1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_x86.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 // Item will be loaded into a byte register; Intel only
  47 void LIRItem::load_byte_item() {
  48   load_item();
  49   LIR_Opr res = result();
  50 
  51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
  52     // make sure that it is a byte register
  53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
  54            "can't load floats in byte register");
  55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
  56     __ move(res, reg);
  57 
  58     _result = reg;
  59   }
  60 }
  61 
  62 
  63 void LIRItem::load_nonconstant() {
  64   LIR_Opr r = value()->operand();
  65   if (r->is_constant()) {
  66     _result = r;
  67   } else {
  68     load_item();
  69   }
  70 }
  71 
  72 //--------------------------------------------------------------
  73 //               LIRGenerator
  74 //--------------------------------------------------------------
  75 
  76 
  77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
  78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
  79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
  80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
  81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
  82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
  83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
  84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  85 
  86 
  87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  88   LIR_Opr opr;
  89   switch (type->tag()) {
  90     case intTag:     opr = FrameMap::rax_opr;          break;
  91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
  92     case longTag:    opr = FrameMap::long0_opr;        break;
  93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
  94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
  95 
  96     case addressTag:
  97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  98   }
  99 
 100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
 101   return opr;
 102 }
 103 
 104 
 105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 106   LIR_Opr reg = new_register(T_INT);
 107   set_vreg_flag(reg, LIRGenerator::byte_reg);
 108   return reg;
 109 }
 110 
 111 
 112 //--------- loading items into registers --------------------------------
 113 
 114 
 115 // i486 instructions can inline constants
 116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 117   if (type == T_SHORT || type == T_CHAR) {
 118     // there is no immediate move of word values in asembler_i486.?pp
 119     return false;
 120   }
 121   Constant* c = v->as_Constant();
 122   if (c && c->state_before() == NULL) {
 123     // constants of any type can be stored directly, except for
 124     // unloaded object constants.
 125     return true;
 126   }
 127   return false;
 128 }
 129 
 130 
 131 bool LIRGenerator::can_inline_as_constant(Value v) const {
 132   if (v->type()->tag() == longTag) return false;
 133   return v->type()->tag() != objectTag ||
 134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
 135 }
 136 
 137 
 138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
 139   if (c->type() == T_LONG) return false;
 140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
 141 }
 142 
 143 
 144 LIR_Opr LIRGenerator::safepoint_poll_register() {
 145   return LIR_OprFact::illegalOpr;
 146 }
 147 
 148 
 149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 150                                             int shift, int disp, BasicType type) {
 151   assert(base->is_register(), "must be");
 152   if (index->is_constant()) {
 153     return new LIR_Address(base,
 154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
 155                            type);
 156   } else {
 157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
 158   }
 159 }
 160 
 161 
 162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 163                                               BasicType type, bool needs_card_mark) {
 164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 165 
 166   LIR_Address* addr;
 167   if (index_opr->is_constant()) {
 168     int elem_size = type2aelembytes(type);
 169     addr = new LIR_Address(array_opr,
 170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
 171   } else {
 172 #ifdef _LP64
 173     if (index_opr->type() == T_INT) {
 174       LIR_Opr tmp = new_register(T_LONG);
 175       __ convert(Bytecodes::_i2l, index_opr, tmp);
 176       index_opr = tmp;
 177     }
 178 #endif // _LP64
 179     addr =  new LIR_Address(array_opr,
 180                             index_opr,
 181                             LIR_Address::scale(type),
 182                             offset_in_bytes, type);
 183   }
 184   if (needs_card_mark) {
 185     // This store will need a precise card mark, so go ahead and
 186     // compute the full adddres instead of computing once for the
 187     // store and again for the card mark.
 188     LIR_Opr tmp = new_pointer_register();
 189     __ leal(LIR_OprFact::address(addr), tmp);
 190     return new LIR_Address(tmp, type);
 191   } else {
 192     return addr;
 193   }
 194 }
 195 
 196 
 197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 198   LIR_Opr r;
 199   if (type == T_LONG) {
 200     r = LIR_OprFact::longConst(x);
 201   } else if (type == T_INT) {
 202     r = LIR_OprFact::intConst(x);
 203   } else {
 204     ShouldNotReachHere();
 205   }
 206   return r;
 207 }
 208 
 209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 210   LIR_Opr pointer = new_pointer_register();
 211   __ move(LIR_OprFact::intptrConst(counter), pointer);
 212   LIR_Address* addr = new LIR_Address(pointer, type);
 213   increment_counter(addr, step);
 214 }
 215 
 216 
 217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
 219 }
 220 
 221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 222   __ cmp_mem_int(condition, base, disp, c, info);
 223 }
 224 
 225 
 226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 228 }
 229 
 230 
 231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 233 }
 234 
 235 
 236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 237   if (tmp->is_valid()) {
 238     if (is_power_of_2(c + 1)) {
 239       __ move(left, tmp);
 240       __ shift_left(left, log2_intptr(c + 1), left);
 241       __ sub(left, tmp, result);
 242       return true;
 243     } else if (is_power_of_2(c - 1)) {
 244       __ move(left, tmp);
 245       __ shift_left(left, log2_intptr(c - 1), left);
 246       __ add(left, tmp, result);
 247       return true;
 248     }
 249   }
 250   return false;
 251 }
 252 
 253 
 254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 255   BasicType type = item->type();
 256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
 257 }
 258 
 259 //----------------------------------------------------------------------
 260 //             visitor functions
 261 //----------------------------------------------------------------------
 262 
 263 
 264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 265   assert(x->is_pinned(),"");
 266   bool needs_range_check = true;
 267   bool use_length = x->length() != NULL;
 268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 270                                          !get_jobject_constant(x->value())->is_null_object() ||
 271                                          x->should_profile());
 272 
 273   LIRItem array(x->array(), this);
 274   LIRItem index(x->index(), this);
 275   LIRItem value(x->value(), this);
 276   LIRItem length(this);
 277 
 278   array.load_item();
 279   index.load_nonconstant();
 280 
 281   if (use_length) {
 282     needs_range_check = x->compute_needs_range_check();
 283     if (needs_range_check) {
 284       length.set_instruction(x->length());
 285       length.load_item();
 286     }
 287   }
 288   if (needs_store_check) {
 289     value.load_item();
 290   } else {
 291     value.load_for_store(x->elt_type());
 292   }
 293 
 294   set_no_result(x);
 295 
 296   // the CodeEmitInfo must be duplicated for each different
 297   // LIR-instruction because spilling can occur anywhere between two
 298   // instructions and so the debug information must be different
 299   CodeEmitInfo* range_check_info = state_for(x);
 300   CodeEmitInfo* null_check_info = NULL;
 301   if (x->needs_null_check()) {
 302     null_check_info = new CodeEmitInfo(range_check_info);
 303   }
 304 
 305   // emit array address setup early so it schedules better
 306   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 307 
 308   if (GenerateRangeChecks && needs_range_check) {
 309     if (use_length) {
 310       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 311       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 312     } else {
 313       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 314       // range_check also does the null check
 315       null_check_info = NULL;
 316     }
 317   }
 318 
 319   if (GenerateArrayStoreCheck && needs_store_check) {
 320     LIR_Opr tmp1 = new_register(objectType);
 321     LIR_Opr tmp2 = new_register(objectType);
 322     LIR_Opr tmp3 = new_register(objectType);
 323 
 324     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 325     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
 326   }
 327 
 328   if (obj_store) {
 329     // Needs GC write barriers.
 330     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 331                 true /* do_load */, false /* patch */, NULL);
 332     __ move(value.result(), array_addr, null_check_info);
 333     // Seems to be a precise
 334     post_barrier(LIR_OprFact::address(array_addr), value.result());
 335   } else {
 336     __ move(value.result(), array_addr, null_check_info);
 337   }
 338 }
 339 
 340 
 341 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 342   assert(x->is_pinned(),"");
 343   LIRItem obj(x->obj(), this);
 344   obj.load_item();
 345 
 346   set_no_result(x);
 347 
 348   // "lock" stores the address of the monitor stack slot, so this is not an oop
 349   LIR_Opr lock = new_register(T_INT);
 350   // Need a scratch register for biased locking on x86
 351   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 352   if (UseBiasedLocking) {
 353     scratch = new_register(T_INT);
 354   }
 355 
 356   CodeEmitInfo* info_for_exception = NULL;
 357   if (x->needs_null_check()) {
 358     info_for_exception = state_for(x);
 359   }
 360   // this CodeEmitInfo must not have the xhandlers because here the
 361   // object is already locked (xhandlers expect object to be unlocked)
 362   CodeEmitInfo* info = state_for(x, x->state(), true);
 363   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 364                         x->monitor_no(), info_for_exception, info);
 365 }
 366 
 367 
 368 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 369   assert(x->is_pinned(),"");
 370 
 371   LIRItem obj(x->obj(), this);
 372   obj.dont_load_item();
 373 
 374   LIR_Opr lock = new_register(T_INT);
 375   LIR_Opr obj_temp = new_register(T_INT);
 376   set_no_result(x);
 377   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 378 }
 379 
 380 
 381 // _ineg, _lneg, _fneg, _dneg
 382 void LIRGenerator::do_NegateOp(NegateOp* x) {
 383   LIRItem value(x->x(), this);
 384   value.set_destroys_register();
 385   value.load_item();
 386   LIR_Opr reg = rlock(x);
 387   __ negate(value.result(), reg);
 388 
 389   set_result(x, round_item(reg));
 390 }
 391 
 392 
 393 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 394 //      _dadd, _dmul, _dsub, _ddiv, _drem
 395 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 396   LIRItem left(x->x(),  this);
 397   LIRItem right(x->y(), this);
 398   LIRItem* left_arg  = &left;
 399   LIRItem* right_arg = &right;
 400   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
 401   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
 402   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
 403     left.load_item();
 404   } else {
 405     left.dont_load_item();
 406   }
 407 
 408   // do not load right operand if it is a constant.  only 0 and 1 are
 409   // loaded because there are special instructions for loading them
 410   // without memory access (not needed for SSE2 instructions)
 411   bool must_load_right = false;
 412   if (right.is_constant()) {
 413     LIR_Const* c = right.result()->as_constant_ptr();
 414     assert(c != NULL, "invalid constant");
 415     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
 416 
 417     if (c->type() == T_FLOAT) {
 418       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
 419     } else {
 420       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
 421     }
 422   }
 423 
 424   if (must_load_both) {
 425     // frem and drem destroy also right operand, so move it to a new register
 426     right.set_destroys_register();
 427     right.load_item();
 428   } else if (right.is_register() || must_load_right) {
 429     right.load_item();
 430   } else {
 431     right.dont_load_item();
 432   }
 433   LIR_Opr reg = rlock(x);
 434   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 435   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 436     tmp = new_register(T_DOUBLE);
 437   }
 438 
 439   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
 440     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
 441     LIR_Opr fpu0, fpu1;
 442     if (x->op() == Bytecodes::_frem) {
 443       fpu0 = LIR_OprFact::single_fpu(0);
 444       fpu1 = LIR_OprFact::single_fpu(1);
 445     } else {
 446       fpu0 = LIR_OprFact::double_fpu(0);
 447       fpu1 = LIR_OprFact::double_fpu(1);
 448     }
 449     __ move(right.result(), fpu1); // order of left and right operand is important!
 450     __ move(left.result(), fpu0);
 451     __ rem (fpu0, fpu1, fpu0);
 452     __ move(fpu0, reg);
 453 
 454   } else {
 455     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
 456   }
 457 
 458   set_result(x, round_item(reg));
 459 }
 460 
 461 
 462 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 463 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 464   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
 465     // long division is implemented as a direct call into the runtime
 466     LIRItem left(x->x(), this);
 467     LIRItem right(x->y(), this);
 468 
 469     // the check for division by zero destroys the right operand
 470     right.set_destroys_register();
 471 
 472     BasicTypeList signature(2);
 473     signature.append(T_LONG);
 474     signature.append(T_LONG);
 475     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 476 
 477     // check for division by zero (destroys registers of right operand!)
 478     CodeEmitInfo* info = state_for(x);
 479 
 480     const LIR_Opr result_reg = result_register_for(x->type());
 481     left.load_item_force(cc->at(1));
 482     right.load_item();
 483 
 484     __ move(right.result(), cc->at(0));
 485 
 486     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 487     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 488 
 489     address entry;
 490     switch (x->op()) {
 491     case Bytecodes::_lrem:
 492       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 493       break; // check if dividend is 0 is done elsewhere
 494     case Bytecodes::_ldiv:
 495       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 496       break; // check if dividend is 0 is done elsewhere
 497     case Bytecodes::_lmul:
 498       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 499       break;
 500     default:
 501       ShouldNotReachHere();
 502     }
 503 
 504     LIR_Opr result = rlock_result(x);
 505     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 506     __ move(result_reg, result);
 507   } else if (x->op() == Bytecodes::_lmul) {
 508     // missing test if instr is commutative and if we should swap
 509     LIRItem left(x->x(), this);
 510     LIRItem right(x->y(), this);
 511 
 512     // right register is destroyed by the long mul, so it must be
 513     // copied to a new register.
 514     right.set_destroys_register();
 515 
 516     left.load_item();
 517     right.load_item();
 518 
 519     LIR_Opr reg = FrameMap::long0_opr;
 520     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
 521     LIR_Opr result = rlock_result(x);
 522     __ move(reg, result);
 523   } else {
 524     // missing test if instr is commutative and if we should swap
 525     LIRItem left(x->x(), this);
 526     LIRItem right(x->y(), this);
 527 
 528     left.load_item();
 529     // don't load constants to save register
 530     right.load_nonconstant();
 531     rlock_result(x);
 532     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 533   }
 534 }
 535 
 536 
 537 
 538 // for: _iadd, _imul, _isub, _idiv, _irem
 539 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 540   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 541     // The requirements for division and modulo
 542     // input : rax,: dividend                         min_int
 543     //         reg: divisor   (may not be rax,/rdx)   -1
 544     //
 545     // output: rax,: quotient  (= rax, idiv reg)       min_int
 546     //         rdx: remainder (= rax, irem reg)       0
 547 
 548     // rax, and rdx will be destroyed
 549 
 550     // Note: does this invalidate the spec ???
 551     LIRItem right(x->y(), this);
 552     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
 553 
 554     // call state_for before load_item_force because state_for may
 555     // force the evaluation of other instructions that are needed for
 556     // correct debug info.  Otherwise the live range of the fix
 557     // register might be too long.
 558     CodeEmitInfo* info = state_for(x);
 559 
 560     left.load_item_force(divInOpr());
 561 
 562     right.load_item();
 563 
 564     LIR_Opr result = rlock_result(x);
 565     LIR_Opr result_reg;
 566     if (x->op() == Bytecodes::_idiv) {
 567       result_reg = divOutOpr();
 568     } else {
 569       result_reg = remOutOpr();
 570     }
 571 
 572     if (!ImplicitDiv0Checks) {
 573       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
 574       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 575     }
 576     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
 577     if (x->op() == Bytecodes::_irem) {
 578       __ irem(left.result(), right.result(), result_reg, tmp, info);
 579     } else if (x->op() == Bytecodes::_idiv) {
 580       __ idiv(left.result(), right.result(), result_reg, tmp, info);
 581     } else {
 582       ShouldNotReachHere();
 583     }
 584 
 585     __ move(result_reg, result);
 586   } else {
 587     // missing test if instr is commutative and if we should swap
 588     LIRItem left(x->x(),  this);
 589     LIRItem right(x->y(), this);
 590     LIRItem* left_arg = &left;
 591     LIRItem* right_arg = &right;
 592     if (x->is_commutative() && left.is_stack() && right.is_register()) {
 593       // swap them if left is real stack (or cached) and right is real register(not cached)
 594       left_arg = &right;
 595       right_arg = &left;
 596     }
 597 
 598     left_arg->load_item();
 599 
 600     // do not need to load right, as we can handle stack and constants
 601     if (x->op() == Bytecodes::_imul ) {
 602       // check if we can use shift instead
 603       bool use_constant = false;
 604       bool use_tmp = false;
 605       if (right_arg->is_constant()) {
 606         int iconst = right_arg->get_jint_constant();
 607         if (iconst > 0) {
 608           if (is_power_of_2(iconst)) {
 609             use_constant = true;
 610           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
 611             use_constant = true;
 612             use_tmp = true;
 613           }
 614         }
 615       }
 616       if (use_constant) {
 617         right_arg->dont_load_item();
 618       } else {
 619         right_arg->load_item();
 620       }
 621       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 622       if (use_tmp) {
 623         tmp = new_register(T_INT);
 624       }
 625       rlock_result(x);
 626 
 627       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 628     } else {
 629       right_arg->dont_load_item();
 630       rlock_result(x);
 631       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 632       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 633     }
 634   }
 635 }
 636 
 637 
 638 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 639   // when an operand with use count 1 is the left operand, then it is
 640   // likely that no move for 2-operand-LIR-form is necessary
 641   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 642     x->swap_operands();
 643   }
 644 
 645   ValueTag tag = x->type()->tag();
 646   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 647   switch (tag) {
 648     case floatTag:
 649     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 650     case longTag:    do_ArithmeticOp_Long(x); return;
 651     case intTag:     do_ArithmeticOp_Int(x);  return;
 652   }
 653   ShouldNotReachHere();
 654 }
 655 
 656 
 657 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 658 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 659   // count must always be in rcx
 660   LIRItem value(x->x(), this);
 661   LIRItem count(x->y(), this);
 662 
 663   ValueTag elemType = x->type()->tag();
 664   bool must_load_count = !count.is_constant() || elemType == longTag;
 665   if (must_load_count) {
 666     // count for long must be in register
 667     count.load_item_force(shiftCountOpr());
 668   } else {
 669     count.dont_load_item();
 670   }
 671   value.load_item();
 672   LIR_Opr reg = rlock_result(x);
 673 
 674   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 675 }
 676 
 677 
 678 // _iand, _land, _ior, _lor, _ixor, _lxor
 679 void LIRGenerator::do_LogicOp(LogicOp* x) {
 680   // when an operand with use count 1 is the left operand, then it is
 681   // likely that no move for 2-operand-LIR-form is necessary
 682   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 683     x->swap_operands();
 684   }
 685 
 686   LIRItem left(x->x(), this);
 687   LIRItem right(x->y(), this);
 688 
 689   left.load_item();
 690   right.load_nonconstant();
 691   LIR_Opr reg = rlock_result(x);
 692 
 693   logic_op(x->op(), reg, left.result(), right.result());
 694 }
 695 
 696 
 697 
 698 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 699 void LIRGenerator::do_CompareOp(CompareOp* x) {
 700   LIRItem left(x->x(), this);
 701   LIRItem right(x->y(), this);
 702   ValueTag tag = x->x()->type()->tag();
 703   if (tag == longTag) {
 704     left.set_destroys_register();
 705   }
 706   left.load_item();
 707   right.load_item();
 708   LIR_Opr reg = rlock_result(x);
 709 
 710   if (x->x()->type()->is_float_kind()) {
 711     Bytecodes::Code code = x->op();
 712     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 713   } else if (x->x()->type()->tag() == longTag) {
 714     __ lcmp2int(left.result(), right.result(), reg);
 715   } else {
 716     Unimplemented();
 717   }
 718 }
 719 
 720 
 721 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 722   assert(x->number_of_arguments() == 4, "wrong type");
 723   LIRItem obj   (x->argument_at(0), this);  // object
 724   LIRItem offset(x->argument_at(1), this);  // offset of field
 725   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 726   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 727 
 728   assert(obj.type()->tag() == objectTag, "invalid type");
 729 
 730   // In 64bit the type can be long, sparc doesn't have this assert
 731   // assert(offset.type()->tag() == intTag, "invalid type");
 732 
 733   assert(cmp.type()->tag() == type->tag(), "invalid type");
 734   assert(val.type()->tag() == type->tag(), "invalid type");
 735 
 736   // get address of field
 737   obj.load_item();
 738   offset.load_nonconstant();
 739 
 740   if (type == objectType) {
 741     cmp.load_item_force(FrameMap::rax_oop_opr);
 742     val.load_item();
 743   } else if (type == intType) {
 744     cmp.load_item_force(FrameMap::rax_opr);
 745     val.load_item();
 746   } else if (type == longType) {
 747     cmp.load_item_force(FrameMap::long0_opr);
 748     val.load_item_force(FrameMap::long1_opr);
 749   } else {
 750     ShouldNotReachHere();
 751   }
 752 
 753   LIR_Opr addr = new_pointer_register();
 754   LIR_Address* a;
 755   if(offset.result()->is_constant()) {
 756 #ifdef _LP64
 757     jlong c = offset.result()->as_jlong();
 758     if ((jlong)((jint)c) == c) {
 759       a = new LIR_Address(obj.result(),
 760                           (jint)c,
 761                           as_BasicType(type));
 762     } else {
 763       LIR_Opr tmp = new_register(T_LONG);
 764       __ move(offset.result(), tmp);
 765       a = new LIR_Address(obj.result(),
 766                           tmp,
 767                           as_BasicType(type));
 768     }
 769 #else
 770     a = new LIR_Address(obj.result(),
 771                         offset.result()->as_jint(),
 772                         as_BasicType(type));
 773 #endif
 774   } else {
 775     a = new LIR_Address(obj.result(),
 776                         offset.result(),
 777                         LIR_Address::times_1,
 778                         0,
 779                         as_BasicType(type));
 780   }
 781   __ leal(LIR_OprFact::address(a), addr);
 782 
 783   if (type == objectType) {  // Write-barrier needed for Object fields.
 784     // Do the pre-write barrier, if any.
 785     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 786                 true /* do_load */, false /* patch */, NULL);
 787   }
 788 
 789   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 790   if (type == objectType)
 791     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
 792   else if (type == intType)
 793     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
 794   else if (type == longType)
 795     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
 796   else {
 797     ShouldNotReachHere();
 798   }
 799 
 800   // generate conditional move of boolean result
 801   LIR_Opr result = rlock_result(x);
 802   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 803            result, as_BasicType(type));
 804   if (type == objectType) {   // Write-barrier needed for Object fields.
 805     // Seems to be precise
 806     post_barrier(addr, val.result());
 807   }
 808 }
 809 
 810 
 811 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 812   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 813   LIRItem value(x->argument_at(0), this);
 814 
 815   bool use_fpu = false;
 816   if (UseSSE >= 2) {
 817     switch(x->id()) {
 818       case vmIntrinsics::_dsin:
 819       case vmIntrinsics::_dcos:
 820       case vmIntrinsics::_dtan:
 821       case vmIntrinsics::_dlog:
 822       case vmIntrinsics::_dlog10:
 823       case vmIntrinsics::_dexp:
 824       case vmIntrinsics::_dpow:
 825         use_fpu = true;
 826     }
 827   } else {
 828     value.set_destroys_register();
 829   }
 830 
 831   value.load_item();
 832 
 833   LIR_Opr calc_input = value.result();
 834   LIR_Opr calc_input2 = NULL;
 835   if (x->id() == vmIntrinsics::_dpow) {
 836     LIRItem extra_arg(x->argument_at(1), this);
 837     if (UseSSE < 2) {
 838       extra_arg.set_destroys_register();
 839     }
 840     extra_arg.load_item();
 841     calc_input2 = extra_arg.result();
 842   }
 843   LIR_Opr calc_result = rlock_result(x);
 844 
 845   // sin, cos, pow and exp need two free fpu stack slots, so register
 846   // two temporary operands
 847   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
 848   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
 849 
 850   if (use_fpu) {
 851     LIR_Opr tmp = FrameMap::fpu0_double_opr;
 852     int tmp_start = 1;
 853     if (calc_input2 != NULL) {
 854       __ move(calc_input2, tmp);
 855       tmp_start = 2;
 856       calc_input2 = tmp;
 857     }
 858     __ move(calc_input, tmp);
 859 
 860     calc_input = tmp;
 861     calc_result = tmp;
 862 
 863     tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
 864     tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
 865   }
 866 
 867   switch(x->id()) {
 868     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 869     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 870     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
 871     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
 872     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
 873     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
 874     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
 875     case vmIntrinsics::_dexp:   __ exp  (calc_input, calc_result,              tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
 876     case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
 877     default:                    ShouldNotReachHere();
 878   }
 879 
 880   if (use_fpu) {
 881     __ move(calc_result, x->operand());
 882   }
 883 }
 884 
 885 
 886 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 887   assert(x->number_of_arguments() == 5, "wrong type");
 888 
 889   // Make all state_for calls early since they can emit code
 890   CodeEmitInfo* info = state_for(x, x->state());
 891 
 892   LIRItem src(x->argument_at(0), this);
 893   LIRItem src_pos(x->argument_at(1), this);
 894   LIRItem dst(x->argument_at(2), this);
 895   LIRItem dst_pos(x->argument_at(3), this);
 896   LIRItem length(x->argument_at(4), this);
 897 
 898   // operands for arraycopy must use fixed registers, otherwise
 899   // LinearScan will fail allocation (because arraycopy always needs a
 900   // call)
 901 
 902 #ifndef _LP64
 903   src.load_item_force     (FrameMap::rcx_oop_opr);
 904   src_pos.load_item_force (FrameMap::rdx_opr);
 905   dst.load_item_force     (FrameMap::rax_oop_opr);
 906   dst_pos.load_item_force (FrameMap::rbx_opr);
 907   length.load_item_force  (FrameMap::rdi_opr);
 908   LIR_Opr tmp =           (FrameMap::rsi_opr);
 909 #else
 910 
 911   // The java calling convention will give us enough registers
 912   // so that on the stub side the args will be perfect already.
 913   // On the other slow/special case side we call C and the arg
 914   // positions are not similar enough to pick one as the best.
 915   // Also because the java calling convention is a "shifted" version
 916   // of the C convention we can process the java args trivially into C
 917   // args without worry of overwriting during the xfer
 918 
 919   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 920   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 921   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 922   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 923   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 924 
 925   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 926 #endif // LP64
 927 
 928   set_no_result(x);
 929 
 930   int flags;
 931   ciArrayKlass* expected_type;
 932   arraycopy_helper(x, &flags, &expected_type);
 933 
 934   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 935 }
 936 
 937 
 938 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 939 // _i2b, _i2c, _i2s
 940 LIR_Opr fixed_register_for(BasicType type) {
 941   switch (type) {
 942     case T_FLOAT:  return FrameMap::fpu0_float_opr;
 943     case T_DOUBLE: return FrameMap::fpu0_double_opr;
 944     case T_INT:    return FrameMap::rax_opr;
 945     case T_LONG:   return FrameMap::long0_opr;
 946     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
 947   }
 948 }
 949 
 950 void LIRGenerator::do_Convert(Convert* x) {
 951   // flags that vary for the different operations and different SSE-settings
 952   bool fixed_input, fixed_result, round_result, needs_stub;
 953 
 954   switch (x->op()) {
 955     case Bytecodes::_i2l: // fall through
 956     case Bytecodes::_l2i: // fall through
 957     case Bytecodes::_i2b: // fall through
 958     case Bytecodes::_i2c: // fall through
 959     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 960 
 961     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
 962     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
 963     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
 964     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
 965     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 966     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
 967     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
 968     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
 969     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 970     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
 971     default: ShouldNotReachHere();
 972   }
 973 
 974   LIRItem value(x->value(), this);
 975   value.load_item();
 976   LIR_Opr input = value.result();
 977   LIR_Opr result = rlock(x);
 978 
 979   // arguments of lir_convert
 980   LIR_Opr conv_input = input;
 981   LIR_Opr conv_result = result;
 982   ConversionStub* stub = NULL;
 983 
 984   if (fixed_input) {
 985     conv_input = fixed_register_for(input->type());
 986     __ move(input, conv_input);
 987   }
 988 
 989   assert(fixed_result == false || round_result == false, "cannot set both");
 990   if (fixed_result) {
 991     conv_result = fixed_register_for(result->type());
 992   } else if (round_result) {
 993     result = new_register(result->type());
 994     set_vreg_flag(result, must_start_in_memory);
 995   }
 996 
 997   if (needs_stub) {
 998     stub = new ConversionStub(x->op(), conv_input, conv_result);
 999   }
1000 
1001   __ convert(x->op(), conv_input, conv_result, stub);
1002 
1003   if (result != conv_result) {
1004     __ move(conv_result, result);
1005   }
1006 
1007   assert(result->is_virtual(), "result must be virtual register");
1008   set_result(x, result);
1009 }
1010 
1011 
1012 void LIRGenerator::do_NewInstance(NewInstance* x) {
1013 #ifndef PRODUCT
1014   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1015     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1016   }
1017 #endif
1018   CodeEmitInfo* info = state_for(x, x->state());
1019   LIR_Opr reg = result_register_for(x->type());
1020   LIR_Opr klass_reg = new_register(objectType);
1021   new_instance(reg, x->klass(),
1022                        FrameMap::rcx_oop_opr,
1023                        FrameMap::rdi_oop_opr,
1024                        FrameMap::rsi_oop_opr,
1025                        LIR_OprFact::illegalOpr,
1026                        FrameMap::rdx_oop_opr, info);
1027   LIR_Opr result = rlock_result(x);
1028   __ move(reg, result);
1029 }
1030 
1031 
1032 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1033   CodeEmitInfo* info = state_for(x, x->state());
1034 
1035   LIRItem length(x->length(), this);
1036   length.load_item_force(FrameMap::rbx_opr);
1037 
1038   LIR_Opr reg = result_register_for(x->type());
1039   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1040   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1041   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1042   LIR_Opr tmp4 = reg;
1043   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1044   LIR_Opr len = length.result();
1045   BasicType elem_type = x->elt_type();
1046 
1047   __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1048 
1049   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1050   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1051 
1052   LIR_Opr result = rlock_result(x);
1053   __ move(reg, result);
1054 }
1055 
1056 
1057 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1058   LIRItem length(x->length(), this);
1059   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1060   // and therefore provide the state before the parameters have been consumed
1061   CodeEmitInfo* patching_info = NULL;
1062   if (!x->klass()->is_loaded() || PatchALot) {
1063     patching_info =  state_for(x, x->state_before());
1064   }
1065 
1066   CodeEmitInfo* info = state_for(x, x->state());
1067 
1068   const LIR_Opr reg = result_register_for(x->type());
1069   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1070   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1071   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1072   LIR_Opr tmp4 = reg;
1073   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1074 
1075   length.load_item_force(FrameMap::rbx_opr);
1076   LIR_Opr len = length.result();
1077 
1078   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1079   ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
1080   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1081     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1082   }
1083   jobject2reg_with_patching(klass_reg, obj, patching_info);
1084   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1085 
1086   LIR_Opr result = rlock_result(x);
1087   __ move(reg, result);
1088 }
1089 
1090 
1091 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1092   Values* dims = x->dims();
1093   int i = dims->length();
1094   LIRItemList* items = new LIRItemList(dims->length(), NULL);
1095   while (i-- > 0) {
1096     LIRItem* size = new LIRItem(dims->at(i), this);
1097     items->at_put(i, size);
1098   }
1099 
1100   // Evaluate state_for early since it may emit code.
1101   CodeEmitInfo* patching_info = NULL;
1102   if (!x->klass()->is_loaded() || PatchALot) {
1103     patching_info = state_for(x, x->state_before());
1104 
1105     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1106     // clone all handlers (NOTE: Usually this is handled transparently
1107     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1108     // is done explicitly here because a stub isn't being used).
1109     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1110   }
1111   CodeEmitInfo* info = state_for(x, x->state());
1112 
1113   i = dims->length();
1114   while (i-- > 0) {
1115     LIRItem* size = items->at(i);
1116     size->load_nonconstant();
1117 
1118     store_stack_parameter(size->result(), in_ByteSize(i*4));
1119   }
1120 
1121   LIR_Opr reg = result_register_for(x->type());
1122   jobject2reg_with_patching(reg, x->klass(), patching_info);
1123 
1124   LIR_Opr rank = FrameMap::rbx_opr;
1125   __ move(LIR_OprFact::intConst(x->rank()), rank);
1126   LIR_Opr varargs = FrameMap::rcx_opr;
1127   __ move(FrameMap::rsp_opr, varargs);
1128   LIR_OprList* args = new LIR_OprList(3);
1129   args->append(reg);
1130   args->append(rank);
1131   args->append(varargs);
1132   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1133                   LIR_OprFact::illegalOpr,
1134                   reg, args, info);
1135 
1136   LIR_Opr result = rlock_result(x);
1137   __ move(reg, result);
1138 }
1139 
1140 
1141 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1142   // nothing to do for now
1143 }
1144 
1145 
1146 void LIRGenerator::do_CheckCast(CheckCast* x) {
1147   LIRItem obj(x->obj(), this);
1148 
1149   CodeEmitInfo* patching_info = NULL;
1150   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1151     // must do this before locking the destination register as an oop register,
1152     // and before the obj is loaded (the latter is for deoptimization)
1153     patching_info = state_for(x, x->state_before());
1154   }
1155   obj.load_item();
1156 
1157   // info for exceptions
1158   CodeEmitInfo* info_for_exception = state_for(x);
1159 
1160   CodeStub* stub;
1161   if (x->is_incompatible_class_change_check()) {
1162     assert(patching_info == NULL, "can't patch this");
1163     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1164   } else {
1165     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1166   }
1167   LIR_Opr reg = rlock_result(x);
1168   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1169   if (!x->klass()->is_loaded() || UseCompressedOops) {
1170     tmp3 = new_register(objectType);
1171   }
1172   __ checkcast(reg, obj.result(), x->klass(),
1173                new_register(objectType), new_register(objectType), tmp3,
1174                x->direct_compare(), info_for_exception, patching_info, stub,
1175                x->profiled_method(), x->profiled_bci());
1176 }
1177 
1178 
1179 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1180   LIRItem obj(x->obj(), this);
1181 
1182   // result and test object may not be in same register
1183   LIR_Opr reg = rlock_result(x);
1184   CodeEmitInfo* patching_info = NULL;
1185   if ((!x->klass()->is_loaded() || PatchALot)) {
1186     // must do this before locking the destination register as an oop register
1187     patching_info = state_for(x, x->state_before());
1188   }
1189   obj.load_item();
1190   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1191   if (!x->klass()->is_loaded() || UseCompressedOops) {
1192     tmp3 = new_register(objectType);
1193   }
1194   __ instanceof(reg, obj.result(), x->klass(),
1195                 new_register(objectType), new_register(objectType), tmp3,
1196                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1197 }
1198 
1199 
1200 void LIRGenerator::do_If(If* x) {
1201   assert(x->number_of_sux() == 2, "inconsistency");
1202   ValueTag tag = x->x()->type()->tag();
1203   bool is_safepoint = x->is_safepoint();
1204 
1205   If::Condition cond = x->cond();
1206 
1207   LIRItem xitem(x->x(), this);
1208   LIRItem yitem(x->y(), this);
1209   LIRItem* xin = &xitem;
1210   LIRItem* yin = &yitem;
1211 
1212   if (tag == longTag) {
1213     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1214     // mirror for other conditions
1215     if (cond == If::gtr || cond == If::leq) {
1216       cond = Instruction::mirror(cond);
1217       xin = &yitem;
1218       yin = &xitem;
1219     }
1220     xin->set_destroys_register();
1221   }
1222   xin->load_item();
1223   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1224     // inline long zero
1225     yin->dont_load_item();
1226   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1227     // longs cannot handle constants at right side
1228     yin->load_item();
1229   } else {
1230     yin->dont_load_item();
1231   }
1232 
1233   // add safepoint before generating condition code so it can be recomputed
1234   if (x->is_safepoint()) {
1235     // increment backedge counter if needed
1236     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1237     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1238   }
1239   set_no_result(x);
1240 
1241   LIR_Opr left = xin->result();
1242   LIR_Opr right = yin->result();
1243   __ cmp(lir_cond(cond), left, right);
1244   // Generate branch profiling. Profiling code doesn't kill flags.
1245   profile_branch(x, cond);
1246   move_to_phi(x->state());
1247   if (x->x()->type()->is_float_kind()) {
1248     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1249   } else {
1250     __ branch(lir_cond(cond), right->type(), x->tsux());
1251   }
1252   assert(x->default_sux() == x->fsux(), "wrong destination above");
1253   __ jump(x->default_sux());
1254 }
1255 
1256 
1257 LIR_Opr LIRGenerator::getThreadPointer() {
1258 #ifdef _LP64
1259   return FrameMap::as_pointer_opr(r15_thread);
1260 #else
1261   LIR_Opr result = new_register(T_INT);
1262   __ get_thread(result);
1263   return result;
1264 #endif //
1265 }
1266 
1267 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1268   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1269   LIR_OprList* args = new LIR_OprList();
1270   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1271   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1272 }
1273 
1274 
1275 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1276                                         CodeEmitInfo* info) {
1277   if (address->type() == T_LONG) {
1278     address = new LIR_Address(address->base(),
1279                               address->index(), address->scale(),
1280                               address->disp(), T_DOUBLE);
1281     // Transfer the value atomically by using FP moves.  This means
1282     // the value has to be moved between CPU and FPU registers.  It
1283     // always has to be moved through spill slot since there's no
1284     // quick way to pack the value into an SSE register.
1285     LIR_Opr temp_double = new_register(T_DOUBLE);
1286     LIR_Opr spill = new_register(T_LONG);
1287     set_vreg_flag(spill, must_start_in_memory);
1288     __ move(value, spill);
1289     __ volatile_move(spill, temp_double, T_LONG);
1290     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1291   } else {
1292     __ store(value, address, info);
1293   }
1294 }
1295 
1296 
1297 
1298 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1299                                        CodeEmitInfo* info) {
1300   if (address->type() == T_LONG) {
1301     address = new LIR_Address(address->base(),
1302                               address->index(), address->scale(),
1303                               address->disp(), T_DOUBLE);
1304     // Transfer the value atomically by using FP moves.  This means
1305     // the value has to be moved between CPU and FPU registers.  In
1306     // SSE0 and SSE1 mode it has to be moved through spill slot but in
1307     // SSE2+ mode it can be moved directly.
1308     LIR_Opr temp_double = new_register(T_DOUBLE);
1309     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1310     __ volatile_move(temp_double, result, T_LONG);
1311     if (UseSSE < 2) {
1312       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1313       set_vreg_flag(result, must_start_in_memory);
1314     }
1315   } else {
1316     __ load(address, result, info);
1317   }
1318 }
1319 
1320 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1321                                      BasicType type, bool is_volatile) {
1322   if (is_volatile && type == T_LONG) {
1323     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1324     LIR_Opr tmp = new_register(T_DOUBLE);
1325     __ load(addr, tmp);
1326     LIR_Opr spill = new_register(T_LONG);
1327     set_vreg_flag(spill, must_start_in_memory);
1328     __ move(tmp, spill);
1329     __ move(spill, dst);
1330   } else {
1331     LIR_Address* addr = new LIR_Address(src, offset, type);
1332     __ load(addr, dst);
1333   }
1334 }
1335 
1336 
1337 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1338                                      BasicType type, bool is_volatile) {
1339   if (is_volatile && type == T_LONG) {
1340     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1341     LIR_Opr tmp = new_register(T_DOUBLE);
1342     LIR_Opr spill = new_register(T_DOUBLE);
1343     set_vreg_flag(spill, must_start_in_memory);
1344     __ move(data, spill);
1345     __ move(spill, tmp);
1346     __ move(tmp, addr);
1347   } else {
1348     LIR_Address* addr = new LIR_Address(src, offset, type);
1349     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1350     if (is_obj) {
1351       // Do the pre-write barrier, if any.
1352       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1353                   true /* do_load */, false /* patch */, NULL);
1354       __ move(data, addr);
1355       assert(src->is_register(), "must be register");
1356       // Seems to be a precise address
1357       post_barrier(LIR_OprFact::address(addr), data);
1358     } else {
1359       __ move(data, addr);
1360     }
1361   }
1362 }
1363 
1364 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1365   BasicType type = x->basic_type();
1366   LIRItem src(x->object(), this);
1367   LIRItem off(x->offset(), this);
1368   LIRItem value(x->value(), this);
1369 
1370   src.load_item();
1371   value.load_item();
1372   off.load_nonconstant();
1373 
1374   LIR_Opr dst = rlock_result(x, type);
1375   LIR_Opr data = value.result();
1376   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1377   LIR_Opr offset = off.result();
1378 
1379   assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
1380   LIR_Address* addr;
1381   if (offset->is_constant()) {
1382 #ifdef _LP64
1383     jlong c = offset->as_jlong();
1384     if ((jlong)((jint)c) == c) {
1385       addr = new LIR_Address(src.result(), (jint)c, type);
1386     } else {
1387       LIR_Opr tmp = new_register(T_LONG);
1388       __ move(offset, tmp);
1389       addr = new LIR_Address(src.result(), tmp, type);
1390     }
1391 #else
1392     addr = new LIR_Address(src.result(), offset->as_jint(), type);
1393 #endif
1394   } else {
1395     addr = new LIR_Address(src.result(), offset, type);
1396   }
1397 
1398   if (data != dst) {
1399     __ move(data, dst);
1400     data = dst;
1401   }
1402   if (x->is_add()) {
1403     __ xadd(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
1404   } else {
1405     if (is_obj) {
1406       // Do the pre-write barrier, if any.
1407       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1408                   true /* do_load */, false /* patch */, NULL);
1409     }
1410     __ xchg(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
1411     if (is_obj) {
1412       // Seems to be a precise address
1413       post_barrier(LIR_OprFact::address(addr), data);
1414     }
1415   }
1416 }