/* * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have * questions. */ package jdk.incubator.vector; import jdk.internal.vm.annotation.ForceInline; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.DoubleBuffer; import java.util.concurrent.ThreadLocalRandom; @SuppressWarnings("cast") public abstract class DoubleVector extends Vector { DoubleVector() {} // Unary operator interface FUnOp { double apply(int i, double a); } abstract DoubleVector uOp(FUnOp f); abstract DoubleVector uOp(Mask m, FUnOp f); // Binary operator interface FBinOp { double apply(int i, double a, double b); } abstract DoubleVector bOp(Vector o, FBinOp f); abstract DoubleVector bOp(Vector o, Mask m, FBinOp f); // Trinary operator interface FTriOp { double apply(int i, double a, double b, double c); } abstract DoubleVector tOp(Vector o1, Vector o2, FTriOp f); abstract DoubleVector tOp(Vector o1, Vector o2, Mask m, FTriOp f); // Reduction operator abstract double rOp(double v, FBinOp f); // Binary test interface FBinTest { boolean apply(int i, double a, double b); } abstract Mask bTest(Vector o, FBinTest f); // Foreach interface FUnCon { void apply(int i, double a); } abstract void forEach(FUnCon f); abstract void forEach(Mask m, FUnCon f); // @Override public DoubleVector add(Vector o) { return bOp(o, (i, a, b) -> (double) (a + b)); } public abstract DoubleVector add(double o); @Override public DoubleVector add(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (double) (a + b)); } public abstract DoubleVector add(double o, Mask m); @Override public DoubleVector addSaturate(Vector o) { return bOp(o, (i, a, b) -> (double) ((a >= Integer.MAX_VALUE || Integer.MAX_VALUE - b > a) ? Integer.MAX_VALUE : a + b)); } public abstract DoubleVector addSaturate(double o); @Override public DoubleVector addSaturate(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (double) ((a >= Integer.MAX_VALUE || Integer.MAX_VALUE - b > a) ? Integer.MAX_VALUE : a + b)); } public abstract DoubleVector addSaturate(double o, Mask m); @Override public DoubleVector sub(Vector o) { return bOp(o, (i, a, b) -> (double) (a - b)); } public abstract DoubleVector sub(double o); @Override public DoubleVector sub(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (double) (a - b)); } public abstract DoubleVector sub(double o, Mask m); @Override public DoubleVector subSaturate(Vector o) { return bOp(o, (i, a, b) -> (double) ((a >= Double.MIN_VALUE || Double.MIN_VALUE + b > a) ? Double.MAX_VALUE : a - b)); } public abstract DoubleVector subSaturate(double o); @Override public DoubleVector subSaturate(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (double) ((a >= Double.MIN_VALUE || Double.MIN_VALUE + b > a) ? Double.MAX_VALUE : a - b)); } public abstract DoubleVector subSaturate(double o, Mask m); @Override public DoubleVector mul(Vector o) { return bOp(o, (i, a, b) -> (double) (a * b)); } public abstract DoubleVector mul(double o); @Override public DoubleVector mul(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (double) (a * b)); } public abstract DoubleVector mul(double o, Mask m); @Override public DoubleVector neg() { return uOp((i, a) -> (double) (-a)); } @Override public DoubleVector neg(Mask m) { return uOp(m, (i, a) -> (double) (-a)); } @Override public DoubleVector abs() { return uOp((i, a) -> (double) Math.abs(a)); } @Override public DoubleVector abs(Mask m) { return uOp(m, (i, a) -> (double) Math.abs(a)); } @Override public DoubleVector min(Vector o) { return bOp(o, (i, a, b) -> (a <= b) ? a : b); } public abstract DoubleVector min(double o); @Override public DoubleVector max(Vector o) { return bOp(o, (i, a, b) -> (a >= b) ? a : b); } public abstract DoubleVector max(double o); @Override public Mask equal(Vector o) { return bTest(o, (i, a, b) -> a == b); } public abstract Mask equal(double o); @Override public Mask notEqual(Vector o) { return bTest(o, (i, a, b) -> a != b); } public abstract Mask notEqual(double o); @Override public Mask lessThan(Vector o) { return bTest(o, (i, a, b) -> a < b); } public abstract Mask lessThan(double o); @Override public Mask lessThanEq(Vector o) { return bTest(o, (i, a, b) -> a <= b); } public abstract Mask lessThanEq(double o); @Override public Mask greaterThan(Vector o) { return bTest(o, (i, a, b) -> a > b); } public abstract Mask greaterThan(double o); @Override public Mask greaterThanEq(Vector o) { return bTest(o, (i, a, b) -> a >= b); } public abstract Mask greaterThanEq(double o); @Override public DoubleVector blend(Vector o, Mask m) { return bOp(o, (i, a, b) -> m.getElement(i) ? b : a); } public abstract DoubleVector blend(double o, Mask m); @Override public abstract DoubleVector shuffle(Vector o, Shuffle m); @Override public abstract DoubleVector swizzle(Shuffle m); @Override @ForceInline public DoubleVector resize(Species species) { return (DoubleVector) species.resize(this); } @Override public abstract DoubleVector rotateEL(int i); @Override public abstract DoubleVector rotateER(int i); @Override public abstract DoubleVector shiftEL(int i); @Override public abstract DoubleVector shiftER(int i); public DoubleVector div(Vector o) { return bOp(o, (i, a, b) -> (double) (a / b)); } public abstract DoubleVector div(double o); public DoubleVector div(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (double) (a / b)); } public abstract DoubleVector div(double o, Mask m); public DoubleVector sqrt() { return uOp((i, a) -> (double) Math.sqrt((double) a)); } public DoubleVector sqrt(Mask m) { return uOp(m, (i, a) -> (double) Math.sqrt((double) a)); } public DoubleVector tan() { return uOp((i, a) -> (double) Math.tan((double) a)); } public DoubleVector tan(Mask m) { return uOp(m, (i, a) -> (double) Math.tan((double) a)); } public DoubleVector tanh() { return uOp((i, a) -> (double) Math.tanh((double) a)); } public DoubleVector tanh(Mask m) { return uOp(m, (i, a) -> (double) Math.tanh((double) a)); } public DoubleVector sin() { return uOp((i, a) -> (double) Math.sin((double) a)); } public DoubleVector sin(Mask m) { return uOp(m, (i, a) -> (double) Math.sin((double) a)); } public DoubleVector sinh() { return uOp((i, a) -> (double) Math.sinh((double) a)); } public DoubleVector sinh(Mask m) { return uOp(m, (i, a) -> (double) Math.sinh((double) a)); } public DoubleVector cos() { return uOp((i, a) -> (double) Math.cos((double) a)); } public DoubleVector cos(Mask m) { return uOp(m, (i, a) -> (double) Math.cos((double) a)); } public DoubleVector cosh() { return uOp((i, a) -> (double) Math.cosh((double) a)); } public DoubleVector cosh(Mask m) { return uOp(m, (i, a) -> (double) Math.cosh((double) a)); } public DoubleVector asin() { return uOp((i, a) -> (double) Math.asin((double) a)); } public DoubleVector asin(Mask m) { return uOp(m, (i, a) -> (double) Math.asin((double) a)); } public DoubleVector acos() { return uOp((i, a) -> (double) Math.acos((double) a)); } public DoubleVector acos(Mask m) { return uOp(m, (i, a) -> (double) Math.acos((double) a)); } public DoubleVector atan() { return uOp((i, a) -> (double) Math.atan((double) a)); } public DoubleVector atan(Mask m) { return uOp(m, (i, a) -> (double) Math.atan((double) a)); } public DoubleVector atan2(Vector o) { return bOp(o, (i, a, b) -> (double) Math.atan2((double) a, (double) b)); } public abstract DoubleVector atan2(double o); public DoubleVector atan2(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (double) Math.atan2((double) a, (double) b)); } public abstract DoubleVector atan2(double o, Mask m); public DoubleVector cbrt() { return uOp((i, a) -> (double) Math.cbrt((double) a)); } public DoubleVector cbrt(Mask m) { return uOp(m, (i, a) -> (double) Math.cbrt((double) a)); } public DoubleVector log() { return uOp((i, a) -> (double) Math.log((double) a)); } public DoubleVector log(Mask m) { return uOp(m, (i, a) -> (double) Math.log((double) a)); } public DoubleVector log10() { return uOp((i, a) -> (double) Math.log10((double) a)); } public DoubleVector log10(Mask m) { return uOp(m, (i, a) -> (double) Math.log10((double) a)); } public DoubleVector log1p() { return uOp((i, a) -> (double) Math.log1p((double) a)); } public DoubleVector log1p(Mask m) { return uOp(m, (i, a) -> (double) Math.log1p((double) a)); } public DoubleVector pow(Vector o) { return bOp(o, (i, a, b) -> (double) Math.pow((double) a, (double) b)); } public abstract DoubleVector pow(double o); public DoubleVector pow(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (double) Math.pow((double) a, (double) b)); } public abstract DoubleVector pow(double o, Mask m); public DoubleVector exp() { return uOp((i, a) -> (double) Math.exp((double) a)); } public DoubleVector exp(Mask m) { return uOp(m, (i, a) -> (double) Math.exp((double) a)); } public DoubleVector expm1() { return uOp((i, a) -> (double) Math.expm1((double) a)); } public DoubleVector expm1(Mask m) { return uOp(m, (i, a) -> (double) Math.expm1((double) a)); } public DoubleVector fma(Vector o1, Vector o2) { return tOp(o1, o2, (i, a, b, c) -> Math.fma(a, b, c)); } public abstract DoubleVector fma(double o1, double o2); public DoubleVector fma(Vector o1, Vector o2, Mask m) { return tOp(o1, o2, m, (i, a, b, c) -> Math.fma(a, b, c)); } public abstract DoubleVector fma(double o1, double o2, Mask m); public DoubleVector hypot(Vector o) { return bOp(o, (i, a, b) -> (double) Math.hypot((double) a, (double) b)); } public abstract DoubleVector hypot(double o); public DoubleVector hypot(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (double) Math.hypot((double) a, (double) b)); } public abstract DoubleVector hypot(double o, Mask m); @Override public void intoByteArray(byte[] a, int ix) { ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix); intoByteBuffer(bb); } @Override public void intoByteArray(byte[] a, int ix, Mask m) { ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix); intoByteBuffer(bb, m); } @Override public void intoByteBuffer(ByteBuffer bb) { DoubleBuffer fb = bb.asDoubleBuffer(); forEach((i, a) -> fb.put(a)); } @Override public void intoByteBuffer(ByteBuffer bb, Mask m) { DoubleBuffer fb = bb.asDoubleBuffer(); forEach((i, a) -> { if (m.getElement(i)) fb.put(a); else fb.position(fb.position() + 1); }); } @Override public void intoByteBuffer(ByteBuffer bb, int ix) { bb = bb.duplicate().position(ix); DoubleBuffer fb = bb.asDoubleBuffer(); forEach((i, a) -> fb.put(i, a)); } @Override public void intoByteBuffer(ByteBuffer bb, int ix, Mask m) { bb = bb.duplicate().position(ix); DoubleBuffer fb = bb.asDoubleBuffer(); forEach(m, (i, a) -> fb.put(i, a)); } // Type specific horizontal reductions public double addAll() { return rOp((double) 0, (i, a, b) -> (double) (a + b)); } public double subAll() { return rOp((double) 0, (i, a, b) -> (double) (a - b)); } public double mulAll() { return rOp((double) 1, (i, a, b) -> (double) (a * b)); } public double minAll() { return rOp(Double.MAX_VALUE, (i, a, b) -> a > b ? b : a); } public double maxAll() { return rOp(Double.MIN_VALUE, (i, a, b) -> a < b ? b : a); } // Type specific accessors public abstract double get(int i); public abstract DoubleVector with(int i, double e); // Type specific extractors @ForceInline public double[] toArray() { double[] a = new double[species().length()]; intoArray(a, 0); return a; } public void intoArray(double[] a, int ax) { forEach((i, a_) -> a[ax + i] = a_); } public void intoArray(double[] a, int ax, Mask m) { forEach(m, (i, a_) -> a[ax + i] = a_); } public void intoArray(double[] a, int ax, int[] indexMap, int mx) { forEach((i, a_) -> a[ax + indexMap[mx + i]] = a_); } public void intoArray(double[] a, int ax, Mask m, int[] indexMap, int mx) { forEach(m, (i, a_) -> a[ax + indexMap[mx + i]] = a_); } // Species @Override public abstract DoubleSpecies species(); public static abstract class DoubleSpecies extends Vector.Species { interface FOp { double apply(int i); } abstract DoubleVector op(FOp f); abstract DoubleVector op(Mask m, FOp f); // Factories @Override public DoubleVector zero() { return op(i -> 0); } public DoubleVector broadcast(double e) { return op(i -> e); } public DoubleVector single(double e) { return op(i -> i == 0 ? e : (double) 0); } public DoubleVector random() { ThreadLocalRandom r = ThreadLocalRandom.current(); return op(i -> r.nextDouble()); } public DoubleVector scalars(double... es) { return op(i -> es[i]); } public DoubleVector fromArray(double[] a, int ax) { return op(i -> a[ax + i]); } public DoubleVector fromArray(double[] a, int ax, Mask m) { return op(m, i -> a[ax + i]); } public DoubleVector fromArray(double[] a, int ax, int[] indexMap, int mx) { return op(i -> a[ax + indexMap[mx + i]]); } public DoubleVector fromArray(double[] a, int ax, Mask m, int[] indexMap, int mx) { return op(m, i -> a[ax + indexMap[mx + i]]); } @Override public DoubleVector fromByteArray(byte[] a, int ix) { ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix); return fromByteBuffer(bb); } @Override public DoubleVector fromByteArray(byte[] a, int ix, Mask m) { ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix); return fromByteBuffer(bb, m); } @Override public DoubleVector fromByteBuffer(ByteBuffer bb) { DoubleBuffer fb = bb.asDoubleBuffer(); return op(i -> fb.get()); } @Override public DoubleVector fromByteBuffer(ByteBuffer bb, Mask m) { DoubleBuffer fb = bb.asDoubleBuffer(); return op(i -> { if(m.getElement(i)) return fb.get(); else { fb.position(fb.position() + 1); return (double) 0; } }); } @Override public DoubleVector fromByteBuffer(ByteBuffer bb, int ix) { bb = bb.duplicate().position(ix); DoubleBuffer fb = bb.asDoubleBuffer(); return op(i -> fb.get(i)); } @Override public DoubleVector fromByteBuffer(ByteBuffer bb, int ix, Mask m) { bb = bb.duplicate().position(ix); DoubleBuffer fb = bb.asDoubleBuffer(); return op(m, i -> fb.get(i)); } @Override @ForceInline public DoubleVector reshape(Vector o) { int blen = Math.max(o.species().bitSize(), bitSize()) / Byte.SIZE; ByteBuffer bb = ByteBuffer.allocate(blen).order(ByteOrder.nativeOrder()); o.intoByteBuffer(bb, 0); return fromByteBuffer(bb, 0); } @Override @ForceInline public DoubleVector rebracket(Vector o) { return reshape(o); } @Override @ForceInline public DoubleVector resize(Vector o) { return reshape(o); } @Override @SuppressWarnings("unchecked") public DoubleVector cast(Vector v) { // Allocate array of required size double[] a = new double[length()]; Class vtype = v.species().elementType(); int limit = Math.min(v.species().length(), length()); if (vtype == Byte.class) { ByteVector tv = (ByteVector)v; for (int i = 0; i < limit; i++) { a[i] = (double) tv.get(i); } } else if (vtype == Short.class) { ShortVector tv = (ShortVector)v; for (int i = 0; i < limit; i++) { a[i] = (double) tv.get(i); } } else if (vtype == Integer.class) { IntVector tv = (IntVector)v; for (int i = 0; i < limit; i++) { a[i] = (double) tv.get(i); } } else if (vtype == Long.class){ LongVector tv = (LongVector)v; for (int i = 0; i < limit; i++) { a[i] = (double) tv.get(i); } } else if (vtype == Float.class){ FloatVector tv = (FloatVector)v; for (int i = 0; i < limit; i++) { a[i] = (double) tv.get(i); } } else if (vtype == Double.class){ DoubleVector tv = (DoubleVector)v; for (int i = 0; i < limit; i++) { a[i] = (double) tv.get(i); } } else { throw new UnsupportedOperationException("Bad lane type for casting."); } return scalars(a); } } }