1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
  26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
  27 
  28 #include "asm/assembler.inline.hpp"
  29 #include "asm/codeBuffer.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 
  33 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
  34   jint& stub_inst = *(jint*) branch;
  35   stub_inst = patched_branch(target - branch, stub_inst, 0);
  36 }
  37 
  38 #ifndef PRODUCT
  39 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
  40   jint stub_inst = *(jint*) branch;
  41   print_instruction(stub_inst);
  42   ::tty->print("%s", " (unresolved)");
  43 }
  44 #endif // PRODUCT
  45 
  46 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
  47 
  48 
  49 inline int AddressLiteral::low10() const {
  50   return Assembler::low10(value());
  51 }
  52 
  53 
  54 // inlines for SPARC assembler -- dmu 5/97
  55 
  56 inline void Assembler::check_delay() {
  57 # ifdef CHECK_DELAY
  58   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
  59   delay_state = no_delay;
  60 # endif
  61 }
  62 
  63 inline void Assembler::emit_long(int x) {
  64   check_delay();
  65   AbstractAssembler::emit_long(x);
  66 }
  67 
  68 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
  69   relocate(rtype);
  70   emit_long(x);
  71 }
  72 
  73 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
  74   relocate(rspec);
  75   emit_long(x);
  76 }
  77 
  78 
  79 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
  80 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
  81 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
  82 
  83 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
  84 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
  85 
  86 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  87 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
  88 
  89 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  90 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
  91 
  92 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  93 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
  94 
  95 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  cti();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  96 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
  97 
  98 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  99 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
 100 
 101 // compare and branch
 102 inline void Assembler::cbcond(Condition c, CC cc, Register s1, Register s2, Label& L) { cti();  no_cbcond_before();  emit_data(op(branch_op) | cond_cbcond(c) | op2(bpr_op2) | branchcc(cc) | wdisp10(intptr_t(target(L)), intptr_t(pc())) | rs1(s1) | rs2(s2)); }
 103 inline void Assembler::cbcond(Condition c, CC cc, Register s1, int simm5, Label& L)   { cti();  no_cbcond_before();  emit_data(op(branch_op) | cond_cbcond(c) | op2(bpr_op2) | branchcc(cc) | wdisp10(intptr_t(target(L)), intptr_t(pc())) | rs1(s1) | immed(true) | simm(simm5, 5)); }
 104 
 105 inline void Assembler::call( address d,  relocInfo::relocType rt ) { cti();  emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
 106 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
 107 
 108 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
 109 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 110 
 111 inline void Assembler::jmpl( Register s1, Register s2, Register d ) { cti();  emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 112 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { cti();  emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
 113 
 114 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
 115   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
 116   else                  ldf(w, s1, s2.as_constant(), d);
 117 }
 118 
 119 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
 120 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
 121 
 122 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
 123 
 124 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 125 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 126 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 127 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 128 
 129 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
 130 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 131 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
 132 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 133 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
 134 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 135 
 136 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
 137 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 138 
 139 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
 140 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 141 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
 142 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 143 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
 144 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 145 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
 146 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 147 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
 148 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 149 
 150 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
 151 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 152 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
 153 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 154 
 155 #ifdef _LP64
 156 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
 157 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
 158 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
 159 #else
 160 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
 161 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
 162 #endif
 163 
 164 #ifdef ASSERT
 165   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 166 # ifdef _LP64
 167 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
 168 # else
 169 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
 170 # endif
 171 #endif
 172 
 173 inline void Assembler::ld(  const Address& a, Register d, int offset) {
 174   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
 175   else               {                          ld(  a.base(), a.disp() + offset, d); }
 176 }
 177 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
 178   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
 179   else               {                          ldsb(a.base(), a.disp() + offset, d); }
 180 }
 181 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
 182   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
 183   else               {                          ldsh(a.base(), a.disp() + offset, d); }
 184 }
 185 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
 186   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
 187   else               {                          ldsw(a.base(), a.disp() + offset, d); }
 188 }
 189 inline void Assembler::ldub(const Address& a, Register d, int offset) {
 190   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
 191   else               {                          ldub(a.base(), a.disp() + offset, d); }
 192 }
 193 inline void Assembler::lduh(const Address& a, Register d, int offset) {
 194   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
 195   else               {                          lduh(a.base(), a.disp() + offset, d); }
 196 }
 197 inline void Assembler::lduw(const Address& a, Register d, int offset) {
 198   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
 199   else               {                          lduw(a.base(), a.disp() + offset, d); }
 200 }
 201 inline void Assembler::ldd( const Address& a, Register d, int offset) {
 202   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
 203   else               {                          ldd( a.base(), a.disp() + offset, d); }
 204 }
 205 inline void Assembler::ldx( const Address& a, Register d, int offset) {
 206   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
 207   else               {                          ldx( a.base(), a.disp() + offset, d); }
 208 }
 209 
 210 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
 211 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
 212 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
 213 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
 214 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
 215 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
 216 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
 217 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
 218 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
 219 
 220 // form effective addresses this way:
 221 inline void Assembler::add(const Address& a, Register d, int offset) {
 222   if (a.has_index())   add(a.base(), a.index(),         d);
 223   else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
 224   if (offset != 0)     add(d,        offset,            d);
 225 }
 226 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
 227   if (s2.is_register())  add(s1, s2.as_register(),          d);
 228   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
 229   if (offset != 0)       add(d,  offset,                    d);
 230 }
 231 
 232 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
 233   if (s2.is_register())  andn(s1, s2.as_register(), d);
 234   else                   andn(s1, s2.as_constant(), d);
 235 }
 236 
 237 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
 238 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 239 
 240 
 241 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
 242 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 243 
 244 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
 245 
 246 
 247 inline void Assembler::rett( Register s1, Register s2                         ) { cti();  emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 248 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { cti();  emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
 249 
 250 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
 251 
 252   // pp 222
 253 
 254 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
 255   if (s2.is_register()) stf(w, d, s1, s2.as_register());
 256   else                  stf(w, d, s1, s2.as_constant());
 257 }
 258 
 259 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
 260 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 261 
 262 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
 263   relocate(a.rspec(offset));
 264   if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index()        ); }
 265   else               {                          stf(w, d, a.base(), a.disp() + offset); }
 266 }
 267 
 268 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 269 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 270 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 271 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 272 
 273   // p 226
 274 
 275 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
 276 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 277 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
 278 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 279 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
 280 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 281 
 282 
 283 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
 284 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 285 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
 286 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 287 
 288 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
 289 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
 290 
 291 #ifdef ASSERT
 292 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 293 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
 294 #endif
 295 
 296 inline void Assembler::stb(Register d, const Address& a, int offset) {
 297   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
 298   else               {                          stb(d, a.base(), a.disp() + offset); }
 299 }
 300 inline void Assembler::sth(Register d, const Address& a, int offset) {
 301   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
 302   else               {                          sth(d, a.base(), a.disp() + offset); }
 303 }
 304 inline void Assembler::stw(Register d, const Address& a, int offset) {
 305   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
 306   else               {                          stw(d, a.base(), a.disp() + offset); }
 307 }
 308 inline void Assembler::st( Register d, const Address& a, int offset) {
 309   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
 310   else               {                          st( d, a.base(), a.disp() + offset); }
 311 }
 312 inline void Assembler::std(Register d, const Address& a, int offset) {
 313   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
 314   else               {                          std(d, a.base(), a.disp() + offset); }
 315 }
 316 inline void Assembler::stx(Register d, const Address& a, int offset) {
 317   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
 318   else               {                          stx(d, a.base(), a.disp() + offset); }
 319 }
 320 
 321 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
 322 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
 323 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
 324 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
 325 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
 326 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
 327 
 328 // v8 p 99
 329 
 330 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
 331 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 332 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
 333 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 334 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
 335 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 336 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
 337 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 338 
 339 inline void Assembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
 340   if (s2.is_register())  sub(s1, s2.as_register(),          d);
 341   else                 { sub(s1, s2.as_constant() + offset, d); offset = 0; }
 342   if (offset != 0)       sub(d,  offset,                    d);
 343 }
 344 
 345 // pp 231
 346 
 347 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
 348 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 349 
 350 inline void Assembler::swap(    Address& a, Register d, int offset ) { 
 351   relocate(a.rspec(offset)); 
 352   if (a.has_index()) { assert(offset == 0, ""); swap( a.base(), a.index(), d         ); }
 353   else               {                          swap( a.base(), a.disp() + offset, d ); }
 354 }
 355 
 356 
 357 // Use the right loads/stores for the platform
 358 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
 359 #ifdef _LP64
 360   Assembler::ldx(s1, s2, d);
 361 #else
 362   Assembler::ld( s1, s2, d);
 363 #endif
 364 }
 365 
 366 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
 367 #ifdef _LP64
 368   Assembler::ldx(s1, simm13a, d);
 369 #else
 370   Assembler::ld( s1, simm13a, d);
 371 #endif
 372 }
 373 
 374 #ifdef ASSERT
 375 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 376 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
 377   ld_ptr(s1, in_bytes(simm13a), d);
 378 }
 379 #endif
 380 
 381 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 382 #ifdef _LP64
 383   Assembler::ldx(s1, s2, d);
 384 #else
 385   Assembler::ld( s1, s2, d);
 386 #endif
 387 }
 388 
 389 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
 390 #ifdef _LP64
 391   Assembler::ldx(a, d, offset);
 392 #else
 393   Assembler::ld( a, d, offset);
 394 #endif
 395 }
 396 
 397 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
 398 #ifdef _LP64
 399   Assembler::stx(d, s1, s2);
 400 #else
 401   Assembler::st( d, s1, s2);
 402 #endif
 403 }
 404 
 405 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
 406 #ifdef _LP64
 407   Assembler::stx(d, s1, simm13a);
 408 #else
 409   Assembler::st( d, s1, simm13a);
 410 #endif
 411 }
 412 
 413 #ifdef ASSERT
 414 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 415 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
 416   st_ptr(d, s1, in_bytes(simm13a));
 417 }
 418 #endif
 419 
 420 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
 421 #ifdef _LP64
 422   Assembler::stx(d, s1, s2);
 423 #else
 424   Assembler::st( d, s1, s2);
 425 #endif
 426 }
 427 
 428 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
 429 #ifdef _LP64
 430   Assembler::stx(d, a, offset);
 431 #else
 432   Assembler::st( d, a, offset);
 433 #endif
 434 }
 435 
 436 // Use the right loads/stores for the platform
 437 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
 438 #ifdef _LP64
 439   Assembler::ldx(s1, s2, d);
 440 #else
 441   Assembler::ldd(s1, s2, d);
 442 #endif
 443 }
 444 
 445 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
 446 #ifdef _LP64
 447   Assembler::ldx(s1, simm13a, d);
 448 #else
 449   Assembler::ldd(s1, simm13a, d);
 450 #endif
 451 }
 452 
 453 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
 454 #ifdef _LP64
 455   Assembler::ldx(s1, s2, d);
 456 #else
 457   Assembler::ldd(s1, s2, d);
 458 #endif
 459 }
 460 
 461 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
 462 #ifdef _LP64
 463   Assembler::ldx(a, d, offset);
 464 #else
 465   Assembler::ldd(a, d, offset);
 466 #endif
 467 }
 468 
 469 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
 470 #ifdef _LP64
 471   Assembler::stx(d, s1, s2);
 472 #else
 473   Assembler::std(d, s1, s2);
 474 #endif
 475 }
 476 
 477 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
 478 #ifdef _LP64
 479   Assembler::stx(d, s1, simm13a);
 480 #else
 481   Assembler::std(d, s1, simm13a);
 482 #endif
 483 }
 484 
 485 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
 486 #ifdef _LP64
 487   Assembler::stx(d, s1, s2);
 488 #else
 489   Assembler::std(d, s1, s2);
 490 #endif
 491 }
 492 
 493 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
 494 #ifdef _LP64
 495   Assembler::stx(d, a, offset);
 496 #else
 497   Assembler::std(d, a, offset);
 498 #endif
 499 }
 500 
 501 // Functions for isolating 64 bit shifts for LP64
 502 
 503 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
 504 #ifdef _LP64
 505   Assembler::sllx(s1, s2, d);
 506 #else
 507   Assembler::sll( s1, s2, d);
 508 #endif
 509 }
 510 
 511 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
 512 #ifdef _LP64
 513   Assembler::sllx(s1, imm6a, d);
 514 #else
 515   Assembler::sll( s1, imm6a, d);
 516 #endif
 517 }
 518 
 519 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
 520 #ifdef _LP64
 521   Assembler::srlx(s1, s2, d);
 522 #else
 523   Assembler::srl( s1, s2, d);
 524 #endif
 525 }
 526 
 527 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
 528 #ifdef _LP64
 529   Assembler::srlx(s1, imm6a, d);
 530 #else
 531   Assembler::srl( s1, imm6a, d);
 532 #endif
 533 }
 534 
 535 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 536   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
 537   else                   sll_ptr(s1, s2.as_constant(), d);
 538 }
 539 
 540 // Use the right branch for the platform
 541 
 542 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 543   if (VM_Version::v9_instructions_work())
 544     Assembler::bp(c, a, icc, p, d, rt);
 545   else
 546     Assembler::br(c, a, d, rt);
 547 }
 548 
 549 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
 550   br(c, a, p, target(L));
 551 }
 552 
 553 
 554 // Branch that tests either xcc or icc depending on the
 555 // architecture compiled (LP64 or not)
 556 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 557 #ifdef _LP64
 558     Assembler::bp(c, a, xcc, p, d, rt);
 559 #else
 560     MacroAssembler::br(c, a, p, d, rt);
 561 #endif
 562 }
 563 
 564 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
 565   brx(c, a, p, target(L));
 566 }
 567 
 568 inline void MacroAssembler::ba( Label& L ) {
 569   br(always, false, pt, L);
 570 }
 571 
 572 // Warning: V9 only functions
 573 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 574   Assembler::bp(c, a, cc, p, d, rt);
 575 }
 576 
 577 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 578   Assembler::bp(c, a, cc, p, L);
 579 }
 580 
 581 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 582   if (VM_Version::v9_instructions_work())
 583     fbp(c, a, fcc0, p, d, rt);
 584   else
 585     Assembler::fb(c, a, d, rt);
 586 }
 587 
 588 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
 589   fb(c, a, p, target(L));
 590 }
 591 
 592 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 593   Assembler::fbp(c, a, cc, p, d, rt);
 594 }
 595 
 596 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 597   Assembler::fbp(c, a, cc, p, L);
 598 }
 599 
 600 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
 601 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
 602 
 603 inline bool MacroAssembler::is_far_target(address d) {
 604   if (ForceUnreachable) {
 605     // References outside the code cache should be treated as far
 606     return d < CodeCache::low_bound() || d > CodeCache::high_bound();
 607   }
 608   return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
 609 }
 610 
 611 // Call with a check to see if we need to deal with the added
 612 // expense of relocation and if we overflow the displacement
 613 // of the quick call instruction.
 614 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
 615 #ifdef _LP64
 616   intptr_t disp;
 617   // NULL is ok because it will be relocated later.
 618   // Must change NULL to a reachable address in order to
 619   // pass asserts here and in wdisp.
 620   if ( d == NULL )
 621     d = pc();
 622 
 623   // Is this address within range of the call instruction?
 624   // If not, use the expensive instruction sequence
 625   if (is_far_target(d)) {
 626     relocate(rt);
 627     AddressLiteral dest(d);
 628     jumpl_to(dest, O7, O7);
 629   } else {
 630     Assembler::call(d, rt);
 631   }
 632 #else
 633   Assembler::call( d, rt );
 634 #endif
 635 }
 636 
 637 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
 638   MacroAssembler::call( target(L), rt);
 639 }
 640 
 641 
 642 
 643 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
 644 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
 645 
 646 // prefetch instruction
 647 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
 648   if (VM_Version::v9_instructions_work())
 649     Assembler::bp( never, true, xcc, pt, d, rt );
 650 }
 651 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
 652 
 653 
 654 // clobbers o7 on V8!!
 655 // returns delta from gotten pc to addr after
 656 inline int MacroAssembler::get_pc( Register d ) {
 657   int x = offset();
 658   if (VM_Version::v9_instructions_work())
 659     rdpc(d);
 660   else {
 661     Label lbl;
 662     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
 663     if (d == O7)  delayed()->nop();
 664     else          delayed()->mov(O7, d);
 665     bind(lbl);
 666   }
 667   return offset() - x;
 668 }
 669 
 670 
 671 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
 672 
 673 
 674 // Loads the current PC of the following instruction as an immediate value in
 675 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
 676 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
 677   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
 678 #ifdef _LP64
 679   Unimplemented();
 680 #else
 681   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 682   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 683 #endif
 684   return thepc;
 685 }
 686 
 687 
 688 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
 689   assert_not_delayed();
 690   if (ForceUnreachable) {
 691     patchable_sethi(addrlit, d);
 692   } else {
 693     sethi(addrlit, d);
 694   }
 695   ld(d, addrlit.low10() + offset, d);
 696 }
 697 
 698 
 699 inline void MacroAssembler::load_bool_contents(const AddressLiteral& addrlit, Register d, int offset) {
 700   assert_not_delayed();
 701   if (ForceUnreachable) {
 702     patchable_sethi(addrlit, d);
 703   } else {
 704     sethi(addrlit, d);
 705   }
 706   ldub(d, addrlit.low10() + offset, d);
 707 }
 708 
 709 
 710 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
 711   assert_not_delayed();
 712   if (ForceUnreachable) {
 713     patchable_sethi(addrlit, d);
 714   } else {
 715     sethi(addrlit, d);
 716   }
 717   ld_ptr(d, addrlit.low10() + offset, d);
 718 }
 719 
 720 
 721 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
 722   assert_not_delayed();
 723   if (ForceUnreachable) {
 724     patchable_sethi(addrlit, temp);
 725   } else {
 726     sethi(addrlit, temp);
 727   }
 728   st(s, temp, addrlit.low10() + offset);
 729 }
 730 
 731 
 732 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
 733   assert_not_delayed();
 734   if (ForceUnreachable) {
 735     patchable_sethi(addrlit, temp);
 736   } else {
 737     sethi(addrlit, temp);
 738   }
 739   st_ptr(s, temp, addrlit.low10() + offset);
 740 }
 741 
 742 
 743 // This code sequence is relocatable to any address, even on LP64.
 744 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
 745   assert_not_delayed();
 746   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 747   // variable length instruction streams.
 748   patchable_sethi(addrlit, temp);
 749   jmpl(temp, addrlit.low10() + offset, d);
 750 }
 751 
 752 
 753 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
 754   jumpl_to(addrlit, temp, G0, offset);
 755 }
 756 
 757 
 758 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
 759                                              int ld_offset, int jmp_offset) {
 760   assert_not_delayed();
 761   //sethi(al);                   // sethi is caller responsibility for this one
 762   ld_ptr(a, temp, ld_offset);
 763   jmp(temp, jmp_offset);
 764 }
 765 
 766 
 767 inline void MacroAssembler::set_oop(jobject obj, Register d) {
 768   set_oop(allocate_oop_address(obj), d);
 769 }
 770 
 771 
 772 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
 773   set_oop(constant_oop_address(obj), d);
 774 }
 775 
 776 
 777 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
 778   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 779   set(obj_addr, d);
 780 }
 781 
 782 
 783 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
 784   if (a.is_register())
 785     mov(a.as_register(), d);
 786   else
 787     ld (a.as_address(),  d);
 788 }
 789 
 790 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
 791   if (a.is_register())
 792     mov(s, a.as_register());
 793   else
 794     st_ptr (s, a.as_address());         // ABI says everything is right justified.
 795 }
 796 
 797 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
 798   if (a.is_register())
 799     mov(s, a.as_register());
 800   else
 801     st_ptr (s, a.as_address());
 802 }
 803 
 804 
 805 #ifdef _LP64
 806 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
 807   if (a.is_float_register())
 808 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
 809     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
 810   else
 811     // Floats are stored in the high half of the stack entry
 812     // The low half is undefined per the ABI.
 813     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
 814 }
 815 
 816 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
 817   if (a.is_float_register())
 818 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
 819     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
 820   else
 821     stf(FloatRegisterImpl::D, s, a.as_address());
 822 }
 823 
 824 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
 825   if (a.is_register())
 826     mov(s, a.as_register());
 827   else
 828     stx(s, a.as_address());
 829 }
 830 #endif
 831 
 832 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
 833 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
 834 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
 835 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
 836 
 837 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
 838 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
 839 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
 840 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
 841 
 842 // returns if membar generates anything, obviously this code should mirror
 843 // membar below.
 844 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
 845   if( !os::is_MP() ) return false;  // Not needed on single CPU
 846   if( VM_Version::v9_instructions_work() ) {
 847     const Membar_mask_bits effective_mask =
 848         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 849     return (effective_mask != 0);
 850   } else {
 851     return true;
 852   }
 853 }
 854 
 855 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
 856   // Uniprocessors do not need memory barriers
 857   if (!os::is_MP()) return;
 858   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
 859   // 8.4.4.3, a.31 and a.50.
 860   if( VM_Version::v9_instructions_work() ) {
 861     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
 862     // of the mmask subfield of const7a that does anything that isn't done
 863     // implicitly is StoreLoad.
 864     const Membar_mask_bits effective_mask =
 865         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 866     if ( effective_mask != 0 ) {
 867       Assembler::membar( effective_mask );
 868     }
 869   } else {
 870     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
 871     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
 872     // which guarantees that all stores behave as if an stbar were issued just after
 873     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
 874     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
 875     // it can't be specified by stbar, nor have I come up with a way to simulate it.
 876     //
 877     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
 878     // space.  Put one here to be on the safe side.
 879     Assembler::ldstub(SP, 0, G0);
 880   }
 881 }
 882 
 883 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP