1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "opto/callGenerator.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/convertnode.hpp"
  32 #include "opto/escape.hpp"
  33 #include "opto/locknode.hpp"
  34 #include "opto/machnode.hpp"
  35 #include "opto/matcher.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/regalloc.hpp"
  38 #include "opto/regmask.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 
  42 // Portions of code courtesy of Clifford Click
  43 
  44 // Optimization - Graph Style
  45 
  46 //=============================================================================
  47 uint StartNode::size_of() const { return sizeof(*this); }
  48 uint StartNode::cmp( const Node &n ) const
  49 { return _domain == ((StartNode&)n)._domain; }
  50 const Type *StartNode::bottom_type() const { return _domain; }
  51 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  52 #ifndef PRODUCT
  53 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  54 #endif
  55 
  56 //------------------------------Ideal------------------------------------------
  57 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  58   return remove_dead_region(phase, can_reshape) ? this : NULL;
  59 }
  60 
  61 //------------------------------calling_convention-----------------------------
  62 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  63   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  64 }
  65 
  66 //------------------------------Registers--------------------------------------
  67 const RegMask &StartNode::in_RegMask(uint) const {
  68   return RegMask::Empty;
  69 }
  70 
  71 //------------------------------match------------------------------------------
  72 // Construct projections for incoming parameters, and their RegMask info
  73 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  74   switch (proj->_con) {
  75   case TypeFunc::Control:
  76   case TypeFunc::I_O:
  77   case TypeFunc::Memory:
  78     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  79   case TypeFunc::FramePtr:
  80     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  81   case TypeFunc::ReturnAdr:
  82     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  83   case TypeFunc::Parms:
  84   default: {
  85       uint parm_num = proj->_con - TypeFunc::Parms;
  86       const Type *t = _domain->field_at(proj->_con);
  87       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  88         return new ConNode(Type::TOP);
  89       uint ideal_reg = t->ideal_reg();
  90       RegMask &rm = match->_calling_convention_mask[parm_num];
  91       return new MachProjNode(this,proj->_con,rm,ideal_reg);
  92     }
  93   }
  94   return NULL;
  95 }
  96 
  97 //------------------------------StartOSRNode----------------------------------
  98 // The method start node for an on stack replacement adapter
  99 
 100 //------------------------------osr_domain-----------------------------
 101 const TypeTuple *StartOSRNode::osr_domain() {
 102   const Type **fields = TypeTuple::fields(2);
 103   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 104 
 105   return TypeTuple::make(TypeFunc::Parms+1, fields);
 106 }
 107 
 108 //=============================================================================
 109 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 110   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 111 };
 112 
 113 #ifndef PRODUCT
 114 void ParmNode::dump_spec(outputStream *st) const {
 115   if( _con < TypeFunc::Parms ) {
 116     st->print("%s", names[_con]);
 117   } else {
 118     st->print("Parm%d: ",_con-TypeFunc::Parms);
 119     // Verbose and WizardMode dump bottom_type for all nodes
 120     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 121   }
 122 }
 123 #endif
 124 
 125 uint ParmNode::ideal_reg() const {
 126   switch( _con ) {
 127   case TypeFunc::Control  : // fall through
 128   case TypeFunc::I_O      : // fall through
 129   case TypeFunc::Memory   : return 0;
 130   case TypeFunc::FramePtr : // fall through
 131   case TypeFunc::ReturnAdr: return Op_RegP;
 132   default                 : assert( _con > TypeFunc::Parms, "" );
 133     // fall through
 134   case TypeFunc::Parms    : {
 135     // Type of argument being passed
 136     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 137     return t->ideal_reg();
 138   }
 139   }
 140   ShouldNotReachHere();
 141   return 0;
 142 }
 143 
 144 //=============================================================================
 145 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 146   init_req(TypeFunc::Control,cntrl);
 147   init_req(TypeFunc::I_O,i_o);
 148   init_req(TypeFunc::Memory,memory);
 149   init_req(TypeFunc::FramePtr,frameptr);
 150   init_req(TypeFunc::ReturnAdr,retadr);
 151 }
 152 
 153 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 154   return remove_dead_region(phase, can_reshape) ? this : NULL;
 155 }
 156 
 157 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 158   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 159     ? Type::TOP
 160     : Type::BOTTOM;
 161 }
 162 
 163 // Do we Match on this edge index or not?  No edges on return nodes
 164 uint ReturnNode::match_edge(uint idx) const {
 165   return 0;
 166 }
 167 
 168 
 169 #ifndef PRODUCT
 170 void ReturnNode::dump_req(outputStream *st) const {
 171   // Dump the required inputs, enclosed in '(' and ')'
 172   uint i;                       // Exit value of loop
 173   for (i = 0; i < req(); i++) {    // For all required inputs
 174     if (i == TypeFunc::Parms) st->print("returns");
 175     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 176     else st->print("_ ");
 177   }
 178 }
 179 #endif
 180 
 181 //=============================================================================
 182 RethrowNode::RethrowNode(
 183   Node* cntrl,
 184   Node* i_o,
 185   Node* memory,
 186   Node* frameptr,
 187   Node* ret_adr,
 188   Node* exception
 189 ) : Node(TypeFunc::Parms + 1) {
 190   init_req(TypeFunc::Control  , cntrl    );
 191   init_req(TypeFunc::I_O      , i_o      );
 192   init_req(TypeFunc::Memory   , memory   );
 193   init_req(TypeFunc::FramePtr , frameptr );
 194   init_req(TypeFunc::ReturnAdr, ret_adr);
 195   init_req(TypeFunc::Parms    , exception);
 196 }
 197 
 198 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 199   return remove_dead_region(phase, can_reshape) ? this : NULL;
 200 }
 201 
 202 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 203   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 204     ? Type::TOP
 205     : Type::BOTTOM;
 206 }
 207 
 208 uint RethrowNode::match_edge(uint idx) const {
 209   return 0;
 210 }
 211 
 212 #ifndef PRODUCT
 213 void RethrowNode::dump_req(outputStream *st) const {
 214   // Dump the required inputs, enclosed in '(' and ')'
 215   uint i;                       // Exit value of loop
 216   for (i = 0; i < req(); i++) {    // For all required inputs
 217     if (i == TypeFunc::Parms) st->print("exception");
 218     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 219     else st->print("_ ");
 220   }
 221 }
 222 #endif
 223 
 224 //=============================================================================
 225 // Do we Match on this edge index or not?  Match only target address & method
 226 uint TailCallNode::match_edge(uint idx) const {
 227   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 228 }
 229 
 230 //=============================================================================
 231 // Do we Match on this edge index or not?  Match only target address & oop
 232 uint TailJumpNode::match_edge(uint idx) const {
 233   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 234 }
 235 
 236 //=============================================================================
 237 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 238   _method(method) {
 239   assert(method != NULL, "must be valid call site");
 240   _reexecute = Reexecute_Undefined;
 241   debug_only(_bci = -99);  // random garbage value
 242   debug_only(_map = (SafePointNode*)-1);
 243   _caller = caller;
 244   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 245   _locoff = TypeFunc::Parms;
 246   _stkoff = _locoff + _method->max_locals();
 247   _monoff = _stkoff + _method->max_stack();
 248   _scloff = _monoff;
 249   _endoff = _monoff;
 250   _sp = 0;
 251 }
 252 JVMState::JVMState(int stack_size) :
 253   _method(NULL) {
 254   _bci = InvocationEntryBci;
 255   _reexecute = Reexecute_Undefined;
 256   debug_only(_map = (SafePointNode*)-1);
 257   _caller = NULL;
 258   _depth  = 1;
 259   _locoff = TypeFunc::Parms;
 260   _stkoff = _locoff;
 261   _monoff = _stkoff + stack_size;
 262   _scloff = _monoff;
 263   _endoff = _monoff;
 264   _sp = 0;
 265 }
 266 
 267 //--------------------------------of_depth-------------------------------------
 268 JVMState* JVMState::of_depth(int d) const {
 269   const JVMState* jvmp = this;
 270   assert(0 < d && (uint)d <= depth(), "oob");
 271   for (int skip = depth() - d; skip > 0; skip--) {
 272     jvmp = jvmp->caller();
 273   }
 274   assert(jvmp->depth() == (uint)d, "found the right one");
 275   return (JVMState*)jvmp;
 276 }
 277 
 278 //-----------------------------same_calls_as-----------------------------------
 279 bool JVMState::same_calls_as(const JVMState* that) const {
 280   if (this == that)                    return true;
 281   if (this->depth() != that->depth())  return false;
 282   const JVMState* p = this;
 283   const JVMState* q = that;
 284   for (;;) {
 285     if (p->_method != q->_method)    return false;
 286     if (p->_method == NULL)          return true;   // bci is irrelevant
 287     if (p->_bci    != q->_bci)       return false;
 288     if (p->_reexecute != q->_reexecute)  return false;
 289     p = p->caller();
 290     q = q->caller();
 291     if (p == q)                      return true;
 292     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 293   }
 294 }
 295 
 296 //------------------------------debug_start------------------------------------
 297 uint JVMState::debug_start()  const {
 298   debug_only(JVMState* jvmroot = of_depth(1));
 299   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 300   return of_depth(1)->locoff();
 301 }
 302 
 303 //-------------------------------debug_end-------------------------------------
 304 uint JVMState::debug_end() const {
 305   debug_only(JVMState* jvmroot = of_depth(1));
 306   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 307   return endoff();
 308 }
 309 
 310 //------------------------------debug_depth------------------------------------
 311 uint JVMState::debug_depth() const {
 312   uint total = 0;
 313   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 314     total += jvmp->debug_size();
 315   }
 316   return total;
 317 }
 318 
 319 #ifndef PRODUCT
 320 
 321 //------------------------------format_helper----------------------------------
 322 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 323 // any defined value or not.  If it does, print out the register or constant.
 324 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 325   if (n == NULL) { st->print(" NULL"); return; }
 326   if (n->is_SafePointScalarObject()) {
 327     // Scalar replacement.
 328     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 329     scobjs->append_if_missing(spobj);
 330     int sco_n = scobjs->find(spobj);
 331     assert(sco_n >= 0, "");
 332     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 333     return;
 334   }
 335   if (regalloc->node_regs_max_index() > 0 &&
 336       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 337     char buf[50];
 338     regalloc->dump_register(n,buf);
 339     st->print(" %s%d]=%s",msg,i,buf);
 340   } else {                      // No register, but might be constant
 341     const Type *t = n->bottom_type();
 342     switch (t->base()) {
 343     case Type::Int:
 344       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 345       break;
 346     case Type::AnyPtr:
 347       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
 348       st->print(" %s%d]=#NULL",msg,i);
 349       break;
 350     case Type::AryPtr:
 351     case Type::InstPtr:
 352       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
 353       break;
 354     case Type::KlassPtr:
 355       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
 356       break;
 357     case Type::MetadataPtr:
 358       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
 359       break;
 360     case Type::NarrowOop:
 361       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
 362       break;
 363     case Type::RawPtr:
 364       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
 365       break;
 366     case Type::DoubleCon:
 367       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 368       break;
 369     case Type::FloatCon:
 370       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 371       break;
 372     case Type::Long:
 373       st->print(" %s%d]=#"INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
 374       break;
 375     case Type::Half:
 376     case Type::Top:
 377       st->print(" %s%d]=_",msg,i);
 378       break;
 379     default: ShouldNotReachHere();
 380     }
 381   }
 382 }
 383 
 384 //------------------------------format-----------------------------------------
 385 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 386   st->print("        #");
 387   if (_method) {
 388     _method->print_short_name(st);
 389     st->print(" @ bci:%d ",_bci);
 390   } else {
 391     st->print_cr(" runtime stub ");
 392     return;
 393   }
 394   if (n->is_MachSafePoint()) {
 395     GrowableArray<SafePointScalarObjectNode*> scobjs;
 396     MachSafePointNode *mcall = n->as_MachSafePoint();
 397     uint i;
 398     // Print locals
 399     for (i = 0; i < (uint)loc_size(); i++)
 400       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 401     // Print stack
 402     for (i = 0; i < (uint)stk_size(); i++) {
 403       if ((uint)(_stkoff + i) >= mcall->len())
 404         st->print(" oob ");
 405       else
 406        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 407     }
 408     for (i = 0; (int)i < nof_monitors(); i++) {
 409       Node *box = mcall->monitor_box(this, i);
 410       Node *obj = mcall->monitor_obj(this, i);
 411       if (regalloc->node_regs_max_index() > 0 &&
 412           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 413         box = BoxLockNode::box_node(box);
 414         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 415       } else {
 416         OptoReg::Name box_reg = BoxLockNode::reg(box);
 417         st->print(" MON-BOX%d=%s+%d",
 418                    i,
 419                    OptoReg::regname(OptoReg::c_frame_pointer),
 420                    regalloc->reg2offset(box_reg));
 421       }
 422       const char* obj_msg = "MON-OBJ[";
 423       if (EliminateLocks) {
 424         if (BoxLockNode::box_node(box)->is_eliminated())
 425           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 426       }
 427       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 428     }
 429 
 430     for (i = 0; i < (uint)scobjs.length(); i++) {
 431       // Scalar replaced objects.
 432       st->cr();
 433       st->print("        # ScObj" INT32_FORMAT " ", i);
 434       SafePointScalarObjectNode* spobj = scobjs.at(i);
 435       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 436       assert(cik->is_instance_klass() ||
 437              cik->is_array_klass(), "Not supported allocation.");
 438       ciInstanceKlass *iklass = NULL;
 439       if (cik->is_instance_klass()) {
 440         cik->print_name_on(st);
 441         iklass = cik->as_instance_klass();
 442       } else if (cik->is_type_array_klass()) {
 443         cik->as_array_klass()->base_element_type()->print_name_on(st);
 444         st->print("[%d]", spobj->n_fields());
 445       } else if (cik->is_obj_array_klass()) {
 446         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 447         if (cie->is_instance_klass()) {
 448           cie->print_name_on(st);
 449         } else if (cie->is_type_array_klass()) {
 450           cie->as_array_klass()->base_element_type()->print_name_on(st);
 451         } else {
 452           ShouldNotReachHere();
 453         }
 454         st->print("[%d]", spobj->n_fields());
 455         int ndim = cik->as_array_klass()->dimension() - 1;
 456         while (ndim-- > 0) {
 457           st->print("[]");
 458         }
 459       }
 460       st->print("={");
 461       uint nf = spobj->n_fields();
 462       if (nf > 0) {
 463         uint first_ind = spobj->first_index(mcall->jvms());
 464         Node* fld_node = mcall->in(first_ind);
 465         ciField* cifield;
 466         if (iklass != NULL) {
 467           st->print(" [");
 468           cifield = iklass->nonstatic_field_at(0);
 469           cifield->print_name_on(st);
 470           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 471         } else {
 472           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 473         }
 474         for (uint j = 1; j < nf; j++) {
 475           fld_node = mcall->in(first_ind+j);
 476           if (iklass != NULL) {
 477             st->print(", [");
 478             cifield = iklass->nonstatic_field_at(j);
 479             cifield->print_name_on(st);
 480             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 481           } else {
 482             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 483           }
 484         }
 485       }
 486       st->print(" }");
 487     }
 488   }
 489   st->cr();
 490   if (caller() != NULL) caller()->format(regalloc, n, st);
 491 }
 492 
 493 
 494 void JVMState::dump_spec(outputStream *st) const {
 495   if (_method != NULL) {
 496     bool printed = false;
 497     if (!Verbose) {
 498       // The JVMS dumps make really, really long lines.
 499       // Take out the most boring parts, which are the package prefixes.
 500       char buf[500];
 501       stringStream namest(buf, sizeof(buf));
 502       _method->print_short_name(&namest);
 503       if (namest.count() < sizeof(buf)) {
 504         const char* name = namest.base();
 505         if (name[0] == ' ')  ++name;
 506         const char* endcn = strchr(name, ':');  // end of class name
 507         if (endcn == NULL)  endcn = strchr(name, '(');
 508         if (endcn == NULL)  endcn = name + strlen(name);
 509         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 510           --endcn;
 511         st->print(" %s", endcn);
 512         printed = true;
 513       }
 514     }
 515     if (!printed)
 516       _method->print_short_name(st);
 517     st->print(" @ bci:%d",_bci);
 518     if(_reexecute == Reexecute_True)
 519       st->print(" reexecute");
 520   } else {
 521     st->print(" runtime stub");
 522   }
 523   if (caller() != NULL)  caller()->dump_spec(st);
 524 }
 525 
 526 
 527 void JVMState::dump_on(outputStream* st) const {
 528   bool print_map = _map && !((uintptr_t)_map & 1) &&
 529                   ((caller() == NULL) || (caller()->map() != _map));
 530   if (print_map) {
 531     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 532       Node* ex = _map->in(_map->req());  // _map->next_exception()
 533       // skip the first one; it's already being printed
 534       while (ex != NULL && ex->len() > ex->req()) {
 535         ex = ex->in(ex->req());  // ex->next_exception()
 536         ex->dump(1);
 537       }
 538     }
 539     _map->dump(Verbose ? 2 : 1);
 540   }
 541   if (caller() != NULL) {
 542     caller()->dump_on(st);
 543   }
 544   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 545              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 546   if (_method == NULL) {
 547     st->print_cr("(none)");
 548   } else {
 549     _method->print_name(st);
 550     st->cr();
 551     if (bci() >= 0 && bci() < _method->code_size()) {
 552       st->print("    bc: ");
 553       _method->print_codes_on(bci(), bci()+1, st);
 554     }
 555   }
 556 }
 557 
 558 // Extra way to dump a jvms from the debugger,
 559 // to avoid a bug with C++ member function calls.
 560 void dump_jvms(JVMState* jvms) {
 561   jvms->dump();
 562 }
 563 #endif
 564 
 565 //--------------------------clone_shallow--------------------------------------
 566 JVMState* JVMState::clone_shallow(Compile* C) const {
 567   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 568   n->set_bci(_bci);
 569   n->_reexecute = _reexecute;
 570   n->set_locoff(_locoff);
 571   n->set_stkoff(_stkoff);
 572   n->set_monoff(_monoff);
 573   n->set_scloff(_scloff);
 574   n->set_endoff(_endoff);
 575   n->set_sp(_sp);
 576   n->set_map(_map);
 577   return n;
 578 }
 579 
 580 //---------------------------clone_deep----------------------------------------
 581 JVMState* JVMState::clone_deep(Compile* C) const {
 582   JVMState* n = clone_shallow(C);
 583   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 584     p->_caller = p->_caller->clone_shallow(C);
 585   }
 586   assert(n->depth() == depth(), "sanity");
 587   assert(n->debug_depth() == debug_depth(), "sanity");
 588   return n;
 589 }
 590 
 591 /**
 592  * Reset map for all callers
 593  */
 594 void JVMState::set_map_deep(SafePointNode* map) {
 595   for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
 596     p->set_map(map);
 597   }
 598 }
 599 
 600 // Adapt offsets in in-array after adding or removing an edge.
 601 // Prerequisite is that the JVMState is used by only one node.
 602 void JVMState::adapt_position(int delta) {
 603   for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
 604     jvms->set_locoff(jvms->locoff() + delta);
 605     jvms->set_stkoff(jvms->stkoff() + delta);
 606     jvms->set_monoff(jvms->monoff() + delta);
 607     jvms->set_scloff(jvms->scloff() + delta);
 608     jvms->set_endoff(jvms->endoff() + delta);
 609   }
 610 }
 611 
 612 // Mirror the stack size calculation in the deopt code
 613 // How much stack space would we need at this point in the program in
 614 // case of deoptimization?
 615 int JVMState::interpreter_frame_size() const {
 616   const JVMState* jvms = this;
 617   int size = 0;
 618   int callee_parameters = 0;
 619   int callee_locals = 0;
 620   int extra_args = method()->max_stack() - stk_size();
 621 
 622   while (jvms != NULL) {
 623     int locks = jvms->nof_monitors();
 624     int temps = jvms->stk_size();
 625     bool is_top_frame = (jvms == this);
 626     ciMethod* method = jvms->method();
 627 
 628     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
 629                                                                  temps + callee_parameters,
 630                                                                  extra_args,
 631                                                                  locks,
 632                                                                  callee_parameters,
 633                                                                  callee_locals,
 634                                                                  is_top_frame);
 635     size += frame_size;
 636 
 637     callee_parameters = method->size_of_parameters();
 638     callee_locals = method->max_locals();
 639     extra_args = 0;
 640     jvms = jvms->caller();
 641   }
 642   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
 643 }
 644 
 645 //=============================================================================
 646 uint CallNode::cmp( const Node &n ) const
 647 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 648 #ifndef PRODUCT
 649 void CallNode::dump_req(outputStream *st) const {
 650   // Dump the required inputs, enclosed in '(' and ')'
 651   uint i;                       // Exit value of loop
 652   for (i = 0; i < req(); i++) {    // For all required inputs
 653     if (i == TypeFunc::Parms) st->print("(");
 654     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 655     else st->print("_ ");
 656   }
 657   st->print(")");
 658 }
 659 
 660 void CallNode::dump_spec(outputStream *st) const {
 661   st->print(" ");
 662   if (tf() != NULL)  tf()->dump_on(st);
 663   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 664   if (jvms() != NULL)  jvms()->dump_spec(st);
 665 }
 666 #endif
 667 
 668 const Type *CallNode::bottom_type() const { return tf()->range(); }
 669 const Type *CallNode::Value(PhaseTransform *phase) const {
 670   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 671   return tf()->range();
 672 }
 673 
 674 //------------------------------calling_convention-----------------------------
 675 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 676   // Use the standard compiler calling convention
 677   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 678 }
 679 
 680 
 681 //------------------------------match------------------------------------------
 682 // Construct projections for control, I/O, memory-fields, ..., and
 683 // return result(s) along with their RegMask info
 684 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 685   switch (proj->_con) {
 686   case TypeFunc::Control:
 687   case TypeFunc::I_O:
 688   case TypeFunc::Memory:
 689     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 690 
 691   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 692     assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 693     // 2nd half of doubles and longs
 694     return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 695 
 696   case TypeFunc::Parms: {       // Normal returns
 697     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 698     OptoRegPair regs = is_CallRuntime()
 699       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 700       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 701     RegMask rm = RegMask(regs.first());
 702     if( OptoReg::is_valid(regs.second()) )
 703       rm.Insert( regs.second() );
 704     return new MachProjNode(this,proj->_con,rm,ideal_reg);
 705   }
 706 
 707   case TypeFunc::ReturnAdr:
 708   case TypeFunc::FramePtr:
 709   default:
 710     ShouldNotReachHere();
 711   }
 712   return NULL;
 713 }
 714 
 715 // Do we Match on this edge index or not?  Match no edges
 716 uint CallNode::match_edge(uint idx) const {
 717   return 0;
 718 }
 719 
 720 //
 721 // Determine whether the call could modify the field of the specified
 722 // instance at the specified offset.
 723 //
 724 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
 725   assert((t_oop != NULL), "sanity");
 726   if (t_oop->is_known_instance()) {
 727     // The instance_id is set only for scalar-replaceable allocations which
 728     // are not passed as arguments according to Escape Analysis.
 729     return false;
 730   }
 731   if (t_oop->is_ptr_to_boxed_value()) {
 732     ciKlass* boxing_klass = t_oop->klass();
 733     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
 734       // Skip unrelated boxing methods.
 735       Node* proj = proj_out(TypeFunc::Parms);
 736       if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
 737         return false;
 738       }
 739     }
 740     if (is_CallJava() && as_CallJava()->method() != NULL) {
 741       ciMethod* meth = as_CallJava()->method();
 742       if (meth->is_accessor()) {
 743         return false;
 744       }
 745       // May modify (by reflection) if an boxing object is passed
 746       // as argument or returned.
 747       if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) {
 748         Node* proj = proj_out(TypeFunc::Parms);
 749         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 750         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 751                                  (inst_t->klass() == boxing_klass))) {
 752           return true;
 753         }
 754       }
 755       const TypeTuple* d = tf()->domain();
 756       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 757         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 758         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 759                                  (inst_t->klass() == boxing_klass))) {
 760           return true;
 761         }
 762       }
 763       return false;
 764     }
 765   }
 766   return true;
 767 }
 768 
 769 // Does this call have a direct reference to n other than debug information?
 770 bool CallNode::has_non_debug_use(Node *n) {
 771   const TypeTuple * d = tf()->domain();
 772   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 773     Node *arg = in(i);
 774     if (arg == n) {
 775       return true;
 776     }
 777   }
 778   return false;
 779 }
 780 
 781 // Returns the unique CheckCastPP of a call
 782 // or 'this' if there are several CheckCastPP or unexpected uses
 783 // or returns NULL if there is no one.
 784 Node *CallNode::result_cast() {
 785   Node *cast = NULL;
 786 
 787   Node *p = proj_out(TypeFunc::Parms);
 788   if (p == NULL)
 789     return NULL;
 790 
 791   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 792     Node *use = p->fast_out(i);
 793     if (use->is_CheckCastPP()) {
 794       if (cast != NULL) {
 795         return this;  // more than 1 CheckCastPP
 796       }
 797       cast = use;
 798     } else if (!use->is_Initialize() &&
 799                !use->is_AddP()) {
 800       // Expected uses are restricted to a CheckCastPP, an Initialize
 801       // node, and AddP nodes. If we encounter any other use (a Phi
 802       // node can be seen in rare cases) return this to prevent
 803       // incorrect optimizations.
 804       return this;
 805     }
 806   }
 807   return cast;
 808 }
 809 
 810 
 811 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
 812   projs->fallthrough_proj      = NULL;
 813   projs->fallthrough_catchproj = NULL;
 814   projs->fallthrough_ioproj    = NULL;
 815   projs->catchall_ioproj       = NULL;
 816   projs->catchall_catchproj    = NULL;
 817   projs->fallthrough_memproj   = NULL;
 818   projs->catchall_memproj      = NULL;
 819   projs->resproj               = NULL;
 820   projs->exobj                 = NULL;
 821 
 822   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 823     ProjNode *pn = fast_out(i)->as_Proj();
 824     if (pn->outcnt() == 0) continue;
 825     switch (pn->_con) {
 826     case TypeFunc::Control:
 827       {
 828         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 829         projs->fallthrough_proj = pn;
 830         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 831         const Node *cn = pn->fast_out(j);
 832         if (cn->is_Catch()) {
 833           ProjNode *cpn = NULL;
 834           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 835             cpn = cn->fast_out(k)->as_Proj();
 836             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 837             if (cpn->_con == CatchProjNode::fall_through_index)
 838               projs->fallthrough_catchproj = cpn;
 839             else {
 840               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 841               projs->catchall_catchproj = cpn;
 842             }
 843           }
 844         }
 845         break;
 846       }
 847     case TypeFunc::I_O:
 848       if (pn->_is_io_use)
 849         projs->catchall_ioproj = pn;
 850       else
 851         projs->fallthrough_ioproj = pn;
 852       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 853         Node* e = pn->out(j);
 854         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 855           assert(projs->exobj == NULL, "only one");
 856           projs->exobj = e;
 857         }
 858       }
 859       break;
 860     case TypeFunc::Memory:
 861       if (pn->_is_io_use)
 862         projs->catchall_memproj = pn;
 863       else
 864         projs->fallthrough_memproj = pn;
 865       break;
 866     case TypeFunc::Parms:
 867       projs->resproj = pn;
 868       break;
 869     default:
 870       assert(false, "unexpected projection from allocation node.");
 871     }
 872   }
 873 
 874   // The resproj may not exist because the result couuld be ignored
 875   // and the exception object may not exist if an exception handler
 876   // swallows the exception but all the other must exist and be found.
 877   assert(projs->fallthrough_proj      != NULL, "must be found");
 878   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
 879   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
 880   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
 881   assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
 882   if (separate_io_proj) {
 883     assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
 884     assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
 885   }
 886 }
 887 
 888 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 889   CallGenerator* cg = generator();
 890   if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
 891     // Check whether this MH handle call becomes a candidate for inlining
 892     ciMethod* callee = cg->method();
 893     vmIntrinsics::ID iid = callee->intrinsic_id();
 894     if (iid == vmIntrinsics::_invokeBasic) {
 895       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
 896         phase->C->prepend_late_inline(cg);
 897         set_generator(NULL);
 898       }
 899     } else {
 900       assert(callee->has_member_arg(), "wrong type of call?");
 901       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
 902         phase->C->prepend_late_inline(cg);
 903         set_generator(NULL);
 904       }
 905     }
 906   }
 907   return SafePointNode::Ideal(phase, can_reshape);
 908 }
 909 
 910 
 911 //=============================================================================
 912 uint CallJavaNode::size_of() const { return sizeof(*this); }
 913 uint CallJavaNode::cmp( const Node &n ) const {
 914   CallJavaNode &call = (CallJavaNode&)n;
 915   return CallNode::cmp(call) && _method == call._method;
 916 }
 917 #ifndef PRODUCT
 918 void CallJavaNode::dump_spec(outputStream *st) const {
 919   if( _method ) _method->print_short_name(st);
 920   CallNode::dump_spec(st);
 921 }
 922 #endif
 923 
 924 //=============================================================================
 925 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 926 uint CallStaticJavaNode::cmp( const Node &n ) const {
 927   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 928   return CallJavaNode::cmp(call);
 929 }
 930 
 931 //----------------------------uncommon_trap_request----------------------------
 932 // If this is an uncommon trap, return the request code, else zero.
 933 int CallStaticJavaNode::uncommon_trap_request() const {
 934   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 935     return extract_uncommon_trap_request(this);
 936   }
 937   return 0;
 938 }
 939 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 940 #ifndef PRODUCT
 941   if (!(call->req() > TypeFunc::Parms &&
 942         call->in(TypeFunc::Parms) != NULL &&
 943         call->in(TypeFunc::Parms)->is_Con() &&
 944         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
 945     assert(in_dump() != 0, "OK if dumping");
 946     tty->print("[bad uncommon trap]");
 947     return 0;
 948   }
 949 #endif
 950   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 951 }
 952 
 953 #ifndef PRODUCT
 954 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 955   st->print("# Static ");
 956   if (_name != NULL) {
 957     st->print("%s", _name);
 958     int trap_req = uncommon_trap_request();
 959     if (trap_req != 0) {
 960       char buf[100];
 961       st->print("(%s)",
 962                  Deoptimization::format_trap_request(buf, sizeof(buf),
 963                                                      trap_req));
 964     }
 965     st->print(" ");
 966   }
 967   CallJavaNode::dump_spec(st);
 968 }
 969 #endif
 970 
 971 //=============================================================================
 972 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
 973 uint CallDynamicJavaNode::cmp( const Node &n ) const {
 974   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
 975   return CallJavaNode::cmp(call);
 976 }
 977 #ifndef PRODUCT
 978 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
 979   st->print("# Dynamic ");
 980   CallJavaNode::dump_spec(st);
 981 }
 982 #endif
 983 
 984 //=============================================================================
 985 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
 986 uint CallRuntimeNode::cmp( const Node &n ) const {
 987   CallRuntimeNode &call = (CallRuntimeNode&)n;
 988   return CallNode::cmp(call) && !strcmp(_name,call._name);
 989 }
 990 #ifndef PRODUCT
 991 void CallRuntimeNode::dump_spec(outputStream *st) const {
 992   st->print("# ");
 993   st->print("%s", _name);
 994   CallNode::dump_spec(st);
 995 }
 996 #endif
 997 
 998 //------------------------------calling_convention-----------------------------
 999 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1000   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
1001 }
1002 
1003 //=============================================================================
1004 //------------------------------calling_convention-----------------------------
1005 
1006 
1007 //=============================================================================
1008 #ifndef PRODUCT
1009 void CallLeafNode::dump_spec(outputStream *st) const {
1010   st->print("# ");
1011   st->print("%s", _name);
1012   CallNode::dump_spec(st);
1013 }
1014 #endif
1015 
1016 //=============================================================================
1017 
1018 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1019   assert(verify_jvms(jvms), "jvms must match");
1020   int loc = jvms->locoff() + idx;
1021   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1022     // If current local idx is top then local idx - 1 could
1023     // be a long/double that needs to be killed since top could
1024     // represent the 2nd half ofthe long/double.
1025     uint ideal = in(loc -1)->ideal_reg();
1026     if (ideal == Op_RegD || ideal == Op_RegL) {
1027       // set other (low index) half to top
1028       set_req(loc - 1, in(loc));
1029     }
1030   }
1031   set_req(loc, c);
1032 }
1033 
1034 uint SafePointNode::size_of() const { return sizeof(*this); }
1035 uint SafePointNode::cmp( const Node &n ) const {
1036   return (&n == this);          // Always fail except on self
1037 }
1038 
1039 //-------------------------set_next_exception----------------------------------
1040 void SafePointNode::set_next_exception(SafePointNode* n) {
1041   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1042   if (len() == req()) {
1043     if (n != NULL)  add_prec(n);
1044   } else {
1045     set_prec(req(), n);
1046   }
1047 }
1048 
1049 
1050 //----------------------------next_exception-----------------------------------
1051 SafePointNode* SafePointNode::next_exception() const {
1052   if (len() == req()) {
1053     return NULL;
1054   } else {
1055     Node* n = in(req());
1056     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1057     return (SafePointNode*) n;
1058   }
1059 }
1060 
1061 
1062 //------------------------------Ideal------------------------------------------
1063 // Skip over any collapsed Regions
1064 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1065   return remove_dead_region(phase, can_reshape) ? this : NULL;
1066 }
1067 
1068 //------------------------------Identity---------------------------------------
1069 // Remove obviously duplicate safepoints
1070 Node *SafePointNode::Identity( PhaseTransform *phase ) {
1071 
1072   // If you have back to back safepoints, remove one
1073   if( in(TypeFunc::Control)->is_SafePoint() )
1074     return in(TypeFunc::Control);
1075 
1076   if( in(0)->is_Proj() ) {
1077     Node *n0 = in(0)->in(0);
1078     // Check if he is a call projection (except Leaf Call)
1079     if( n0->is_Catch() ) {
1080       n0 = n0->in(0)->in(0);
1081       assert( n0->is_Call(), "expect a call here" );
1082     }
1083     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1084       // Useless Safepoint, so remove it
1085       return in(TypeFunc::Control);
1086     }
1087   }
1088 
1089   return this;
1090 }
1091 
1092 //------------------------------Value------------------------------------------
1093 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
1094   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1095   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
1096   return Type::CONTROL;
1097 }
1098 
1099 #ifndef PRODUCT
1100 void SafePointNode::dump_spec(outputStream *st) const {
1101   st->print(" SafePoint ");
1102   _replaced_nodes.dump(st);
1103 }
1104 #endif
1105 
1106 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1107   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1108   // Values outside the domain represent debug info
1109   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1110 }
1111 const RegMask &SafePointNode::out_RegMask() const {
1112   return RegMask::Empty;
1113 }
1114 
1115 
1116 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1117   assert((int)grow_by > 0, "sanity");
1118   int monoff = jvms->monoff();
1119   int scloff = jvms->scloff();
1120   int endoff = jvms->endoff();
1121   assert(endoff == (int)req(), "no other states or debug info after me");
1122   Node* top = Compile::current()->top();
1123   for (uint i = 0; i < grow_by; i++) {
1124     ins_req(monoff, top);
1125   }
1126   jvms->set_monoff(monoff + grow_by);
1127   jvms->set_scloff(scloff + grow_by);
1128   jvms->set_endoff(endoff + grow_by);
1129 }
1130 
1131 void SafePointNode::push_monitor(const FastLockNode *lock) {
1132   // Add a LockNode, which points to both the original BoxLockNode (the
1133   // stack space for the monitor) and the Object being locked.
1134   const int MonitorEdges = 2;
1135   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1136   assert(req() == jvms()->endoff(), "correct sizing");
1137   int nextmon = jvms()->scloff();
1138   if (GenerateSynchronizationCode) {
1139     ins_req(nextmon,   lock->box_node());
1140     ins_req(nextmon+1, lock->obj_node());
1141   } else {
1142     Node* top = Compile::current()->top();
1143     ins_req(nextmon, top);
1144     ins_req(nextmon, top);
1145   }
1146   jvms()->set_scloff(nextmon + MonitorEdges);
1147   jvms()->set_endoff(req());
1148 }
1149 
1150 void SafePointNode::pop_monitor() {
1151   // Delete last monitor from debug info
1152   debug_only(int num_before_pop = jvms()->nof_monitors());
1153   const int MonitorEdges = 2;
1154   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1155   int scloff = jvms()->scloff();
1156   int endoff = jvms()->endoff();
1157   int new_scloff = scloff - MonitorEdges;
1158   int new_endoff = endoff - MonitorEdges;
1159   jvms()->set_scloff(new_scloff);
1160   jvms()->set_endoff(new_endoff);
1161   while (scloff > new_scloff)  del_req_ordered(--scloff);
1162   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1163 }
1164 
1165 Node *SafePointNode::peek_monitor_box() const {
1166   int mon = jvms()->nof_monitors() - 1;
1167   assert(mon >= 0, "most have a monitor");
1168   return monitor_box(jvms(), mon);
1169 }
1170 
1171 Node *SafePointNode::peek_monitor_obj() const {
1172   int mon = jvms()->nof_monitors() - 1;
1173   assert(mon >= 0, "most have a monitor");
1174   return monitor_obj(jvms(), mon);
1175 }
1176 
1177 // Do we Match on this edge index or not?  Match no edges
1178 uint SafePointNode::match_edge(uint idx) const {
1179   if( !needs_polling_address_input() )
1180     return 0;
1181 
1182   return (TypeFunc::Parms == idx);
1183 }
1184 
1185 //==============  SafePointScalarObjectNode  ==============
1186 
1187 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1188 #ifdef ASSERT
1189                                                      AllocateNode* alloc,
1190 #endif
1191                                                      uint first_index,
1192                                                      uint n_fields) :
1193   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1194 #ifdef ASSERT
1195   _alloc(alloc),
1196 #endif
1197   _first_index(first_index),
1198   _n_fields(n_fields)
1199 {
1200   init_class_id(Class_SafePointScalarObject);
1201 }
1202 
1203 // Do not allow value-numbering for SafePointScalarObject node.
1204 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1205 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1206   return (&n == this); // Always fail except on self
1207 }
1208 
1209 uint SafePointScalarObjectNode::ideal_reg() const {
1210   return 0; // No matching to machine instruction
1211 }
1212 
1213 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1214   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1215 }
1216 
1217 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1218   return RegMask::Empty;
1219 }
1220 
1221 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1222   return 0;
1223 }
1224 
1225 SafePointScalarObjectNode*
1226 SafePointScalarObjectNode::clone(Dict* sosn_map) const {
1227   void* cached = (*sosn_map)[(void*)this];
1228   if (cached != NULL) {
1229     return (SafePointScalarObjectNode*)cached;
1230   }
1231   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1232   sosn_map->Insert((void*)this, (void*)res);
1233   return res;
1234 }
1235 
1236 
1237 #ifndef PRODUCT
1238 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1239   st->print(" # fields@[%d..%d]", first_index(),
1240              first_index() + n_fields() - 1);
1241 }
1242 
1243 #endif
1244 
1245 //=============================================================================
1246 uint AllocateNode::size_of() const { return sizeof(*this); }
1247 
1248 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1249                            Node *ctrl, Node *mem, Node *abio,
1250                            Node *size, Node *klass_node, Node *initial_test)
1251   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1252 {
1253   init_class_id(Class_Allocate);
1254   init_flags(Flag_is_macro);
1255   _is_scalar_replaceable = false;
1256   _is_non_escaping = false;
1257   Node *topnode = C->top();
1258 
1259   init_req( TypeFunc::Control  , ctrl );
1260   init_req( TypeFunc::I_O      , abio );
1261   init_req( TypeFunc::Memory   , mem );
1262   init_req( TypeFunc::ReturnAdr, topnode );
1263   init_req( TypeFunc::FramePtr , topnode );
1264   init_req( AllocSize          , size);
1265   init_req( KlassNode          , klass_node);
1266   init_req( InitialTest        , initial_test);
1267   init_req( ALength            , topnode);
1268   C->add_macro_node(this);
1269 }
1270 
1271 //=============================================================================
1272 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1273   if (remove_dead_region(phase, can_reshape))  return this;
1274   // Don't bother trying to transform a dead node
1275   if (in(0) && in(0)->is_top())  return NULL;
1276 
1277   const Type* type = phase->type(Ideal_length());
1278   if (type->isa_int() && type->is_int()->_hi < 0) {
1279     if (can_reshape) {
1280       PhaseIterGVN *igvn = phase->is_IterGVN();
1281       // Unreachable fall through path (negative array length),
1282       // the allocation can only throw so disconnect it.
1283       Node* proj = proj_out(TypeFunc::Control);
1284       Node* catchproj = NULL;
1285       if (proj != NULL) {
1286         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1287           Node *cn = proj->fast_out(i);
1288           if (cn->is_Catch()) {
1289             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1290             break;
1291           }
1292         }
1293       }
1294       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1295           (catchproj->outcnt() > 1 ||
1296            catchproj->unique_out()->Opcode() != Op_Halt)) {
1297         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1298         Node* nproj = catchproj->clone();
1299         igvn->register_new_node_with_optimizer(nproj);
1300 
1301         Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr );
1302         frame = phase->transform(frame);
1303         // Halt & Catch Fire
1304         Node *halt = new HaltNode( nproj, frame );
1305         phase->C->root()->add_req(halt);
1306         phase->transform(halt);
1307 
1308         igvn->replace_node(catchproj, phase->C->top());
1309         return this;
1310       }
1311     } else {
1312       // Can't correct it during regular GVN so register for IGVN
1313       phase->C->record_for_igvn(this);
1314     }
1315   }
1316   return NULL;
1317 }
1318 
1319 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1320 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1321 // a CastII is appropriate, return NULL.
1322 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1323   Node *length = in(AllocateNode::ALength);
1324   assert(length != NULL, "length is not null");
1325 
1326   const TypeInt* length_type = phase->find_int_type(length);
1327   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1328 
1329   if (ary_type != NULL && length_type != NULL) {
1330     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1331     if (narrow_length_type != length_type) {
1332       // Assert one of:
1333       //   - the narrow_length is 0
1334       //   - the narrow_length is not wider than length
1335       assert(narrow_length_type == TypeInt::ZERO ||
1336              length_type->is_con() && narrow_length_type->is_con() &&
1337                 (narrow_length_type->_hi <= length_type->_lo) ||
1338              (narrow_length_type->_hi <= length_type->_hi &&
1339               narrow_length_type->_lo >= length_type->_lo),
1340              "narrow type must be narrower than length type");
1341 
1342       // Return NULL if new nodes are not allowed
1343       if (!allow_new_nodes) return NULL;
1344       // Create a cast which is control dependent on the initialization to
1345       // propagate the fact that the array length must be positive.
1346       length = new CastIINode(length, narrow_length_type);
1347       length->set_req(0, initialization()->proj_out(0));
1348     }
1349   }
1350 
1351   return length;
1352 }
1353 
1354 //=============================================================================
1355 uint LockNode::size_of() const { return sizeof(*this); }
1356 
1357 // Redundant lock elimination
1358 //
1359 // There are various patterns of locking where we release and
1360 // immediately reacquire a lock in a piece of code where no operations
1361 // occur in between that would be observable.  In those cases we can
1362 // skip releasing and reacquiring the lock without violating any
1363 // fairness requirements.  Doing this around a loop could cause a lock
1364 // to be held for a very long time so we concentrate on non-looping
1365 // control flow.  We also require that the operations are fully
1366 // redundant meaning that we don't introduce new lock operations on
1367 // some paths so to be able to eliminate it on others ala PRE.  This
1368 // would probably require some more extensive graph manipulation to
1369 // guarantee that the memory edges were all handled correctly.
1370 //
1371 // Assuming p is a simple predicate which can't trap in any way and s
1372 // is a synchronized method consider this code:
1373 //
1374 //   s();
1375 //   if (p)
1376 //     s();
1377 //   else
1378 //     s();
1379 //   s();
1380 //
1381 // 1. The unlocks of the first call to s can be eliminated if the
1382 // locks inside the then and else branches are eliminated.
1383 //
1384 // 2. The unlocks of the then and else branches can be eliminated if
1385 // the lock of the final call to s is eliminated.
1386 //
1387 // Either of these cases subsumes the simple case of sequential control flow
1388 //
1389 // Addtionally we can eliminate versions without the else case:
1390 //
1391 //   s();
1392 //   if (p)
1393 //     s();
1394 //   s();
1395 //
1396 // 3. In this case we eliminate the unlock of the first s, the lock
1397 // and unlock in the then case and the lock in the final s.
1398 //
1399 // Note also that in all these cases the then/else pieces don't have
1400 // to be trivial as long as they begin and end with synchronization
1401 // operations.
1402 //
1403 //   s();
1404 //   if (p)
1405 //     s();
1406 //     f();
1407 //     s();
1408 //   s();
1409 //
1410 // The code will work properly for this case, leaving in the unlock
1411 // before the call to f and the relock after it.
1412 //
1413 // A potentially interesting case which isn't handled here is when the
1414 // locking is partially redundant.
1415 //
1416 //   s();
1417 //   if (p)
1418 //     s();
1419 //
1420 // This could be eliminated putting unlocking on the else case and
1421 // eliminating the first unlock and the lock in the then side.
1422 // Alternatively the unlock could be moved out of the then side so it
1423 // was after the merge and the first unlock and second lock
1424 // eliminated.  This might require less manipulation of the memory
1425 // state to get correct.
1426 //
1427 // Additionally we might allow work between a unlock and lock before
1428 // giving up eliminating the locks.  The current code disallows any
1429 // conditional control flow between these operations.  A formulation
1430 // similar to partial redundancy elimination computing the
1431 // availability of unlocking and the anticipatability of locking at a
1432 // program point would allow detection of fully redundant locking with
1433 // some amount of work in between.  I'm not sure how often I really
1434 // think that would occur though.  Most of the cases I've seen
1435 // indicate it's likely non-trivial work would occur in between.
1436 // There may be other more complicated constructs where we could
1437 // eliminate locking but I haven't seen any others appear as hot or
1438 // interesting.
1439 //
1440 // Locking and unlocking have a canonical form in ideal that looks
1441 // roughly like this:
1442 //
1443 //              <obj>
1444 //                | \\------+
1445 //                |  \       \
1446 //                | BoxLock   \
1447 //                |  |   |     \
1448 //                |  |    \     \
1449 //                |  |   FastLock
1450 //                |  |   /
1451 //                |  |  /
1452 //                |  |  |
1453 //
1454 //               Lock
1455 //                |
1456 //            Proj #0
1457 //                |
1458 //            MembarAcquire
1459 //                |
1460 //            Proj #0
1461 //
1462 //            MembarRelease
1463 //                |
1464 //            Proj #0
1465 //                |
1466 //              Unlock
1467 //                |
1468 //            Proj #0
1469 //
1470 //
1471 // This code proceeds by processing Lock nodes during PhaseIterGVN
1472 // and searching back through its control for the proper code
1473 // patterns.  Once it finds a set of lock and unlock operations to
1474 // eliminate they are marked as eliminatable which causes the
1475 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1476 //
1477 //=============================================================================
1478 
1479 //
1480 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1481 //   - copy regions.  (These may not have been optimized away yet.)
1482 //   - eliminated locking nodes
1483 //
1484 static Node *next_control(Node *ctrl) {
1485   if (ctrl == NULL)
1486     return NULL;
1487   while (1) {
1488     if (ctrl->is_Region()) {
1489       RegionNode *r = ctrl->as_Region();
1490       Node *n = r->is_copy();
1491       if (n == NULL)
1492         break;  // hit a region, return it
1493       else
1494         ctrl = n;
1495     } else if (ctrl->is_Proj()) {
1496       Node *in0 = ctrl->in(0);
1497       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1498         ctrl = in0->in(0);
1499       } else {
1500         break;
1501       }
1502     } else {
1503       break; // found an interesting control
1504     }
1505   }
1506   return ctrl;
1507 }
1508 //
1509 // Given a control, see if it's the control projection of an Unlock which
1510 // operating on the same object as lock.
1511 //
1512 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1513                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1514   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1515   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1516     Node *n = ctrl_proj->in(0);
1517     if (n != NULL && n->is_Unlock()) {
1518       UnlockNode *unlock = n->as_Unlock();
1519       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1520           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1521           !unlock->is_eliminated()) {
1522         lock_ops.append(unlock);
1523         return true;
1524       }
1525     }
1526   }
1527   return false;
1528 }
1529 
1530 //
1531 // Find the lock matching an unlock.  Returns null if a safepoint
1532 // or complicated control is encountered first.
1533 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1534   LockNode *lock_result = NULL;
1535   // find the matching lock, or an intervening safepoint
1536   Node *ctrl = next_control(unlock->in(0));
1537   while (1) {
1538     assert(ctrl != NULL, "invalid control graph");
1539     assert(!ctrl->is_Start(), "missing lock for unlock");
1540     if (ctrl->is_top()) break;  // dead control path
1541     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1542     if (ctrl->is_SafePoint()) {
1543         break;  // found a safepoint (may be the lock we are searching for)
1544     } else if (ctrl->is_Region()) {
1545       // Check for a simple diamond pattern.  Punt on anything more complicated
1546       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1547         Node *in1 = next_control(ctrl->in(1));
1548         Node *in2 = next_control(ctrl->in(2));
1549         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1550              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1551           ctrl = next_control(in1->in(0)->in(0));
1552         } else {
1553           break;
1554         }
1555       } else {
1556         break;
1557       }
1558     } else {
1559       ctrl = next_control(ctrl->in(0));  // keep searching
1560     }
1561   }
1562   if (ctrl->is_Lock()) {
1563     LockNode *lock = ctrl->as_Lock();
1564     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1565         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1566       lock_result = lock;
1567     }
1568   }
1569   return lock_result;
1570 }
1571 
1572 // This code corresponds to case 3 above.
1573 
1574 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1575                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1576   Node* if_node = node->in(0);
1577   bool  if_true = node->is_IfTrue();
1578 
1579   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1580     Node *lock_ctrl = next_control(if_node->in(0));
1581     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1582       Node* lock1_node = NULL;
1583       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1584       if (if_true) {
1585         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1586           lock1_node = proj->unique_out();
1587         }
1588       } else {
1589         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1590           lock1_node = proj->unique_out();
1591         }
1592       }
1593       if (lock1_node != NULL && lock1_node->is_Lock()) {
1594         LockNode *lock1 = lock1_node->as_Lock();
1595         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1596             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1597             !lock1->is_eliminated()) {
1598           lock_ops.append(lock1);
1599           return true;
1600         }
1601       }
1602     }
1603   }
1604 
1605   lock_ops.trunc_to(0);
1606   return false;
1607 }
1608 
1609 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1610                                GrowableArray<AbstractLockNode*> &lock_ops) {
1611   // check each control merging at this point for a matching unlock.
1612   // in(0) should be self edge so skip it.
1613   for (int i = 1; i < (int)region->req(); i++) {
1614     Node *in_node = next_control(region->in(i));
1615     if (in_node != NULL) {
1616       if (find_matching_unlock(in_node, lock, lock_ops)) {
1617         // found a match so keep on checking.
1618         continue;
1619       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1620         continue;
1621       }
1622 
1623       // If we fall through to here then it was some kind of node we
1624       // don't understand or there wasn't a matching unlock, so give
1625       // up trying to merge locks.
1626       lock_ops.trunc_to(0);
1627       return false;
1628     }
1629   }
1630   return true;
1631 
1632 }
1633 
1634 #ifndef PRODUCT
1635 //
1636 // Create a counter which counts the number of times this lock is acquired
1637 //
1638 void AbstractLockNode::create_lock_counter(JVMState* state) {
1639   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1640 }
1641 
1642 void AbstractLockNode::set_eliminated_lock_counter() {
1643   if (_counter) {
1644     // Update the counter to indicate that this lock was eliminated.
1645     // The counter update code will stay around even though the
1646     // optimizer will eliminate the lock operation itself.
1647     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1648   }
1649 }
1650 #endif
1651 
1652 //=============================================================================
1653 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1654 
1655   // perform any generic optimizations first (returns 'this' or NULL)
1656   Node *result = SafePointNode::Ideal(phase, can_reshape);
1657   if (result != NULL)  return result;
1658   // Don't bother trying to transform a dead node
1659   if (in(0) && in(0)->is_top())  return NULL;
1660 
1661   // Now see if we can optimize away this lock.  We don't actually
1662   // remove the locking here, we simply set the _eliminate flag which
1663   // prevents macro expansion from expanding the lock.  Since we don't
1664   // modify the graph, the value returned from this function is the
1665   // one computed above.
1666   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1667     //
1668     // If we are locking an unescaped object, the lock/unlock is unnecessary
1669     //
1670     ConnectionGraph *cgr = phase->C->congraph();
1671     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1672       assert(!is_eliminated() || is_coarsened(), "sanity");
1673       // The lock could be marked eliminated by lock coarsening
1674       // code during first IGVN before EA. Replace coarsened flag
1675       // to eliminate all associated locks/unlocks.
1676       this->set_non_esc_obj();
1677       return result;
1678     }
1679 
1680     //
1681     // Try lock coarsening
1682     //
1683     PhaseIterGVN* iter = phase->is_IterGVN();
1684     if (iter != NULL && !is_eliminated()) {
1685 
1686       GrowableArray<AbstractLockNode*>   lock_ops;
1687 
1688       Node *ctrl = next_control(in(0));
1689 
1690       // now search back for a matching Unlock
1691       if (find_matching_unlock(ctrl, this, lock_ops)) {
1692         // found an unlock directly preceding this lock.  This is the
1693         // case of single unlock directly control dependent on a
1694         // single lock which is the trivial version of case 1 or 2.
1695       } else if (ctrl->is_Region() ) {
1696         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1697         // found lock preceded by multiple unlocks along all paths
1698         // joining at this point which is case 3 in description above.
1699         }
1700       } else {
1701         // see if this lock comes from either half of an if and the
1702         // predecessors merges unlocks and the other half of the if
1703         // performs a lock.
1704         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1705           // found unlock splitting to an if with locks on both branches.
1706         }
1707       }
1708 
1709       if (lock_ops.length() > 0) {
1710         // add ourselves to the list of locks to be eliminated.
1711         lock_ops.append(this);
1712 
1713   #ifndef PRODUCT
1714         if (PrintEliminateLocks) {
1715           int locks = 0;
1716           int unlocks = 0;
1717           for (int i = 0; i < lock_ops.length(); i++) {
1718             AbstractLockNode* lock = lock_ops.at(i);
1719             if (lock->Opcode() == Op_Lock)
1720               locks++;
1721             else
1722               unlocks++;
1723             if (Verbose) {
1724               lock->dump(1);
1725             }
1726           }
1727           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1728         }
1729   #endif
1730 
1731         // for each of the identified locks, mark them
1732         // as eliminatable
1733         for (int i = 0; i < lock_ops.length(); i++) {
1734           AbstractLockNode* lock = lock_ops.at(i);
1735 
1736           // Mark it eliminated by coarsening and update any counters
1737           lock->set_coarsened();
1738         }
1739       } else if (ctrl->is_Region() &&
1740                  iter->_worklist.member(ctrl)) {
1741         // We weren't able to find any opportunities but the region this
1742         // lock is control dependent on hasn't been processed yet so put
1743         // this lock back on the worklist so we can check again once any
1744         // region simplification has occurred.
1745         iter->_worklist.push(this);
1746       }
1747     }
1748   }
1749 
1750   return result;
1751 }
1752 
1753 //=============================================================================
1754 bool LockNode::is_nested_lock_region() {
1755   BoxLockNode* box = box_node()->as_BoxLock();
1756   int stk_slot = box->stack_slot();
1757   if (stk_slot <= 0)
1758     return false; // External lock or it is not Box (Phi node).
1759 
1760   // Ignore complex cases: merged locks or multiple locks.
1761   Node* obj = obj_node();
1762   LockNode* unique_lock = NULL;
1763   if (!box->is_simple_lock_region(&unique_lock, obj) ||
1764       (unique_lock != this)) {
1765     return false;
1766   }
1767 
1768   // Look for external lock for the same object.
1769   SafePointNode* sfn = this->as_SafePoint();
1770   JVMState* youngest_jvms = sfn->jvms();
1771   int max_depth = youngest_jvms->depth();
1772   for (int depth = 1; depth <= max_depth; depth++) {
1773     JVMState* jvms = youngest_jvms->of_depth(depth);
1774     int num_mon  = jvms->nof_monitors();
1775     // Loop over monitors
1776     for (int idx = 0; idx < num_mon; idx++) {
1777       Node* obj_node = sfn->monitor_obj(jvms, idx);
1778       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1779       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1780         return true;
1781       }
1782     }
1783   }
1784   return false;
1785 }
1786 
1787 //=============================================================================
1788 uint UnlockNode::size_of() const { return sizeof(*this); }
1789 
1790 //=============================================================================
1791 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1792 
1793   // perform any generic optimizations first (returns 'this' or NULL)
1794   Node *result = SafePointNode::Ideal(phase, can_reshape);
1795   if (result != NULL)  return result;
1796   // Don't bother trying to transform a dead node
1797   if (in(0) && in(0)->is_top())  return NULL;
1798 
1799   // Now see if we can optimize away this unlock.  We don't actually
1800   // remove the unlocking here, we simply set the _eliminate flag which
1801   // prevents macro expansion from expanding the unlock.  Since we don't
1802   // modify the graph, the value returned from this function is the
1803   // one computed above.
1804   // Escape state is defined after Parse phase.
1805   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1806     //
1807     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1808     //
1809     ConnectionGraph *cgr = phase->C->congraph();
1810     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1811       assert(!is_eliminated() || is_coarsened(), "sanity");
1812       // The lock could be marked eliminated by lock coarsening
1813       // code during first IGVN before EA. Replace coarsened flag
1814       // to eliminate all associated locks/unlocks.
1815       this->set_non_esc_obj();
1816     }
1817   }
1818   return result;
1819 }
1820 
1821 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled)
1822   : CallNode(arraycopy_type(), NULL, TypeRawPtr::BOTTOM),
1823     _alloc_tightly_coupled(alloc_tightly_coupled),
1824     _kind(None),
1825     _arguments_validated(false) {
1826   init_class_id(Class_ArrayCopy);
1827   init_flags(Flag_is_macro);
1828   C->add_macro_node(this);
1829 }
1830 
1831 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
1832 
1833 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
1834                                    Node* src, Node* src_offset,
1835                                    Node* dest, Node* dest_offset,
1836                                    Node* length,
1837                                    bool alloc_tightly_coupled,
1838                                    Node* src_klass, Node* dest_klass,
1839                                    Node* src_length, Node* dest_length) {
1840 
1841   ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled);
1842   Node* prev_mem = kit->set_predefined_input_for_runtime_call(ac);
1843 
1844   ac->init_req(ArrayCopyNode::Src, src);
1845   ac->init_req(ArrayCopyNode::SrcPos, src_offset);
1846   ac->init_req(ArrayCopyNode::Dest, dest);
1847   ac->init_req(ArrayCopyNode::DestPos, dest_offset);
1848   ac->init_req(ArrayCopyNode::Length, length);
1849   ac->init_req(ArrayCopyNode::SrcLen, src_length);
1850   ac->init_req(ArrayCopyNode::DestLen, dest_length);
1851   ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
1852   ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
1853 
1854   if (may_throw) {
1855     ac->set_req(TypeFunc::I_O , kit->i_o());
1856     kit->add_safepoint_edges(ac, false);
1857   }
1858 
1859   return ac;
1860 }
1861 
1862 void ArrayCopyNode::connect_outputs(GraphKit* kit) {
1863   kit->set_all_memory_call(this, true);
1864   kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
1865   kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
1866   kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true);
1867   kit->set_all_memory_call(this);
1868 }
1869 
1870 #ifndef PRODUCT
1871 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
1872 void ArrayCopyNode::dump_spec(outputStream *st) const {
1873   CallNode::dump_spec(st);
1874   st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
1875 }
1876 #endif
1877 
1878 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
1879   // check that length is constant
1880   Node* length = in(ArrayCopyNode::Length);
1881   const Type* length_type = phase->type(length);
1882 
1883   if (length_type == Type::TOP) {
1884     return -1;
1885   }
1886 
1887   intptr_t length_const = -1;
1888   if (is_clonebasic()) {
1889     const TypeX* length_int_type = length_type->is_intptr_t();
1890     if (length_int_type->is_con()) {
1891       length_const = length_int_type->get_con();
1892     }
1893   } else if (is_arraycopy() || is_copyof() || is_copyofrange()) {
1894     const TypeInt* length_int_type = length_type->is_int();
1895     if (length_int_type->is_con()) {
1896       length_const = length_int_type->get_con();
1897     }
1898   } else {
1899     fatal("unexpected array copy type");
1900   }
1901 
1902   return length_const;
1903 }
1904 
1905 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
1906   Node* src = in(ArrayCopyNode::Src);
1907   const Type* src_type = phase->type(src);
1908 
1909   if (is_clonebasic()) {
1910     if (src_type->isa_instptr()) {
1911       const TypeInstPtr* inst_src = src_type->is_instptr();
1912       ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
1913       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
1914       // fields into account. They are rare anyway so easier to simply
1915       // skip instances with injected fields.
1916       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
1917         return -1;
1918       }
1919       int nb_fields = ik->nof_nonstatic_fields();
1920       return nb_fields;
1921     } else {
1922       const TypeAryPtr* ary_src = src_type->isa_aryptr();
1923       assert (ary_src != NULL, "not an array or instance?");
1924       // clone passes a length as a rounded number of longs. If we're
1925       // cloning an array we'll do it element by element. If the
1926       // length input to ArrayCopyNode is constant, length of input
1927       // array must be too.
1928 
1929       assert((get_length_if_constant(phase) == -1) == !ary_src->size()->is_con(), "inconsistent");
1930 
1931       if (ary_src->size()->is_con()) {
1932         return ary_src->size()->get_con();
1933       }
1934       return -1;
1935     }
1936   } 
1937 
1938   return get_length_if_constant(phase);
1939 }
1940 
1941 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
1942   if (!is_clonebasic()) {
1943     return NULL;
1944   }
1945 
1946   Node* src = in(ArrayCopyNode::Src);
1947   Node* dest = in(ArrayCopyNode::Dest);
1948   Node* ctl = in(TypeFunc::Control);
1949   Node* in_mem = in(TypeFunc::Memory);
1950 
1951   const Type* src_type = phase->type(src);
1952   const Type* dest_type = phase->type(dest);
1953 
1954   assert(src->is_AddP(), "should be base + off");
1955   assert(dest->is_AddP(), "should be base + off");
1956   Node* base_src = src->in(AddPNode::Base);
1957   Node* base_dest = dest->in(AddPNode::Base);
1958 
1959   MergeMemNode* mem = MergeMemNode::make(in_mem);
1960 
1961   const TypeInstPtr* inst_src = src_type->isa_instptr();
1962 
1963   if (inst_src == NULL) {
1964     return NULL;
1965   }
1966 
1967   if (!inst_src->klass_is_exact()) {
1968     ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
1969     assert(!ik->is_interface() && !ik->has_subklass(), "inconsistent klass hierarchy");
1970     phase->C->dependencies()->assert_leaf_type(ik);
1971   }
1972 
1973   ciInstanceKlass* ik = inst_src->klass()->as_instance_klass();
1974   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
1975 
1976   for (int i = 0; i < count; i++) {
1977     ciField* field = ik->nonstatic_field_at(i);
1978     int fieldidx = phase->C->alias_type(field)->index();
1979     const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
1980     Node* off = phase->MakeConX(field->offset());
1981     Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
1982     Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
1983     BasicType bt = field->layout_type();
1984 
1985     const Type *type;
1986     if (bt == T_OBJECT) {
1987       if (!field->type()->is_loaded()) {
1988         type = TypeInstPtr::BOTTOM;
1989       } else {
1990         ciType* field_klass = field->type();
1991         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
1992       }
1993     } else {
1994       type = Type::get_const_basic_type(bt);
1995     }
1996 
1997     Node* v = LoadNode::make(*phase, ctl, mem->memory_at(fieldidx), next_src, adr_type, type, bt, MemNode::unordered);
1998     v = phase->transform(v);
1999     Node* s = StoreNode::make(*phase, ctl, mem->memory_at(fieldidx), next_dest, adr_type, v, bt, MemNode::unordered);
2000     s = phase->transform(s);
2001     mem->set_memory_at(fieldidx, s);
2002   }
2003 
2004   if (!finish_transform(phase, can_reshape, ctl, mem)) {
2005     return NULL;
2006   }
2007 
2008   return mem;
2009 }
2010 
2011 Node* ArrayCopyNode::conv_I2X_offset(PhaseGVN *phase, Node* offset, const TypeAryPtr* ary_t) {
2012 #ifdef _LP64
2013   // see comment in GraphKit::array_element_address
2014   int index_max = ary_t->size()->_hi - 1;
2015   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
2016   return phase->transform(new ConvI2LNode(offset, lidxtype));
2017 #else
2018   return offset;
2019 #endif
2020 }
2021 
2022 bool ArrayCopyNode::prepare_array_copy(PhaseGVN *phase, bool can_reshape,
2023                                        Node*& adr_src,
2024                                        Node*& base_src,
2025                                        Node*& adr_dest,
2026                                        Node*& base_dest,
2027                                        BasicType& copy_type,
2028                                        const Type*& value_type,
2029                                        bool& disjoint_bases) {
2030   Node* src = in(ArrayCopyNode::Src);
2031   Node* dest = in(ArrayCopyNode::Dest);
2032   const Type* src_type = phase->type(src);
2033   const TypeAryPtr* ary_src = src_type->isa_aryptr();
2034 
2035   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
2036     const Type* dest_type = phase->type(dest);
2037     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
2038     Node* src_offset = in(ArrayCopyNode::SrcPos);
2039     Node* dest_offset = in(ArrayCopyNode::DestPos);
2040 
2041     // newly allocated object is guaranteed to not overlap with source object
2042     disjoint_bases = is_alloc_tightly_coupled();
2043 
2044     if (ary_src  == NULL || ary_src->klass()  == NULL ||
2045         ary_dest == NULL || ary_dest->klass() == NULL) {
2046       // We don't know if arguments are arrays
2047       return false;
2048     }
2049 
2050     BasicType src_elem  = ary_src->klass()->as_array_klass()->element_type()->basic_type();
2051     BasicType dest_elem = ary_dest->klass()->as_array_klass()->element_type()->basic_type();
2052     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
2053     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
2054 
2055     if (src_elem != dest_elem || dest_elem == T_VOID) {
2056       // We don't know if arguments are arrays of the same type
2057       return false;
2058     }
2059 
2060     if (dest_elem == T_OBJECT && (!is_alloc_tightly_coupled() || !GraphKit::use_ReduceInitialCardMarks())) {
2061       // It's an object array copy but we can't emit the card marking
2062       // that is needed
2063       return false;
2064     }
2065 
2066     value_type = ary_src->elem();
2067 
2068     base_src = src;
2069     base_dest = dest;
2070 
2071     uint shift  = exact_log2(type2aelembytes(dest_elem));
2072     uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
2073 
2074     adr_src = src;
2075     adr_dest = dest;
2076 
2077     src_offset = conv_I2X_offset(phase, src_offset, ary_src);
2078     dest_offset = conv_I2X_offset(phase, dest_offset, ary_src);
2079 
2080     Node* src_scale = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
2081     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
2082 
2083     adr_src = phase->transform(new AddPNode(base_src, adr_src, src_scale));
2084     adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, dest_scale));
2085 
2086     adr_src = new AddPNode(base_src, adr_src, phase->MakeConX(header));
2087     adr_dest = new AddPNode(base_dest, adr_dest, phase->MakeConX(header));
2088 
2089     adr_src = phase->transform(adr_src);
2090     adr_dest = phase->transform(adr_dest);
2091 
2092     copy_type = dest_elem;
2093   } else {
2094     assert (is_clonebasic(), "should be");
2095 
2096     disjoint_bases = true;
2097     assert(src->is_AddP(), "should be base + off");
2098     assert(dest->is_AddP(), "should be base + off");
2099     adr_src = src;
2100     base_src = src->in(AddPNode::Base);
2101     adr_dest = dest;
2102     base_dest = dest->in(AddPNode::Base);
2103 
2104     assert(phase->type(src->in(AddPNode::Offset))->is_intptr_t()->get_con() == phase->type(dest->in(AddPNode::Offset))->is_intptr_t()->get_con(), "same start offset?");
2105     BasicType elem = ary_src->klass()->as_array_klass()->element_type()->basic_type();
2106     if (elem == T_ARRAY)  elem = T_OBJECT;
2107     
2108     int diff = arrayOopDesc::base_offset_in_bytes(elem) - phase->type(src->in(AddPNode::Offset))->is_intptr_t()->get_con();
2109     assert(diff >= 0, "clone should not start after 1st array element");
2110     if (diff > 0) {
2111       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
2112       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
2113     }
2114     
2115     copy_type = elem;
2116     value_type = ary_src->elem();
2117   }
2118   return true;
2119 }
2120 
2121 const TypePtr* ArrayCopyNode::get_address_type(PhaseGVN *phase, Node* n) {
2122   const Type* at = phase->type(n);
2123   assert(at != Type::TOP, "unexpected type");
2124   const TypePtr* atp = at->isa_ptr();
2125   // adjust atp to be the correct array element address type
2126   atp = atp->add_offset(Type::OffsetBot);
2127   return atp;
2128 }
2129 
2130 void ArrayCopyNode::array_copy_test_overlap(PhaseGVN *phase, bool can_reshape, bool disjoint_bases, Node*& forward_ctl, Node*& backward_ctl) {
2131   Node* ctl = in(TypeFunc::Control);
2132   if (!disjoint_bases) {
2133     Node* src_offset = in(ArrayCopyNode::SrcPos);
2134     Node* dest_offset = in(ArrayCopyNode::DestPos);
2135     assert(src_offset != NULL && dest_offset != NULL, "should be");
2136     Node* cmp = phase->transform(new CmpINode(src_offset, dest_offset));
2137     Node *bol = phase->transform(new BoolNode(cmp, BoolTest::lt));
2138     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
2139 
2140     phase->transform(iff);
2141 
2142     forward_ctl = phase->transform(new IfFalseNode(iff));
2143     backward_ctl = phase->transform(new IfTrueNode(iff));
2144   } else {
2145     forward_ctl = ctl;
2146   }
2147 }
2148 
2149 Node* ArrayCopyNode::array_copy_forward(PhaseGVN *phase,
2150                                         bool can_reshape,
2151                                         Node* forward_ctl,
2152                                         Node* start_mem_src,
2153                                         Node* start_mem_dest,
2154                                         const TypePtr* atp_src,
2155                                         const TypePtr* atp_dest,
2156                                         Node* adr_src,
2157                                         Node* base_src,
2158                                         Node* adr_dest,
2159                                         Node* base_dest,
2160                                         BasicType copy_type,
2161                                         const Type* value_type,
2162                                         int count) {
2163   Node* mem = phase->C->top();
2164   if (!forward_ctl->is_top()) {
2165     // copy forward
2166     mem = start_mem_dest;
2167     
2168     if (count > 0) {
2169       Node* v = LoadNode::make(*phase, forward_ctl, start_mem_src, adr_src, atp_src, value_type, copy_type, MemNode::unordered);
2170       v = phase->transform(v);
2171       mem = StoreNode::make(*phase, forward_ctl, mem, adr_dest, atp_dest, v, copy_type, MemNode::unordered);
2172       mem = phase->transform(mem);
2173       for (int i = 1; i < count; i++) {
2174         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
2175         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
2176         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
2177         v = LoadNode::make(*phase, forward_ctl, mem, next_src, atp_src, value_type, copy_type, MemNode::unordered);
2178         v = phase->transform(v);
2179         mem = StoreNode::make(*phase, forward_ctl,mem,next_dest,atp_dest,v, copy_type, MemNode::unordered);
2180         mem = phase->transform(mem);
2181       }
2182     } else if(can_reshape) {
2183       PhaseIterGVN* igvn = phase->is_IterGVN();
2184       igvn->_worklist.push(adr_src);
2185       igvn->_worklist.push(adr_dest);
2186     }
2187   }
2188   return mem;
2189 }
2190 
2191 Node* ArrayCopyNode::array_copy_backward(PhaseGVN *phase,
2192                                          bool can_reshape,
2193                                          Node* backward_ctl,
2194                                          Node* start_mem_src,
2195                                          Node* start_mem_dest,
2196                                          const TypePtr* atp_src,
2197                                          const TypePtr* atp_dest,
2198                                          Node* adr_src,
2199                                          Node* base_src,
2200                                          Node* adr_dest,
2201                                          Node* base_dest,
2202                                          BasicType copy_type,
2203                                          const Type* value_type,
2204                                          int count) {
2205   Node* mem = phase->C->top();
2206   if (!backward_ctl->is_top()) {
2207     // copy backward
2208     mem = start_mem_dest;
2209 
2210     if (count > 0) {
2211       for (int i = count-1; i >= 1; i--) {
2212         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
2213         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
2214         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
2215         Node* v = LoadNode::make(*phase, backward_ctl, mem, next_src, atp_src, value_type, copy_type, MemNode::unordered);
2216         v = phase->transform(v);
2217         mem = StoreNode::make(*phase, backward_ctl,mem,next_dest,atp_dest,v, copy_type, MemNode::unordered);
2218         mem = phase->transform(mem);
2219       }
2220       Node* v = LoadNode::make(*phase, backward_ctl, mem, adr_src, atp_src, value_type, copy_type, MemNode::unordered);
2221       v = phase->transform(v);
2222       mem = StoreNode::make(*phase, backward_ctl, mem, adr_dest, atp_dest, v, copy_type, MemNode::unordered);
2223       mem = phase->transform(mem);
2224     } else if(can_reshape) {
2225       PhaseIterGVN* igvn = phase->is_IterGVN();
2226       igvn->_worklist.push(adr_src);
2227       igvn->_worklist.push(adr_dest);
2228     }
2229   }
2230   return mem;
2231 }
2232 
2233 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
2234                                      Node* ctl, Node *mem) {
2235   if (can_reshape) {
2236     PhaseIterGVN* igvn = phase->is_IterGVN();
2237     igvn->set_delay_transform(false);
2238     if (is_clonebasic()) {
2239       Node* out_mem = proj_out(TypeFunc::Memory);
2240       
2241       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
2242           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
2243         assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking");
2244         return false;
2245       }
2246       
2247       igvn->replace_node(out_mem->raw_out(0), mem);
2248       
2249       Node* out_ctl = proj_out(TypeFunc::Control);
2250       igvn->replace_node(out_ctl, ctl);
2251     } else {
2252       // replace fallthrough projections of the ArrayCopyNode by the
2253       // new memory, control and the input IO.
2254       CallProjections callprojs;
2255       extract_projections(&callprojs, true);
2256 
2257       igvn->replace_node(callprojs.fallthrough_ioproj, in(TypeFunc::I_O));
2258       igvn->replace_node(callprojs.fallthrough_memproj, mem);
2259       igvn->replace_node(callprojs.fallthrough_catchproj, ctl);
2260 
2261       // The ArrayCopyNode is not disconnected. It still has the
2262       // projections for the exception case. Replace current
2263       // ArrayCopyNode with a dummy new one with a top() control so
2264       // that this part of the graph stays consistent but is
2265       // eventually removed.
2266       
2267       set_req(0, phase->C->top());
2268       remove_dead_region(phase, can_reshape);
2269     }
2270   } else {
2271     if (in(TypeFunc::Control) != ctl) {
2272       // we can't return new memory and control from Ideal at parse time
2273       assert(!is_clonebasic(), "added control for clone?");
2274       return NULL;
2275     }
2276   }
2277   return true;
2278 }
2279 
2280 
2281 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2282   if (StressArrayCopyMacroNode && !can_reshape) return NULL;
2283 
2284   // See if it's a small array copy and we can inline it as
2285   // loads/stores
2286   // Here we can only do:
2287   // - arraycopy if all arguments were validated before and we don't
2288   // need card marking
2289   // - clone for which we don't need to do card marking
2290 
2291   if (!is_clonebasic() && !is_arraycopy_validated() &&
2292       !is_copyofrange_validated() && !is_copyof_validated()) {
2293     return NULL;
2294   }
2295 
2296   if (in(TypeFunc::Control)->is_top() || in(TypeFunc::Memory)->is_top()) {
2297     return NULL;
2298   }
2299 
2300   int count = get_count(phase);
2301 
2302   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
2303     return NULL;
2304   }
2305 
2306   Node* mem = try_clone_instance(phase, can_reshape, count);
2307   if (mem != NULL) {
2308     return mem;
2309   }
2310 
2311   Node* adr_src = NULL;
2312   Node* base_src = NULL;
2313   Node* adr_dest = NULL;
2314   Node* base_dest = NULL;
2315   BasicType copy_type = T_ILLEGAL;
2316   const Type* value_type = NULL;
2317   bool disjoint_bases = false;
2318 
2319   if (!prepare_array_copy(phase, can_reshape,
2320                           adr_src, base_src, adr_dest, base_dest,
2321                           copy_type, value_type, disjoint_bases)) {
2322     return NULL;
2323   }
2324 
2325   Node* src = in(ArrayCopyNode::Src);
2326   Node* dest = in(ArrayCopyNode::Dest);
2327   const TypePtr* atp_src = get_address_type(phase, src);
2328   const TypePtr* atp_dest = get_address_type(phase, dest);
2329   uint alias_idx_src = phase->C->get_alias_index(atp_src);
2330   uint alias_idx_dest = phase->C->get_alias_index(atp_dest);
2331 
2332   Node *in_mem = in(TypeFunc::Memory);
2333   Node *start_mem_src = in_mem;
2334   Node *start_mem_dest = in_mem;
2335   if (in_mem->is_MergeMem()) {
2336     start_mem_src = in_mem->as_MergeMem()->memory_at(alias_idx_src);
2337     start_mem_dest = in_mem->as_MergeMem()->memory_at(alias_idx_dest);
2338   }
2339 
2340 
2341   if (can_reshape) {
2342     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
2343     phase->is_IterGVN()->set_delay_transform(true);
2344   }
2345 
2346   Node* backward_ctl = phase->C->top();
2347   Node* forward_ctl = phase->C->top();
2348   array_copy_test_overlap(phase, can_reshape, disjoint_bases, forward_ctl, backward_ctl);
2349   
2350   Node* forward_mem = array_copy_forward(phase, can_reshape, forward_ctl,
2351                                          start_mem_src, start_mem_dest,
2352                                          atp_src, atp_dest,
2353                                          adr_src, base_src, adr_dest, base_dest,
2354                                          copy_type, value_type, count);
2355 
2356   Node* backward_mem = array_copy_backward(phase, can_reshape, backward_ctl,
2357                                            start_mem_src, start_mem_dest,
2358                                            atp_src, atp_dest,
2359                                            adr_src, base_src, adr_dest, base_dest,
2360                                            copy_type, value_type, count);
2361   
2362   Node* ctl = NULL;
2363   if (!forward_ctl->is_top() && !backward_ctl->is_top()) {
2364     ctl = new RegionNode(3);
2365     mem = new PhiNode(ctl, Type::MEMORY, atp_dest);
2366     ctl->init_req(1, forward_ctl);
2367     mem->init_req(1, forward_mem);
2368     ctl->init_req(2, backward_ctl);
2369     mem->init_req(2, backward_mem);
2370     ctl = phase->transform(ctl);
2371     mem = phase->transform(mem);
2372   } else if (!forward_ctl->is_top()) {
2373     ctl = forward_ctl;
2374     mem = forward_mem;
2375   } else {
2376     assert(!backward_ctl->is_top(), "no copy?");
2377     ctl = backward_ctl;
2378     mem = backward_mem;
2379   }
2380 
2381   if (can_reshape) {
2382     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
2383     phase->is_IterGVN()->set_delay_transform(false);
2384   }
2385 
2386   MergeMemNode* out_mem = MergeMemNode::make(in_mem);
2387   out_mem->set_memory_at(alias_idx_dest, mem);
2388   mem = out_mem;
2389 
2390   if (!finish_transform(phase, can_reshape, ctl, mem)) {
2391     return NULL;
2392   }
2393 
2394   return mem;
2395 }