1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "utilities/bitMap.inline.hpp"
  35 #ifdef TARGET_ARCH_x86
  36 # include "vmreg_x86.inline.hpp"
  37 #endif
  38 #ifdef TARGET_ARCH_sparc
  39 # include "vmreg_sparc.inline.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_zero
  42 # include "vmreg_zero.inline.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_arm
  45 # include "vmreg_arm.inline.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_ppc
  48 # include "vmreg_ppc.inline.hpp"
  49 #endif
  50 
  51 
  52 #ifndef PRODUCT
  53 
  54   static LinearScanStatistic _stat_before_alloc;
  55   static LinearScanStatistic _stat_after_asign;
  56   static LinearScanStatistic _stat_final;
  57 
  58   static LinearScanTimers _total_timer;
  59 
  60   // helper macro for short definition of timer
  61   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  62 
  63   // helper macro for short definition of trace-output inside code
  64   #define TRACE_LINEAR_SCAN(level, code)       \
  65     if (TraceLinearScanLevel >= level) {       \
  66       code;                                    \
  67     }
  68 
  69 #else
  70 
  71   #define TIME_LINEAR_SCAN(timer_name)
  72   #define TRACE_LINEAR_SCAN(level, code)
  73 
  74 #endif
  75 
  76 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  77 #ifdef _LP64
  78 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
  79 #else
  80 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
  81 #endif
  82 
  83 
  84 // Implementation of LinearScan
  85 
  86 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  87  : _compilation(ir->compilation())
  88  , _ir(ir)
  89  , _gen(gen)
  90  , _frame_map(frame_map)
  91  , _num_virtual_regs(gen->max_virtual_register_number())
  92  , _has_fpu_registers(false)
  93  , _num_calls(-1)
  94  , _max_spills(0)
  95  , _unused_spill_slot(-1)
  96  , _intervals(0)   // initialized later with correct length
  97  , _new_intervals_from_allocation(new IntervalList())
  98  , _sorted_intervals(NULL)
  99  , _needs_full_resort(false)
 100  , _lir_ops(0)     // initialized later with correct length
 101  , _block_of_op(0) // initialized later with correct length
 102  , _has_info(0)
 103  , _has_call(0)
 104  , _scope_value_cache(0) // initialized later with correct length
 105  , _interval_in_loop(0, 0) // initialized later with correct length
 106  , _cached_blocks(*ir->linear_scan_order())
 107 #ifdef X86
 108  , _fpu_stack_allocator(NULL)
 109 #endif
 110 {
 111   assert(this->ir() != NULL,          "check if valid");
 112   assert(this->compilation() != NULL, "check if valid");
 113   assert(this->gen() != NULL,         "check if valid");
 114   assert(this->frame_map() != NULL,   "check if valid");
 115 }
 116 
 117 
 118 // ********** functions for converting LIR-Operands to register numbers
 119 //
 120 // Emulate a flat register file comprising physical integer registers,
 121 // physical floating-point registers and virtual registers, in that order.
 122 // Virtual registers already have appropriate numbers, since V0 is
 123 // the number of physical registers.
 124 // Returns -1 for hi word if opr is a single word operand.
 125 //
 126 // Note: the inverse operation (calculating an operand for register numbers)
 127 //       is done in calc_operand_for_interval()
 128 
 129 int LinearScan::reg_num(LIR_Opr opr) {
 130   assert(opr->is_register(), "should not call this otherwise");
 131 
 132   if (opr->is_virtual_register()) {
 133     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 134     return opr->vreg_number();
 135   } else if (opr->is_single_cpu()) {
 136     return opr->cpu_regnr();
 137   } else if (opr->is_double_cpu()) {
 138     return opr->cpu_regnrLo();
 139 #ifdef X86
 140   } else if (opr->is_single_xmm()) {
 141     return opr->fpu_regnr() + pd_first_xmm_reg;
 142   } else if (opr->is_double_xmm()) {
 143     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 144 #endif
 145   } else if (opr->is_single_fpu()) {
 146     return opr->fpu_regnr() + pd_first_fpu_reg;
 147   } else if (opr->is_double_fpu()) {
 148     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 149   } else {
 150     ShouldNotReachHere();
 151     return -1;
 152   }
 153 }
 154 
 155 int LinearScan::reg_numHi(LIR_Opr opr) {
 156   assert(opr->is_register(), "should not call this otherwise");
 157 
 158   if (opr->is_virtual_register()) {
 159     return -1;
 160   } else if (opr->is_single_cpu()) {
 161     return -1;
 162   } else if (opr->is_double_cpu()) {
 163     return opr->cpu_regnrHi();
 164 #ifdef X86
 165   } else if (opr->is_single_xmm()) {
 166     return -1;
 167   } else if (opr->is_double_xmm()) {
 168     return -1;
 169 #endif
 170   } else if (opr->is_single_fpu()) {
 171     return -1;
 172   } else if (opr->is_double_fpu()) {
 173     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 174   } else {
 175     ShouldNotReachHere();
 176     return -1;
 177   }
 178 }
 179 
 180 
 181 // ********** functions for classification of intervals
 182 
 183 bool LinearScan::is_precolored_interval(const Interval* i) {
 184   return i->reg_num() < LinearScan::nof_regs;
 185 }
 186 
 187 bool LinearScan::is_virtual_interval(const Interval* i) {
 188   return i->reg_num() >= LIR_OprDesc::vreg_base;
 189 }
 190 
 191 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 192   return i->reg_num() < LinearScan::nof_cpu_regs;
 193 }
 194 
 195 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 196 #if defined(__SOFTFP__) || defined(E500V2)
 197   return i->reg_num() >= LIR_OprDesc::vreg_base;
 198 #else
 199   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 200 #endif // __SOFTFP__ or E500V2
 201 }
 202 
 203 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 204   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 205 }
 206 
 207 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 208 #if defined(__SOFTFP__) || defined(E500V2)
 209   return false;
 210 #else
 211   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 212 #endif // __SOFTFP__ or E500V2
 213 }
 214 
 215 bool LinearScan::is_in_fpu_register(const Interval* i) {
 216   // fixed intervals not needed for FPU stack allocation
 217   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 218 }
 219 
 220 bool LinearScan::is_oop_interval(const Interval* i) {
 221   // fixed intervals never contain oops
 222   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 223 }
 224 
 225 
 226 // ********** General helper functions
 227 
 228 // compute next unused stack index that can be used for spilling
 229 int LinearScan::allocate_spill_slot(bool double_word) {
 230   int spill_slot;
 231   if (double_word) {
 232     if ((_max_spills & 1) == 1) {
 233       // alignment of double-word values
 234       // the hole because of the alignment is filled with the next single-word value
 235       assert(_unused_spill_slot == -1, "wasting a spill slot");
 236       _unused_spill_slot = _max_spills;
 237       _max_spills++;
 238     }
 239     spill_slot = _max_spills;
 240     _max_spills += 2;
 241 
 242   } else if (_unused_spill_slot != -1) {
 243     // re-use hole that was the result of a previous double-word alignment
 244     spill_slot = _unused_spill_slot;
 245     _unused_spill_slot = -1;
 246 
 247   } else {
 248     spill_slot = _max_spills;
 249     _max_spills++;
 250   }
 251 
 252   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 253 
 254   // the class OopMapValue uses only 11 bits for storing the name of the
 255   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 256   // that is not reported in product builds. Prevent this by checking the
 257   // spill slot here (altough this value and the later used location name
 258   // are slightly different)
 259   if (result > 2000) {
 260     bailout("too many stack slots used");
 261   }
 262 
 263   return result;
 264 }
 265 
 266 void LinearScan::assign_spill_slot(Interval* it) {
 267   // assign the canonical spill slot of the parent (if a part of the interval
 268   // is already spilled) or allocate a new spill slot
 269   if (it->canonical_spill_slot() >= 0) {
 270     it->assign_reg(it->canonical_spill_slot());
 271   } else {
 272     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 273     it->set_canonical_spill_slot(spill);
 274     it->assign_reg(spill);
 275   }
 276 }
 277 
 278 void LinearScan::propagate_spill_slots() {
 279   if (!frame_map()->finalize_frame(max_spills())) {
 280     bailout("frame too large");
 281   }
 282 }
 283 
 284 // create a new interval with a predefined reg_num
 285 // (only used for parent intervals that are created during the building phase)
 286 Interval* LinearScan::create_interval(int reg_num) {
 287   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 288 
 289   Interval* interval = new Interval(reg_num);
 290   _intervals.at_put(reg_num, interval);
 291 
 292   // assign register number for precolored intervals
 293   if (reg_num < LIR_OprDesc::vreg_base) {
 294     interval->assign_reg(reg_num);
 295   }
 296   return interval;
 297 }
 298 
 299 // assign a new reg_num to the interval and append it to the list of intervals
 300 // (only used for child intervals that are created during register allocation)
 301 void LinearScan::append_interval(Interval* it) {
 302   it->set_reg_num(_intervals.length());
 303   _intervals.append(it);
 304   _new_intervals_from_allocation->append(it);
 305 }
 306 
 307 // copy the vreg-flags if an interval is split
 308 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 309   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 310     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 311   }
 312   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 313     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 314   }
 315 
 316   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 317   //       intervals (only the very beginning of the interval must be in memory)
 318 }
 319 
 320 
 321 // ********** spill move optimization
 322 // eliminate moves from register to stack if stack slot is known to be correct
 323 
 324 // called during building of intervals
 325 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 326   assert(interval->is_split_parent(), "can only be called for split parents");
 327 
 328   switch (interval->spill_state()) {
 329     case noDefinitionFound:
 330       assert(interval->spill_definition_pos() == -1, "must no be set before");
 331       interval->set_spill_definition_pos(def_pos);
 332       interval->set_spill_state(oneDefinitionFound);
 333       break;
 334 
 335     case oneDefinitionFound:
 336       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 337       if (def_pos < interval->spill_definition_pos() - 2) {
 338         // second definition found, so no spill optimization possible for this interval
 339         interval->set_spill_state(noOptimization);
 340       } else {
 341         // two consecutive definitions (because of two-operand LIR form)
 342         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 343       }
 344       break;
 345 
 346     case noOptimization:
 347       // nothing to do
 348       break;
 349 
 350     default:
 351       assert(false, "other states not allowed at this time");
 352   }
 353 }
 354 
 355 // called during register allocation
 356 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 357   switch (interval->spill_state()) {
 358     case oneDefinitionFound: {
 359       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 360       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 361 
 362       if (def_loop_depth < spill_loop_depth) {
 363         // the loop depth of the spilling position is higher then the loop depth
 364         // at the definition of the interval -> move write to memory out of loop
 365         // by storing at definitin of the interval
 366         interval->set_spill_state(storeAtDefinition);
 367       } else {
 368         // the interval is currently spilled only once, so for now there is no
 369         // reason to store the interval at the definition
 370         interval->set_spill_state(oneMoveInserted);
 371       }
 372       break;
 373     }
 374 
 375     case oneMoveInserted: {
 376       // the interval is spilled more then once, so it is better to store it to
 377       // memory at the definition
 378       interval->set_spill_state(storeAtDefinition);
 379       break;
 380     }
 381 
 382     case storeAtDefinition:
 383     case startInMemory:
 384     case noOptimization:
 385     case noDefinitionFound:
 386       // nothing to do
 387       break;
 388 
 389     default:
 390       assert(false, "other states not allowed at this time");
 391   }
 392 }
 393 
 394 
 395 bool LinearScan::must_store_at_definition(const Interval* i) {
 396   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 397 }
 398 
 399 // called once before asignment of register numbers
 400 void LinearScan::eliminate_spill_moves() {
 401   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 402   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 403 
 404   // collect all intervals that must be stored after their definion.
 405   // the list is sorted by Interval::spill_definition_pos
 406   Interval* interval;
 407   Interval* temp_list;
 408   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 409 
 410 #ifdef ASSERT
 411   Interval* prev = NULL;
 412   Interval* temp = interval;
 413   while (temp != Interval::end()) {
 414     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 415     if (prev != NULL) {
 416       assert(temp->from() >= prev->from(), "intervals not sorted");
 417       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 418     }
 419 
 420     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 421     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 422     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 423 
 424     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 425 
 426     temp = temp->next();
 427   }
 428 #endif
 429 
 430   LIR_InsertionBuffer insertion_buffer;
 431   int num_blocks = block_count();
 432   for (int i = 0; i < num_blocks; i++) {
 433     BlockBegin* block = block_at(i);
 434     LIR_OpList* instructions = block->lir()->instructions_list();
 435     int         num_inst = instructions->length();
 436     bool        has_new = false;
 437 
 438     // iterate all instructions of the block. skip the first because it is always a label
 439     for (int j = 1; j < num_inst; j++) {
 440       LIR_Op* op = instructions->at(j);
 441       int op_id = op->id();
 442 
 443       if (op_id == -1) {
 444         // remove move from register to stack if the stack slot is guaranteed to be correct.
 445         // only moves that have been inserted by LinearScan can be removed.
 446         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 447         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 448         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 449 
 450         LIR_Op1* op1 = (LIR_Op1*)op;
 451         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 452 
 453         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 454           // move target is a stack slot that is always correct, so eliminate instruction
 455           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 456           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 457         }
 458 
 459       } else {
 460         // insert move from register to stack just after the beginning of the interval
 461         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 462         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 463 
 464         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 465           if (!has_new) {
 466             // prepare insertion buffer (appended when all instructions of the block are processed)
 467             insertion_buffer.init(block->lir());
 468             has_new = true;
 469           }
 470 
 471           LIR_Opr from_opr = operand_for_interval(interval);
 472           LIR_Opr to_opr = canonical_spill_opr(interval);
 473           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 474           assert(to_opr->is_stack(), "to operand must be a stack slot");
 475 
 476           insertion_buffer.move(j, from_opr, to_opr);
 477           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 478 
 479           interval = interval->next();
 480         }
 481       }
 482     } // end of instruction iteration
 483 
 484     if (has_new) {
 485       block->lir()->append(&insertion_buffer);
 486     }
 487   } // end of block iteration
 488 
 489   assert(interval == Interval::end(), "missed an interval");
 490 }
 491 
 492 
 493 // ********** Phase 1: number all instructions in all blocks
 494 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 495 
 496 void LinearScan::number_instructions() {
 497   {
 498     // dummy-timer to measure the cost of the timer itself
 499     // (this time is then subtracted from all other timers to get the real value)
 500     TIME_LINEAR_SCAN(timer_do_nothing);
 501   }
 502   TIME_LINEAR_SCAN(timer_number_instructions);
 503 
 504   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 505   int num_blocks = block_count();
 506   int num_instructions = 0;
 507   int i;
 508   for (i = 0; i < num_blocks; i++) {
 509     num_instructions += block_at(i)->lir()->instructions_list()->length();
 510   }
 511 
 512   // initialize with correct length
 513   _lir_ops = LIR_OpArray(num_instructions);
 514   _block_of_op = BlockBeginArray(num_instructions);
 515 
 516   int op_id = 0;
 517   int idx = 0;
 518 
 519   for (i = 0; i < num_blocks; i++) {
 520     BlockBegin* block = block_at(i);
 521     block->set_first_lir_instruction_id(op_id);
 522     LIR_OpList* instructions = block->lir()->instructions_list();
 523 
 524     int num_inst = instructions->length();
 525     for (int j = 0; j < num_inst; j++) {
 526       LIR_Op* op = instructions->at(j);
 527       op->set_id(op_id);
 528 
 529       _lir_ops.at_put(idx, op);
 530       _block_of_op.at_put(idx, block);
 531       assert(lir_op_with_id(op_id) == op, "must match");
 532 
 533       idx++;
 534       op_id += 2; // numbering of lir_ops by two
 535     }
 536     block->set_last_lir_instruction_id(op_id - 2);
 537   }
 538   assert(idx == num_instructions, "must match");
 539   assert(idx * 2 == op_id, "must match");
 540 
 541   _has_call = BitMap(num_instructions); _has_call.clear();
 542   _has_info = BitMap(num_instructions); _has_info.clear();
 543 }
 544 
 545 
 546 // ********** Phase 2: compute local live sets separately for each block
 547 // (sets live_gen and live_kill for each block)
 548 
 549 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 550   LIR_Opr opr = value->operand();
 551   Constant* con = value->as_Constant();
 552 
 553   // check some asumptions about debug information
 554   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 555   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 556   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 557 
 558   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 559     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 560     int reg = opr->vreg_number();
 561     if (!live_kill.at(reg)) {
 562       live_gen.set_bit(reg);
 563       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 564     }
 565   }
 566 }
 567 
 568 
 569 void LinearScan::compute_local_live_sets() {
 570   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 571 
 572   int  num_blocks = block_count();
 573   int  live_size = live_set_size();
 574   bool local_has_fpu_registers = false;
 575   int  local_num_calls = 0;
 576   LIR_OpVisitState visitor;
 577 
 578   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 579   local_interval_in_loop.clear();
 580 
 581   // iterate all blocks
 582   for (int i = 0; i < num_blocks; i++) {
 583     BlockBegin* block = block_at(i);
 584 
 585     BitMap live_gen(live_size);  live_gen.clear();
 586     BitMap live_kill(live_size); live_kill.clear();
 587 
 588     if (block->is_set(BlockBegin::exception_entry_flag)) {
 589       // Phi functions at the begin of an exception handler are
 590       // implicitly defined (= killed) at the beginning of the block.
 591       for_each_phi_fun(block, phi,
 592         live_kill.set_bit(phi->operand()->vreg_number())
 593       );
 594     }
 595 
 596     LIR_OpList* instructions = block->lir()->instructions_list();
 597     int num_inst = instructions->length();
 598 
 599     // iterate all instructions of the block. skip the first because it is always a label
 600     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 601     for (int j = 1; j < num_inst; j++) {
 602       LIR_Op* op = instructions->at(j);
 603 
 604       // visit operation to collect all operands
 605       visitor.visit(op);
 606 
 607       if (visitor.has_call()) {
 608         _has_call.set_bit(op->id() >> 1);
 609         local_num_calls++;
 610       }
 611       if (visitor.info_count() > 0) {
 612         _has_info.set_bit(op->id() >> 1);
 613       }
 614 
 615       // iterate input operands of instruction
 616       int k, n, reg;
 617       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 618       for (k = 0; k < n; k++) {
 619         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 620         assert(opr->is_register(), "visitor should only return register operands");
 621 
 622         if (opr->is_virtual_register()) {
 623           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 624           reg = opr->vreg_number();
 625           if (!live_kill.at(reg)) {
 626             live_gen.set_bit(reg);
 627             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 628           }
 629           if (block->loop_index() >= 0) {
 630             local_interval_in_loop.set_bit(reg, block->loop_index());
 631           }
 632           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 633         }
 634 
 635 #ifdef ASSERT
 636         // fixed intervals are never live at block boundaries, so
 637         // they need not be processed in live sets.
 638         // this is checked by these assertions to be sure about it.
 639         // the entry block may have incoming values in registers, which is ok.
 640         if (!opr->is_virtual_register() && block != ir()->start()) {
 641           reg = reg_num(opr);
 642           if (is_processed_reg_num(reg)) {
 643             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 644           }
 645           reg = reg_numHi(opr);
 646           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 647             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 648           }
 649         }
 650 #endif
 651       }
 652 
 653       // Add uses of live locals from interpreter's point of view for proper debug information generation
 654       n = visitor.info_count();
 655       for (k = 0; k < n; k++) {
 656         CodeEmitInfo* info = visitor.info_at(k);
 657         ValueStack* stack = info->stack();
 658         for_each_state_value(stack, value,
 659           set_live_gen_kill(value, op, live_gen, live_kill)
 660         );
 661       }
 662 
 663       // iterate temp operands of instruction
 664       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 665       for (k = 0; k < n; k++) {
 666         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 667         assert(opr->is_register(), "visitor should only return register operands");
 668 
 669         if (opr->is_virtual_register()) {
 670           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 671           reg = opr->vreg_number();
 672           live_kill.set_bit(reg);
 673           if (block->loop_index() >= 0) {
 674             local_interval_in_loop.set_bit(reg, block->loop_index());
 675           }
 676           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 677         }
 678 
 679 #ifdef ASSERT
 680         // fixed intervals are never live at block boundaries, so
 681         // they need not be processed in live sets
 682         // process them only in debug mode so that this can be checked
 683         if (!opr->is_virtual_register()) {
 684           reg = reg_num(opr);
 685           if (is_processed_reg_num(reg)) {
 686             live_kill.set_bit(reg_num(opr));
 687           }
 688           reg = reg_numHi(opr);
 689           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 690             live_kill.set_bit(reg);
 691           }
 692         }
 693 #endif
 694       }
 695 
 696       // iterate output operands of instruction
 697       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 698       for (k = 0; k < n; k++) {
 699         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 700         assert(opr->is_register(), "visitor should only return register operands");
 701 
 702         if (opr->is_virtual_register()) {
 703           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 704           reg = opr->vreg_number();
 705           live_kill.set_bit(reg);
 706           if (block->loop_index() >= 0) {
 707             local_interval_in_loop.set_bit(reg, block->loop_index());
 708           }
 709           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 710         }
 711 
 712 #ifdef ASSERT
 713         // fixed intervals are never live at block boundaries, so
 714         // they need not be processed in live sets
 715         // process them only in debug mode so that this can be checked
 716         if (!opr->is_virtual_register()) {
 717           reg = reg_num(opr);
 718           if (is_processed_reg_num(reg)) {
 719             live_kill.set_bit(reg_num(opr));
 720           }
 721           reg = reg_numHi(opr);
 722           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 723             live_kill.set_bit(reg);
 724           }
 725         }
 726 #endif
 727       }
 728     } // end of instruction iteration
 729 
 730     block->set_live_gen (live_gen);
 731     block->set_live_kill(live_kill);
 732     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 733     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 734 
 735     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 736     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 737   } // end of block iteration
 738 
 739   // propagate local calculated information into LinearScan object
 740   _has_fpu_registers = local_has_fpu_registers;
 741   compilation()->set_has_fpu_code(local_has_fpu_registers);
 742 
 743   _num_calls = local_num_calls;
 744   _interval_in_loop = local_interval_in_loop;
 745 }
 746 
 747 
 748 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 749 // (sets live_in and live_out for each block)
 750 
 751 void LinearScan::compute_global_live_sets() {
 752   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 753 
 754   int  num_blocks = block_count();
 755   bool change_occurred;
 756   bool change_occurred_in_block;
 757   int  iteration_count = 0;
 758   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 759 
 760   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 761   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 762   // Exception handlers must be processed because not all live values are
 763   // present in the state array, e.g. because of global value numbering
 764   do {
 765     change_occurred = false;
 766 
 767     // iterate all blocks in reverse order
 768     for (int i = num_blocks - 1; i >= 0; i--) {
 769       BlockBegin* block = block_at(i);
 770 
 771       change_occurred_in_block = false;
 772 
 773       // live_out(block) is the union of live_in(sux), for successors sux of block
 774       int n = block->number_of_sux();
 775       int e = block->number_of_exception_handlers();
 776       if (n + e > 0) {
 777         // block has successors
 778         if (n > 0) {
 779           live_out.set_from(block->sux_at(0)->live_in());
 780           for (int j = 1; j < n; j++) {
 781             live_out.set_union(block->sux_at(j)->live_in());
 782           }
 783         } else {
 784           live_out.clear();
 785         }
 786         for (int j = 0; j < e; j++) {
 787           live_out.set_union(block->exception_handler_at(j)->live_in());
 788         }
 789 
 790         if (!block->live_out().is_same(live_out)) {
 791           // A change occurred.  Swap the old and new live out sets to avoid copying.
 792           BitMap temp = block->live_out();
 793           block->set_live_out(live_out);
 794           live_out = temp;
 795 
 796           change_occurred = true;
 797           change_occurred_in_block = true;
 798         }
 799       }
 800 
 801       if (iteration_count == 0 || change_occurred_in_block) {
 802         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 803         // note: live_in has to be computed only in first iteration or if live_out has changed!
 804         BitMap live_in = block->live_in();
 805         live_in.set_from(block->live_out());
 806         live_in.set_difference(block->live_kill());
 807         live_in.set_union(block->live_gen());
 808       }
 809 
 810 #ifndef PRODUCT
 811       if (TraceLinearScanLevel >= 4) {
 812         char c = ' ';
 813         if (iteration_count == 0 || change_occurred_in_block) {
 814           c = '*';
 815         }
 816         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 817         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 818       }
 819 #endif
 820     }
 821     iteration_count++;
 822 
 823     if (change_occurred && iteration_count > 50) {
 824       BAILOUT("too many iterations in compute_global_live_sets");
 825     }
 826   } while (change_occurred);
 827 
 828 
 829 #ifdef ASSERT
 830   // check that fixed intervals are not live at block boundaries
 831   // (live set must be empty at fixed intervals)
 832   for (int i = 0; i < num_blocks; i++) {
 833     BlockBegin* block = block_at(i);
 834     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 835       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 836       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 837       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 838     }
 839   }
 840 #endif
 841 
 842   // check that the live_in set of the first block is empty
 843   BitMap live_in_args(ir()->start()->live_in().size());
 844   live_in_args.clear();
 845   if (!ir()->start()->live_in().is_same(live_in_args)) {
 846 #ifdef ASSERT
 847     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 848     tty->print_cr("affected registers:");
 849     print_bitmap(ir()->start()->live_in());
 850 
 851     // print some additional information to simplify debugging
 852     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 853       if (ir()->start()->live_in().at(i)) {
 854         Instruction* instr = gen()->instruction_for_vreg(i);
 855         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 856 
 857         for (int j = 0; j < num_blocks; j++) {
 858           BlockBegin* block = block_at(j);
 859           if (block->live_gen().at(i)) {
 860             tty->print_cr("  used in block B%d", block->block_id());
 861           }
 862           if (block->live_kill().at(i)) {
 863             tty->print_cr("  defined in block B%d", block->block_id());
 864           }
 865         }
 866       }
 867     }
 868 
 869 #endif
 870     // when this fails, virtual registers are used before they are defined.
 871     assert(false, "live_in set of first block must be empty");
 872     // bailout of if this occurs in product mode.
 873     bailout("live_in set of first block not empty");
 874   }
 875 }
 876 
 877 
 878 // ********** Phase 4: build intervals
 879 // (fills the list _intervals)
 880 
 881 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 882   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 883   LIR_Opr opr = value->operand();
 884   Constant* con = value->as_Constant();
 885 
 886   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 887     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 888     add_use(opr, from, to, use_kind);
 889   }
 890 }
 891 
 892 
 893 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 894   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 895   assert(opr->is_register(), "should not be called otherwise");
 896 
 897   if (opr->is_virtual_register()) {
 898     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 899     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 900 
 901   } else {
 902     int reg = reg_num(opr);
 903     if (is_processed_reg_num(reg)) {
 904       add_def(reg, def_pos, use_kind, opr->type_register());
 905     }
 906     reg = reg_numHi(opr);
 907     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 908       add_def(reg, def_pos, use_kind, opr->type_register());
 909     }
 910   }
 911 }
 912 
 913 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 914   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 915   assert(opr->is_register(), "should not be called otherwise");
 916 
 917   if (opr->is_virtual_register()) {
 918     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 919     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 920 
 921   } else {
 922     int reg = reg_num(opr);
 923     if (is_processed_reg_num(reg)) {
 924       add_use(reg, from, to, use_kind, opr->type_register());
 925     }
 926     reg = reg_numHi(opr);
 927     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 928       add_use(reg, from, to, use_kind, opr->type_register());
 929     }
 930   }
 931 }
 932 
 933 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 934   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 935   assert(opr->is_register(), "should not be called otherwise");
 936 
 937   if (opr->is_virtual_register()) {
 938     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 939     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 940 
 941   } else {
 942     int reg = reg_num(opr);
 943     if (is_processed_reg_num(reg)) {
 944       add_temp(reg, temp_pos, use_kind, opr->type_register());
 945     }
 946     reg = reg_numHi(opr);
 947     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 948       add_temp(reg, temp_pos, use_kind, opr->type_register());
 949     }
 950   }
 951 }
 952 
 953 
 954 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 955   Interval* interval = interval_at(reg_num);
 956   if (interval != NULL) {
 957     assert(interval->reg_num() == reg_num, "wrong interval");
 958 
 959     if (type != T_ILLEGAL) {
 960       interval->set_type(type);
 961     }
 962 
 963     Range* r = interval->first();
 964     if (r->from() <= def_pos) {
 965       // Update the starting point (when a range is first created for a use, its
 966       // start is the beginning of the current block until a def is encountered.)
 967       r->set_from(def_pos);
 968       interval->add_use_pos(def_pos, use_kind);
 969 
 970     } else {
 971       // Dead value - make vacuous interval
 972       // also add use_kind for dead intervals
 973       interval->add_range(def_pos, def_pos + 1);
 974       interval->add_use_pos(def_pos, use_kind);
 975       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 976     }
 977 
 978   } else {
 979     // Dead value - make vacuous interval
 980     // also add use_kind for dead intervals
 981     interval = create_interval(reg_num);
 982     if (type != T_ILLEGAL) {
 983       interval->set_type(type);
 984     }
 985 
 986     interval->add_range(def_pos, def_pos + 1);
 987     interval->add_use_pos(def_pos, use_kind);
 988     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 989   }
 990 
 991   change_spill_definition_pos(interval, def_pos);
 992   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 993         // detection of method-parameters and roundfp-results
 994         // TODO: move this directly to position where use-kind is computed
 995     interval->set_spill_state(startInMemory);
 996   }
 997 }
 998 
 999 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
1000   Interval* interval = interval_at(reg_num);
1001   if (interval == NULL) {
1002     interval = create_interval(reg_num);
1003   }
1004   assert(interval->reg_num() == reg_num, "wrong interval");
1005 
1006   if (type != T_ILLEGAL) {
1007     interval->set_type(type);
1008   }
1009 
1010   interval->add_range(from, to);
1011   interval->add_use_pos(to, use_kind);
1012 }
1013 
1014 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1015   Interval* interval = interval_at(reg_num);
1016   if (interval == NULL) {
1017     interval = create_interval(reg_num);
1018   }
1019   assert(interval->reg_num() == reg_num, "wrong interval");
1020 
1021   if (type != T_ILLEGAL) {
1022     interval->set_type(type);
1023   }
1024 
1025   interval->add_range(temp_pos, temp_pos + 1);
1026   interval->add_use_pos(temp_pos, use_kind);
1027 }
1028 
1029 
1030 // the results of this functions are used for optimizing spilling and reloading
1031 // if the functions return shouldHaveRegister and the interval is spilled,
1032 // it is not reloaded to a register.
1033 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1034   if (op->code() == lir_move) {
1035     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1036     LIR_Op1* move = (LIR_Op1*)op;
1037     LIR_Opr res = move->result_opr();
1038     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1039 
1040     if (result_in_memory) {
1041       // Begin of an interval with must_start_in_memory set.
1042       // This interval will always get a stack slot first, so return noUse.
1043       return noUse;
1044 
1045     } else if (move->in_opr()->is_stack()) {
1046       // method argument (condition must be equal to handle_method_arguments)
1047       return noUse;
1048 
1049     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1050       // Move from register to register
1051       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1052         // special handling of phi-function moves inside osr-entry blocks
1053         // input operand must have a register instead of output operand (leads to better register allocation)
1054         return shouldHaveRegister;
1055       }
1056     }
1057   }
1058 
1059   if (opr->is_virtual() &&
1060       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1061     // result is a stack-slot, so prevent immediate reloading
1062     return noUse;
1063   }
1064 
1065   // all other operands require a register
1066   return mustHaveRegister;
1067 }
1068 
1069 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1070   if (op->code() == lir_move) {
1071     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1072     LIR_Op1* move = (LIR_Op1*)op;
1073     LIR_Opr res = move->result_opr();
1074     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1075 
1076     if (result_in_memory) {
1077       // Move to an interval with must_start_in_memory set.
1078       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1079       return mustHaveRegister;
1080 
1081     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1082       // Move from register to register
1083       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1084         // special handling of phi-function moves inside osr-entry blocks
1085         // input operand must have a register instead of output operand (leads to better register allocation)
1086         return mustHaveRegister;
1087       }
1088 
1089       // The input operand is not forced to a register (moves from stack to register are allowed),
1090       // but it is faster if the input operand is in a register
1091       return shouldHaveRegister;
1092     }
1093   }
1094 
1095 
1096 #ifdef X86
1097   if (op->code() == lir_cmove) {
1098     // conditional moves can handle stack operands
1099     assert(op->result_opr()->is_register(), "result must always be in a register");
1100     return shouldHaveRegister;
1101   }
1102 
1103   // optimizations for second input operand of arithmehtic operations on Intel
1104   // this operand is allowed to be on the stack in some cases
1105   BasicType opr_type = opr->type_register();
1106   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1107     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1108       // SSE float instruction (T_DOUBLE only supported with SSE2)
1109       switch (op->code()) {
1110         case lir_cmp:
1111         case lir_add:
1112         case lir_sub:
1113         case lir_mul:
1114         case lir_div:
1115         {
1116           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1117           LIR_Op2* op2 = (LIR_Op2*)op;
1118           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1119             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1120             return shouldHaveRegister;
1121           }
1122         }
1123       }
1124     } else {
1125       // FPU stack float instruction
1126       switch (op->code()) {
1127         case lir_add:
1128         case lir_sub:
1129         case lir_mul:
1130         case lir_div:
1131         {
1132           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1133           LIR_Op2* op2 = (LIR_Op2*)op;
1134           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1135             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1136             return shouldHaveRegister;
1137           }
1138         }
1139       }
1140     }
1141 
1142   } else if (opr_type != T_LONG) {
1143     // integer instruction (note: long operands must always be in register)
1144     switch (op->code()) {
1145       case lir_cmp:
1146       case lir_add:
1147       case lir_sub:
1148       case lir_logic_and:
1149       case lir_logic_or:
1150       case lir_logic_xor:
1151       {
1152         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1153         LIR_Op2* op2 = (LIR_Op2*)op;
1154         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1155           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1156           return shouldHaveRegister;
1157         }
1158       }
1159     }
1160   }
1161 #endif // X86
1162 
1163   // all other operands require a register
1164   return mustHaveRegister;
1165 }
1166 
1167 
1168 void LinearScan::handle_method_arguments(LIR_Op* op) {
1169   // special handling for method arguments (moves from stack to virtual register):
1170   // the interval gets no register assigned, but the stack slot.
1171   // it is split before the first use by the register allocator.
1172 
1173   if (op->code() == lir_move) {
1174     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1175     LIR_Op1* move = (LIR_Op1*)op;
1176 
1177     if (move->in_opr()->is_stack()) {
1178 #ifdef ASSERT
1179       int arg_size = compilation()->method()->arg_size();
1180       LIR_Opr o = move->in_opr();
1181       if (o->is_single_stack()) {
1182         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1183       } else if (o->is_double_stack()) {
1184         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1185       } else {
1186         ShouldNotReachHere();
1187       }
1188 
1189       assert(move->id() > 0, "invalid id");
1190       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1191       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1192 
1193       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1194 #endif
1195 
1196       Interval* interval = interval_at(reg_num(move->result_opr()));
1197 
1198       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1199       interval->set_canonical_spill_slot(stack_slot);
1200       interval->assign_reg(stack_slot);
1201     }
1202   }
1203 }
1204 
1205 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1206   // special handling for doubleword move from memory to register:
1207   // in this case the registers of the input address and the result
1208   // registers must not overlap -> add a temp range for the input registers
1209   if (op->code() == lir_move) {
1210     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1211     LIR_Op1* move = (LIR_Op1*)op;
1212 
1213     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1214       LIR_Address* address = move->in_opr()->as_address_ptr();
1215       if (address != NULL) {
1216         if (address->base()->is_valid()) {
1217           add_temp(address->base(), op->id(), noUse);
1218         }
1219         if (address->index()->is_valid()) {
1220           add_temp(address->index(), op->id(), noUse);
1221         }
1222       }
1223     }
1224   }
1225 }
1226 
1227 void LinearScan::add_register_hints(LIR_Op* op) {
1228   switch (op->code()) {
1229     case lir_move:      // fall through
1230     case lir_convert: {
1231       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1232       LIR_Op1* move = (LIR_Op1*)op;
1233 
1234       LIR_Opr move_from = move->in_opr();
1235       LIR_Opr move_to = move->result_opr();
1236 
1237       if (move_to->is_register() && move_from->is_register()) {
1238         Interval* from = interval_at(reg_num(move_from));
1239         Interval* to = interval_at(reg_num(move_to));
1240         if (from != NULL && to != NULL) {
1241           to->set_register_hint(from);
1242           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1243         }
1244       }
1245       break;
1246     }
1247     case lir_cmove: {
1248       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1249       LIR_Op2* cmove = (LIR_Op2*)op;
1250 
1251       LIR_Opr move_from = cmove->in_opr1();
1252       LIR_Opr move_to = cmove->result_opr();
1253 
1254       if (move_to->is_register() && move_from->is_register()) {
1255         Interval* from = interval_at(reg_num(move_from));
1256         Interval* to = interval_at(reg_num(move_to));
1257         if (from != NULL && to != NULL) {
1258           to->set_register_hint(from);
1259           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1260         }
1261       }
1262       break;
1263     }
1264   }
1265 }
1266 
1267 
1268 void LinearScan::build_intervals() {
1269   TIME_LINEAR_SCAN(timer_build_intervals);
1270 
1271   // initialize interval list with expected number of intervals
1272   // (32 is added to have some space for split children without having to resize the list)
1273   _intervals = IntervalList(num_virtual_regs() + 32);
1274   // initialize all slots that are used by build_intervals
1275   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1276 
1277   // create a list with all caller-save registers (cpu, fpu, xmm)
1278   // when an instruction is a call, a temp range is created for all these registers
1279   int num_caller_save_registers = 0;
1280   int caller_save_registers[LinearScan::nof_regs];
1281 
1282   int i;
1283   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1284     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1285     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1286     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1287     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1288   }
1289 
1290   // temp ranges for fpu registers are only created when the method has
1291   // virtual fpu operands. Otherwise no allocation for fpu registers is
1292   // perfomed and so the temp ranges would be useless
1293   if (has_fpu_registers()) {
1294 #ifdef X86
1295     if (UseSSE < 2) {
1296 #endif
1297       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1298         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1299         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1300         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1301         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1302       }
1303 #ifdef X86
1304     }
1305     if (UseSSE > 0) {
1306       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1307         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1308         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1309         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1310         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1311       }
1312     }
1313 #endif
1314   }
1315   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1316 
1317 
1318   LIR_OpVisitState visitor;
1319 
1320   // iterate all blocks in reverse order
1321   for (i = block_count() - 1; i >= 0; i--) {
1322     BlockBegin* block = block_at(i);
1323     LIR_OpList* instructions = block->lir()->instructions_list();
1324     int         block_from =   block->first_lir_instruction_id();
1325     int         block_to =     block->last_lir_instruction_id();
1326 
1327     assert(block_from == instructions->at(0)->id(), "must be");
1328     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1329 
1330     // Update intervals for registers live at the end of this block;
1331     BitMap live = block->live_out();
1332     int size = (int)live.size();
1333     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1334       assert(live.at(number), "should not stop here otherwise");
1335       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1336       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1337 
1338       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1339 
1340       // add special use positions for loop-end blocks when the
1341       // interval is used anywhere inside this loop.  It's possible
1342       // that the block was part of a non-natural loop, so it might
1343       // have an invalid loop index.
1344       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1345           block->loop_index() != -1 &&
1346           is_interval_in_loop(number, block->loop_index())) {
1347         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1348       }
1349     }
1350 
1351     // iterate all instructions of the block in reverse order.
1352     // skip the first instruction because it is always a label
1353     // definitions of intervals are processed before uses
1354     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1355     for (int j = instructions->length() - 1; j >= 1; j--) {
1356       LIR_Op* op = instructions->at(j);
1357       int op_id = op->id();
1358 
1359       // visit operation to collect all operands
1360       visitor.visit(op);
1361 
1362       // add a temp range for each register if operation destroys caller-save registers
1363       if (visitor.has_call()) {
1364         for (int k = 0; k < num_caller_save_registers; k++) {
1365           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1366         }
1367         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1368       }
1369 
1370       // Add any platform dependent temps
1371       pd_add_temps(op);
1372 
1373       // visit definitions (output and temp operands)
1374       int k, n;
1375       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1376       for (k = 0; k < n; k++) {
1377         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1378         assert(opr->is_register(), "visitor should only return register operands");
1379         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1380       }
1381 
1382       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1383       for (k = 0; k < n; k++) {
1384         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1385         assert(opr->is_register(), "visitor should only return register operands");
1386         add_temp(opr, op_id, mustHaveRegister);
1387       }
1388 
1389       // visit uses (input operands)
1390       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1391       for (k = 0; k < n; k++) {
1392         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1393         assert(opr->is_register(), "visitor should only return register operands");
1394         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1395       }
1396 
1397       // Add uses of live locals from interpreter's point of view for proper
1398       // debug information generation
1399       // Treat these operands as temp values (if the life range is extended
1400       // to a call site, the value would be in a register at the call otherwise)
1401       n = visitor.info_count();
1402       for (k = 0; k < n; k++) {
1403         CodeEmitInfo* info = visitor.info_at(k);
1404         ValueStack* stack = info->stack();
1405         for_each_state_value(stack, value,
1406           add_use(value, block_from, op_id + 1, noUse);
1407         );
1408       }
1409 
1410       // special steps for some instructions (especially moves)
1411       handle_method_arguments(op);
1412       handle_doubleword_moves(op);
1413       add_register_hints(op);
1414 
1415     } // end of instruction iteration
1416   } // end of block iteration
1417 
1418 
1419   // add the range [0, 1[ to all fixed intervals
1420   // -> the register allocator need not handle unhandled fixed intervals
1421   for (int n = 0; n < LinearScan::nof_regs; n++) {
1422     Interval* interval = interval_at(n);
1423     if (interval != NULL) {
1424       interval->add_range(0, 1);
1425     }
1426   }
1427 }
1428 
1429 
1430 // ********** Phase 5: actual register allocation
1431 
1432 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1433   if (*a != NULL) {
1434     if (*b != NULL) {
1435       return (*a)->from() - (*b)->from();
1436     } else {
1437       return -1;
1438     }
1439   } else {
1440     if (*b != NULL) {
1441       return 1;
1442     } else {
1443       return 0;
1444     }
1445   }
1446 }
1447 
1448 #ifndef PRODUCT
1449 bool LinearScan::is_sorted(IntervalArray* intervals) {
1450   int from = -1;
1451   int i, j;
1452   for (i = 0; i < intervals->length(); i ++) {
1453     Interval* it = intervals->at(i);
1454     if (it != NULL) {
1455       if (from > it->from()) {
1456         assert(false, "");
1457         return false;
1458       }
1459       from = it->from();
1460     }
1461   }
1462 
1463   // check in both directions if sorted list and unsorted list contain same intervals
1464   for (i = 0; i < interval_count(); i++) {
1465     if (interval_at(i) != NULL) {
1466       int num_found = 0;
1467       for (j = 0; j < intervals->length(); j++) {
1468         if (interval_at(i) == intervals->at(j)) {
1469           num_found++;
1470         }
1471       }
1472       assert(num_found == 1, "lists do not contain same intervals");
1473     }
1474   }
1475   for (j = 0; j < intervals->length(); j++) {
1476     int num_found = 0;
1477     for (i = 0; i < interval_count(); i++) {
1478       if (interval_at(i) == intervals->at(j)) {
1479         num_found++;
1480       }
1481     }
1482     assert(num_found == 1, "lists do not contain same intervals");
1483   }
1484 
1485   return true;
1486 }
1487 #endif
1488 
1489 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1490   if (*prev != NULL) {
1491     (*prev)->set_next(interval);
1492   } else {
1493     *first = interval;
1494   }
1495   *prev = interval;
1496 }
1497 
1498 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1499   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1500 
1501   *list1 = *list2 = Interval::end();
1502 
1503   Interval* list1_prev = NULL;
1504   Interval* list2_prev = NULL;
1505   Interval* v;
1506 
1507   const int n = _sorted_intervals->length();
1508   for (int i = 0; i < n; i++) {
1509     v = _sorted_intervals->at(i);
1510     if (v == NULL) continue;
1511 
1512     if (is_list1(v)) {
1513       add_to_list(list1, &list1_prev, v);
1514     } else if (is_list2 == NULL || is_list2(v)) {
1515       add_to_list(list2, &list2_prev, v);
1516     }
1517   }
1518 
1519   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1520   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1521 
1522   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1523   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1524 }
1525 
1526 
1527 void LinearScan::sort_intervals_before_allocation() {
1528   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1529 
1530   if (_needs_full_resort) {
1531     // There is no known reason why this should occur but just in case...
1532     assert(false, "should never occur");
1533     // Re-sort existing interval list because an Interval::from() has changed
1534     _sorted_intervals->sort(interval_cmp);
1535     _needs_full_resort = false;
1536   }
1537 
1538   IntervalList* unsorted_list = &_intervals;
1539   int unsorted_len = unsorted_list->length();
1540   int sorted_len = 0;
1541   int unsorted_idx;
1542   int sorted_idx = 0;
1543   int sorted_from_max = -1;
1544 
1545   // calc number of items for sorted list (sorted list must not contain NULL values)
1546   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1547     if (unsorted_list->at(unsorted_idx) != NULL) {
1548       sorted_len++;
1549     }
1550   }
1551   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1552 
1553   // special sorting algorithm: the original interval-list is almost sorted,
1554   // only some intervals are swapped. So this is much faster than a complete QuickSort
1555   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1556     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1557 
1558     if (cur_interval != NULL) {
1559       int cur_from = cur_interval->from();
1560 
1561       if (sorted_from_max <= cur_from) {
1562         sorted_list->at_put(sorted_idx++, cur_interval);
1563         sorted_from_max = cur_interval->from();
1564       } else {
1565         // the asumption that the intervals are already sorted failed,
1566         // so this interval must be sorted in manually
1567         int j;
1568         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1569           sorted_list->at_put(j + 1, sorted_list->at(j));
1570         }
1571         sorted_list->at_put(j + 1, cur_interval);
1572         sorted_idx++;
1573       }
1574     }
1575   }
1576   _sorted_intervals = sorted_list;
1577   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1578 }
1579 
1580 void LinearScan::sort_intervals_after_allocation() {
1581   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1582 
1583   if (_needs_full_resort) {
1584     // Re-sort existing interval list because an Interval::from() has changed
1585     _sorted_intervals->sort(interval_cmp);
1586     _needs_full_resort = false;
1587   }
1588 
1589   IntervalArray* old_list      = _sorted_intervals;
1590   IntervalList*  new_list      = _new_intervals_from_allocation;
1591   int old_len = old_list->length();
1592   int new_len = new_list->length();
1593 
1594   if (new_len == 0) {
1595     // no intervals have been added during allocation, so sorted list is already up to date
1596     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1597     return;
1598   }
1599 
1600   // conventional sort-algorithm for new intervals
1601   new_list->sort(interval_cmp);
1602 
1603   // merge old and new list (both already sorted) into one combined list
1604   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1605   int old_idx = 0;
1606   int new_idx = 0;
1607 
1608   while (old_idx + new_idx < old_len + new_len) {
1609     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1610       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1611       old_idx++;
1612     } else {
1613       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1614       new_idx++;
1615     }
1616   }
1617 
1618   _sorted_intervals = combined_list;
1619   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1620 }
1621 
1622 
1623 void LinearScan::allocate_registers() {
1624   TIME_LINEAR_SCAN(timer_allocate_registers);
1625 
1626   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1627   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1628 
1629   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1630   if (has_fpu_registers()) {
1631     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1632 #ifdef ASSERT
1633   } else {
1634     // fpu register allocation is omitted because no virtual fpu registers are present
1635     // just check this again...
1636     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1637     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1638 #endif
1639   }
1640 
1641   // allocate cpu registers
1642   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1643   cpu_lsw.walk();
1644   cpu_lsw.finish_allocation();
1645 
1646   if (has_fpu_registers()) {
1647     // allocate fpu registers
1648     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1649     fpu_lsw.walk();
1650     fpu_lsw.finish_allocation();
1651   }
1652 }
1653 
1654 
1655 // ********** Phase 6: resolve data flow
1656 // (insert moves at edges between blocks if intervals have been split)
1657 
1658 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1659 // instead of returning NULL
1660 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1661   Interval* result = interval->split_child_at_op_id(op_id, mode);
1662   if (result != NULL) {
1663     return result;
1664   }
1665 
1666   assert(false, "must find an interval, but do a clean bailout in product mode");
1667   result = new Interval(LIR_OprDesc::vreg_base);
1668   result->assign_reg(0);
1669   result->set_type(T_INT);
1670   BAILOUT_("LinearScan: interval is NULL", result);
1671 }
1672 
1673 
1674 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1675   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1676   assert(interval_at(reg_num) != NULL, "no interval found");
1677 
1678   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1679 }
1680 
1681 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1682   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1683   assert(interval_at(reg_num) != NULL, "no interval found");
1684 
1685   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1686 }
1687 
1688 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1689   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1690   assert(interval_at(reg_num) != NULL, "no interval found");
1691 
1692   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1693 }
1694 
1695 
1696 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1697   DEBUG_ONLY(move_resolver.check_empty());
1698 
1699   const int num_regs = num_virtual_regs();
1700   const int size = live_set_size();
1701   const BitMap live_at_edge = to_block->live_in();
1702 
1703   // visit all registers where the live_at_edge bit is set
1704   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1705     assert(r < num_regs, "live information set for not exisiting interval");
1706     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1707 
1708     Interval* from_interval = interval_at_block_end(from_block, r);
1709     Interval* to_interval = interval_at_block_begin(to_block, r);
1710 
1711     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1712       // need to insert move instruction
1713       move_resolver.add_mapping(from_interval, to_interval);
1714     }
1715   }
1716 }
1717 
1718 
1719 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1720   if (from_block->number_of_sux() <= 1) {
1721     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1722 
1723     LIR_OpList* instructions = from_block->lir()->instructions_list();
1724     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1725     if (branch != NULL) {
1726       // insert moves before branch
1727       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1728       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1729     } else {
1730       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1731     }
1732 
1733   } else {
1734     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1735 #ifdef ASSERT
1736     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1737 
1738     // because the number of predecessor edges matches the number of
1739     // successor edges, blocks which are reached by switch statements
1740     // may have be more than one predecessor but it will be guaranteed
1741     // that all predecessors will be the same.
1742     for (int i = 0; i < to_block->number_of_preds(); i++) {
1743       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1744     }
1745 #endif
1746 
1747     move_resolver.set_insert_position(to_block->lir(), 0);
1748   }
1749 }
1750 
1751 
1752 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1753 void LinearScan::resolve_data_flow() {
1754   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1755 
1756   int num_blocks = block_count();
1757   MoveResolver move_resolver(this);
1758   BitMap block_completed(num_blocks);  block_completed.clear();
1759   BitMap already_resolved(num_blocks); already_resolved.clear();
1760 
1761   int i;
1762   for (i = 0; i < num_blocks; i++) {
1763     BlockBegin* block = block_at(i);
1764 
1765     // check if block has only one predecessor and only one successor
1766     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1767       LIR_OpList* instructions = block->lir()->instructions_list();
1768       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1769       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1770       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1771 
1772       // check if block is empty (only label and branch)
1773       if (instructions->length() == 2) {
1774         BlockBegin* pred = block->pred_at(0);
1775         BlockBegin* sux = block->sux_at(0);
1776 
1777         // prevent optimization of two consecutive blocks
1778         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1779           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1780           block_completed.set_bit(block->linear_scan_number());
1781 
1782           // directly resolve between pred and sux (without looking at the empty block between)
1783           resolve_collect_mappings(pred, sux, move_resolver);
1784           if (move_resolver.has_mappings()) {
1785             move_resolver.set_insert_position(block->lir(), 0);
1786             move_resolver.resolve_and_append_moves();
1787           }
1788         }
1789       }
1790     }
1791   }
1792 
1793 
1794   for (i = 0; i < num_blocks; i++) {
1795     if (!block_completed.at(i)) {
1796       BlockBegin* from_block = block_at(i);
1797       already_resolved.set_from(block_completed);
1798 
1799       int num_sux = from_block->number_of_sux();
1800       for (int s = 0; s < num_sux; s++) {
1801         BlockBegin* to_block = from_block->sux_at(s);
1802 
1803         // check for duplicate edges between the same blocks (can happen with switch blocks)
1804         if (!already_resolved.at(to_block->linear_scan_number())) {
1805           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1806           already_resolved.set_bit(to_block->linear_scan_number());
1807 
1808           // collect all intervals that have been split between from_block and to_block
1809           resolve_collect_mappings(from_block, to_block, move_resolver);
1810           if (move_resolver.has_mappings()) {
1811             resolve_find_insert_pos(from_block, to_block, move_resolver);
1812             move_resolver.resolve_and_append_moves();
1813           }
1814         }
1815       }
1816     }
1817   }
1818 }
1819 
1820 
1821 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1822   if (interval_at(reg_num) == NULL) {
1823     // if a phi function is never used, no interval is created -> ignore this
1824     return;
1825   }
1826 
1827   Interval* interval = interval_at_block_begin(block, reg_num);
1828   int reg = interval->assigned_reg();
1829   int regHi = interval->assigned_regHi();
1830 
1831   if ((reg < nof_regs && interval->always_in_memory()) ||
1832       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1833     // the interval is split to get a short range that is located on the stack
1834     // in the following two cases:
1835     // * the interval started in memory (e.g. method parameter), but is currently in a register
1836     //   this is an optimization for exception handling that reduces the number of moves that
1837     //   are necessary for resolving the states when an exception uses this exception handler
1838     // * the interval would be on the fpu stack at the begin of the exception handler
1839     //   this is not allowed because of the complicated fpu stack handling on Intel
1840 
1841     // range that will be spilled to memory
1842     int from_op_id = block->first_lir_instruction_id();
1843     int to_op_id = from_op_id + 1;  // short live range of length 1
1844     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1845            "no split allowed between exception entry and first instruction");
1846 
1847     if (interval->from() != from_op_id) {
1848       // the part before from_op_id is unchanged
1849       interval = interval->split(from_op_id);
1850       interval->assign_reg(reg, regHi);
1851       append_interval(interval);
1852     } else {
1853       _needs_full_resort = true;
1854     }
1855     assert(interval->from() == from_op_id, "must be true now");
1856 
1857     Interval* spilled_part = interval;
1858     if (interval->to() != to_op_id) {
1859       // the part after to_op_id is unchanged
1860       spilled_part = interval->split_from_start(to_op_id);
1861       append_interval(spilled_part);
1862       move_resolver.add_mapping(spilled_part, interval);
1863     }
1864     assign_spill_slot(spilled_part);
1865 
1866     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1867   }
1868 }
1869 
1870 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1871   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1872   DEBUG_ONLY(move_resolver.check_empty());
1873 
1874   // visit all registers where the live_in bit is set
1875   int size = live_set_size();
1876   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1877     resolve_exception_entry(block, r, move_resolver);
1878   }
1879 
1880   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1881   for_each_phi_fun(block, phi,
1882     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1883   );
1884 
1885   if (move_resolver.has_mappings()) {
1886     // insert moves after first instruction
1887     move_resolver.set_insert_position(block->lir(), 1);
1888     move_resolver.resolve_and_append_moves();
1889   }
1890 }
1891 
1892 
1893 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1894   if (interval_at(reg_num) == NULL) {
1895     // if a phi function is never used, no interval is created -> ignore this
1896     return;
1897   }
1898 
1899   // the computation of to_interval is equal to resolve_collect_mappings,
1900   // but from_interval is more complicated because of phi functions
1901   BlockBegin* to_block = handler->entry_block();
1902   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1903 
1904   if (phi != NULL) {
1905     // phi function of the exception entry block
1906     // no moves are created for this phi function in the LIR_Generator, so the
1907     // interval at the throwing instruction must be searched using the operands
1908     // of the phi function
1909     Value from_value = phi->operand_at(handler->phi_operand());
1910 
1911     // with phi functions it can happen that the same from_value is used in
1912     // multiple mappings, so notify move-resolver that this is allowed
1913     move_resolver.set_multiple_reads_allowed();
1914 
1915     Constant* con = from_value->as_Constant();
1916     if (con != NULL && !con->is_pinned()) {
1917       // unpinned constants may have no register, so add mapping from constant to interval
1918       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1919     } else {
1920       // search split child at the throwing op_id
1921       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1922       move_resolver.add_mapping(from_interval, to_interval);
1923     }
1924 
1925   } else {
1926     // no phi function, so use reg_num also for from_interval
1927     // search split child at the throwing op_id
1928     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1929     if (from_interval != to_interval) {
1930       // optimization to reduce number of moves: when to_interval is on stack and
1931       // the stack slot is known to be always correct, then no move is necessary
1932       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1933         move_resolver.add_mapping(from_interval, to_interval);
1934       }
1935     }
1936   }
1937 }
1938 
1939 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1940   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1941 
1942   DEBUG_ONLY(move_resolver.check_empty());
1943   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1944   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1945   assert(handler->entry_code() == NULL, "code already present");
1946 
1947   // visit all registers where the live_in bit is set
1948   BlockBegin* block = handler->entry_block();
1949   int size = live_set_size();
1950   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1951     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1952   }
1953 
1954   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1955   for_each_phi_fun(block, phi,
1956     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1957   );
1958 
1959   if (move_resolver.has_mappings()) {
1960     LIR_List* entry_code = new LIR_List(compilation());
1961     move_resolver.set_insert_position(entry_code, 0);
1962     move_resolver.resolve_and_append_moves();
1963 
1964     entry_code->jump(handler->entry_block());
1965     handler->set_entry_code(entry_code);
1966   }
1967 }
1968 
1969 
1970 void LinearScan::resolve_exception_handlers() {
1971   MoveResolver move_resolver(this);
1972   LIR_OpVisitState visitor;
1973   int num_blocks = block_count();
1974 
1975   int i;
1976   for (i = 0; i < num_blocks; i++) {
1977     BlockBegin* block = block_at(i);
1978     if (block->is_set(BlockBegin::exception_entry_flag)) {
1979       resolve_exception_entry(block, move_resolver);
1980     }
1981   }
1982 
1983   for (i = 0; i < num_blocks; i++) {
1984     BlockBegin* block = block_at(i);
1985     LIR_List* ops = block->lir();
1986     int num_ops = ops->length();
1987 
1988     // iterate all instructions of the block. skip the first because it is always a label
1989     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1990     for (int j = 1; j < num_ops; j++) {
1991       LIR_Op* op = ops->at(j);
1992       int op_id = op->id();
1993 
1994       if (op_id != -1 && has_info(op_id)) {
1995         // visit operation to collect all operands
1996         visitor.visit(op);
1997         assert(visitor.info_count() > 0, "should not visit otherwise");
1998 
1999         XHandlers* xhandlers = visitor.all_xhandler();
2000         int n = xhandlers->length();
2001         for (int k = 0; k < n; k++) {
2002           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2003         }
2004 
2005 #ifdef ASSERT
2006       } else {
2007         visitor.visit(op);
2008         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2009 #endif
2010       }
2011     }
2012   }
2013 }
2014 
2015 
2016 // ********** Phase 7: assign register numbers back to LIR
2017 // (includes computation of debug information and oop maps)
2018 
2019 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2020   VMReg reg = interval->cached_vm_reg();
2021   if (!reg->is_valid() ) {
2022     reg = vm_reg_for_operand(operand_for_interval(interval));
2023     interval->set_cached_vm_reg(reg);
2024   }
2025   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2026   return reg;
2027 }
2028 
2029 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2030   assert(opr->is_oop(), "currently only implemented for oop operands");
2031   return frame_map()->regname(opr);
2032 }
2033 
2034 
2035 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2036   LIR_Opr opr = interval->cached_opr();
2037   if (opr->is_illegal()) {
2038     opr = calc_operand_for_interval(interval);
2039     interval->set_cached_opr(opr);
2040   }
2041 
2042   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2043   return opr;
2044 }
2045 
2046 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2047   int assigned_reg = interval->assigned_reg();
2048   BasicType type = interval->type();
2049 
2050   if (assigned_reg >= nof_regs) {
2051     // stack slot
2052     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2053     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2054 
2055   } else {
2056     // register
2057     switch (type) {
2058       case T_OBJECT: {
2059         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2060         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2061         return LIR_OprFact::single_cpu_oop(assigned_reg);
2062       }
2063 
2064       case T_ADDRESS: {
2065         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2066         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2067         return LIR_OprFact::single_cpu_address(assigned_reg);
2068       }
2069 
2070 #ifdef __SOFTFP__
2071       case T_FLOAT:  // fall through
2072 #endif // __SOFTFP__
2073       case T_INT: {
2074         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2075         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2076         return LIR_OprFact::single_cpu(assigned_reg);
2077       }
2078 
2079 #ifdef __SOFTFP__
2080       case T_DOUBLE:  // fall through
2081 #endif // __SOFTFP__
2082       case T_LONG: {
2083         int assigned_regHi = interval->assigned_regHi();
2084         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2085         assert(num_physical_regs(T_LONG) == 1 ||
2086                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2087 
2088         assert(assigned_reg != assigned_regHi, "invalid allocation");
2089         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2090                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2091         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2092         if (requires_adjacent_regs(T_LONG)) {
2093           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2094         }
2095 
2096 #ifdef _LP64
2097         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2098 #else
2099 #if defined(SPARC) || defined(PPC)
2100         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2101 #else
2102         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2103 #endif // SPARC
2104 #endif // LP64
2105       }
2106 
2107 #ifndef __SOFTFP__
2108       case T_FLOAT: {
2109 #ifdef X86
2110         if (UseSSE >= 1) {
2111           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2112           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2113           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2114         }
2115 #endif
2116 
2117         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2118         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2119         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2120       }
2121 
2122       case T_DOUBLE: {
2123 #ifdef X86
2124         if (UseSSE >= 2) {
2125           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2126           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2127           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2128         }
2129 #endif
2130 
2131 #ifdef SPARC
2132         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2133         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2134         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2135         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2136 #elif defined(ARM)
2137         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2138         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2139         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2140         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2141 #else
2142         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2143         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2144         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2145 #endif
2146         return result;
2147       }
2148 #endif // __SOFTFP__
2149 
2150       default: {
2151         ShouldNotReachHere();
2152         return LIR_OprFact::illegalOpr;
2153       }
2154     }
2155   }
2156 }
2157 
2158 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2159   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2160   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2161 }
2162 
2163 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2164   assert(opr->is_virtual(), "should not call this otherwise");
2165 
2166   Interval* interval = interval_at(opr->vreg_number());
2167   assert(interval != NULL, "interval must exist");
2168 
2169   if (op_id != -1) {
2170 #ifdef ASSERT
2171     BlockBegin* block = block_of_op_with_id(op_id);
2172     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2173       // check if spill moves could have been appended at the end of this block, but
2174       // before the branch instruction. So the split child information for this branch would
2175       // be incorrect.
2176       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2177       if (branch != NULL) {
2178         if (block->live_out().at(opr->vreg_number())) {
2179           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2180           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2181         }
2182       }
2183     }
2184 #endif
2185 
2186     // operands are not changed when an interval is split during allocation,
2187     // so search the right interval here
2188     interval = split_child_at_op_id(interval, op_id, mode);
2189   }
2190 
2191   LIR_Opr res = operand_for_interval(interval);
2192 
2193 #ifdef X86
2194   // new semantic for is_last_use: not only set on definite end of interval,
2195   // but also before hole
2196   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2197   // last use information is completely correct
2198   // information is only needed for fpu stack allocation
2199   if (res->is_fpu_register()) {
2200     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2201       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2202       res = res->make_last_use();
2203     }
2204   }
2205 #endif
2206 
2207   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2208 
2209   return res;
2210 }
2211 
2212 
2213 #ifdef ASSERT
2214 // some methods used to check correctness of debug information
2215 
2216 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2217   if (values == NULL) {
2218     return;
2219   }
2220 
2221   for (int i = 0; i < values->length(); i++) {
2222     ScopeValue* value = values->at(i);
2223 
2224     if (value->is_location()) {
2225       Location location = ((LocationValue*)value)->location();
2226       assert(location.where() == Location::on_stack, "value is in register");
2227     }
2228   }
2229 }
2230 
2231 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2232   if (values == NULL) {
2233     return;
2234   }
2235 
2236   for (int i = 0; i < values->length(); i++) {
2237     MonitorValue* value = values->at(i);
2238 
2239     if (value->owner()->is_location()) {
2240       Location location = ((LocationValue*)value->owner())->location();
2241       assert(location.where() == Location::on_stack, "owner is in register");
2242     }
2243     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2244   }
2245 }
2246 
2247 void assert_equal(Location l1, Location l2) {
2248   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2249 }
2250 
2251 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2252   if (v1->is_location()) {
2253     assert(v2->is_location(), "");
2254     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2255   } else if (v1->is_constant_int()) {
2256     assert(v2->is_constant_int(), "");
2257     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2258   } else if (v1->is_constant_double()) {
2259     assert(v2->is_constant_double(), "");
2260     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2261   } else if (v1->is_constant_long()) {
2262     assert(v2->is_constant_long(), "");
2263     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2264   } else if (v1->is_constant_oop()) {
2265     assert(v2->is_constant_oop(), "");
2266     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2267   } else {
2268     ShouldNotReachHere();
2269   }
2270 }
2271 
2272 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2273   assert_equal(m1->owner(), m2->owner());
2274   assert_equal(m1->basic_lock(), m2->basic_lock());
2275 }
2276 
2277 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2278   assert(d1->scope() == d2->scope(), "not equal");
2279   assert(d1->bci() == d2->bci(), "not equal");
2280 
2281   if (d1->locals() != NULL) {
2282     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2283     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2284     for (int i = 0; i < d1->locals()->length(); i++) {
2285       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2286     }
2287   } else {
2288     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2289   }
2290 
2291   if (d1->expressions() != NULL) {
2292     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2293     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2294     for (int i = 0; i < d1->expressions()->length(); i++) {
2295       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2296     }
2297   } else {
2298     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2299   }
2300 
2301   if (d1->monitors() != NULL) {
2302     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2303     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2304     for (int i = 0; i < d1->monitors()->length(); i++) {
2305       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2306     }
2307   } else {
2308     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2309   }
2310 
2311   if (d1->caller() != NULL) {
2312     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2313     assert_equal(d1->caller(), d2->caller());
2314   } else {
2315     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2316   }
2317 }
2318 
2319 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2320   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2321     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2322     switch (code) {
2323       case Bytecodes::_ifnull    : // fall through
2324       case Bytecodes::_ifnonnull : // fall through
2325       case Bytecodes::_ifeq      : // fall through
2326       case Bytecodes::_ifne      : // fall through
2327       case Bytecodes::_iflt      : // fall through
2328       case Bytecodes::_ifge      : // fall through
2329       case Bytecodes::_ifgt      : // fall through
2330       case Bytecodes::_ifle      : // fall through
2331       case Bytecodes::_if_icmpeq : // fall through
2332       case Bytecodes::_if_icmpne : // fall through
2333       case Bytecodes::_if_icmplt : // fall through
2334       case Bytecodes::_if_icmpge : // fall through
2335       case Bytecodes::_if_icmpgt : // fall through
2336       case Bytecodes::_if_icmple : // fall through
2337       case Bytecodes::_if_acmpeq : // fall through
2338       case Bytecodes::_if_acmpne :
2339         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2340         break;
2341     }
2342   }
2343 }
2344 
2345 #endif // ASSERT
2346 
2347 
2348 IntervalWalker* LinearScan::init_compute_oop_maps() {
2349   // setup lists of potential oops for walking
2350   Interval* oop_intervals;
2351   Interval* non_oop_intervals;
2352 
2353   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2354 
2355   // intervals that have no oops inside need not to be processed
2356   // to ensure a walking until the last instruction id, add a dummy interval
2357   // with a high operation id
2358   non_oop_intervals = new Interval(any_reg);
2359   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2360 
2361   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2362 }
2363 
2364 
2365 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2366   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2367 
2368   // walk before the current operation -> intervals that start at
2369   // the operation (= output operands of the operation) are not
2370   // included in the oop map
2371   iw->walk_before(op->id());
2372 
2373   int frame_size = frame_map()->framesize();
2374   int arg_count = frame_map()->oop_map_arg_count();
2375   OopMap* map = new OopMap(frame_size, arg_count);
2376 
2377   // Check if this is a patch site.
2378   bool is_patch_info = false;
2379   if (op->code() == lir_move) {
2380     assert(!is_call_site, "move must not be a call site");
2381     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2382     LIR_Op1* move = (LIR_Op1*)op;
2383 
2384     is_patch_info = move->patch_code() != lir_patch_none;
2385   }
2386 
2387   // Iterate through active intervals
2388   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2389     int assigned_reg = interval->assigned_reg();
2390 
2391     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2392     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2393     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2394 
2395     // Check if this range covers the instruction. Intervals that
2396     // start or end at the current operation are not included in the
2397     // oop map, except in the case of patching moves.  For patching
2398     // moves, any intervals which end at this instruction are included
2399     // in the oop map since we may safepoint while doing the patch
2400     // before we've consumed the inputs.
2401     if (is_patch_info || op->id() < interval->current_to()) {
2402 
2403       // caller-save registers must not be included into oop-maps at calls
2404       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2405 
2406       VMReg name = vm_reg_for_interval(interval);
2407       set_oop(map, name);
2408 
2409       // Spill optimization: when the stack value is guaranteed to be always correct,
2410       // then it must be added to the oop map even if the interval is currently in a register
2411       if (interval->always_in_memory() &&
2412           op->id() > interval->spill_definition_pos() &&
2413           interval->assigned_reg() != interval->canonical_spill_slot()) {
2414         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2415         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2416         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2417 
2418         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2419       }
2420     }
2421   }
2422 
2423   // add oops from lock stack
2424   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2425   int locks_count = info->stack()->total_locks_size();
2426   for (int i = 0; i < locks_count; i++) {
2427     set_oop(map, frame_map()->monitor_object_regname(i));
2428   }
2429 
2430   return map;
2431 }
2432 
2433 
2434 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2435   assert(visitor.info_count() > 0, "no oop map needed");
2436 
2437   // compute oop_map only for first CodeEmitInfo
2438   // because it is (in most cases) equal for all other infos of the same operation
2439   CodeEmitInfo* first_info = visitor.info_at(0);
2440   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2441 
2442   for (int i = 0; i < visitor.info_count(); i++) {
2443     CodeEmitInfo* info = visitor.info_at(i);
2444     OopMap* oop_map = first_oop_map;
2445 
2446     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2447       // this info has a different number of locks then the precomputed oop map
2448       // (possible for lock and unlock instructions) -> compute oop map with
2449       // correct lock information
2450       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2451     }
2452 
2453     if (info->_oop_map == NULL) {
2454       info->_oop_map = oop_map;
2455     } else {
2456       // a CodeEmitInfo can not be shared between different LIR-instructions
2457       // because interval splitting can occur anywhere between two instructions
2458       // and so the oop maps must be different
2459       // -> check if the already set oop_map is exactly the one calculated for this operation
2460       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2461     }
2462   }
2463 }
2464 
2465 
2466 // frequently used constants
2467 // Allocate them with new so they are never destroyed (otherwise, a
2468 // forced exit could destroy these objects while they are still in
2469 // use).
2470 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP) ConstantOopWriteValue(NULL);
2471 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP) ConstantIntValue(-1);
2472 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP) ConstantIntValue(0);
2473 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP) ConstantIntValue(1);
2474 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP) ConstantIntValue(2);
2475 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP) LocationValue(Location());
2476 
2477 void LinearScan::init_compute_debug_info() {
2478   // cache for frequently used scope values
2479   // (cpu registers and stack slots)
2480   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2481 }
2482 
2483 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2484   Location loc;
2485   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2486     bailout("too large frame");
2487   }
2488   ScopeValue* object_scope_value = new LocationValue(loc);
2489 
2490   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2491     bailout("too large frame");
2492   }
2493   return new MonitorValue(object_scope_value, loc);
2494 }
2495 
2496 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2497   Location loc;
2498   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2499     bailout("too large frame");
2500   }
2501   return new LocationValue(loc);
2502 }
2503 
2504 
2505 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2506   assert(opr->is_constant(), "should not be called otherwise");
2507 
2508   LIR_Const* c = opr->as_constant_ptr();
2509   BasicType t = c->type();
2510   switch (t) {
2511     case T_OBJECT: {
2512       jobject value = c->as_jobject();
2513       if (value == NULL) {
2514         scope_values->append(_oop_null_scope_value);
2515       } else {
2516         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2517       }
2518       return 1;
2519     }
2520 
2521     case T_INT: // fall through
2522     case T_FLOAT: {
2523       int value = c->as_jint_bits();
2524       switch (value) {
2525         case -1: scope_values->append(_int_m1_scope_value); break;
2526         case 0:  scope_values->append(_int_0_scope_value); break;
2527         case 1:  scope_values->append(_int_1_scope_value); break;
2528         case 2:  scope_values->append(_int_2_scope_value); break;
2529         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2530       }
2531       return 1;
2532     }
2533 
2534     case T_LONG: // fall through
2535     case T_DOUBLE: {
2536 #ifdef _LP64
2537       scope_values->append(_int_0_scope_value);
2538       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2539 #else
2540       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2541         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2542         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2543       } else {
2544         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2545         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2546       }
2547 #endif
2548       return 2;
2549     }
2550 
2551     case T_ADDRESS: {
2552 #ifdef _LP64
2553       scope_values->append(new ConstantLongValue(c->as_jint()));
2554 #else
2555       scope_values->append(new ConstantIntValue(c->as_jint()));
2556 #endif
2557       return 1;
2558     }
2559 
2560     default:
2561       ShouldNotReachHere();
2562       return -1;
2563   }
2564 }
2565 
2566 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2567   if (opr->is_single_stack()) {
2568     int stack_idx = opr->single_stack_ix();
2569     bool is_oop = opr->is_oop_register();
2570     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2571 
2572     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2573     if (sv == NULL) {
2574       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2575       sv = location_for_name(stack_idx, loc_type);
2576       _scope_value_cache.at_put(cache_idx, sv);
2577     }
2578 
2579     // check if cached value is correct
2580     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2581 
2582     scope_values->append(sv);
2583     return 1;
2584 
2585   } else if (opr->is_single_cpu()) {
2586     bool is_oop = opr->is_oop_register();
2587     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2588     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2589 
2590     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2591     if (sv == NULL) {
2592       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2593       VMReg rname = frame_map()->regname(opr);
2594       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2595       _scope_value_cache.at_put(cache_idx, sv);
2596     }
2597 
2598     // check if cached value is correct
2599     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2600 
2601     scope_values->append(sv);
2602     return 1;
2603 
2604 #ifdef X86
2605   } else if (opr->is_single_xmm()) {
2606     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2607     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2608 
2609     scope_values->append(sv);
2610     return 1;
2611 #endif
2612 
2613   } else if (opr->is_single_fpu()) {
2614 #ifdef X86
2615     // the exact location of fpu stack values is only known
2616     // during fpu stack allocation, so the stack allocator object
2617     // must be present
2618     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2619     assert(_fpu_stack_allocator != NULL, "must be present");
2620     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2621 #endif
2622 
2623     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2624     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2625 #ifndef __SOFTFP__
2626 #ifndef VM_LITTLE_ENDIAN
2627     if (! float_saved_as_double) {
2628       // On big endian system, we may have an issue if float registers use only
2629       // the low half of the (same) double registers.
2630       // Both the float and the double could have the same regnr but would correspond
2631       // to two different addresses once saved.
2632 
2633       // get next safely (no assertion checks)
2634       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2635       if (next->is_reg() &&
2636           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2637         // the back-end does use the same numbering for the double and the float
2638         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2639       }
2640     }
2641 #endif
2642 #endif
2643     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2644 
2645     scope_values->append(sv);
2646     return 1;
2647 
2648   } else {
2649     // double-size operands
2650 
2651     ScopeValue* first;
2652     ScopeValue* second;
2653 
2654     if (opr->is_double_stack()) {
2655 #ifdef _LP64
2656       Location loc1;
2657       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2658       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2659         bailout("too large frame");
2660       }
2661       // Does this reverse on x86 vs. sparc?
2662       first =  new LocationValue(loc1);
2663       second = _int_0_scope_value;
2664 #else
2665       Location loc1, loc2;
2666       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2667         bailout("too large frame");
2668       }
2669       first =  new LocationValue(loc1);
2670       second = new LocationValue(loc2);
2671 #endif // _LP64
2672 
2673     } else if (opr->is_double_cpu()) {
2674 #ifdef _LP64
2675       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2676       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2677       second = _int_0_scope_value;
2678 #else
2679       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2680       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2681 
2682       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2683         // lo/hi and swapped relative to first and second, so swap them
2684         VMReg tmp = rname_first;
2685         rname_first = rname_second;
2686         rname_second = tmp;
2687       }
2688 
2689       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2690       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2691 #endif //_LP64
2692 
2693 
2694 #ifdef X86
2695     } else if (opr->is_double_xmm()) {
2696       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2697       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2698 #  ifdef _LP64
2699       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2700       second = _int_0_scope_value;
2701 #  else
2702       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2703       // %%% This is probably a waste but we'll keep things as they were for now
2704       if (true) {
2705         VMReg rname_second = rname_first->next();
2706         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2707       }
2708 #  endif
2709 #endif
2710 
2711     } else if (opr->is_double_fpu()) {
2712       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2713       // the double as float registers in the native ordering. On X86,
2714       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2715       // the low-order word of the double and fpu_regnrLo + 1 is the
2716       // name for the other half.  *first and *second must represent the
2717       // least and most significant words, respectively.
2718 
2719 #ifdef X86
2720       // the exact location of fpu stack values is only known
2721       // during fpu stack allocation, so the stack allocator object
2722       // must be present
2723       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2724       assert(_fpu_stack_allocator != NULL, "must be present");
2725       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2726 
2727       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2728 #endif
2729 #ifdef SPARC
2730       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2731 #endif
2732 #ifdef ARM
2733       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2734 #endif
2735 #ifdef PPC
2736       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2737 #endif
2738 
2739 #ifdef VM_LITTLE_ENDIAN
2740       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2741 #else
2742       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2743 #endif
2744 
2745 #ifdef _LP64
2746       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2747       second = _int_0_scope_value;
2748 #else
2749       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2750       // %%% This is probably a waste but we'll keep things as they were for now
2751       if (true) {
2752         VMReg rname_second = rname_first->next();
2753         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2754       }
2755 #endif
2756 
2757     } else {
2758       ShouldNotReachHere();
2759       first = NULL;
2760       second = NULL;
2761     }
2762 
2763     assert(first != NULL && second != NULL, "must be set");
2764     // The convention the interpreter uses is that the second local
2765     // holds the first raw word of the native double representation.
2766     // This is actually reasonable, since locals and stack arrays
2767     // grow downwards in all implementations.
2768     // (If, on some machine, the interpreter's Java locals or stack
2769     // were to grow upwards, the embedded doubles would be word-swapped.)
2770     scope_values->append(second);
2771     scope_values->append(first);
2772     return 2;
2773   }
2774 }
2775 
2776 
2777 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2778   if (value != NULL) {
2779     LIR_Opr opr = value->operand();
2780     Constant* con = value->as_Constant();
2781 
2782     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2783     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2784 
2785     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2786       // Unpinned constants may have a virtual operand for a part of the lifetime
2787       // or may be illegal when it was optimized away,
2788       // so always use a constant operand
2789       opr = LIR_OprFact::value_type(con->type());
2790     }
2791     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2792 
2793     if (opr->is_virtual()) {
2794       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2795 
2796       BlockBegin* block = block_of_op_with_id(op_id);
2797       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2798         // generating debug information for the last instruction of a block.
2799         // if this instruction is a branch, spill moves are inserted before this branch
2800         // and so the wrong operand would be returned (spill moves at block boundaries are not
2801         // considered in the live ranges of intervals)
2802         // Solution: use the first op_id of the branch target block instead.
2803         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2804           if (block->live_out().at(opr->vreg_number())) {
2805             op_id = block->sux_at(0)->first_lir_instruction_id();
2806             mode = LIR_OpVisitState::outputMode;
2807           }
2808         }
2809       }
2810 
2811       // Get current location of operand
2812       // The operand must be live because debug information is considered when building the intervals
2813       // if the interval is not live, color_lir_opr will cause an assertion failure
2814       opr = color_lir_opr(opr, op_id, mode);
2815       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2816 
2817       // Append to ScopeValue array
2818       return append_scope_value_for_operand(opr, scope_values);
2819 
2820     } else {
2821       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2822       assert(opr->is_constant(), "operand must be constant");
2823 
2824       return append_scope_value_for_constant(opr, scope_values);
2825     }
2826   } else {
2827     // append a dummy value because real value not needed
2828     scope_values->append(_illegal_value);
2829     return 1;
2830   }
2831 }
2832 
2833 
2834 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2835   IRScopeDebugInfo* caller_debug_info = NULL;
2836 
2837   ValueStack* caller_state = cur_state->caller_state();
2838   if (caller_state != NULL) {
2839     // process recursively to compute outermost scope first
2840     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2841   }
2842 
2843   // initialize these to null.
2844   // If we don't need deopt info or there are no locals, expressions or monitors,
2845   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2846   GrowableArray<ScopeValue*>*   locals      = NULL;
2847   GrowableArray<ScopeValue*>*   expressions = NULL;
2848   GrowableArray<MonitorValue*>* monitors    = NULL;
2849 
2850   // describe local variable values
2851   int nof_locals = cur_state->locals_size();
2852   if (nof_locals > 0) {
2853     locals = new GrowableArray<ScopeValue*>(nof_locals);
2854 
2855     int pos = 0;
2856     while (pos < nof_locals) {
2857       assert(pos < cur_state->locals_size(), "why not?");
2858 
2859       Value local = cur_state->local_at(pos);
2860       pos += append_scope_value(op_id, local, locals);
2861 
2862       assert(locals->length() == pos, "must match");
2863     }
2864     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2865     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2866   } else if (cur_scope->method()->max_locals() > 0) {
2867     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2868     nof_locals = cur_scope->method()->max_locals();
2869     locals = new GrowableArray<ScopeValue*>(nof_locals);
2870     for(int i = 0; i < nof_locals; i++) {
2871       locals->append(_illegal_value);
2872     }
2873   }
2874 
2875   // describe expression stack
2876   int nof_stack = cur_state->stack_size();
2877   if (nof_stack > 0) {
2878     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2879 
2880     int pos = 0;
2881     while (pos < nof_stack) {
2882       Value expression = cur_state->stack_at_inc(pos);
2883       append_scope_value(op_id, expression, expressions);
2884 
2885       assert(expressions->length() == pos, "must match");
2886     }
2887     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2888   }
2889 
2890   // describe monitors
2891   int nof_locks = cur_state->locks_size();
2892   if (nof_locks > 0) {
2893     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2894     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2895     for (int i = 0; i < nof_locks; i++) {
2896       monitors->append(location_for_monitor_index(lock_offset + i));
2897     }
2898   }
2899 
2900   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2901 }
2902 
2903 
2904 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2905   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2906 
2907   IRScope* innermost_scope = info->scope();
2908   ValueStack* innermost_state = info->stack();
2909 
2910   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2911 
2912   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2913 
2914   if (info->_scope_debug_info == NULL) {
2915     // compute debug information
2916     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2917   } else {
2918     // debug information already set. Check that it is correct from the current point of view
2919     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2920   }
2921 }
2922 
2923 
2924 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2925   LIR_OpVisitState visitor;
2926   int num_inst = instructions->length();
2927   bool has_dead = false;
2928 
2929   for (int j = 0; j < num_inst; j++) {
2930     LIR_Op* op = instructions->at(j);
2931     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2932       has_dead = true;
2933       continue;
2934     }
2935     int op_id = op->id();
2936 
2937     // visit instruction to get list of operands
2938     visitor.visit(op);
2939 
2940     // iterate all modes of the visitor and process all virtual operands
2941     for_each_visitor_mode(mode) {
2942       int n = visitor.opr_count(mode);
2943       for (int k = 0; k < n; k++) {
2944         LIR_Opr opr = visitor.opr_at(mode, k);
2945         if (opr->is_virtual_register()) {
2946           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2947         }
2948       }
2949     }
2950 
2951     if (visitor.info_count() > 0) {
2952       // exception handling
2953       if (compilation()->has_exception_handlers()) {
2954         XHandlers* xhandlers = visitor.all_xhandler();
2955         int n = xhandlers->length();
2956         for (int k = 0; k < n; k++) {
2957           XHandler* handler = xhandlers->handler_at(k);
2958           if (handler->entry_code() != NULL) {
2959             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2960           }
2961         }
2962       } else {
2963         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2964       }
2965 
2966       // compute oop map
2967       assert(iw != NULL, "needed for compute_oop_map");
2968       compute_oop_map(iw, visitor, op);
2969 
2970       // compute debug information
2971       if (!use_fpu_stack_allocation()) {
2972         // compute debug information if fpu stack allocation is not needed.
2973         // when fpu stack allocation is needed, the debug information can not
2974         // be computed here because the exact location of fpu operands is not known
2975         // -> debug information is created inside the fpu stack allocator
2976         int n = visitor.info_count();
2977         for (int k = 0; k < n; k++) {
2978           compute_debug_info(visitor.info_at(k), op_id);
2979         }
2980       }
2981     }
2982 
2983 #ifdef ASSERT
2984     // make sure we haven't made the op invalid.
2985     op->verify();
2986 #endif
2987 
2988     // remove useless moves
2989     if (op->code() == lir_move) {
2990       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2991       LIR_Op1* move = (LIR_Op1*)op;
2992       LIR_Opr src = move->in_opr();
2993       LIR_Opr dst = move->result_opr();
2994       if (dst == src ||
2995           !dst->is_pointer() && !src->is_pointer() &&
2996           src->is_same_register(dst)) {
2997         instructions->at_put(j, NULL);
2998         has_dead = true;
2999       }
3000     }
3001   }
3002 
3003   if (has_dead) {
3004     // iterate all instructions of the block and remove all null-values.
3005     int insert_point = 0;
3006     for (int j = 0; j < num_inst; j++) {
3007       LIR_Op* op = instructions->at(j);
3008       if (op != NULL) {
3009         if (insert_point != j) {
3010           instructions->at_put(insert_point, op);
3011         }
3012         insert_point++;
3013       }
3014     }
3015     instructions->truncate(insert_point);
3016   }
3017 }
3018 
3019 void LinearScan::assign_reg_num() {
3020   TIME_LINEAR_SCAN(timer_assign_reg_num);
3021 
3022   init_compute_debug_info();
3023   IntervalWalker* iw = init_compute_oop_maps();
3024 
3025   int num_blocks = block_count();
3026   for (int i = 0; i < num_blocks; i++) {
3027     BlockBegin* block = block_at(i);
3028     assign_reg_num(block->lir()->instructions_list(), iw);
3029   }
3030 }
3031 
3032 
3033 void LinearScan::do_linear_scan() {
3034   NOT_PRODUCT(_total_timer.begin_method());
3035 
3036   number_instructions();
3037 
3038   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3039 
3040   compute_local_live_sets();
3041   compute_global_live_sets();
3042   CHECK_BAILOUT();
3043 
3044   build_intervals();
3045   CHECK_BAILOUT();
3046   sort_intervals_before_allocation();
3047 
3048   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3049   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3050 
3051   allocate_registers();
3052   CHECK_BAILOUT();
3053 
3054   resolve_data_flow();
3055   if (compilation()->has_exception_handlers()) {
3056     resolve_exception_handlers();
3057   }
3058   // fill in number of spill slots into frame_map
3059   propagate_spill_slots();
3060   CHECK_BAILOUT();
3061 
3062   NOT_PRODUCT(print_intervals("After Register Allocation"));
3063   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3064 
3065   sort_intervals_after_allocation();
3066 
3067   DEBUG_ONLY(verify());
3068 
3069   eliminate_spill_moves();
3070   assign_reg_num();
3071   CHECK_BAILOUT();
3072 
3073   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3074   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3075 
3076   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3077 
3078     if (use_fpu_stack_allocation()) {
3079       allocate_fpu_stack(); // Only has effect on Intel
3080       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3081     }
3082   }
3083 
3084   { TIME_LINEAR_SCAN(timer_optimize_lir);
3085 
3086     EdgeMoveOptimizer::optimize(ir()->code());
3087     ControlFlowOptimizer::optimize(ir()->code());
3088     // check that cfg is still correct after optimizations
3089     ir()->verify();
3090   }
3091 
3092   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3093   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3094   NOT_PRODUCT(_total_timer.end_method(this));
3095 }
3096 
3097 
3098 // ********** Printing functions
3099 
3100 #ifndef PRODUCT
3101 
3102 void LinearScan::print_timers(double total) {
3103   _total_timer.print(total);
3104 }
3105 
3106 void LinearScan::print_statistics() {
3107   _stat_before_alloc.print("before allocation");
3108   _stat_after_asign.print("after assignment of register");
3109   _stat_final.print("after optimization");
3110 }
3111 
3112 void LinearScan::print_bitmap(BitMap& b) {
3113   for (unsigned int i = 0; i < b.size(); i++) {
3114     if (b.at(i)) tty->print("%d ", i);
3115   }
3116   tty->cr();
3117 }
3118 
3119 void LinearScan::print_intervals(const char* label) {
3120   if (TraceLinearScanLevel >= 1) {
3121     int i;
3122     tty->cr();
3123     tty->print_cr("%s", label);
3124 
3125     for (i = 0; i < interval_count(); i++) {
3126       Interval* interval = interval_at(i);
3127       if (interval != NULL) {
3128         interval->print();
3129       }
3130     }
3131 
3132     tty->cr();
3133     tty->print_cr("--- Basic Blocks ---");
3134     for (i = 0; i < block_count(); i++) {
3135       BlockBegin* block = block_at(i);
3136       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3137     }
3138     tty->cr();
3139     tty->cr();
3140   }
3141 
3142   if (PrintCFGToFile) {
3143     CFGPrinter::print_intervals(&_intervals, label);
3144   }
3145 }
3146 
3147 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3148   if (TraceLinearScanLevel >= level) {
3149     tty->cr();
3150     tty->print_cr("%s", label);
3151     print_LIR(ir()->linear_scan_order());
3152     tty->cr();
3153   }
3154 
3155   if (level == 1 && PrintCFGToFile) {
3156     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3157   }
3158 }
3159 
3160 #endif //PRODUCT
3161 
3162 
3163 // ********** verification functions for allocation
3164 // (check that all intervals have a correct register and that no registers are overwritten)
3165 #ifdef ASSERT
3166 
3167 void LinearScan::verify() {
3168   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3169   verify_intervals();
3170 
3171   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3172   verify_no_oops_in_fixed_intervals();
3173 
3174   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3175   verify_constants();
3176 
3177   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3178   verify_registers();
3179 
3180   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3181 }
3182 
3183 void LinearScan::verify_intervals() {
3184   int len = interval_count();
3185   bool has_error = false;
3186 
3187   for (int i = 0; i < len; i++) {
3188     Interval* i1 = interval_at(i);
3189     if (i1 == NULL) continue;
3190 
3191     i1->check_split_children();
3192 
3193     if (i1->reg_num() != i) {
3194       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3195       has_error = true;
3196     }
3197 
3198     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3199       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3200       has_error = true;
3201     }
3202 
3203     if (i1->assigned_reg() == any_reg) {
3204       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3205       has_error = true;
3206     }
3207 
3208     if (i1->assigned_reg() == i1->assigned_regHi()) {
3209       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3210       has_error = true;
3211     }
3212 
3213     if (!is_processed_reg_num(i1->assigned_reg())) {
3214       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3215       has_error = true;
3216     }
3217 
3218     if (i1->first() == Range::end()) {
3219       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3220       has_error = true;
3221     }
3222 
3223     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3224       if (r->from() >= r->to()) {
3225         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3226         has_error = true;
3227       }
3228     }
3229 
3230     for (int j = i + 1; j < len; j++) {
3231       Interval* i2 = interval_at(j);
3232       if (i2 == NULL) continue;
3233 
3234       // special intervals that are created in MoveResolver
3235       // -> ignore them because the range information has no meaning there
3236       if (i1->from() == 1 && i1->to() == 2) continue;
3237       if (i2->from() == 1 && i2->to() == 2) continue;
3238 
3239       int r1 = i1->assigned_reg();
3240       int r1Hi = i1->assigned_regHi();
3241       int r2 = i2->assigned_reg();
3242       int r2Hi = i2->assigned_regHi();
3243       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3244         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3245         i1->print(); tty->cr();
3246         i2->print(); tty->cr();
3247         has_error = true;
3248       }
3249     }
3250   }
3251 
3252   assert(has_error == false, "register allocation invalid");
3253 }
3254 
3255 
3256 void LinearScan::verify_no_oops_in_fixed_intervals() {
3257   Interval* fixed_intervals;
3258   Interval* other_intervals;
3259   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3260 
3261   // to ensure a walking until the last instruction id, add a dummy interval
3262   // with a high operation id
3263   other_intervals = new Interval(any_reg);
3264   other_intervals->add_range(max_jint - 2, max_jint - 1);
3265   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3266 
3267   LIR_OpVisitState visitor;
3268   for (int i = 0; i < block_count(); i++) {
3269     BlockBegin* block = block_at(i);
3270 
3271     LIR_OpList* instructions = block->lir()->instructions_list();
3272 
3273     for (int j = 0; j < instructions->length(); j++) {
3274       LIR_Op* op = instructions->at(j);
3275       int op_id = op->id();
3276 
3277       visitor.visit(op);
3278 
3279       if (visitor.info_count() > 0) {
3280         iw->walk_before(op->id());
3281         bool check_live = true;
3282         if (op->code() == lir_move) {
3283           LIR_Op1* move = (LIR_Op1*)op;
3284           check_live = (move->patch_code() == lir_patch_none);
3285         }
3286         LIR_OpBranch* branch = op->as_OpBranch();
3287         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3288           // Don't bother checking the stub in this case since the
3289           // exception stub will never return to normal control flow.
3290           check_live = false;
3291         }
3292 
3293         // Make sure none of the fixed registers is live across an
3294         // oopmap since we can't handle that correctly.
3295         if (check_live) {
3296           for (Interval* interval = iw->active_first(fixedKind);
3297                interval != Interval::end();
3298                interval = interval->next()) {
3299             if (interval->current_to() > op->id() + 1) {
3300               // This interval is live out of this op so make sure
3301               // that this interval represents some value that's
3302               // referenced by this op either as an input or output.
3303               bool ok = false;
3304               for_each_visitor_mode(mode) {
3305                 int n = visitor.opr_count(mode);
3306                 for (int k = 0; k < n; k++) {
3307                   LIR_Opr opr = visitor.opr_at(mode, k);
3308                   if (opr->is_fixed_cpu()) {
3309                     if (interval_at(reg_num(opr)) == interval) {
3310                       ok = true;
3311                       break;
3312                     }
3313                     int hi = reg_numHi(opr);
3314                     if (hi != -1 && interval_at(hi) == interval) {
3315                       ok = true;
3316                       break;
3317                     }
3318                   }
3319                 }
3320               }
3321               assert(ok, "fixed intervals should never be live across an oopmap point");
3322             }
3323           }
3324         }
3325       }
3326 
3327       // oop-maps at calls do not contain registers, so check is not needed
3328       if (!visitor.has_call()) {
3329 
3330         for_each_visitor_mode(mode) {
3331           int n = visitor.opr_count(mode);
3332           for (int k = 0; k < n; k++) {
3333             LIR_Opr opr = visitor.opr_at(mode, k);
3334 
3335             if (opr->is_fixed_cpu() && opr->is_oop()) {
3336               // operand is a non-virtual cpu register and contains an oop
3337               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3338 
3339               Interval* interval = interval_at(reg_num(opr));
3340               assert(interval != NULL, "no interval");
3341 
3342               if (mode == LIR_OpVisitState::inputMode) {
3343                 if (interval->to() >= op_id + 1) {
3344                   assert(interval->to() < op_id + 2 ||
3345                          interval->has_hole_between(op_id, op_id + 2),
3346                          "oop input operand live after instruction");
3347                 }
3348               } else if (mode == LIR_OpVisitState::outputMode) {
3349                 if (interval->from() <= op_id - 1) {
3350                   assert(interval->has_hole_between(op_id - 1, op_id),
3351                          "oop input operand live after instruction");
3352                 }
3353               }
3354             }
3355           }
3356         }
3357       }
3358     }
3359   }
3360 }
3361 
3362 
3363 void LinearScan::verify_constants() {
3364   int num_regs = num_virtual_regs();
3365   int size = live_set_size();
3366   int num_blocks = block_count();
3367 
3368   for (int i = 0; i < num_blocks; i++) {
3369     BlockBegin* block = block_at(i);
3370     BitMap live_at_edge = block->live_in();
3371 
3372     // visit all registers where the live_at_edge bit is set
3373     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3374       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3375 
3376       Value value = gen()->instruction_for_vreg(r);
3377 
3378       assert(value != NULL, "all intervals live across block boundaries must have Value");
3379       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3380       assert(value->operand()->vreg_number() == r, "register number must match");
3381       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3382     }
3383   }
3384 }
3385 
3386 
3387 class RegisterVerifier: public StackObj {
3388  private:
3389   LinearScan*   _allocator;
3390   BlockList     _work_list;      // all blocks that must be processed
3391   IntervalsList _saved_states;   // saved information of previous check
3392 
3393   // simplified access to methods of LinearScan
3394   Compilation*  compilation() const              { return _allocator->compilation(); }
3395   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3396   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3397 
3398   // currently, only registers are processed
3399   int           state_size()                     { return LinearScan::nof_regs; }
3400 
3401   // accessors
3402   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3403   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3404   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3405 
3406   // helper functions
3407   IntervalList* copy(IntervalList* input_state);
3408   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3409   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3410 
3411   void process_block(BlockBegin* block);
3412   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3413   void process_successor(BlockBegin* block, IntervalList* input_state);
3414   void process_operations(LIR_List* ops, IntervalList* input_state);
3415 
3416  public:
3417   RegisterVerifier(LinearScan* allocator)
3418     : _allocator(allocator)
3419     , _work_list(16)
3420     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3421   { }
3422 
3423   void verify(BlockBegin* start);
3424 };
3425 
3426 
3427 // entry function from LinearScan that starts the verification
3428 void LinearScan::verify_registers() {
3429   RegisterVerifier verifier(this);
3430   verifier.verify(block_at(0));
3431 }
3432 
3433 
3434 void RegisterVerifier::verify(BlockBegin* start) {
3435   // setup input registers (method arguments) for first block
3436   IntervalList* input_state = new IntervalList(state_size(), NULL);
3437   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3438   for (int n = 0; n < args->length(); n++) {
3439     LIR_Opr opr = args->at(n);
3440     if (opr->is_register()) {
3441       Interval* interval = interval_at(reg_num(opr));
3442 
3443       if (interval->assigned_reg() < state_size()) {
3444         input_state->at_put(interval->assigned_reg(), interval);
3445       }
3446       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3447         input_state->at_put(interval->assigned_regHi(), interval);
3448       }
3449     }
3450   }
3451 
3452   set_state_for_block(start, input_state);
3453   add_to_work_list(start);
3454 
3455   // main loop for verification
3456   do {
3457     BlockBegin* block = _work_list.at(0);
3458     _work_list.remove_at(0);
3459 
3460     process_block(block);
3461   } while (!_work_list.is_empty());
3462 }
3463 
3464 void RegisterVerifier::process_block(BlockBegin* block) {
3465   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3466 
3467   // must copy state because it is modified
3468   IntervalList* input_state = copy(state_for_block(block));
3469 
3470   if (TraceLinearScanLevel >= 4) {
3471     tty->print_cr("Input-State of intervals:");
3472     tty->print("    ");
3473     for (int i = 0; i < state_size(); i++) {
3474       if (input_state->at(i) != NULL) {
3475         tty->print(" %4d", input_state->at(i)->reg_num());
3476       } else {
3477         tty->print("   __");
3478       }
3479     }
3480     tty->cr();
3481     tty->cr();
3482   }
3483 
3484   // process all operations of the block
3485   process_operations(block->lir(), input_state);
3486 
3487   // iterate all successors
3488   for (int i = 0; i < block->number_of_sux(); i++) {
3489     process_successor(block->sux_at(i), input_state);
3490   }
3491 }
3492 
3493 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3494   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3495 
3496   // must copy state because it is modified
3497   input_state = copy(input_state);
3498 
3499   if (xhandler->entry_code() != NULL) {
3500     process_operations(xhandler->entry_code(), input_state);
3501   }
3502   process_successor(xhandler->entry_block(), input_state);
3503 }
3504 
3505 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3506   IntervalList* saved_state = state_for_block(block);
3507 
3508   if (saved_state != NULL) {
3509     // this block was already processed before.
3510     // check if new input_state is consistent with saved_state
3511 
3512     bool saved_state_correct = true;
3513     for (int i = 0; i < state_size(); i++) {
3514       if (input_state->at(i) != saved_state->at(i)) {
3515         // current input_state and previous saved_state assume a different
3516         // interval in this register -> assume that this register is invalid
3517         if (saved_state->at(i) != NULL) {
3518           // invalidate old calculation only if it assumed that
3519           // register was valid. when the register was already invalid,
3520           // then the old calculation was correct.
3521           saved_state_correct = false;
3522           saved_state->at_put(i, NULL);
3523 
3524           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3525         }
3526       }
3527     }
3528 
3529     if (saved_state_correct) {
3530       // already processed block with correct input_state
3531       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3532     } else {
3533       // must re-visit this block
3534       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3535       add_to_work_list(block);
3536     }
3537 
3538   } else {
3539     // block was not processed before, so set initial input_state
3540     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3541 
3542     set_state_for_block(block, copy(input_state));
3543     add_to_work_list(block);
3544   }
3545 }
3546 
3547 
3548 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3549   IntervalList* copy_state = new IntervalList(input_state->length());
3550   copy_state->push_all(input_state);
3551   return copy_state;
3552 }
3553 
3554 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3555   if (reg != LinearScan::any_reg && reg < state_size()) {
3556     if (interval != NULL) {
3557       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3558     } else if (input_state->at(reg) != NULL) {
3559       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3560     }
3561 
3562     input_state->at_put(reg, interval);
3563   }
3564 }
3565 
3566 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3567   if (reg != LinearScan::any_reg && reg < state_size()) {
3568     if (input_state->at(reg) != interval) {
3569       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3570       return true;
3571     }
3572   }
3573   return false;
3574 }
3575 
3576 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3577   // visit all instructions of the block
3578   LIR_OpVisitState visitor;
3579   bool has_error = false;
3580 
3581   for (int i = 0; i < ops->length(); i++) {
3582     LIR_Op* op = ops->at(i);
3583     visitor.visit(op);
3584 
3585     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3586 
3587     // check if input operands are correct
3588     int j;
3589     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3590     for (j = 0; j < n; j++) {
3591       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3592       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3593         Interval* interval = interval_at(reg_num(opr));
3594         if (op->id() != -1) {
3595           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3596         }
3597 
3598         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3599         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3600 
3601         // When an operand is marked with is_last_use, then the fpu stack allocator
3602         // removes the register from the fpu stack -> the register contains no value
3603         if (opr->is_last_use()) {
3604           state_put(input_state, interval->assigned_reg(),   NULL);
3605           state_put(input_state, interval->assigned_regHi(), NULL);
3606         }
3607       }
3608     }
3609 
3610     // invalidate all caller save registers at calls
3611     if (visitor.has_call()) {
3612       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3613         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3614       }
3615       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3616         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3617       }
3618 
3619 #ifdef X86
3620       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3621         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3622       }
3623 #endif
3624     }
3625 
3626     // process xhandler before output and temp operands
3627     XHandlers* xhandlers = visitor.all_xhandler();
3628     n = xhandlers->length();
3629     for (int k = 0; k < n; k++) {
3630       process_xhandler(xhandlers->handler_at(k), input_state);
3631     }
3632 
3633     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3634     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3635     for (j = 0; j < n; j++) {
3636       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3637       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3638         Interval* interval = interval_at(reg_num(opr));
3639         if (op->id() != -1) {
3640           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3641         }
3642 
3643         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3644         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3645       }
3646     }
3647 
3648     // set output operands
3649     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3650     for (j = 0; j < n; j++) {
3651       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3652       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3653         Interval* interval = interval_at(reg_num(opr));
3654         if (op->id() != -1) {
3655           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3656         }
3657 
3658         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3659         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3660       }
3661     }
3662   }
3663   assert(has_error == false, "Error in register allocation");
3664 }
3665 
3666 #endif // ASSERT
3667 
3668 
3669 
3670 // **** Implementation of MoveResolver ******************************
3671 
3672 MoveResolver::MoveResolver(LinearScan* allocator) :
3673   _allocator(allocator),
3674   _multiple_reads_allowed(false),
3675   _mapping_from(8),
3676   _mapping_from_opr(8),
3677   _mapping_to(8),
3678   _insert_list(NULL),
3679   _insert_idx(-1),
3680   _insertion_buffer()
3681 {
3682   for (int i = 0; i < LinearScan::nof_regs; i++) {
3683     _register_blocked[i] = 0;
3684   }
3685   DEBUG_ONLY(check_empty());
3686 }
3687 
3688 
3689 #ifdef ASSERT
3690 
3691 void MoveResolver::check_empty() {
3692   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3693   for (int i = 0; i < LinearScan::nof_regs; i++) {
3694     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3695   }
3696   assert(_multiple_reads_allowed == false, "must have default value");
3697 }
3698 
3699 void MoveResolver::verify_before_resolve() {
3700   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3701   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3702   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3703 
3704   int i, j;
3705   if (!_multiple_reads_allowed) {
3706     for (i = 0; i < _mapping_from.length(); i++) {
3707       for (j = i + 1; j < _mapping_from.length(); j++) {
3708         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3709       }
3710     }
3711   }
3712 
3713   for (i = 0; i < _mapping_to.length(); i++) {
3714     for (j = i + 1; j < _mapping_to.length(); j++) {
3715       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3716     }
3717   }
3718 
3719 
3720   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3721   used_regs.clear();
3722   if (!_multiple_reads_allowed) {
3723     for (i = 0; i < _mapping_from.length(); i++) {
3724       Interval* it = _mapping_from.at(i);
3725       if (it != NULL) {
3726         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3727         used_regs.set_bit(it->assigned_reg());
3728 
3729         if (it->assigned_regHi() != LinearScan::any_reg) {
3730           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3731           used_regs.set_bit(it->assigned_regHi());
3732         }
3733       }
3734     }
3735   }
3736 
3737   used_regs.clear();
3738   for (i = 0; i < _mapping_to.length(); i++) {
3739     Interval* it = _mapping_to.at(i);
3740     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3741     used_regs.set_bit(it->assigned_reg());
3742 
3743     if (it->assigned_regHi() != LinearScan::any_reg) {
3744       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3745       used_regs.set_bit(it->assigned_regHi());
3746     }
3747   }
3748 
3749   used_regs.clear();
3750   for (i = 0; i < _mapping_from.length(); i++) {
3751     Interval* it = _mapping_from.at(i);
3752     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3753       used_regs.set_bit(it->assigned_reg());
3754     }
3755   }
3756   for (i = 0; i < _mapping_to.length(); i++) {
3757     Interval* it = _mapping_to.at(i);
3758     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3759   }
3760 }
3761 
3762 #endif // ASSERT
3763 
3764 
3765 // mark assigned_reg and assigned_regHi of the interval as blocked
3766 void MoveResolver::block_registers(Interval* it) {
3767   int reg = it->assigned_reg();
3768   if (reg < LinearScan::nof_regs) {
3769     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3770     set_register_blocked(reg, 1);
3771   }
3772   reg = it->assigned_regHi();
3773   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3774     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3775     set_register_blocked(reg, 1);
3776   }
3777 }
3778 
3779 // mark assigned_reg and assigned_regHi of the interval as unblocked
3780 void MoveResolver::unblock_registers(Interval* it) {
3781   int reg = it->assigned_reg();
3782   if (reg < LinearScan::nof_regs) {
3783     assert(register_blocked(reg) > 0, "register already marked as unused");
3784     set_register_blocked(reg, -1);
3785   }
3786   reg = it->assigned_regHi();
3787   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3788     assert(register_blocked(reg) > 0, "register already marked as unused");
3789     set_register_blocked(reg, -1);
3790   }
3791 }
3792 
3793 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3794 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3795   int from_reg = -1;
3796   int from_regHi = -1;
3797   if (from != NULL) {
3798     from_reg = from->assigned_reg();
3799     from_regHi = from->assigned_regHi();
3800   }
3801 
3802   int reg = to->assigned_reg();
3803   if (reg < LinearScan::nof_regs) {
3804     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3805       return false;
3806     }
3807   }
3808   reg = to->assigned_regHi();
3809   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3810     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3811       return false;
3812     }
3813   }
3814 
3815   return true;
3816 }
3817 
3818 
3819 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3820   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3821   _insertion_buffer.init(list);
3822 }
3823 
3824 void MoveResolver::append_insertion_buffer() {
3825   if (_insertion_buffer.initialized()) {
3826     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3827   }
3828   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3829 
3830   _insert_list = NULL;
3831   _insert_idx = -1;
3832 }
3833 
3834 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3835   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3836   assert(from_interval->type() == to_interval->type(), "move between different types");
3837   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3838   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3839 
3840   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3841   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3842 
3843   if (!_multiple_reads_allowed) {
3844     // the last_use flag is an optimization for FPU stack allocation. When the same
3845     // input interval is used in more than one move, then it is too difficult to determine
3846     // if this move is really the last use.
3847     from_opr = from_opr->make_last_use();
3848   }
3849   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3850 
3851   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3852 }
3853 
3854 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3855   assert(from_opr->type() == to_interval->type(), "move between different types");
3856   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3857   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3858 
3859   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3860   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3861 
3862   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3863 }
3864 
3865 
3866 void MoveResolver::resolve_mappings() {
3867   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3868   DEBUG_ONLY(verify_before_resolve());
3869 
3870   // Block all registers that are used as input operands of a move.
3871   // When a register is blocked, no move to this register is emitted.
3872   // This is necessary for detecting cycles in moves.
3873   int i;
3874   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3875     Interval* from_interval = _mapping_from.at(i);
3876     if (from_interval != NULL) {
3877       block_registers(from_interval);
3878     }
3879   }
3880 
3881   int spill_candidate = -1;
3882   while (_mapping_from.length() > 0) {
3883     bool processed_interval = false;
3884 
3885     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3886       Interval* from_interval = _mapping_from.at(i);
3887       Interval* to_interval = _mapping_to.at(i);
3888 
3889       if (save_to_process_move(from_interval, to_interval)) {
3890         // this inverval can be processed because target is free
3891         if (from_interval != NULL) {
3892           insert_move(from_interval, to_interval);
3893           unblock_registers(from_interval);
3894         } else {
3895           insert_move(_mapping_from_opr.at(i), to_interval);
3896         }
3897         _mapping_from.remove_at(i);
3898         _mapping_from_opr.remove_at(i);
3899         _mapping_to.remove_at(i);
3900 
3901         processed_interval = true;
3902       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3903         // this interval cannot be processed now because target is not free
3904         // it starts in a register, so it is a possible candidate for spilling
3905         spill_candidate = i;
3906       }
3907     }
3908 
3909     if (!processed_interval) {
3910       // no move could be processed because there is a cycle in the move list
3911       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3912       assert(spill_candidate != -1, "no interval in register for spilling found");
3913 
3914       // create a new spill interval and assign a stack slot to it
3915       Interval* from_interval = _mapping_from.at(spill_candidate);
3916       Interval* spill_interval = new Interval(-1);
3917       spill_interval->set_type(from_interval->type());
3918 
3919       // add a dummy range because real position is difficult to calculate
3920       // Note: this range is a special case when the integrity of the allocation is checked
3921       spill_interval->add_range(1, 2);
3922 
3923       //       do not allocate a new spill slot for temporary interval, but
3924       //       use spill slot assigned to from_interval. Otherwise moves from
3925       //       one stack slot to another can happen (not allowed by LIR_Assembler
3926       int spill_slot = from_interval->canonical_spill_slot();
3927       if (spill_slot < 0) {
3928         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3929         from_interval->set_canonical_spill_slot(spill_slot);
3930       }
3931       spill_interval->assign_reg(spill_slot);
3932       allocator()->append_interval(spill_interval);
3933 
3934       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3935 
3936       // insert a move from register to stack and update the mapping
3937       insert_move(from_interval, spill_interval);
3938       _mapping_from.at_put(spill_candidate, spill_interval);
3939       unblock_registers(from_interval);
3940     }
3941   }
3942 
3943   // reset to default value
3944   _multiple_reads_allowed = false;
3945 
3946   // check that all intervals have been processed
3947   DEBUG_ONLY(check_empty());
3948 }
3949 
3950 
3951 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3952   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3953   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3954 
3955   create_insertion_buffer(insert_list);
3956   _insert_list = insert_list;
3957   _insert_idx = insert_idx;
3958 }
3959 
3960 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3961   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3962 
3963   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3964     // insert position changed -> resolve current mappings
3965     resolve_mappings();
3966   }
3967 
3968   if (insert_list != _insert_list) {
3969     // block changed -> append insertion_buffer because it is
3970     // bound to a specific block and create a new insertion_buffer
3971     append_insertion_buffer();
3972     create_insertion_buffer(insert_list);
3973   }
3974 
3975   _insert_list = insert_list;
3976   _insert_idx = insert_idx;
3977 }
3978 
3979 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3980   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3981 
3982   _mapping_from.append(from_interval);
3983   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3984   _mapping_to.append(to_interval);
3985 }
3986 
3987 
3988 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3989   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3990   assert(from_opr->is_constant(), "only for constants");
3991 
3992   _mapping_from.append(NULL);
3993   _mapping_from_opr.append(from_opr);
3994   _mapping_to.append(to_interval);
3995 }
3996 
3997 void MoveResolver::resolve_and_append_moves() {
3998   if (has_mappings()) {
3999     resolve_mappings();
4000   }
4001   append_insertion_buffer();
4002 }
4003 
4004 
4005 
4006 // **** Implementation of Range *************************************
4007 
4008 Range::Range(int from, int to, Range* next) :
4009   _from(from),
4010   _to(to),
4011   _next(next)
4012 {
4013 }
4014 
4015 // initialize sentinel
4016 Range* Range::_end = NULL;
4017 void Range::initialize(Arena* arena) {
4018   _end = new (arena) Range(max_jint, max_jint, NULL);
4019 }
4020 
4021 int Range::intersects_at(Range* r2) const {
4022   const Range* r1 = this;
4023 
4024   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4025   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4026 
4027   do {
4028     if (r1->from() < r2->from()) {
4029       if (r1->to() <= r2->from()) {
4030         r1 = r1->next(); if (r1 == _end) return -1;
4031       } else {
4032         return r2->from();
4033       }
4034     } else if (r2->from() < r1->from()) {
4035       if (r2->to() <= r1->from()) {
4036         r2 = r2->next(); if (r2 == _end) return -1;
4037       } else {
4038         return r1->from();
4039       }
4040     } else { // r1->from() == r2->from()
4041       if (r1->from() == r1->to()) {
4042         r1 = r1->next(); if (r1 == _end) return -1;
4043       } else if (r2->from() == r2->to()) {
4044         r2 = r2->next(); if (r2 == _end) return -1;
4045       } else {
4046         return r1->from();
4047       }
4048     }
4049   } while (true);
4050 }
4051 
4052 #ifndef PRODUCT
4053 void Range::print(outputStream* out) const {
4054   out->print("[%d, %d[ ", _from, _to);
4055 }
4056 #endif
4057 
4058 
4059 
4060 // **** Implementation of Interval **********************************
4061 
4062 // initialize sentinel
4063 Interval* Interval::_end = NULL;
4064 void Interval::initialize(Arena* arena) {
4065   Range::initialize(arena);
4066   _end = new (arena) Interval(-1);
4067 }
4068 
4069 Interval::Interval(int reg_num) :
4070   _reg_num(reg_num),
4071   _type(T_ILLEGAL),
4072   _first(Range::end()),
4073   _use_pos_and_kinds(12),
4074   _current(Range::end()),
4075   _next(_end),
4076   _state(invalidState),
4077   _assigned_reg(LinearScan::any_reg),
4078   _assigned_regHi(LinearScan::any_reg),
4079   _cached_to(-1),
4080   _cached_opr(LIR_OprFact::illegalOpr),
4081   _cached_vm_reg(VMRegImpl::Bad()),
4082   _split_children(0),
4083   _canonical_spill_slot(-1),
4084   _insert_move_when_activated(false),
4085   _register_hint(NULL),
4086   _spill_state(noDefinitionFound),
4087   _spill_definition_pos(-1)
4088 {
4089   _split_parent = this;
4090   _current_split_child = this;
4091 }
4092 
4093 int Interval::calc_to() {
4094   assert(_first != Range::end(), "interval has no range");
4095 
4096   Range* r = _first;
4097   while (r->next() != Range::end()) {
4098     r = r->next();
4099   }
4100   return r->to();
4101 }
4102 
4103 
4104 #ifdef ASSERT
4105 // consistency check of split-children
4106 void Interval::check_split_children() {
4107   if (_split_children.length() > 0) {
4108     assert(is_split_parent(), "only split parents can have children");
4109 
4110     for (int i = 0; i < _split_children.length(); i++) {
4111       Interval* i1 = _split_children.at(i);
4112 
4113       assert(i1->split_parent() == this, "not a split child of this interval");
4114       assert(i1->type() == type(), "must be equal for all split children");
4115       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4116 
4117       for (int j = i + 1; j < _split_children.length(); j++) {
4118         Interval* i2 = _split_children.at(j);
4119 
4120         assert(i1->reg_num() != i2->reg_num(), "same register number");
4121 
4122         if (i1->from() < i2->from()) {
4123           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4124         } else {
4125           assert(i2->from() < i1->from(), "intervals start at same op_id");
4126           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4127         }
4128       }
4129     }
4130   }
4131 }
4132 #endif // ASSERT
4133 
4134 Interval* Interval::register_hint(bool search_split_child) const {
4135   if (!search_split_child) {
4136     return _register_hint;
4137   }
4138 
4139   if (_register_hint != NULL) {
4140     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4141 
4142     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4143       return _register_hint;
4144 
4145     } else if (_register_hint->_split_children.length() > 0) {
4146       // search the first split child that has a register assigned
4147       int len = _register_hint->_split_children.length();
4148       for (int i = 0; i < len; i++) {
4149         Interval* cur = _register_hint->_split_children.at(i);
4150 
4151         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4152           return cur;
4153         }
4154       }
4155     }
4156   }
4157 
4158   // no hint interval found that has a register assigned
4159   return NULL;
4160 }
4161 
4162 
4163 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4164   assert(is_split_parent(), "can only be called for split parents");
4165   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4166 
4167   Interval* result;
4168   if (_split_children.length() == 0) {
4169     result = this;
4170   } else {
4171     result = NULL;
4172     int len = _split_children.length();
4173 
4174     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4175     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4176 
4177     int i;
4178     for (i = 0; i < len; i++) {
4179       Interval* cur = _split_children.at(i);
4180       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4181         if (i > 0) {
4182           // exchange current split child to start of list (faster access for next call)
4183           _split_children.at_put(i, _split_children.at(0));
4184           _split_children.at_put(0, cur);
4185         }
4186 
4187         // interval found
4188         result = cur;
4189         break;
4190       }
4191     }
4192 
4193 #ifdef ASSERT
4194     for (i = 0; i < len; i++) {
4195       Interval* tmp = _split_children.at(i);
4196       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4197         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4198         result->print();
4199         tmp->print();
4200         assert(false, "two valid result intervals found");
4201       }
4202     }
4203 #endif
4204   }
4205 
4206   assert(result != NULL, "no matching interval found");
4207   assert(result->covers(op_id, mode), "op_id not covered by interval");
4208 
4209   return result;
4210 }
4211 
4212 
4213 // returns the last split child that ends before the given op_id
4214 Interval* Interval::split_child_before_op_id(int op_id) {
4215   assert(op_id >= 0, "invalid op_id");
4216 
4217   Interval* parent = split_parent();
4218   Interval* result = NULL;
4219 
4220   int len = parent->_split_children.length();
4221   assert(len > 0, "no split children available");
4222 
4223   for (int i = len - 1; i >= 0; i--) {
4224     Interval* cur = parent->_split_children.at(i);
4225     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4226       result = cur;
4227     }
4228   }
4229 
4230   assert(result != NULL, "no split child found");
4231   return result;
4232 }
4233 
4234 
4235 // checks if op_id is covered by any split child
4236 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4237   assert(is_split_parent(), "can only be called for split parents");
4238   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4239 
4240   if (_split_children.length() == 0) {
4241     // simple case if interval was not split
4242     return covers(op_id, mode);
4243 
4244   } else {
4245     // extended case: check all split children
4246     int len = _split_children.length();
4247     for (int i = 0; i < len; i++) {
4248       Interval* cur = _split_children.at(i);
4249       if (cur->covers(op_id, mode)) {
4250         return true;
4251       }
4252     }
4253     return false;
4254   }
4255 }
4256 
4257 
4258 // Note: use positions are sorted descending -> first use has highest index
4259 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4260   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4261 
4262   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4263     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4264       return _use_pos_and_kinds.at(i);
4265     }
4266   }
4267   return max_jint;
4268 }
4269 
4270 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4271   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4272 
4273   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4274     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4275       return _use_pos_and_kinds.at(i);
4276     }
4277   }
4278   return max_jint;
4279 }
4280 
4281 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4282   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4283 
4284   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4285     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4286       return _use_pos_and_kinds.at(i);
4287     }
4288   }
4289   return max_jint;
4290 }
4291 
4292 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4293   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4294 
4295   int prev = 0;
4296   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4297     if (_use_pos_and_kinds.at(i) > from) {
4298       return prev;
4299     }
4300     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4301       prev = _use_pos_and_kinds.at(i);
4302     }
4303   }
4304   return prev;
4305 }
4306 
4307 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4308   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4309 
4310   // do not add use positions for precolored intervals because
4311   // they are never used
4312   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4313 #ifdef ASSERT
4314     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4315     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4316       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4317       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4318       if (i > 0) {
4319         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4320       }
4321     }
4322 #endif
4323 
4324     // Note: add_use is called in descending order, so list gets sorted
4325     //       automatically by just appending new use positions
4326     int len = _use_pos_and_kinds.length();
4327     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4328       _use_pos_and_kinds.append(pos);
4329       _use_pos_and_kinds.append(use_kind);
4330     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4331       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4332       _use_pos_and_kinds.at_put(len - 1, use_kind);
4333     }
4334   }
4335 }
4336 
4337 void Interval::add_range(int from, int to) {
4338   assert(from < to, "invalid range");
4339   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4340   assert(from <= first()->to(), "not inserting at begin of interval");
4341 
4342   if (first()->from() <= to) {
4343     // join intersecting ranges
4344     first()->set_from(MIN2(from, first()->from()));
4345     first()->set_to  (MAX2(to,   first()->to()));
4346   } else {
4347     // insert new range
4348     _first = new Range(from, to, first());
4349   }
4350 }
4351 
4352 Interval* Interval::new_split_child() {
4353   // allocate new interval
4354   Interval* result = new Interval(-1);
4355   result->set_type(type());
4356 
4357   Interval* parent = split_parent();
4358   result->_split_parent = parent;
4359   result->set_register_hint(parent);
4360 
4361   // insert new interval in children-list of parent
4362   if (parent->_split_children.length() == 0) {
4363     assert(is_split_parent(), "list must be initialized at first split");
4364 
4365     parent->_split_children = IntervalList(4);
4366     parent->_split_children.append(this);
4367   }
4368   parent->_split_children.append(result);
4369 
4370   return result;
4371 }
4372 
4373 // split this interval at the specified position and return
4374 // the remainder as a new interval.
4375 //
4376 // when an interval is split, a bi-directional link is established between the original interval
4377 // (the split parent) and the intervals that are split off this interval (the split children)
4378 // When a split child is split again, the new created interval is also a direct child
4379 // of the original parent (there is no tree of split children stored, but a flat list)
4380 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4381 //
4382 // Note: The new interval has no valid reg_num
4383 Interval* Interval::split(int split_pos) {
4384   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4385 
4386   // allocate new interval
4387   Interval* result = new_split_child();
4388 
4389   // split the ranges
4390   Range* prev = NULL;
4391   Range* cur = _first;
4392   while (cur != Range::end() && cur->to() <= split_pos) {
4393     prev = cur;
4394     cur = cur->next();
4395   }
4396   assert(cur != Range::end(), "split interval after end of last range");
4397 
4398   if (cur->from() < split_pos) {
4399     result->_first = new Range(split_pos, cur->to(), cur->next());
4400     cur->set_to(split_pos);
4401     cur->set_next(Range::end());
4402 
4403   } else {
4404     assert(prev != NULL, "split before start of first range");
4405     result->_first = cur;
4406     prev->set_next(Range::end());
4407   }
4408   result->_current = result->_first;
4409   _cached_to = -1; // clear cached value
4410 
4411   // split list of use positions
4412   int total_len = _use_pos_and_kinds.length();
4413   int start_idx = total_len - 2;
4414   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4415     start_idx -= 2;
4416   }
4417 
4418   intStack new_use_pos_and_kinds(total_len - start_idx);
4419   int i;
4420   for (i = start_idx + 2; i < total_len; i++) {
4421     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4422   }
4423 
4424   _use_pos_and_kinds.truncate(start_idx + 2);
4425   result->_use_pos_and_kinds = _use_pos_and_kinds;
4426   _use_pos_and_kinds = new_use_pos_and_kinds;
4427 
4428 #ifdef ASSERT
4429   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4430   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4431   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4432 
4433   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4434     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4435     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4436   }
4437   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4438     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4439     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4440   }
4441 #endif
4442 
4443   return result;
4444 }
4445 
4446 // split this interval at the specified position and return
4447 // the head as a new interval (the original interval is the tail)
4448 //
4449 // Currently, only the first range can be split, and the new interval
4450 // must not have split positions
4451 Interval* Interval::split_from_start(int split_pos) {
4452   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4453   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4454   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4455   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4456 
4457   // allocate new interval
4458   Interval* result = new_split_child();
4459 
4460   // the new created interval has only one range (checked by assertion above),
4461   // so the splitting of the ranges is very simple
4462   result->add_range(_first->from(), split_pos);
4463 
4464   if (split_pos == _first->to()) {
4465     assert(_first->next() != Range::end(), "must not be at end");
4466     _first = _first->next();
4467   } else {
4468     _first->set_from(split_pos);
4469   }
4470 
4471   return result;
4472 }
4473 
4474 
4475 // returns true if the op_id is inside the interval
4476 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4477   Range* cur  = _first;
4478 
4479   while (cur != Range::end() && cur->to() < op_id) {
4480     cur = cur->next();
4481   }
4482   if (cur != Range::end()) {
4483     assert(cur->to() != cur->next()->from(), "ranges not separated");
4484 
4485     if (mode == LIR_OpVisitState::outputMode) {
4486       return cur->from() <= op_id && op_id < cur->to();
4487     } else {
4488       return cur->from() <= op_id && op_id <= cur->to();
4489     }
4490   }
4491   return false;
4492 }
4493 
4494 // returns true if the interval has any hole between hole_from and hole_to
4495 // (even if the hole has only the length 1)
4496 bool Interval::has_hole_between(int hole_from, int hole_to) {
4497   assert(hole_from < hole_to, "check");
4498   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4499 
4500   Range* cur  = _first;
4501   while (cur != Range::end()) {
4502     assert(cur->to() < cur->next()->from(), "no space between ranges");
4503 
4504     // hole-range starts before this range -> hole
4505     if (hole_from < cur->from()) {
4506       return true;
4507 
4508     // hole-range completely inside this range -> no hole
4509     } else if (hole_to <= cur->to()) {
4510       return false;
4511 
4512     // overlapping of hole-range with this range -> hole
4513     } else if (hole_from <= cur->to()) {
4514       return true;
4515     }
4516 
4517     cur = cur->next();
4518   }
4519 
4520   return false;
4521 }
4522 
4523 
4524 #ifndef PRODUCT
4525 void Interval::print(outputStream* out) const {
4526   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4527   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4528 
4529   const char* type_name;
4530   LIR_Opr opr = LIR_OprFact::illegal();
4531   if (reg_num() < LIR_OprDesc::vreg_base) {
4532     type_name = "fixed";
4533     // need a temporary operand for fixed intervals because type() cannot be called
4534     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4535       opr = LIR_OprFact::single_cpu(assigned_reg());
4536     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4537       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4538 #ifdef X86
4539     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4540       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4541 #endif
4542     } else {
4543       ShouldNotReachHere();
4544     }
4545   } else {
4546     type_name = type2name(type());
4547     if (assigned_reg() != -1 &&
4548         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4549       opr = LinearScan::calc_operand_for_interval(this);
4550     }
4551   }
4552 
4553   out->print("%d %s ", reg_num(), type_name);
4554   if (opr->is_valid()) {
4555     out->print("\"");
4556     opr->print(out);
4557     out->print("\" ");
4558   }
4559   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4560 
4561   // print ranges
4562   Range* cur = _first;
4563   while (cur != Range::end()) {
4564     cur->print(out);
4565     cur = cur->next();
4566     assert(cur != NULL, "range list not closed with range sentinel");
4567   }
4568 
4569   // print use positions
4570   int prev = 0;
4571   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4572   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4573     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4574     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4575 
4576     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4577     prev = _use_pos_and_kinds.at(i);
4578   }
4579 
4580   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4581   out->cr();
4582 }
4583 #endif
4584 
4585 
4586 
4587 // **** Implementation of IntervalWalker ****************************
4588 
4589 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4590  : _compilation(allocator->compilation())
4591  , _allocator(allocator)
4592 {
4593   _unhandled_first[fixedKind] = unhandled_fixed_first;
4594   _unhandled_first[anyKind]   = unhandled_any_first;
4595   _active_first[fixedKind]    = Interval::end();
4596   _inactive_first[fixedKind]  = Interval::end();
4597   _active_first[anyKind]      = Interval::end();
4598   _inactive_first[anyKind]    = Interval::end();
4599   _current_position = -1;
4600   _current = NULL;
4601   next_interval();
4602 }
4603 
4604 
4605 // append interval at top of list
4606 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4607   interval->set_next(*list); *list = interval;
4608 }
4609 
4610 
4611 // append interval in order of current range from()
4612 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4613   Interval* prev = NULL;
4614   Interval* cur  = *list;
4615   while (cur->current_from() < interval->current_from()) {
4616     prev = cur; cur = cur->next();
4617   }
4618   if (prev == NULL) {
4619     *list = interval;
4620   } else {
4621     prev->set_next(interval);
4622   }
4623   interval->set_next(cur);
4624 }
4625 
4626 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4627   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4628 
4629   Interval* prev = NULL;
4630   Interval* cur  = *list;
4631   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4632     prev = cur; cur = cur->next();
4633   }
4634   if (prev == NULL) {
4635     *list = interval;
4636   } else {
4637     prev->set_next(interval);
4638   }
4639   interval->set_next(cur);
4640 }
4641 
4642 
4643 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4644   while (*list != Interval::end() && *list != i) {
4645     list = (*list)->next_addr();
4646   }
4647   if (*list != Interval::end()) {
4648     assert(*list == i, "check");
4649     *list = (*list)->next();
4650     return true;
4651   } else {
4652     return false;
4653   }
4654 }
4655 
4656 void IntervalWalker::remove_from_list(Interval* i) {
4657   bool deleted;
4658 
4659   if (i->state() == activeState) {
4660     deleted = remove_from_list(active_first_addr(anyKind), i);
4661   } else {
4662     assert(i->state() == inactiveState, "invalid state");
4663     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4664   }
4665 
4666   assert(deleted, "interval has not been found in list");
4667 }
4668 
4669 
4670 void IntervalWalker::walk_to(IntervalState state, int from) {
4671   assert (state == activeState || state == inactiveState, "wrong state");
4672   for_each_interval_kind(kind) {
4673     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4674     Interval* next   = *prev;
4675     while (next->current_from() <= from) {
4676       Interval* cur = next;
4677       next = cur->next();
4678 
4679       bool range_has_changed = false;
4680       while (cur->current_to() <= from) {
4681         cur->next_range();
4682         range_has_changed = true;
4683       }
4684 
4685       // also handle move from inactive list to active list
4686       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4687 
4688       if (range_has_changed) {
4689         // remove cur from list
4690         *prev = next;
4691         if (cur->current_at_end()) {
4692           // move to handled state (not maintained as a list)
4693           cur->set_state(handledState);
4694           interval_moved(cur, kind, state, handledState);
4695         } else if (cur->current_from() <= from){
4696           // sort into active list
4697           append_sorted(active_first_addr(kind), cur);
4698           cur->set_state(activeState);
4699           if (*prev == cur) {
4700             assert(state == activeState, "check");
4701             prev = cur->next_addr();
4702           }
4703           interval_moved(cur, kind, state, activeState);
4704         } else {
4705           // sort into inactive list
4706           append_sorted(inactive_first_addr(kind), cur);
4707           cur->set_state(inactiveState);
4708           if (*prev == cur) {
4709             assert(state == inactiveState, "check");
4710             prev = cur->next_addr();
4711           }
4712           interval_moved(cur, kind, state, inactiveState);
4713         }
4714       } else {
4715         prev = cur->next_addr();
4716         continue;
4717       }
4718     }
4719   }
4720 }
4721 
4722 
4723 void IntervalWalker::next_interval() {
4724   IntervalKind kind;
4725   Interval* any   = _unhandled_first[anyKind];
4726   Interval* fixed = _unhandled_first[fixedKind];
4727 
4728   if (any != Interval::end()) {
4729     // intervals may start at same position -> prefer fixed interval
4730     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4731 
4732     assert (kind == fixedKind && fixed->from() <= any->from() ||
4733             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4734     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4735 
4736   } else if (fixed != Interval::end()) {
4737     kind = fixedKind;
4738   } else {
4739     _current = NULL; return;
4740   }
4741   _current_kind = kind;
4742   _current = _unhandled_first[kind];
4743   _unhandled_first[kind] = _current->next();
4744   _current->set_next(Interval::end());
4745   _current->rewind_range();
4746 }
4747 
4748 
4749 void IntervalWalker::walk_to(int lir_op_id) {
4750   assert(_current_position <= lir_op_id, "can not walk backwards");
4751   while (current() != NULL) {
4752     bool is_active = current()->from() <= lir_op_id;
4753     int id = is_active ? current()->from() : lir_op_id;
4754 
4755     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4756 
4757     // set _current_position prior to call of walk_to
4758     _current_position = id;
4759 
4760     // call walk_to even if _current_position == id
4761     walk_to(activeState, id);
4762     walk_to(inactiveState, id);
4763 
4764     if (is_active) {
4765       current()->set_state(activeState);
4766       if (activate_current()) {
4767         append_sorted(active_first_addr(current_kind()), current());
4768         interval_moved(current(), current_kind(), unhandledState, activeState);
4769       }
4770 
4771       next_interval();
4772     } else {
4773       return;
4774     }
4775   }
4776 }
4777 
4778 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4779 #ifndef PRODUCT
4780   if (TraceLinearScanLevel >= 4) {
4781     #define print_state(state) \
4782     switch(state) {\
4783       case unhandledState: tty->print("unhandled"); break;\
4784       case activeState: tty->print("active"); break;\
4785       case inactiveState: tty->print("inactive"); break;\
4786       case handledState: tty->print("handled"); break;\
4787       default: ShouldNotReachHere(); \
4788     }
4789 
4790     print_state(from); tty->print(" to "); print_state(to);
4791     tty->fill_to(23);
4792     interval->print();
4793 
4794     #undef print_state
4795   }
4796 #endif
4797 }
4798 
4799 
4800 
4801 // **** Implementation of LinearScanWalker **************************
4802 
4803 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4804   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4805   , _move_resolver(allocator)
4806 {
4807   for (int i = 0; i < LinearScan::nof_regs; i++) {
4808     _spill_intervals[i] = new IntervalList(2);
4809   }
4810 }
4811 
4812 
4813 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4814   for (int i = _first_reg; i <= _last_reg; i++) {
4815     _use_pos[i] = max_jint;
4816 
4817     if (!only_process_use_pos) {
4818       _block_pos[i] = max_jint;
4819       _spill_intervals[i]->clear();
4820     }
4821   }
4822 }
4823 
4824 inline void LinearScanWalker::exclude_from_use(int reg) {
4825   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4826   if (reg >= _first_reg && reg <= _last_reg) {
4827     _use_pos[reg] = 0;
4828   }
4829 }
4830 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4831   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4832 
4833   exclude_from_use(i->assigned_reg());
4834   exclude_from_use(i->assigned_regHi());
4835 }
4836 
4837 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4838   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4839 
4840   if (reg >= _first_reg && reg <= _last_reg) {
4841     if (_use_pos[reg] > use_pos) {
4842       _use_pos[reg] = use_pos;
4843     }
4844     if (!only_process_use_pos) {
4845       _spill_intervals[reg]->append(i);
4846     }
4847   }
4848 }
4849 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4850   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4851   if (use_pos != -1) {
4852     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4853     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4854   }
4855 }
4856 
4857 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4858   if (reg >= _first_reg && reg <= _last_reg) {
4859     if (_block_pos[reg] > block_pos) {
4860       _block_pos[reg] = block_pos;
4861     }
4862     if (_use_pos[reg] > block_pos) {
4863       _use_pos[reg] = block_pos;
4864     }
4865   }
4866 }
4867 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4868   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4869   if (block_pos != -1) {
4870     set_block_pos(i->assigned_reg(), i, block_pos);
4871     set_block_pos(i->assigned_regHi(), i, block_pos);
4872   }
4873 }
4874 
4875 
4876 void LinearScanWalker::free_exclude_active_fixed() {
4877   Interval* list = active_first(fixedKind);
4878   while (list != Interval::end()) {
4879     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4880     exclude_from_use(list);
4881     list = list->next();
4882   }
4883 }
4884 
4885 void LinearScanWalker::free_exclude_active_any() {
4886   Interval* list = active_first(anyKind);
4887   while (list != Interval::end()) {
4888     exclude_from_use(list);
4889     list = list->next();
4890   }
4891 }
4892 
4893 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4894   Interval* list = inactive_first(fixedKind);
4895   while (list != Interval::end()) {
4896     if (cur->to() <= list->current_from()) {
4897       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4898       set_use_pos(list, list->current_from(), true);
4899     } else {
4900       set_use_pos(list, list->current_intersects_at(cur), true);
4901     }
4902     list = list->next();
4903   }
4904 }
4905 
4906 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4907   Interval* list = inactive_first(anyKind);
4908   while (list != Interval::end()) {
4909     set_use_pos(list, list->current_intersects_at(cur), true);
4910     list = list->next();
4911   }
4912 }
4913 
4914 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4915   Interval* list = unhandled_first(kind);
4916   while (list != Interval::end()) {
4917     set_use_pos(list, list->intersects_at(cur), true);
4918     if (kind == fixedKind && cur->to() <= list->from()) {
4919       set_use_pos(list, list->from(), true);
4920     }
4921     list = list->next();
4922   }
4923 }
4924 
4925 void LinearScanWalker::spill_exclude_active_fixed() {
4926   Interval* list = active_first(fixedKind);
4927   while (list != Interval::end()) {
4928     exclude_from_use(list);
4929     list = list->next();
4930   }
4931 }
4932 
4933 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4934   Interval* list = unhandled_first(fixedKind);
4935   while (list != Interval::end()) {
4936     set_block_pos(list, list->intersects_at(cur));
4937     list = list->next();
4938   }
4939 }
4940 
4941 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4942   Interval* list = inactive_first(fixedKind);
4943   while (list != Interval::end()) {
4944     if (cur->to() > list->current_from()) {
4945       set_block_pos(list, list->current_intersects_at(cur));
4946     } else {
4947       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4948     }
4949 
4950     list = list->next();
4951   }
4952 }
4953 
4954 void LinearScanWalker::spill_collect_active_any() {
4955   Interval* list = active_first(anyKind);
4956   while (list != Interval::end()) {
4957     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4958     list = list->next();
4959   }
4960 }
4961 
4962 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4963   Interval* list = inactive_first(anyKind);
4964   while (list != Interval::end()) {
4965     if (list->current_intersects(cur)) {
4966       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4967     }
4968     list = list->next();
4969   }
4970 }
4971 
4972 
4973 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4974   // output all moves here. When source and target are equal, the move is
4975   // optimized away later in assign_reg_nums
4976 
4977   op_id = (op_id + 1) & ~1;
4978   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4979   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4980 
4981   // calculate index of instruction inside instruction list of current block
4982   // the minimal index (for a block with no spill moves) can be calculated because the
4983   // numbering of instructions is known.
4984   // When the block already contains spill moves, the index must be increased until the
4985   // correct index is reached.
4986   LIR_OpList* list = op_block->lir()->instructions_list();
4987   int index = (op_id - list->at(0)->id()) / 2;
4988   assert(list->at(index)->id() <= op_id, "error in calculation");
4989 
4990   while (list->at(index)->id() != op_id) {
4991     index++;
4992     assert(0 <= index && index < list->length(), "index out of bounds");
4993   }
4994   assert(1 <= index && index < list->length(), "index out of bounds");
4995   assert(list->at(index)->id() == op_id, "error in calculation");
4996 
4997   // insert new instruction before instruction at position index
4998   _move_resolver.move_insert_position(op_block->lir(), index - 1);
4999   _move_resolver.add_mapping(src_it, dst_it);
5000 }
5001 
5002 
5003 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5004   int from_block_nr = min_block->linear_scan_number();
5005   int to_block_nr = max_block->linear_scan_number();
5006 
5007   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5008   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5009   assert(from_block_nr < to_block_nr, "must cross block boundary");
5010 
5011   // Try to split at end of max_block. If this would be after
5012   // max_split_pos, then use the begin of max_block
5013   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5014   if (optimal_split_pos > max_split_pos) {
5015     optimal_split_pos = max_block->first_lir_instruction_id();
5016   }
5017 
5018   int min_loop_depth = max_block->loop_depth();
5019   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5020     BlockBegin* cur = block_at(i);
5021 
5022     if (cur->loop_depth() < min_loop_depth) {
5023       // block with lower loop-depth found -> split at the end of this block
5024       min_loop_depth = cur->loop_depth();
5025       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5026     }
5027   }
5028   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5029 
5030   return optimal_split_pos;
5031 }
5032 
5033 
5034 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5035   int optimal_split_pos = -1;
5036   if (min_split_pos == max_split_pos) {
5037     // trivial case, no optimization of split position possible
5038     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5039     optimal_split_pos = min_split_pos;
5040 
5041   } else {
5042     assert(min_split_pos < max_split_pos, "must be true then");
5043     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5044 
5045     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5046     // beginning of a block, then min_split_pos is also a possible split position.
5047     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5048     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5049 
5050     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5051     // when an interval ends at the end of the last block of the method
5052     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5053     // block at this op_id)
5054     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5055 
5056     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5057     if (min_block == max_block) {
5058       // split position cannot be moved to block boundary, so split as late as possible
5059       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5060       optimal_split_pos = max_split_pos;
5061 
5062     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5063       // Do not move split position if the interval has a hole before max_split_pos.
5064       // Intervals resulting from Phi-Functions have more than one definition (marked
5065       // as mustHaveRegister) with a hole before each definition. When the register is needed
5066       // for the second definition, an earlier reloading is unnecessary.
5067       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5068       optimal_split_pos = max_split_pos;
5069 
5070     } else {
5071       // seach optimal block boundary between min_split_pos and max_split_pos
5072       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5073 
5074       if (do_loop_optimization) {
5075         // Loop optimization: if a loop-end marker is found between min- and max-position,
5076         // then split before this loop
5077         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5078         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5079 
5080         assert(loop_end_pos > min_split_pos, "invalid order");
5081         if (loop_end_pos < max_split_pos) {
5082           // loop-end marker found between min- and max-position
5083           // if it is not the end marker for the same loop as the min-position, then move
5084           // the max-position to this loop block.
5085           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5086           // of the interval (normally, only mustHaveRegister causes a reloading)
5087           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5088 
5089           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5090           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5091 
5092           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5093           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5094             optimal_split_pos = -1;
5095             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5096           } else {
5097             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5098           }
5099         }
5100       }
5101 
5102       if (optimal_split_pos == -1) {
5103         // not calculated by loop optimization
5104         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5105       }
5106     }
5107   }
5108   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5109 
5110   return optimal_split_pos;
5111 }
5112 
5113 
5114 /*
5115   split an interval at the optimal position between min_split_pos and
5116   max_split_pos in two parts:
5117   1) the left part has already a location assigned
5118   2) the right part is sorted into to the unhandled-list
5119 */
5120 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5121   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5122   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5123 
5124   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5125   assert(current_position() < min_split_pos, "cannot split before current position");
5126   assert(min_split_pos <= max_split_pos,     "invalid order");
5127   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5128 
5129   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5130 
5131   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5132   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5133   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5134 
5135   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5136     // the split position would be just before the end of the interval
5137     // -> no split at all necessary
5138     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5139     return;
5140   }
5141 
5142   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5143   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5144 
5145   if (!allocator()->is_block_begin(optimal_split_pos)) {
5146     // move position before actual instruction (odd op_id)
5147     optimal_split_pos = (optimal_split_pos - 1) | 1;
5148   }
5149 
5150   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5151   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5152   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5153 
5154   Interval* split_part = it->split(optimal_split_pos);
5155 
5156   allocator()->append_interval(split_part);
5157   allocator()->copy_register_flags(it, split_part);
5158   split_part->set_insert_move_when_activated(move_necessary);
5159   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5160 
5161   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5162   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5163   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5164 }
5165 
5166 /*
5167   split an interval at the optimal position between min_split_pos and
5168   max_split_pos in two parts:
5169   1) the left part has already a location assigned
5170   2) the right part is always on the stack and therefore ignored in further processing
5171 */
5172 void LinearScanWalker::split_for_spilling(Interval* it) {
5173   // calculate allowed range of splitting position
5174   int max_split_pos = current_position();
5175   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5176 
5177   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5178   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5179 
5180   assert(it->state() == activeState,     "why spill interval that is not active?");
5181   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5182   assert(min_split_pos <= max_split_pos, "invalid order");
5183   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5184   assert(current_position() < it->to(),  "interval must not end before current position");
5185 
5186   if (min_split_pos == it->from()) {
5187     // the whole interval is never used, so spill it entirely to memory
5188     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5189     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5190 
5191     allocator()->assign_spill_slot(it);
5192     allocator()->change_spill_state(it, min_split_pos);
5193 
5194     // Also kick parent intervals out of register to memory when they have no use
5195     // position. This avoids short interval in register surrounded by intervals in
5196     // memory -> avoid useless moves from memory to register and back
5197     Interval* parent = it;
5198     while (parent != NULL && parent->is_split_child()) {
5199       parent = parent->split_child_before_op_id(parent->from());
5200 
5201       if (parent->assigned_reg() < LinearScan::nof_regs) {
5202         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5203           // parent is never used, so kick it out of its assigned register
5204           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5205           allocator()->assign_spill_slot(parent);
5206         } else {
5207           // do not go further back because the register is actually used by the interval
5208           parent = NULL;
5209         }
5210       }
5211     }
5212 
5213   } else {
5214     // search optimal split pos, split interval and spill only the right hand part
5215     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5216 
5217     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5218     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5219     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5220 
5221     if (!allocator()->is_block_begin(optimal_split_pos)) {
5222       // move position before actual instruction (odd op_id)
5223       optimal_split_pos = (optimal_split_pos - 1) | 1;
5224     }
5225 
5226     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5227     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5228     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5229 
5230     Interval* spilled_part = it->split(optimal_split_pos);
5231     allocator()->append_interval(spilled_part);
5232     allocator()->assign_spill_slot(spilled_part);
5233     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5234 
5235     if (!allocator()->is_block_begin(optimal_split_pos)) {
5236       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5237       insert_move(optimal_split_pos, it, spilled_part);
5238     }
5239 
5240     // the current_split_child is needed later when moves are inserted for reloading
5241     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5242     spilled_part->make_current_split_child();
5243 
5244     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5245     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5246     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5247   }
5248 }
5249 
5250 
5251 void LinearScanWalker::split_stack_interval(Interval* it) {
5252   int min_split_pos = current_position() + 1;
5253   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5254 
5255   split_before_usage(it, min_split_pos, max_split_pos);
5256 }
5257 
5258 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5259   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5260   int max_split_pos = register_available_until;
5261 
5262   split_before_usage(it, min_split_pos, max_split_pos);
5263 }
5264 
5265 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5266   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5267 
5268   int current_pos = current_position();
5269   if (it->state() == inactiveState) {
5270     // the interval is currently inactive, so no spill slot is needed for now.
5271     // when the split part is activated, the interval has a new chance to get a register,
5272     // so in the best case no stack slot is necessary
5273     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5274     split_before_usage(it, current_pos + 1, current_pos + 1);
5275 
5276   } else {
5277     // search the position where the interval must have a register and split
5278     // at the optimal position before.
5279     // The new created part is added to the unhandled list and will get a register
5280     // when it is activated
5281     int min_split_pos = current_pos + 1;
5282     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5283 
5284     split_before_usage(it, min_split_pos, max_split_pos);
5285 
5286     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5287     split_for_spilling(it);
5288   }
5289 }
5290 
5291 
5292 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5293   int min_full_reg = any_reg;
5294   int max_partial_reg = any_reg;
5295 
5296   for (int i = _first_reg; i <= _last_reg; i++) {
5297     if (i == ignore_reg) {
5298       // this register must be ignored
5299 
5300     } else if (_use_pos[i] >= interval_to) {
5301       // this register is free for the full interval
5302       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5303         min_full_reg = i;
5304       }
5305     } else if (_use_pos[i] > reg_needed_until) {
5306       // this register is at least free until reg_needed_until
5307       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5308         max_partial_reg = i;
5309       }
5310     }
5311   }
5312 
5313   if (min_full_reg != any_reg) {
5314     return min_full_reg;
5315   } else if (max_partial_reg != any_reg) {
5316     *need_split = true;
5317     return max_partial_reg;
5318   } else {
5319     return any_reg;
5320   }
5321 }
5322 
5323 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5324   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5325 
5326   int min_full_reg = any_reg;
5327   int max_partial_reg = any_reg;
5328 
5329   for (int i = _first_reg; i < _last_reg; i+=2) {
5330     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5331       // this register is free for the full interval
5332       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5333         min_full_reg = i;
5334       }
5335     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5336       // this register is at least free until reg_needed_until
5337       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5338         max_partial_reg = i;
5339       }
5340     }
5341   }
5342 
5343   if (min_full_reg != any_reg) {
5344     return min_full_reg;
5345   } else if (max_partial_reg != any_reg) {
5346     *need_split = true;
5347     return max_partial_reg;
5348   } else {
5349     return any_reg;
5350   }
5351 }
5352 
5353 
5354 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5355   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5356 
5357   init_use_lists(true);
5358   free_exclude_active_fixed();
5359   free_exclude_active_any();
5360   free_collect_inactive_fixed(cur);
5361   free_collect_inactive_any(cur);
5362 //  free_collect_unhandled(fixedKind, cur);
5363   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5364 
5365   // _use_pos contains the start of the next interval that has this register assigned
5366   // (either as a fixed register or a normal allocated register in the past)
5367   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5368   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5369   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5370 
5371   int hint_reg, hint_regHi;
5372   Interval* register_hint = cur->register_hint();
5373   if (register_hint != NULL) {
5374     hint_reg = register_hint->assigned_reg();
5375     hint_regHi = register_hint->assigned_regHi();
5376 
5377     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5378       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5379       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5380     }
5381     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5382 
5383   } else {
5384     hint_reg = any_reg;
5385     hint_regHi = any_reg;
5386   }
5387   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5388   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5389 
5390   // the register must be free at least until this position
5391   int reg_needed_until = cur->from() + 1;
5392   int interval_to = cur->to();
5393 
5394   bool need_split = false;
5395   int split_pos = -1;
5396   int reg = any_reg;
5397   int regHi = any_reg;
5398 
5399   if (_adjacent_regs) {
5400     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5401     regHi = reg + 1;
5402     if (reg == any_reg) {
5403       return false;
5404     }
5405     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5406 
5407   } else {
5408     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5409     if (reg == any_reg) {
5410       return false;
5411     }
5412     split_pos = _use_pos[reg];
5413 
5414     if (_num_phys_regs == 2) {
5415       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5416 
5417       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5418         // do not split interval if only one register can be assigned until the split pos
5419         // (when one register is found for the whole interval, split&spill is only
5420         // performed for the hi register)
5421         return false;
5422 
5423       } else if (regHi != any_reg) {
5424         split_pos = MIN2(split_pos, _use_pos[regHi]);
5425 
5426         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5427         if (reg > regHi) {
5428           int temp = reg;
5429           reg = regHi;
5430           regHi = temp;
5431         }
5432       }
5433     }
5434   }
5435 
5436   cur->assign_reg(reg, regHi);
5437   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5438 
5439   assert(split_pos > 0, "invalid split_pos");
5440   if (need_split) {
5441     // register not available for full interval, so split it
5442     split_when_partial_register_available(cur, split_pos);
5443   }
5444 
5445   // only return true if interval is completely assigned
5446   return _num_phys_regs == 1 || regHi != any_reg;
5447 }
5448 
5449 
5450 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5451   int max_reg = any_reg;
5452 
5453   for (int i = _first_reg; i <= _last_reg; i++) {
5454     if (i == ignore_reg) {
5455       // this register must be ignored
5456 
5457     } else if (_use_pos[i] > reg_needed_until) {
5458       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5459         max_reg = i;
5460       }
5461     }
5462   }
5463 
5464   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5465     *need_split = true;
5466   }
5467 
5468   return max_reg;
5469 }
5470 
5471 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5472   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5473 
5474   int max_reg = any_reg;
5475 
5476   for (int i = _first_reg; i < _last_reg; i+=2) {
5477     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5478       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5479         max_reg = i;
5480       }
5481     }
5482   }
5483 
5484   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5485     *need_split = true;
5486   }
5487 
5488   return max_reg;
5489 }
5490 
5491 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5492   assert(reg != any_reg, "no register assigned");
5493 
5494   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5495     Interval* it = _spill_intervals[reg]->at(i);
5496     remove_from_list(it);
5497     split_and_spill_interval(it);
5498   }
5499 
5500   if (regHi != any_reg) {
5501     IntervalList* processed = _spill_intervals[reg];
5502     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5503       Interval* it = _spill_intervals[regHi]->at(i);
5504       if (processed->index_of(it) == -1) {
5505         remove_from_list(it);
5506         split_and_spill_interval(it);
5507       }
5508     }
5509   }
5510 }
5511 
5512 
5513 // Split an Interval and spill it to memory so that cur can be placed in a register
5514 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5515   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5516 
5517   // collect current usage of registers
5518   init_use_lists(false);
5519   spill_exclude_active_fixed();
5520 //  spill_block_unhandled_fixed(cur);
5521   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5522   spill_block_inactive_fixed(cur);
5523   spill_collect_active_any();
5524   spill_collect_inactive_any(cur);
5525 
5526 #ifndef PRODUCT
5527   if (TraceLinearScanLevel >= 4) {
5528     tty->print_cr("      state of registers:");
5529     for (int i = _first_reg; i <= _last_reg; i++) {
5530       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5531       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5532         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5533       }
5534       tty->cr();
5535     }
5536   }
5537 #endif
5538 
5539   // the register must be free at least until this position
5540   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5541   int interval_to = cur->to();
5542   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5543 
5544   int split_pos = 0;
5545   int use_pos = 0;
5546   bool need_split = false;
5547   int reg, regHi;
5548 
5549   if (_adjacent_regs) {
5550     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5551     regHi = reg + 1;
5552 
5553     if (reg != any_reg) {
5554       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5555       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5556     }
5557   } else {
5558     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5559     regHi = any_reg;
5560 
5561     if (reg != any_reg) {
5562       use_pos = _use_pos[reg];
5563       split_pos = _block_pos[reg];
5564 
5565       if (_num_phys_regs == 2) {
5566         if (cur->assigned_reg() != any_reg) {
5567           regHi = reg;
5568           reg = cur->assigned_reg();
5569         } else {
5570           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5571           if (regHi != any_reg) {
5572             use_pos = MIN2(use_pos, _use_pos[regHi]);
5573             split_pos = MIN2(split_pos, _block_pos[regHi]);
5574           }
5575         }
5576 
5577         if (regHi != any_reg && reg > regHi) {
5578           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5579           int temp = reg;
5580           reg = regHi;
5581           regHi = temp;
5582         }
5583       }
5584     }
5585   }
5586 
5587   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5588     // the first use of cur is later than the spilling position -> spill cur
5589     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5590 
5591     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5592       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5593       // assign a reasonable register and do a bailout in product mode to avoid errors
5594       allocator()->assign_spill_slot(cur);
5595       BAILOUT("LinearScan: no register found");
5596     }
5597 
5598     split_and_spill_interval(cur);
5599   } else {
5600     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5601     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5602     assert(split_pos > 0, "invalid split_pos");
5603     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5604 
5605     cur->assign_reg(reg, regHi);
5606     if (need_split) {
5607       // register not available for full interval, so split it
5608       split_when_partial_register_available(cur, split_pos);
5609     }
5610 
5611     // perform splitting and spilling for all affected intervalls
5612     split_and_spill_intersecting_intervals(reg, regHi);
5613   }
5614 }
5615 
5616 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5617 #ifdef X86
5618   // fast calculation of intervals that can never get a register because the
5619   // the next instruction is a call that blocks all registers
5620   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5621 
5622   // check if this interval is the result of a split operation
5623   // (an interval got a register until this position)
5624   int pos = cur->from();
5625   if ((pos & 1) == 1) {
5626     // the current instruction is a call that blocks all registers
5627     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5628       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5629 
5630       // safety check that there is really no register available
5631       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5632       return true;
5633     }
5634 
5635   }
5636 #endif
5637   return false;
5638 }
5639 
5640 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5641   BasicType type = cur->type();
5642   _num_phys_regs = LinearScan::num_physical_regs(type);
5643   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5644 
5645   if (pd_init_regs_for_alloc(cur)) {
5646     // the appropriate register range was selected.
5647   } else if (type == T_FLOAT || type == T_DOUBLE) {
5648     _first_reg = pd_first_fpu_reg;
5649     _last_reg = pd_last_fpu_reg;
5650   } else {
5651     _first_reg = pd_first_cpu_reg;
5652     _last_reg = FrameMap::last_cpu_reg();
5653   }
5654 
5655   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5656   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5657 }
5658 
5659 
5660 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5661   if (op->code() != lir_move) {
5662     return false;
5663   }
5664   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5665 
5666   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5667   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5668   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5669 }
5670 
5671 // optimization (especially for phi functions of nested loops):
5672 // assign same spill slot to non-intersecting intervals
5673 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5674   if (cur->is_split_child()) {
5675     // optimization is only suitable for split parents
5676     return;
5677   }
5678 
5679   Interval* register_hint = cur->register_hint(false);
5680   if (register_hint == NULL) {
5681     // cur is not the target of a move, otherwise register_hint would be set
5682     return;
5683   }
5684   assert(register_hint->is_split_parent(), "register hint must be split parent");
5685 
5686   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5687     // combining the stack slots for intervals where spill move optimization is applied
5688     // is not benefitial and would cause problems
5689     return;
5690   }
5691 
5692   int begin_pos = cur->from();
5693   int end_pos = cur->to();
5694   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5695     // safety check that lir_op_with_id is allowed
5696     return;
5697   }
5698 
5699   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5700     // cur and register_hint are not connected with two moves
5701     return;
5702   }
5703 
5704   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5705   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5706   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5707     // register_hint must be split, otherwise the re-writing of use positions does not work
5708     return;
5709   }
5710 
5711   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5712   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5713   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5714   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5715 
5716   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5717     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5718     return;
5719   }
5720   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5721 
5722   // modify intervals such that cur gets the same stack slot as register_hint
5723   // delete use positions to prevent the intervals to get a register at beginning
5724   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5725   cur->remove_first_use_pos();
5726   end_hint->remove_first_use_pos();
5727 }
5728 
5729 
5730 // allocate a physical register or memory location to an interval
5731 bool LinearScanWalker::activate_current() {
5732   Interval* cur = current();
5733   bool result = true;
5734 
5735   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5736   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5737 
5738   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5739     // activating an interval that has a stack slot assigned -> split it at first use position
5740     // used for method parameters
5741     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5742 
5743     split_stack_interval(cur);
5744     result = false;
5745 
5746   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5747     // activating an interval that must start in a stack slot, but may get a register later
5748     // used for lir_roundfp: rounding is done by store to stack and reload later
5749     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5750     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5751 
5752     allocator()->assign_spill_slot(cur);
5753     split_stack_interval(cur);
5754     result = false;
5755 
5756   } else if (cur->assigned_reg() == any_reg) {
5757     // interval has not assigned register -> normal allocation
5758     // (this is the normal case for most intervals)
5759     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5760 
5761     // assign same spill slot to non-intersecting intervals
5762     combine_spilled_intervals(cur);
5763 
5764     init_vars_for_alloc(cur);
5765     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5766       // no empty register available.
5767       // split and spill another interval so that this interval gets a register
5768       alloc_locked_reg(cur);
5769     }
5770 
5771     // spilled intervals need not be move to active-list
5772     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5773       result = false;
5774     }
5775   }
5776 
5777   // load spilled values that become active from stack slot to register
5778   if (cur->insert_move_when_activated()) {
5779     assert(cur->is_split_child(), "must be");
5780     assert(cur->current_split_child() != NULL, "must be");
5781     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5782     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5783 
5784     insert_move(cur->from(), cur->current_split_child(), cur);
5785   }
5786   cur->make_current_split_child();
5787 
5788   return result; // true = interval is moved to active list
5789 }
5790 
5791 
5792 // Implementation of EdgeMoveOptimizer
5793 
5794 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5795   _edge_instructions(4),
5796   _edge_instructions_idx(4)
5797 {
5798 }
5799 
5800 void EdgeMoveOptimizer::optimize(BlockList* code) {
5801   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5802 
5803   // ignore the first block in the list (index 0 is not processed)
5804   for (int i = code->length() - 1; i >= 1; i--) {
5805     BlockBegin* block = code->at(i);
5806 
5807     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5808       optimizer.optimize_moves_at_block_end(block);
5809     }
5810     if (block->number_of_sux() == 2) {
5811       optimizer.optimize_moves_at_block_begin(block);
5812     }
5813   }
5814 }
5815 
5816 
5817 // clear all internal data structures
5818 void EdgeMoveOptimizer::init_instructions() {
5819   _edge_instructions.clear();
5820   _edge_instructions_idx.clear();
5821 }
5822 
5823 // append a lir-instruction-list and the index of the current operation in to the list
5824 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5825   _edge_instructions.append(instructions);
5826   _edge_instructions_idx.append(instructions_idx);
5827 }
5828 
5829 // return the current operation of the given edge (predecessor or successor)
5830 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5831   LIR_OpList* instructions = _edge_instructions.at(edge);
5832   int idx = _edge_instructions_idx.at(edge);
5833 
5834   if (idx < instructions->length()) {
5835     return instructions->at(idx);
5836   } else {
5837     return NULL;
5838   }
5839 }
5840 
5841 // removes the current operation of the given edge (predecessor or successor)
5842 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5843   LIR_OpList* instructions = _edge_instructions.at(edge);
5844   int idx = _edge_instructions_idx.at(edge);
5845   instructions->remove_at(idx);
5846 
5847   if (decrement_index) {
5848     _edge_instructions_idx.at_put(edge, idx - 1);
5849   }
5850 }
5851 
5852 
5853 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5854   if (op1 == NULL || op2 == NULL) {
5855     // at least one block is already empty -> no optimization possible
5856     return true;
5857   }
5858 
5859   if (op1->code() == lir_move && op2->code() == lir_move) {
5860     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5861     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5862     LIR_Op1* move1 = (LIR_Op1*)op1;
5863     LIR_Op1* move2 = (LIR_Op1*)op2;
5864     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5865       // these moves are exactly equal and can be optimized
5866       return false;
5867     }
5868 
5869   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5870     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5871     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5872     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5873     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5874     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5875       // equal FPU stack operations can be optimized
5876       return false;
5877     }
5878 
5879   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5880     // equal FPU stack operations can be optimized
5881     return false;
5882   }
5883 
5884   // no optimization possible
5885   return true;
5886 }
5887 
5888 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5889   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5890 
5891   if (block->is_predecessor(block)) {
5892     // currently we can't handle this correctly.
5893     return;
5894   }
5895 
5896   init_instructions();
5897   int num_preds = block->number_of_preds();
5898   assert(num_preds > 1, "do not call otherwise");
5899   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5900 
5901   // setup a list with the lir-instructions of all predecessors
5902   int i;
5903   for (i = 0; i < num_preds; i++) {
5904     BlockBegin* pred = block->pred_at(i);
5905     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5906 
5907     if (pred->number_of_sux() != 1) {
5908       // this can happen with switch-statements where multiple edges are between
5909       // the same blocks.
5910       return;
5911     }
5912 
5913     assert(pred->number_of_sux() == 1, "can handle only one successor");
5914     assert(pred->sux_at(0) == block, "invalid control flow");
5915     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5916     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5917     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5918 
5919     if (pred_instructions->last()->info() != NULL) {
5920       // can not optimize instructions when debug info is needed
5921       return;
5922     }
5923 
5924     // ignore the unconditional branch at the end of the block
5925     append_instructions(pred_instructions, pred_instructions->length() - 2);
5926   }
5927 
5928 
5929   // process lir-instructions while all predecessors end with the same instruction
5930   while (true) {
5931     LIR_Op* op = instruction_at(0);
5932     for (i = 1; i < num_preds; i++) {
5933       if (operations_different(op, instruction_at(i))) {
5934         // these instructions are different and cannot be optimized ->
5935         // no further optimization possible
5936         return;
5937       }
5938     }
5939 
5940     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5941 
5942     // insert the instruction at the beginning of the current block
5943     block->lir()->insert_before(1, op);
5944 
5945     // delete the instruction at the end of all predecessors
5946     for (i = 0; i < num_preds; i++) {
5947       remove_cur_instruction(i, true);
5948     }
5949   }
5950 }
5951 
5952 
5953 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5954   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5955 
5956   init_instructions();
5957   int num_sux = block->number_of_sux();
5958 
5959   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5960 
5961   assert(num_sux == 2, "method should not be called otherwise");
5962   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5963   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5964   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5965 
5966   if (cur_instructions->last()->info() != NULL) {
5967     // can no optimize instructions when debug info is needed
5968     return;
5969   }
5970 
5971   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5972   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5973     // not a valid case for optimization
5974     // currently, only blocks that end with two branches (conditional branch followed
5975     // by unconditional branch) are optimized
5976     return;
5977   }
5978 
5979   // now it is guaranteed that the block ends with two branch instructions.
5980   // the instructions are inserted at the end of the block before these two branches
5981   int insert_idx = cur_instructions->length() - 2;
5982 
5983   int i;
5984 #ifdef ASSERT
5985   for (i = insert_idx - 1; i >= 0; i--) {
5986     LIR_Op* op = cur_instructions->at(i);
5987     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5988       assert(false, "block with two successors can have only two branch instructions");
5989     }
5990   }
5991 #endif
5992 
5993   // setup a list with the lir-instructions of all successors
5994   for (i = 0; i < num_sux; i++) {
5995     BlockBegin* sux = block->sux_at(i);
5996     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
5997 
5998     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
5999 
6000     if (sux->number_of_preds() != 1) {
6001       // this can happen with switch-statements where multiple edges are between
6002       // the same blocks.
6003       return;
6004     }
6005     assert(sux->pred_at(0) == block, "invalid control flow");
6006     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6007 
6008     // ignore the label at the beginning of the block
6009     append_instructions(sux_instructions, 1);
6010   }
6011 
6012   // process lir-instructions while all successors begin with the same instruction
6013   while (true) {
6014     LIR_Op* op = instruction_at(0);
6015     for (i = 1; i < num_sux; i++) {
6016       if (operations_different(op, instruction_at(i))) {
6017         // these instructions are different and cannot be optimized ->
6018         // no further optimization possible
6019         return;
6020       }
6021     }
6022 
6023     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6024 
6025     // insert instruction at end of current block
6026     block->lir()->insert_before(insert_idx, op);
6027     insert_idx++;
6028 
6029     // delete the instructions at the beginning of all successors
6030     for (i = 0; i < num_sux; i++) {
6031       remove_cur_instruction(i, false);
6032     }
6033   }
6034 }
6035 
6036 
6037 // Implementation of ControlFlowOptimizer
6038 
6039 ControlFlowOptimizer::ControlFlowOptimizer() :
6040   _original_preds(4)
6041 {
6042 }
6043 
6044 void ControlFlowOptimizer::optimize(BlockList* code) {
6045   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6046 
6047   // push the OSR entry block to the end so that we're not jumping over it.
6048   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6049   if (osr_entry) {
6050     int index = osr_entry->linear_scan_number();
6051     assert(code->at(index) == osr_entry, "wrong index");
6052     code->remove_at(index);
6053     code->append(osr_entry);
6054   }
6055 
6056   optimizer.reorder_short_loops(code);
6057   optimizer.delete_empty_blocks(code);
6058   optimizer.delete_unnecessary_jumps(code);
6059   optimizer.delete_jumps_to_return(code);
6060 }
6061 
6062 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6063   int i = header_idx + 1;
6064   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6065   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6066     i++;
6067   }
6068 
6069   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6070     int end_idx = i - 1;
6071     BlockBegin* end_block = code->at(end_idx);
6072 
6073     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6074       // short loop from header_idx to end_idx found -> reorder blocks such that
6075       // the header_block is the last block instead of the first block of the loop
6076       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6077                                          end_idx - header_idx + 1,
6078                                          header_block->block_id(), end_block->block_id()));
6079 
6080       for (int j = header_idx; j < end_idx; j++) {
6081         code->at_put(j, code->at(j + 1));
6082       }
6083       code->at_put(end_idx, header_block);
6084 
6085       // correct the flags so that any loop alignment occurs in the right place.
6086       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6087       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6088       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6089     }
6090   }
6091 }
6092 
6093 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6094   for (int i = code->length() - 1; i >= 0; i--) {
6095     BlockBegin* block = code->at(i);
6096 
6097     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6098       reorder_short_loop(code, block, i);
6099     }
6100   }
6101 
6102   DEBUG_ONLY(verify(code));
6103 }
6104 
6105 // only blocks with exactly one successor can be deleted. Such blocks
6106 // must always end with an unconditional branch to this successor
6107 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6108   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6109     return false;
6110   }
6111 
6112   LIR_OpList* instructions = block->lir()->instructions_list();
6113 
6114   assert(instructions->length() >= 2, "block must have label and branch");
6115   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6116   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6117   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6118   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6119 
6120   // block must have exactly one successor
6121 
6122   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6123     return true;
6124   }
6125   return false;
6126 }
6127 
6128 // substitute branch targets in all branch-instructions of this blocks
6129 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6130   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6131 
6132   LIR_OpList* instructions = block->lir()->instructions_list();
6133 
6134   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6135   for (int i = instructions->length() - 1; i >= 1; i--) {
6136     LIR_Op* op = instructions->at(i);
6137 
6138     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6139       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6140       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6141 
6142       if (branch->block() == target_from) {
6143         branch->change_block(target_to);
6144       }
6145       if (branch->ublock() == target_from) {
6146         branch->change_ublock(target_to);
6147       }
6148     }
6149   }
6150 }
6151 
6152 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6153   int old_pos = 0;
6154   int new_pos = 0;
6155   int num_blocks = code->length();
6156 
6157   while (old_pos < num_blocks) {
6158     BlockBegin* block = code->at(old_pos);
6159 
6160     if (can_delete_block(block)) {
6161       BlockBegin* new_target = block->sux_at(0);
6162 
6163       // propagate backward branch target flag for correct code alignment
6164       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6165         new_target->set(BlockBegin::backward_branch_target_flag);
6166       }
6167 
6168       // collect a list with all predecessors that contains each predecessor only once
6169       // the predecessors of cur are changed during the substitution, so a copy of the
6170       // predecessor list is necessary
6171       int j;
6172       _original_preds.clear();
6173       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6174         BlockBegin* pred = block->pred_at(j);
6175         if (_original_preds.index_of(pred) == -1) {
6176           _original_preds.append(pred);
6177         }
6178       }
6179 
6180       for (j = _original_preds.length() - 1; j >= 0; j--) {
6181         BlockBegin* pred = _original_preds.at(j);
6182         substitute_branch_target(pred, block, new_target);
6183         pred->substitute_sux(block, new_target);
6184       }
6185     } else {
6186       // adjust position of this block in the block list if blocks before
6187       // have been deleted
6188       if (new_pos != old_pos) {
6189         code->at_put(new_pos, code->at(old_pos));
6190       }
6191       new_pos++;
6192     }
6193     old_pos++;
6194   }
6195   code->truncate(new_pos);
6196 
6197   DEBUG_ONLY(verify(code));
6198 }
6199 
6200 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6201   // skip the last block because there a branch is always necessary
6202   for (int i = code->length() - 2; i >= 0; i--) {
6203     BlockBegin* block = code->at(i);
6204     LIR_OpList* instructions = block->lir()->instructions_list();
6205 
6206     LIR_Op* last_op = instructions->last();
6207     if (last_op->code() == lir_branch) {
6208       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6209       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6210 
6211       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6212       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6213 
6214       if (last_branch->info() == NULL) {
6215         if (last_branch->block() == code->at(i + 1)) {
6216 
6217           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6218 
6219           // delete last branch instruction
6220           instructions->truncate(instructions->length() - 1);
6221 
6222         } else {
6223           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6224           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6225             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6226             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6227 
6228             LIR_Op2* prev_cmp = NULL;
6229 
6230             for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6231               prev_op = instructions->at(j);
6232               if(prev_op->code() == lir_cmp) {
6233                 assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6234                 prev_cmp = (LIR_Op2*)prev_op;
6235                 assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6236               }
6237             }
6238             assert(prev_cmp != NULL, "should have found comp instruction for branch");
6239             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6240 
6241               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6242 
6243               // eliminate a conditional branch to the immediate successor
6244               prev_branch->change_block(last_branch->block());
6245               prev_branch->negate_cond();
6246               prev_cmp->set_condition(prev_branch->cond());
6247               instructions->truncate(instructions->length() - 1);
6248             }
6249           }
6250         }
6251       }
6252     }
6253   }
6254 
6255   DEBUG_ONLY(verify(code));
6256 }
6257 
6258 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6259 #ifdef ASSERT
6260   BitMap return_converted(BlockBegin::number_of_blocks());
6261   return_converted.clear();
6262 #endif
6263 
6264   for (int i = code->length() - 1; i >= 0; i--) {
6265     BlockBegin* block = code->at(i);
6266     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6267     LIR_Op*     cur_last_op = cur_instructions->last();
6268 
6269     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6270     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6271       // the block contains only a label and a return
6272       // if a predecessor ends with an unconditional jump to this block, then the jump
6273       // can be replaced with a return instruction
6274       //
6275       // Note: the original block with only a return statement cannot be deleted completely
6276       //       because the predecessors might have other (conditional) jumps to this block
6277       //       -> this may lead to unnecesary return instructions in the final code
6278 
6279       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6280       assert(block->number_of_sux() == 0 ||
6281              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6282              "blocks that end with return must not have successors");
6283 
6284       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6285       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6286 
6287       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6288         BlockBegin* pred = block->pred_at(j);
6289         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6290         LIR_Op*     pred_last_op = pred_instructions->last();
6291 
6292         if (pred_last_op->code() == lir_branch) {
6293           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6294           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6295 
6296           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6297             // replace the jump to a return with a direct return
6298             // Note: currently the edge between the blocks is not deleted
6299             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6300 #ifdef ASSERT
6301             return_converted.set_bit(pred->block_id());
6302 #endif
6303           }
6304         }
6305       }
6306     }
6307   }
6308 }
6309 
6310 
6311 #ifdef ASSERT
6312 void ControlFlowOptimizer::verify(BlockList* code) {
6313   for (int i = 0; i < code->length(); i++) {
6314     BlockBegin* block = code->at(i);
6315     LIR_OpList* instructions = block->lir()->instructions_list();
6316 
6317     int j;
6318     for (j = 0; j < instructions->length(); j++) {
6319       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6320 
6321       if (op_branch != NULL) {
6322         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6323         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6324       }
6325     }
6326 
6327     for (j = 0; j < block->number_of_sux() - 1; j++) {
6328       BlockBegin* sux = block->sux_at(j);
6329       assert(code->index_of(sux) != -1, "successor not valid");
6330     }
6331 
6332     for (j = 0; j < block->number_of_preds() - 1; j++) {
6333       BlockBegin* pred = block->pred_at(j);
6334       assert(code->index_of(pred) != -1, "successor not valid");
6335     }
6336   }
6337 }
6338 #endif
6339 
6340 
6341 #ifndef PRODUCT
6342 
6343 // Implementation of LinearStatistic
6344 
6345 const char* LinearScanStatistic::counter_name(int counter_idx) {
6346   switch (counter_idx) {
6347     case counter_method:          return "compiled methods";
6348     case counter_fpu_method:      return "methods using fpu";
6349     case counter_loop_method:     return "methods with loops";
6350     case counter_exception_method:return "methods with xhandler";
6351 
6352     case counter_loop:            return "loops";
6353     case counter_block:           return "blocks";
6354     case counter_loop_block:      return "blocks inside loop";
6355     case counter_exception_block: return "exception handler entries";
6356     case counter_interval:        return "intervals";
6357     case counter_fixed_interval:  return "fixed intervals";
6358     case counter_range:           return "ranges";
6359     case counter_fixed_range:     return "fixed ranges";
6360     case counter_use_pos:         return "use positions";
6361     case counter_fixed_use_pos:   return "fixed use positions";
6362     case counter_spill_slots:     return "spill slots";
6363 
6364     // counter for classes of lir instructions
6365     case counter_instruction:     return "total instructions";
6366     case counter_label:           return "labels";
6367     case counter_entry:           return "method entries";
6368     case counter_return:          return "method returns";
6369     case counter_call:            return "method calls";
6370     case counter_move:            return "moves";
6371     case counter_cmp:             return "compare";
6372     case counter_cond_branch:     return "conditional branches";
6373     case counter_uncond_branch:   return "unconditional branches";
6374     case counter_stub_branch:     return "branches to stub";
6375     case counter_alu:             return "artithmetic + logic";
6376     case counter_alloc:           return "allocations";
6377     case counter_sync:            return "synchronisation";
6378     case counter_throw:           return "throw";
6379     case counter_unwind:          return "unwind";
6380     case counter_typecheck:       return "type+null-checks";
6381     case counter_fpu_stack:       return "fpu-stack";
6382     case counter_misc_inst:       return "other instructions";
6383     case counter_other_inst:      return "misc. instructions";
6384 
6385     // counter for different types of moves
6386     case counter_move_total:      return "total moves";
6387     case counter_move_reg_reg:    return "register->register";
6388     case counter_move_reg_stack:  return "register->stack";
6389     case counter_move_stack_reg:  return "stack->register";
6390     case counter_move_stack_stack:return "stack->stack";
6391     case counter_move_reg_mem:    return "register->memory";
6392     case counter_move_mem_reg:    return "memory->register";
6393     case counter_move_const_any:  return "constant->any";
6394 
6395     case blank_line_1:            return "";
6396     case blank_line_2:            return "";
6397 
6398     default: ShouldNotReachHere(); return "";
6399   }
6400 }
6401 
6402 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6403   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6404     return counter_method;
6405   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6406     return counter_block;
6407   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6408     return counter_instruction;
6409   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6410     return counter_move_total;
6411   }
6412   return invalid_counter;
6413 }
6414 
6415 LinearScanStatistic::LinearScanStatistic() {
6416   for (int i = 0; i < number_of_counters; i++) {
6417     _counters_sum[i] = 0;
6418     _counters_max[i] = -1;
6419   }
6420 
6421 }
6422 
6423 // add the method-local numbers to the total sum
6424 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6425   for (int i = 0; i < number_of_counters; i++) {
6426     _counters_sum[i] += method_statistic._counters_sum[i];
6427     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6428   }
6429 }
6430 
6431 void LinearScanStatistic::print(const char* title) {
6432   if (CountLinearScan || TraceLinearScanLevel > 0) {
6433     tty->cr();
6434     tty->print_cr("***** LinearScan statistic - %s *****", title);
6435 
6436     for (int i = 0; i < number_of_counters; i++) {
6437       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6438         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6439 
6440         if (base_counter(i) != invalid_counter) {
6441           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6442         } else {
6443           tty->print("           ");
6444         }
6445 
6446         if (_counters_max[i] >= 0) {
6447           tty->print("%8d", _counters_max[i]);
6448         }
6449       }
6450       tty->cr();
6451     }
6452   }
6453 }
6454 
6455 void LinearScanStatistic::collect(LinearScan* allocator) {
6456   inc_counter(counter_method);
6457   if (allocator->has_fpu_registers()) {
6458     inc_counter(counter_fpu_method);
6459   }
6460   if (allocator->num_loops() > 0) {
6461     inc_counter(counter_loop_method);
6462   }
6463   inc_counter(counter_loop, allocator->num_loops());
6464   inc_counter(counter_spill_slots, allocator->max_spills());
6465 
6466   int i;
6467   for (i = 0; i < allocator->interval_count(); i++) {
6468     Interval* cur = allocator->interval_at(i);
6469 
6470     if (cur != NULL) {
6471       inc_counter(counter_interval);
6472       inc_counter(counter_use_pos, cur->num_use_positions());
6473       if (LinearScan::is_precolored_interval(cur)) {
6474         inc_counter(counter_fixed_interval);
6475         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6476       }
6477 
6478       Range* range = cur->first();
6479       while (range != Range::end()) {
6480         inc_counter(counter_range);
6481         if (LinearScan::is_precolored_interval(cur)) {
6482           inc_counter(counter_fixed_range);
6483         }
6484         range = range->next();
6485       }
6486     }
6487   }
6488 
6489   bool has_xhandlers = false;
6490   // Note: only count blocks that are in code-emit order
6491   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6492     BlockBegin* cur = allocator->ir()->code()->at(i);
6493 
6494     inc_counter(counter_block);
6495     if (cur->loop_depth() > 0) {
6496       inc_counter(counter_loop_block);
6497     }
6498     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6499       inc_counter(counter_exception_block);
6500       has_xhandlers = true;
6501     }
6502 
6503     LIR_OpList* instructions = cur->lir()->instructions_list();
6504     for (int j = 0; j < instructions->length(); j++) {
6505       LIR_Op* op = instructions->at(j);
6506 
6507       inc_counter(counter_instruction);
6508 
6509       switch (op->code()) {
6510         case lir_label:           inc_counter(counter_label); break;
6511         case lir_std_entry:
6512         case lir_osr_entry:       inc_counter(counter_entry); break;
6513         case lir_return:          inc_counter(counter_return); break;
6514 
6515         case lir_rtcall:
6516         case lir_static_call:
6517         case lir_optvirtual_call:
6518         case lir_virtual_call:    inc_counter(counter_call); break;
6519 
6520         case lir_move: {
6521           inc_counter(counter_move);
6522           inc_counter(counter_move_total);
6523 
6524           LIR_Opr in = op->as_Op1()->in_opr();
6525           LIR_Opr res = op->as_Op1()->result_opr();
6526           if (in->is_register()) {
6527             if (res->is_register()) {
6528               inc_counter(counter_move_reg_reg);
6529             } else if (res->is_stack()) {
6530               inc_counter(counter_move_reg_stack);
6531             } else if (res->is_address()) {
6532               inc_counter(counter_move_reg_mem);
6533             } else {
6534               ShouldNotReachHere();
6535             }
6536           } else if (in->is_stack()) {
6537             if (res->is_register()) {
6538               inc_counter(counter_move_stack_reg);
6539             } else {
6540               inc_counter(counter_move_stack_stack);
6541             }
6542           } else if (in->is_address()) {
6543             assert(res->is_register(), "must be");
6544             inc_counter(counter_move_mem_reg);
6545           } else if (in->is_constant()) {
6546             inc_counter(counter_move_const_any);
6547           } else {
6548             ShouldNotReachHere();
6549           }
6550           break;
6551         }
6552 
6553         case lir_cmp:             inc_counter(counter_cmp); break;
6554 
6555         case lir_branch:
6556         case lir_cond_float_branch: {
6557           LIR_OpBranch* branch = op->as_OpBranch();
6558           if (branch->block() == NULL) {
6559             inc_counter(counter_stub_branch);
6560           } else if (branch->cond() == lir_cond_always) {
6561             inc_counter(counter_uncond_branch);
6562           } else {
6563             inc_counter(counter_cond_branch);
6564           }
6565           break;
6566         }
6567 
6568         case lir_neg:
6569         case lir_add:
6570         case lir_sub:
6571         case lir_mul:
6572         case lir_mul_strictfp:
6573         case lir_div:
6574         case lir_div_strictfp:
6575         case lir_rem:
6576         case lir_sqrt:
6577         case lir_sin:
6578         case lir_cos:
6579         case lir_abs:
6580         case lir_log10:
6581         case lir_log:
6582         case lir_logic_and:
6583         case lir_logic_or:
6584         case lir_logic_xor:
6585         case lir_shl:
6586         case lir_shr:
6587         case lir_ushr:            inc_counter(counter_alu); break;
6588 
6589         case lir_alloc_object:
6590         case lir_alloc_array:     inc_counter(counter_alloc); break;
6591 
6592         case lir_monaddr:
6593         case lir_lock:
6594         case lir_unlock:          inc_counter(counter_sync); break;
6595 
6596         case lir_throw:           inc_counter(counter_throw); break;
6597 
6598         case lir_unwind:          inc_counter(counter_unwind); break;
6599 
6600         case lir_null_check:
6601         case lir_leal:
6602         case lir_instanceof:
6603         case lir_checkcast:
6604         case lir_store_check:     inc_counter(counter_typecheck); break;
6605 
6606         case lir_fpop_raw:
6607         case lir_fxch:
6608         case lir_fld:             inc_counter(counter_fpu_stack); break;
6609 
6610         case lir_nop:
6611         case lir_push:
6612         case lir_pop:
6613         case lir_convert:
6614         case lir_roundfp:
6615         case lir_cmove:           inc_counter(counter_misc_inst); break;
6616 
6617         default:                  inc_counter(counter_other_inst); break;
6618       }
6619     }
6620   }
6621 
6622   if (has_xhandlers) {
6623     inc_counter(counter_exception_method);
6624   }
6625 }
6626 
6627 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6628   if (CountLinearScan || TraceLinearScanLevel > 0) {
6629 
6630     LinearScanStatistic local_statistic = LinearScanStatistic();
6631 
6632     local_statistic.collect(allocator);
6633     global_statistic.sum_up(local_statistic);
6634 
6635     if (TraceLinearScanLevel > 2) {
6636       local_statistic.print("current local statistic");
6637     }
6638   }
6639 }
6640 
6641 
6642 // Implementation of LinearTimers
6643 
6644 LinearScanTimers::LinearScanTimers() {
6645   for (int i = 0; i < number_of_timers; i++) {
6646     timer(i)->reset();
6647   }
6648 }
6649 
6650 const char* LinearScanTimers::timer_name(int idx) {
6651   switch (idx) {
6652     case timer_do_nothing:               return "Nothing (Time Check)";
6653     case timer_number_instructions:      return "Number Instructions";
6654     case timer_compute_local_live_sets:  return "Local Live Sets";
6655     case timer_compute_global_live_sets: return "Global Live Sets";
6656     case timer_build_intervals:          return "Build Intervals";
6657     case timer_sort_intervals_before:    return "Sort Intervals Before";
6658     case timer_allocate_registers:       return "Allocate Registers";
6659     case timer_resolve_data_flow:        return "Resolve Data Flow";
6660     case timer_sort_intervals_after:     return "Sort Intervals After";
6661     case timer_eliminate_spill_moves:    return "Spill optimization";
6662     case timer_assign_reg_num:           return "Assign Reg Num";
6663     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6664     case timer_optimize_lir:             return "Optimize LIR";
6665     default: ShouldNotReachHere();       return "";
6666   }
6667 }
6668 
6669 void LinearScanTimers::begin_method() {
6670   if (TimeEachLinearScan) {
6671     // reset all timers to measure only current method
6672     for (int i = 0; i < number_of_timers; i++) {
6673       timer(i)->reset();
6674     }
6675   }
6676 }
6677 
6678 void LinearScanTimers::end_method(LinearScan* allocator) {
6679   if (TimeEachLinearScan) {
6680 
6681     double c = timer(timer_do_nothing)->seconds();
6682     double total = 0;
6683     for (int i = 1; i < number_of_timers; i++) {
6684       total += timer(i)->seconds() - c;
6685     }
6686 
6687     if (total >= 0.0005) {
6688       // print all information in one line for automatic processing
6689       tty->print("@"); allocator->compilation()->method()->print_name();
6690 
6691       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6692       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6693       tty->print("@ %d ", allocator->block_count());
6694       tty->print("@ %d ", allocator->num_virtual_regs());
6695       tty->print("@ %d ", allocator->interval_count());
6696       tty->print("@ %d ", allocator->_num_calls);
6697       tty->print("@ %d ", allocator->num_loops());
6698 
6699       tty->print("@ %6.6f ", total);
6700       for (int i = 1; i < number_of_timers; i++) {
6701         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6702       }
6703       tty->cr();
6704     }
6705   }
6706 }
6707 
6708 void LinearScanTimers::print(double total_time) {
6709   if (TimeLinearScan) {
6710     // correction value: sum of dummy-timer that only measures the time that
6711     // is necesary to start and stop itself
6712     double c = timer(timer_do_nothing)->seconds();
6713 
6714     for (int i = 0; i < number_of_timers; i++) {
6715       double t = timer(i)->seconds();
6716       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6717     }
6718   }
6719 }
6720 
6721 #endif // #ifndef PRODUCT