1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_sparc.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #ifndef SERIALGC
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  42 #include "gc_implementation/g1/heapRegion.hpp"
  43 #endif
  44 
  45 #ifdef PRODUCT
  46 #define BLOCK_COMMENT(str) /* nothing */
  47 #define STOP(error) stop(error)
  48 #else
  49 #define BLOCK_COMMENT(str) block_comment(str)
  50 #define STOP(error) block_comment(error); stop(error)
  51 #endif
  52 
  53 // Convert the raw encoding form into the form expected by the
  54 // constructor for Address.
  55 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
  56   assert(scale == 0, "not supported");
  57   RelocationHolder rspec;
  58   if (disp_reloc != relocInfo::none) {
  59     rspec = Relocation::spec_simple(disp_reloc);
  60   }
  61 
  62   Register rindex = as_Register(index);
  63   if (rindex != G0) {
  64     Address madr(as_Register(base), rindex);
  65     madr._rspec = rspec;
  66     return madr;
  67   } else {
  68     Address madr(as_Register(base), disp);
  69     madr._rspec = rspec;
  70     return madr;
  71   }
  72 }
  73 
  74 Address Argument::address_in_frame() const {
  75   // Warning: In LP64 mode disp will occupy more than 10 bits, but
  76   //          op codes such as ld or ldx, only access disp() to get
  77   //          their simm13 argument.
  78   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
  79   if (is_in())
  80     return Address(FP, disp); // In argument.
  81   else
  82     return Address(SP, disp); // Out argument.
  83 }
  84 
  85 static const char* argumentNames[][2] = {
  86   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
  87   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
  88   {"A(n>9)","P(n>9)"}
  89 };
  90 
  91 const char* Argument::name() const {
  92   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
  93   int num = number();
  94   if (num >= nofArgs)  num = nofArgs - 1;
  95   return argumentNames[num][is_in() ? 1 : 0];
  96 }
  97 
  98 void Assembler::print_instruction(int inst) {
  99   const char* s;
 100   switch (inv_op(inst)) {
 101   default:         s = "????"; break;
 102   case call_op:    s = "call"; break;
 103   case branch_op:
 104     switch (inv_op2(inst)) {
 105       case fb_op2:     s = "fb";   break;
 106       case fbp_op2:    s = "fbp";  break;
 107       case br_op2:     s = "br";   break;
 108       case bp_op2:     s = "bp";   break;
 109       case cb_op2:     s = "cb";   break;
 110       case bpr_op2: {
 111         if (is_cbcond(inst)) {
 112           s = is_cxb(inst) ? "cxb" : "cwb";
 113         } else {
 114           s = "bpr";
 115         }
 116         break;
 117       }
 118       default:         s = "????"; break;
 119     }
 120   }
 121   ::tty->print("%s", s);
 122 }
 123 
 124 
 125 // Patch instruction inst at offset inst_pos to refer to dest_pos
 126 // and return the resulting instruction.
 127 // We should have pcs, not offsets, but since all is relative, it will work out
 128 // OK.
 129 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
 130 
 131   int m; // mask for displacement field
 132   int v; // new value for displacement field
 133   const int word_aligned_ones = -4;
 134   switch (inv_op(inst)) {
 135   default: ShouldNotReachHere();
 136   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
 137   case branch_op:
 138     switch (inv_op2(inst)) {
 139       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 140       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 141       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 142       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 143       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 144       case bpr_op2: {
 145         if (is_cbcond(inst)) {
 146           m = wdisp10(word_aligned_ones, 0);
 147           v = wdisp10(dest_pos, inst_pos);
 148         } else {
 149           m = wdisp16(word_aligned_ones, 0);
 150           v = wdisp16(dest_pos, inst_pos);
 151         }
 152         break;
 153       }
 154       default: ShouldNotReachHere();
 155     }
 156   }
 157   return  inst & ~m  |  v;
 158 }
 159 
 160 // Return the offset of the branch destionation of instruction inst
 161 // at offset pos.
 162 // Should have pcs, but since all is relative, it works out.
 163 int Assembler::branch_destination(int inst, int pos) {
 164   int r;
 165   switch (inv_op(inst)) {
 166   default: ShouldNotReachHere();
 167   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
 168   case branch_op:
 169     switch (inv_op2(inst)) {
 170       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
 171       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
 172       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 173       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 174       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 175       case bpr_op2: {
 176         if (is_cbcond(inst)) {
 177           r = inv_wdisp10(inst, pos);
 178         } else {
 179           r = inv_wdisp16(inst, pos);
 180         }
 181         break;
 182       }
 183       default: ShouldNotReachHere();
 184     }
 185   }
 186   return r;
 187 }
 188 
 189 int AbstractAssembler::code_fill_byte() {
 190   return 0x00;                  // illegal instruction 0x00000000
 191 }
 192 
 193 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
 194   switch (in) {
 195   case rc_z:   return equal;
 196   case rc_lez: return lessEqual;
 197   case rc_lz:  return less;
 198   case rc_nz:  return notEqual;
 199   case rc_gz:  return greater;
 200   case rc_gez: return greaterEqual;
 201   default:
 202     ShouldNotReachHere();
 203   }
 204   return equal;
 205 }
 206 
 207 // Generate a bunch 'o stuff (including v9's
 208 #ifndef PRODUCT
 209 void Assembler::test_v9() {
 210   add(    G0, G1, G2 );
 211   add(    G3,  0, G4 );
 212 
 213   addcc(  G5, G6, G7 );
 214   addcc(  I0,  1, I1 );
 215   addc(   I2, I3, I4 );
 216   addc(   I5, -1, I6 );
 217   addccc( I7, L0, L1 );
 218   addccc( L2, (1 << 12) - 2, L3 );
 219 
 220   Label lbl1, lbl2, lbl3;
 221 
 222   bind(lbl1);
 223 
 224   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
 225   delayed()->nop();
 226   bpr( rc_lez, false, pt, L5, lbl1);
 227   delayed()->nop();
 228 
 229   fb( f_never,     true, pc() + 4,  relocInfo::none);
 230   delayed()->nop();
 231   fb( f_notEqual, false, lbl2 );
 232   delayed()->nop();
 233 
 234   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
 235   delayed()->nop();
 236   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
 237   delayed()->nop();
 238 
 239   br( equal,  true, pc() + 1024, relocInfo::none);
 240   delayed()->nop();
 241   br( lessEqual, false, lbl1 );
 242   delayed()->nop();
 243   br( never, false, lbl1 );
 244   delayed()->nop();
 245 
 246   bp( less,               true, icc, pn, pc(), relocInfo::none);
 247   delayed()->nop();
 248   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
 249   delayed()->nop();
 250 
 251   call( pc(), relocInfo::none);
 252   delayed()->nop();
 253   call( lbl3 );
 254   delayed()->nop();
 255 
 256 
 257   casa(  L6, L7, O0 );
 258   casxa( O1, O2, O3, 0 );
 259 
 260   udiv(   O4, O5, O7 );
 261   udiv(   G0, (1 << 12) - 1, G1 );
 262   sdiv(   G1, G2, G3 );
 263   sdiv(   G4, -((1 << 12) - 1), G5 );
 264   udivcc( G6, G7, I0 );
 265   udivcc( I1, -((1 << 12) - 2), I2 );
 266   sdivcc( I3, I4, I5 );
 267   sdivcc( I6, -((1 << 12) - 0), I7 );
 268 
 269   done();
 270   retry();
 271 
 272   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
 273   fsub( FloatRegisterImpl::D, F34, F0, F62 );
 274 
 275   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
 276   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
 277 
 278   ftox( FloatRegisterImpl::D, F2, F4 );
 279   ftoi( FloatRegisterImpl::Q, F4, F8 );
 280 
 281   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
 282 
 283   fxtof( FloatRegisterImpl::S, F4, F5 );
 284   fitof( FloatRegisterImpl::D, F6, F8 );
 285 
 286   fmov( FloatRegisterImpl::Q, F16, F20 );
 287   fneg( FloatRegisterImpl::S, F6, F7 );
 288   fabs( FloatRegisterImpl::D, F10, F12 );
 289 
 290   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
 291   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
 292   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
 293 
 294   fsqrt( FloatRegisterImpl::S, F13, F14 );
 295 
 296   flush( L0, L1 );
 297   flush( L2, -1 );
 298 
 299   flushw();
 300 
 301   illtrap( (1 << 22) - 2);
 302 
 303   impdep1( 17, (1 << 19) - 1 );
 304   impdep2( 3,  0 );
 305 
 306   jmpl( L3, L4, L5 );
 307   delayed()->nop();
 308   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
 309   delayed()->nop();
 310 
 311 
 312   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
 313   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
 314 
 315 
 316   ldfsr(  O3, O4 );
 317   ldfsr(  O5, -1 );
 318   ldxfsr( O6, O7 );
 319   ldxfsr( I0, -1 );
 320 
 321   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
 322   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
 323 
 324   ldsb(  I4, I5, I6 );
 325   ldsb(  I7, -1, G0 );
 326   ldsh(  G1, G3, G4 );
 327   ldsh(  G5, -1, G6 );
 328   ldsw(  G7, L0, L1 );
 329   ldsw(  L2, -1, L3 );
 330   ldub(  L4, L5, L6 );
 331   ldub(  L7, -1, O0 );
 332   lduh(  O1, O2, O3 );
 333   lduh(  O4, -1, O5 );
 334   lduw(  O6, O7, G0 );
 335   lduw(  G1, -1, G2 );
 336   ldx(   G3, G4, G5 );
 337   ldx(   G6, -1, G7 );
 338   ldd(   I0, I1, I2 );
 339   ldd(   I3, -1, I4 );
 340 
 341   ldsba(  I5, I6, 2, I7 );
 342   ldsba(  L0, -1, L1 );
 343   ldsha(  L2, L3, 3, L4 );
 344   ldsha(  L5, -1, L6 );
 345   ldswa(  L7, O0, (1 << 8) - 1, O1 );
 346   ldswa(  O2, -1, O3 );
 347   lduba(  O4, O5, 0, O6 );
 348   lduba(  O7, -1, I0 );
 349   lduha(  I1, I2, 1, I3 );
 350   lduha(  I4, -1, I5 );
 351   lduwa(  I6, I7, 2, L0 );
 352   lduwa(  L1, -1, L2 );
 353   ldxa(   L3, L4, 3, L5 );
 354   ldxa(   L6, -1, L7 );
 355   ldda(   G0, G1, 4, G2 );
 356   ldda(   G3, -1, G4 );
 357 
 358   ldstub(  G5, G6, G7 );
 359   ldstub(  O0, -1, O1 );
 360 
 361   ldstuba( O2, O3, 5, O4 );
 362   ldstuba( O5, -1, O6 );
 363 
 364   and3(    I0, L0, O0 );
 365   and3(    G7, -1, O7 );
 366   andcc(   L2, I2, G2 );
 367   andcc(   L4, -1, G4 );
 368   andn(    I5, I6, I7 );
 369   andn(    I6, -1, I7 );
 370   andncc(  I5, I6, I7 );
 371   andncc(  I7, -1, I6 );
 372   or3(     I5, I6, I7 );
 373   or3(     I7, -1, I6 );
 374   orcc(    I5, I6, I7 );
 375   orcc(    I7, -1, I6 );
 376   orn(     I5, I6, I7 );
 377   orn(     I7, -1, I6 );
 378   orncc(   I5, I6, I7 );
 379   orncc(   I7, -1, I6 );
 380   xor3(    I5, I6, I7 );
 381   xor3(    I7, -1, I6 );
 382   xorcc(   I5, I6, I7 );
 383   xorcc(   I7, -1, I6 );
 384   xnor(    I5, I6, I7 );
 385   xnor(    I7, -1, I6 );
 386   xnorcc(  I5, I6, I7 );
 387   xnorcc(  I7, -1, I6 );
 388 
 389   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
 390   membar( StoreStore );
 391   membar( LoadStore );
 392   membar( StoreLoad );
 393   membar( LoadLoad );
 394   membar( Sync );
 395   membar( MemIssue );
 396   membar( Lookaside );
 397 
 398   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
 399   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
 400 
 401   movcc( overflowClear,  false, icc, I6, L4 );
 402   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
 403 
 404   movr( rc_nz, I5, I6, I7 );
 405   movr( rc_gz, L1, -1,  L2 );
 406 
 407   mulx(  I5, I6, I7 );
 408   mulx(  I7, -1, I6 );
 409   sdivx( I5, I6, I7 );
 410   sdivx( I7, -1, I6 );
 411   udivx( I5, I6, I7 );
 412   udivx( I7, -1, I6 );
 413 
 414   umul(   I5, I6, I7 );
 415   umul(   I7, -1, I6 );
 416   smul(   I5, I6, I7 );
 417   smul(   I7, -1, I6 );
 418   umulcc( I5, I6, I7 );
 419   umulcc( I7, -1, I6 );
 420   smulcc( I5, I6, I7 );
 421   smulcc( I7, -1, I6 );
 422 
 423   mulscc(   I5, I6, I7 );
 424   mulscc(   I7, -1, I6 );
 425 
 426   nop();
 427 
 428 
 429   popc( G0,  G1);
 430   popc( -1, G2);
 431 
 432   prefetch(   L1, L2,    severalReads );
 433   prefetch(   L3, -1,    oneRead );
 434   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
 435   prefetcha(  G2, -1,    oneWrite );
 436 
 437   rett( I7, I7);
 438   delayed()->nop();
 439   rett( G0, -1, relocInfo::none);
 440   delayed()->nop();
 441 
 442   save(    I5, I6, I7 );
 443   save(    I7, -1, I6 );
 444   restore( I5, I6, I7 );
 445   restore( I7, -1, I6 );
 446 
 447   saved();
 448   restored();
 449 
 450   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
 451 
 452   sll(  I5, I6, I7 );
 453   sll(  I7, 31, I6 );
 454   srl(  I5, I6, I7 );
 455   srl(  I7,  0, I6 );
 456   sra(  I5, I6, I7 );
 457   sra(  I7, 30, I6 );
 458   sllx( I5, I6, I7 );
 459   sllx( I7, 63, I6 );
 460   srlx( I5, I6, I7 );
 461   srlx( I7,  0, I6 );
 462   srax( I5, I6, I7 );
 463   srax( I7, 62, I6 );
 464 
 465   sir( -1 );
 466 
 467   stbar();
 468 
 469   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
 470   stf(    FloatRegisterImpl::S, F18, I3, -1 );
 471 
 472   stfsr(  L1, L2 );
 473   stfsr(  I7, -1 );
 474   stxfsr( I6, I5 );
 475   stxfsr( L4, -1 );
 476 
 477   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
 478   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
 479 
 480   stb(  L5, O2, I7 );
 481   stb(  I7, I6, -1 );
 482   sth(  L5, O2, I7 );
 483   sth(  I7, I6, -1 );
 484   stw(  L5, O2, I7 );
 485   stw(  I7, I6, -1 );
 486   stx(  L5, O2, I7 );
 487   stx(  I7, I6, -1 );
 488   std(  L5, O2, I7 );
 489   std(  I7, I6, -1 );
 490 
 491   stba(  L5, O2, I7, 8 );
 492   stba(  I7, I6, -1    );
 493   stha(  L5, O2, I7, 9 );
 494   stha(  I7, I6, -1    );
 495   stwa(  L5, O2, I7, 0 );
 496   stwa(  I7, I6, -1    );
 497   stxa(  L5, O2, I7, 11 );
 498   stxa(  I7, I6, -1     );
 499   stda(  L5, O2, I7, 12 );
 500   stda(  I7, I6, -1     );
 501 
 502   sub(    I5, I6, I7 );
 503   sub(    I7, -1, I6 );
 504   subcc(  I5, I6, I7 );
 505   subcc(  I7, -1, I6 );
 506   subc(   I5, I6, I7 );
 507   subc(   I7, -1, I6 );
 508   subccc( I5, I6, I7 );
 509   subccc( I7, -1, I6 );
 510 
 511   swap( I5, I6, I7 );
 512   swap( I7, -1, I6 );
 513 
 514   swapa(   G0, G1, 13, G2 );
 515   swapa(   I7, -1,     I6 );
 516 
 517   taddcc(    I5, I6, I7 );
 518   taddcc(    I7, -1, I6 );
 519   taddcctv(  I5, I6, I7 );
 520   taddcctv(  I7, -1, I6 );
 521 
 522   tsubcc(    I5, I6, I7 );
 523   tsubcc(    I7, -1, I6 );
 524   tsubcctv(  I5, I6, I7 );
 525   tsubcctv(  I7, -1, I6 );
 526 
 527   trap( overflowClear, xcc, G0, G1 );
 528   trap( lessEqual,     icc, I7, 17 );
 529 
 530   bind(lbl2);
 531   bind(lbl3);
 532 
 533   code()->decode();
 534 }
 535 
 536 // Generate a bunch 'o stuff unique to V8
 537 void Assembler::test_v8_onlys() {
 538   Label lbl1;
 539 
 540   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
 541   delayed()->nop();
 542   cb( cp_never,    true, lbl1);
 543   delayed()->nop();
 544 
 545   cpop1(1, 2, 3, 4);
 546   cpop2(5, 6, 7, 8);
 547 
 548   ldc( I0, I1, 31);
 549   ldc( I2, -1,  0);
 550 
 551   lddc( I4, I4, 30);
 552   lddc( I6,  0, 1 );
 553 
 554   ldcsr( L0, L1, 0);
 555   ldcsr( L1, (1 << 12) - 1, 17 );
 556 
 557   stc( 31, L4, L5);
 558   stc( 30, L6, -(1 << 12) );
 559 
 560   stdc( 0, L7, G0);
 561   stdc( 1, G1, 0 );
 562 
 563   stcsr( 16, G2, G3);
 564   stcsr( 17, G4, 1 );
 565 
 566   stdcq( 4, G5, G6);
 567   stdcq( 5, G7, -1 );
 568 
 569   bind(lbl1);
 570 
 571   code()->decode();
 572 }
 573 #endif
 574 
 575 // Implementation of MacroAssembler
 576 
 577 void MacroAssembler::null_check(Register reg, int offset) {
 578   if (needs_explicit_null_check((intptr_t)offset)) {
 579     // provoke OS NULL exception if reg = NULL by
 580     // accessing M[reg] w/o changing any registers
 581     ld_ptr(reg, 0, G0);
 582   }
 583   else {
 584     // nothing to do, (later) access of M[reg + offset]
 585     // will provoke OS NULL exception if reg = NULL
 586   }
 587 }
 588 
 589 // Ring buffer jumps
 590 
 591 #ifndef PRODUCT
 592 void MacroAssembler::ret(  bool trace )   { if (trace) {
 593                                                     mov(I7, O7); // traceable register
 594                                                     JMP(O7, 2 * BytesPerInstWord);
 595                                                   } else {
 596                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
 597                                                   }
 598                                                 }
 599 
 600 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
 601                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
 602 #endif /* PRODUCT */
 603 
 604 
 605 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
 606   assert_not_delayed();
 607   // This can only be traceable if r1 & r2 are visible after a window save
 608   if (TraceJumps) {
 609 #ifndef PRODUCT
 610     save_frame(0);
 611     verify_thread();
 612     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 613     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 614     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 615     add(O2, O1, O1);
 616 
 617     add(r1->after_save(), r2->after_save(), O2);
 618     set((intptr_t)file, O3);
 619     set(line, O4);
 620     Label L;
 621     // get nearby pc, store jmp target
 622     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 623     delayed()->st(O2, O1, 0);
 624     bind(L);
 625 
 626     // store nearby pc
 627     st(O7, O1, sizeof(intptr_t));
 628     // store file
 629     st(O3, O1, 2*sizeof(intptr_t));
 630     // store line
 631     st(O4, O1, 3*sizeof(intptr_t));
 632     add(O0, 1, O0);
 633     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 634     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 635     restore();
 636 #endif /* PRODUCT */
 637   }
 638   jmpl(r1, r2, G0);
 639 }
 640 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
 641   assert_not_delayed();
 642   // This can only be traceable if r1 is visible after a window save
 643   if (TraceJumps) {
 644 #ifndef PRODUCT
 645     save_frame(0);
 646     verify_thread();
 647     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 648     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 649     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 650     add(O2, O1, O1);
 651 
 652     add(r1->after_save(), offset, O2);
 653     set((intptr_t)file, O3);
 654     set(line, O4);
 655     Label L;
 656     // get nearby pc, store jmp target
 657     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 658     delayed()->st(O2, O1, 0);
 659     bind(L);
 660 
 661     // store nearby pc
 662     st(O7, O1, sizeof(intptr_t));
 663     // store file
 664     st(O3, O1, 2*sizeof(intptr_t));
 665     // store line
 666     st(O4, O1, 3*sizeof(intptr_t));
 667     add(O0, 1, O0);
 668     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 669     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 670     restore();
 671 #endif /* PRODUCT */
 672   }
 673   jmp(r1, offset);
 674 }
 675 
 676 // This code sequence is relocatable to any address, even on LP64.
 677 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
 678   assert_not_delayed();
 679   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 680   // variable length instruction streams.
 681   patchable_sethi(addrlit, temp);
 682   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
 683   if (TraceJumps) {
 684 #ifndef PRODUCT
 685     // Must do the add here so relocation can find the remainder of the
 686     // value to be relocated.
 687     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
 688     save_frame(0);
 689     verify_thread();
 690     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 691     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 692     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 693     add(O2, O1, O1);
 694 
 695     set((intptr_t)file, O3);
 696     set(line, O4);
 697     Label L;
 698 
 699     // get nearby pc, store jmp target
 700     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 701     delayed()->st(a.base()->after_save(), O1, 0);
 702     bind(L);
 703 
 704     // store nearby pc
 705     st(O7, O1, sizeof(intptr_t));
 706     // store file
 707     st(O3, O1, 2*sizeof(intptr_t));
 708     // store line
 709     st(O4, O1, 3*sizeof(intptr_t));
 710     add(O0, 1, O0);
 711     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 712     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 713     restore();
 714     jmpl(a.base(), G0, d);
 715 #else
 716     jmpl(a.base(), a.disp(), d);
 717 #endif /* PRODUCT */
 718   } else {
 719     jmpl(a.base(), a.disp(), d);
 720   }
 721 }
 722 
 723 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
 724   jumpl(addrlit, temp, G0, offset, file, line);
 725 }
 726 
 727 
 728 // Conditional breakpoint (for assertion checks in assembly code)
 729 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
 730   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
 731 }
 732 
 733 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
 734 void MacroAssembler::breakpoint_trap() {
 735   trap(ST_RESERVED_FOR_USER_0);
 736 }
 737 
 738 // flush windows (except current) using flushw instruction if avail.
 739 void MacroAssembler::flush_windows() {
 740   if (VM_Version::v9_instructions_work())  flushw();
 741   else                                     flush_windows_trap();
 742 }
 743 
 744 // Write serialization page so VM thread can do a pseudo remote membar
 745 // We use the current thread pointer to calculate a thread specific
 746 // offset to write to within the page. This minimizes bus traffic
 747 // due to cache line collision.
 748 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
 749   srl(thread, os::get_serialize_page_shift_count(), tmp2);
 750   if (Assembler::is_simm13(os::vm_page_size())) {
 751     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
 752   }
 753   else {
 754     set((os::vm_page_size() - sizeof(int)), tmp1);
 755     and3(tmp2, tmp1, tmp2);
 756   }
 757   set(os::get_memory_serialize_page(), tmp1);
 758   st(G0, tmp1, tmp2);
 759 }
 760 
 761 
 762 
 763 void MacroAssembler::enter() {
 764   Unimplemented();
 765 }
 766 
 767 void MacroAssembler::leave() {
 768   Unimplemented();
 769 }
 770 
 771 void MacroAssembler::mult(Register s1, Register s2, Register d) {
 772   if(VM_Version::v9_instructions_work()) {
 773     mulx (s1, s2, d);
 774   } else {
 775     smul (s1, s2, d);
 776   }
 777 }
 778 
 779 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
 780   if(VM_Version::v9_instructions_work()) {
 781     mulx (s1, simm13a, d);
 782   } else {
 783     smul (s1, simm13a, d);
 784   }
 785 }
 786 
 787 
 788 #ifdef ASSERT
 789 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
 790   const Register s1 = G3_scratch;
 791   const Register s2 = G4_scratch;
 792   Label get_psr_test;
 793   // Get the condition codes the V8 way.
 794   read_ccr_trap(s1);
 795   mov(ccr_save, s2);
 796   // This is a test of V8 which has icc but not xcc
 797   // so mask off the xcc bits
 798   and3(s2, 0xf, s2);
 799   // Compare condition codes from the V8 and V9 ways.
 800   subcc(s2, s1, G0);
 801   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
 802   delayed()->breakpoint_trap();
 803   bind(get_psr_test);
 804 }
 805 
 806 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
 807   const Register s1 = G3_scratch;
 808   const Register s2 = G4_scratch;
 809   Label set_psr_test;
 810   // Write out the saved condition codes the V8 way
 811   write_ccr_trap(ccr_save, s1, s2);
 812   // Read back the condition codes using the V9 instruction
 813   rdccr(s1);
 814   mov(ccr_save, s2);
 815   // This is a test of V8 which has icc but not xcc
 816   // so mask off the xcc bits
 817   and3(s2, 0xf, s2);
 818   and3(s1, 0xf, s1);
 819   // Compare the V8 way with the V9 way.
 820   subcc(s2, s1, G0);
 821   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
 822   delayed()->breakpoint_trap();
 823   bind(set_psr_test);
 824 }
 825 #else
 826 #define read_ccr_v8_assert(x)
 827 #define write_ccr_v8_assert(x)
 828 #endif // ASSERT
 829 
 830 void MacroAssembler::read_ccr(Register ccr_save) {
 831   if (VM_Version::v9_instructions_work()) {
 832     rdccr(ccr_save);
 833     // Test code sequence used on V8.  Do not move above rdccr.
 834     read_ccr_v8_assert(ccr_save);
 835   } else {
 836     read_ccr_trap(ccr_save);
 837   }
 838 }
 839 
 840 void MacroAssembler::write_ccr(Register ccr_save) {
 841   if (VM_Version::v9_instructions_work()) {
 842     // Test code sequence used on V8.  Do not move below wrccr.
 843     write_ccr_v8_assert(ccr_save);
 844     wrccr(ccr_save);
 845   } else {
 846     const Register temp_reg1 = G3_scratch;
 847     const Register temp_reg2 = G4_scratch;
 848     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
 849   }
 850 }
 851 
 852 
 853 // Calls to C land
 854 
 855 #ifdef ASSERT
 856 // a hook for debugging
 857 static Thread* reinitialize_thread() {
 858   return ThreadLocalStorage::thread();
 859 }
 860 #else
 861 #define reinitialize_thread ThreadLocalStorage::thread
 862 #endif
 863 
 864 #ifdef ASSERT
 865 address last_get_thread = NULL;
 866 #endif
 867 
 868 // call this when G2_thread is not known to be valid
 869 void MacroAssembler::get_thread() {
 870   save_frame(0);                // to avoid clobbering O0
 871   mov(G1, L0);                  // avoid clobbering G1
 872   mov(G5_method, L1);           // avoid clobbering G5
 873   mov(G3, L2);                  // avoid clobbering G3 also
 874   mov(G4, L5);                  // avoid clobbering G4
 875 #ifdef ASSERT
 876   AddressLiteral last_get_thread_addrlit(&last_get_thread);
 877   set(last_get_thread_addrlit, L3);
 878   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
 879   st_ptr(L4, L3, 0);
 880 #endif
 881   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
 882   delayed()->nop();
 883   mov(L0, G1);
 884   mov(L1, G5_method);
 885   mov(L2, G3);
 886   mov(L5, G4);
 887   restore(O0, 0, G2_thread);
 888 }
 889 
 890 static Thread* verify_thread_subroutine(Thread* gthread_value) {
 891   Thread* correct_value = ThreadLocalStorage::thread();
 892   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
 893   return correct_value;
 894 }
 895 
 896 void MacroAssembler::verify_thread() {
 897   if (VerifyThread) {
 898     // NOTE: this chops off the heads of the 64-bit O registers.
 899 #ifdef CC_INTERP
 900     save_frame(0);
 901 #else
 902     // make sure G2_thread contains the right value
 903     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
 904     mov(G1, L1);                // avoid clobbering G1
 905     // G2 saved below
 906     mov(G3, L3);                // avoid clobbering G3
 907     mov(G4, L4);                // avoid clobbering G4
 908     mov(G5_method, L5);         // avoid clobbering G5_method
 909 #endif /* CC_INTERP */
 910 #if defined(COMPILER2) && !defined(_LP64)
 911     // Save & restore possible 64-bit Long arguments in G-regs
 912     srlx(G1,32,L0);
 913     srlx(G4,32,L6);
 914 #endif
 915     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
 916     delayed()->mov(G2_thread, O0);
 917 
 918     mov(L1, G1);                // Restore G1
 919     // G2 restored below
 920     mov(L3, G3);                // restore G3
 921     mov(L4, G4);                // restore G4
 922     mov(L5, G5_method);         // restore G5_method
 923 #if defined(COMPILER2) && !defined(_LP64)
 924     // Save & restore possible 64-bit Long arguments in G-regs
 925     sllx(L0,32,G2);             // Move old high G1 bits high in G2
 926     srl(G1, 0,G1);              // Clear current high G1 bits
 927     or3 (G1,G2,G1);             // Recover 64-bit G1
 928     sllx(L6,32,G2);             // Move old high G4 bits high in G2
 929     srl(G4, 0,G4);              // Clear current high G4 bits
 930     or3 (G4,G2,G4);             // Recover 64-bit G4
 931 #endif
 932     restore(O0, 0, G2_thread);
 933   }
 934 }
 935 
 936 
 937 void MacroAssembler::save_thread(const Register thread_cache) {
 938   verify_thread();
 939   if (thread_cache->is_valid()) {
 940     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 941     mov(G2_thread, thread_cache);
 942   }
 943   if (VerifyThread) {
 944     // smash G2_thread, as if the VM were about to anyway
 945     set(0x67676767, G2_thread);
 946   }
 947 }
 948 
 949 
 950 void MacroAssembler::restore_thread(const Register thread_cache) {
 951   if (thread_cache->is_valid()) {
 952     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 953     mov(thread_cache, G2_thread);
 954     verify_thread();
 955   } else {
 956     // do it the slow way
 957     get_thread();
 958   }
 959 }
 960 
 961 
 962 // %%% maybe get rid of [re]set_last_Java_frame
 963 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
 964   assert_not_delayed();
 965   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
 966                            JavaFrameAnchor::flags_offset());
 967   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
 968 
 969   // Always set last_Java_pc and flags first because once last_Java_sp is visible
 970   // has_last_Java_frame is true and users will look at the rest of the fields.
 971   // (Note: flags should always be zero before we get here so doesn't need to be set.)
 972 
 973 #ifdef ASSERT
 974   // Verify that flags was zeroed on return to Java
 975   Label PcOk;
 976   save_frame(0);                // to avoid clobbering O0
 977   ld_ptr(pc_addr, L0);
 978   br_null_short(L0, Assembler::pt, PcOk);
 979   STOP("last_Java_pc not zeroed before leaving Java");
 980   bind(PcOk);
 981 
 982   // Verify that flags was zeroed on return to Java
 983   Label FlagsOk;
 984   ld(flags, L0);
 985   tst(L0);
 986   br(Assembler::zero, false, Assembler::pt, FlagsOk);
 987   delayed() -> restore();
 988   STOP("flags not zeroed before leaving Java");
 989   bind(FlagsOk);
 990 #endif /* ASSERT */
 991   //
 992   // When returning from calling out from Java mode the frame anchor's last_Java_pc
 993   // will always be set to NULL. It is set here so that if we are doing a call to
 994   // native (not VM) that we capture the known pc and don't have to rely on the
 995   // native call having a standard frame linkage where we can find the pc.
 996 
 997   if (last_Java_pc->is_valid()) {
 998     st_ptr(last_Java_pc, pc_addr);
 999   }
1000 
1001 #ifdef _LP64
1002 #ifdef ASSERT
1003   // Make sure that we have an odd stack
1004   Label StackOk;
1005   andcc(last_java_sp, 0x01, G0);
1006   br(Assembler::notZero, false, Assembler::pt, StackOk);
1007   delayed()->nop();
1008   STOP("Stack Not Biased in set_last_Java_frame");
1009   bind(StackOk);
1010 #endif // ASSERT
1011   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
1012   add( last_java_sp, STACK_BIAS, G4_scratch );
1013   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
1014 #else
1015   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
1016 #endif // _LP64
1017 }
1018 
1019 void MacroAssembler::reset_last_Java_frame(void) {
1020   assert_not_delayed();
1021 
1022   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
1023   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
1024   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1025 
1026 #ifdef ASSERT
1027   // check that it WAS previously set
1028 #ifdef CC_INTERP
1029     save_frame(0);
1030 #else
1031     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
1032 #endif /* CC_INTERP */
1033     ld_ptr(sp_addr, L0);
1034     tst(L0);
1035     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1036     restore();
1037 #endif // ASSERT
1038 
1039   st_ptr(G0, sp_addr);
1040   // Always return last_Java_pc to zero
1041   st_ptr(G0, pc_addr);
1042   // Always null flags after return to Java
1043   st(G0, flags);
1044 }
1045 
1046 
1047 void MacroAssembler::call_VM_base(
1048   Register        oop_result,
1049   Register        thread_cache,
1050   Register        last_java_sp,
1051   address         entry_point,
1052   int             number_of_arguments,
1053   bool            check_exceptions)
1054 {
1055   assert_not_delayed();
1056 
1057   // determine last_java_sp register
1058   if (!last_java_sp->is_valid()) {
1059     last_java_sp = SP;
1060   }
1061   // debugging support
1062   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
1063 
1064   // 64-bit last_java_sp is biased!
1065   set_last_Java_frame(last_java_sp, noreg);
1066   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
1067   save_thread(thread_cache);
1068   // do the call
1069   call(entry_point, relocInfo::runtime_call_type);
1070   if (!VerifyThread)
1071     delayed()->mov(G2_thread, O0);  // pass thread as first argument
1072   else
1073     delayed()->nop();             // (thread already passed)
1074   restore_thread(thread_cache);
1075   reset_last_Java_frame();
1076 
1077   // check for pending exceptions. use Gtemp as scratch register.
1078   if (check_exceptions) {
1079     check_and_forward_exception(Gtemp);
1080   }
1081 
1082 #ifdef ASSERT
1083   set(badHeapWordVal, G3);
1084   set(badHeapWordVal, G4);
1085   set(badHeapWordVal, G5);
1086 #endif
1087 
1088   // get oop result if there is one and reset the value in the thread
1089   if (oop_result->is_valid()) {
1090     get_vm_result(oop_result);
1091   }
1092 }
1093 
1094 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1095 {
1096   Label L;
1097 
1098   check_and_handle_popframe(scratch_reg);
1099   check_and_handle_earlyret(scratch_reg);
1100 
1101   Address exception_addr(G2_thread, Thread::pending_exception_offset());
1102   ld_ptr(exception_addr, scratch_reg);
1103   br_null_short(scratch_reg, pt, L);
1104   // we use O7 linkage so that forward_exception_entry has the issuing PC
1105   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1106   delayed()->nop();
1107   bind(L);
1108 }
1109 
1110 
1111 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1112 }
1113 
1114 
1115 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1116 }
1117 
1118 
1119 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1120   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1121 }
1122 
1123 
1124 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1125   // O0 is reserved for the thread
1126   mov(arg_1, O1);
1127   call_VM(oop_result, entry_point, 1, check_exceptions);
1128 }
1129 
1130 
1131 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1132   // O0 is reserved for the thread
1133   mov(arg_1, O1);
1134   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1135   call_VM(oop_result, entry_point, 2, check_exceptions);
1136 }
1137 
1138 
1139 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1140   // O0 is reserved for the thread
1141   mov(arg_1, O1);
1142   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1143   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1144   call_VM(oop_result, entry_point, 3, check_exceptions);
1145 }
1146 
1147 
1148 
1149 // Note: The following call_VM overloadings are useful when a "save"
1150 // has already been performed by a stub, and the last Java frame is
1151 // the previous one.  In that case, last_java_sp must be passed as FP
1152 // instead of SP.
1153 
1154 
1155 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1156   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1157 }
1158 
1159 
1160 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1161   // O0 is reserved for the thread
1162   mov(arg_1, O1);
1163   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1164 }
1165 
1166 
1167 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1168   // O0 is reserved for the thread
1169   mov(arg_1, O1);
1170   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1171   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1172 }
1173 
1174 
1175 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1176   // O0 is reserved for the thread
1177   mov(arg_1, O1);
1178   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1179   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1180   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1181 }
1182 
1183 
1184 
1185 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1186   assert_not_delayed();
1187   save_thread(thread_cache);
1188   // do the call
1189   call(entry_point, relocInfo::runtime_call_type);
1190   delayed()->nop();
1191   restore_thread(thread_cache);
1192 #ifdef ASSERT
1193   set(badHeapWordVal, G3);
1194   set(badHeapWordVal, G4);
1195   set(badHeapWordVal, G5);
1196 #endif
1197 }
1198 
1199 
1200 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1201   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1202 }
1203 
1204 
1205 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1206   mov(arg_1, O0);
1207   call_VM_leaf(thread_cache, entry_point, 1);
1208 }
1209 
1210 
1211 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1212   mov(arg_1, O0);
1213   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1214   call_VM_leaf(thread_cache, entry_point, 2);
1215 }
1216 
1217 
1218 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1219   mov(arg_1, O0);
1220   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
1221   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1222   call_VM_leaf(thread_cache, entry_point, 3);
1223 }
1224 
1225 
1226 void MacroAssembler::get_vm_result(Register oop_result) {
1227   verify_thread();
1228   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1229   ld_ptr(    vm_result_addr, oop_result);
1230   st_ptr(G0, vm_result_addr);
1231   verify_oop(oop_result);
1232 }
1233 
1234 
1235 void MacroAssembler::get_vm_result_2(Register metadata_result) {
1236   verify_thread();
1237   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
1238   ld_ptr(vm_result_addr_2, metadata_result);
1239   st_ptr(G0, vm_result_addr_2);
1240 }
1241 
1242 
1243 // We require that C code which does not return a value in vm_result will
1244 // leave it undisturbed.
1245 void MacroAssembler::set_vm_result(Register oop_result) {
1246   verify_thread();
1247   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1248   verify_oop(oop_result);
1249 
1250 # ifdef ASSERT
1251     // Check that we are not overwriting any other oop.
1252 #ifdef CC_INTERP
1253     save_frame(0);
1254 #else
1255     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
1256 #endif /* CC_INTERP */
1257     ld_ptr(vm_result_addr, L0);
1258     tst(L0);
1259     restore();
1260     breakpoint_trap(notZero, Assembler::ptr_cc);
1261     // }
1262 # endif
1263 
1264   st_ptr(oop_result, vm_result_addr);
1265 }
1266 
1267 
1268 void MacroAssembler::ic_call(address entry, bool emit_delay) {
1269   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
1270   patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
1271   relocate(rspec);
1272   call(entry, relocInfo::none);
1273   if (emit_delay) {
1274     delayed()->nop();
1275   }
1276 }
1277 
1278 
1279 void MacroAssembler::card_table_write(jbyte* byte_map_base,
1280                                       Register tmp, Register obj) {
1281 #ifdef _LP64
1282   srlx(obj, CardTableModRefBS::card_shift, obj);
1283 #else
1284   srl(obj, CardTableModRefBS::card_shift, obj);
1285 #endif
1286   assert(tmp != obj, "need separate temp reg");
1287   set((address) byte_map_base, tmp);
1288   stb(G0, tmp, obj);
1289 }
1290 
1291 
1292 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1293   address save_pc;
1294   int shiftcnt;
1295 #ifdef _LP64
1296 # ifdef CHECK_DELAY
1297   assert_not_delayed((char*) "cannot put two instructions in delay slot");
1298 # endif
1299   v9_dep();
1300   save_pc = pc();
1301 
1302   int msb32 = (int) (addrlit.value() >> 32);
1303   int lsb32 = (int) (addrlit.value());
1304 
1305   if (msb32 == 0 && lsb32 >= 0) {
1306     Assembler::sethi(lsb32, d, addrlit.rspec());
1307   }
1308   else if (msb32 == -1) {
1309     Assembler::sethi(~lsb32, d, addrlit.rspec());
1310     xor3(d, ~low10(~0), d);
1311   }
1312   else {
1313     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
1314     if (msb32 & 0x3ff)                            // Any bits?
1315       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
1316     if (lsb32 & 0xFFFFFC00) {                     // done?
1317       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
1318         sllx(d, 12, d);                           // Make room for next 12 bits
1319         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
1320         shiftcnt = 0;                             // We already shifted
1321       }
1322       else
1323         shiftcnt = 12;
1324       if ((lsb32 >> 10) & 0x3ff) {
1325         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
1326         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
1327         shiftcnt = 0;
1328       }
1329       else
1330         shiftcnt = 10;
1331       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
1332     }
1333     else
1334       sllx(d, 32, d);
1335   }
1336   // Pad out the instruction sequence so it can be patched later.
1337   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
1338                            addrlit.rtype() != relocInfo::runtime_call_type)) {
1339     while (pc() < (save_pc + (7 * BytesPerInstWord)))
1340       nop();
1341   }
1342 #else
1343   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
1344 #endif
1345 }
1346 
1347 
1348 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
1349   internal_sethi(addrlit, d, false);
1350 }
1351 
1352 
1353 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
1354   internal_sethi(addrlit, d, true);
1355 }
1356 
1357 
1358 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
1359 #ifdef _LP64
1360   if (worst_case)  return 7;
1361   intptr_t iaddr = (intptr_t) a;
1362   int msb32 = (int) (iaddr >> 32);
1363   int lsb32 = (int) (iaddr);
1364   int count;
1365   if (msb32 == 0 && lsb32 >= 0)
1366     count = 1;
1367   else if (msb32 == -1)
1368     count = 2;
1369   else {
1370     count = 2;
1371     if (msb32 & 0x3ff)
1372       count++;
1373     if (lsb32 & 0xFFFFFC00 ) {
1374       if ((lsb32 >> 20) & 0xfff)  count += 2;
1375       if ((lsb32 >> 10) & 0x3ff)  count += 2;
1376     }
1377   }
1378   return count;
1379 #else
1380   return 1;
1381 #endif
1382 }
1383 
1384 int MacroAssembler::worst_case_insts_for_set() {
1385   return insts_for_sethi(NULL, true) + 1;
1386 }
1387 
1388 
1389 // Keep in sync with MacroAssembler::insts_for_internal_set
1390 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1391   intptr_t value = addrlit.value();
1392 
1393   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
1394     // can optimize
1395     if (-4096 <= value && value <= 4095) {
1396       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1397       return;
1398     }
1399     if (inv_hi22(hi22(value)) == value) {
1400       sethi(addrlit, d);
1401       return;
1402     }
1403   }
1404   assert_not_delayed((char*) "cannot put two instructions in delay slot");
1405   internal_sethi(addrlit, d, ForceRelocatable);
1406   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
1407     add(d, addrlit.low10(), d, addrlit.rspec());
1408   }
1409 }
1410 
1411 // Keep in sync with MacroAssembler::internal_set
1412 int MacroAssembler::insts_for_internal_set(intptr_t value) {
1413   // can optimize
1414   if (-4096 <= value && value <= 4095) {
1415     return 1;
1416   }
1417   if (inv_hi22(hi22(value)) == value) {
1418     return insts_for_sethi((address) value);
1419   }
1420   int count = insts_for_sethi((address) value);
1421   AddressLiteral al(value);
1422   if (al.low10() != 0) {
1423     count++;
1424   }
1425   return count;
1426 }
1427 
1428 void MacroAssembler::set(const AddressLiteral& al, Register d) {
1429   internal_set(al, d, false);
1430 }
1431 
1432 void MacroAssembler::set(intptr_t value, Register d) {
1433   AddressLiteral al(value);
1434   internal_set(al, d, false);
1435 }
1436 
1437 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
1438   AddressLiteral al(addr, rspec);
1439   internal_set(al, d, false);
1440 }
1441 
1442 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
1443   internal_set(al, d, true);
1444 }
1445 
1446 void MacroAssembler::patchable_set(intptr_t value, Register d) {
1447   AddressLiteral al(value);
1448   internal_set(al, d, true);
1449 }
1450 
1451 
1452 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1453   assert_not_delayed();
1454   v9_dep();
1455 
1456   int hi = (int)(value >> 32);
1457   int lo = (int)(value & ~0);
1458   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1459   if (Assembler::is_simm13(lo) && value == lo) {
1460     or3(G0, lo, d);
1461   } else if (hi == 0) {
1462     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
1463     if (low10(lo) != 0)
1464       or3(d, low10(lo), d);
1465   }
1466   else if (hi == -1) {
1467     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
1468     xor3(d, low10(lo) ^ ~low10(~0), d);
1469   }
1470   else if (lo == 0) {
1471     if (Assembler::is_simm13(hi)) {
1472       or3(G0, hi, d);
1473     } else {
1474       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
1475       if (low10(hi) != 0)
1476         or3(d, low10(hi), d);
1477     }
1478     sllx(d, 32, d);
1479   }
1480   else {
1481     Assembler::sethi(hi, tmp);
1482     Assembler::sethi(lo,   d); // macro assembler version sign-extends
1483     if (low10(hi) != 0)
1484       or3 (tmp, low10(hi), tmp);
1485     if (low10(lo) != 0)
1486       or3 (  d, low10(lo),   d);
1487     sllx(tmp, 32, tmp);
1488     or3 (d, tmp, d);
1489   }
1490 }
1491 
1492 int MacroAssembler::insts_for_set64(jlong value) {
1493   v9_dep();
1494 
1495   int hi = (int) (value >> 32);
1496   int lo = (int) (value & ~0);
1497   int count = 0;
1498 
1499   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1500   if (Assembler::is_simm13(lo) && value == lo) {
1501     count++;
1502   } else if (hi == 0) {
1503     count++;
1504     if (low10(lo) != 0)
1505       count++;
1506   }
1507   else if (hi == -1) {
1508     count += 2;
1509   }
1510   else if (lo == 0) {
1511     if (Assembler::is_simm13(hi)) {
1512       count++;
1513     } else {
1514       count++;
1515       if (low10(hi) != 0)
1516         count++;
1517     }
1518     count++;
1519   }
1520   else {
1521     count += 2;
1522     if (low10(hi) != 0)
1523       count++;
1524     if (low10(lo) != 0)
1525       count++;
1526     count += 2;
1527   }
1528   return count;
1529 }
1530 
1531 // compute size in bytes of sparc frame, given
1532 // number of extraWords
1533 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1534 
1535   int nWords = frame::memory_parameter_word_sp_offset;
1536 
1537   nWords += extraWords;
1538 
1539   if (nWords & 1) ++nWords; // round up to double-word
1540 
1541   return nWords * BytesPerWord;
1542 }
1543 
1544 
1545 // save_frame: given number of "extra" words in frame,
1546 // issue approp. save instruction (p 200, v8 manual)
1547 
1548 void MacroAssembler::save_frame(int extraWords) {
1549   int delta = -total_frame_size_in_bytes(extraWords);
1550   if (is_simm13(delta)) {
1551     save(SP, delta, SP);
1552   } else {
1553     set(delta, G3_scratch);
1554     save(SP, G3_scratch, SP);
1555   }
1556 }
1557 
1558 
1559 void MacroAssembler::save_frame_c1(int size_in_bytes) {
1560   if (is_simm13(-size_in_bytes)) {
1561     save(SP, -size_in_bytes, SP);
1562   } else {
1563     set(-size_in_bytes, G3_scratch);
1564     save(SP, G3_scratch, SP);
1565   }
1566 }
1567 
1568 
1569 void MacroAssembler::save_frame_and_mov(int extraWords,
1570                                         Register s1, Register d1,
1571                                         Register s2, Register d2) {
1572   assert_not_delayed();
1573 
1574   // The trick here is to use precisely the same memory word
1575   // that trap handlers also use to save the register.
1576   // This word cannot be used for any other purpose, but
1577   // it works fine to save the register's value, whether or not
1578   // an interrupt flushes register windows at any given moment!
1579   Address s1_addr;
1580   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1581     s1_addr = s1->address_in_saved_window();
1582     st_ptr(s1, s1_addr);
1583   }
1584 
1585   Address s2_addr;
1586   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1587     s2_addr = s2->address_in_saved_window();
1588     st_ptr(s2, s2_addr);
1589   }
1590 
1591   save_frame(extraWords);
1592 
1593   if (s1_addr.base() == SP) {
1594     ld_ptr(s1_addr.after_save(), d1);
1595   } else if (s1->is_valid()) {
1596     mov(s1->after_save(), d1);
1597   }
1598 
1599   if (s2_addr.base() == SP) {
1600     ld_ptr(s2_addr.after_save(), d2);
1601   } else if (s2->is_valid()) {
1602     mov(s2->after_save(), d2);
1603   }
1604 }
1605 
1606 
1607 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1608   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1609   int index = oop_recorder()->allocate_metadata_index(obj);
1610   RelocationHolder rspec = metadata_Relocation::spec(index);
1611   return AddressLiteral((address)obj, rspec);
1612 }
1613 
1614 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1615   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1616   int index = oop_recorder()->find_index(obj);
1617   RelocationHolder rspec = metadata_Relocation::spec(index);
1618   return AddressLiteral((address)obj, rspec);
1619 }
1620 
1621 
1622 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1623   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1624   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
1625   int oop_index = oop_recorder()->find_index(obj);
1626   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1627 }
1628 
1629 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1630   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1631   int oop_index = oop_recorder()->find_index(obj);
1632   RelocationHolder rspec = oop_Relocation::spec(oop_index);
1633 
1634   assert_not_delayed();
1635   // Relocation with special format (see relocInfo_sparc.hpp).
1636   relocate(rspec, 1);
1637   // Assembler::sethi(0x3fffff, d);
1638   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1639   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1640   add(d, 0x3ff, d);
1641 
1642 }
1643 
1644 void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
1645   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1646   int klass_index = oop_recorder()->find_index(k);
1647   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
1648   narrowOop encoded_k = oopDesc::encode_klass(k);
1649 
1650   assert_not_delayed();
1651   // Relocation with special format (see relocInfo_sparc.hpp).
1652   relocate(rspec, 1);
1653   // Assembler::sethi(encoded_k, d);
1654   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
1655   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1656   add(d, low10(encoded_k), d);
1657 
1658 }
1659 
1660 void MacroAssembler::align(int modulus) {
1661   while (offset() % modulus != 0) nop();
1662 }
1663 
1664 
1665 void MacroAssembler::safepoint() {
1666   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1667 }
1668 
1669 
1670 void RegistersForDebugging::print(outputStream* s) {
1671   FlagSetting fs(Debugging, true);
1672   int j;
1673   for (j = 0; j < 8; ++j) {
1674     if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
1675     else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
1676   }
1677   s->cr();
1678 
1679   for (j = 0;  j < 8;  ++j) {
1680     s->print("l%d = ", j); os::print_location(s, l[j]);
1681   }
1682   s->cr();
1683 
1684   for (j = 0; j < 8; ++j) {
1685     if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
1686     else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
1687   }
1688   s->cr();
1689 
1690   for (j = 0; j < 8; ++j) {
1691     s->print("g%d = ", j); os::print_location(s, g[j]);
1692   }
1693   s->cr();
1694 
1695   // print out floats with compression
1696   for (j = 0; j < 32; ) {
1697     jfloat val = f[j];
1698     int last = j;
1699     for ( ;  last+1 < 32;  ++last ) {
1700       char b1[1024], b2[1024];
1701       sprintf(b1, "%f", val);
1702       sprintf(b2, "%f", f[last+1]);
1703       if (strcmp(b1, b2))
1704         break;
1705     }
1706     s->print("f%d", j);
1707     if ( j != last )  s->print(" - f%d", last);
1708     s->print(" = %f", val);
1709     s->fill_to(25);
1710     s->print_cr(" (0x%x)", val);
1711     j = last + 1;
1712   }
1713   s->cr();
1714 
1715   // and doubles (evens only)
1716   for (j = 0; j < 32; ) {
1717     jdouble val = d[j];
1718     int last = j;
1719     for ( ;  last+1 < 32;  ++last ) {
1720       char b1[1024], b2[1024];
1721       sprintf(b1, "%f", val);
1722       sprintf(b2, "%f", d[last+1]);
1723       if (strcmp(b1, b2))
1724         break;
1725     }
1726     s->print("d%d", 2 * j);
1727     if ( j != last )  s->print(" - d%d", last);
1728     s->print(" = %f", val);
1729     s->fill_to(30);
1730     s->print("(0x%x)", *(int*)&val);
1731     s->fill_to(42);
1732     s->print_cr("(0x%x)", *(1 + (int*)&val));
1733     j = last + 1;
1734   }
1735   s->cr();
1736 }
1737 
1738 void RegistersForDebugging::save_registers(MacroAssembler* a) {
1739   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1740   a->flush_windows();
1741   int i;
1742   for (i = 0; i < 8; ++i) {
1743     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1744     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1745     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1746     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1747   }
1748   for (i = 0;  i < 32; ++i) {
1749     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1750   }
1751   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1752     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1753   }
1754 }
1755 
1756 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1757   for (int i = 1; i < 8;  ++i) {
1758     a->ld_ptr(r, g_offset(i), as_gRegister(i));
1759   }
1760   for (int j = 0; j < 32; ++j) {
1761     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1762   }
1763   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1764     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1765   }
1766 }
1767 
1768 
1769 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1770 void MacroAssembler::push_fTOS() {
1771   // %%%%%% need to implement this
1772 }
1773 
1774 // pops double TOS element from CPU stack and pushes on FPU stack
1775 void MacroAssembler::pop_fTOS() {
1776   // %%%%%% need to implement this
1777 }
1778 
1779 void MacroAssembler::empty_FPU_stack() {
1780   // %%%%%% need to implement this
1781 }
1782 
1783 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1784   // plausibility check for oops
1785   if (!VerifyOops) return;
1786 
1787   if (reg == G0)  return;       // always NULL, which is always an oop
1788 
1789   BLOCK_COMMENT("verify_oop {");
1790   char buffer[64];
1791 #ifdef COMPILER1
1792   if (CommentedAssembly) {
1793     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1794     block_comment(buffer);
1795   }
1796 #endif
1797 
1798   int len = strlen(file) + strlen(msg) + 1 + 4;
1799   sprintf(buffer, "%d", line);
1800   len += strlen(buffer);
1801   sprintf(buffer, " at offset %d ", offset());
1802   len += strlen(buffer);
1803   char * real_msg = new char[len];
1804   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
1805 
1806   // Call indirectly to solve generation ordering problem
1807   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1808 
1809   // Make some space on stack above the current register window.
1810   // Enough to hold 8 64-bit registers.
1811   add(SP,-8*8,SP);
1812 
1813   // Save some 64-bit registers; a normal 'save' chops the heads off
1814   // of 64-bit longs in the 32-bit build.
1815   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1816   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1817   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1818   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1819 
1820   // Size of set() should stay the same
1821   patchable_set((intptr_t)real_msg, O1);
1822   // Load address to call to into O7
1823   load_ptr_contents(a, O7);
1824   // Register call to verify_oop_subroutine
1825   callr(O7, G0);
1826   delayed()->nop();
1827   // recover frame size
1828   add(SP, 8*8,SP);
1829   BLOCK_COMMENT("} verify_oop");
1830 }
1831 
1832 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1833   // plausibility check for oops
1834   if (!VerifyOops) return;
1835 
1836   char buffer[64];
1837   sprintf(buffer, "%d", line);
1838   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1839   sprintf(buffer, " at SP+%d ", addr.disp());
1840   len += strlen(buffer);
1841   char * real_msg = new char[len];
1842   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1843 
1844   // Call indirectly to solve generation ordering problem
1845   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1846 
1847   // Make some space on stack above the current register window.
1848   // Enough to hold 8 64-bit registers.
1849   add(SP,-8*8,SP);
1850 
1851   // Save some 64-bit registers; a normal 'save' chops the heads off
1852   // of 64-bit longs in the 32-bit build.
1853   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1854   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1855   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1856   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1857 
1858   // Size of set() should stay the same
1859   patchable_set((intptr_t)real_msg, O1);
1860   // Load address to call to into O7
1861   load_ptr_contents(a, O7);
1862   // Register call to verify_oop_subroutine
1863   callr(O7, G0);
1864   delayed()->nop();
1865   // recover frame size
1866   add(SP, 8*8,SP);
1867 }
1868 
1869 // side-door communication with signalHandler in os_solaris.cpp
1870 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1871 
1872 // This macro is expanded just once; it creates shared code.  Contract:
1873 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1874 // registers, including flags.  May not use a register 'save', as this blows
1875 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1876 // call.
1877 void MacroAssembler::verify_oop_subroutine() {
1878   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1879 
1880   // Leaf call; no frame.
1881   Label succeed, fail, null_or_fail;
1882 
1883   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1884   // O0 is now the oop to be checked.  O7 is the return address.
1885   Register O0_obj = O0;
1886 
1887   // Save some more registers for temps.
1888   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1889   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1890   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1891   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1892 
1893   // Save flags
1894   Register O5_save_flags = O5;
1895   rdccr( O5_save_flags );
1896 
1897   { // count number of verifies
1898     Register O2_adr   = O2;
1899     Register O3_accum = O3;
1900     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1901   }
1902 
1903   Register O2_mask = O2;
1904   Register O3_bits = O3;
1905   Register O4_temp = O4;
1906 
1907   // mark lower end of faulting range
1908   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1909   _verify_oop_implicit_branch[0] = pc();
1910 
1911   // We can't check the mark oop because it could be in the process of
1912   // locking or unlocking while this is running.
1913   set(Universe::verify_oop_mask (), O2_mask);
1914   set(Universe::verify_oop_bits (), O3_bits);
1915 
1916   // assert((obj & oop_mask) == oop_bits);
1917   and3(O0_obj, O2_mask, O4_temp);
1918   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
1919 
1920   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1921     // the null_or_fail case is useless; must test for null separately
1922     br_null_short(O0_obj, pn, succeed);
1923   }
1924 
1925   // Check the Klass* of this object for being in the right area of memory.
1926   // Cannot do the load in the delay above slot in case O0 is null
1927   load_klass(O0_obj, O0_obj);
1928   // assert((klass != NULL)
1929   br_null_short(O0_obj, pn, fail);
1930   // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
1931 
1932   wrccr( O5_save_flags ); // Restore CCR's
1933 
1934   // mark upper end of faulting range
1935   _verify_oop_implicit_branch[1] = pc();
1936 
1937   //-----------------------
1938   // all tests pass
1939   bind(succeed);
1940 
1941   // Restore prior 64-bit registers
1942   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1943   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1944   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1945   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1946   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1947   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1948 
1949   retl();                       // Leaf return; restore prior O7 in delay slot
1950   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1951 
1952   //-----------------------
1953   bind(null_or_fail);           // nulls are less common but OK
1954   br_null(O0_obj, false, pt, succeed);
1955   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1956 
1957   //-----------------------
1958   // report failure:
1959   bind(fail);
1960   _verify_oop_implicit_branch[2] = pc();
1961 
1962   wrccr( O5_save_flags ); // Restore CCR's
1963 
1964   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1965 
1966   // stop_subroutine expects message pointer in I1.
1967   mov(I1, O1);
1968 
1969   // Restore prior 64-bit registers
1970   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1971   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1972   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1973   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1974   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1975   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1976 
1977   // factor long stop-sequence into subroutine to save space
1978   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1979 
1980   // call indirectly to solve generation ordering problem
1981   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1982   load_ptr_contents(al, O5);
1983   jmpl(O5, 0, O7);
1984   delayed()->nop();
1985 }
1986 
1987 
1988 void MacroAssembler::stop(const char* msg) {
1989   // save frame first to get O7 for return address
1990   // add one word to size in case struct is odd number of words long
1991   // It must be doubleword-aligned for storing doubles into it.
1992 
1993     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1994 
1995     // stop_subroutine expects message pointer in I1.
1996     // Size of set() should stay the same
1997     patchable_set((intptr_t)msg, O1);
1998 
1999     // factor long stop-sequence into subroutine to save space
2000     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
2001 
2002     // call indirectly to solve generation ordering problem
2003     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
2004     load_ptr_contents(a, O5);
2005     jmpl(O5, 0, O7);
2006     delayed()->nop();
2007 
2008     breakpoint_trap();   // make stop actually stop rather than writing
2009                          // unnoticeable results in the output files.
2010 
2011     // restore(); done in callee to save space!
2012 }
2013 
2014 
2015 void MacroAssembler::warn(const char* msg) {
2016   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
2017   RegistersForDebugging::save_registers(this);
2018   mov(O0, L0);
2019   // Size of set() should stay the same
2020   patchable_set((intptr_t)msg, O0);
2021   call( CAST_FROM_FN_PTR(address, warning) );
2022   delayed()->nop();
2023 //  ret();
2024 //  delayed()->restore();
2025   RegistersForDebugging::restore_registers(this, L0);
2026   restore();
2027 }
2028 
2029 
2030 void MacroAssembler::untested(const char* what) {
2031   // We must be able to turn interactive prompting off
2032   // in order to run automated test scripts on the VM
2033   // Use the flag ShowMessageBoxOnError
2034 
2035   char* b = new char[1024];
2036   sprintf(b, "untested: %s", what);
2037 
2038   if (ShowMessageBoxOnError) { STOP(b); }
2039   else                       { warn(b); }
2040 }
2041 
2042 
2043 void MacroAssembler::stop_subroutine() {
2044   RegistersForDebugging::save_registers(this);
2045 
2046   // for the sake of the debugger, stick a PC on the current frame
2047   // (this assumes that the caller has performed an extra "save")
2048   mov(I7, L7);
2049   add(O7, -7 * BytesPerInt, I7);
2050 
2051   save_frame(); // one more save to free up another O7 register
2052   mov(I0, O1); // addr of reg save area
2053 
2054   // We expect pointer to message in I1. Caller must set it up in O1
2055   mov(I1, O0); // get msg
2056   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
2057   delayed()->nop();
2058 
2059   restore();
2060 
2061   RegistersForDebugging::restore_registers(this, O0);
2062 
2063   save_frame(0);
2064   call(CAST_FROM_FN_PTR(address,breakpoint));
2065   delayed()->nop();
2066   restore();
2067 
2068   mov(L7, I7);
2069   retl();
2070   delayed()->restore(); // see stop above
2071 }
2072 
2073 
2074 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
2075   if ( ShowMessageBoxOnError ) {
2076     JavaThread* thread = JavaThread::current();
2077     JavaThreadState saved_state = thread->thread_state();
2078     thread->set_thread_state(_thread_in_vm);
2079       {
2080         // In order to get locks work, we need to fake a in_VM state
2081         ttyLocker ttyl;
2082         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
2083         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2084         BytecodeCounter::print();
2085         }
2086         if (os::message_box(msg, "Execution stopped, print registers?"))
2087           regs->print(::tty);
2088       }
2089     BREAKPOINT;
2090       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
2091   }
2092   else {
2093      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
2094   }
2095   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
2096 }
2097 
2098 #ifndef PRODUCT
2099 void MacroAssembler::test() {
2100   ResourceMark rm;
2101 
2102   CodeBuffer cb("test", 10000, 10000);
2103   MacroAssembler* a = new MacroAssembler(&cb);
2104   VM_Version::allow_all();
2105   a->test_v9();
2106   a->test_v8_onlys();
2107   VM_Version::revert();
2108 
2109   StubRoutines::Sparc::test_stop_entry()();
2110 }
2111 #endif
2112 
2113 
2114 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
2115   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
2116   Label no_extras;
2117   br( negative, true, pt, no_extras ); // if neg, clear reg
2118   delayed()->set(0, Rresult);          // annuled, so only if taken
2119   bind( no_extras );
2120 }
2121 
2122 
2123 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
2124 #ifdef _LP64
2125   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
2126 #else
2127   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
2128 #endif
2129   bclr(1, Rresult);
2130   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
2131 }
2132 
2133 
2134 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
2135   calc_frame_size(Rextra_words, Rresult);
2136   neg(Rresult);
2137   save(SP, Rresult, SP);
2138 }
2139 
2140 
2141 // ---------------------------------------------------------
2142 Assembler::RCondition cond2rcond(Assembler::Condition c) {
2143   switch (c) {
2144     /*case zero: */
2145     case Assembler::equal:        return Assembler::rc_z;
2146     case Assembler::lessEqual:    return Assembler::rc_lez;
2147     case Assembler::less:         return Assembler::rc_lz;
2148     /*case notZero:*/
2149     case Assembler::notEqual:     return Assembler::rc_nz;
2150     case Assembler::greater:      return Assembler::rc_gz;
2151     case Assembler::greaterEqual: return Assembler::rc_gez;
2152   }
2153   ShouldNotReachHere();
2154   return Assembler::rc_z;
2155 }
2156 
2157 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
2158 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
2159   tst(s1);
2160   br (c, a, p, L);
2161 }
2162 
2163 // Compares a pointer register with zero and branches on null.
2164 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2165 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2166   assert_not_delayed();
2167 #ifdef _LP64
2168   bpr( rc_z, a, p, s1, L );
2169 #else
2170   tst(s1);
2171   br ( zero, a, p, L );
2172 #endif
2173 }
2174 
2175 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2176   assert_not_delayed();
2177 #ifdef _LP64
2178   bpr( rc_nz, a, p, s1, L );
2179 #else
2180   tst(s1);
2181   br ( notZero, a, p, L );
2182 #endif
2183 }
2184 
2185 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
2186 
2187 // Compare integer (32 bit) values (icc only).
2188 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
2189                                       Predict p, Label& L) {
2190   assert_not_delayed();
2191   if (use_cbcond(L)) {
2192     Assembler::cbcond(c, icc, s1, s2, L);
2193   } else {
2194     cmp(s1, s2);
2195     br(c, false, p, L);
2196     delayed()->nop();
2197   }
2198 }
2199 
2200 // Compare integer (32 bit) values (icc only).
2201 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
2202                                       Predict p, Label& L) {
2203   assert_not_delayed();
2204   if (is_simm(simm13a,5) && use_cbcond(L)) {
2205     Assembler::cbcond(c, icc, s1, simm13a, L);
2206   } else {
2207     cmp(s1, simm13a);
2208     br(c, false, p, L);
2209     delayed()->nop();
2210   }
2211 }
2212 
2213 // Branch that tests xcc in LP64 and icc in !LP64
2214 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
2215                                        Predict p, Label& L) {
2216   assert_not_delayed();
2217   if (use_cbcond(L)) {
2218     Assembler::cbcond(c, ptr_cc, s1, s2, L);
2219   } else {
2220     cmp(s1, s2);
2221     brx(c, false, p, L);
2222     delayed()->nop();
2223   }
2224 }
2225 
2226 // Branch that tests xcc in LP64 and icc in !LP64
2227 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
2228                                        Predict p, Label& L) {
2229   assert_not_delayed();
2230   if (is_simm(simm13a,5) && use_cbcond(L)) {
2231     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
2232   } else {
2233     cmp(s1, simm13a);
2234     brx(c, false, p, L);
2235     delayed()->nop();
2236   }
2237 }
2238 
2239 // Short branch version for compares a pointer with zero.
2240 
2241 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
2242   assert_not_delayed();
2243   if (use_cbcond(L)) {
2244     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
2245     return;
2246   }
2247   br_null(s1, false, p, L);
2248   delayed()->nop();
2249 }
2250 
2251 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
2252   assert_not_delayed();
2253   if (use_cbcond(L)) {
2254     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
2255     return;
2256   }
2257   br_notnull(s1, false, p, L);
2258   delayed()->nop();
2259 }
2260 
2261 // Unconditional short branch
2262 void MacroAssembler::ba_short(Label& L) {
2263   if (use_cbcond(L)) {
2264     Assembler::cbcond(equal, icc, G0, G0, L);
2265     return;
2266   }
2267   br(always, false, pt, L);
2268   delayed()->nop();
2269 }
2270 
2271 // instruction sequences factored across compiler & interpreter
2272 
2273 
2274 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2275                            Register Rb_hi, Register Rb_low,
2276                            Register Rresult) {
2277 
2278   Label check_low_parts, done;
2279 
2280   cmp(Ra_hi, Rb_hi );  // compare hi parts
2281   br(equal, true, pt, check_low_parts);
2282   delayed()->cmp(Ra_low, Rb_low); // test low parts
2283 
2284   // And, with an unsigned comparison, it does not matter if the numbers
2285   // are negative or not.
2286   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2287   // The second one is bigger (unsignedly).
2288 
2289   // Other notes:  The first move in each triplet can be unconditional
2290   // (and therefore probably prefetchable).
2291   // And the equals case for the high part does not need testing,
2292   // since that triplet is reached only after finding the high halves differ.
2293 
2294   if (VM_Version::v9_instructions_work()) {
2295     mov(-1, Rresult);
2296     ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
2297   } else {
2298     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
2299     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2300   }
2301 
2302   bind( check_low_parts );
2303 
2304   if (VM_Version::v9_instructions_work()) {
2305     mov(                               -1, Rresult);
2306     movcc(equal,           false, icc,  0, Rresult);
2307     movcc(greaterUnsigned, false, icc,  1, Rresult);
2308   } else {
2309     set(-1, Rresult);
2310     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
2311     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2312   }
2313   bind( done );
2314 }
2315 
2316 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2317   subcc(  G0, Rlow, Rlow );
2318   subc(   G0, Rhi,  Rhi  );
2319 }
2320 
2321 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
2322                            Register Rcount,
2323                            Register Rout_high, Register Rout_low,
2324                            Register Rtemp ) {
2325 
2326 
2327   Register Ralt_count = Rtemp;
2328   Register Rxfer_bits = Rtemp;
2329 
2330   assert( Ralt_count != Rin_high
2331       &&  Ralt_count != Rin_low
2332       &&  Ralt_count != Rcount
2333       &&  Rxfer_bits != Rin_low
2334       &&  Rxfer_bits != Rin_high
2335       &&  Rxfer_bits != Rcount
2336       &&  Rxfer_bits != Rout_low
2337       &&  Rout_low   != Rin_high,
2338         "register alias checks");
2339 
2340   Label big_shift, done;
2341 
2342   // This code can be optimized to use the 64 bit shifts in V9.
2343   // Here we use the 32 bit shifts.
2344 
2345   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
2346   subcc(Rcount,   31, Ralt_count);
2347   br(greater, true, pn, big_shift);
2348   delayed()->dec(Ralt_count);
2349 
2350   // shift < 32 bits, Ralt_count = Rcount-31
2351 
2352   // We get the transfer bits by shifting right by 32-count the low
2353   // register. This is done by shifting right by 31-count and then by one
2354   // more to take care of the special (rare) case where count is zero
2355   // (shifting by 32 would not work).
2356 
2357   neg(Ralt_count);
2358 
2359   // The order of the next two instructions is critical in the case where
2360   // Rin and Rout are the same and should not be reversed.
2361 
2362   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
2363   if (Rcount != Rout_low) {
2364     sll(Rin_low, Rcount, Rout_low); // low half
2365   }
2366   sll(Rin_high, Rcount, Rout_high);
2367   if (Rcount == Rout_low) {
2368     sll(Rin_low, Rcount, Rout_low); // low half
2369   }
2370   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
2371   ba(done);
2372   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
2373 
2374   // shift >= 32 bits, Ralt_count = Rcount-32
2375   bind(big_shift);
2376   sll(Rin_low, Ralt_count, Rout_high  );
2377   clr(Rout_low);
2378 
2379   bind(done);
2380 }
2381 
2382 
2383 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
2384                            Register Rcount,
2385                            Register Rout_high, Register Rout_low,
2386                            Register Rtemp ) {
2387 
2388   Register Ralt_count = Rtemp;
2389   Register Rxfer_bits = Rtemp;
2390 
2391   assert( Ralt_count != Rin_high
2392       &&  Ralt_count != Rin_low
2393       &&  Ralt_count != Rcount
2394       &&  Rxfer_bits != Rin_low
2395       &&  Rxfer_bits != Rin_high
2396       &&  Rxfer_bits != Rcount
2397       &&  Rxfer_bits != Rout_high
2398       &&  Rout_high  != Rin_low,
2399         "register alias checks");
2400 
2401   Label big_shift, done;
2402 
2403   // This code can be optimized to use the 64 bit shifts in V9.
2404   // Here we use the 32 bit shifts.
2405 
2406   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
2407   subcc(Rcount,   31, Ralt_count);
2408   br(greater, true, pn, big_shift);
2409   delayed()->dec(Ralt_count);
2410 
2411   // shift < 32 bits, Ralt_count = Rcount-31
2412 
2413   // We get the transfer bits by shifting left by 32-count the high
2414   // register. This is done by shifting left by 31-count and then by one
2415   // more to take care of the special (rare) case where count is zero
2416   // (shifting by 32 would not work).
2417 
2418   neg(Ralt_count);
2419   if (Rcount != Rout_low) {
2420     srl(Rin_low, Rcount, Rout_low);
2421   }
2422 
2423   // The order of the next two instructions is critical in the case where
2424   // Rin and Rout are the same and should not be reversed.
2425 
2426   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
2427   sra(Rin_high,     Rcount, Rout_high ); // high half
2428   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
2429   if (Rcount == Rout_low) {
2430     srl(Rin_low, Rcount, Rout_low);
2431   }
2432   ba(done);
2433   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
2434 
2435   // shift >= 32 bits, Ralt_count = Rcount-32
2436   bind(big_shift);
2437 
2438   sra(Rin_high, Ralt_count, Rout_low);
2439   sra(Rin_high,         31, Rout_high); // sign into hi
2440 
2441   bind( done );
2442 }
2443 
2444 
2445 
2446 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
2447                             Register Rcount,
2448                             Register Rout_high, Register Rout_low,
2449                             Register Rtemp ) {
2450 
2451   Register Ralt_count = Rtemp;
2452   Register Rxfer_bits = Rtemp;
2453 
2454   assert( Ralt_count != Rin_high
2455       &&  Ralt_count != Rin_low
2456       &&  Ralt_count != Rcount
2457       &&  Rxfer_bits != Rin_low
2458       &&  Rxfer_bits != Rin_high
2459       &&  Rxfer_bits != Rcount
2460       &&  Rxfer_bits != Rout_high
2461       &&  Rout_high  != Rin_low,
2462         "register alias checks");
2463 
2464   Label big_shift, done;
2465 
2466   // This code can be optimized to use the 64 bit shifts in V9.
2467   // Here we use the 32 bit shifts.
2468 
2469   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
2470   subcc(Rcount,   31, Ralt_count);
2471   br(greater, true, pn, big_shift);
2472   delayed()->dec(Ralt_count);
2473 
2474   // shift < 32 bits, Ralt_count = Rcount-31
2475 
2476   // We get the transfer bits by shifting left by 32-count the high
2477   // register. This is done by shifting left by 31-count and then by one
2478   // more to take care of the special (rare) case where count is zero
2479   // (shifting by 32 would not work).
2480 
2481   neg(Ralt_count);
2482   if (Rcount != Rout_low) {
2483     srl(Rin_low, Rcount, Rout_low);
2484   }
2485 
2486   // The order of the next two instructions is critical in the case where
2487   // Rin and Rout are the same and should not be reversed.
2488 
2489   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
2490   srl(Rin_high,     Rcount, Rout_high ); // high half
2491   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
2492   if (Rcount == Rout_low) {
2493     srl(Rin_low, Rcount, Rout_low);
2494   }
2495   ba(done);
2496   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
2497 
2498   // shift >= 32 bits, Ralt_count = Rcount-32
2499   bind(big_shift);
2500 
2501   srl(Rin_high, Ralt_count, Rout_low);
2502   clr(Rout_high);
2503 
2504   bind( done );
2505 }
2506 
2507 #ifdef _LP64
2508 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2509   cmp(Ra, Rb);
2510   mov(-1, Rresult);
2511   movcc(equal,   false, xcc,  0, Rresult);
2512   movcc(greater, false, xcc,  1, Rresult);
2513 }
2514 #endif
2515 
2516 
2517 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
2518   switch (size_in_bytes) {
2519   case  8:  ld_long(src, dst); break;
2520   case  4:  ld(     src, dst); break;
2521   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
2522   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
2523   default:  ShouldNotReachHere();
2524   }
2525 }
2526 
2527 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
2528   switch (size_in_bytes) {
2529   case  8:  st_long(src, dst); break;
2530   case  4:  st(     src, dst); break;
2531   case  2:  sth(    src, dst); break;
2532   case  1:  stb(    src, dst); break;
2533   default:  ShouldNotReachHere();
2534   }
2535 }
2536 
2537 
2538 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2539                                 FloatRegister Fa, FloatRegister Fb,
2540                                 Register Rresult) {
2541 
2542   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2543 
2544   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
2545   Condition eq =                          f_equal;
2546   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
2547 
2548   if (VM_Version::v9_instructions_work()) {
2549 
2550     mov(-1, Rresult);
2551     movcc(eq, true, fcc0, 0, Rresult);
2552     movcc(gt, true, fcc0, 1, Rresult);
2553 
2554   } else {
2555     Label done;
2556 
2557     set( -1, Rresult );
2558     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2559     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
2560     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
2561 
2562     bind (done);
2563   }
2564 }
2565 
2566 
2567 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2568 {
2569   if (VM_Version::v9_instructions_work()) {
2570     Assembler::fneg(w, s, d);
2571   } else {
2572     if (w == FloatRegisterImpl::S) {
2573       Assembler::fneg(w, s, d);
2574     } else if (w == FloatRegisterImpl::D) {
2575       // number() does a sanity check on the alignment.
2576       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2577         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2578 
2579       Assembler::fneg(FloatRegisterImpl::S, s, d);
2580       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2581     } else {
2582       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2583 
2584       // number() does a sanity check on the alignment.
2585       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2586         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2587 
2588       Assembler::fneg(FloatRegisterImpl::S, s, d);
2589       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2590       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2591       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2592     }
2593   }
2594 }
2595 
2596 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2597 {
2598   if (VM_Version::v9_instructions_work()) {
2599     Assembler::fmov(w, s, d);
2600   } else {
2601     if (w == FloatRegisterImpl::S) {
2602       Assembler::fmov(w, s, d);
2603     } else if (w == FloatRegisterImpl::D) {
2604       // number() does a sanity check on the alignment.
2605       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2606         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2607 
2608       Assembler::fmov(FloatRegisterImpl::S, s, d);
2609       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2610     } else {
2611       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2612 
2613       // number() does a sanity check on the alignment.
2614       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2615         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2616 
2617       Assembler::fmov(FloatRegisterImpl::S, s, d);
2618       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2619       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2620       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2621     }
2622   }
2623 }
2624 
2625 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2626 {
2627   if (VM_Version::v9_instructions_work()) {
2628     Assembler::fabs(w, s, d);
2629   } else {
2630     if (w == FloatRegisterImpl::S) {
2631       Assembler::fabs(w, s, d);
2632     } else if (w == FloatRegisterImpl::D) {
2633       // number() does a sanity check on the alignment.
2634       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2635         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2636 
2637       Assembler::fabs(FloatRegisterImpl::S, s, d);
2638       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2639     } else {
2640       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2641 
2642       // number() does a sanity check on the alignment.
2643       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2644        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2645 
2646       Assembler::fabs(FloatRegisterImpl::S, s, d);
2647       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2648       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2649       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2650     }
2651   }
2652 }
2653 
2654 void MacroAssembler::save_all_globals_into_locals() {
2655   mov(G1,L1);
2656   mov(G2,L2);
2657   mov(G3,L3);
2658   mov(G4,L4);
2659   mov(G5,L5);
2660   mov(G6,L6);
2661   mov(G7,L7);
2662 }
2663 
2664 void MacroAssembler::restore_globals_from_locals() {
2665   mov(L1,G1);
2666   mov(L2,G2);
2667   mov(L3,G3);
2668   mov(L4,G4);
2669   mov(L5,G5);
2670   mov(L6,G6);
2671   mov(L7,G7);
2672 }
2673 
2674 // Use for 64 bit operation.
2675 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2676 {
2677   // store ptr_reg as the new top value
2678 #ifdef _LP64
2679   casx(top_ptr_reg, top_reg, ptr_reg);
2680 #else
2681   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2682 #endif // _LP64
2683 }
2684 
2685 // [RGV] This routine does not handle 64 bit operations.
2686 //       use casx_under_lock() or casx directly!!!
2687 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2688 {
2689   // store ptr_reg as the new top value
2690   if (VM_Version::v9_instructions_work()) {
2691     cas(top_ptr_reg, top_reg, ptr_reg);
2692   } else {
2693 
2694     // If the register is not an out nor global, it is not visible
2695     // after the save.  Allocate a register for it, save its
2696     // value in the register save area (the save may not flush
2697     // registers to the save area).
2698 
2699     Register top_ptr_reg_after_save;
2700     Register top_reg_after_save;
2701     Register ptr_reg_after_save;
2702 
2703     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2704       top_ptr_reg_after_save = top_ptr_reg->after_save();
2705     } else {
2706       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2707       top_ptr_reg_after_save = L0;
2708       st(top_ptr_reg, reg_save_addr);
2709     }
2710 
2711     if (top_reg->is_out() || top_reg->is_global()) {
2712       top_reg_after_save = top_reg->after_save();
2713     } else {
2714       Address reg_save_addr = top_reg->address_in_saved_window();
2715       top_reg_after_save = L1;
2716       st(top_reg, reg_save_addr);
2717     }
2718 
2719     if (ptr_reg->is_out() || ptr_reg->is_global()) {
2720       ptr_reg_after_save = ptr_reg->after_save();
2721     } else {
2722       Address reg_save_addr = ptr_reg->address_in_saved_window();
2723       ptr_reg_after_save = L2;
2724       st(ptr_reg, reg_save_addr);
2725     }
2726 
2727     const Register& lock_reg = L3;
2728     const Register& lock_ptr_reg = L4;
2729     const Register& value_reg = L5;
2730     const Register& yield_reg = L6;
2731     const Register& yieldall_reg = L7;
2732 
2733     save_frame();
2734 
2735     if (top_ptr_reg_after_save == L0) {
2736       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2737     }
2738 
2739     if (top_reg_after_save == L1) {
2740       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2741     }
2742 
2743     if (ptr_reg_after_save == L2) {
2744       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2745     }
2746 
2747     Label(retry_get_lock);
2748     Label(not_same);
2749     Label(dont_yield);
2750 
2751     assert(lock_addr, "lock_address should be non null for v8");
2752     set((intptr_t)lock_addr, lock_ptr_reg);
2753     // Initialize yield counter
2754     mov(G0,yield_reg);
2755     mov(G0, yieldall_reg);
2756     set(StubRoutines::Sparc::locked, lock_reg);
2757 
2758     bind(retry_get_lock);
2759     cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
2760 
2761     if(use_call_vm) {
2762       Untested("Need to verify global reg consistancy");
2763       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2764     } else {
2765       // Save the regs and make space for a C call
2766       save(SP, -96, SP);
2767       save_all_globals_into_locals();
2768       call(CAST_FROM_FN_PTR(address,os::yield_all));
2769       delayed()->mov(yieldall_reg, O0);
2770       restore_globals_from_locals();
2771       restore();
2772     }
2773 
2774     // reset the counter
2775     mov(G0,yield_reg);
2776     add(yieldall_reg, 1, yieldall_reg);
2777 
2778     bind(dont_yield);
2779     // try to get lock
2780     swap(lock_ptr_reg, 0, lock_reg);
2781 
2782     // did we get the lock?
2783     cmp(lock_reg, StubRoutines::Sparc::unlocked);
2784     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2785     delayed()->add(yield_reg,1,yield_reg);
2786 
2787     // yes, got lock.  do we have the same top?
2788     ld(top_ptr_reg_after_save, 0, value_reg);
2789     cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
2790 
2791     // yes, same top.
2792     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2793     membar(Assembler::StoreStore);
2794 
2795     bind(not_same);
2796     mov(value_reg, ptr_reg_after_save);
2797     st(lock_reg, lock_ptr_reg, 0); // unlock
2798 
2799     restore();
2800   }
2801 }
2802 
2803 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2804                                                       Register tmp,
2805                                                       int offset) {
2806   intptr_t value = *delayed_value_addr;
2807   if (value != 0)
2808     return RegisterOrConstant(value + offset);
2809 
2810   // load indirectly to solve generation ordering problem
2811   AddressLiteral a(delayed_value_addr);
2812   load_ptr_contents(a, tmp);
2813 
2814 #ifdef ASSERT
2815   tst(tmp);
2816   breakpoint_trap(zero, xcc);
2817 #endif
2818 
2819   if (offset != 0)
2820     add(tmp, offset, tmp);
2821 
2822   return RegisterOrConstant(tmp);
2823 }
2824 
2825 
2826 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2827   assert(d.register_or_noreg() != G0, "lost side effect");
2828   if ((s2.is_constant() && s2.as_constant() == 0) ||
2829       (s2.is_register() && s2.as_register() == G0)) {
2830     // Do nothing, just move value.
2831     if (s1.is_register()) {
2832       if (d.is_constant())  d = temp;
2833       mov(s1.as_register(), d.as_register());
2834       return d;
2835     } else {
2836       return s1;
2837     }
2838   }
2839 
2840   if (s1.is_register()) {
2841     assert_different_registers(s1.as_register(), temp);
2842     if (d.is_constant())  d = temp;
2843     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2844     return d;
2845   } else {
2846     if (s2.is_register()) {
2847       assert_different_registers(s2.as_register(), temp);
2848       if (d.is_constant())  d = temp;
2849       set(s1.as_constant(), temp);
2850       andn(temp, s2.as_register(), d.as_register());
2851       return d;
2852     } else {
2853       intptr_t res = s1.as_constant() & ~s2.as_constant();
2854       return res;
2855     }
2856   }
2857 }
2858 
2859 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2860   assert(d.register_or_noreg() != G0, "lost side effect");
2861   if ((s2.is_constant() && s2.as_constant() == 0) ||
2862       (s2.is_register() && s2.as_register() == G0)) {
2863     // Do nothing, just move value.
2864     if (s1.is_register()) {
2865       if (d.is_constant())  d = temp;
2866       mov(s1.as_register(), d.as_register());
2867       return d;
2868     } else {
2869       return s1;
2870     }
2871   }
2872 
2873   if (s1.is_register()) {
2874     assert_different_registers(s1.as_register(), temp);
2875     if (d.is_constant())  d = temp;
2876     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2877     return d;
2878   } else {
2879     if (s2.is_register()) {
2880       assert_different_registers(s2.as_register(), temp);
2881       if (d.is_constant())  d = temp;
2882       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2883       return d;
2884     } else {
2885       intptr_t res = s1.as_constant() + s2.as_constant();
2886       return res;
2887     }
2888   }
2889 }
2890 
2891 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2892   assert(d.register_or_noreg() != G0, "lost side effect");
2893   if (!is_simm13(s2.constant_or_zero()))
2894     s2 = (s2.as_constant() & 0xFF);
2895   if ((s2.is_constant() && s2.as_constant() == 0) ||
2896       (s2.is_register() && s2.as_register() == G0)) {
2897     // Do nothing, just move value.
2898     if (s1.is_register()) {
2899       if (d.is_constant())  d = temp;
2900       mov(s1.as_register(), d.as_register());
2901       return d;
2902     } else {
2903       return s1;
2904     }
2905   }
2906 
2907   if (s1.is_register()) {
2908     assert_different_registers(s1.as_register(), temp);
2909     if (d.is_constant())  d = temp;
2910     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2911     return d;
2912   } else {
2913     if (s2.is_register()) {
2914       assert_different_registers(s2.as_register(), temp);
2915       if (d.is_constant())  d = temp;
2916       set(s1.as_constant(), temp);
2917       sll_ptr(temp, s2.as_register(), d.as_register());
2918       return d;
2919     } else {
2920       intptr_t res = s1.as_constant() << s2.as_constant();
2921       return res;
2922     }
2923   }
2924 }
2925 
2926 
2927 // Look up the method for a megamorphic invokeinterface call.
2928 // The target method is determined by <intf_klass, itable_index>.
2929 // The receiver klass is in recv_klass.
2930 // On success, the result will be in method_result, and execution falls through.
2931 // On failure, execution transfers to the given label.
2932 void MacroAssembler::lookup_interface_method(Register recv_klass,
2933                                              Register intf_klass,
2934                                              RegisterOrConstant itable_index,
2935                                              Register method_result,
2936                                              Register scan_temp,
2937                                              Register sethi_temp,
2938                                              Label& L_no_such_interface) {
2939   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2940   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2941          "caller must use same register for non-constant itable index as for method");
2942 
2943   Label L_no_such_interface_restore;
2944   bool did_save = false;
2945   if (scan_temp == noreg || sethi_temp == noreg) {
2946     Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
2947     Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
2948     assert(method_result->is_global(), "must be able to return value");
2949     scan_temp  = L2;
2950     sethi_temp = L3;
2951     save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
2952     recv_klass = recv_2;
2953     intf_klass = intf_2;
2954     did_save = true;
2955   }
2956 
2957   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2958   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
2959   int scan_step   = itableOffsetEntry::size() * wordSize;
2960   int vte_size    = vtableEntry::size() * wordSize;
2961 
2962   lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
2963   // %%% We should store the aligned, prescaled offset in the klassoop.
2964   // Then the next several instructions would fold away.
2965 
2966   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2967   int itb_offset = vtable_base;
2968   if (round_to_unit != 0) {
2969     // hoist first instruction of round_to(scan_temp, BytesPerLong):
2970     itb_offset += round_to_unit - wordSize;
2971   }
2972   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2973   sll(scan_temp, itb_scale,  scan_temp);
2974   add(scan_temp, itb_offset, scan_temp);
2975   if (round_to_unit != 0) {
2976     // Round up to align_object_offset boundary
2977     // see code for InstanceKlass::start_of_itable!
2978     // Was: round_to(scan_temp, BytesPerLong);
2979     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2980     and3(scan_temp, -round_to_unit, scan_temp);
2981   }
2982   add(recv_klass, scan_temp, scan_temp);
2983 
2984   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2985   RegisterOrConstant itable_offset = itable_index;
2986   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2987   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2988   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2989 
2990   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2991   //   if (scan->interface() == intf) {
2992   //     result = (klass + scan->offset() + itable_index);
2993   //   }
2994   // }
2995   Label L_search, L_found_method;
2996 
2997   for (int peel = 1; peel >= 0; peel--) {
2998     // %%%% Could load both offset and interface in one ldx, if they were
2999     // in the opposite order.  This would save a load.
3000     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
3001 
3002     // Check that this entry is non-null.  A null entry means that
3003     // the receiver class doesn't implement the interface, and wasn't the
3004     // same as when the caller was compiled.
3005     bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
3006     delayed()->cmp(method_result, intf_klass);
3007 
3008     if (peel) {
3009       brx(Assembler::equal,    false, Assembler::pt, L_found_method);
3010     } else {
3011       brx(Assembler::notEqual, false, Assembler::pn, L_search);
3012       // (invert the test to fall through to found_method...)
3013     }
3014     delayed()->add(scan_temp, scan_step, scan_temp);
3015 
3016     if (!peel)  break;
3017 
3018     bind(L_search);
3019   }
3020 
3021   bind(L_found_method);
3022 
3023   // Got a hit.
3024   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
3025   // scan_temp[-scan_step] points to the vtable offset we need
3026   ito_offset -= scan_step;
3027   lduw(scan_temp, ito_offset, scan_temp);
3028   ld_ptr(recv_klass, scan_temp, method_result);
3029 
3030   if (did_save) {
3031     Label L_done;
3032     ba(L_done);
3033     delayed()->restore();
3034 
3035     bind(L_no_such_interface_restore);
3036     ba(L_no_such_interface);
3037     delayed()->restore();
3038 
3039     bind(L_done);
3040   }
3041 }
3042 
3043 
3044 // virtual method calling
3045 void MacroAssembler::lookup_virtual_method(Register recv_klass,
3046                                            RegisterOrConstant vtable_index,
3047                                            Register method_result) {
3048   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
3049   Register sethi_temp = method_result;
3050   const int base = (InstanceKlass::vtable_start_offset() * wordSize +
3051                     // method pointer offset within the vtable entry:
3052                     vtableEntry::method_offset_in_bytes());
3053   RegisterOrConstant vtable_offset = vtable_index;
3054   // Each of the following three lines potentially generates an instruction.
3055   // But the total number of address formation instructions will always be
3056   // at most two, and will often be zero.  In any case, it will be optimal.
3057   // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
3058   // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
3059   vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
3060   vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
3061   Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
3062   ld_ptr(vtable_entry_addr, method_result);
3063 }
3064 
3065 
3066 void MacroAssembler::check_klass_subtype(Register sub_klass,
3067                                          Register super_klass,
3068                                          Register temp_reg,
3069                                          Register temp2_reg,
3070                                          Label& L_success) {
3071   Register sub_2 = sub_klass;
3072   Register sup_2 = super_klass;
3073   if (!sub_2->is_global())  sub_2 = L0;
3074   if (!sup_2->is_global())  sup_2 = L1;
3075   bool did_save = false;
3076   if (temp_reg == noreg || temp2_reg == noreg) {
3077     temp_reg = L2;
3078     temp2_reg = L3;
3079     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
3080     sub_klass = sub_2;
3081     super_klass = sup_2;
3082     did_save = true;
3083   }
3084   Label L_failure, L_pop_to_failure, L_pop_to_success;
3085   check_klass_subtype_fast_path(sub_klass, super_klass,
3086                                 temp_reg, temp2_reg,
3087                                 (did_save ? &L_pop_to_success : &L_success),
3088                                 (did_save ? &L_pop_to_failure : &L_failure), NULL);
3089 
3090   if (!did_save)
3091     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
3092   check_klass_subtype_slow_path(sub_2, sup_2,
3093                                 L2, L3, L4, L5,
3094                                 NULL, &L_pop_to_failure);
3095 
3096   // on success:
3097   bind(L_pop_to_success);
3098   restore();
3099   ba_short(L_success);
3100 
3101   // on failure:
3102   bind(L_pop_to_failure);
3103   restore();
3104   bind(L_failure);
3105 }
3106 
3107 
3108 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
3109                                                    Register super_klass,
3110                                                    Register temp_reg,
3111                                                    Register temp2_reg,
3112                                                    Label* L_success,
3113                                                    Label* L_failure,
3114                                                    Label* L_slow_path,
3115                                         RegisterOrConstant super_check_offset) {
3116   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3117   int sco_offset = in_bytes(Klass::super_check_offset_offset());
3118 
3119   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
3120   bool need_slow_path = (must_load_sco ||
3121                          super_check_offset.constant_or_zero() == sco_offset);
3122 
3123   assert_different_registers(sub_klass, super_klass, temp_reg);
3124   if (super_check_offset.is_register()) {
3125     assert_different_registers(sub_klass, super_klass, temp_reg,
3126                                super_check_offset.as_register());
3127   } else if (must_load_sco) {
3128     assert(temp2_reg != noreg, "supply either a temp or a register offset");
3129   }
3130 
3131   Label L_fallthrough;
3132   int label_nulls = 0;
3133   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
3134   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
3135   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
3136   assert(label_nulls <= 1 ||
3137          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
3138          "at most one NULL in the batch, usually");
3139 
3140   // If the pointers are equal, we are done (e.g., String[] elements).
3141   // This self-check enables sharing of secondary supertype arrays among
3142   // non-primary types such as array-of-interface.  Otherwise, each such
3143   // type would need its own customized SSA.
3144   // We move this check to the front of the fast path because many
3145   // type checks are in fact trivially successful in this manner,
3146   // so we get a nicely predicted branch right at the start of the check.
3147   cmp(super_klass, sub_klass);
3148   brx(Assembler::equal, false, Assembler::pn, *L_success);
3149   delayed()->nop();
3150 
3151   // Check the supertype display:
3152   if (must_load_sco) {
3153     // The super check offset is always positive...
3154     lduw(super_klass, sco_offset, temp2_reg);
3155     super_check_offset = RegisterOrConstant(temp2_reg);
3156     // super_check_offset is register.
3157     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
3158   }
3159   ld_ptr(sub_klass, super_check_offset, temp_reg);
3160   cmp(super_klass, temp_reg);
3161 
3162   // This check has worked decisively for primary supers.
3163   // Secondary supers are sought in the super_cache ('super_cache_addr').
3164   // (Secondary supers are interfaces and very deeply nested subtypes.)
3165   // This works in the same check above because of a tricky aliasing
3166   // between the super_cache and the primary super display elements.
3167   // (The 'super_check_addr' can address either, as the case requires.)
3168   // Note that the cache is updated below if it does not help us find
3169   // what we need immediately.
3170   // So if it was a primary super, we can just fail immediately.
3171   // Otherwise, it's the slow path for us (no success at this point).
3172 
3173   // Hacked ba(), which may only be used just before L_fallthrough.
3174 #define FINAL_JUMP(label)            \
3175   if (&(label) != &L_fallthrough) {  \
3176     ba(label);  delayed()->nop();    \
3177   }
3178 
3179   if (super_check_offset.is_register()) {
3180     brx(Assembler::equal, false, Assembler::pn, *L_success);
3181     delayed()->cmp(super_check_offset.as_register(), sc_offset);
3182 
3183     if (L_failure == &L_fallthrough) {
3184       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
3185       delayed()->nop();
3186     } else {
3187       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
3188       delayed()->nop();
3189       FINAL_JUMP(*L_slow_path);
3190     }
3191   } else if (super_check_offset.as_constant() == sc_offset) {
3192     // Need a slow path; fast failure is impossible.
3193     if (L_slow_path == &L_fallthrough) {
3194       brx(Assembler::equal, false, Assembler::pt, *L_success);
3195       delayed()->nop();
3196     } else {
3197       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
3198       delayed()->nop();
3199       FINAL_JUMP(*L_success);
3200     }
3201   } else {
3202     // No slow path; it's a fast decision.
3203     if (L_failure == &L_fallthrough) {
3204       brx(Assembler::equal, false, Assembler::pt, *L_success);
3205       delayed()->nop();
3206     } else {
3207       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
3208       delayed()->nop();
3209       FINAL_JUMP(*L_success);
3210     }
3211   }
3212 
3213   bind(L_fallthrough);
3214 
3215 #undef FINAL_JUMP
3216 }
3217 
3218 
3219 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
3220                                                    Register super_klass,
3221                                                    Register count_temp,
3222                                                    Register scan_temp,
3223                                                    Register scratch_reg,
3224                                                    Register coop_reg,
3225                                                    Label* L_success,
3226                                                    Label* L_failure) {
3227   assert_different_registers(sub_klass, super_klass,
3228                              count_temp, scan_temp, scratch_reg, coop_reg);
3229 
3230   Label L_fallthrough, L_loop;
3231   int label_nulls = 0;
3232   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
3233   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
3234   assert(label_nulls <= 1, "at most one NULL in the batch");
3235 
3236   // a couple of useful fields in sub_klass:
3237   int ss_offset = in_bytes(Klass::secondary_supers_offset());
3238   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3239 
3240   // Do a linear scan of the secondary super-klass chain.
3241   // This code is rarely used, so simplicity is a virtue here.
3242 
3243 #ifndef PRODUCT
3244   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
3245   inc_counter((address) pst_counter, count_temp, scan_temp);
3246 #endif
3247 
3248   // We will consult the secondary-super array.
3249   ld_ptr(sub_klass, ss_offset, scan_temp);
3250 
3251   Register search_key = super_klass;
3252 
3253   // Load the array length.  (Positive movl does right thing on LP64.)
3254   lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
3255 
3256   // Check for empty secondary super list
3257   tst(count_temp);
3258 
3259   // In the array of super classes elements are pointer sized.
3260   int element_size = wordSize;
3261 
3262   // Top of search loop
3263   bind(L_loop);
3264   br(Assembler::equal, false, Assembler::pn, *L_failure);
3265   delayed()->add(scan_temp, element_size, scan_temp);
3266 
3267   // Skip the array header in all array accesses.
3268   int elem_offset = Array<Klass*>::base_offset_in_bytes();
3269   elem_offset -= element_size;   // the scan pointer was pre-incremented also
3270 
3271   // Load next super to check
3272     ld_ptr( scan_temp, elem_offset, scratch_reg );
3273 
3274   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
3275   cmp(scratch_reg, search_key);
3276 
3277   // A miss means we are NOT a subtype and need to keep looping
3278   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
3279   delayed()->deccc(count_temp); // decrement trip counter in delay slot
3280 
3281   // Success.  Cache the super we found and proceed in triumph.
3282   st_ptr(super_klass, sub_klass, sc_offset);
3283 
3284   if (L_success != &L_fallthrough) {
3285     ba(*L_success);
3286     delayed()->nop();
3287   }
3288 
3289   bind(L_fallthrough);
3290 }
3291 
3292 
3293 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
3294                                                    Register temp_reg,
3295                                                    int extra_slot_offset) {
3296   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
3297   int stackElementSize = Interpreter::stackElementSize;
3298   int offset = extra_slot_offset * stackElementSize;
3299   if (arg_slot.is_constant()) {
3300     offset += arg_slot.as_constant() * stackElementSize;
3301     return offset;
3302   } else {
3303     assert(temp_reg != noreg, "must specify");
3304     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
3305     if (offset != 0)
3306       add(temp_reg, offset, temp_reg);
3307     return temp_reg;
3308   }
3309 }
3310 
3311 
3312 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
3313                                          Register temp_reg,
3314                                          int extra_slot_offset) {
3315   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
3316 }
3317 
3318 
3319 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
3320                                           Register temp_reg,
3321                                           Label& done, Label* slow_case,
3322                                           BiasedLockingCounters* counters) {
3323   assert(UseBiasedLocking, "why call this otherwise?");
3324 
3325   if (PrintBiasedLockingStatistics) {
3326     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
3327     if (counters == NULL)
3328       counters = BiasedLocking::counters();
3329   }
3330 
3331   Label cas_label;
3332 
3333   // Biased locking
3334   // See whether the lock is currently biased toward our thread and
3335   // whether the epoch is still valid
3336   // Note that the runtime guarantees sufficient alignment of JavaThread
3337   // pointers to allow age to be placed into low bits
3338   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
3339   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3340   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
3341 
3342   load_klass(obj_reg, temp_reg);
3343   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
3344   or3(G2_thread, temp_reg, temp_reg);
3345   xor3(mark_reg, temp_reg, temp_reg);
3346   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
3347   if (counters != NULL) {
3348     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
3349     // Reload mark_reg as we may need it later
3350     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
3351   }
3352   brx(Assembler::equal, true, Assembler::pt, done);
3353   delayed()->nop();
3354 
3355   Label try_revoke_bias;
3356   Label try_rebias;
3357   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3358   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3359 
3360   // At this point we know that the header has the bias pattern and
3361   // that we are not the bias owner in the current epoch. We need to
3362   // figure out more details about the state of the header in order to
3363   // know what operations can be legally performed on the object's
3364   // header.
3365 
3366   // If the low three bits in the xor result aren't clear, that means
3367   // the prototype header is no longer biased and we have to revoke
3368   // the bias on this object.
3369   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
3370   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
3371 
3372   // Biasing is still enabled for this data type. See whether the
3373   // epoch of the current bias is still valid, meaning that the epoch
3374   // bits of the mark word are equal to the epoch bits of the
3375   // prototype header. (Note that the prototype header's epoch bits
3376   // only change at a safepoint.) If not, attempt to rebias the object
3377   // toward the current thread. Note that we must be absolutely sure
3378   // that the current epoch is invalid in order to do this because
3379   // otherwise the manipulations it performs on the mark word are
3380   // illegal.
3381   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
3382   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
3383 
3384   // The epoch of the current bias is still valid but we know nothing
3385   // about the owner; it might be set or it might be clear. Try to
3386   // acquire the bias of the object using an atomic operation. If this
3387   // fails we will go in to the runtime to revoke the object's bias.
3388   // Note that we first construct the presumed unbiased header so we
3389   // don't accidentally blow away another thread's valid bias.
3390   delayed()->and3(mark_reg,
3391                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
3392                   mark_reg);
3393   or3(G2_thread, mark_reg, temp_reg);
3394   casn(mark_addr.base(), mark_reg, temp_reg);
3395   // If the biasing toward our thread failed, this means that
3396   // another thread succeeded in biasing it toward itself and we
3397   // need to revoke that bias. The revocation will occur in the
3398   // interpreter runtime in the slow case.
3399   cmp(mark_reg, temp_reg);
3400   if (counters != NULL) {
3401     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
3402   }
3403   if (slow_case != NULL) {
3404     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3405     delayed()->nop();
3406   }
3407   ba_short(done);
3408 
3409   bind(try_rebias);
3410   // At this point we know the epoch has expired, meaning that the
3411   // current "bias owner", if any, is actually invalid. Under these
3412   // circumstances _only_, we are allowed to use the current header's
3413   // value as the comparison value when doing the cas to acquire the
3414   // bias in the current epoch. In other words, we allow transfer of
3415   // the bias from one thread to another directly in this situation.
3416   //
3417   // FIXME: due to a lack of registers we currently blow away the age
3418   // bits in this situation. Should attempt to preserve them.
3419   load_klass(obj_reg, temp_reg);
3420   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
3421   or3(G2_thread, temp_reg, temp_reg);
3422   casn(mark_addr.base(), mark_reg, temp_reg);
3423   // If the biasing toward our thread failed, this means that
3424   // another thread succeeded in biasing it toward itself and we
3425   // need to revoke that bias. The revocation will occur in the
3426   // interpreter runtime in the slow case.
3427   cmp(mark_reg, temp_reg);
3428   if (counters != NULL) {
3429     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
3430   }
3431   if (slow_case != NULL) {
3432     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3433     delayed()->nop();
3434   }
3435   ba_short(done);
3436 
3437   bind(try_revoke_bias);
3438   // The prototype mark in the klass doesn't have the bias bit set any
3439   // more, indicating that objects of this data type are not supposed
3440   // to be biased any more. We are going to try to reset the mark of
3441   // this object to the prototype value and fall through to the
3442   // CAS-based locking scheme. Note that if our CAS fails, it means
3443   // that another thread raced us for the privilege of revoking the
3444   // bias of this particular object, so it's okay to continue in the
3445   // normal locking code.
3446   //
3447   // FIXME: due to a lack of registers we currently blow away the age
3448   // bits in this situation. Should attempt to preserve them.
3449   load_klass(obj_reg, temp_reg);
3450   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
3451   casn(mark_addr.base(), mark_reg, temp_reg);
3452   // Fall through to the normal CAS-based lock, because no matter what
3453   // the result of the above CAS, some thread must have succeeded in
3454   // removing the bias bit from the object's header.
3455   if (counters != NULL) {
3456     cmp(mark_reg, temp_reg);
3457     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
3458   }
3459 
3460   bind(cas_label);
3461 }
3462 
3463 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
3464                                           bool allow_delay_slot_filling) {
3465   // Check for biased locking unlock case, which is a no-op
3466   // Note: we do not have to check the thread ID for two reasons.
3467   // First, the interpreter checks for IllegalMonitorStateException at
3468   // a higher level. Second, if the bias was revoked while we held the
3469   // lock, the object could not be rebiased toward another thread, so
3470   // the bias bit would be clear.
3471   ld_ptr(mark_addr, temp_reg);
3472   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3473   cmp(temp_reg, markOopDesc::biased_lock_pattern);
3474   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
3475   delayed();
3476   if (!allow_delay_slot_filling) {
3477     nop();
3478   }
3479 }
3480 
3481 
3482 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
3483 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
3484 
3485 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
3486   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3487 }
3488 
3489 
3490 
3491 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
3492 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
3493 // The code could be tightened up considerably.
3494 //
3495 // box->dhw disposition - post-conditions at DONE_LABEL.
3496 // -   Successful inflated lock:  box->dhw != 0.
3497 //     Any non-zero value suffices.
3498 //     Consider G2_thread, rsp, boxReg, or unused_mark()
3499 // -   Successful Stack-lock: box->dhw == mark.
3500 //     box->dhw must contain the displaced mark word value
3501 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
3502 //     The slow-path fast_enter() and slow_enter() operators
3503 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
3504 // -   Biased: box->dhw is undefined
3505 //
3506 // SPARC refworkload performance - specifically jetstream and scimark - are
3507 // extremely sensitive to the size of the code emitted by compiler_lock_object
3508 // and compiler_unlock_object.  Critically, the key factor is code size, not path
3509 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
3510 // effect).
3511 
3512 
3513 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
3514                                           Register Rbox, Register Rscratch,
3515                                           BiasedLockingCounters* counters,
3516                                           bool try_bias) {
3517    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3518 
3519    verify_oop(Roop);
3520    Label done ;
3521 
3522    if (counters != NULL) {
3523      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
3524    }
3525 
3526    if (EmitSync & 1) {
3527      mov(3, Rscratch);
3528      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3529      cmp(SP, G0);
3530      return ;
3531    }
3532 
3533    if (EmitSync & 2) {
3534 
3535      // Fetch object's markword
3536      ld_ptr(mark_addr, Rmark);
3537 
3538      if (try_bias) {
3539         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3540      }
3541 
3542      // Save Rbox in Rscratch to be used for the cas operation
3543      mov(Rbox, Rscratch);
3544 
3545      // set Rmark to markOop | markOopDesc::unlocked_value
3546      or3(Rmark, markOopDesc::unlocked_value, Rmark);
3547 
3548      // Initialize the box.  (Must happen before we update the object mark!)
3549      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3550 
3551      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
3552      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3553      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
3554         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3555 
3556      // if compare/exchange succeeded we found an unlocked object and we now have locked it
3557      // hence we are done
3558      cmp(Rmark, Rscratch);
3559 #ifdef _LP64
3560      sub(Rscratch, STACK_BIAS, Rscratch);
3561 #endif
3562      brx(Assembler::equal, false, Assembler::pt, done);
3563      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
3564 
3565      // we did not find an unlocked object so see if this is a recursive case
3566      // sub(Rscratch, SP, Rscratch);
3567      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3568      andcc(Rscratch, 0xfffff003, Rscratch);
3569      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3570      bind (done);
3571      return ;
3572    }
3573 
3574    Label Egress ;
3575 
3576    if (EmitSync & 256) {
3577       Label IsInflated ;
3578 
3579       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
3580       // Triage: biased, stack-locked, neutral, inflated
3581       if (try_bias) {
3582         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3583         // Invariant: if control reaches this point in the emitted stream
3584         // then Rmark has not been modified.
3585       }
3586 
3587       // Store mark into displaced mark field in the on-stack basic-lock "box"
3588       // Critically, this must happen before the CAS
3589       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
3590       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3591       andcc(Rmark, 2, G0);
3592       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
3593       delayed()->
3594 
3595       // Try stack-lock acquisition.
3596       // Beware: the 1st instruction is in a delay slot
3597       mov(Rbox,  Rscratch);
3598       or3(Rmark, markOopDesc::unlocked_value, Rmark);
3599       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3600       casn(mark_addr.base(), Rmark, Rscratch);
3601       cmp(Rmark, Rscratch);
3602       brx(Assembler::equal, false, Assembler::pt, done);
3603       delayed()->sub(Rscratch, SP, Rscratch);
3604 
3605       // Stack-lock attempt failed - check for recursive stack-lock.
3606       // See the comments below about how we might remove this case.
3607 #ifdef _LP64
3608       sub(Rscratch, STACK_BIAS, Rscratch);
3609 #endif
3610       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3611       andcc(Rscratch, 0xfffff003, Rscratch);
3612       br(Assembler::always, false, Assembler::pt, done);
3613       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3614 
3615       bind(IsInflated);
3616       if (EmitSync & 64) {
3617          // If m->owner != null goto IsLocked
3618          // Pessimistic form: Test-and-CAS vs CAS
3619          // The optimistic form avoids RTS->RTO cache line upgrades.
3620          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3621          andcc(Rscratch, Rscratch, G0);
3622          brx(Assembler::notZero, false, Assembler::pn, done);
3623          delayed()->nop();
3624          // m->owner == null : it's unlocked.
3625       }
3626 
3627       // Try to CAS m->owner from null to Self
3628       // Invariant: if we acquire the lock then _recursions should be 0.
3629       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3630       mov(G2_thread, Rscratch);
3631       casn(Rmark, G0, Rscratch);
3632       cmp(Rscratch, G0);
3633       // Intentional fall-through into done
3634    } else {
3635       // Aggressively avoid the Store-before-CAS penalty
3636       // Defer the store into box->dhw until after the CAS
3637       Label IsInflated, Recursive ;
3638 
3639 // Anticipate CAS -- Avoid RTS->RTO upgrade
3640 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
3641 
3642       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
3643       // Triage: biased, stack-locked, neutral, inflated
3644 
3645       if (try_bias) {
3646         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3647         // Invariant: if control reaches this point in the emitted stream
3648         // then Rmark has not been modified.
3649       }
3650       andcc(Rmark, 2, G0);
3651       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
3652       delayed()->                         // Beware - dangling delay-slot
3653 
3654       // Try stack-lock acquisition.
3655       // Transiently install BUSY (0) encoding in the mark word.
3656       // if the CAS of 0 into the mark was successful then we execute:
3657       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
3658       //   ST obj->mark = box    -- overwrite transient 0 value
3659       // This presumes TSO, of course.
3660 
3661       mov(0, Rscratch);
3662       or3(Rmark, markOopDesc::unlocked_value, Rmark);
3663       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3664       casn(mark_addr.base(), Rmark, Rscratch);
3665 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
3666       cmp(Rscratch, Rmark);
3667       brx(Assembler::notZero, false, Assembler::pn, Recursive);
3668       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3669       if (counters != NULL) {
3670         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3671       }
3672       ba(done);
3673       delayed()->st_ptr(Rbox, mark_addr);
3674 
3675       bind(Recursive);
3676       // Stack-lock attempt failed - check for recursive stack-lock.
3677       // Tests show that we can remove the recursive case with no impact
3678       // on refworkload 0.83.  If we need to reduce the size of the code
3679       // emitted by compiler_lock_object() the recursive case is perfect
3680       // candidate.
3681       //
3682       // A more extreme idea is to always inflate on stack-lock recursion.
3683       // This lets us eliminate the recursive checks in compiler_lock_object
3684       // and compiler_unlock_object and the (box->dhw == 0) encoding.
3685       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
3686       // and showed a performance *increase*.  In the same experiment I eliminated
3687       // the fast-path stack-lock code from the interpreter and always passed
3688       // control to the "slow" operators in synchronizer.cpp.
3689 
3690       // RScratch contains the fetched obj->mark value from the failed CASN.
3691 #ifdef _LP64
3692       sub(Rscratch, STACK_BIAS, Rscratch);
3693 #endif
3694       sub(Rscratch, SP, Rscratch);
3695       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3696       andcc(Rscratch, 0xfffff003, Rscratch);
3697       if (counters != NULL) {
3698         // Accounting needs the Rscratch register
3699         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3700         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3701         ba_short(done);
3702       } else {
3703         ba(done);
3704         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3705       }
3706 
3707       bind   (IsInflated);
3708       if (EmitSync & 64) {
3709          // If m->owner != null goto IsLocked
3710          // Test-and-CAS vs CAS
3711          // Pessimistic form avoids futile (doomed) CAS attempts
3712          // The optimistic form avoids RTS->RTO cache line upgrades.
3713          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3714          andcc(Rscratch, Rscratch, G0);
3715          brx(Assembler::notZero, false, Assembler::pn, done);
3716          delayed()->nop();
3717          // m->owner == null : it's unlocked.
3718       }
3719 
3720       // Try to CAS m->owner from null to Self
3721       // Invariant: if we acquire the lock then _recursions should be 0.
3722       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3723       mov(G2_thread, Rscratch);
3724       casn(Rmark, G0, Rscratch);
3725       cmp(Rscratch, G0);
3726       // ST box->displaced_header = NonZero.
3727       // Any non-zero value suffices:
3728       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
3729       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
3730       // Intentional fall-through into done
3731    }
3732 
3733    bind   (done);
3734 }
3735 
3736 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
3737                                             Register Rbox, Register Rscratch,
3738                                             bool try_bias) {
3739    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3740 
3741    Label done ;
3742 
3743    if (EmitSync & 4) {
3744      cmp(SP, G0);
3745      return ;
3746    }
3747 
3748    if (EmitSync & 8) {
3749      if (try_bias) {
3750         biased_locking_exit(mark_addr, Rscratch, done);
3751      }
3752 
3753      // Test first if it is a fast recursive unlock
3754      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3755      br_null_short(Rmark, Assembler::pt, done);
3756 
3757      // Check if it is still a light weight lock, this is is true if we see
3758      // the stack address of the basicLock in the markOop of the object
3759      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3760      casx_under_lock(mark_addr.base(), Rbox, Rmark,
3761        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3762      ba(done);
3763      delayed()->cmp(Rbox, Rmark);
3764      bind(done);
3765      return ;
3766    }
3767 
3768    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3769    // is too large performance rolls abruptly off a cliff.
3770    // This could be related to inlining policies, code cache management, or
3771    // I$ effects.
3772    Label LStacked ;
3773 
3774    if (try_bias) {
3775       // TODO: eliminate redundant LDs of obj->mark
3776       biased_locking_exit(mark_addr, Rscratch, done);
3777    }
3778 
3779    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
3780    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3781    andcc(Rscratch, Rscratch, G0);
3782    brx(Assembler::zero, false, Assembler::pn, done);
3783    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
3784    andcc(Rmark, 2, G0);
3785    brx(Assembler::zero, false, Assembler::pt, LStacked);
3786    delayed()->nop();
3787 
3788    // It's inflated
3789    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3790    // the ST of 0 into _owner which releases the lock.  This prevents loads
3791    // and stores within the critical section from reordering (floating)
3792    // past the store that releases the lock.  But TSO is a strong memory model
3793    // and that particular flavor of barrier is a noop, so we can safely elide it.
3794    // Note that we use 1-0 locking by default for the inflated case.  We
3795    // close the resultant (and rare) race by having contented threads in
3796    // monitorenter periodically poll _owner.
3797    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3798    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
3799    xor3(Rscratch, G2_thread, Rscratch);
3800    orcc(Rbox, Rscratch, Rbox);
3801    brx(Assembler::notZero, false, Assembler::pn, done);
3802    delayed()->
3803    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
3804    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
3805    orcc(Rbox, Rscratch, G0);
3806    if (EmitSync & 65536) {
3807       Label LSucc ;
3808       brx(Assembler::notZero, false, Assembler::pn, LSucc);
3809       delayed()->nop();
3810       ba(done);
3811       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3812 
3813       bind(LSucc);
3814       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3815       if (os::is_MP()) { membar (StoreLoad); }
3816       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
3817       andcc(Rscratch, Rscratch, G0);
3818       brx(Assembler::notZero, false, Assembler::pt, done);
3819       delayed()->andcc(G0, G0, G0);
3820       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3821       mov(G2_thread, Rscratch);
3822       casn(Rmark, G0, Rscratch);
3823       // invert icc.zf and goto done
3824       br_notnull(Rscratch, false, Assembler::pt, done);
3825       delayed()->cmp(G0, G0);
3826       ba(done);
3827       delayed()->cmp(G0, 1);
3828    } else {
3829       brx(Assembler::notZero, false, Assembler::pn, done);
3830       delayed()->nop();
3831       ba(done);
3832       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3833    }
3834 
3835    bind   (LStacked);
3836    // Consider: we could replace the expensive CAS in the exit
3837    // path with a simple ST of the displaced mark value fetched from
3838    // the on-stack basiclock box.  That admits a race where a thread T2
3839    // in the slow lock path -- inflating with monitor M -- could race a
3840    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3841    // More precisely T1 in the stack-lock unlock path could "stomp" the
3842    // inflated mark value M installed by T2, resulting in an orphan
3843    // object monitor M and T2 becoming stranded.  We can remedy that situation
3844    // by having T2 periodically poll the object's mark word using timed wait
3845    // operations.  If T2 discovers that a stomp has occurred it vacates
3846    // the monitor M and wakes any other threads stranded on the now-orphan M.
3847    // In addition the monitor scavenger, which performs deflation,
3848    // would also need to check for orpan monitors and stranded threads.
3849    //
3850    // Finally, inflation is also used when T2 needs to assign a hashCode
3851    // to O and O is stack-locked by T1.  The "stomp" race could cause
3852    // an assigned hashCode value to be lost.  We can avoid that condition
3853    // and provide the necessary hashCode stability invariants by ensuring
3854    // that hashCode generation is idempotent between copying GCs.
3855    // For example we could compute the hashCode of an object O as
3856    // O's heap address XOR some high quality RNG value that is refreshed
3857    // at GC-time.  The monitor scavenger would install the hashCode
3858    // found in any orphan monitors.  Again, the mechanism admits a
3859    // lost-update "stomp" WAW race but detects and recovers as needed.
3860    //
3861    // A prototype implementation showed excellent results, although
3862    // the scavenger and timeout code was rather involved.
3863 
3864    casn(mark_addr.base(), Rbox, Rscratch);
3865    cmp(Rbox, Rscratch);
3866    // Intentional fall through into done ...
3867 
3868    bind(done);
3869 }
3870 
3871 
3872 
3873 void MacroAssembler::print_CPU_state() {
3874   // %%%%% need to implement this
3875 }
3876 
3877 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3878   // %%%%% need to implement this
3879 }
3880 
3881 void MacroAssembler::push_IU_state() {
3882   // %%%%% need to implement this
3883 }
3884 
3885 
3886 void MacroAssembler::pop_IU_state() {
3887   // %%%%% need to implement this
3888 }
3889 
3890 
3891 void MacroAssembler::push_FPU_state() {
3892   // %%%%% need to implement this
3893 }
3894 
3895 
3896 void MacroAssembler::pop_FPU_state() {
3897   // %%%%% need to implement this
3898 }
3899 
3900 
3901 void MacroAssembler::push_CPU_state() {
3902   // %%%%% need to implement this
3903 }
3904 
3905 
3906 void MacroAssembler::pop_CPU_state() {
3907   // %%%%% need to implement this
3908 }
3909 
3910 
3911 
3912 void MacroAssembler::verify_tlab() {
3913 #ifdef ASSERT
3914   if (UseTLAB && VerifyOops) {
3915     Label next, next2, ok;
3916     Register t1 = L0;
3917     Register t2 = L1;
3918     Register t3 = L2;
3919 
3920     save_frame(0);
3921     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3922     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3923     or3(t1, t2, t3);
3924     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
3925     STOP("assert(top >= start)");
3926     should_not_reach_here();
3927 
3928     bind(next);
3929     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3930     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3931     or3(t3, t2, t3);
3932     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
3933     STOP("assert(top <= end)");
3934     should_not_reach_here();
3935 
3936     bind(next2);
3937     and3(t3, MinObjAlignmentInBytesMask, t3);
3938     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
3939     STOP("assert(aligned)");
3940     should_not_reach_here();
3941 
3942     bind(ok);
3943     restore();
3944   }
3945 #endif
3946 }
3947 
3948 
3949 void MacroAssembler::eden_allocate(
3950   Register obj,                        // result: pointer to object after successful allocation
3951   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3952   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3953   Register t1,                         // temp register
3954   Register t2,                         // temp register
3955   Label&   slow_case                   // continuation point if fast allocation fails
3956 ){
3957   // make sure arguments make sense
3958   assert_different_registers(obj, var_size_in_bytes, t1, t2);
3959   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3960   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3961 
3962   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3963     // No allocation in the shared eden.
3964     ba_short(slow_case);
3965   } else {
3966     // get eden boundaries
3967     // note: we need both top & top_addr!
3968     const Register top_addr = t1;
3969     const Register end      = t2;
3970 
3971     CollectedHeap* ch = Universe::heap();
3972     set((intx)ch->top_addr(), top_addr);
3973     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3974     ld_ptr(top_addr, delta, end);
3975     ld_ptr(top_addr, 0, obj);
3976 
3977     // try to allocate
3978     Label retry;
3979     bind(retry);
3980 #ifdef ASSERT
3981     // make sure eden top is properly aligned
3982     {
3983       Label L;
3984       btst(MinObjAlignmentInBytesMask, obj);
3985       br(Assembler::zero, false, Assembler::pt, L);
3986       delayed()->nop();
3987       STOP("eden top is not properly aligned");
3988       bind(L);
3989     }
3990 #endif // ASSERT
3991     const Register free = end;
3992     sub(end, obj, free);                                   // compute amount of free space
3993     if (var_size_in_bytes->is_valid()) {
3994       // size is unknown at compile time
3995       cmp(free, var_size_in_bytes);
3996       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3997       delayed()->add(obj, var_size_in_bytes, end);
3998     } else {
3999       // size is known at compile time
4000       cmp(free, con_size_in_bytes);
4001       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
4002       delayed()->add(obj, con_size_in_bytes, end);
4003     }
4004     // Compare obj with the value at top_addr; if still equal, swap the value of
4005     // end with the value at top_addr. If not equal, read the value at top_addr
4006     // into end.
4007     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
4008     // if someone beat us on the allocation, try again, otherwise continue
4009     cmp(obj, end);
4010     brx(Assembler::notEqual, false, Assembler::pn, retry);
4011     delayed()->mov(end, obj);                              // nop if successfull since obj == end
4012 
4013 #ifdef ASSERT
4014     // make sure eden top is properly aligned
4015     {
4016       Label L;
4017       const Register top_addr = t1;
4018 
4019       set((intx)ch->top_addr(), top_addr);
4020       ld_ptr(top_addr, 0, top_addr);
4021       btst(MinObjAlignmentInBytesMask, top_addr);
4022       br(Assembler::zero, false, Assembler::pt, L);
4023       delayed()->nop();
4024       STOP("eden top is not properly aligned");
4025       bind(L);
4026     }
4027 #endif // ASSERT
4028   }
4029 }
4030 
4031 
4032 void MacroAssembler::tlab_allocate(
4033   Register obj,                        // result: pointer to object after successful allocation
4034   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
4035   int      con_size_in_bytes,          // object size in bytes if   known at compile time
4036   Register t1,                         // temp register
4037   Label&   slow_case                   // continuation point if fast allocation fails
4038 ){
4039   // make sure arguments make sense
4040   assert_different_registers(obj, var_size_in_bytes, t1);
4041   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
4042   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
4043 
4044   const Register free  = t1;
4045 
4046   verify_tlab();
4047 
4048   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
4049 
4050   // calculate amount of free space
4051   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
4052   sub(free, obj, free);
4053 
4054   Label done;
4055   if (var_size_in_bytes == noreg) {
4056     cmp(free, con_size_in_bytes);
4057   } else {
4058     cmp(free, var_size_in_bytes);
4059   }
4060   br(Assembler::less, false, Assembler::pn, slow_case);
4061   // calculate the new top pointer
4062   if (var_size_in_bytes == noreg) {
4063     delayed()->add(obj, con_size_in_bytes, free);
4064   } else {
4065     delayed()->add(obj, var_size_in_bytes, free);
4066   }
4067 
4068   bind(done);
4069 
4070 #ifdef ASSERT
4071   // make sure new free pointer is properly aligned
4072   {
4073     Label L;
4074     btst(MinObjAlignmentInBytesMask, free);
4075     br(Assembler::zero, false, Assembler::pt, L);
4076     delayed()->nop();
4077     STOP("updated TLAB free is not properly aligned");
4078     bind(L);
4079   }
4080 #endif // ASSERT
4081 
4082   // update the tlab top pointer
4083   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
4084   verify_tlab();
4085 }
4086 
4087 
4088 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
4089   Register top = O0;
4090   Register t1 = G1;
4091   Register t2 = G3;
4092   Register t3 = O1;
4093   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
4094   Label do_refill, discard_tlab;
4095 
4096   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
4097     // No allocation in the shared eden.
4098     ba_short(slow_case);
4099   }
4100 
4101   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
4102   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
4103   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
4104 
4105   // calculate amount of free space
4106   sub(t1, top, t1);
4107   srl_ptr(t1, LogHeapWordSize, t1);
4108 
4109   // Retain tlab and allocate object in shared space if
4110   // the amount free in the tlab is too large to discard.
4111   cmp(t1, t2);
4112   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
4113 
4114   // increment waste limit to prevent getting stuck on this slow path
4115   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
4116   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
4117   if (TLABStats) {
4118     // increment number of slow_allocations
4119     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
4120     add(t2, 1, t2);
4121     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
4122   }
4123   ba_short(try_eden);
4124 
4125   bind(discard_tlab);
4126   if (TLABStats) {
4127     // increment number of refills
4128     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
4129     add(t2, 1, t2);
4130     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
4131     // accumulate wastage
4132     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
4133     add(t2, t1, t2);
4134     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
4135   }
4136 
4137   // if tlab is currently allocated (top or end != null) then
4138   // fill [top, end + alignment_reserve) with array object
4139   br_null_short(top, Assembler::pn, do_refill);
4140 
4141   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
4142   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
4143   // set klass to intArrayKlass
4144   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
4145   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
4146   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
4147   st(t1, top, arrayOopDesc::length_offset_in_bytes());
4148   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
4149   ld_ptr(t2, 0, t2);
4150   // store klass last.  concurrent gcs assumes klass length is valid if
4151   // klass field is not null.
4152   store_klass(t2, top);
4153   verify_oop(top);
4154 
4155   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
4156   sub(top, t1, t1); // size of tlab's allocated portion
4157   incr_allocated_bytes(t1, t2, t3);
4158 
4159   // refill the tlab with an eden allocation
4160   bind(do_refill);
4161   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
4162   sll_ptr(t1, LogHeapWordSize, t1);
4163   // allocate new tlab, address returned in top
4164   eden_allocate(top, t1, 0, t2, t3, slow_case);
4165 
4166   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
4167   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
4168 #ifdef ASSERT
4169   // check that tlab_size (t1) is still valid
4170   {
4171     Label ok;
4172     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
4173     sll_ptr(t2, LogHeapWordSize, t2);
4174     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
4175     STOP("assert(t1 == tlab_size)");
4176     should_not_reach_here();
4177 
4178     bind(ok);
4179   }
4180 #endif // ASSERT
4181   add(top, t1, top); // t1 is tlab_size
4182   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
4183   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
4184   verify_tlab();
4185   ba_short(retry);
4186 }
4187 
4188 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
4189                                           Register t1, Register t2) {
4190   // Bump total bytes allocated by this thread
4191   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
4192   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
4193   // v8 support has gone the way of the dodo
4194   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
4195   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
4196   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
4197 }
4198 
4199 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
4200   switch (cond) {
4201     // Note some conditions are synonyms for others
4202     case Assembler::never:                return Assembler::always;
4203     case Assembler::zero:                 return Assembler::notZero;
4204     case Assembler::lessEqual:            return Assembler::greater;
4205     case Assembler::less:                 return Assembler::greaterEqual;
4206     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
4207     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
4208     case Assembler::negative:             return Assembler::positive;
4209     case Assembler::overflowSet:          return Assembler::overflowClear;
4210     case Assembler::always:               return Assembler::never;
4211     case Assembler::notZero:              return Assembler::zero;
4212     case Assembler::greater:              return Assembler::lessEqual;
4213     case Assembler::greaterEqual:         return Assembler::less;
4214     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
4215     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
4216     case Assembler::positive:             return Assembler::negative;
4217     case Assembler::overflowClear:        return Assembler::overflowSet;
4218   }
4219 
4220   ShouldNotReachHere(); return Assembler::overflowClear;
4221 }
4222 
4223 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
4224                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
4225   Condition negated_cond = negate_condition(cond);
4226   Label L;
4227   brx(negated_cond, false, Assembler::pt, L);
4228   delayed()->nop();
4229   inc_counter(counter_ptr, Rtmp1, Rtmp2);
4230   bind(L);
4231 }
4232 
4233 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
4234   AddressLiteral addrlit(counter_addr);
4235   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
4236   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
4237   ld(addr, Rtmp2);
4238   inc(Rtmp2);
4239   st(Rtmp2, addr);
4240 }
4241 
4242 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
4243   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
4244 }
4245 
4246 SkipIfEqual::SkipIfEqual(
4247     MacroAssembler* masm, Register temp, const bool* flag_addr,
4248     Assembler::Condition condition) {
4249   _masm = masm;
4250   AddressLiteral flag(flag_addr);
4251   _masm->sethi(flag, temp);
4252   _masm->ldub(temp, flag.low10(), temp);
4253   _masm->tst(temp);
4254   _masm->br(condition, false, Assembler::pt, _label);
4255   _masm->delayed()->nop();
4256 }
4257 
4258 SkipIfEqual::~SkipIfEqual() {
4259   _masm->bind(_label);
4260 }
4261 
4262 
4263 // Writes to stack successive pages until offset reached to check for
4264 // stack overflow + shadow pages.  This clobbers tsp and scratch.
4265 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
4266                                      Register Rscratch) {
4267   // Use stack pointer in temp stack pointer
4268   mov(SP, Rtsp);
4269 
4270   // Bang stack for total size given plus stack shadow page size.
4271   // Bang one page at a time because a large size can overflow yellow and
4272   // red zones (the bang will fail but stack overflow handling can't tell that
4273   // it was a stack overflow bang vs a regular segv).
4274   int offset = os::vm_page_size();
4275   Register Roffset = Rscratch;
4276 
4277   Label loop;
4278   bind(loop);
4279   set((-offset)+STACK_BIAS, Rscratch);
4280   st(G0, Rtsp, Rscratch);
4281   set(offset, Roffset);
4282   sub(Rsize, Roffset, Rsize);
4283   cmp(Rsize, G0);
4284   br(Assembler::greater, false, Assembler::pn, loop);
4285   delayed()->sub(Rtsp, Roffset, Rtsp);
4286 
4287   // Bang down shadow pages too.
4288   // The -1 because we already subtracted 1 page.
4289   for (int i = 0; i< StackShadowPages-1; i++) {
4290     set((-i*offset)+STACK_BIAS, Rscratch);
4291     st(G0, Rtsp, Rscratch);
4292   }
4293 }
4294 
4295 ///////////////////////////////////////////////////////////////////////////////////
4296 #ifndef SERIALGC
4297 
4298 static address satb_log_enqueue_with_frame = NULL;
4299 static u_char* satb_log_enqueue_with_frame_end = NULL;
4300 
4301 static address satb_log_enqueue_frameless = NULL;
4302 static u_char* satb_log_enqueue_frameless_end = NULL;
4303 
4304 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
4305 
4306 static void generate_satb_log_enqueue(bool with_frame) {
4307   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
4308   CodeBuffer buf(bb);
4309   MacroAssembler masm(&buf);
4310 
4311 #define __ masm.
4312 
4313   address start = __ pc();
4314   Register pre_val;
4315 
4316   Label refill, restart;
4317   if (with_frame) {
4318     __ save_frame(0);
4319     pre_val = I0;  // Was O0 before the save.
4320   } else {
4321     pre_val = O0;
4322   }
4323 
4324   int satb_q_index_byte_offset =
4325     in_bytes(JavaThread::satb_mark_queue_offset() +
4326              PtrQueue::byte_offset_of_index());
4327 
4328   int satb_q_buf_byte_offset =
4329     in_bytes(JavaThread::satb_mark_queue_offset() +
4330              PtrQueue::byte_offset_of_buf());
4331 
4332   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
4333          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
4334          "check sizes in assembly below");
4335 
4336   __ bind(restart);
4337 
4338   // Load the index into the SATB buffer. PtrQueue::_index is a size_t
4339   // so ld_ptr is appropriate.
4340   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
4341 
4342   // index == 0?
4343   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
4344 
4345   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
4346   __ sub(L0, oopSize, L0);
4347 
4348   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
4349   if (!with_frame) {
4350     // Use return-from-leaf
4351     __ retl();
4352     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4353   } else {
4354     // Not delayed.
4355     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4356   }
4357   if (with_frame) {
4358     __ ret();
4359     __ delayed()->restore();
4360   }
4361   __ bind(refill);
4362 
4363   address handle_zero =
4364     CAST_FROM_FN_PTR(address,
4365                      &SATBMarkQueueSet::handle_zero_index_for_thread);
4366   // This should be rare enough that we can afford to save all the
4367   // scratch registers that the calling context might be using.
4368   __ mov(G1_scratch, L0);
4369   __ mov(G3_scratch, L1);
4370   __ mov(G4, L2);
4371   // We need the value of O0 above (for the write into the buffer), so we
4372   // save and restore it.
4373   __ mov(O0, L3);
4374   // Since the call will overwrite O7, we save and restore that, as well.
4375   __ mov(O7, L4);
4376   __ call_VM_leaf(L5, handle_zero, G2_thread);
4377   __ mov(L0, G1_scratch);
4378   __ mov(L1, G3_scratch);
4379   __ mov(L2, G4);
4380   __ mov(L3, O0);
4381   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4382   __ delayed()->mov(L4, O7);
4383 
4384   if (with_frame) {
4385     satb_log_enqueue_with_frame = start;
4386     satb_log_enqueue_with_frame_end = __ pc();
4387   } else {
4388     satb_log_enqueue_frameless = start;
4389     satb_log_enqueue_frameless_end = __ pc();
4390   }
4391 
4392 #undef __
4393 }
4394 
4395 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
4396   if (with_frame) {
4397     if (satb_log_enqueue_with_frame == 0) {
4398       generate_satb_log_enqueue(with_frame);
4399       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
4400       if (G1SATBPrintStubs) {
4401         tty->print_cr("Generated with-frame satb enqueue:");
4402         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
4403                              satb_log_enqueue_with_frame_end,
4404                              tty);
4405       }
4406     }
4407   } else {
4408     if (satb_log_enqueue_frameless == 0) {
4409       generate_satb_log_enqueue(with_frame);
4410       assert(satb_log_enqueue_frameless != 0, "postcondition.");
4411       if (G1SATBPrintStubs) {
4412         tty->print_cr("Generated frameless satb enqueue:");
4413         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
4414                              satb_log_enqueue_frameless_end,
4415                              tty);
4416       }
4417     }
4418   }
4419 }
4420 
4421 void MacroAssembler::g1_write_barrier_pre(Register obj,
4422                                           Register index,
4423                                           int offset,
4424                                           Register pre_val,
4425                                           Register tmp,
4426                                           bool preserve_o_regs) {
4427   Label filtered;
4428 
4429   if (obj == noreg) {
4430     // We are not loading the previous value so make
4431     // sure that we don't trash the value in pre_val
4432     // with the code below.
4433     assert_different_registers(pre_val, tmp);
4434   } else {
4435     // We will be loading the previous value
4436     // in this code so...
4437     assert(offset == 0 || index == noreg, "choose one");
4438     assert(pre_val == noreg, "check this code");
4439   }
4440 
4441   // Is marking active?
4442   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4443     ld(G2,
4444        in_bytes(JavaThread::satb_mark_queue_offset() +
4445                 PtrQueue::byte_offset_of_active()),
4446        tmp);
4447   } else {
4448     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
4449               "Assumption");
4450     ldsb(G2,
4451          in_bytes(JavaThread::satb_mark_queue_offset() +
4452                   PtrQueue::byte_offset_of_active()),
4453          tmp);
4454   }
4455 
4456   // Is marking active?
4457   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
4458 
4459   // Do we need to load the previous value?
4460   if (obj != noreg) {
4461     // Load the previous value...
4462     if (index == noreg) {
4463       if (Assembler::is_simm13(offset)) {
4464         load_heap_oop(obj, offset, tmp);
4465       } else {
4466         set(offset, tmp);
4467         load_heap_oop(obj, tmp, tmp);
4468       }
4469     } else {
4470       load_heap_oop(obj, index, tmp);
4471     }
4472     // Previous value has been loaded into tmp
4473     pre_val = tmp;
4474   }
4475 
4476   assert(pre_val != noreg, "must have a real register");
4477 
4478   // Is the previous value null?
4479   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
4480 
4481   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
4482   // case, pre_val will be a scratch G-reg, but there are some cases in
4483   // which it's an O-reg.  In the first case, do a normal call.  In the
4484   // latter, do a save here and call the frameless version.
4485 
4486   guarantee(pre_val->is_global() || pre_val->is_out(),
4487             "Or we need to think harder.");
4488 
4489   if (pre_val->is_global() && !preserve_o_regs) {
4490     generate_satb_log_enqueue_if_necessary(true); // with frame
4491 
4492     call(satb_log_enqueue_with_frame);
4493     delayed()->mov(pre_val, O0);
4494   } else {
4495     generate_satb_log_enqueue_if_necessary(false); // frameless
4496 
4497     save_frame(0);
4498     call(satb_log_enqueue_frameless);
4499     delayed()->mov(pre_val->after_save(), O0);
4500     restore();
4501   }
4502 
4503   bind(filtered);
4504 }
4505 
4506 static address dirty_card_log_enqueue = 0;
4507 static u_char* dirty_card_log_enqueue_end = 0;
4508 
4509 // This gets to assume that o0 contains the object address.
4510 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
4511   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
4512   CodeBuffer buf(bb);
4513   MacroAssembler masm(&buf);
4514 #define __ masm.
4515   address start = __ pc();
4516 
4517   Label not_already_dirty, restart, refill;
4518 
4519 #ifdef _LP64
4520   __ srlx(O0, CardTableModRefBS::card_shift, O0);
4521 #else
4522   __ srl(O0, CardTableModRefBS::card_shift, O0);
4523 #endif
4524   AddressLiteral addrlit(byte_map_base);
4525   __ set(addrlit, O1); // O1 := <card table base>
4526   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
4527 
4528   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
4529   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
4530 
4531   // We didn't take the branch, so we're already dirty: return.
4532   // Use return-from-leaf
4533   __ retl();
4534   __ delayed()->nop();
4535 
4536   // Not dirty.
4537   __ bind(not_already_dirty);
4538 
4539   // Get O0 + O1 into a reg by itself
4540   __ add(O0, O1, O3);
4541 
4542   // First, dirty it.
4543   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
4544 
4545   int dirty_card_q_index_byte_offset =
4546     in_bytes(JavaThread::dirty_card_queue_offset() +
4547              PtrQueue::byte_offset_of_index());
4548   int dirty_card_q_buf_byte_offset =
4549     in_bytes(JavaThread::dirty_card_queue_offset() +
4550              PtrQueue::byte_offset_of_buf());
4551   __ bind(restart);
4552 
4553   // Load the index into the update buffer. PtrQueue::_index is
4554   // a size_t so ld_ptr is appropriate here.
4555   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
4556 
4557   // index == 0?
4558   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
4559 
4560   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
4561   __ sub(L0, oopSize, L0);
4562 
4563   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
4564   // Use return-from-leaf
4565   __ retl();
4566   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
4567 
4568   __ bind(refill);
4569   address handle_zero =
4570     CAST_FROM_FN_PTR(address,
4571                      &DirtyCardQueueSet::handle_zero_index_for_thread);
4572   // This should be rare enough that we can afford to save all the
4573   // scratch registers that the calling context might be using.
4574   __ mov(G1_scratch, L3);
4575   __ mov(G3_scratch, L5);
4576   // We need the value of O3 above (for the write into the buffer), so we
4577   // save and restore it.
4578   __ mov(O3, L6);
4579   // Since the call will overwrite O7, we save and restore that, as well.
4580   __ mov(O7, L4);
4581 
4582   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
4583   __ mov(L3, G1_scratch);
4584   __ mov(L5, G3_scratch);
4585   __ mov(L6, O3);
4586   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4587   __ delayed()->mov(L4, O7);
4588 
4589   dirty_card_log_enqueue = start;
4590   dirty_card_log_enqueue_end = __ pc();
4591   // XXX Should have a guarantee here about not going off the end!
4592   // Does it already do so?  Do an experiment...
4593 
4594 #undef __
4595 
4596 }
4597 
4598 static inline void
4599 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
4600   if (dirty_card_log_enqueue == 0) {
4601     generate_dirty_card_log_enqueue(byte_map_base);
4602     assert(dirty_card_log_enqueue != 0, "postcondition.");
4603     if (G1SATBPrintStubs) {
4604       tty->print_cr("Generated dirty_card enqueue:");
4605       Disassembler::decode((u_char*)dirty_card_log_enqueue,
4606                            dirty_card_log_enqueue_end,
4607                            tty);
4608     }
4609   }
4610 }
4611 
4612 
4613 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4614 
4615   Label filtered;
4616   MacroAssembler* post_filter_masm = this;
4617 
4618   if (new_val == G0) return;
4619 
4620   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
4621   assert(bs->kind() == BarrierSet::G1SATBCT ||
4622          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
4623 
4624   if (G1RSBarrierRegionFilter) {
4625     xor3(store_addr, new_val, tmp);
4626 #ifdef _LP64
4627     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4628 #else
4629     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4630 #endif
4631 
4632     // XXX Should I predict this taken or not?  Does it matter?
4633     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
4634   }
4635 
4636   // If the "store_addr" register is an "in" or "local" register, move it to
4637   // a scratch reg so we can pass it as an argument.
4638   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
4639   // Pick a scratch register different from "tmp".
4640   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
4641   // Make sure we use up the delay slot!
4642   if (use_scr) {
4643     post_filter_masm->mov(store_addr, scr);
4644   } else {
4645     post_filter_masm->nop();
4646   }
4647   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
4648   save_frame(0);
4649   call(dirty_card_log_enqueue);
4650   if (use_scr) {
4651     delayed()->mov(scr, O0);
4652   } else {
4653     delayed()->mov(store_addr->after_save(), O0);
4654   }
4655   restore();
4656 
4657   bind(filtered);
4658 }
4659 
4660 #endif  // SERIALGC
4661 ///////////////////////////////////////////////////////////////////////////////////
4662 
4663 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4664   // If we're writing constant NULL, we can skip the write barrier.
4665   if (new_val == G0) return;
4666   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
4667   assert(bs->kind() == BarrierSet::CardTableModRef ||
4668          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
4669   card_table_write(bs->byte_map_base, tmp, store_addr);
4670 }
4671 
4672 void MacroAssembler::load_klass(Register src_oop, Register klass) {
4673   // The number of bytes in this code is used by
4674   // MachCallDynamicJavaNode::ret_addr_offset()
4675   // if this changes, change that.
4676   if (UseCompressedKlassPointers) {
4677     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4678     decode_klass_not_null(klass);
4679   } else {
4680     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4681   }
4682 }
4683 
4684 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4685   if (UseCompressedKlassPointers) {
4686     assert(dst_oop != klass, "not enough registers");
4687     encode_klass_not_null(klass);
4688     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4689   } else {
4690     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4691   }
4692 }
4693 
4694 void MacroAssembler::store_klass_gap(Register s, Register d) {
4695   if (UseCompressedKlassPointers) {
4696     assert(s != d, "not enough registers");
4697     st(s, d, oopDesc::klass_gap_offset_in_bytes());
4698   }
4699 }
4700 
4701 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
4702   if (UseCompressedOops) {
4703     lduw(s, d);
4704     decode_heap_oop(d);
4705   } else {
4706     ld_ptr(s, d);
4707   }
4708 }
4709 
4710 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
4711    if (UseCompressedOops) {
4712     lduw(s1, s2, d);
4713     decode_heap_oop(d, d);
4714   } else {
4715     ld_ptr(s1, s2, d);
4716   }
4717 }
4718 
4719 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4720    if (UseCompressedOops) {
4721     lduw(s1, simm13a, d);
4722     decode_heap_oop(d, d);
4723   } else {
4724     ld_ptr(s1, simm13a, d);
4725   }
4726 }
4727 
4728 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
4729   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
4730   else                   load_heap_oop(s1, s2.as_register(), d);
4731 }
4732 
4733 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4734   if (UseCompressedOops) {
4735     assert(s1 != d && s2 != d, "not enough registers");
4736     encode_heap_oop(d);
4737     st(d, s1, s2);
4738   } else {
4739     st_ptr(d, s1, s2);
4740   }
4741 }
4742 
4743 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4744   if (UseCompressedOops) {
4745     assert(s1 != d, "not enough registers");
4746     encode_heap_oop(d);
4747     st(d, s1, simm13a);
4748   } else {
4749     st_ptr(d, s1, simm13a);
4750   }
4751 }
4752 
4753 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4754   if (UseCompressedOops) {
4755     assert(a.base() != d, "not enough registers");
4756     encode_heap_oop(d);
4757     st(d, a, offset);
4758   } else {
4759     st_ptr(d, a, offset);
4760   }
4761 }
4762 
4763 
4764 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4765   assert (UseCompressedOops, "must be compressed");
4766   assert (Universe::heap() != NULL, "java heap should be initialized");
4767   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4768   verify_oop(src);
4769   if (Universe::narrow_oop_base() == NULL) {
4770     srlx(src, LogMinObjAlignmentInBytes, dst);
4771     return;
4772   }
4773   Label done;
4774   if (src == dst) {
4775     // optimize for frequent case src == dst
4776     bpr(rc_nz, true, Assembler::pt, src, done);
4777     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4778     bind(done);
4779     srlx(src, LogMinObjAlignmentInBytes, dst);
4780   } else {
4781     bpr(rc_z, false, Assembler::pn, src, done);
4782     delayed() -> mov(G0, dst);
4783     // could be moved before branch, and annulate delay,
4784     // but may add some unneeded work decoding null
4785     sub(src, G6_heapbase, dst);
4786     srlx(dst, LogMinObjAlignmentInBytes, dst);
4787     bind(done);
4788   }
4789 }
4790 
4791 
4792 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4793   assert (UseCompressedOops, "must be compressed");
4794   assert (Universe::heap() != NULL, "java heap should be initialized");
4795   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4796   verify_oop(r);
4797   if (Universe::narrow_oop_base() != NULL)
4798     sub(r, G6_heapbase, r);
4799   srlx(r, LogMinObjAlignmentInBytes, r);
4800 }
4801 
4802 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4803   assert (UseCompressedOops, "must be compressed");
4804   assert (Universe::heap() != NULL, "java heap should be initialized");
4805   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4806   verify_oop(src);
4807   if (Universe::narrow_oop_base() == NULL) {
4808     srlx(src, LogMinObjAlignmentInBytes, dst);
4809   } else {
4810     sub(src, G6_heapbase, dst);
4811     srlx(dst, LogMinObjAlignmentInBytes, dst);
4812   }
4813 }
4814 
4815 // Same algorithm as oops.inline.hpp decode_heap_oop.
4816 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4817   assert (UseCompressedOops, "must be compressed");
4818   assert (Universe::heap() != NULL, "java heap should be initialized");
4819   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4820   sllx(src, LogMinObjAlignmentInBytes, dst);
4821   if (Universe::narrow_oop_base() != NULL) {
4822     Label done;
4823     bpr(rc_nz, true, Assembler::pt, dst, done);
4824     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4825     bind(done);
4826   }
4827   verify_oop(dst);
4828 }
4829 
4830 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4831   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4832   // pd_code_size_limit.
4833   // Also do not verify_oop as this is called by verify_oop.
4834   assert (UseCompressedOops, "must be compressed");
4835   assert (Universe::heap() != NULL, "java heap should be initialized");
4836   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4837   sllx(r, LogMinObjAlignmentInBytes, r);
4838   if (Universe::narrow_oop_base() != NULL)
4839     add(r, G6_heapbase, r);
4840 }
4841 
4842 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4843   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4844   // pd_code_size_limit.
4845   // Also do not verify_oop as this is called by verify_oop.
4846   assert (UseCompressedOops, "must be compressed");
4847   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4848   sllx(src, LogMinObjAlignmentInBytes, dst);
4849   if (Universe::narrow_oop_base() != NULL)
4850     add(dst, G6_heapbase, dst);
4851 }
4852 
4853 void MacroAssembler::encode_klass_not_null(Register r) {
4854   assert(Metaspace::is_initialized(), "metaspace should be initialized");
4855   assert (UseCompressedKlassPointers, "must be compressed");
4856   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4857   if (Universe::narrow_klass_base() != NULL)
4858     sub(r, G6_heapbase, r);
4859   srlx(r, LogKlassAlignmentInBytes, r);
4860 }
4861 
4862 void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
4863   assert(Metaspace::is_initialized(), "metaspace should be initialized");
4864   assert (UseCompressedKlassPointers, "must be compressed");
4865   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4866   if (Universe::narrow_klass_base() == NULL) {
4867     srlx(src, LogKlassAlignmentInBytes, dst);
4868   } else {
4869     sub(src, G6_heapbase, dst);
4870     srlx(dst, LogKlassAlignmentInBytes, dst);
4871   }
4872 }
4873 
4874 void  MacroAssembler::decode_klass_not_null(Register r) {
4875   assert(Metaspace::is_initialized(), "metaspace should be initialized");
4876   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4877   // pd_code_size_limit.
4878   assert (UseCompressedKlassPointers, "must be compressed");
4879   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4880   sllx(r, LogKlassAlignmentInBytes, r);
4881   if (Universe::narrow_klass_base() != NULL)
4882     add(r, G6_heapbase, r);
4883 }
4884 
4885 void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
4886   assert(Metaspace::is_initialized(), "metaspace should be initialized");
4887   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4888   // pd_code_size_limit.
4889   assert (UseCompressedKlassPointers, "must be compressed");
4890   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4891   sllx(src, LogKlassAlignmentInBytes, dst);
4892   if (Universe::narrow_klass_base() != NULL)
4893     add(dst, G6_heapbase, dst);
4894 }
4895 
4896 void MacroAssembler::reinit_heapbase() {
4897   if (UseCompressedOops || UseCompressedKlassPointers) {
4898     AddressLiteral base(Universe::narrow_ptrs_base_addr());
4899     load_ptr_contents(base, G6_heapbase);
4900   }
4901 }
4902 
4903 // Compare char[] arrays aligned to 4 bytes.
4904 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4905                                         Register limit, Register result,
4906                                         Register chr1, Register chr2, Label& Ldone) {
4907   Label Lvector, Lloop;
4908   assert(chr1 == result, "should be the same");
4909 
4910   // Note: limit contains number of bytes (2*char_elements) != 0.
4911   andcc(limit, 0x2, chr1); // trailing character ?
4912   br(Assembler::zero, false, Assembler::pt, Lvector);
4913   delayed()->nop();
4914 
4915   // compare the trailing char
4916   sub(limit, sizeof(jchar), limit);
4917   lduh(ary1, limit, chr1);
4918   lduh(ary2, limit, chr2);
4919   cmp(chr1, chr2);
4920   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4921   delayed()->mov(G0, result);     // not equal
4922 
4923   // only one char ?
4924   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
4925   delayed()->add(G0, 1, result); // zero-length arrays are equal
4926 
4927   // word by word compare, dont't need alignment check
4928   bind(Lvector);
4929   // Shift ary1 and ary2 to the end of the arrays, negate limit
4930   add(ary1, limit, ary1);
4931   add(ary2, limit, ary2);
4932   neg(limit, limit);
4933 
4934   lduw(ary1, limit, chr1);
4935   bind(Lloop);
4936   lduw(ary2, limit, chr2);
4937   cmp(chr1, chr2);
4938   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4939   delayed()->mov(G0, result);     // not equal
4940   inccc(limit, 2*sizeof(jchar));
4941   // annul LDUW if branch is not taken to prevent access past end of array
4942   br(Assembler::notZero, true, Assembler::pt, Lloop);
4943   delayed()->lduw(ary1, limit, chr1); // hoisted
4944 
4945   // Caller should set it:
4946   // add(G0, 1, result); // equals
4947 }
4948 
4949 // Use BIS for zeroing (count is in bytes).
4950 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
4951   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
4952   Register end = count;
4953   int cache_line_size = VM_Version::prefetch_data_size();
4954   // Minimum count when BIS zeroing can be used since
4955   // it needs membar which is expensive.
4956   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
4957 
4958   Label small_loop;
4959   // Check if count is negative (dead code) or zero.
4960   // Note, count uses 64bit in 64 bit VM.
4961   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
4962 
4963   // Use BIS zeroing only for big arrays since it requires membar.
4964   if (Assembler::is_simm13(block_zero_size)) { // < 4096
4965     cmp(count, block_zero_size);
4966   } else {
4967     set(block_zero_size, temp);
4968     cmp(count, temp);
4969   }
4970   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
4971   delayed()->add(to, count, end);
4972 
4973   // Note: size is >= three (32 bytes) cache lines.
4974 
4975   // Clean the beginning of space up to next cache line.
4976   for (int offs = 0; offs < cache_line_size; offs += 8) {
4977     stx(G0, to, offs);
4978   }
4979 
4980   // align to next cache line
4981   add(to, cache_line_size, to);
4982   and3(to, -cache_line_size, to);
4983 
4984   // Note: size left >= two (32 bytes) cache lines.
4985 
4986   // BIS should not be used to zero tail (64 bytes)
4987   // to avoid zeroing a header of the following object.
4988   sub(end, (cache_line_size*2)-8, end);
4989 
4990   Label bis_loop;
4991   bind(bis_loop);
4992   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
4993   add(to, cache_line_size, to);
4994   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
4995 
4996   // BIS needs membar.
4997   membar(Assembler::StoreLoad);
4998 
4999   add(end, (cache_line_size*2)-8, end); // restore end
5000   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
5001 
5002   // Clean the tail.
5003   bind(small_loop);
5004   stx(G0, to, 0);
5005   add(to, 8, to);
5006   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
5007   nop(); // Separate short branches
5008 }