1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 
  36 // Portions of code courtesy of Clifford Click
  37 
  38 // Optimization - Graph Style
  39 
  40 class Chaitin;
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class     AllocateNode;
  52 class       AllocateArrayNode;
  53 class     BoxLockNode;
  54 class     LockNode;
  55 class     UnlockNode;
  56 class JVMState;
  57 class OopMap;
  58 class State;
  59 class StartNode;
  60 class MachCallNode;
  61 class FastLockNode;
  62 
  63 //------------------------------StartNode--------------------------------------
  64 // The method start node
  65 class StartNode : public MultiNode {
  66   virtual uint cmp( const Node &n ) const;
  67   virtual uint size_of() const; // Size is bigger
  68 public:
  69   const TypeTuple *_domain;
  70   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  71     init_class_id(Class_Start);
  72     init_req(0,this);
  73     init_req(1,root);
  74   }
  75   virtual int Opcode() const;
  76   virtual bool pinned() const { return true; };
  77   virtual const Type *bottom_type() const;
  78   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  79   virtual const Type *Value( PhaseTransform *phase ) const;
  80   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  81   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  82   virtual const RegMask &in_RegMask(uint) const;
  83   virtual Node *match( const ProjNode *proj, const Matcher *m );
  84   virtual uint ideal_reg() const { return 0; }
  85 #ifndef PRODUCT
  86   virtual void  dump_spec(outputStream *st) const;
  87 #endif
  88 };
  89 
  90 //------------------------------StartOSRNode-----------------------------------
  91 // The method start node for on stack replacement code
  92 class StartOSRNode : public StartNode {
  93 public:
  94   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  95   virtual int   Opcode() const;
  96   static  const TypeTuple *osr_domain();
  97 };
  98 
  99 
 100 //------------------------------ParmNode---------------------------------------
 101 // Incoming parameters
 102 class ParmNode : public ProjNode {
 103   static const char * const names[TypeFunc::Parms+1];
 104 public:
 105   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 106     init_class_id(Class_Parm);
 107   }
 108   virtual int Opcode() const;
 109   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 110   virtual uint ideal_reg() const;
 111 #ifndef PRODUCT
 112   virtual void dump_spec(outputStream *st) const;
 113 #endif
 114 };
 115 
 116 
 117 //------------------------------ReturnNode-------------------------------------
 118 // Return from subroutine node
 119 class ReturnNode : public Node {
 120 public:
 121   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 122   virtual int Opcode() const;
 123   virtual bool  is_CFG() const { return true; }
 124   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 125   virtual bool depends_only_on_test() const { return false; }
 126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 127   virtual const Type *Value( PhaseTransform *phase ) const;
 128   virtual uint ideal_reg() const { return NotAMachineReg; }
 129   virtual uint match_edge(uint idx) const;
 130 #ifndef PRODUCT
 131   virtual void dump_req(outputStream *st = tty) const;
 132 #endif
 133 };
 134 
 135 
 136 //------------------------------RethrowNode------------------------------------
 137 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 138 // ends the current basic block like a ReturnNode.  Restores registers and
 139 // unwinds stack.  Rethrow happens in the caller's method.
 140 class RethrowNode : public Node {
 141  public:
 142   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 143   virtual int Opcode() const;
 144   virtual bool  is_CFG() const { return true; }
 145   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 146   virtual bool depends_only_on_test() const { return false; }
 147   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 148   virtual const Type *Value( PhaseTransform *phase ) const;
 149   virtual uint match_edge(uint idx) const;
 150   virtual uint ideal_reg() const { return NotAMachineReg; }
 151 #ifndef PRODUCT
 152   virtual void dump_req(outputStream *st = tty) const;
 153 #endif
 154 };
 155 
 156 
 157 //------------------------------TailCallNode-----------------------------------
 158 // Pop stack frame and jump indirect
 159 class TailCallNode : public ReturnNode {
 160 public:
 161   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 162     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 163     init_req(TypeFunc::Parms, target);
 164     init_req(TypeFunc::Parms+1, moop);
 165   }
 166 
 167   virtual int Opcode() const;
 168   virtual uint match_edge(uint idx) const;
 169 };
 170 
 171 //------------------------------TailJumpNode-----------------------------------
 172 // Pop stack frame and jump indirect
 173 class TailJumpNode : public ReturnNode {
 174 public:
 175   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 176     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 177     init_req(TypeFunc::Parms, target);
 178     init_req(TypeFunc::Parms+1, ex_oop);
 179   }
 180 
 181   virtual int Opcode() const;
 182   virtual uint match_edge(uint idx) const;
 183 };
 184 
 185 //-------------------------------JVMState-------------------------------------
 186 // A linked list of JVMState nodes captures the whole interpreter state,
 187 // plus GC roots, for all active calls at some call site in this compilation
 188 // unit.  (If there is no inlining, then the list has exactly one link.)
 189 // This provides a way to map the optimized program back into the interpreter,
 190 // or to let the GC mark the stack.
 191 class JVMState : public ResourceObj {
 192   friend class VMStructs;
 193 public:
 194   typedef enum {
 195     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 196     Reexecute_False     =  0, // false       -- do not reexecute
 197     Reexecute_True      =  1  // true        -- reexecute the bytecode
 198   } ReexecuteState; //Reexecute State
 199 
 200 private:
 201   JVMState*         _caller;    // List pointer for forming scope chains
 202   uint              _depth;     // One more than caller depth, or one.
 203   uint              _locoff;    // Offset to locals in input edge mapping
 204   uint              _stkoff;    // Offset to stack in input edge mapping
 205   uint              _monoff;    // Offset to monitors in input edge mapping
 206   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 207   uint              _endoff;    // Offset to end of input edge mapping
 208   uint              _sp;        // Jave Expression Stack Pointer for this state
 209   int               _bci;       // Byte Code Index of this JVM point
 210   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 211   ciMethod*         _method;    // Method Pointer
 212   SafePointNode*    _map;       // Map node associated with this scope
 213 public:
 214   friend class Compile;
 215   friend class PreserveReexecuteState;
 216 
 217   // Because JVMState objects live over the entire lifetime of the
 218   // Compile object, they are allocated into the comp_arena, which
 219   // does not get resource marked or reset during the compile process
 220   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 221   void operator delete( void * ) { } // fast deallocation
 222 
 223   // Create a new JVMState, ready for abstract interpretation.
 224   JVMState(ciMethod* method, JVMState* caller);
 225   JVMState(int stack_size);  // root state; has a null method
 226 
 227   // Access functions for the JVM
 228   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 229   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 230   uint              locoff() const { return _locoff; }
 231   uint              stkoff() const { return _stkoff; }
 232   uint              argoff() const { return _stkoff + _sp; }
 233   uint              monoff() const { return _monoff; }
 234   uint              scloff() const { return _scloff; }
 235   uint              endoff() const { return _endoff; }
 236   uint              oopoff() const { return debug_end(); }
 237 
 238   int            loc_size() const { return stkoff() - locoff(); }
 239   int            stk_size() const { return monoff() - stkoff(); }
 240   int            mon_size() const { return scloff() - monoff(); }
 241   int            scl_size() const { return endoff() - scloff(); }
 242 
 243   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 244   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 245   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 246   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 247 
 248   uint                      sp() const { return _sp; }
 249   int                      bci() const { return _bci; }
 250   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 251   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 252   bool              has_method() const { return _method != NULL; }
 253   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 254   JVMState*             caller() const { return _caller; }
 255   SafePointNode*           map() const { return _map; }
 256   uint                   depth() const { return _depth; }
 257   uint             debug_start() const; // returns locoff of root caller
 258   uint               debug_end() const; // returns endoff of self
 259   uint              debug_size() const {
 260     return loc_size() + sp() + mon_size() + scl_size();
 261   }
 262   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 263 
 264   // Returns the JVM state at the desired depth (1 == root).
 265   JVMState* of_depth(int d) const;
 266 
 267   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 268   bool same_calls_as(const JVMState* that) const;
 269 
 270   // Monitors (monitors are stored as (boxNode, objNode) pairs
 271   enum { logMonitorEdges = 1 };
 272   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 273   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 274   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 275   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 276   bool is_monitor_box(uint off)    const {
 277     assert(is_mon(off), "should be called only for monitor edge");
 278     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 279   }
 280   bool is_monitor_use(uint off)    const { return (is_mon(off)
 281                                                    && is_monitor_box(off))
 282                                              || (caller() && caller()->is_monitor_use(off)); }
 283 
 284   // Initialization functions for the JVM
 285   void              set_locoff(uint off) { _locoff = off; }
 286   void              set_stkoff(uint off) { _stkoff = off; }
 287   void              set_monoff(uint off) { _monoff = off; }
 288   void              set_scloff(uint off) { _scloff = off; }
 289   void              set_endoff(uint off) { _endoff = off; }
 290   void              set_offsets(uint off) {
 291     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 292   }
 293   void              set_map(SafePointNode *map) { _map = map; }
 294   void              set_sp(uint sp) { _sp = sp; }
 295                     // _reexecute is initialized to "undefined" for a new bci
 296   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 297   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 298 
 299   // Miscellaneous utility functions
 300   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 301   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 302   void      set_map_deep(SafePointNode *map);// reset map for all callers
 303   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 304   int       interpreter_frame_size() const;
 305 
 306 #ifndef PRODUCT
 307   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 308   void      dump_spec(outputStream *st) const;
 309   void      dump_on(outputStream* st) const;
 310   void      dump() const {
 311     dump_on(tty);
 312   }
 313 #endif
 314 };
 315 
 316 //------------------------------SafePointNode----------------------------------
 317 // A SafePointNode is a subclass of a MultiNode for convenience (and
 318 // potential code sharing) only - conceptually it is independent of
 319 // the Node semantics.
 320 class SafePointNode : public MultiNode {
 321   virtual uint           cmp( const Node &n ) const;
 322   virtual uint           size_of() const;       // Size is bigger
 323 
 324 public:
 325   SafePointNode(uint edges, JVMState* jvms,
 326                 // A plain safepoint advertises no memory effects (NULL):
 327                 const TypePtr* adr_type = NULL)
 328     : MultiNode( edges ),
 329       _jvms(jvms),
 330       _oop_map(NULL),
 331       _adr_type(adr_type)
 332   {
 333     init_class_id(Class_SafePoint);
 334   }
 335 
 336   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 337   JVMState* const _jvms;      // Pointer to list of JVM State objects
 338   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 339   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 340 
 341   // Many calls take *all* of memory as input,
 342   // but some produce a limited subset of that memory as output.
 343   // The adr_type reports the call's behavior as a store, not a load.
 344 
 345   virtual JVMState* jvms() const { return _jvms; }
 346   void set_jvms(JVMState* s) {
 347     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 348   }
 349   OopMap *oop_map() const { return _oop_map; }
 350   void set_oop_map(OopMap *om) { _oop_map = om; }
 351 
 352  private:
 353   void verify_input(JVMState* jvms, uint idx) const {
 354     assert(verify_jvms(jvms), "jvms must match");
 355     Node* n = in(idx);
 356     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 357            in(idx + 1)->is_top(), "2nd half of long/double");
 358   }
 359 
 360  public:
 361   // Functionality from old debug nodes which has changed
 362   Node *local(JVMState* jvms, uint idx) const {
 363     verify_input(jvms, jvms->locoff() + idx);
 364     return in(jvms->locoff() + idx);
 365   }
 366   Node *stack(JVMState* jvms, uint idx) const {
 367     verify_input(jvms, jvms->stkoff() + idx);
 368     return in(jvms->stkoff() + idx);
 369   }
 370   Node *argument(JVMState* jvms, uint idx) const {
 371     verify_input(jvms, jvms->argoff() + idx);
 372     return in(jvms->argoff() + idx);
 373   }
 374   Node *monitor_box(JVMState* jvms, uint idx) const {
 375     assert(verify_jvms(jvms), "jvms must match");
 376     return in(jvms->monitor_box_offset(idx));
 377   }
 378   Node *monitor_obj(JVMState* jvms, uint idx) const {
 379     assert(verify_jvms(jvms), "jvms must match");
 380     return in(jvms->monitor_obj_offset(idx));
 381   }
 382 
 383   void  set_local(JVMState* jvms, uint idx, Node *c);
 384 
 385   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 386     assert(verify_jvms(jvms), "jvms must match");
 387     set_req(jvms->stkoff() + idx, c);
 388   }
 389   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 390     assert(verify_jvms(jvms), "jvms must match");
 391     set_req(jvms->argoff() + idx, c);
 392   }
 393   void ensure_stack(JVMState* jvms, uint stk_size) {
 394     assert(verify_jvms(jvms), "jvms must match");
 395     int grow_by = (int)stk_size - (int)jvms->stk_size();
 396     if (grow_by > 0)  grow_stack(jvms, grow_by);
 397   }
 398   void grow_stack(JVMState* jvms, uint grow_by);
 399   // Handle monitor stack
 400   void push_monitor( const FastLockNode *lock );
 401   void pop_monitor ();
 402   Node *peek_monitor_box() const;
 403   Node *peek_monitor_obj() const;
 404 
 405   // Access functions for the JVM
 406   Node *control  () const { return in(TypeFunc::Control  ); }
 407   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 408   Node *memory   () const { return in(TypeFunc::Memory   ); }
 409   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 410   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 411 
 412   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 413   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 414   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 415 
 416   MergeMemNode* merged_memory() const {
 417     return in(TypeFunc::Memory)->as_MergeMem();
 418   }
 419 
 420   // The parser marks useless maps as dead when it's done with them:
 421   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 422 
 423   // Exception states bubbling out of subgraphs such as inlined calls
 424   // are recorded here.  (There might be more than one, hence the "next".)
 425   // This feature is used only for safepoints which serve as "maps"
 426   // for JVM states during parsing, intrinsic expansion, etc.
 427   SafePointNode*         next_exception() const;
 428   void               set_next_exception(SafePointNode* n);
 429   bool                   has_exceptions() const { return next_exception() != NULL; }
 430 
 431   // Helper methods to operate on replaced nodes
 432   ReplacedNodes replaced_nodes() const {
 433     return _replaced_nodes;
 434   }
 435 
 436   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 437     _replaced_nodes = replaced_nodes;
 438   }
 439 
 440   void clone_replaced_nodes() {
 441     _replaced_nodes.clone();
 442   }
 443   void record_replaced_node(Node* initial, Node* improved) {
 444     _replaced_nodes.record(initial, improved);
 445   }
 446   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 447     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 448   }
 449   void delete_replaced_nodes() {
 450     _replaced_nodes.reset();
 451   }
 452   void apply_replaced_nodes() {
 453     _replaced_nodes.apply(this);
 454   }
 455   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 456     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 457   }
 458   bool has_replaced_nodes() const {
 459     return !_replaced_nodes.is_empty();
 460   }
 461 
 462   // Standard Node stuff
 463   virtual int            Opcode() const;
 464   virtual bool           pinned() const { return true; }
 465   virtual const Type    *Value( PhaseTransform *phase ) const;
 466   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 467   virtual const TypePtr *adr_type() const { return _adr_type; }
 468   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 469   virtual Node          *Identity( PhaseTransform *phase );
 470   virtual uint           ideal_reg() const { return 0; }
 471   virtual const RegMask &in_RegMask(uint) const;
 472   virtual const RegMask &out_RegMask() const;
 473   virtual uint           match_edge(uint idx) const;
 474 
 475   static  bool           needs_polling_address_input();
 476 
 477 #ifndef PRODUCT
 478   virtual void           dump_spec(outputStream *st) const;
 479 #endif
 480 };
 481 
 482 //------------------------------SafePointScalarObjectNode----------------------
 483 // A SafePointScalarObjectNode represents the state of a scalarized object
 484 // at a safepoint.
 485 
 486 class SafePointScalarObjectNode: public TypeNode {
 487   uint _first_index; // First input edge relative index of a SafePoint node where
 488                      // states of the scalarized object fields are collected.
 489                      // It is relative to the last (youngest) jvms->_scloff.
 490   uint _n_fields;    // Number of non-static fields of the scalarized object.
 491   DEBUG_ONLY(AllocateNode* _alloc;)
 492 
 493   virtual uint hash() const ; // { return NO_HASH; }
 494   virtual uint cmp( const Node &n ) const;
 495 
 496   uint first_index() const { return _first_index; }
 497 
 498 public:
 499   SafePointScalarObjectNode(const TypeOopPtr* tp,
 500 #ifdef ASSERT
 501                             AllocateNode* alloc,
 502 #endif
 503                             uint first_index, uint n_fields);
 504   virtual int Opcode() const;
 505   virtual uint           ideal_reg() const;
 506   virtual const RegMask &in_RegMask(uint) const;
 507   virtual const RegMask &out_RegMask() const;
 508   virtual uint           match_edge(uint idx) const;
 509 
 510   uint first_index(JVMState* jvms) const {
 511     assert(jvms != NULL, "missed JVMS");
 512     return jvms->scloff() + _first_index;
 513   }
 514   uint n_fields()    const { return _n_fields; }
 515 
 516 #ifdef ASSERT
 517   AllocateNode* alloc() const { return _alloc; }
 518 #endif
 519 
 520   virtual uint size_of() const { return sizeof(*this); }
 521 
 522   // Assumes that "this" is an argument to a safepoint node "s", and that
 523   // "new_call" is being created to correspond to "s".  But the difference
 524   // between the start index of the jvmstates of "new_call" and "s" is
 525   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 526   // corresponds appropriately to "this" in "new_call".  Assumes that
 527   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 528   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 529   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
 530 
 531 #ifndef PRODUCT
 532   virtual void              dump_spec(outputStream *st) const;
 533 #endif
 534 };
 535 
 536 
 537 // Simple container for the outgoing projections of a call.  Useful
 538 // for serious surgery on calls.
 539 class CallProjections : public StackObj {
 540 public:
 541   Node* fallthrough_proj;
 542   Node* fallthrough_catchproj;
 543   Node* fallthrough_memproj;
 544   Node* fallthrough_ioproj;
 545   Node* catchall_catchproj;
 546   Node* catchall_memproj;
 547   Node* catchall_ioproj;
 548   Node* resproj;
 549   Node* exobj;
 550 };
 551 
 552 class CallGenerator;
 553 
 554 //------------------------------CallNode---------------------------------------
 555 // Call nodes now subsume the function of debug nodes at callsites, so they
 556 // contain the functionality of a full scope chain of debug nodes.
 557 class CallNode : public SafePointNode {
 558   friend class VMStructs;
 559 public:
 560   const TypeFunc *_tf;        // Function type
 561   address      _entry_point;  // Address of method being called
 562   float        _cnt;          // Estimate of number of times called
 563   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 564 
 565   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 566     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 567       _tf(tf),
 568       _entry_point(addr),
 569       _cnt(COUNT_UNKNOWN),
 570       _generator(NULL)
 571   {
 572     init_class_id(Class_Call);
 573   }
 574 
 575   const TypeFunc* tf()         const { return _tf; }
 576   const address  entry_point() const { return _entry_point; }
 577   const float    cnt()         const { return _cnt; }
 578   CallGenerator* generator()   const { return _generator; }
 579 
 580   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 581   void set_entry_point(address p)       { _entry_point = p; }
 582   void set_cnt(float c)                 { _cnt = c; }
 583   void set_generator(CallGenerator* cg) { _generator = cg; }
 584 
 585   virtual const Type *bottom_type() const;
 586   virtual const Type *Value( PhaseTransform *phase ) const;
 587   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 588   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 589   virtual uint        cmp( const Node &n ) const;
 590   virtual uint        size_of() const = 0;
 591   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 592   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 593   virtual uint        ideal_reg() const { return NotAMachineReg; }
 594   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 595   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 596   virtual bool        guaranteed_safepoint()  { return true; }
 597   // For macro nodes, the JVMState gets modified during expansion. If calls
 598   // use MachConstantBase, it gets modified during matching. So when cloning
 599   // the node the JVMState must be cloned. Default is not to clone.
 600   virtual void clone_jvms(Compile* C) {
 601     if (C->needs_clone_jvms() && jvms() != NULL) {
 602       set_jvms(jvms()->clone_deep(C));
 603       jvms()->set_map_deep(this);
 604     }
 605   }
 606 
 607   // Returns true if the call may modify n
 608   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
 609   // Does this node have a use of n other than in debug information?
 610   bool                has_non_debug_use(Node *n);
 611   // Returns the unique CheckCastPP of a call
 612   // or result projection is there are several CheckCastPP
 613   // or returns NULL if there is no one.
 614   Node *result_cast();
 615   // Does this node returns pointer?
 616   bool returns_pointer() const {
 617     const TypeTuple *r = tf()->range();
 618     return (r->cnt() > TypeFunc::Parms &&
 619             r->field_at(TypeFunc::Parms)->isa_ptr());
 620   }
 621 
 622   // Collect all the interesting edges from a call for use in
 623   // replacing the call by something else.  Used by macro expansion
 624   // and the late inlining support.
 625   void extract_projections(CallProjections* projs, bool separate_io_proj);
 626 
 627   virtual uint match_edge(uint idx) const;
 628 
 629 #ifndef PRODUCT
 630   virtual void        dump_req(outputStream *st = tty) const;
 631   virtual void        dump_spec(outputStream *st) const;
 632 #endif
 633 };
 634 
 635 
 636 //------------------------------CallJavaNode-----------------------------------
 637 // Make a static or dynamic subroutine call node using Java calling
 638 // convention.  (The "Java" calling convention is the compiler's calling
 639 // convention, as opposed to the interpreter's or that of native C.)
 640 class CallJavaNode : public CallNode {
 641   friend class VMStructs;
 642 protected:
 643   virtual uint cmp( const Node &n ) const;
 644   virtual uint size_of() const; // Size is bigger
 645 
 646   bool    _optimized_virtual;
 647   bool    _method_handle_invoke;
 648   ciMethod* _method;            // Method being direct called
 649 public:
 650   const int       _bci;         // Byte Code Index of call byte code
 651   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 652     : CallNode(tf, addr, TypePtr::BOTTOM),
 653       _method(method), _bci(bci),
 654       _optimized_virtual(false),
 655       _method_handle_invoke(false)
 656   {
 657     init_class_id(Class_CallJava);
 658   }
 659 
 660   virtual int   Opcode() const;
 661   ciMethod* method() const                { return _method; }
 662   void  set_method(ciMethod *m)           { _method = m; }
 663   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 664   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 665   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 666   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 667 
 668 #ifndef PRODUCT
 669   virtual void  dump_spec(outputStream *st) const;
 670 #endif
 671 };
 672 
 673 //------------------------------CallStaticJavaNode-----------------------------
 674 // Make a direct subroutine call using Java calling convention (for static
 675 // calls and optimized virtual calls, plus calls to wrappers for run-time
 676 // routines); generates static stub.
 677 class CallStaticJavaNode : public CallJavaNode {
 678   virtual uint cmp( const Node &n ) const;
 679   virtual uint size_of() const; // Size is bigger
 680 public:
 681   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
 682     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 683     init_class_id(Class_CallStaticJava);
 684     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
 685       init_flags(Flag_is_macro);
 686       C->add_macro_node(this);
 687     }
 688     _is_scalar_replaceable = false;
 689     _is_non_escaping = false;
 690   }
 691   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 692                      const TypePtr* adr_type)
 693     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 694     init_class_id(Class_CallStaticJava);
 695     // This node calls a runtime stub, which often has narrow memory effects.
 696     _adr_type = adr_type;
 697     _is_scalar_replaceable = false;
 698     _is_non_escaping = false;
 699   }
 700   const char *_name;      // Runtime wrapper name
 701 
 702   // Result of Escape Analysis
 703   bool _is_scalar_replaceable;
 704   bool _is_non_escaping;
 705 
 706   // If this is an uncommon trap, return the request code, else zero.
 707   int uncommon_trap_request() const;
 708   static int extract_uncommon_trap_request(const Node* call);
 709 
 710   bool is_boxing_method() const {
 711     return is_macro() && (method() != NULL) && method()->is_boxing_method();
 712   }
 713   // Later inlining modifies the JVMState, so we need to clone it
 714   // when the call node is cloned (because it is macro node).
 715   virtual void  clone_jvms(Compile* C) {
 716     if ((jvms() != NULL) && is_boxing_method()) {
 717       set_jvms(jvms()->clone_deep(C));
 718       jvms()->set_map_deep(this);
 719     }
 720   }
 721 
 722   virtual int         Opcode() const;
 723 #ifndef PRODUCT
 724   virtual void        dump_spec(outputStream *st) const;
 725 #endif
 726 };
 727 
 728 //------------------------------CallDynamicJavaNode----------------------------
 729 // Make a dispatched call using Java calling convention.
 730 class CallDynamicJavaNode : public CallJavaNode {
 731   virtual uint cmp( const Node &n ) const;
 732   virtual uint size_of() const; // Size is bigger
 733 public:
 734   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 735     init_class_id(Class_CallDynamicJava);
 736   }
 737 
 738   int _vtable_index;
 739   virtual int   Opcode() const;
 740 #ifndef PRODUCT
 741   virtual void  dump_spec(outputStream *st) const;
 742 #endif
 743 };
 744 
 745 //------------------------------CallRuntimeNode--------------------------------
 746 // Make a direct subroutine call node into compiled C++ code.
 747 class CallRuntimeNode : public CallNode {
 748   virtual uint cmp( const Node &n ) const;
 749   virtual uint size_of() const; // Size is bigger
 750 public:
 751   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 752                   const TypePtr* adr_type)
 753     : CallNode(tf, addr, adr_type),
 754       _name(name)
 755   {
 756     init_class_id(Class_CallRuntime);
 757   }
 758 
 759   const char *_name;            // Printable name, if _method is NULL
 760   virtual int   Opcode() const;
 761   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 762 
 763 #ifndef PRODUCT
 764   virtual void  dump_spec(outputStream *st) const;
 765 #endif
 766 };
 767 
 768 //------------------------------CallLeafNode-----------------------------------
 769 // Make a direct subroutine call node into compiled C++ code, without
 770 // safepoints
 771 class CallLeafNode : public CallRuntimeNode {
 772 public:
 773   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 774                const TypePtr* adr_type)
 775     : CallRuntimeNode(tf, addr, name, adr_type)
 776   {
 777     init_class_id(Class_CallLeaf);
 778   }
 779   virtual int   Opcode() const;
 780   virtual bool        guaranteed_safepoint()  { return false; }
 781 #ifndef PRODUCT
 782   virtual void  dump_spec(outputStream *st) const;
 783 #endif
 784 };
 785 
 786 //------------------------------CallLeafNoFPNode-------------------------------
 787 // CallLeafNode, not using floating point or using it in the same manner as
 788 // the generated code
 789 class CallLeafNoFPNode : public CallLeafNode {
 790 public:
 791   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 792                    const TypePtr* adr_type)
 793     : CallLeafNode(tf, addr, name, adr_type)
 794   {
 795   }
 796   virtual int   Opcode() const;
 797 };
 798 
 799 
 800 //------------------------------Allocate---------------------------------------
 801 // High-level memory allocation
 802 //
 803 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 804 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 805 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 806 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 807 //  order to differentiate the uses of the projection on the normal control path from
 808 //  those on the exception return path.
 809 //
 810 class AllocateNode : public CallNode {
 811 public:
 812   enum {
 813     // Output:
 814     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 815     // Inputs:
 816     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 817     KlassNode,                        // type (maybe dynamic) of the obj.
 818     InitialTest,                      // slow-path test (may be constant)
 819     ALength,                          // array length (or TOP if none)
 820     ParmLimit
 821   };
 822 
 823   static const TypeFunc* alloc_type(const Type* t) {
 824     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 825     fields[AllocSize]   = TypeInt::POS;
 826     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 827     fields[InitialTest] = TypeInt::BOOL;
 828     fields[ALength]     = t;  // length (can be a bad length)
 829 
 830     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 831 
 832     // create result type (range)
 833     fields = TypeTuple::fields(1);
 834     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 835 
 836     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 837 
 838     return TypeFunc::make(domain, range);
 839   }
 840 
 841   // Result of Escape Analysis
 842   bool _is_scalar_replaceable;
 843   bool _is_non_escaping;
 844 
 845   virtual uint size_of() const; // Size is bigger
 846   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 847                Node *size, Node *klass_node, Node *initial_test);
 848   // Expansion modifies the JVMState, so we need to clone it
 849   virtual void  clone_jvms(Compile* C) {
 850     if (jvms() != NULL) {
 851       set_jvms(jvms()->clone_deep(C));
 852       jvms()->set_map_deep(this);
 853     }
 854   }
 855   virtual int Opcode() const;
 856   virtual uint ideal_reg() const { return Op_RegP; }
 857   virtual bool        guaranteed_safepoint()  { return false; }
 858 
 859   // allocations do not modify their arguments
 860   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
 861 
 862   // Pattern-match a possible usage of AllocateNode.
 863   // Return null if no allocation is recognized.
 864   // The operand is the pointer produced by the (possible) allocation.
 865   // It must be a projection of the Allocate or its subsequent CastPP.
 866   // (Note:  This function is defined in file graphKit.cpp, near
 867   // GraphKit::new_instance/new_array, whose output it recognizes.)
 868   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 869   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 870 
 871   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 872   // an offset, which is reported back to the caller.
 873   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 874   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 875                                         intptr_t& offset);
 876 
 877   // Dig the klass operand out of a (possible) allocation site.
 878   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 879     AllocateNode* allo = Ideal_allocation(ptr, phase);
 880     return (allo == NULL) ? NULL : allo->in(KlassNode);
 881   }
 882 
 883   // Conservatively small estimate of offset of first non-header byte.
 884   int minimum_header_size() {
 885     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 886                                 instanceOopDesc::base_offset_in_bytes();
 887   }
 888 
 889   // Return the corresponding initialization barrier (or null if none).
 890   // Walks out edges to find it...
 891   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 892   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 893   InitializeNode* initialization();
 894 
 895   // Convenience for initialization->maybe_set_complete(phase)
 896   bool maybe_set_complete(PhaseGVN* phase);
 897 };
 898 
 899 //------------------------------AllocateArray---------------------------------
 900 //
 901 // High-level array allocation
 902 //
 903 class AllocateArrayNode : public AllocateNode {
 904 public:
 905   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 906                     Node* size, Node* klass_node, Node* initial_test,
 907                     Node* count_val
 908                     )
 909     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 910                    initial_test)
 911   {
 912     init_class_id(Class_AllocateArray);
 913     set_req(AllocateNode::ALength,        count_val);
 914   }
 915   virtual int Opcode() const;
 916   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 917 
 918   // Dig the length operand out of a array allocation site.
 919   Node* Ideal_length() {
 920     return in(AllocateNode::ALength);
 921   }
 922 
 923   // Dig the length operand out of a array allocation site and narrow the
 924   // type with a CastII, if necesssary
 925   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 926 
 927   // Pattern-match a possible usage of AllocateArrayNode.
 928   // Return null if no allocation is recognized.
 929   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 930     AllocateNode* allo = Ideal_allocation(ptr, phase);
 931     return (allo == NULL || !allo->is_AllocateArray())
 932            ? NULL : allo->as_AllocateArray();
 933   }
 934 };
 935 
 936 //------------------------------AbstractLockNode-----------------------------------
 937 class AbstractLockNode: public CallNode {
 938 private:
 939   enum {
 940     Regular = 0,  // Normal lock
 941     NonEscObj,    // Lock is used for non escaping object
 942     Coarsened,    // Lock was coarsened
 943     Nested        // Nested lock
 944   } _kind;
 945 #ifndef PRODUCT
 946   NamedCounter* _counter;
 947 #endif
 948 
 949 protected:
 950   // helper functions for lock elimination
 951   //
 952 
 953   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 954                             GrowableArray<AbstractLockNode*> &lock_ops);
 955   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 956                                        GrowableArray<AbstractLockNode*> &lock_ops);
 957   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 958                                GrowableArray<AbstractLockNode*> &lock_ops);
 959   LockNode *find_matching_lock(UnlockNode* unlock);
 960 
 961   // Update the counter to indicate that this lock was eliminated.
 962   void set_eliminated_lock_counter() PRODUCT_RETURN;
 963 
 964 public:
 965   AbstractLockNode(const TypeFunc *tf)
 966     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 967       _kind(Regular)
 968   {
 969 #ifndef PRODUCT
 970     _counter = NULL;
 971 #endif
 972   }
 973   virtual int Opcode() const = 0;
 974   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 975   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 976   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 977   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
 978 
 979   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 980 
 981   virtual uint size_of() const { return sizeof(*this); }
 982 
 983   bool is_eliminated()  const { return (_kind != Regular); }
 984   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
 985   bool is_coarsened()   const { return (_kind == Coarsened); }
 986   bool is_nested()      const { return (_kind == Nested); }
 987 
 988   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
 989   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
 990   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
 991 
 992   // locking does not modify its arguments
 993   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
 994 
 995 #ifndef PRODUCT
 996   void create_lock_counter(JVMState* s);
 997   NamedCounter* counter() const { return _counter; }
 998 #endif
 999 };
1000 
1001 //------------------------------Lock---------------------------------------
1002 // High-level lock operation
1003 //
1004 // This is a subclass of CallNode because it is a macro node which gets expanded
1005 // into a code sequence containing a call.  This node takes 3 "parameters":
1006 //    0  -  object to lock
1007 //    1 -   a BoxLockNode
1008 //    2 -   a FastLockNode
1009 //
1010 class LockNode : public AbstractLockNode {
1011 public:
1012 
1013   static const TypeFunc *lock_type() {
1014     // create input type (domain)
1015     const Type **fields = TypeTuple::fields(3);
1016     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1017     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1018     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1019     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1020 
1021     // create result type (range)
1022     fields = TypeTuple::fields(0);
1023 
1024     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1025 
1026     return TypeFunc::make(domain,range);
1027   }
1028 
1029   virtual int Opcode() const;
1030   virtual uint size_of() const; // Size is bigger
1031   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1032     init_class_id(Class_Lock);
1033     init_flags(Flag_is_macro);
1034     C->add_macro_node(this);
1035   }
1036   virtual bool        guaranteed_safepoint()  { return false; }
1037 
1038   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1039   // Expansion modifies the JVMState, so we need to clone it
1040   virtual void  clone_jvms(Compile* C) {
1041     if (jvms() != NULL) {
1042       set_jvms(jvms()->clone_deep(C));
1043       jvms()->set_map_deep(this);
1044     }
1045   }
1046 
1047   bool is_nested_lock_region(); // Is this Lock nested?
1048 };
1049 
1050 //------------------------------Unlock---------------------------------------
1051 // High-level unlock operation
1052 class UnlockNode : public AbstractLockNode {
1053 public:
1054   virtual int Opcode() const;
1055   virtual uint size_of() const; // Size is bigger
1056   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1057     init_class_id(Class_Unlock);
1058     init_flags(Flag_is_macro);
1059     C->add_macro_node(this);
1060   }
1061   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1062   // unlock is never a safepoint
1063   virtual bool        guaranteed_safepoint()  { return false; }
1064 };
1065 
1066 class GraphKit;
1067 
1068 class ArrayCopyNode : public CallNode {
1069 private:
1070 
1071   // What kind of arraycopy variant is this?
1072   enum {
1073     None,            // not set yet
1074     ArrayCopy,       // System.arraycopy()
1075     CloneBasic,      // A clone that can be copied by 64 bit chunks
1076     CloneOop,        // An oop array clone
1077     CopyOf,          // Arrays.copyOf()
1078     CopyOfRange      // Arrays.copyOfRange()
1079   } _kind;
1080 
1081 #ifndef PRODUCT
1082   static const char* _kind_names[CopyOfRange+1];
1083 #endif
1084   // Is the alloc obtained with
1085   // AllocateArrayNode::Ideal_array_allocation() tighly coupled
1086   // (arraycopy follows immediately the allocation)?
1087   // We cache the result of LibraryCallKit::tightly_coupled_allocation
1088   // here because it's much easier to find whether there's a tightly
1089   // couple allocation at parse time than at macro expansion time. At
1090   // macro expansion time, for every use of the allocation node we
1091   // would need to figure out whether it happens after the arraycopy (and
1092   // can be ignored) or between the allocation and the arraycopy. At
1093   // parse time, it's straightforward because whatever happens after
1094   // the arraycopy is not parsed yet so doesn't exist when
1095   // LibraryCallKit::tightly_coupled_allocation() is called.
1096   bool _alloc_tightly_coupled;
1097 
1098   bool _arguments_validated;
1099 
1100   static const TypeFunc* arraycopy_type() {
1101     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
1102     fields[Src]       = TypeInstPtr::BOTTOM;
1103     fields[SrcPos]    = TypeInt::INT;
1104     fields[Dest]      = TypeInstPtr::BOTTOM;
1105     fields[DestPos]   = TypeInt::INT;
1106     fields[Length]    = TypeInt::INT;
1107     fields[SrcLen]    = TypeInt::INT;
1108     fields[DestLen]   = TypeInt::INT;
1109     fields[SrcKlass]  = TypeKlassPtr::BOTTOM;
1110     fields[DestKlass] = TypeKlassPtr::BOTTOM;
1111     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
1112 
1113     // create result type (range)
1114     fields = TypeTuple::fields(0);
1115 
1116     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
1117 
1118     return TypeFunc::make(domain, range);
1119   }
1120 
1121   ArrayCopyNode(Compile* C, bool alloc_tightly_coupled);
1122 
1123   int get_count(PhaseGVN *phase) const;
1124   static const TypePtr* get_address_type(PhaseGVN *phase, Node* n);
1125 
1126   Node* try_clone_instance(PhaseGVN *phase, bool can_reshape, int count);
1127   bool finish_transform(PhaseGVN *phase, bool can_reshape,
1128                         Node* ctl, Node *mem);
1129 
1130 public:
1131 
1132   enum {
1133     Src   = TypeFunc::Parms,
1134     SrcPos,
1135     Dest,
1136     DestPos,
1137     Length,
1138     SrcLen,
1139     DestLen,
1140     SrcKlass,
1141     DestKlass,
1142     ParmLimit
1143   };
1144 
1145   static ArrayCopyNode* make(GraphKit* kit, bool may_throw,
1146                              Node* src, Node* src_offset,
1147                              Node* dest,  Node* dest_offset,
1148                              Node* length,
1149                              bool alloc_tightly_coupled,
1150                              Node* src_klass = NULL, Node* dest_klass = NULL,
1151                              Node* src_length = NULL, Node* dest_length = NULL);
1152 
1153   void connect_outputs(GraphKit* kit);
1154 
1155   bool is_arraycopy()             const  { assert(_kind != None, "should bet set"); return _kind == ArrayCopy; }
1156   bool is_arraycopy_validated()   const  { assert(_kind != None, "should bet set"); return _kind == ArrayCopy && _arguments_validated; }
1157   bool is_clonebasic()            const  { assert(_kind != None, "should bet set"); return _kind == CloneBasic; }
1158   bool is_cloneoop()              const  { assert(_kind != None, "should bet set"); return _kind == CloneOop; }
1159   bool is_copyof()                const  { assert(_kind != None, "should bet set"); return _kind == CopyOf; }
1160   bool is_copyofrange()           const  { assert(_kind != None, "should bet set"); return _kind == CopyOfRange; }
1161 
1162   void set_arraycopy(bool validated)   { assert(_kind == None, "shouldn't bet set yet"); _kind = ArrayCopy; _arguments_validated = validated; }
1163   void set_clonebasic()                { assert(_kind == None, "shouldn't bet set yet"); _kind = CloneBasic; }
1164   void set_cloneoop()                  { assert(_kind == None, "shouldn't bet set yet"); _kind = CloneOop; }
1165   void set_copyof()                    { assert(_kind == None, "shouldn't bet set yet"); _kind = CopyOf; _arguments_validated = false; }
1166   void set_copyofrange()               { assert(_kind == None, "shouldn't bet set yet"); _kind = CopyOfRange; _arguments_validated = false; }
1167 
1168   virtual int Opcode() const;
1169   virtual uint size_of() const; // Size is bigger
1170   virtual bool guaranteed_safepoint()  { return false; }
1171   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1172 
1173   bool is_alloc_tightly_coupled() const { return _alloc_tightly_coupled; }
1174 
1175 #ifndef PRODUCT
1176   virtual void dump_spec(outputStream *st) const;
1177 #endif
1178 };
1179 #endif // SHARE_VM_OPTO_CALLNODE_HPP