1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_x86.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 // Item will be loaded into a byte register; Intel only
  47 void LIRItem::load_byte_item() {
  48   load_item();
  49   LIR_Opr res = result();
  50 
  51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
  52     // make sure that it is a byte register
  53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
  54            "can't load floats in byte register");
  55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
  56     __ move(res, reg);
  57 
  58     _result = reg;
  59   }
  60 }
  61 
  62 
  63 void LIRItem::load_nonconstant() {
  64   LIR_Opr r = value()->operand();
  65   if (r->is_constant()) {
  66     _result = r;
  67   } else {
  68     load_item();
  69   }
  70 }
  71 
  72 //--------------------------------------------------------------
  73 //               LIRGenerator
  74 //--------------------------------------------------------------
  75 
  76 
  77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
  78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
  79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
  80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
  81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
  82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
  83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
  84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  85 
  86 
  87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  88   LIR_Opr opr;
  89   switch (type->tag()) {
  90     case intTag:     opr = FrameMap::rax_opr;          break;
  91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
  92     case longTag:    opr = FrameMap::long0_opr;        break;
  93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
  94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
  95 
  96     case addressTag:
  97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  98   }
  99 
 100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
 101   return opr;
 102 }
 103 
 104 
 105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 106   LIR_Opr reg = new_register(T_INT);
 107   set_vreg_flag(reg, LIRGenerator::byte_reg);
 108   return reg;
 109 }
 110 
 111 
 112 //--------- loading items into registers --------------------------------
 113 
 114 
 115 // i486 instructions can inline constants
 116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 117   if (type == T_SHORT || type == T_CHAR) {
 118     // there is no immediate move of word values in asembler_i486.?pp
 119     return false;
 120   }
 121   Constant* c = v->as_Constant();
 122   if (c && c->state_before() == NULL) {
 123     // constants of any type can be stored directly, except for
 124     // unloaded object constants.
 125     return true;
 126   }
 127   return false;
 128 }
 129 
 130 
 131 bool LIRGenerator::can_inline_as_constant(Value v) const {
 132   if (v->type()->tag() == longTag) return false;
 133   return v->type()->tag() != objectTag ||
 134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
 135 }
 136 
 137 
 138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
 139   if (c->type() == T_LONG) return false;
 140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
 141 }
 142 
 143 
 144 LIR_Opr LIRGenerator::safepoint_poll_register() {
 145   return LIR_OprFact::illegalOpr;
 146 }
 147 
 148 
 149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 150                                             int shift, int disp, BasicType type) {
 151   assert(base->is_register(), "must be");
 152   if (index->is_constant()) {
 153     return new LIR_Address(base,
 154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
 155                            type);
 156   } else {
 157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
 158   }
 159 }
 160 
 161 
 162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 163                                               BasicType type, bool needs_card_mark) {
 164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 165 
 166   LIR_Address* addr;
 167   if (index_opr->is_constant()) {
 168     int elem_size = type2aelembytes(type);
 169     addr = new LIR_Address(array_opr,
 170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
 171   } else {
 172 #ifdef _LP64
 173     if (index_opr->type() == T_INT) {
 174       LIR_Opr tmp = new_register(T_LONG);
 175       __ convert(Bytecodes::_i2l, index_opr, tmp);
 176       index_opr = tmp;
 177     }
 178 #endif // _LP64
 179     addr =  new LIR_Address(array_opr,
 180                             index_opr,
 181                             LIR_Address::scale(type),
 182                             offset_in_bytes, type);
 183   }
 184   if (needs_card_mark) {
 185     // This store will need a precise card mark, so go ahead and
 186     // compute the full adddres instead of computing once for the
 187     // store and again for the card mark.
 188     LIR_Opr tmp = new_pointer_register();
 189     __ leal(LIR_OprFact::address(addr), tmp);
 190     return new LIR_Address(tmp, type);
 191   } else {
 192     return addr;
 193   }
 194 }
 195 
 196 
 197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 198   LIR_Opr r;
 199   if (type == T_LONG) {
 200     r = LIR_OprFact::longConst(x);
 201   } else if (type == T_INT) {
 202     r = LIR_OprFact::intConst(x);
 203   } else {
 204     ShouldNotReachHere();
 205   }
 206   return r;
 207 }
 208 
 209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 210   LIR_Opr pointer = new_pointer_register();
 211   __ move(LIR_OprFact::intptrConst(counter), pointer);
 212   LIR_Address* addr = new LIR_Address(pointer, type);
 213   increment_counter(addr, step);
 214 }
 215 
 216 
 217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
 219 }
 220 
 221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 222   __ cmp_mem_int(condition, base, disp, c, info);
 223 }
 224 
 225 
 226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 228 }
 229 
 230 
 231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 233 }
 234 
 235 
 236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 237   if (tmp->is_valid()) {
 238     if (is_power_of_2(c + 1)) {
 239       __ move(left, tmp);
 240       __ shift_left(left, log2_intptr(c + 1), left);
 241       __ sub(left, tmp, result);
 242       return true;
 243     } else if (is_power_of_2(c - 1)) {
 244       __ move(left, tmp);
 245       __ shift_left(left, log2_intptr(c - 1), left);
 246       __ add(left, tmp, result);
 247       return true;
 248     }
 249   }
 250   return false;
 251 }
 252 
 253 
 254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 255   BasicType type = item->type();
 256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
 257 }
 258 
 259 //----------------------------------------------------------------------
 260 //             visitor functions
 261 //----------------------------------------------------------------------
 262 
 263 
 264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 265   assert(x->is_pinned(),"");
 266   bool needs_range_check = true;
 267   bool use_length = x->length() != NULL;
 268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 270                                          !get_jobject_constant(x->value())->is_null_object() ||
 271                                          x->should_profile());
 272 
 273   LIRItem array(x->array(), this);
 274   LIRItem index(x->index(), this);
 275   LIRItem value(x->value(), this);
 276   LIRItem length(this);
 277 
 278   array.load_item();
 279   index.load_nonconstant();
 280 
 281   if (use_length) {
 282     needs_range_check = x->compute_needs_range_check();
 283     if (needs_range_check) {
 284       length.set_instruction(x->length());
 285       length.load_item();
 286     }
 287   }
 288   if (needs_store_check) {
 289     value.load_item();
 290   } else {
 291     value.load_for_store(x->elt_type());
 292   }
 293 
 294   set_no_result(x);
 295 
 296   // the CodeEmitInfo must be duplicated for each different
 297   // LIR-instruction because spilling can occur anywhere between two
 298   // instructions and so the debug information must be different
 299   CodeEmitInfo* range_check_info = state_for(x);
 300   CodeEmitInfo* null_check_info = NULL;
 301   if (x->needs_null_check()) {
 302     null_check_info = new CodeEmitInfo(range_check_info);
 303   }
 304 
 305   // emit array address setup early so it schedules better
 306   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 307 
 308   if (GenerateRangeChecks && needs_range_check) {
 309     if (use_length) {
 310       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 311       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 312     } else {
 313       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 314       // range_check also does the null check
 315       null_check_info = NULL;
 316     }
 317   }
 318 
 319   if (GenerateArrayStoreCheck && needs_store_check) {
 320     LIR_Opr tmp1 = new_register(objectType);
 321     LIR_Opr tmp2 = new_register(objectType);
 322     LIR_Opr tmp3 = new_register(objectType);
 323 
 324     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 325     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
 326   }
 327 
 328   if (obj_store) {
 329     // Needs GC write barriers.
 330     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 331                 true /* do_load */, false /* patch */, NULL);
 332     __ move(value.result(), array_addr, null_check_info);
 333     // Seems to be a precise
 334     post_barrier(LIR_OprFact::address(array_addr), value.result());
 335   } else {
 336     __ move(value.result(), array_addr, null_check_info);
 337   }
 338 }
 339 
 340 
 341 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 342   assert(x->is_pinned(),"");
 343   LIRItem obj(x->obj(), this);
 344   obj.load_item();
 345 
 346   set_no_result(x);
 347 
 348   // "lock" stores the address of the monitor stack slot, so this is not an oop
 349   LIR_Opr lock = new_register(T_INT);
 350   // Need a scratch register for biased locking on x86
 351   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 352   if (UseBiasedLocking) {
 353     scratch = new_register(T_INT);
 354   }
 355 
 356   CodeEmitInfo* info_for_exception = NULL;
 357   if (x->needs_null_check()) {
 358     info_for_exception = state_for(x);
 359   }
 360   // this CodeEmitInfo must not have the xhandlers because here the
 361   // object is already locked (xhandlers expect object to be unlocked)
 362   CodeEmitInfo* info = state_for(x, x->state(), true);
 363   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 364                         x->monitor_no(), info_for_exception, info);
 365 }
 366 
 367 
 368 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 369   assert(x->is_pinned(),"");
 370 
 371   LIRItem obj(x->obj(), this);
 372   obj.dont_load_item();
 373 
 374   LIR_Opr lock = new_register(T_INT);
 375   LIR_Opr obj_temp = new_register(T_INT);
 376   set_no_result(x);
 377   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 378 }
 379 
 380 
 381 // _ineg, _lneg, _fneg, _dneg
 382 void LIRGenerator::do_NegateOp(NegateOp* x) {
 383   LIRItem value(x->x(), this);
 384   value.set_destroys_register();
 385   value.load_item();
 386   LIR_Opr reg = rlock(x);
 387   __ negate(value.result(), reg);
 388 
 389   set_result(x, round_item(reg));
 390 }
 391 
 392 
 393 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 394 //      _dadd, _dmul, _dsub, _ddiv, _drem
 395 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 396   LIRItem left(x->x(),  this);
 397   LIRItem right(x->y(), this);
 398   LIRItem* left_arg  = &left;
 399   LIRItem* right_arg = &right;
 400   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
 401   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
 402   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
 403     left.load_item();
 404   } else {
 405     left.dont_load_item();
 406   }
 407 
 408   // do not load right operand if it is a constant.  only 0 and 1 are
 409   // loaded because there are special instructions for loading them
 410   // without memory access (not needed for SSE2 instructions)
 411   bool must_load_right = false;
 412   if (right.is_constant()) {
 413     LIR_Const* c = right.result()->as_constant_ptr();
 414     assert(c != NULL, "invalid constant");
 415     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
 416 
 417     if (c->type() == T_FLOAT) {
 418       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
 419     } else {
 420       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
 421     }
 422   }
 423 
 424   if (must_load_both) {
 425     // frem and drem destroy also right operand, so move it to a new register
 426     right.set_destroys_register();
 427     right.load_item();
 428   } else if (right.is_register() || must_load_right) {
 429     right.load_item();
 430   } else {
 431     right.dont_load_item();
 432   }
 433   LIR_Opr reg = rlock(x);
 434   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 435   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 436     tmp = new_register(T_DOUBLE);
 437   }
 438 
 439   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
 440     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
 441     LIR_Opr fpu0, fpu1;
 442     if (x->op() == Bytecodes::_frem) {
 443       fpu0 = LIR_OprFact::single_fpu(0);
 444       fpu1 = LIR_OprFact::single_fpu(1);
 445     } else {
 446       fpu0 = LIR_OprFact::double_fpu(0);
 447       fpu1 = LIR_OprFact::double_fpu(1);
 448     }
 449     __ move(right.result(), fpu1); // order of left and right operand is important!
 450     __ move(left.result(), fpu0);
 451     __ rem (fpu0, fpu1, fpu0);
 452     __ move(fpu0, reg);
 453 
 454   } else {
 455     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
 456   }
 457 
 458   set_result(x, round_item(reg));
 459 }
 460 
 461 
 462 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 463 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 464   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
 465     // long division is implemented as a direct call into the runtime
 466     LIRItem left(x->x(), this);
 467     LIRItem right(x->y(), this);
 468 
 469     // the check for division by zero destroys the right operand
 470     right.set_destroys_register();
 471 
 472     BasicTypeList signature(2);
 473     signature.append(T_LONG);
 474     signature.append(T_LONG);
 475     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 476 
 477     // check for division by zero (destroys registers of right operand!)
 478     CodeEmitInfo* info = state_for(x);
 479 
 480     const LIR_Opr result_reg = result_register_for(x->type());
 481     left.load_item_force(cc->at(1));
 482     right.load_item();
 483 
 484     __ move(right.result(), cc->at(0));
 485 
 486     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 487     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 488 
 489     address entry;
 490     switch (x->op()) {
 491     case Bytecodes::_lrem:
 492       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 493       break; // check if dividend is 0 is done elsewhere
 494     case Bytecodes::_ldiv:
 495       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 496       break; // check if dividend is 0 is done elsewhere
 497     case Bytecodes::_lmul:
 498       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 499       break;
 500     default:
 501       ShouldNotReachHere();
 502     }
 503 
 504     LIR_Opr result = rlock_result(x);
 505     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 506     __ move(result_reg, result);
 507   } else if (x->op() == Bytecodes::_lmul) {
 508     // missing test if instr is commutative and if we should swap
 509     LIRItem left(x->x(), this);
 510     LIRItem right(x->y(), this);
 511 
 512     // right register is destroyed by the long mul, so it must be
 513     // copied to a new register.
 514     right.set_destroys_register();
 515 
 516     left.load_item();
 517     right.load_item();
 518 
 519     LIR_Opr reg = FrameMap::long0_opr;
 520     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
 521     LIR_Opr result = rlock_result(x);
 522     __ move(reg, result);
 523   } else {
 524     // missing test if instr is commutative and if we should swap
 525     LIRItem left(x->x(), this);
 526     LIRItem right(x->y(), this);
 527 
 528     left.load_item();
 529     // don't load constants to save register
 530     right.load_nonconstant();
 531     rlock_result(x);
 532     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 533   }
 534 }
 535 
 536 
 537 
 538 // for: _iadd, _imul, _isub, _idiv, _irem
 539 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 540   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 541     // The requirements for division and modulo
 542     // input : rax,: dividend                         min_int
 543     //         reg: divisor   (may not be rax,/rdx)   -1
 544     //
 545     // output: rax,: quotient  (= rax, idiv reg)       min_int
 546     //         rdx: remainder (= rax, irem reg)       0
 547 
 548     // rax, and rdx will be destroyed
 549 
 550     // Note: does this invalidate the spec ???
 551     LIRItem right(x->y(), this);
 552     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
 553 
 554     // call state_for before load_item_force because state_for may
 555     // force the evaluation of other instructions that are needed for
 556     // correct debug info.  Otherwise the live range of the fix
 557     // register might be too long.
 558     CodeEmitInfo* info = state_for(x);
 559 
 560     left.load_item_force(divInOpr());
 561 
 562     right.load_item();
 563 
 564     LIR_Opr result = rlock_result(x);
 565     LIR_Opr result_reg;
 566     if (x->op() == Bytecodes::_idiv) {
 567       result_reg = divOutOpr();
 568     } else {
 569       result_reg = remOutOpr();
 570     }
 571 
 572     if (!ImplicitDiv0Checks) {
 573       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
 574       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 575     }
 576     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
 577     if (x->op() == Bytecodes::_irem) {
 578       __ irem(left.result(), right.result(), result_reg, tmp, info);
 579     } else if (x->op() == Bytecodes::_idiv) {
 580       __ idiv(left.result(), right.result(), result_reg, tmp, info);
 581     } else {
 582       ShouldNotReachHere();
 583     }
 584 
 585     __ move(result_reg, result);
 586   } else {
 587     // missing test if instr is commutative and if we should swap
 588     LIRItem left(x->x(),  this);
 589     LIRItem right(x->y(), this);
 590     LIRItem* left_arg = &left;
 591     LIRItem* right_arg = &right;
 592     if (x->is_commutative() && left.is_stack() && right.is_register()) {
 593       // swap them if left is real stack (or cached) and right is real register(not cached)
 594       left_arg = &right;
 595       right_arg = &left;
 596     }
 597 
 598     left_arg->load_item();
 599 
 600     // do not need to load right, as we can handle stack and constants
 601     if (x->op() == Bytecodes::_imul ) {
 602       // check if we can use shift instead
 603       bool use_constant = false;
 604       bool use_tmp = false;
 605       if (right_arg->is_constant()) {
 606         int iconst = right_arg->get_jint_constant();
 607         if (iconst > 0) {
 608           if (is_power_of_2(iconst)) {
 609             use_constant = true;
 610           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
 611             use_constant = true;
 612             use_tmp = true;
 613           }
 614         }
 615       }
 616       if (use_constant) {
 617         right_arg->dont_load_item();
 618       } else {
 619         right_arg->load_item();
 620       }
 621       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 622       if (use_tmp) {
 623         tmp = new_register(T_INT);
 624       }
 625       rlock_result(x);
 626 
 627       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 628     } else {
 629       right_arg->dont_load_item();
 630       rlock_result(x);
 631       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 632       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 633     }
 634   }
 635 }
 636 
 637 
 638 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 639   // when an operand with use count 1 is the left operand, then it is
 640   // likely that no move for 2-operand-LIR-form is necessary
 641   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 642     x->swap_operands();
 643   }
 644 
 645   ValueTag tag = x->type()->tag();
 646   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 647   switch (tag) {
 648     case floatTag:
 649     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 650     case longTag:    do_ArithmeticOp_Long(x); return;
 651     case intTag:     do_ArithmeticOp_Int(x);  return;
 652   }
 653   ShouldNotReachHere();
 654 }
 655 
 656 
 657 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 658 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 659   // count must always be in rcx
 660   LIRItem value(x->x(), this);
 661   LIRItem count(x->y(), this);
 662 
 663   ValueTag elemType = x->type()->tag();
 664   bool must_load_count = !count.is_constant() || elemType == longTag;
 665   if (must_load_count) {
 666     // count for long must be in register
 667     count.load_item_force(shiftCountOpr());
 668   } else {
 669     count.dont_load_item();
 670   }
 671   value.load_item();
 672   LIR_Opr reg = rlock_result(x);
 673 
 674   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 675 }
 676 
 677 
 678 // _iand, _land, _ior, _lor, _ixor, _lxor
 679 void LIRGenerator::do_LogicOp(LogicOp* x) {
 680   // when an operand with use count 1 is the left operand, then it is
 681   // likely that no move for 2-operand-LIR-form is necessary
 682   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 683     x->swap_operands();
 684   }
 685 
 686   LIRItem left(x->x(), this);
 687   LIRItem right(x->y(), this);
 688 
 689   left.load_item();
 690   right.load_nonconstant();
 691   LIR_Opr reg = rlock_result(x);
 692 
 693   logic_op(x->op(), reg, left.result(), right.result());
 694 }
 695 
 696 
 697 
 698 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 699 void LIRGenerator::do_CompareOp(CompareOp* x) {
 700   LIRItem left(x->x(), this);
 701   LIRItem right(x->y(), this);
 702   ValueTag tag = x->x()->type()->tag();
 703   if (tag == longTag) {
 704     left.set_destroys_register();
 705   }
 706   left.load_item();
 707   right.load_item();
 708   LIR_Opr reg = rlock_result(x);
 709 
 710   if (x->x()->type()->is_float_kind()) {
 711     Bytecodes::Code code = x->op();
 712     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 713   } else if (x->x()->type()->tag() == longTag) {
 714     __ lcmp2int(left.result(), right.result(), reg);
 715   } else {
 716     Unimplemented();
 717   }
 718 }
 719 
 720 
 721 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 722   assert(x->number_of_arguments() == 4, "wrong type");
 723   LIRItem obj   (x->argument_at(0), this);  // object
 724   LIRItem offset(x->argument_at(1), this);  // offset of field
 725   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 726   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 727 
 728   assert(obj.type()->tag() == objectTag, "invalid type");
 729 
 730   // In 64bit the type can be long, sparc doesn't have this assert
 731   // assert(offset.type()->tag() == intTag, "invalid type");
 732 
 733   assert(cmp.type()->tag() == type->tag(), "invalid type");
 734   assert(val.type()->tag() == type->tag(), "invalid type");
 735 
 736   // get address of field
 737   obj.load_item();
 738   offset.load_nonconstant();
 739 
 740   if (type == objectType) {
 741     cmp.load_item_force(FrameMap::rax_oop_opr);
 742     val.load_item();
 743   } else if (type == intType) {
 744     cmp.load_item_force(FrameMap::rax_opr);
 745     val.load_item();
 746   } else if (type == longType) {
 747     cmp.load_item_force(FrameMap::long0_opr);
 748     val.load_item_force(FrameMap::long1_opr);
 749   } else {
 750     ShouldNotReachHere();
 751   }
 752 
 753   LIR_Opr addr = new_pointer_register();
 754   LIR_Address* a;
 755   if(offset.result()->is_constant()) {
 756     a = new LIR_Address(obj.result(),
 757                         NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
 758                         as_BasicType(type));
 759   } else {
 760     a = new LIR_Address(obj.result(),
 761                         offset.result(),
 762                         LIR_Address::times_1,
 763                         0,
 764                         as_BasicType(type));
 765   }
 766   __ leal(LIR_OprFact::address(a), addr);
 767 
 768   if (type == objectType) {  // Write-barrier needed for Object fields.
 769     // Do the pre-write barrier, if any.
 770     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 771                 true /* do_load */, false /* patch */, NULL);
 772   }
 773 
 774   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 775   if (type == objectType)
 776     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
 777   else if (type == intType)
 778     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
 779   else if (type == longType)
 780     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
 781   else {
 782     ShouldNotReachHere();
 783   }
 784 
 785   // generate conditional move of boolean result
 786   LIR_Opr result = rlock_result(x);
 787   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 788            result, as_BasicType(type));
 789   if (type == objectType) {   // Write-barrier needed for Object fields.
 790     // Seems to be precise
 791     post_barrier(addr, val.result());
 792   }
 793 }
 794 
 795 
 796 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 797   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 798   LIRItem value(x->argument_at(0), this);
 799 
 800   bool use_fpu = false;
 801   if (UseSSE >= 2) {
 802     switch(x->id()) {
 803       case vmIntrinsics::_dsin:
 804       case vmIntrinsics::_dcos:
 805       case vmIntrinsics::_dtan:
 806       case vmIntrinsics::_dlog:
 807       case vmIntrinsics::_dlog10:
 808       case vmIntrinsics::_dexp:
 809       case vmIntrinsics::_dpow:
 810         use_fpu = true;
 811     }
 812   } else {
 813     value.set_destroys_register();
 814   }
 815 
 816   value.load_item();
 817 
 818   LIR_Opr calc_input = value.result();
 819   LIR_Opr calc_input2 = NULL;
 820   if (x->id() == vmIntrinsics::_dpow) {
 821     LIRItem extra_arg(x->argument_at(1), this);
 822     if (UseSSE < 2) {
 823       extra_arg.set_destroys_register();
 824     }
 825     extra_arg.load_item();
 826     calc_input2 = extra_arg.result();
 827   }
 828   LIR_Opr calc_result = rlock_result(x);
 829 
 830   // sin, cos, pow and exp need two free fpu stack slots, so register
 831   // two temporary operands
 832   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
 833   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
 834 
 835   if (use_fpu) {
 836     LIR_Opr tmp = FrameMap::fpu0_double_opr;
 837     int tmp_start = 1;
 838     if (calc_input2 != NULL) {
 839       __ move(calc_input2, tmp);
 840       tmp_start = 2;
 841       calc_input2 = tmp;
 842     }
 843     __ move(calc_input, tmp);
 844 
 845     calc_input = tmp;
 846     calc_result = tmp;
 847 
 848     tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
 849     tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
 850   }
 851 
 852   switch(x->id()) {
 853     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 854     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 855     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
 856     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
 857     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
 858     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
 859     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
 860     case vmIntrinsics::_dexp:   __ exp  (calc_input, calc_result,              tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
 861     case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
 862     default:                    ShouldNotReachHere();
 863   }
 864 
 865   if (use_fpu) {
 866     __ move(calc_result, x->operand());
 867   }
 868 }
 869 
 870 
 871 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 872   assert(x->number_of_arguments() == 5, "wrong type");
 873 
 874   // Make all state_for calls early since they can emit code
 875   CodeEmitInfo* info = state_for(x, x->state());
 876 
 877   LIRItem src(x->argument_at(0), this);
 878   LIRItem src_pos(x->argument_at(1), this);
 879   LIRItem dst(x->argument_at(2), this);
 880   LIRItem dst_pos(x->argument_at(3), this);
 881   LIRItem length(x->argument_at(4), this);
 882 
 883   // operands for arraycopy must use fixed registers, otherwise
 884   // LinearScan will fail allocation (because arraycopy always needs a
 885   // call)
 886 
 887 #ifndef _LP64
 888   src.load_item_force     (FrameMap::rcx_oop_opr);
 889   src_pos.load_item_force (FrameMap::rdx_opr);
 890   dst.load_item_force     (FrameMap::rax_oop_opr);
 891   dst_pos.load_item_force (FrameMap::rbx_opr);
 892   length.load_item_force  (FrameMap::rdi_opr);
 893   LIR_Opr tmp =           (FrameMap::rsi_opr);
 894 #else
 895 
 896   // The java calling convention will give us enough registers
 897   // so that on the stub side the args will be perfect already.
 898   // On the other slow/special case side we call C and the arg
 899   // positions are not similar enough to pick one as the best.
 900   // Also because the java calling convention is a "shifted" version
 901   // of the C convention we can process the java args trivially into C
 902   // args without worry of overwriting during the xfer
 903 
 904   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 905   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 906   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 907   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 908   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 909 
 910   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 911 #endif // LP64
 912 
 913   set_no_result(x);
 914 
 915   int flags;
 916   ciArrayKlass* expected_type;
 917   arraycopy_helper(x, &flags, &expected_type);
 918 
 919   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 920 }
 921 
 922 
 923 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 924 // _i2b, _i2c, _i2s
 925 LIR_Opr fixed_register_for(BasicType type) {
 926   switch (type) {
 927     case T_FLOAT:  return FrameMap::fpu0_float_opr;
 928     case T_DOUBLE: return FrameMap::fpu0_double_opr;
 929     case T_INT:    return FrameMap::rax_opr;
 930     case T_LONG:   return FrameMap::long0_opr;
 931     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
 932   }
 933 }
 934 
 935 void LIRGenerator::do_Convert(Convert* x) {
 936   // flags that vary for the different operations and different SSE-settings
 937   bool fixed_input, fixed_result, round_result, needs_stub;
 938 
 939   switch (x->op()) {
 940     case Bytecodes::_i2l: // fall through
 941     case Bytecodes::_l2i: // fall through
 942     case Bytecodes::_i2b: // fall through
 943     case Bytecodes::_i2c: // fall through
 944     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 945 
 946     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
 947     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
 948     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
 949     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 950     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 951     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 952     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
 953     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
 954     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 955     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 956     default: ShouldNotReachHere();
 957   }
 958 
 959   LIRItem value(x->value(), this);
 960   value.load_item();
 961   LIR_Opr input = value.result();
 962   LIR_Opr result = rlock(x);
 963 
 964   // arguments of lir_convert
 965   LIR_Opr conv_input = input;
 966   LIR_Opr conv_result = result;
 967   ConversionStub* stub = NULL;
 968 
 969   if (fixed_input) {
 970     conv_input = fixed_register_for(input->type());
 971     __ move(input, conv_input);
 972   }
 973 
 974   assert(fixed_result == false || round_result == false, "cannot set both");
 975   if (fixed_result) {
 976     conv_result = fixed_register_for(result->type());
 977   } else if (round_result) {
 978     result = new_register(result->type());
 979     set_vreg_flag(result, must_start_in_memory);
 980   }
 981 
 982   if (needs_stub) {
 983     stub = new ConversionStub(x->op(), conv_input, conv_result);
 984   }
 985 
 986   __ convert(x->op(), conv_input, conv_result, stub);
 987 
 988   if (result != conv_result) {
 989     __ move(conv_result, result);
 990   }
 991 
 992   assert(result->is_virtual(), "result must be virtual register");
 993   set_result(x, result);
 994 }
 995 
 996 
 997 void LIRGenerator::do_NewInstance(NewInstance* x) {
 998 #ifndef PRODUCT
 999   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1000     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1001   }
1002 #endif
1003   CodeEmitInfo* info = state_for(x, x->state());
1004   LIR_Opr reg = result_register_for(x->type());
1005   LIR_Opr klass_reg = new_register(objectType);
1006   new_instance(reg, x->klass(),
1007                        FrameMap::rcx_oop_opr,
1008                        FrameMap::rdi_oop_opr,
1009                        FrameMap::rsi_oop_opr,
1010                        LIR_OprFact::illegalOpr,
1011                        FrameMap::rdx_oop_opr, info);
1012   LIR_Opr result = rlock_result(x);
1013   __ move(reg, result);
1014 }
1015 
1016 
1017 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1018   CodeEmitInfo* info = state_for(x, x->state());
1019 
1020   LIRItem length(x->length(), this);
1021   length.load_item_force(FrameMap::rbx_opr);
1022 
1023   LIR_Opr reg = result_register_for(x->type());
1024   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1025   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1026   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1027   LIR_Opr tmp4 = reg;
1028   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1029   LIR_Opr len = length.result();
1030   BasicType elem_type = x->elt_type();
1031 
1032   __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1033 
1034   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1035   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1036 
1037   LIR_Opr result = rlock_result(x);
1038   __ move(reg, result);
1039 }
1040 
1041 
1042 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1043   LIRItem length(x->length(), this);
1044   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1045   // and therefore provide the state before the parameters have been consumed
1046   CodeEmitInfo* patching_info = NULL;
1047   if (!x->klass()->is_loaded() || PatchALot) {
1048     patching_info =  state_for(x, x->state_before());
1049   }
1050 
1051   CodeEmitInfo* info = state_for(x, x->state());
1052 
1053   const LIR_Opr reg = result_register_for(x->type());
1054   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1055   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1056   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1057   LIR_Opr tmp4 = reg;
1058   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1059 
1060   length.load_item_force(FrameMap::rbx_opr);
1061   LIR_Opr len = length.result();
1062 
1063   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1064   ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
1065   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1066     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1067   }
1068   jobject2reg_with_patching(klass_reg, obj, patching_info);
1069   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1070 
1071   LIR_Opr result = rlock_result(x);
1072   __ move(reg, result);
1073 }
1074 
1075 
1076 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1077   Values* dims = x->dims();
1078   int i = dims->length();
1079   LIRItemList* items = new LIRItemList(dims->length(), NULL);
1080   while (i-- > 0) {
1081     LIRItem* size = new LIRItem(dims->at(i), this);
1082     items->at_put(i, size);
1083   }
1084 
1085   // Evaluate state_for early since it may emit code.
1086   CodeEmitInfo* patching_info = NULL;
1087   if (!x->klass()->is_loaded() || PatchALot) {
1088     patching_info = state_for(x, x->state_before());
1089 
1090     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1091     // clone all handlers (NOTE: Usually this is handled transparently
1092     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1093     // is done explicitly here because a stub isn't being used).
1094     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1095   }
1096   CodeEmitInfo* info = state_for(x, x->state());
1097 
1098   i = dims->length();
1099   while (i-- > 0) {
1100     LIRItem* size = items->at(i);
1101     size->load_nonconstant();
1102 
1103     store_stack_parameter(size->result(), in_ByteSize(i*4));
1104   }
1105 
1106   LIR_Opr reg = result_register_for(x->type());
1107   jobject2reg_with_patching(reg, x->klass(), patching_info);
1108 
1109   LIR_Opr rank = FrameMap::rbx_opr;
1110   __ move(LIR_OprFact::intConst(x->rank()), rank);
1111   LIR_Opr varargs = FrameMap::rcx_opr;
1112   __ move(FrameMap::rsp_opr, varargs);
1113   LIR_OprList* args = new LIR_OprList(3);
1114   args->append(reg);
1115   args->append(rank);
1116   args->append(varargs);
1117   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1118                   LIR_OprFact::illegalOpr,
1119                   reg, args, info);
1120 
1121   LIR_Opr result = rlock_result(x);
1122   __ move(reg, result);
1123 }
1124 
1125 
1126 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1127   // nothing to do for now
1128 }
1129 
1130 
1131 void LIRGenerator::do_CheckCast(CheckCast* x) {
1132   LIRItem obj(x->obj(), this);
1133 
1134   CodeEmitInfo* patching_info = NULL;
1135   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1136     // must do this before locking the destination register as an oop register,
1137     // and before the obj is loaded (the latter is for deoptimization)
1138     patching_info = state_for(x, x->state_before());
1139   }
1140   obj.load_item();
1141 
1142   // info for exceptions
1143   CodeEmitInfo* info_for_exception = state_for(x);
1144 
1145   CodeStub* stub;
1146   if (x->is_incompatible_class_change_check()) {
1147     assert(patching_info == NULL, "can't patch this");
1148     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1149   } else {
1150     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1151   }
1152   LIR_Opr reg = rlock_result(x);
1153   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1154   if (!x->klass()->is_loaded() || UseCompressedOops) {
1155     tmp3 = new_register(objectType);
1156   }
1157   __ checkcast(reg, obj.result(), x->klass(),
1158                new_register(objectType), new_register(objectType), tmp3,
1159                x->direct_compare(), info_for_exception, patching_info, stub,
1160                x->profiled_method(), x->profiled_bci());
1161 }
1162 
1163 
1164 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1165   LIRItem obj(x->obj(), this);
1166 
1167   // result and test object may not be in same register
1168   LIR_Opr reg = rlock_result(x);
1169   CodeEmitInfo* patching_info = NULL;
1170   if ((!x->klass()->is_loaded() || PatchALot)) {
1171     // must do this before locking the destination register as an oop register
1172     patching_info = state_for(x, x->state_before());
1173   }
1174   obj.load_item();
1175   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1176   if (!x->klass()->is_loaded() || UseCompressedOops) {
1177     tmp3 = new_register(objectType);
1178   }
1179   __ instanceof(reg, obj.result(), x->klass(),
1180                 new_register(objectType), new_register(objectType), tmp3,
1181                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1182 }
1183 
1184 
1185 void LIRGenerator::do_If(If* x) {
1186   assert(x->number_of_sux() == 2, "inconsistency");
1187   ValueTag tag = x->x()->type()->tag();
1188   bool is_safepoint = x->is_safepoint();
1189 
1190   If::Condition cond = x->cond();
1191 
1192   LIRItem xitem(x->x(), this);
1193   LIRItem yitem(x->y(), this);
1194   LIRItem* xin = &xitem;
1195   LIRItem* yin = &yitem;
1196 
1197   if (tag == longTag) {
1198     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1199     // mirror for other conditions
1200     if (cond == If::gtr || cond == If::leq) {
1201       cond = Instruction::mirror(cond);
1202       xin = &yitem;
1203       yin = &xitem;
1204     }
1205     xin->set_destroys_register();
1206   }
1207   xin->load_item();
1208   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1209     // inline long zero
1210     yin->dont_load_item();
1211   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1212     // longs cannot handle constants at right side
1213     yin->load_item();
1214   } else {
1215     yin->dont_load_item();
1216   }
1217 
1218   // add safepoint before generating condition code so it can be recomputed
1219   if (x->is_safepoint()) {
1220     // increment backedge counter if needed
1221     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1222     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1223   }
1224   set_no_result(x);
1225 
1226   LIR_Opr left = xin->result();
1227   LIR_Opr right = yin->result();
1228   __ cmp(lir_cond(cond), left, right);
1229   // Generate branch profiling. Profiling code doesn't kill flags.
1230   profile_branch(x, cond);
1231   move_to_phi(x->state());
1232   if (x->x()->type()->is_float_kind()) {
1233     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1234   } else {
1235     __ branch(lir_cond(cond), right->type(), x->tsux());
1236   }
1237   assert(x->default_sux() == x->fsux(), "wrong destination above");
1238   __ jump(x->default_sux());
1239 }
1240 
1241 
1242 LIR_Opr LIRGenerator::getThreadPointer() {
1243 #ifdef _LP64
1244   return FrameMap::as_pointer_opr(r15_thread);
1245 #else
1246   LIR_Opr result = new_register(T_INT);
1247   __ get_thread(result);
1248   return result;
1249 #endif //
1250 }
1251 
1252 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1253   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1254   LIR_OprList* args = new LIR_OprList();
1255   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1256   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1257 }
1258 
1259 
1260 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1261                                         CodeEmitInfo* info) {
1262   if (address->type() == T_LONG) {
1263     address = new LIR_Address(address->base(),
1264                               address->index(), address->scale(),
1265                               address->disp(), T_DOUBLE);
1266     // Transfer the value atomically by using FP moves.  This means
1267     // the value has to be moved between CPU and FPU registers.  It
1268     // always has to be moved through spill slot since there's no
1269     // quick way to pack the value into an SSE register.
1270     LIR_Opr temp_double = new_register(T_DOUBLE);
1271     LIR_Opr spill = new_register(T_LONG);
1272     set_vreg_flag(spill, must_start_in_memory);
1273     __ move(value, spill);
1274     __ volatile_move(spill, temp_double, T_LONG);
1275     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1276   } else {
1277     __ store(value, address, info);
1278   }
1279 }
1280 
1281 
1282 
1283 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1284                                        CodeEmitInfo* info) {
1285   if (address->type() == T_LONG) {
1286     address = new LIR_Address(address->base(),
1287                               address->index(), address->scale(),
1288                               address->disp(), T_DOUBLE);
1289     // Transfer the value atomically by using FP moves.  This means
1290     // the value has to be moved between CPU and FPU registers.  In
1291     // SSE0 and SSE1 mode it has to be moved through spill slot but in
1292     // SSE2+ mode it can be moved directly.
1293     LIR_Opr temp_double = new_register(T_DOUBLE);
1294     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1295     __ volatile_move(temp_double, result, T_LONG);
1296     if (UseSSE < 2) {
1297       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1298       set_vreg_flag(result, must_start_in_memory);
1299     }
1300   } else {
1301     __ load(address, result, info);
1302   }
1303 }
1304 
1305 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1306                                      BasicType type, bool is_volatile) {
1307   if (is_volatile && type == T_LONG) {
1308     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1309     LIR_Opr tmp = new_register(T_DOUBLE);
1310     __ load(addr, tmp);
1311     LIR_Opr spill = new_register(T_LONG);
1312     set_vreg_flag(spill, must_start_in_memory);
1313     __ move(tmp, spill);
1314     __ move(spill, dst);
1315   } else {
1316     LIR_Address* addr = new LIR_Address(src, offset, type);
1317     __ load(addr, dst);
1318   }
1319 }
1320 
1321 
1322 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1323                                      BasicType type, bool is_volatile) {
1324   if (is_volatile && type == T_LONG) {
1325     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1326     LIR_Opr tmp = new_register(T_DOUBLE);
1327     LIR_Opr spill = new_register(T_DOUBLE);
1328     set_vreg_flag(spill, must_start_in_memory);
1329     __ move(data, spill);
1330     __ move(spill, tmp);
1331     __ move(tmp, addr);
1332   } else {
1333     LIR_Address* addr = new LIR_Address(src, offset, type);
1334     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1335     if (is_obj) {
1336       // Do the pre-write barrier, if any.
1337       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1338                   true /* do_load */, false /* patch */, NULL);
1339       __ move(data, addr);
1340       assert(src->is_register(), "must be register");
1341       // Seems to be a precise address
1342       post_barrier(LIR_OprFact::address(addr), data);
1343     } else {
1344       __ move(data, addr);
1345     }
1346   }
1347 }