/* * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have * questions. */ package jdk.incubator.vector; import jdk.internal.vm.annotation.ForceInline; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import java.util.concurrent.ThreadLocalRandom; @SuppressWarnings("cast") public abstract class FloatVector extends Vector { FloatVector() {} // Unary operator interface FUnOp { float apply(int i, float a); } abstract FloatVector uOp(FUnOp f); abstract FloatVector uOp(Mask m, FUnOp f); // Binary operator interface FBinOp { float apply(int i, float a, float b); } abstract FloatVector bOp(Vector o, FBinOp f); abstract FloatVector bOp(Vector o, Mask m, FBinOp f); // Trinary operator interface FTriOp { float apply(int i, float a, float b, float c); } abstract FloatVector tOp(Vector o1, Vector o2, FTriOp f); abstract FloatVector tOp(Vector o1, Vector o2, Mask m, FTriOp f); // Reduction operator abstract float rOp(float v, FBinOp f); // Binary test interface FBinTest { boolean apply(int i, float a, float b); } abstract Mask bTest(Vector o, FBinTest f); // Foreach interface FUnCon { void apply(int i, float a); } abstract void forEach(FUnCon f); abstract void forEach(Mask m, FUnCon f); // @Override public FloatVector add(Vector o) { return bOp(o, (i, a, b) -> (float) (a + b)); } public abstract FloatVector add(float o); @Override public FloatVector add(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (float) (a + b)); } public abstract FloatVector add(float o, Mask m); @Override public FloatVector addSaturate(Vector o) { return bOp(o, (i, a, b) -> (float) ((a >= Integer.MAX_VALUE || Integer.MAX_VALUE - b > a) ? Integer.MAX_VALUE : a + b)); } public abstract FloatVector addSaturate(float o); @Override public FloatVector addSaturate(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (float) ((a >= Integer.MAX_VALUE || Integer.MAX_VALUE - b > a) ? Integer.MAX_VALUE : a + b)); } public abstract FloatVector addSaturate(float o, Mask m); @Override public FloatVector sub(Vector o) { return bOp(o, (i, a, b) -> (float) (a - b)); } public abstract FloatVector sub(float o); @Override public FloatVector sub(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (float) (a - b)); } public abstract FloatVector sub(float o, Mask m); @Override public FloatVector subSaturate(Vector o) { return bOp(o, (i, a, b) -> (float) ((a >= Float.MIN_VALUE || Float.MIN_VALUE + b > a) ? Float.MAX_VALUE : a - b)); } public abstract FloatVector subSaturate(float o); @Override public FloatVector subSaturate(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (float) ((a >= Float.MIN_VALUE || Float.MIN_VALUE + b > a) ? Float.MAX_VALUE : a - b)); } public abstract FloatVector subSaturate(float o, Mask m); @Override public FloatVector mul(Vector o) { return bOp(o, (i, a, b) -> (float) (a * b)); } public abstract FloatVector mul(float o); @Override public FloatVector mul(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (float) (a * b)); } public abstract FloatVector mul(float o, Mask m); @Override public FloatVector neg() { return uOp((i, a) -> (float) (-a)); } @Override public FloatVector neg(Mask m) { return uOp(m, (i, a) -> (float) (-a)); } @Override public FloatVector abs() { return uOp((i, a) -> (float) Math.abs(a)); } @Override public FloatVector abs(Mask m) { return uOp(m, (i, a) -> (float) Math.abs(a)); } @Override public FloatVector min(Vector o) { return bOp(o, (i, a, b) -> (a <= b) ? a : b); } public abstract FloatVector min(float o); @Override public FloatVector max(Vector o) { return bOp(o, (i, a, b) -> (a >= b) ? a : b); } public abstract FloatVector max(float o); @Override public Mask equal(Vector o) { return bTest(o, (i, a, b) -> a == b); } public abstract Mask equal(float o); @Override public Mask notEqual(Vector o) { return bTest(o, (i, a, b) -> a != b); } public abstract Mask notEqual(float o); @Override public Mask lessThan(Vector o) { return bTest(o, (i, a, b) -> a < b); } public abstract Mask lessThan(float o); @Override public Mask lessThanEq(Vector o) { return bTest(o, (i, a, b) -> a <= b); } public abstract Mask lessThanEq(float o); @Override public Mask greaterThan(Vector o) { return bTest(o, (i, a, b) -> a > b); } public abstract Mask greaterThan(float o); @Override public Mask greaterThanEq(Vector o) { return bTest(o, (i, a, b) -> a >= b); } public abstract Mask greaterThanEq(float o); @Override public FloatVector blend(Vector o, Mask m) { return bOp(o, (i, a, b) -> m.getElement(i) ? b : a); } public abstract FloatVector blend(float o, Mask m); @Override public abstract FloatVector shuffle(Vector o, Shuffle m); @Override public abstract FloatVector swizzle(Shuffle m); @Override @ForceInline public FloatVector resize(Species species) { return (FloatVector) species.resize(this); } @Override public abstract FloatVector rotateEL(int i); @Override public abstract FloatVector rotateER(int i); @Override public abstract FloatVector shiftEL(int i); @Override public abstract FloatVector shiftER(int i); public FloatVector div(Vector o) { return bOp(o, (i, a, b) -> (float) (a / b)); } public abstract FloatVector div(float o); public FloatVector div(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (float) (a / b)); } public abstract FloatVector div(float o, Mask m); public FloatVector sqrt() { return uOp((i, a) -> (float) Math.sqrt((double) a)); } public FloatVector sqrt(Mask m) { return uOp(m, (i, a) -> (float) Math.sqrt((double) a)); } public FloatVector tan() { return uOp((i, a) -> (float) Math.tan((double) a)); } public FloatVector tan(Mask m) { return uOp(m, (i, a) -> (float) Math.tan((double) a)); } public FloatVector tanh() { return uOp((i, a) -> (float) Math.tanh((double) a)); } public FloatVector tanh(Mask m) { return uOp(m, (i, a) -> (float) Math.tanh((double) a)); } public FloatVector sin() { return uOp((i, a) -> (float) Math.sin((double) a)); } public FloatVector sin(Mask m) { return uOp(m, (i, a) -> (float) Math.sin((double) a)); } public FloatVector sinh() { return uOp((i, a) -> (float) Math.sinh((double) a)); } public FloatVector sinh(Mask m) { return uOp(m, (i, a) -> (float) Math.sinh((double) a)); } public FloatVector cos() { return uOp((i, a) -> (float) Math.cos((double) a)); } public FloatVector cos(Mask m) { return uOp(m, (i, a) -> (float) Math.cos((double) a)); } public FloatVector cosh() { return uOp((i, a) -> (float) Math.cosh((double) a)); } public FloatVector cosh(Mask m) { return uOp(m, (i, a) -> (float) Math.cosh((double) a)); } public FloatVector asin() { return uOp((i, a) -> (float) Math.asin((double) a)); } public FloatVector asin(Mask m) { return uOp(m, (i, a) -> (float) Math.asin((double) a)); } public FloatVector acos() { return uOp((i, a) -> (float) Math.acos((double) a)); } public FloatVector acos(Mask m) { return uOp(m, (i, a) -> (float) Math.acos((double) a)); } public FloatVector atan() { return uOp((i, a) -> (float) Math.atan((double) a)); } public FloatVector atan(Mask m) { return uOp(m, (i, a) -> (float) Math.atan((double) a)); } public FloatVector atan2(Vector o) { return bOp(o, (i, a, b) -> (float) Math.atan2((double) a, (double) b)); } public abstract FloatVector atan2(float o); public FloatVector atan2(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (float) Math.atan2((double) a, (double) b)); } public abstract FloatVector atan2(float o, Mask m); public FloatVector cbrt() { return uOp((i, a) -> (float) Math.cbrt((double) a)); } public FloatVector cbrt(Mask m) { return uOp(m, (i, a) -> (float) Math.cbrt((double) a)); } public FloatVector log() { return uOp((i, a) -> (float) Math.log((double) a)); } public FloatVector log(Mask m) { return uOp(m, (i, a) -> (float) Math.log((double) a)); } public FloatVector log10() { return uOp((i, a) -> (float) Math.log10((double) a)); } public FloatVector log10(Mask m) { return uOp(m, (i, a) -> (float) Math.log10((double) a)); } public FloatVector log1p() { return uOp((i, a) -> (float) Math.log1p((double) a)); } public FloatVector log1p(Mask m) { return uOp(m, (i, a) -> (float) Math.log1p((double) a)); } public FloatVector pow(Vector o) { return bOp(o, (i, a, b) -> (float) Math.pow((double) a, (double) b)); } public abstract FloatVector pow(float o); public FloatVector pow(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (float) Math.pow((double) a, (double) b)); } public abstract FloatVector pow(float o, Mask m); public FloatVector exp() { return uOp((i, a) -> (float) Math.exp((double) a)); } public FloatVector exp(Mask m) { return uOp(m, (i, a) -> (float) Math.exp((double) a)); } public FloatVector expm1() { return uOp((i, a) -> (float) Math.expm1((double) a)); } public FloatVector expm1(Mask m) { return uOp(m, (i, a) -> (float) Math.expm1((double) a)); } public FloatVector fma(Vector o1, Vector o2) { return tOp(o1, o2, (i, a, b, c) -> Math.fma(a, b, c)); } public abstract FloatVector fma(float o1, float o2); public FloatVector fma(Vector o1, Vector o2, Mask m) { return tOp(o1, o2, m, (i, a, b, c) -> Math.fma(a, b, c)); } public abstract FloatVector fma(float o1, float o2, Mask m); public FloatVector hypot(Vector o) { return bOp(o, (i, a, b) -> (float) Math.hypot((double) a, (double) b)); } public abstract FloatVector hypot(float o); public FloatVector hypot(Vector o, Mask m) { return bOp(o, m, (i, a, b) -> (float) Math.hypot((double) a, (double) b)); } public abstract FloatVector hypot(float o, Mask m); @Override public void intoByteArray(byte[] a, int ix) { ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix); intoByteBuffer(bb); } @Override public void intoByteArray(byte[] a, int ix, Mask m) { ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix); intoByteBuffer(bb, m); } @Override public void intoByteBuffer(ByteBuffer bb) { FloatBuffer fb = bb.asFloatBuffer(); forEach((i, a) -> fb.put(a)); } @Override public void intoByteBuffer(ByteBuffer bb, Mask m) { FloatBuffer fb = bb.asFloatBuffer(); forEach((i, a) -> { if (m.getElement(i)) fb.put(a); else fb.position(fb.position() + 1); }); } @Override public void intoByteBuffer(ByteBuffer bb, int ix) { bb = bb.duplicate().position(ix); FloatBuffer fb = bb.asFloatBuffer(); forEach((i, a) -> fb.put(i, a)); } @Override public void intoByteBuffer(ByteBuffer bb, int ix, Mask m) { bb = bb.duplicate().position(ix); FloatBuffer fb = bb.asFloatBuffer(); forEach(m, (i, a) -> fb.put(i, a)); } // Type specific horizontal reductions public float addAll() { return rOp((float) 0, (i, a, b) -> (float) (a + b)); } public float subAll() { return rOp((float) 0, (i, a, b) -> (float) (a - b)); } public float mulAll() { return rOp((float) 1, (i, a, b) -> (float) (a * b)); } public float minAll() { return rOp(Float.MAX_VALUE, (i, a, b) -> a > b ? b : a); } public float maxAll() { return rOp(Float.MIN_VALUE, (i, a, b) -> a < b ? b : a); } // Type specific accessors public abstract float get(int i); public abstract FloatVector with(int i, float e); // Type specific extractors @ForceInline public float[] toArray() { float[] a = new float[species().length()]; intoArray(a, 0); return a; } public void intoArray(float[] a, int ax) { forEach((i, a_) -> a[ax + i] = a_); } public void intoArray(float[] a, int ax, Mask m) { forEach(m, (i, a_) -> a[ax + i] = a_); } public void intoArray(float[] a, int ax, int[] indexMap, int mx) { forEach((i, a_) -> a[ax + indexMap[mx + i]] = a_); } public void intoArray(float[] a, int ax, Mask m, int[] indexMap, int mx) { forEach(m, (i, a_) -> a[ax + indexMap[mx + i]] = a_); } // Species @Override public abstract FloatSpecies species(); public static abstract class FloatSpecies extends Vector.Species { interface FOp { float apply(int i); } abstract FloatVector op(FOp f); abstract FloatVector op(Mask m, FOp f); // Factories @Override public FloatVector zero() { return op(i -> 0); } public FloatVector broadcast(float e) { return op(i -> e); } public FloatVector single(float e) { return op(i -> i == 0 ? e : (float) 0); } public FloatVector random() { ThreadLocalRandom r = ThreadLocalRandom.current(); return op(i -> r.nextFloat()); } public FloatVector scalars(float... es) { return op(i -> es[i]); } public FloatVector fromArray(float[] a, int ax) { return op(i -> a[ax + i]); } public FloatVector fromArray(float[] a, int ax, Mask m) { return op(m, i -> a[ax + i]); } public FloatVector fromArray(float[] a, int ax, int[] indexMap, int mx) { return op(i -> a[ax + indexMap[mx + i]]); } public FloatVector fromArray(float[] a, int ax, Mask m, int[] indexMap, int mx) { return op(m, i -> a[ax + indexMap[mx + i]]); } @Override public FloatVector fromByteArray(byte[] a, int ix) { ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix); return fromByteBuffer(bb); } @Override public FloatVector fromByteArray(byte[] a, int ix, Mask m) { ByteBuffer bb = ByteBuffer.wrap(a, ix, a.length - ix); return fromByteBuffer(bb, m); } @Override public FloatVector fromByteBuffer(ByteBuffer bb) { FloatBuffer fb = bb.asFloatBuffer(); return op(i -> fb.get()); } @Override public FloatVector fromByteBuffer(ByteBuffer bb, Mask m) { FloatBuffer fb = bb.asFloatBuffer(); return op(i -> { if(m.getElement(i)) return fb.get(); else { fb.position(fb.position() + 1); return (float) 0; } }); } @Override public FloatVector fromByteBuffer(ByteBuffer bb, int ix) { bb = bb.duplicate().position(ix); FloatBuffer fb = bb.asFloatBuffer(); return op(i -> fb.get(i)); } @Override public FloatVector fromByteBuffer(ByteBuffer bb, int ix, Mask m) { bb = bb.duplicate().position(ix); FloatBuffer fb = bb.asFloatBuffer(); return op(m, i -> fb.get(i)); } @Override @ForceInline public FloatVector reshape(Vector o) { int blen = Math.max(o.species().bitSize(), bitSize()) / Byte.SIZE; ByteBuffer bb = ByteBuffer.allocate(blen).order(ByteOrder.nativeOrder()); o.intoByteBuffer(bb, 0); return fromByteBuffer(bb, 0); } @Override @ForceInline public FloatVector rebracket(Vector o) { return reshape(o); } @Override @ForceInline public FloatVector resize(Vector o) { return reshape(o); } @Override @SuppressWarnings("unchecked") public FloatVector cast(Vector v) { // Allocate array of required size float[] a = new float[length()]; Class vtype = v.species().elementType(); int limit = Math.min(v.species().length(), length()); if (vtype == Byte.class) { ByteVector tv = (ByteVector)v; for (int i = 0; i < limit; i++) { a[i] = (float) tv.get(i); } } else if (vtype == Short.class) { ShortVector tv = (ShortVector)v; for (int i = 0; i < limit; i++) { a[i] = (float) tv.get(i); } } else if (vtype == Integer.class) { IntVector tv = (IntVector)v; for (int i = 0; i < limit; i++) { a[i] = (float) tv.get(i); } } else if (vtype == Long.class){ LongVector tv = (LongVector)v; for (int i = 0; i < limit; i++) { a[i] = (float) tv.get(i); } } else if (vtype == Float.class){ FloatVector tv = (FloatVector)v; for (int i = 0; i < limit; i++) { a[i] = (float) tv.get(i); } } else if (vtype == Double.class){ DoubleVector tv = (DoubleVector)v; for (int i = 0; i < limit; i++) { a[i] = (float) tv.get(i); } } else { throw new UnsupportedOperationException("Bad lane type for casting."); } return scalars(a); } } }