1 /*
   2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "memory/allocation.inline.hpp"
  26 #include "opto/connode.hpp"
  27 #include "opto/cfgnode.hpp"
  28 #include "opto/vectornode.hpp"
  29 
  30 //------------------------------VectorNode--------------------------------------
  31 
  32 // Return the vector operator for the specified scalar operation
  33 // and vector length.
  34 int VectorNode::opcode(int sopc, BasicType bt) {
  35   switch (sopc) {
  36   case Op_AddI:
  37     switch (bt) {
  38     case T_BOOLEAN:
  39     case T_BYTE:      return Op_AddVB;
  40     case T_CHAR:
  41     case T_SHORT:     return Op_AddVS;
  42     case T_INT:       return Op_AddVI;
  43     default:          ShouldNotReachHere(); return 0;
  44     }
  45   case Op_AddL:
  46     assert(bt == T_LONG, "must be");
  47     return Op_AddVL;
  48   case Op_AddF:
  49     assert(bt == T_FLOAT, "must be");
  50     return Op_AddVF;
  51   case Op_AddD:
  52     assert(bt == T_DOUBLE, "must be");
  53     return Op_AddVD;
  54   case Op_SubI:
  55     switch (bt) {
  56     case T_BOOLEAN:
  57     case T_BYTE:   return Op_SubVB;
  58     case T_CHAR:
  59     case T_SHORT:  return Op_SubVS;
  60     case T_INT:    return Op_SubVI;
  61     default:       ShouldNotReachHere(); return 0;
  62     }
  63   case Op_SubL:
  64     assert(bt == T_LONG, "must be");
  65     return Op_SubVL;
  66   case Op_SubF:
  67     assert(bt == T_FLOAT, "must be");
  68     return Op_SubVF;
  69   case Op_SubD:
  70     assert(bt == T_DOUBLE, "must be");
  71     return Op_SubVD;
  72   case Op_MulI:
  73     switch (bt) {
  74     case T_BOOLEAN:
  75     case T_BYTE:   return Op_MulVB;
  76     case T_CHAR:
  77     case T_SHORT:  return Op_MulVS;
  78     case T_INT:    return Op_MulVI;
  79     default:       ShouldNotReachHere(); return 0;
  80     }
  81   case Op_MulL:
  82     assert(bt == T_LONG, "must be");
  83     return Op_MulVL;
  84   case Op_MulF:
  85     assert(bt == T_FLOAT, "must be");
  86     return Op_MulVF;
  87   case Op_MulD:
  88     assert(bt == T_DOUBLE, "must be");
  89     return Op_MulVD;
  90   case Op_FmaD:
  91     assert(bt == T_DOUBLE, "must be");
  92     return Op_FmaVD;
  93   case Op_FmaF:
  94     assert(bt == T_FLOAT, "must be");
  95     return Op_FmaVF;
  96   case Op_CMoveF:
  97     assert(bt == T_FLOAT, "must be");
  98     return Op_CMoveVF;
  99   case Op_CMoveD:
 100     assert(bt == T_DOUBLE, "must be");
 101     return Op_CMoveVD;
 102   case Op_DivF:
 103     assert(bt == T_FLOAT, "must be");
 104     return Op_DivVF;
 105   case Op_DivD:
 106     assert(bt == T_DOUBLE, "must be");
 107     return Op_DivVD;
 108   case Op_MinI:
 109     switch (bt) {
 110     case T_BOOLEAN:
 111     case T_CHAR:   return 0;
 112     case T_BYTE:
 113     case T_SHORT:
 114     case T_INT:    return Op_MinV;
 115     default:       ShouldNotReachHere(); return 0;
 116     }
 117   case Op_MinL:
 118     assert(bt == T_LONG, "must be");
 119     return Op_MinV;
 120   case Op_MinF:
 121     assert(bt == T_FLOAT, "must be");
 122     return Op_MinV;
 123   case Op_MinD:
 124     assert(bt == T_DOUBLE, "must be");
 125     return Op_MinV;
 126   case Op_MaxI:
 127     switch (bt) {
 128     case T_BOOLEAN:
 129     case T_CHAR:   return 0;
 130     case T_BYTE:
 131     case T_SHORT:
 132     case T_INT:    return Op_MaxV;
 133     default:       ShouldNotReachHere(); return 0;
 134     }
 135   case Op_MaxL:
 136     assert(bt == T_LONG, "must be");
 137     return Op_MaxV;
 138   case Op_MaxF:
 139     assert(bt == T_FLOAT, "must be");
 140     return Op_MaxV;
 141   case Op_MaxD:
 142     assert(bt == T_DOUBLE, "must be");
 143     return Op_MaxV;
 144   case Op_AbsI:
 145     switch (bt) {
 146     case T_BOOLEAN:
 147     case T_CHAR:  return 0; // abs does not make sense for unsigned
 148     case T_BYTE:
 149     case T_SHORT:
 150     case T_INT:
 151     case T_LONG:  return Op_AbsV;
 152     default: ShouldNotReachHere(); return 0;
 153     }
 154   case Op_AbsF:
 155     assert(bt == T_FLOAT, "must be");
 156     return Op_AbsVF;
 157   case Op_AbsD:
 158     assert(bt == T_DOUBLE, "must be");
 159     return Op_AbsVD;
 160   case Op_NegI:
 161     assert(bt == T_INT, "must be");
 162     return Op_NegVI;
 163   case Op_NegF:
 164     assert(bt == T_FLOAT, "must be");
 165     return Op_NegVF;
 166   case Op_NegD:
 167     assert(bt == T_DOUBLE, "must be");
 168     return Op_NegVD;
 169   case Op_SqrtF:
 170     assert(bt == T_FLOAT, "must be");
 171     return Op_SqrtVF;
 172   case Op_SqrtD:
 173     assert(bt == T_DOUBLE, "must be");
 174     return Op_SqrtVD;
 175   case Op_Not:
 176     return Op_NotV;
 177   case Op_PopCountI:
 178     if (bt == T_INT) {
 179       return Op_PopCountVI;
 180     }
 181     // Unimplemented for subword types since bit count changes
 182     // depending on size of lane (and sign bit).
 183     return 0;
 184   case Op_LShiftI:
 185     switch (bt) {
 186     case T_BOOLEAN:
 187     case T_BYTE:   return Op_LShiftVB;
 188     case T_CHAR:
 189     case T_SHORT:  return Op_LShiftVS;
 190     case T_INT:    return Op_LShiftVI;
 191       default:       ShouldNotReachHere(); return 0;
 192     }
 193   case Op_LShiftL:
 194     assert(bt == T_LONG, "must be");
 195     return Op_LShiftVL;
 196   case Op_RShiftI:
 197     switch (bt) {
 198     case T_BOOLEAN:return Op_URShiftVB; // boolean is unsigned value
 199     case T_CHAR:   return Op_URShiftVS; // char is unsigned value
 200     case T_BYTE:   return Op_RShiftVB;
 201     case T_SHORT:  return Op_RShiftVS;
 202     case T_INT:    return Op_RShiftVI;
 203     default:       ShouldNotReachHere(); return 0;
 204     }
 205   case Op_RShiftL:
 206     assert(bt == T_LONG, "must be");
 207     return Op_RShiftVL;
 208   case Op_URShiftI:
 209     switch (bt) {
 210     case T_BOOLEAN:return Op_URShiftVB;
 211     case T_CHAR:   return Op_URShiftVS;
 212     case T_BYTE:
 213     case T_SHORT:  return 0; // Vector logical right shift for signed short
 214                              // values produces incorrect Java result for
 215                              // negative data because java code should convert
 216                              // a short value into int value with sign
 217                              // extension before a shift.
 218     case T_INT:    return Op_URShiftVI;
 219     default:       ShouldNotReachHere(); return 0;
 220     }
 221   case Op_URShiftL:
 222     assert(bt == T_LONG, "must be");
 223     return Op_URShiftVL;
 224   case Op_AndI:
 225   case Op_AndL:
 226     return Op_AndV;
 227   case Op_OrI:
 228   case Op_OrL:
 229     return Op_OrV;
 230   case Op_XorI:
 231   case Op_XorL:
 232     return Op_XorV;
 233 
 234   case Op_LoadB:
 235   case Op_LoadUB:
 236   case Op_LoadUS:
 237   case Op_LoadS:
 238   case Op_LoadI:
 239   case Op_LoadL:
 240   case Op_LoadF:
 241   case Op_LoadD:
 242     return Op_LoadVector;
 243 
 244   case Op_StoreB:
 245   case Op_StoreC:
 246   case Op_StoreI:
 247   case Op_StoreL:
 248   case Op_StoreF:
 249   case Op_StoreD:
 250     return Op_StoreVector;
 251 
 252   case Op_AddVB:
 253   case Op_AddVS:
 254   case Op_AddVI:
 255   case Op_AddVL:
 256   case Op_AddVF:
 257   case Op_AddVD:
 258   case Op_SubVB:
 259   case Op_SubVS:
 260   case Op_SubVI:
 261   case Op_SubVL:
 262   case Op_SubVF:
 263   case Op_SubVD:
 264   case Op_MulVB:
 265   case Op_MulVS:
 266   case Op_MulVI:
 267   case Op_MulVL:
 268   case Op_MulVF:
 269   case Op_MulVD:
 270   case Op_DivVF:
 271   case Op_DivVD:
 272   case Op_MinV:
 273   case Op_MaxV:
 274   case Op_AbsV:
 275   case Op_AbsVF:
 276   case Op_AbsVD:
 277   case Op_NegVI:
 278   case Op_NegVF:
 279   case Op_NegVD:
 280   case Op_SqrtVF:
 281   case Op_SqrtVD:
 282   case Op_NotV:
 283   case Op_LShiftVB:
 284   case Op_LShiftVS:
 285   case Op_LShiftVI:
 286   case Op_LShiftVL:
 287   case Op_RShiftVB:
 288   case Op_RShiftVS:
 289   case Op_RShiftVI:
 290   case Op_RShiftVL:
 291   case Op_URShiftVB:
 292   case Op_URShiftVS:
 293   case Op_URShiftVI:
 294   case Op_URShiftVL:
 295   case Op_AndV:
 296   case Op_OrV:
 297   case Op_XorV:
 298   case Op_VectorBlend:
 299   case Op_VectorReinterpret:
 300   case Op_VectorTest:
 301   case Op_VectorMaskCmp:
 302   case Op_VectorCastB2X:
 303   case Op_VectorCastS2X:
 304   case Op_VectorCastI2X:
 305   case Op_VectorCastL2X:
 306   case Op_VectorCastF2X:
 307   case Op_VectorCastD2X:
 308     // When op is already vectorized, return that directly.
 309     return sopc;
 310 
 311   default:
 312     return 0; // Unimplemented
 313   }
 314 }
 315 
 316 int VectorNode::replicate_opcode(BasicType bt) {
 317   switch(bt) {
 318     case T_BOOLEAN:
 319     case T_BYTE:
 320       return Op_ReplicateB;
 321     case T_SHORT:
 322     case T_CHAR:
 323       return Op_ReplicateS;
 324     case T_INT:
 325       return Op_ReplicateI;
 326     case T_LONG:
 327       return Op_ReplicateL;
 328     case T_FLOAT:
 329       return Op_ReplicateF;
 330     case T_DOUBLE:
 331       return Op_ReplicateD;
 332     default:
 333       break;
 334   }
 335 
 336   return 0;
 337 }
 338 
 339 // Also used to check if the code generator
 340 // supports the vector operation.
 341 bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
 342   if (is_java_primitive(bt) &&
 343       (vlen > 1) && is_power_of_2(vlen) &&
 344       Matcher::vector_size_supported(bt, vlen)) {
 345     int vopc = VectorNode::opcode(opc, bt);
 346     return vopc > 0 && Matcher::match_rule_supported_vector(vopc, vlen, bt);
 347   }
 348   return false;
 349 }
 350 
 351 bool VectorNode::is_shift(Node* n) {
 352   switch (n->Opcode()) {
 353   case Op_LShiftI:
 354   case Op_LShiftL:
 355   case Op_RShiftI:
 356   case Op_RShiftL:
 357   case Op_URShiftI:
 358   case Op_URShiftL:
 359     return true;
 360   default:
 361     return false;
 362   }
 363 }
 364 
 365 // Check if input is loop invariant vector.
 366 bool VectorNode::is_invariant_vector(Node* n) {
 367   // Only Replicate vector nodes are loop invariant for now.
 368   switch (n->Opcode()) {
 369   case Op_ReplicateB:
 370   case Op_ReplicateS:
 371   case Op_ReplicateI:
 372   case Op_ReplicateL:
 373   case Op_ReplicateF:
 374   case Op_ReplicateD:
 375     return true;
 376   default:
 377     return false;
 378   }
 379 }
 380 
 381 // [Start, end) half-open range defining which operands are vectors
 382 void VectorNode::vector_operands(Node* n, uint* start, uint* end) {
 383   switch (n->Opcode()) {
 384   case Op_LoadB:   case Op_LoadUB:
 385   case Op_LoadS:   case Op_LoadUS:
 386   case Op_LoadI:   case Op_LoadL:
 387   case Op_LoadF:   case Op_LoadD:
 388   case Op_LoadP:   case Op_LoadN:
 389     *start = 0;
 390     *end   = 0; // no vector operands
 391     break;
 392   case Op_StoreB:  case Op_StoreC:
 393   case Op_StoreI:  case Op_StoreL:
 394   case Op_StoreF:  case Op_StoreD:
 395   case Op_StoreP:  case Op_StoreN:
 396     *start = MemNode::ValueIn;
 397     *end   = MemNode::ValueIn + 1; // 1 vector operand
 398     break;
 399   case Op_LShiftI:  case Op_LShiftL:
 400   case Op_RShiftI:  case Op_RShiftL:
 401   case Op_URShiftI: case Op_URShiftL:
 402     *start = 1;
 403     *end   = 2; // 1 vector operand
 404     break;
 405   case Op_AddI: case Op_AddL: case Op_AddF: case Op_AddD:
 406   case Op_SubI: case Op_SubL: case Op_SubF: case Op_SubD:
 407   case Op_MulI: case Op_MulL: case Op_MulF: case Op_MulD:
 408   case Op_DivF: case Op_DivD:
 409   case Op_AndI: case Op_AndL:
 410   case Op_OrI:  case Op_OrL:
 411   case Op_XorI: case Op_XorL:
 412     *start = 1;
 413     *end   = 3; // 2 vector operands
 414     break;
 415   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
 416     *start = 2;
 417     *end   = n->req();
 418     break;
 419   case Op_FmaD:
 420   case Op_FmaF:
 421     *start = 1;
 422     *end   = 4; // 3 vector operands
 423     break;
 424   default:
 425     *start = 1;
 426     *end   = n->req(); // default is all operands
 427   }
 428 }
 429 
 430 // Return the vector version of a scalar operation node.
 431 VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
 432   const TypeVect* vt = TypeVect::make(bt, vlen);
 433   int vopc = VectorNode::opcode(opc, bt);
 434   // This method should not be called for unimplemented vectors.
 435   guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
 436   switch (vopc) {
 437   case Op_AddVB: return new AddVBNode(n1, n2, vt);
 438   case Op_AddVS: return new AddVSNode(n1, n2, vt);
 439   case Op_AddVI: return new AddVINode(n1, n2, vt);
 440   case Op_AddVL: return new AddVLNode(n1, n2, vt);
 441   case Op_AddVF: return new AddVFNode(n1, n2, vt);
 442   case Op_AddVD: return new AddVDNode(n1, n2, vt);
 443 
 444   case Op_SubVB: return new SubVBNode(n1, n2, vt);
 445   case Op_SubVS: return new SubVSNode(n1, n2, vt);
 446   case Op_SubVI: return new SubVINode(n1, n2, vt);
 447   case Op_SubVL: return new SubVLNode(n1, n2, vt);
 448   case Op_SubVF: return new SubVFNode(n1, n2, vt);
 449   case Op_SubVD: return new SubVDNode(n1, n2, vt);
 450 
 451   case Op_MulVB: return new MulVBNode(n1, n2, vt);
 452   case Op_MulVS: return new MulVSNode(n1, n2, vt);
 453   case Op_MulVI: return new MulVINode(n1, n2, vt);
 454   case Op_MulVL: return new MulVLNode(n1, n2, vt);
 455   case Op_MulVF: return new MulVFNode(n1, n2, vt);
 456   case Op_MulVD: return new MulVDNode(n1, n2, vt);
 457 
 458   case Op_DivVF: return new DivVFNode(n1, n2, vt);
 459   case Op_DivVD: return new DivVDNode(n1, n2, vt);
 460 
 461   case Op_MinV: return new MinVNode(n1, n2, vt);
 462   case Op_MaxV: return new MaxVNode(n1, n2, vt);
 463 
 464   case Op_AbsV: return new AbsVNode(n1, vt);
 465   case Op_AbsVF: return new AbsVFNode(n1, vt);
 466   case Op_AbsVD: return new AbsVDNode(n1, vt);
 467 
 468   case Op_NegVI: return new NegVINode(n1, vt);
 469   case Op_NegVF: return new NegVFNode(n1, vt);
 470   case Op_NegVD: return new NegVDNode(n1, vt);
 471 
 472   case Op_SqrtVF: return new SqrtVFNode(n1, vt);
 473   case Op_SqrtVD: return new SqrtVDNode(n1, vt);
 474 
 475   case Op_PopCountVI: return new PopCountVINode(n1, vt);
 476   case Op_NotV: return new NotVNode(n1, vt);
 477 
 478   case Op_LShiftVB: return new LShiftVBNode(n1, n2, vt);
 479   case Op_LShiftVS: return new LShiftVSNode(n1, n2, vt);
 480   case Op_LShiftVI: return new LShiftVINode(n1, n2, vt);
 481   case Op_LShiftVL: return new LShiftVLNode(n1, n2, vt);
 482 
 483   case Op_RShiftVB: return new RShiftVBNode(n1, n2, vt);
 484   case Op_RShiftVS: return new RShiftVSNode(n1, n2, vt);
 485   case Op_RShiftVI: return new RShiftVINode(n1, n2, vt);
 486   case Op_RShiftVL: return new RShiftVLNode(n1, n2, vt);
 487 
 488   case Op_URShiftVB: return new URShiftVBNode(n1, n2, vt);
 489   case Op_URShiftVS: return new URShiftVSNode(n1, n2, vt);
 490   case Op_URShiftVI: return new URShiftVINode(n1, n2, vt);
 491   case Op_URShiftVL: return new URShiftVLNode(n1, n2, vt);
 492 
 493   case Op_AndV: return new AndVNode(n1, n2, vt);
 494   case Op_OrV:  return new OrVNode (n1, n2, vt);
 495   case Op_XorV: return new XorVNode(n1, n2, vt);
 496 
 497   case Op_VectorCastB2X: return new VectorCastB2XNode(n1, vt);
 498   case Op_VectorCastS2X: return new VectorCastS2XNode(n1, vt);
 499   case Op_VectorCastI2X: return new VectorCastI2XNode(n1, vt);
 500   case Op_VectorCastL2X: return new VectorCastL2XNode(n1, vt);
 501   case Op_VectorCastF2X: return new VectorCastF2XNode(n1, vt);
 502   case Op_VectorCastD2X: return new VectorCastD2XNode(n1, vt);
 503 
 504   default:
 505     fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
 506     return NULL;
 507   }
 508 }
 509 
 510 VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, Node* n3, uint vlen, BasicType bt) {
 511   const TypeVect* vt = TypeVect::make(bt, vlen);
 512   int vopc = VectorNode::opcode(opc, bt);
 513   // This method should not be called for unimplemented vectors.
 514   guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
 515   switch (vopc) {
 516   case Op_FmaVD: return new FmaVDNode(n1, n2, n3, vt);
 517   case Op_FmaVF: return new FmaVFNode(n1, n2, n3, vt);
 518   default:
 519     fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
 520     return NULL;
 521   }
 522 }
 523 
 524 // Scalar promotion
 525 VectorNode* VectorNode::scalar2vector(Node* s, uint vlen, const Type* opd_t) {
 526   BasicType bt = opd_t->array_element_basic_type();
 527   const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
 528                                           : TypeVect::make(bt, vlen);
 529   switch (bt) {
 530   case T_BOOLEAN:
 531   case T_BYTE:
 532     return new ReplicateBNode(s, vt);
 533   case T_CHAR:
 534   case T_SHORT:
 535     return new ReplicateSNode(s, vt);
 536   case T_INT:
 537     return new ReplicateINode(s, vt);
 538   case T_LONG:
 539     return new ReplicateLNode(s, vt);
 540   case T_FLOAT:
 541     return new ReplicateFNode(s, vt);
 542   case T_DOUBLE:
 543     return new ReplicateDNode(s, vt);
 544   default:
 545     fatal("Type '%s' is not supported for vectors", type2name(bt));
 546     return NULL;
 547   }
 548 }
 549 
 550 VectorNode* VectorNode::shift_count(int opc, Node* cnt, uint vlen, BasicType bt) {
 551   assert(!cnt->is_Con(), "only variable shift count");
 552   // Match shift count type with shift vector type.
 553   const TypeVect* vt = TypeVect::make(bt, vlen);
 554   switch (opc) {
 555   case Op_LShiftI:
 556   case Op_LShiftL:
 557     return new LShiftCntVNode(cnt, vt);
 558   case Op_RShiftI:
 559   case Op_RShiftL:
 560   case Op_URShiftI:
 561   case Op_URShiftL:
 562     return new RShiftCntVNode(cnt, vt);
 563   default:
 564     fatal("Missed vector creation for '%s'", NodeClassNames[opc]);
 565     return NULL;
 566   }
 567 }
 568 
 569 // Return initial Pack node. Additional operands added with add_opd() calls.
 570 PackNode* PackNode::make(Node* s, uint vlen, BasicType bt) {
 571   const TypeVect* vt = TypeVect::make(bt, vlen);
 572   switch (bt) {
 573   case T_BOOLEAN:
 574   case T_BYTE:
 575     return new PackBNode(s, vt);
 576   case T_CHAR:
 577   case T_SHORT:
 578     return new PackSNode(s, vt);
 579   case T_INT:
 580     return new PackINode(s, vt);
 581   case T_LONG:
 582     return new PackLNode(s, vt);
 583   case T_FLOAT:
 584     return new PackFNode(s, vt);
 585   case T_DOUBLE:
 586     return new PackDNode(s, vt);
 587   default:
 588     fatal("Type '%s' is not supported for vectors", type2name(bt));
 589     return NULL;
 590   }
 591 }
 592 
 593 // Create a binary tree form for Packs. [lo, hi) (half-open) range
 594 PackNode* PackNode::binary_tree_pack(int lo, int hi) {
 595   int ct = hi - lo;
 596   assert(is_power_of_2(ct), "power of 2");
 597   if (ct == 2) {
 598     PackNode* pk = PackNode::make(in(lo), 2, vect_type()->element_basic_type());
 599     pk->add_opd(in(lo+1));
 600     return pk;
 601   } else {
 602     int mid = lo + ct/2;
 603     PackNode* n1 = binary_tree_pack(lo,  mid);
 604     PackNode* n2 = binary_tree_pack(mid, hi );
 605 
 606     BasicType bt = n1->vect_type()->element_basic_type();
 607     assert(bt == n2->vect_type()->element_basic_type(), "should be the same");
 608     switch (bt) {
 609     case T_BOOLEAN:
 610     case T_BYTE:
 611       return new PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
 612     case T_CHAR:
 613     case T_SHORT:
 614       return new PackINode(n1, n2, TypeVect::make(T_INT, 2));
 615     case T_INT:
 616       return new PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
 617     case T_LONG:
 618       return new Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
 619     case T_FLOAT:
 620       return new PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
 621     case T_DOUBLE:
 622       return new Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
 623     default:
 624       fatal("Type '%s' is not supported for vectors", type2name(bt));
 625       return NULL;
 626     }
 627   }
 628 }
 629 
 630 // Return the vector version of a scalar load node.
 631 LoadVectorNode* LoadVectorNode::make(int opc, Node* ctl, Node* mem,
 632                                      Node* adr, const TypePtr* atyp,
 633                                      uint vlen, BasicType bt,
 634                                      ControlDependency control_dependency) {
 635   const TypeVect* vt = TypeVect::make(bt, vlen);
 636   return new LoadVectorNode(ctl, mem, adr, atyp, vt, control_dependency);
 637 }
 638 
 639 // Return the vector version of a scalar store node.
 640 StoreVectorNode* StoreVectorNode::make(int opc, Node* ctl, Node* mem,
 641                                        Node* adr, const TypePtr* atyp, Node* val,
 642                                        uint vlen) {
 643   return new StoreVectorNode(ctl, mem, adr, atyp, val);
 644 }
 645 
 646 // Extract a scalar element of vector.
 647 Node* ExtractNode::make(Node* v, uint position, BasicType bt) {
 648   assert((int)position < Matcher::max_vector_size(bt), "pos in range");
 649   ConINode* pos = ConINode::make((int)position);
 650   switch (bt) {
 651   case T_BOOLEAN:
 652     return new ExtractUBNode(v, pos);
 653   case T_BYTE:
 654     return new ExtractBNode(v, pos);
 655   case T_CHAR:
 656     return new ExtractCNode(v, pos);
 657   case T_SHORT:
 658     return new ExtractSNode(v, pos);
 659   case T_INT:
 660     return new ExtractINode(v, pos);
 661   case T_LONG:
 662     return new ExtractLNode(v, pos);
 663   case T_FLOAT:
 664     return new ExtractFNode(v, pos);
 665   case T_DOUBLE:
 666     return new ExtractDNode(v, pos);
 667   default:
 668     fatal("Type '%s' is not supported for vectors", type2name(bt));
 669     return NULL;
 670   }
 671 }
 672 
 673 int ReductionNode::opcode(int opc, BasicType bt) {
 674   int vopc = opc;
 675   switch (opc) {
 676     case Op_AddI:
 677       switch (bt) {
 678         case T_BOOLEAN:
 679         case T_CHAR: return 0;
 680         case T_BYTE:
 681         case T_SHORT:
 682         case T_INT:       
 683           vopc = Op_AddReductionVI;
 684           break;
 685         default:          ShouldNotReachHere(); return 0;
 686       }
 687       break;
 688     case Op_AddL:
 689       assert(bt == T_LONG, "must be");
 690       vopc = Op_AddReductionVL;
 691       break;
 692     case Op_AddF:
 693       assert(bt == T_FLOAT, "must be");
 694       vopc = Op_AddReductionVF;
 695       break;
 696     case Op_AddD:
 697       assert(bt == T_DOUBLE, "must be");
 698       vopc = Op_AddReductionVD;
 699       break;
 700     case Op_MulI:
 701       assert(bt == T_INT, "must be");
 702       vopc = Op_MulReductionVI;
 703       break;
 704     case Op_MulL:
 705       assert(bt == T_LONG, "must be");
 706       vopc = Op_MulReductionVL;
 707       break;
 708     case Op_MulF:
 709       assert(bt == T_FLOAT, "must be");
 710       vopc = Op_MulReductionVF;
 711       break;
 712     case Op_MulD:
 713       assert(bt == T_DOUBLE, "must be");
 714       vopc = Op_MulReductionVD;
 715       break;
 716     case Op_AndI:
 717       switch (bt) {
 718       case T_BOOLEAN:
 719       case T_CHAR: return 0;
 720       case T_BYTE:
 721       case T_SHORT:
 722       case T_INT:
 723         vopc = Op_AndReductionV;
 724         break;
 725       default:          ShouldNotReachHere(); return 0;
 726       }
 727       break;
 728     case Op_AndL:
 729       assert(bt == T_LONG, "must be");
 730       vopc = Op_AndReductionV;
 731       break;
 732     case Op_OrI:
 733       assert(bt == T_INT, "must be");
 734       vopc = Op_OrReductionV;
 735       break;
 736     case Op_OrL:
 737       assert(bt == T_LONG, "must be");
 738       vopc = Op_OrReductionV;
 739       break;
 740     case Op_XorI:
 741       assert(bt == T_INT, "must be");
 742       vopc = Op_XorReductionV;
 743       break;
 744     case Op_XorL:
 745       assert(bt == T_LONG, "must be");
 746       vopc = Op_XorReductionV;
 747       break;
 748     case Op_SubI:
 749       assert(bt == T_INT, "must be");
 750       vopc = Op_SubReductionV;
 751       break;
 752     case Op_SubL:
 753       assert(bt == T_LONG, "must be");
 754       vopc = Op_SubReductionV;
 755       break;
 756     // TODO: add MulL for targets that support it
 757     default:
 758       break;
 759   }
 760   return vopc;
 761 }
 762 
 763 // Return the appropriate reduction node.
 764 ReductionNode* ReductionNode::make(int opc, Node *ctrl, Node* n1, Node* n2, BasicType bt) {
 765 
 766   int vopc = opcode(opc, bt);
 767 
 768   // This method should not be called for unimplemented vectors.
 769   guarantee(vopc != opc, "Vector for '%s' is not implemented", NodeClassNames[opc]);
 770 
 771   switch (vopc) {
 772   case Op_AddReductionVI: return new AddReductionVINode(ctrl, n1, n2);
 773   case Op_AddReductionVL: return new AddReductionVLNode(ctrl, n1, n2);
 774   case Op_AddReductionVF: return new AddReductionVFNode(ctrl, n1, n2);
 775   case Op_AddReductionVD: return new AddReductionVDNode(ctrl, n1, n2);
 776   case Op_MulReductionVI: return new MulReductionVINode(ctrl, n1, n2);
 777   case Op_MulReductionVL: return new MulReductionVLNode(ctrl, n1, n2);
 778   case Op_MulReductionVF: return new MulReductionVFNode(ctrl, n1, n2);
 779   case Op_MulReductionVD: return new MulReductionVDNode(ctrl, n1, n2);
 780   case Op_AndReductionV: return new AndReductionVNode(ctrl, n1, n2);
 781   case Op_OrReductionV: return new OrReductionVNode(ctrl, n1, n2);
 782   case Op_XorReductionV: return new XorReductionVNode(ctrl, n1, n2);
 783   case Op_SubReductionV: return new SubReductionVNode(ctrl, n1, n2);
 784   default:
 785     fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
 786     return NULL;
 787   }
 788 }
 789 
 790 Node* ReductionNode::make_reduction_input(PhaseGVN& gvn, int opc, BasicType bt) {
 791   int vopc = opcode(opc, bt);
 792   guarantee(vopc != opc, "Vector reduction for '%s' is not implemented", NodeClassNames[opc]);
 793 
 794   switch (vopc) {
 795     case Op_AndReductionV:
 796       switch (bt) {
 797         case T_BYTE:
 798         case T_SHORT:
 799         case T_INT:
 800           return gvn.makecon(TypeInt::MINUS_1);
 801         case T_LONG:
 802           return gvn.makecon(TypeLong::MINUS_1);
 803         default:
 804           fatal("Missed vector creation for '%s' as the basic type is not correct.", NodeClassNames[vopc]);
 805           return NULL;
 806       }
 807       break;
 808     case Op_AddReductionVI: // fallthrough
 809     case Op_AddReductionVL: // fallthrough
 810     case Op_AddReductionVF: // fallthrough
 811     case Op_AddReductionVD:
 812     case Op_OrReductionV:
 813     case Op_XorReductionV:
 814     case Op_SubReductionV:
 815       return gvn.zerocon(bt);
 816     case Op_MulReductionVI:
 817       return gvn.makecon(TypeInt::ONE);
 818     case Op_MulReductionVL:
 819       return gvn.makecon(TypeLong::ONE);
 820     case Op_MulReductionVF:
 821       return gvn.makecon(TypeF::ONE);
 822     case Op_MulReductionVD:
 823       return gvn.makecon(TypeD::ONE);
 824     default:
 825       fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
 826       return NULL;
 827   }
 828 }
 829 
 830 bool ReductionNode::implemented(int opc, uint vlen, BasicType bt) {
 831   if (is_java_primitive(bt) &&
 832       (vlen > 1) && is_power_of_2(vlen) &&
 833       Matcher::vector_size_supported(bt, vlen)) {
 834     int vopc = ReductionNode::opcode(opc, bt);
 835     return vopc != opc && Matcher::match_rule_supported(vopc);
 836   }
 837   return false;
 838 }
 839 
 840 #ifndef PRODUCT
 841 void VectorBoxAllocateNode::dump_spec(outputStream *st) const {
 842   CallStaticJavaNode::dump_spec(st);
 843 }
 844 
 845 void VectorMaskCmpNode::dump_spec(outputStream *st) const {
 846   st->print(" %d #", _predicate); _type->dump_on(st);
 847 }
 848 #endif // PRODUCT
 849 
 850 Node* VectorUnboxNode::Identity(PhaseGVN *phase) {
 851   Node* n = obj()->uncast();
 852   if (n->Opcode() == Op_VectorBox) {
 853     return n->in(VectorBoxNode::Value);
 854   }
 855   return this;
 856 }
 857 
 858 const TypeFunc* VectorBoxNode::vec_box_type(const TypeInstPtr* box_type) {
 859   const Type** fields = TypeTuple::fields(0);
 860   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 861 
 862   fields = TypeTuple::fields(1);
 863   fields[TypeFunc::Parms+0] = box_type;
 864   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 865 
 866   return TypeFunc::make(domain, range);
 867 }
 868 
 869 Node* SubReductionVNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 870   Node* ctrl = in(0);
 871   Node* in1 = in(1);
 872   Node* in2 = in(2);
 873 
 874   if (phase->type(in1)->isa_int()) {
 875                 assert(phase->type(in2)->is_vect()->element_type()->is_int(), "must be consistent");
 876     return new NegINode(phase->transform(new AddReductionVINode(ctrl,in1,in2)));
 877   } else if (phase->type(in1)->isa_long()) {
 878     return new NegLNode(phase->transform(new AddReductionVLNode(ctrl,in1,in2)));
 879   } else {
 880     Unimplemented();
 881     return NULL;
 882   } 
 883 }