab_allocate(
 527     Register obj,                      // result: pointer to object after successful allocation
 528     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 529     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 530     Register t1,                       // temp register
 531     Register t2,                       // temp register
 532     Label&   slow_case                 // continuation point if fast allocation fails
 533   );
 534   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 535 
 536   void incr_allocated_bytes(Register thread,
 537                             Register var_size_in_bytes, int con_size_in_bytes,
 538                             Register t1 = noreg);
 539 
 540   // interface method calling
 541   void lookup_interface_method(Register recv_klass,
 542                                Register intf_klass,
 543                                RegisterOrConstant itable_index,
 544                                Register method_result,
 545                                Register scan_temp,
 546                                Label& no_such_interface,
 547                                bool return_method = true);
 548 
 549   // virtual method calling
 550   void lookup_virtual_method(Register recv_klass,
 551                              RegisterOrConstant vtable_index,
 552                              Register method_result);
 553 
 554   // Test sub_klass against super_klass, with fast and slow paths.
 555 
 556   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 557   // One of the three labels can be NULL, meaning take the fall-through.
 558   // If super_check_offset is -1, the value is loaded up from super_klass.
 559   // No registers are killed, except temp_reg.
 560   void check_klass_subtype_fast_path(Register sub_klass,
 561                                      Register super_klass,
 562                                      Register temp_reg,
 563                                      Label* L_success,
 564                                      Label* L_failure,
 565                                      Label* L_slow_path,
 566                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 567 
 568   // The rest of the type check; must be wired to a corresponding fast path.
 569   // It does not repeat the fast path logic, so don't use it standalone.
 570   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 571   // Updates the sub's secondary super cache as necessary.
 572   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 573   void check_klass_subtype_slow_path(Register sub_klass,
 574                                      Register super_klass,
 575                                      Register temp_reg,
 576                                      Register temp2_reg,
 577                                      Label* L_success,
 578                                      Label* L_failure,
 579                                      bool set_cond_codes = false);
 580 
 581   // Simplified, combined version, good for typical uses.
 582   // Falls through on failure.
 583   void check_klass_subtype(Register sub_klass,
 584                            Register super_klass,
 585                            Register temp_reg,
 586                            Label& L_success);
 587 
 588   // method handles (JSR 292)
 589   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 590 
 591   //----
 592   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 593 
 594   // Debugging
 595 
 596   // only if +VerifyOops
 597   // TODO: Make these macros with file and line like sparc version!
 598   void verify_oop(Register reg, const char* s = "broken oop");
 599   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 600 
 601   // TODO: verify method and klass metadata (compare against vptr?)
 602   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 603   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 604 
 605 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 606 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 607 
 608   // only if +VerifyFPU
 609   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 610 
 611   // Verify or restore cpu control state after JNI call
 612   void restore_cpu_control_state_after_jni();
 613 
 614   // prints msg, dumps registers and stops execution
 615   void stop(const char* msg);
 616 
 617   // prints msg and continues
 618   void warn(const char* msg);
 619 
 620   // dumps registers and other state
 621   void print_state();
 622 
 623   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 624   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 625   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 626   static void print_state64(int64_t pc, int64_t regs[]);
 627 
 628   void os_breakpoint();
 629 
 630   void untested()                                { stop("untested"); }
 631 
 632   void unimplemented(const char* what = "");
 633 
 634   void should_not_reach_here()                   { stop("should not reach here"); }
 635 
 636   void print_CPU_state();
 637 
 638   // Stack overflow checking
 639   void bang_stack_with_offset(int offset) {
 640     // stack grows down, caller passes positive offset
 641     assert(offset > 0, "must bang with negative offset");
 642     movl(Address(rsp, (-offset)), rax);
 643   }
 644 
 645   // Writes to stack successive pages until offset reached to check for
 646   // stack overflow + shadow pages.  Also, clobbers tmp
 647   void bang_stack_size(Register size, Register tmp);
 648 
 649   // Check for reserved stack access in method being exited (for JIT)
 650   void reserved_stack_check();
 651 
 652   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 653                                                 Register tmp,
 654                                                 int offset);
 655 
 656   // Support for serializing memory accesses between threads
 657   void serialize_memory(Register thread, Register tmp);
 658 
 659   // If thread_reg is != noreg the code assumes the register passed contains
 660   // the thread (required on 64 bit).
 661   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 662 
 663   void verify_tlab();
 664 
 665   // Biased locking support
 666   // lock_reg and obj_reg must be loaded up with the appropriate values.
 667   // swap_reg must be rax, and is killed.
 668   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 669   // be killed; if not supplied, push/pop will be used internally to
 670   // allocate a temporary (inefficient, avoid if possible).
 671   // Optional slow case is for implementations (interpreter and C1) which branch to
 672   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 673   // Returns offset of first potentially-faulting instruction for null
 674   // check info (currently consumed only by C1). If
 675   // swap_reg_contains_mark is true then returns -1 as it is assumed
 676   // the calling code has already passed any potential faults.
 677   int biased_locking_enter(Register lock_reg, Register obj_reg,
 678                            Register swap_reg, Register tmp_reg,
 679                            bool swap_reg_contains_mark,
 680                            Label& done, Label* slow_case = NULL,
 681                            BiasedLockingCounters* counters = NULL);
 682   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 683 #ifdef COMPILER2
 684   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 685   // See full desription in macroAssembler_x86.cpp.
 686   void fast_lock(Register obj, Register box, Register tmp,
 687                  Register scr, Register cx1, Register cx2,
 688                  BiasedLockingCounters* counters,
 689                  RTMLockingCounters* rtm_counters,
 690                  RTMLockingCounters* stack_rtm_counters,
 691                  Metadata* method_data,
 692                  bool use_rtm, bool profile_rtm);
 693   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 694 #if INCLUDE_RTM_OPT
 695   void rtm_counters_update(Register abort_status, Register rtm_counters);
 696   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 697   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 698                                    RTMLockingCounters* rtm_counters,
 699                                    Metadata* method_data);
 700   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 701                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 702   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 703   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 704   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 705                          Register retry_on_abort_count,
 706                          RTMLockingCounters* stack_rtm_counters,
 707                          Metadata* method_data, bool profile_rtm,
 708                          Label& DONE_LABEL, Label& IsInflated);
 709   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 710                             Register scr, Register retry_on_busy_count,
 711                             Register retry_on_abort_count,
 712                             RTMLockingCounters* rtm_counters,
 713                             Metadata* method_data, bool profile_rtm,
 714                             Label& DONE_LABEL);
 715 #endif
 716 #endif
 717 
 718   Condition negate_condition(Condition cond);
 719 
 720   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 721   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 722   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 723   // here in MacroAssembler. The major exception to this rule is call
 724 
 725   // Arithmetics
 726 
 727 
 728   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 729   void addptr(Address dst, Register src);
 730 
 731   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 732   void addptr(Register dst, int32_t src);
 733   void addptr(Register dst, Register src);
 734   void addptr(Register dst, RegisterOrConstant src) {
 735     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 736     else                   addptr(dst,       src.as_register());
 737   }
 738 
 739   void andptr(Register dst, int32_t src);
 740   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 741 
 742   void cmp8(AddressLiteral src1, int imm);
 743 
 744   // renamed to drag out the casting of address to int32_t/intptr_t
 745   void cmp32(Register src1, int32_t imm);
 746 
 747   void cmp32(AddressLiteral src1, int32_t imm);
 748   // compare reg - mem, or reg - &mem
 749   void cmp32(Register src1, AddressLiteral src2);
 750 
 751   void cmp32(Register src1, Address src2);
 752 
 753 #ifndef _LP64
 754   void cmpklass(Address dst, Metadata* obj);
 755   void cmpklass(Register dst, Metadata* obj);
 756   void cmpoop(Address dst, jobject obj);
 757 #endif // _LP64
 758 
 759   void cmpoop(Register src1, Register src2);
 760   void cmpoop(Register src1, Address src2);
 761   void cmpoop(Register dst, jobject obj);
 762 
 763   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 764   void cmpptr(Address src1, AddressLiteral src2);
 765 
 766   void cmpptr(Register src1, AddressLiteral src2);
 767 
 768   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 769   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 770   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 771 
 772   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 773   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 774 
 775   // cmp64 to avoild hiding cmpq
 776   void cmp64(Register src1, AddressLiteral src);
 777 
 778   void cmpxchgptr(Register reg, Address adr);
 779 
 780   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 781 
 782 
 783   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 784   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 785 
 786 
 787   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 788 
 789   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 790 
 791   void shlptr(Register dst, int32_t shift);
 792   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 793 
 794   void shrptr(Register dst, int32_t shift);
 795   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 796 
 797   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 798   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 799 
 800   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 801 
 802   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 803   void subptr(Register dst, int32_t src);
 804   // Force generation of a 4 byte immediate value even if it fits into 8bit
 805   void subptr_imm32(Register dst, int32_t src);
 806   void subptr(Register dst, Register src);
 807   void subptr(Register dst, RegisterOrConstant src) {
 808     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 809     else                   subptr(dst,       src.as_register());
 810   }
 811 
 812   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 813   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 814 
 815   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 816   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 817 
 818   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 819 
 820 
 821 
 822   // Helper functions for statistics gathering.
 823   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 824   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 825   // Unconditional atomic increment.
 826   void atomic_incl(Address counter_addr);
 827   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 828 #ifdef _LP64
 829   void atomic_incq(Address counter_addr);
 830   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 831 #endif
 832   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 833   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 834 
 835   void lea(Register dst, AddressLiteral adr);
 836   void lea(Address dst, AddressLiteral adr);
 837   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 838 
 839   void leal32(Register dst, Address src) { leal(dst, src); }
 840 
 841   // Import other testl() methods from the parent class or else
 842   // they will be hidden by the following overriding declaration.
 843   using Assembler::testl;
 844   void testl(Register dst, AddressLiteral src);
 845 
 846   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 847   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 848   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 849   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 850 
 851   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 852   void testptr(Register src1, Register src2);
 853 
 854   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 855   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 856 
 857   // Calls
 858 
 859   void call(Label& L, relocInfo::relocType rtype);
 860   void call(Register entry);
 861 
 862   // NOTE: this call transfers to the effective address of entry NOT
 863   // the address contained by entry. This is because this is more natural
 864   // for jumps/calls.
 865   void call(AddressLiteral entry);
 866 
 867   // Emit the CompiledIC call idiom
 868   void ic_call(address entry, jint method_index = 0);
 869 
 870   // Jumps
 871 
 872   // NOTE: these jumps tranfer to the effective address of dst NOT
 873   // the address contained by dst. This is because this is more natural
 874   // for jumps/calls.
 875   void jump(AddressLiteral dst);
 876   void jump_cc(Condition cc, AddressLiteral dst);
 877 
 878   // 32bit can do a case table jump in one instruction but we no longer allow the base
 879   // to be installed in the Address class. This jump will tranfers to the address
 880   // contained in the location described by entry (not the address of entry)
 881   void jump(ArrayAddress entry);
 882 
 883   // Floating
 884 
 885   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 886   void andpd(XMMRegister dst, AddressLiteral src);
 887   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 888 
 889   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 890   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 891   void andps(XMMRegister dst, AddressLiteral src);
 892 
 893   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 894   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 895   void comiss(XMMRegister dst, AddressLiteral src);
 896 
 897   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 898   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 899   void comisd(XMMRegister dst, AddressLiteral src);
 900 
 901   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 902   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 903 
 904   void fldcw(Address src) { Assembler::fldcw(src); }
 905   void fldcw(AddressLiteral src);
 906 
 907   void fld_s(int index)   { Assembler::fld_s(index); }
 908   void fld_s(Address src) { Assembler::fld_s(src); }
 909   void fld_s(AddressLiteral src);
 910 
 911   void fld_d(Address src) { Assembler::fld_d(src); }
 912   void fld_d(AddressLiteral src);
 913 
 914   void fld_x(Address src) { Assembler::fld_x(src); }
 915   void fld_x(AddressLiteral src);
 916 
 917   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 918   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 919 
 920   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 921   void ldmxcsr(AddressLiteral src);
 922 
 923 #ifdef _LP64
 924  private:
 925   void sha256_AVX2_one_round_compute(
 926     Register  reg_old_h,
 927     Register  reg_a,
 928     Register  reg_b,
 929     Register  reg_c,
 930     Register  reg_d,
 931     Register  reg_e,
 932     Register  reg_f,
 933     Register  reg_g,
 934     Register  reg_h,
 935     int iter);
 936   void sha256_AVX2_four_rounds_compute_first(int start);
 937   void sha256_AVX2_four_rounds_compute_last(int start);
 938   void sha256_AVX2_one_round_and_sched(
 939         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 940         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 941         XMMRegister xmm_2,     /* ymm6 */
 942         XMMRegister xmm_3,     /* ymm7 */
 943         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 944         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 945         Register    reg_c,      /* edi */
 946         Register    reg_d,      /* esi */
 947         Register    reg_e,      /* r8d */
 948         Register    reg_f,      /* r9d */
 949         Register    reg_g,      /* r10d */
 950         Register    reg_h,      /* r11d */
 951         int iter);
 952 
 953   void addm(int disp, Register r1, Register r2);
 954 
 955  public:
 956   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 957                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 958                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 959                    bool multi_block, XMMRegister shuf_mask);
 960 #endif
 961 
 962 #ifdef _LP64
 963  private:
 964   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 965                                      Register e, Register f, Register g, Register h, int iteration);
 966 
 967   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 968                                           Register a, Register b, Register c, Register d, Register e, Register f,
 969                                           Register g, Register h, int iteration);
 970 
 971   void addmq(int disp, Register r1, Register r2);
 972  public:
 973   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 974                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 975                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 976                    XMMRegister shuf_mask);
 977 #endif
 978 
 979   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 980                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 981                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 982                  bool multi_block);
 983 
 984 #ifdef _LP64
 985   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 986                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 987                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 988                    bool multi_block, XMMRegister shuf_mask);
 989 #else
 990   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 991                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 992                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 993                    bool multi_block);
 994 #endif
 995 
 996   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 997                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 998                 Register rax, Register rcx, Register rdx, Register tmp);
 999 
1000 #ifdef _LP64
1001   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1002                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1003                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1004 
1005   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1006                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1007                   Register rax, Register rcx, Register rdx, Register r11);
1008 
1009   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1010                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1011                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1012 
1013   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1014                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1015                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1016                 Register tmp3, Register tmp4);
1017 
1018   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1019                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1020                 Register rax, Register rcx, Register rdx, Register tmp1,
1021                 Register tmp2, Register tmp3, Register tmp4);
1022   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1023                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1024                 Register rax, Register rcx, Register rdx, Register tmp1,
1025                 Register tmp2, Register tmp3, Register tmp4);
1026 #else
1027   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1028                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1029                 Register rax, Register rcx, Register rdx, Register tmp1);
1030 
1031   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1032                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1033                 Register rax, Register rcx, Register rdx, Register tmp);
1034 
1035   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1036                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1037                 Register rdx, Register tmp);
1038 
1039   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1040                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1041                 Register rax, Register rbx, Register rdx);
1042 
1043   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1044                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1045                 Register rax, Register rcx, Register rdx, Register tmp);
1046 
1047   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1048                         Register edx, Register ebx, Register esi, Register edi,
1049                         Register ebp, Register esp);
1050 
1051   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1052                          Register esi, Register edi, Register ebp, Register esp);
1053 
1054   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1055                         Register edx, Register ebx, Register esi, Register edi,
1056                         Register ebp, Register esp);
1057 
1058   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1059                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1060                 Register rax, Register rcx, Register rdx, Register tmp);
1061 #endif
1062 
1063   void increase_precision();
1064   void restore_precision();
1065 
1066 private:
1067 
1068   // these are private because users should be doing movflt/movdbl
1069 
1070   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1071   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1072   void movss(XMMRegister dst, AddressLiteral src);
1073 
1074   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1075   void movlpd(XMMRegister dst, AddressLiteral src);
1076 
1077 public:
1078 
1079   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1080   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1081   void addsd(XMMRegister dst, AddressLiteral src);
1082 
1083   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1084   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1085   void addss(XMMRegister dst, AddressLiteral src);
1086 
1087   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1088   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1089   void addpd(XMMRegister dst, AddressLiteral src);
1090 
1091   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1092   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1093   void divsd(XMMRegister dst, AddressLiteral src);
1094 
1095   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1096   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1097   void divss(XMMRegister dst, AddressLiteral src);
1098 
1099   // Move Unaligned Double Quadword
1100   void movdqu(Address     dst, XMMRegister src);
1101   void movdqu(XMMRegister dst, Address src);
1102   void movdqu(XMMRegister dst, XMMRegister src);
1103   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1104   // AVX Unaligned forms
1105   void vmovdqu(Address     dst, XMMRegister src);
1106   void vmovdqu(XMMRegister dst, Address src);
1107   void vmovdqu(XMMRegister dst, XMMRegister src);
1108   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1109   // AVX512 Unaligned
1110   void evmovdqub(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1111   void evmovdqub(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1112   void evmovdqub(XMMRegister dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1113   void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1114   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1115 
1116   void evmovdquw(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
1117   void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1118   void evmovdquw(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
1119   void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1120   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1121 
1122   void evmovdqul(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1123   void evmovdqul(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1124   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1125   void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1126   void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1127   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1128   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1129 
1130   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1131   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1132   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1133   void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1134   void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1135   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1136   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1137 
1138   // Move Aligned Double Quadword
1139   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1140   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1141   void movdqa(XMMRegister dst, AddressLiteral src);
1142 
1143   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1144   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1145   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1146   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1147   void movsd(XMMRegister dst, AddressLiteral src);
1148 
1149   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1150   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1151   void mulpd(XMMRegister dst, AddressLiteral src);
1152 
1153   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1154   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1155   void mulsd(XMMRegister dst, AddressLiteral src);
1156 
1157   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1158   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1159   void mulss(XMMRegister dst, AddressLiteral src);
1160 
1161   // Carry-Less Multiplication Quadword
1162   void pclmulldq(XMMRegister dst, XMMRegister src) {
1163     // 0x00 - multiply lower 64 bits [0:63]
1164     Assembler::pclmulqdq(dst, src, 0x00);
1165   }
1166   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1167     // 0x11 - multiply upper 64 bits [64:127]
1168     Assembler::pclmulqdq(dst, src, 0x11);
1169   }
1170 
1171   void pcmpeqb(XMMRegister dst, XMMRegister src);
1172   void pcmpeqw(XMMRegister dst, XMMRegister src);
1173 
1174   void pcmpestri(XMMRegister dst, Address src, int imm8);
1175   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1176 
1177   void pmovzxbw(XMMRegister dst, XMMRegister src);
1178   void pmovzxbw(XMMRegister dst, Address src);
1179 
1180   void pmovmskb(Register dst, XMMRegister src);
1181 
1182   void ptest(XMMRegister dst, XMMRegister src);
1183 
1184   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1185   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1186   void sqrtsd(XMMRegister dst, AddressLiteral src);
1187 
1188   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1189   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1190   void sqrtss(XMMRegister dst, AddressLiteral src);
1191 
1192   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1193   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1194   void subsd(XMMRegister dst, AddressLiteral src);
1195 
1196   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1197   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1198   void subss(XMMRegister dst, AddressLiteral src);
1199 
1200   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1201   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1202   void ucomiss(XMMRegister dst, AddressLiteral src);
1203 
1204   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1205   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1206   void ucomisd(XMMRegister dst, AddressLiteral src);
1207 
1208   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1209   void xorpd(XMMRegister dst, XMMRegister src);
1210   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1211   void xorpd(XMMRegister dst, AddressLiteral src);
1212 
1213   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1214   void xorps(XMMRegister dst, XMMRegister src);
1215   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1216   void xorps(XMMRegister dst, AddressLiteral src);
1217 
1218   // Shuffle Bytes
1219   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1220   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1221   void pshufb(XMMRegister dst, AddressLiteral src);
1222   // AVX 3-operands instructions
1223 
1224   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1225   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1226   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1227 
1228   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1229   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1230   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1231 
1232   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1233   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1234 
1235   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1236   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1237 
1238   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1239   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1240 
1241   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1242   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1243   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1244 
1245   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1246 
1247   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1248   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1249   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1250 
1251   // Vector compares
1252   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1253                int comparison, int vector_len) { Assembler::evpcmpd(kdst, mask, nds, src, comparison, vector_len); }
1254   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1255                int comparison, int vector_len, Register scratch_reg);
1256   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1257                int comparison, int vector_len) { Assembler::evpcmpq(kdst, mask, nds, src, comparison, vector_len); }
1258   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1259                int comparison, int vector_len, Register scratch_reg);
1260   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1261                int comparison, int vector_len) { Assembler::evpcmpb(kdst, mask, nds, src, comparison, vector_len); }
1262   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1263                int comparison, int vector_len, Register scratch_reg);
1264   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1265                int comparison, int vector_len) { Assembler::evpcmpw(kdst, mask, nds, src, comparison, vector_len); }
1266   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1267                int comparison, int vector_len, Register scratch_reg);
1268 
1269   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1270   void vpmovmskb(Register dst, XMMRegister src);
1271 
1272   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1273   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1274 
1275   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1276   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1277 
1278   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1279   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1280 
1281   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1282   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1283 
1284   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1285   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1286 
1287   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1288   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1289 
1290   void vptest(XMMRegister dst, XMMRegister src);
1291   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1292 
1293   void punpcklbw(XMMRegister dst, XMMRegister src);
1294   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1295 
1296   void pshufd(XMMRegister dst, Address src, int mode);
1297   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1298 
1299   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1300   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1301 
1302   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1303   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1304   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1305 
1306   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1307   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1308   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1309 
1310   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1311 
1312   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1313   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1314   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1315 
1316   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1317   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1318   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1319 
1320   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1321   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1322   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1323 
1324   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1325   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1326   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1327 
1328   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1329   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1330   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1331 
1332   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1333   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1334   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1335 
1336   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1337   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1338 
1339   // AVX Vector instructions
1340 
1341   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1342   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1343   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1344 
1345   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1346   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1347   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1348 
1349   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1350     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1351       Assembler::vpxor(dst, nds, src, vector_len);
1352     else
1353       Assembler::vxorpd(dst, nds, src, vector_len);
1354   }
1355   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1356     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1357       Assembler::vpxor(dst, nds, src, vector_len);
1358     else
1359       Assembler::vxorpd(dst, nds, src, vector_len);
1360   }
1361   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1362 
1363   // Simple version for AVX2 256bit vectors
1364   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1365   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1366 
1367   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vpermd(dst, nds, src); }
1368   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register scratch_reg);
1369 
1370   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1371     if (UseAVX > 2) {
1372       Assembler::vinserti32x4(dst, dst, src, imm8);
1373     } else if (UseAVX > 1) {
1374       // vinserti128 is available only in AVX2
1375       Assembler::vinserti128(dst, nds, src, imm8);
1376     } else {
1377       Assembler::vinsertf128(dst, nds, src, imm8);
1378     }
1379   }
1380 
1381   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1382     if (UseAVX > 2) {
1383       Assembler::vinserti32x4(dst, dst, src, imm8);
1384     } else if (UseAVX > 1) {
1385       // vinserti128 is available only in AVX2
1386       Assembler::vinserti128(dst, nds, src, imm8);
1387     } else {
1388       Assembler::vinsertf128(dst, nds, src, imm8);
1389     }
1390   }
1391 
1392   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1393     if (UseAVX > 2) {
1394       Assembler::vextracti32x4(dst, src, imm8);
1395     } else if (UseAVX > 1) {
1396       // vextracti128 is available only in AVX2
1397       Assembler::vextracti128(dst, src, imm8);
1398     } else {
1399       Assembler::vextractf128(dst, src, imm8);
1400     }
1401   }
1402 
1403   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1404     if (UseAVX > 2) {
1405       Assembler::vextracti32x4(dst, src, imm8);
1406     } else if (UseAVX > 1) {
1407       // vextracti128 is available only in AVX2
1408       Assembler::vextracti128(dst, src, imm8);
1409     } else {
1410       Assembler::vextractf128(dst, src, imm8);
1411     }
1412   }
1413 
1414   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1415   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1416     vinserti128(dst, dst, src, 1);
1417   }
1418   void vinserti128_high(XMMRegister dst, Address src) {
1419     vinserti128(dst, dst, src, 1);
1420   }
1421   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1422     vextracti128(dst, src, 1);
1423   }
1424   void vextracti128_high(Address dst, XMMRegister src) {
1425     vextracti128(dst, src, 1);
1426   }
1427 
1428   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1429     if (UseAVX > 2) {
1430       Assembler::vinsertf32x4(dst, dst, src, 1);
1431     } else {
1432       Assembler::vinsertf128(dst, dst, src, 1);
1433     }
1434   }
1435 
1436   void vinsertf128_high(XMMRegister dst, Address src) {
1437     if (UseAVX > 2) {
1438       Assembler::vinsertf32x4(dst, dst, src, 1);
1439     } else {
1440       Assembler::vinsertf128(dst, dst, src, 1);
1441     }
1442   }
1443 
1444   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1445     if (UseAVX > 2) {
1446       Assembler::vextractf32x4(dst, src, 1);
1447     } else {
1448       Assembler::vextractf128(dst, src, 1);
1449     }
1450   }
1451 
1452   void vextractf128_high(Address dst, XMMRegister src) {
1453     if (UseAVX > 2) {
1454       Assembler::vextractf32x4(dst, src, 1);
1455     } else {
1456       Assembler::vextractf128(dst, src, 1);
1457     }
1458   }
1459 
1460   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1461   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1462     Assembler::vinserti64x4(dst, dst, src, 1);
1463   }
1464   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1465     Assembler::vinsertf64x4(dst, dst, src, 1);
1466   }
1467   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1468     Assembler::vextracti64x4(dst, src, 1);
1469   }
1470   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1471     Assembler::vextractf64x4(dst, src, 1);
1472   }
1473   void vextractf64x4_high(Address dst, XMMRegister src) {
1474     Assembler::vextractf64x4(dst, src, 1);
1475   }
1476   void vinsertf64x4_high(XMMRegister dst, Address src) {
1477     Assembler::vinsertf64x4(dst, dst, src, 1);
1478   }
1479 
1480   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1481   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1482     vinserti128(dst, dst, src, 0);
1483   }
1484   void vinserti128_low(XMMRegister dst, Address src) {
1485     vinserti128(dst, dst, src, 0);
1486   }
1487   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1488     vextracti128(dst, src, 0);
1489   }
1490   void vextracti128_low(Address dst, XMMRegister src) {
1491     vextracti128(dst, src, 0);
1492   }
1493 
1494   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1495     if (UseAVX > 2) {
1496       Assembler::vinsertf32x4(dst, dst, src, 0);
1497     } else {
1498       Assembler::vinsertf128(dst, dst, src, 0);
1499     }
1500   }
1501 
1502   void vinsertf128_low(XMMRegister dst, Address src) {
1503     if (UseAVX > 2) {
1504       Assembler::vinsertf32x4(dst, dst, src, 0);
1505     } else {
1506       Assembler::vinsertf128(dst, dst, src, 0);
1507     }
1508   }
1509 
1510   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1511     if (UseAVX > 2) {
1512       Assembler::vextractf32x4(dst, src, 0);
1513     } else {
1514       Assembler::vextractf128(dst, src, 0);
1515     }
1516   }
1517 
1518   void vextractf128_low(Address dst, XMMRegister src) {
1519     if (UseAVX > 2) {
1520       Assembler::vextractf32x4(dst, src, 0);
1521     } else {
1522       Assembler::vextractf128(dst, src, 0);
1523     }
1524   }
1525 
1526   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1527   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1528     Assembler::vinserti64x4(dst, dst, src, 0);
1529   }
1530   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1531     Assembler::vinsertf64x4(dst, dst, src, 0);
1532   }
1533   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1534     Assembler::vextracti64x4(dst, src, 0);
1535   }
1536   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1537     Assembler::vextractf64x4(dst, src, 0);
1538   }
1539   void vextractf64x4_low(Address dst, XMMRegister src) {
1540     Assembler::vextractf64x4(dst, src, 0);
1541   }
1542   void vinsertf64x4_low(XMMRegister dst, Address src) {
1543     Assembler::vinsertf64x4(dst, dst, src, 0);
1544   }
1545 
1546   // Carry-Less Multiplication Quadword
1547   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1548     // 0x00 - multiply lower 64 bits [0:63]
1549     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1550   }
1551   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1552     // 0x11 - multiply upper 64 bits [64:127]
1553     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1554   }
1555 
1556   // Data
1557 
1558   void cmov32( Condition cc, Register dst, Address  src);
1559   void cmov32( Condition cc, Register dst, Register src);
1560 
1561   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1562 
1563   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1564   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1565 
1566   void movoop(Register dst, jobject obj);
1567   void movoop(Address dst, jobject obj);
1568 
1569   void mov_metadata(Register dst, Metadata* obj);
1570   void mov_metadata(Address dst, Metadata* obj);
1571 
1572   void movptr(ArrayAddress dst, Register src);
1573   // can this do an lea?
1574   void movptr(Register dst, ArrayAddress src);
1575 
1576   void movptr(Register dst, Address src);
1577 
1578 #ifdef _LP64
1579   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1580 #else
1581   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1582 #endif
1583 
1584   void movptr(Register dst, intptr_t src);
1585   void movptr(Register dst, Register src);
1586   void movptr(Address dst, intptr_t src);
1587 
1588   void movptr(Address dst, Register src);
1589 
1590   void movptr(Register dst, RegisterOrConstant src) {
1591     if (src.is_constant()) movptr(dst, src.as_constant());
1592     else                   movptr(dst, src.as_register());
1593   }
1594 
1595 #ifdef _LP64
1596   // Generally the next two are only used for moving NULL
1597   // Although there are situations in initializing the mark word where
1598   // they could be used. They are dangerous.
1599 
1600   // They only exist on LP64 so that int32_t and intptr_t are not the same
1601   // and we have ambiguous declarations.
1602 
1603   void movptr(Address dst, int32_t imm32);
1604   void movptr(Register dst, int32_t imm32);
1605 #endif // _LP64
1606 
1607   // to avoid hiding movl
1608   void mov32(AddressLiteral dst, Register src);
1609   void mov32(Register dst, AddressLiteral src);
1610 
1611   // to avoid hiding movb
1612   void movbyte(ArrayAddress dst, int src);
1613 
1614   // Import other mov() methods from the parent class or else
1615   // they will be hidden by the following overriding declaration.
1616   using Assembler::movdl;
1617   using Assembler::movq;
1618   void movdl(XMMRegister dst, AddressLiteral src);
1619   void movq(XMMRegister dst, AddressLiteral src);
1620 
1621   // Can push value or effective address
1622   void pushptr(AddressLiteral src);
1623 
1624   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1625   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1626 
1627   void pushoop(jobject obj);
1628   void pushklass(Metadata* obj);
1629 
1630   // sign extend as need a l to ptr sized element
1631   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1632   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1633 
1634   // C2 compiled method's prolog code.
1635   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1636 
1637   // clear memory of size 'cnt' qwords, starting at 'base';
1638   // if 'is_large' is set, do not try to produce short loop
1639   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1640 
1641 #ifdef COMPILER2
1642   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1643                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1644 
1645   // IndexOf strings.
1646   // Small strings are loaded through stack if they cross page boundary.
1647   void string_indexof(Register str1, Register str2,
1648                       Register cnt1, Register cnt2,
1649                       int int_cnt2,  Register result,
1650                       XMMRegister vec, Register tmp,
1651                       int ae);
1652 
1653   // IndexOf for constant substrings with size >= 8 elements
1654   // which don't need to be loaded through stack.
1655   void string_indexofC8(Register str1, Register str2,
1656                       Register cnt1, Register cnt2,
1657                       int int_cnt2,  Register result,
1658                       XMMRegister vec, Register tmp,
1659                       int ae);
1660 
1661     // Smallest code: we don't need to load through stack,
1662     // check string tail.
1663 
1664   // helper function for string_compare
1665   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1666                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1667                           Address::ScaleFactor scale2, Register index, int ae);
1668   // Compare strings.
1669   void string_compare(Register str1, Register str2,
1670                       Register cnt1, Register cnt2, Register result,
1671                       XMMRegister vec1, int ae);
1672 
1673   // Search for Non-ASCII character (Negative byte value) in a byte array,
1674   // return true if it has any and false otherwise.
1675   void has_negatives(Register ary1, Register len,
1676                      Register result, Register tmp1,
1677                      XMMRegister vec1, XMMRegister vec2);
1678 
1679   // Compare char[] or byte[] arrays.
1680   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1681                      Register limit, Register result, Register chr,
1682                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1683 
1684 #endif
1685 
1686   // Fill primitive arrays
1687   void generate_fill(BasicType t, bool aligned,
1688                      Register to, Register value, Register count,
1689                      Register rtmp, XMMRegister xtmp);
1690 
1691   void encode_iso_array(Register src, Register dst, Register len,
1692                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1693                         XMMRegister tmp4, Register tmp5, Register result);
1694 
1695 #ifdef _LP64
1696   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1697   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1698                              Register y, Register y_idx, Register z,
1699                              Register carry, Register product,
1700                              Register idx, Register kdx);
1701   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1702                               Register yz_idx, Register idx,
1703                               Register carry, Register product, int offset);
1704   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1705                                     Register carry, Register carry2,
1706                                     Register idx, Register jdx,
1707                                     Register yz_idx1, Register yz_idx2,
1708                                     Register tmp, Register tmp3, Register tmp4);
1709   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1710                                Register yz_idx, Register idx, Register jdx,
1711                                Register carry, Register product,
1712                                Register carry2);
1713   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1714                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1715   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1716                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1717   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1718                             Register tmp2);
1719   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1720                        Register rdxReg, Register raxReg);
1721   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1722   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1723                        Register tmp3, Register tmp4);
1724   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1725                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1726 
1727   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1728                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1729                Register raxReg);
1730   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1731                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1732                Register raxReg);
1733   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1734                            Register result, Register tmp1, Register tmp2,
1735                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1736 #endif
1737 
1738   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1739   void update_byte_crc32(Register crc, Register val, Register table);
1740   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1741   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1742   // Note on a naming convention:
1743   // Prefix w = register only used on a Westmere+ architecture
1744   // Prefix n = register only used on a Nehalem architecture
1745 #ifdef _LP64
1746   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1747                        Register tmp1, Register tmp2, Register tmp3);
1748 #else
1749   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1750                        Register tmp1, Register tmp2, Register tmp3,
1751                        XMMRegister xtmp1, XMMRegister xtmp2);
1752 #endif
1753   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1754                         Register in_out,
1755                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1756                         XMMRegister w_xtmp2,
1757                         Register tmp1,
1758                         Register n_tmp2, Register n_tmp3);
1759   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1760                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1761                        Register tmp1, Register tmp2,
1762                        Register n_tmp3);
1763   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1764                          Register in_out1, Register in_out2, Register in_out3,
1765                          Register tmp1, Register tmp2, Register tmp3,
1766                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1767                          Register tmp4, Register tmp5,
1768                          Register n_tmp6);
1769   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1770                             Register tmp1, Register tmp2, Register tmp3,
1771                             Register tmp4, Register tmp5, Register tmp6,
1772                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1773                             bool is_pclmulqdq_supported);
1774   // Fold 128-bit data chunk
1775   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1776   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1777   // Fold 8-bit data
1778   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1779   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1780 
1781   // Compress char[] array to byte[].
1782   void char_array_compress(Register src, Register dst, Register len,
1783                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1784                            XMMRegister tmp4, Register tmp5, Register result);
1785 
1786   // Inflate byte[] array to char[].
1787   void byte_array_inflate(Register src, Register dst, Register len,
1788                           XMMRegister tmp1, Register tmp2);
1789 
1790 };
1791 
1792 /**
1793  * class SkipIfEqual:
1794  *
1795  * Instantiating this class will result in assembly code being output that will
1796  * jump around any code emitted between the creation of the instance and it's
1797  * automatic destruction at the end of a scope block, depending on the value of
1798  * the flag passed to the constructor, which will be checked at run-time.
1799  */
1800 class SkipIfEqual {
1801  private:
1802   MacroAssembler* _masm;
1803   Label _label;
1804 
1805  public:
1806    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1807    ~SkipIfEqual();
1808 };
1809 
1810 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP