1 //
   2 // Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedKlassPointers) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       if (Universe::narrow_klass_base() == NULL)
 563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 564       else
 565         klass_load_size = 3*BytesPerInstWord;
 566     } else {
 567       klass_load_size = 1*BytesPerInstWord;
 568     }
 569     if (Assembler::is_simm13(v_off)) {
 570       return klass_load_size +
 571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 572              NativeCall::instruction_size);  // call; delay slot
 573     } else {
 574       return klass_load_size +
 575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 576              NativeCall::instruction_size);  // call; delay slot
 577     }
 578   }
 579 }
 580 
 581 int MachCallRuntimeNode::ret_addr_offset() {
 582 #ifdef _LP64
 583   if (MacroAssembler::is_far_target(entry_point())) {
 584     return NativeFarCall::instruction_size;
 585   } else {
 586     return NativeCall::instruction_size;
 587   }
 588 #else
 589   return NativeCall::instruction_size;  // call; delay slot
 590 #endif
 591 }
 592 
 593 // Indicate if the safepoint node needs the polling page as an input.
 594 // Since Sparc does not have absolute addressing, it does.
 595 bool SafePointNode::needs_polling_address_input() {
 596   return true;
 597 }
 598 
 599 // emit an interrupt that is caught by the debugger (for debugging compiler)
 600 void emit_break(CodeBuffer &cbuf) {
 601   MacroAssembler _masm(&cbuf);
 602   __ breakpoint_trap();
 603 }
 604 
 605 #ifndef PRODUCT
 606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 607   st->print("TA");
 608 }
 609 #endif
 610 
 611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 612   emit_break(cbuf);
 613 }
 614 
 615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 616   return MachNode::size(ra_);
 617 }
 618 
 619 // Traceable jump
 620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 621   MacroAssembler _masm(&cbuf);
 622   Register rdest = reg_to_register_object(jump_target);
 623   __ JMP(rdest, 0);
 624   __ delayed()->nop();
 625 }
 626 
 627 // Traceable jump and set exception pc
 628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 629   MacroAssembler _masm(&cbuf);
 630   Register rdest = reg_to_register_object(jump_target);
 631   __ JMP(rdest, 0);
 632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 633 }
 634 
 635 void emit_nop(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ nop();
 638 }
 639 
 640 void emit_illtrap(CodeBuffer &cbuf) {
 641   MacroAssembler _masm(&cbuf);
 642   __ illtrap(0);
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 651   const Node* addr = n->get_base_and_disp(offset, adr_type);
 652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 655   atype = atype->add_offset(offset);
 656   assert(disp32 == offset, "wrong disp32");
 657   return atype->_offset;
 658 }
 659 
 660 
 661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 662   assert(n->rule() != loadUB_rule, "");
 663 
 664   intptr_t offset = 0;
 665   Node* addr = n->in(2);
 666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 668     Node* a = addr->in(2/*AddPNode::Address*/);
 669     Node* o = addr->in(3/*AddPNode::Offset*/);
 670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 672     assert(atype->isa_oop_ptr(), "still an oop");
 673   }
 674   offset = atype->is_ptr()->_offset;
 675   if (offset != Type::OffsetBot)  offset += disp32;
 676   return offset;
 677 }
 678 
 679 static inline jdouble replicate_immI(int con, int count, int width) {
 680   // Load a constant replicated "count" times with width "width"
 681   assert(count*width == 8 && width <= 4, "sanity");
 682   int bit_width = width * 8;
 683   jlong val = con;
 684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 685   for (int i = 0; i < count - 1; i++) {
 686     val |= (val << bit_width);
 687   }
 688   jdouble dval = *((jdouble*) &val);  // coerce to double type
 689   return dval;
 690 }
 691 
 692 static inline jdouble replicate_immF(float con) {
 693   // Replicate float con 2 times and pack into vector.
 694   int val = *((int*)&con);
 695   jlong lval = val;
 696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 698   return dval;
 699 }
 700 
 701 // Standard Sparc opcode form2 field breakdown
 702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 704   int op = (f30 << 30) |
 705            (f29 << 29) |
 706            (f25 << 25) |
 707            (f22 << 22) |
 708            (f20 << 20) |
 709            (f19 << 19) |
 710            (f0  <<  0);
 711   cbuf.insts()->emit_int32(op);
 712 }
 713 
 714 // Standard Sparc opcode form2 field breakdown
 715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 716   f0 >>= 10;           // Drop 10 bits
 717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 718   int op = (f30 << 30) |
 719            (f25 << 25) |
 720            (f22 << 22) |
 721            (f0  <<  0);
 722   cbuf.insts()->emit_int32(op);
 723 }
 724 
 725 // Standard Sparc opcode form3 field breakdown
 726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 727   int op = (f30 << 30) |
 728            (f25 << 25) |
 729            (f19 << 19) |
 730            (f14 << 14) |
 731            (f5  <<  5) |
 732            (f0  <<  0);
 733   cbuf.insts()->emit_int32(op);
 734 }
 735 
 736 // Standard Sparc opcode form3 field breakdown
 737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 738   simm13 &= (1<<13)-1; // Mask to 13 bits
 739   int op = (f30 << 30) |
 740            (f25 << 25) |
 741            (f19 << 19) |
 742            (f14 << 14) |
 743            (1   << 13) | // bit to indicate immediate-mode
 744            (simm13<<0);
 745   cbuf.insts()->emit_int32(op);
 746 }
 747 
 748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 749   simm10 &= (1<<10)-1; // Mask to 10 bits
 750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 751 }
 752 
 753 #ifdef ASSERT
 754 // Helper function for VerifyOops in emit_form3_mem_reg
 755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 756   warning("VerifyOops encountered unexpected instruction:");
 757   n->dump(2);
 758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 759 }
 760 #endif
 761 
 762 
 763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 765 
 766 #ifdef ASSERT
 767   // The following code implements the +VerifyOops feature.
 768   // It verifies oop values which are loaded into or stored out of
 769   // the current method activation.  +VerifyOops complements techniques
 770   // like ScavengeALot, because it eagerly inspects oops in transit,
 771   // as they enter or leave the stack, as opposed to ScavengeALot,
 772   // which inspects oops "at rest", in the stack or heap, at safepoints.
 773   // For this reason, +VerifyOops can sometimes detect bugs very close
 774   // to their point of creation.  It can also serve as a cross-check
 775   // on the validity of oop maps, when used toegether with ScavengeALot.
 776 
 777   // It would be good to verify oops at other points, especially
 778   // when an oop is used as a base pointer for a load or store.
 779   // This is presently difficult, because it is hard to know when
 780   // a base address is biased or not.  (If we had such information,
 781   // it would be easy and useful to make a two-argument version of
 782   // verify_oop which unbiases the base, and performs verification.)
 783 
 784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 785   bool is_verified_oop_base  = false;
 786   bool is_verified_oop_load  = false;
 787   bool is_verified_oop_store = false;
 788   int tmp_enc = -1;
 789   if (VerifyOops && src1_enc != R_SP_enc) {
 790     // classify the op, mainly for an assert check
 791     int st_op = 0, ld_op = 0;
 792     switch (primary) {
 793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 797     case Assembler::std_op3:  st_op = Op_StoreL; break;
 798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 800 
 801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 812 
 813     default: ShouldNotReachHere();
 814     }
 815     if (tertiary == REGP_OP) {
 816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 818       else                          ShouldNotReachHere();
 819       if (st_op) {
 820         // a store
 821         // inputs are (0:control, 1:memory, 2:address, 3:value)
 822         Node* n2 = n->in(3);
 823         if (n2 != NULL) {
 824           const Type* t = n2->bottom_type();
 825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 826         }
 827       } else {
 828         // a load
 829         const Type* t = n->bottom_type();
 830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 831       }
 832     }
 833 
 834     if (ld_op) {
 835       // a Load
 836       // inputs are (0:control, 1:memory, 2:address)
 837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 852           !(n->rule() == loadUB_rule)) {
 853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 854       }
 855     } else if (st_op) {
 856       // a Store
 857       // inputs are (0:control, 1:memory, 2:address, 3:value)
 858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 866       }
 867     }
 868 
 869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 870       Node* addr = n->in(2);
 871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 873         if (atype != NULL) {
 874           intptr_t offset = get_offset_from_base(n, atype, disp32);
 875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 876           if (offset != offset_2) {
 877             get_offset_from_base(n, atype, disp32);
 878             get_offset_from_base_2(n, atype, disp32);
 879           }
 880           assert(offset == offset_2, "different offsets");
 881           if (offset == disp32) {
 882             // we now know that src1 is a true oop pointer
 883             is_verified_oop_base = true;
 884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 885               if( primary == Assembler::ldd_op3 ) {
 886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 887               } else {
 888                 tmp_enc = dst_enc;
 889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 890                 assert(src1_enc != dst_enc, "");
 891               }
 892             }
 893           }
 894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 895                        || offset == oopDesc::mark_offset_in_bytes())) {
 896                       // loading the mark should not be allowed either, but
 897                       // we don't check this since it conflicts with InlineObjectHash
 898                       // usage of LoadINode to get the mark. We could keep the
 899                       // check if we create a new LoadMarkNode
 900             // but do not verify the object before its header is initialized
 901             ShouldNotReachHere();
 902           }
 903         }
 904       }
 905     }
 906   }
 907 #endif
 908 
 909   uint instr;
 910   instr = (Assembler::ldst_op << 30)
 911         | (dst_enc        << 25)
 912         | (primary        << 19)
 913         | (src1_enc       << 14);
 914 
 915   uint index = src2_enc;
 916   int disp = disp32;
 917 
 918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 919     disp += STACK_BIAS;
 920 
 921   // We should have a compiler bailout here rather than a guarantee.
 922   // Better yet would be some mechanism to handle variable-size matches correctly.
 923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 924 
 925   if( disp == 0 ) {
 926     // use reg-reg form
 927     // bit 13 is already zero
 928     instr |= index;
 929   } else {
 930     // use reg-imm form
 931     instr |= 0x00002000;          // set bit 13 to one
 932     instr |= disp & 0x1FFF;
 933   }
 934 
 935   cbuf.insts()->emit_int32(instr);
 936 
 937 #ifdef ASSERT
 938   {
 939     MacroAssembler _masm(&cbuf);
 940     if (is_verified_oop_base) {
 941       __ verify_oop(reg_to_register_object(src1_enc));
 942     }
 943     if (is_verified_oop_store) {
 944       __ verify_oop(reg_to_register_object(dst_enc));
 945     }
 946     if (tmp_enc != -1) {
 947       __ mov(O7, reg_to_register_object(tmp_enc));
 948     }
 949     if (is_verified_oop_load) {
 950       __ verify_oop(reg_to_register_object(dst_enc));
 951     }
 952   }
 953 #endif
 954 }
 955 
 956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 957   // The method which records debug information at every safepoint
 958   // expects the call to be the first instruction in the snippet as
 959   // it creates a PcDesc structure which tracks the offset of a call
 960   // from the start of the codeBlob. This offset is computed as
 961   // code_end() - code_begin() of the code which has been emitted
 962   // so far.
 963   // In this particular case we have skirted around the problem by
 964   // putting the "mov" instruction in the delay slot but the problem
 965   // may bite us again at some other point and a cleaner/generic
 966   // solution using relocations would be needed.
 967   MacroAssembler _masm(&cbuf);
 968   __ set_inst_mark();
 969 
 970   // We flush the current window just so that there is a valid stack copy
 971   // the fact that the current window becomes active again instantly is
 972   // not a problem there is nothing live in it.
 973 
 974 #ifdef ASSERT
 975   int startpos = __ offset();
 976 #endif /* ASSERT */
 977 
 978   __ call((address)entry_point, rtype);
 979 
 980   if (preserve_g2)   __ delayed()->mov(G2, L7);
 981   else __ delayed()->nop();
 982 
 983   if (preserve_g2)   __ mov(L7, G2);
 984 
 985 #ifdef ASSERT
 986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 987 #ifdef _LP64
 988     // Trash argument dump slots.
 989     __ set(0xb0b8ac0db0b8ac0d, G1);
 990     __ mov(G1, G5);
 991     __ stx(G1, SP, STACK_BIAS + 0x80);
 992     __ stx(G1, SP, STACK_BIAS + 0x88);
 993     __ stx(G1, SP, STACK_BIAS + 0x90);
 994     __ stx(G1, SP, STACK_BIAS + 0x98);
 995     __ stx(G1, SP, STACK_BIAS + 0xA0);
 996     __ stx(G1, SP, STACK_BIAS + 0xA8);
 997 #else // _LP64
 998     // this is also a native call, so smash the first 7 stack locations,
 999     // and the various registers
1000 
1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1002     // while [SP+0x44..0x58] are the argument dump slots.
1003     __ set((intptr_t)0xbaadf00d, G1);
1004     __ mov(G1, G5);
1005     __ sllx(G1, 32, G1);
1006     __ or3(G1, G5, G1);
1007     __ mov(G1, G5);
1008     __ stx(G1, SP, 0x40);
1009     __ stx(G1, SP, 0x48);
1010     __ stx(G1, SP, 0x50);
1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1012 #endif // _LP64
1013   }
1014 #endif /*ASSERT*/
1015 }
1016 
1017 //=============================================================================
1018 // REQUIRED FUNCTIONALITY for encoding
1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
1021 
1022 
1023 //=============================================================================
1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1025 
1026 int Compile::ConstantTable::calculate_table_base_offset() const {
1027   if (UseRDPCForConstantTableBase) {
1028     // The table base offset might be less but then it fits into
1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1030     return Assembler::min_simm13();
1031   } else {
1032     int offset = -(size() / 2);
1033     if (!Assembler::is_simm13(offset)) {
1034       offset = Assembler::min_simm13();
1035     }
1036     return offset;
1037   }
1038 }
1039 
1040 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1041   Compile* C = ra_->C;
1042   Compile::ConstantTable& constant_table = C->constant_table();
1043   MacroAssembler _masm(&cbuf);
1044 
1045   Register r = as_Register(ra_->get_encode(this));
1046   CodeSection* consts_section = __ code()->consts();
1047   int consts_size = consts_section->align_at_start(consts_section->size());
1048   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1049 
1050   if (UseRDPCForConstantTableBase) {
1051     // For the following RDPC logic to work correctly the consts
1052     // section must be allocated right before the insts section.  This
1053     // assert checks for that.  The layout and the SECT_* constants
1054     // are defined in src/share/vm/asm/codeBuffer.hpp.
1055     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1056     int insts_offset = __ offset();
1057 
1058     // Layout:
1059     //
1060     // |----------- consts section ------------|----------- insts section -----------...
1061     // |------ constant table -----|- padding -|------------------x----
1062     //                                                            \ current PC (RDPC instruction)
1063     // |<------------- consts_size ----------->|<- insts_offset ->|
1064     //                                                            \ table base
1065     // The table base offset is later added to the load displacement
1066     // so it has to be negative.
1067     int table_base_offset = -(consts_size + insts_offset);
1068     int disp;
1069 
1070     // If the displacement from the current PC to the constant table
1071     // base fits into simm13 we set the constant table base to the
1072     // current PC.
1073     if (Assembler::is_simm13(table_base_offset)) {
1074       constant_table.set_table_base_offset(table_base_offset);
1075       disp = 0;
1076     } else {
1077       // Otherwise we set the constant table base offset to the
1078       // maximum negative displacement of load instructions to keep
1079       // the disp as small as possible:
1080       //
1081       // |<------------- consts_size ----------->|<- insts_offset ->|
1082       // |<--------- min_simm13 --------->|<-------- disp --------->|
1083       //                                  \ table base
1084       table_base_offset = Assembler::min_simm13();
1085       constant_table.set_table_base_offset(table_base_offset);
1086       disp = (consts_size + insts_offset) + table_base_offset;
1087     }
1088 
1089     __ rdpc(r);
1090 
1091     if (disp != 0) {
1092       assert(r != O7, "need temporary");
1093       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1094     }
1095   }
1096   else {
1097     // Materialize the constant table base.
1098     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1099     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1100     AddressLiteral base(baseaddr, rspec);
1101     __ set(base, r);
1102   }
1103 }
1104 
1105 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1106   if (UseRDPCForConstantTableBase) {
1107     // This is really the worst case but generally it's only 1 instruction.
1108     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1109   } else {
1110     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1111   }
1112 }
1113 
1114 #ifndef PRODUCT
1115 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1116   char reg[128];
1117   ra_->dump_register(this, reg);
1118   if (UseRDPCForConstantTableBase) {
1119     st->print("RDPC   %s\t! constant table base", reg);
1120   } else {
1121     st->print("SET    &constanttable,%s\t! constant table base", reg);
1122   }
1123 }
1124 #endif
1125 
1126 
1127 //=============================================================================
1128 
1129 #ifndef PRODUCT
1130 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1131   Compile* C = ra_->C;
1132 
1133   for (int i = 0; i < OptoPrologueNops; i++) {
1134     st->print_cr("NOP"); st->print("\t");
1135   }
1136 
1137   if( VerifyThread ) {
1138     st->print_cr("Verify_Thread"); st->print("\t");
1139   }
1140 
1141   size_t framesize = C->frame_slots() << LogBytesPerInt;
1142 
1143   // Calls to C2R adapters often do not accept exceptional returns.
1144   // We require that their callers must bang for them.  But be careful, because
1145   // some VM calls (such as call site linkage) can use several kilobytes of
1146   // stack.  But the stack safety zone should account for that.
1147   // See bugs 4446381, 4468289, 4497237.
1148   if (C->need_stack_bang(framesize)) {
1149     st->print_cr("! stack bang"); st->print("\t");
1150   }
1151 
1152   if (Assembler::is_simm13(-framesize)) {
1153     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1154   } else {
1155     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1156     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1157     st->print   ("SAVE   R_SP,R_G3,R_SP");
1158   }
1159 
1160 }
1161 #endif
1162 
1163 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1164   Compile* C = ra_->C;
1165   MacroAssembler _masm(&cbuf);
1166 
1167   for (int i = 0; i < OptoPrologueNops; i++) {
1168     __ nop();
1169   }
1170 
1171   __ verify_thread();
1172 
1173   size_t framesize = C->frame_slots() << LogBytesPerInt;
1174   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1175   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1176 
1177   // Calls to C2R adapters often do not accept exceptional returns.
1178   // We require that their callers must bang for them.  But be careful, because
1179   // some VM calls (such as call site linkage) can use several kilobytes of
1180   // stack.  But the stack safety zone should account for that.
1181   // See bugs 4446381, 4468289, 4497237.
1182   if (C->need_stack_bang(framesize)) {
1183     __ generate_stack_overflow_check(framesize);
1184   }
1185 
1186   if (Assembler::is_simm13(-framesize)) {
1187     __ save(SP, -framesize, SP);
1188   } else {
1189     __ sethi(-framesize & ~0x3ff, G3);
1190     __ add(G3, -framesize & 0x3ff, G3);
1191     __ save(SP, G3, SP);
1192   }
1193   C->set_frame_complete( __ offset() );
1194 
1195   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1196     // NOTE: We set the table base offset here because users might be
1197     // emitted before MachConstantBaseNode.
1198     Compile::ConstantTable& constant_table = C->constant_table();
1199     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1200   }
1201 }
1202 
1203 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1204   return MachNode::size(ra_);
1205 }
1206 
1207 int MachPrologNode::reloc() const {
1208   return 10; // a large enough number
1209 }
1210 
1211 //=============================================================================
1212 #ifndef PRODUCT
1213 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1214   Compile* C = ra_->C;
1215 
1216   if( do_polling() && ra_->C->is_method_compilation() ) {
1217     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1218 #ifdef _LP64
1219     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1220 #else
1221     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1222 #endif
1223   }
1224 
1225   if( do_polling() )
1226     st->print("RET\n\t");
1227 
1228   st->print("RESTORE");
1229 }
1230 #endif
1231 
1232 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1233   MacroAssembler _masm(&cbuf);
1234   Compile* C = ra_->C;
1235 
1236   __ verify_thread();
1237 
1238   // If this does safepoint polling, then do it here
1239   if( do_polling() && ra_->C->is_method_compilation() ) {
1240     AddressLiteral polling_page(os::get_polling_page());
1241     __ sethi(polling_page, L0);
1242     __ relocate(relocInfo::poll_return_type);
1243     __ ld_ptr( L0, 0, G0 );
1244   }
1245 
1246   // If this is a return, then stuff the restore in the delay slot
1247   if( do_polling() ) {
1248     __ ret();
1249     __ delayed()->restore();
1250   } else {
1251     __ restore();
1252   }
1253 }
1254 
1255 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1256   return MachNode::size(ra_);
1257 }
1258 
1259 int MachEpilogNode::reloc() const {
1260   return 16; // a large enough number
1261 }
1262 
1263 const Pipeline * MachEpilogNode::pipeline() const {
1264   return MachNode::pipeline_class();
1265 }
1266 
1267 int MachEpilogNode::safepoint_offset() const {
1268   assert( do_polling(), "no return for this epilog node");
1269   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1270 }
1271 
1272 //=============================================================================
1273 
1274 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1275 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1276 static enum RC rc_class( OptoReg::Name reg ) {
1277   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1278   if (OptoReg::is_stack(reg)) return rc_stack;
1279   VMReg r = OptoReg::as_VMReg(reg);
1280   if (r->is_Register()) return rc_int;
1281   assert(r->is_FloatRegister(), "must be");
1282   return rc_float;
1283 }
1284 
1285 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1286   if( cbuf ) {
1287     // Better yet would be some mechanism to handle variable-size matches correctly
1288     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1289       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1290     } else {
1291       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1292     }
1293   }
1294 #ifndef PRODUCT
1295   else if( !do_size ) {
1296     if( size != 0 ) st->print("\n\t");
1297     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1298     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1299   }
1300 #endif
1301   return size+4;
1302 }
1303 
1304 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1305   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1306 #ifndef PRODUCT
1307   else if( !do_size ) {
1308     if( size != 0 ) st->print("\n\t");
1309     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1310   }
1311 #endif
1312   return size+4;
1313 }
1314 
1315 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1316                                         PhaseRegAlloc *ra_,
1317                                         bool do_size,
1318                                         outputStream* st ) const {
1319   // Get registers to move
1320   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1321   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1322   OptoReg::Name dst_second = ra_->get_reg_second(this );
1323   OptoReg::Name dst_first = ra_->get_reg_first(this );
1324 
1325   enum RC src_second_rc = rc_class(src_second);
1326   enum RC src_first_rc = rc_class(src_first);
1327   enum RC dst_second_rc = rc_class(dst_second);
1328   enum RC dst_first_rc = rc_class(dst_first);
1329 
1330   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1331 
1332   // Generate spill code!
1333   int size = 0;
1334 
1335   if( src_first == dst_first && src_second == dst_second )
1336     return size;            // Self copy, no move
1337 
1338   // --------------------------------------
1339   // Check for mem-mem move.  Load into unused float registers and fall into
1340   // the float-store case.
1341   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1342     int offset = ra_->reg2offset(src_first);
1343     // Further check for aligned-adjacent pair, so we can use a double load
1344     if( (src_first&1)==0 && src_first+1 == src_second ) {
1345       src_second    = OptoReg::Name(R_F31_num);
1346       src_second_rc = rc_float;
1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1348     } else {
1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1350     }
1351     src_first    = OptoReg::Name(R_F30_num);
1352     src_first_rc = rc_float;
1353   }
1354 
1355   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1356     int offset = ra_->reg2offset(src_second);
1357     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1358     src_second    = OptoReg::Name(R_F31_num);
1359     src_second_rc = rc_float;
1360   }
1361 
1362   // --------------------------------------
1363   // Check for float->int copy; requires a trip through memory
1364   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1365     int offset = frame::register_save_words*wordSize;
1366     if (cbuf) {
1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1368       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1369       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1371     }
1372 #ifndef PRODUCT
1373     else if (!do_size) {
1374       if (size != 0) st->print("\n\t");
1375       st->print(  "SUB    R_SP,16,R_SP\n");
1376       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1377       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1378       st->print("\tADD    R_SP,16,R_SP\n");
1379     }
1380 #endif
1381     size += 16;
1382   }
1383 
1384   // Check for float->int copy on T4
1385   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1386     // Further check for aligned-adjacent pair, so we can use a double move
1387     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1388       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1389     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1390   }
1391   // Check for int->float copy on T4
1392   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1393     // Further check for aligned-adjacent pair, so we can use a double move
1394     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1395       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1396     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1397   }
1398 
1399   // --------------------------------------
1400   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1401   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1402   // hardware does the flop for me.  Doubles are always aligned, so no problem
1403   // there.  Misaligned sources only come from native-long-returns (handled
1404   // special below).
1405 #ifndef _LP64
1406   if( src_first_rc == rc_int &&     // source is already big-endian
1407       src_second_rc != rc_bad &&    // 64-bit move
1408       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1409     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1410     // Do the big-endian flop.
1411     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1412     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1413   }
1414 #endif
1415 
1416   // --------------------------------------
1417   // Check for integer reg-reg copy
1418   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1419 #ifndef _LP64
1420     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1421       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1422       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1423       //       operand contains the least significant word of the 64-bit value and vice versa.
1424       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1425       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1426       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1427       if( cbuf ) {
1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1430         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1431 #ifndef PRODUCT
1432       } else if( !do_size ) {
1433         if( size != 0 ) st->print("\n\t");
1434         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1435         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1436         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1437 #endif
1438       }
1439       return size+12;
1440     }
1441     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1442       // returning a long value in I0/I1
1443       // a SpillCopy must be able to target a return instruction's reg_class
1444       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1445       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1446       //       operand contains the least significant word of the 64-bit value and vice versa.
1447       OptoReg::Name tdest = dst_first;
1448 
1449       if (src_first == dst_first) {
1450         tdest = OptoReg::Name(R_O7_num);
1451         size += 4;
1452       }
1453 
1454       if( cbuf ) {
1455         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1456         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1457         // ShrL_reg_imm6
1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1459         // ShrR_reg_imm6  src, 0, dst
1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1461         if (tdest != dst_first) {
1462           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1463         }
1464       }
1465 #ifndef PRODUCT
1466       else if( !do_size ) {
1467         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1468         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1469         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1470         if (tdest != dst_first) {
1471           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1472         }
1473       }
1474 #endif // PRODUCT
1475       return size+8;
1476     }
1477 #endif // !_LP64
1478     // Else normal reg-reg copy
1479     assert( src_second != dst_first, "smashed second before evacuating it" );
1480     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1481     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1482     // This moves an aligned adjacent pair.
1483     // See if we are done.
1484     if( src_first+1 == src_second && dst_first+1 == dst_second )
1485       return size;
1486   }
1487 
1488   // Check for integer store
1489   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1490     int offset = ra_->reg2offset(dst_first);
1491     // Further check for aligned-adjacent pair, so we can use a double store
1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1493       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1494     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1495   }
1496 
1497   // Check for integer load
1498   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1499     int offset = ra_->reg2offset(src_first);
1500     // Further check for aligned-adjacent pair, so we can use a double load
1501     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1502       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1503     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1504   }
1505 
1506   // Check for float reg-reg copy
1507   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1508     // Further check for aligned-adjacent pair, so we can use a double move
1509     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1510       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1511     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1512   }
1513 
1514   // Check for float store
1515   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1516     int offset = ra_->reg2offset(dst_first);
1517     // Further check for aligned-adjacent pair, so we can use a double store
1518     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1519       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1520     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1521   }
1522 
1523   // Check for float load
1524   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1525     int offset = ra_->reg2offset(src_first);
1526     // Further check for aligned-adjacent pair, so we can use a double load
1527     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1528       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1529     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1530   }
1531 
1532   // --------------------------------------------------------------------
1533   // Check for hi bits still needing moving.  Only happens for misaligned
1534   // arguments to native calls.
1535   if( src_second == dst_second )
1536     return size;               // Self copy; no move
1537   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1538 
1539 #ifndef _LP64
1540   // In the LP64 build, all registers can be moved as aligned/adjacent
1541   // pairs, so there's never any need to move the high bits separately.
1542   // The 32-bit builds have to deal with the 32-bit ABI which can force
1543   // all sorts of silly alignment problems.
1544 
1545   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1546   // 32-bits of a 64-bit register, but are needed in low bits of another
1547   // register (else it's a hi-bits-to-hi-bits copy which should have
1548   // happened already as part of a 64-bit move)
1549   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1550     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1551     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1552     // Shift src_second down to dst_second's low bits.
1553     if( cbuf ) {
1554       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1555 #ifndef PRODUCT
1556     } else if( !do_size ) {
1557       if( size != 0 ) st->print("\n\t");
1558       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1559 #endif
1560     }
1561     return size+4;
1562   }
1563 
1564   // Check for high word integer store.  Must down-shift the hi bits
1565   // into a temp register, then fall into the case of storing int bits.
1566   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1567     // Shift src_second down to dst_second's low bits.
1568     if( cbuf ) {
1569       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1570 #ifndef PRODUCT
1571     } else if( !do_size ) {
1572       if( size != 0 ) st->print("\n\t");
1573       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1574 #endif
1575     }
1576     size+=4;
1577     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1578   }
1579 
1580   // Check for high word integer load
1581   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1582     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1583 
1584   // Check for high word integer store
1585   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1586     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1587 
1588   // Check for high word float store
1589   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1590     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1591 
1592 #endif // !_LP64
1593 
1594   Unimplemented();
1595 }
1596 
1597 #ifndef PRODUCT
1598 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1599   implementation( NULL, ra_, false, st );
1600 }
1601 #endif
1602 
1603 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1604   implementation( &cbuf, ra_, false, NULL );
1605 }
1606 
1607 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1608   return implementation( NULL, ra_, true, NULL );
1609 }
1610 
1611 //=============================================================================
1612 #ifndef PRODUCT
1613 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1614   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1615 }
1616 #endif
1617 
1618 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1619   MacroAssembler _masm(&cbuf);
1620   for(int i = 0; i < _count; i += 1) {
1621     __ nop();
1622   }
1623 }
1624 
1625 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1626   return 4 * _count;
1627 }
1628 
1629 
1630 //=============================================================================
1631 #ifndef PRODUCT
1632 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1633   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1634   int reg = ra_->get_reg_first(this);
1635   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1636 }
1637 #endif
1638 
1639 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1640   MacroAssembler _masm(&cbuf);
1641   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1642   int reg = ra_->get_encode(this);
1643 
1644   if (Assembler::is_simm13(offset)) {
1645      __ add(SP, offset, reg_to_register_object(reg));
1646   } else {
1647      __ set(offset, O7);
1648      __ add(SP, O7, reg_to_register_object(reg));
1649   }
1650 }
1651 
1652 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1653   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1654   assert(ra_ == ra_->C->regalloc(), "sanity");
1655   return ra_->C->scratch_emit_size(this);
1656 }
1657 
1658 //=============================================================================
1659 
1660 // emit call stub, compiled java to interpretor
1661 void emit_java_to_interp(CodeBuffer &cbuf ) {
1662 
1663   // Stub is fixed up when the corresponding call is converted from calling
1664   // compiled code to calling interpreted code.
1665   // set (empty), G5
1666   // jmp -1
1667 
1668   address mark = cbuf.insts_mark();  // get mark within main instrs section
1669 
1670   MacroAssembler _masm(&cbuf);
1671 
1672   address base =
1673   __ start_a_stub(Compile::MAX_stubs_size);
1674   if (base == NULL)  return;  // CodeBuffer::expand failed
1675 
1676   // static stub relocation stores the instruction address of the call
1677   __ relocate(static_stub_Relocation::spec(mark));
1678 
1679   __ set_metadata(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1680 
1681   __ set_inst_mark();
1682   AddressLiteral addrlit(-1);
1683   __ JUMP(addrlit, G3, 0);
1684 
1685   __ delayed()->nop();
1686 
1687   // Update current stubs pointer and restore code_end.
1688   __ end_a_stub();
1689 }
1690 
1691 // size of call stub, compiled java to interpretor
1692 uint size_java_to_interp() {
1693   // This doesn't need to be accurate but it must be larger or equal to
1694   // the real size of the stub.
1695   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1696           NativeJump::instruction_size + // sethi; jmp; nop
1697           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1698 }
1699 // relocation entries for call stub, compiled java to interpretor
1700 uint reloc_java_to_interp() {
1701   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1702 }
1703 
1704 
1705 //=============================================================================
1706 #ifndef PRODUCT
1707 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1708   st->print_cr("\nUEP:");
1709 #ifdef    _LP64
1710   if (UseCompressedKlassPointers) {
1711     assert(Universe::heap() != NULL, "java heap should be initialized");
1712     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1713     st->print_cr("\tSLL    R_G5,3,R_G5");
1714     if (Universe::narrow_klass_base() != NULL)
1715       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1716   } else {
1717     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1718   }
1719   st->print_cr("\tCMP    R_G5,R_G3" );
1720   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1721 #else  // _LP64
1722   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1723   st->print_cr("\tCMP    R_G5,R_G3" );
1724   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1725 #endif // _LP64
1726 }
1727 #endif
1728 
1729 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1730   MacroAssembler _masm(&cbuf);
1731   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1732   Register temp_reg   = G3;
1733   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1734 
1735   // Load klass from receiver
1736   __ load_klass(O0, temp_reg);
1737   // Compare against expected klass
1738   __ cmp(temp_reg, G5_ic_reg);
1739   // Branch to miss code, checks xcc or icc depending
1740   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1741 }
1742 
1743 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1744   return MachNode::size(ra_);
1745 }
1746 
1747 
1748 //=============================================================================
1749 
1750 uint size_exception_handler() {
1751   if (TraceJumps) {
1752     return (400); // just a guess
1753   }
1754   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1755 }
1756 
1757 uint size_deopt_handler() {
1758   if (TraceJumps) {
1759     return (400); // just a guess
1760   }
1761   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1762 }
1763 
1764 // Emit exception handler code.
1765 int emit_exception_handler(CodeBuffer& cbuf) {
1766   Register temp_reg = G3;
1767   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1768   MacroAssembler _masm(&cbuf);
1769 
1770   address base =
1771   __ start_a_stub(size_exception_handler());
1772   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1773 
1774   int offset = __ offset();
1775 
1776   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1777   __ delayed()->nop();
1778 
1779   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1780 
1781   __ end_a_stub();
1782 
1783   return offset;
1784 }
1785 
1786 int emit_deopt_handler(CodeBuffer& cbuf) {
1787   // Can't use any of the current frame's registers as we may have deopted
1788   // at a poll and everything (including G3) can be live.
1789   Register temp_reg = L0;
1790   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1791   MacroAssembler _masm(&cbuf);
1792 
1793   address base =
1794   __ start_a_stub(size_deopt_handler());
1795   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1796 
1797   int offset = __ offset();
1798   __ save_frame(0);
1799   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1800   __ delayed()->restore();
1801 
1802   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1803 
1804   __ end_a_stub();
1805   return offset;
1806 
1807 }
1808 
1809 // Given a register encoding, produce a Integer Register object
1810 static Register reg_to_register_object(int register_encoding) {
1811   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1812   return as_Register(register_encoding);
1813 }
1814 
1815 // Given a register encoding, produce a single-precision Float Register object
1816 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1817   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1818   return as_SingleFloatRegister(register_encoding);
1819 }
1820 
1821 // Given a register encoding, produce a double-precision Float Register object
1822 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1823   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1824   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1825   return as_DoubleFloatRegister(register_encoding);
1826 }
1827 
1828 const bool Matcher::match_rule_supported(int opcode) {
1829   if (!has_match_rule(opcode))
1830     return false;
1831 
1832   switch (opcode) {
1833   case Op_CountLeadingZerosI:
1834   case Op_CountLeadingZerosL:
1835   case Op_CountTrailingZerosI:
1836   case Op_CountTrailingZerosL:
1837   case Op_PopCountI:
1838   case Op_PopCountL:
1839     if (!UsePopCountInstruction)
1840       return false;
1841   case Op_CompareAndSwapL:
1842 #ifdef _LP64
1843   case Op_CompareAndSwapP:
1844 #endif
1845     if (!VM_Version::supports_cx8())
1846       return false;
1847     break;
1848   }
1849 
1850   return true;  // Per default match rules are supported.
1851 }
1852 
1853 int Matcher::regnum_to_fpu_offset(int regnum) {
1854   return regnum - 32; // The FP registers are in the second chunk
1855 }
1856 
1857 #ifdef ASSERT
1858 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1859 #endif
1860 
1861 // Vector width in bytes
1862 const int Matcher::vector_width_in_bytes(BasicType bt) {
1863   assert(MaxVectorSize == 8, "");
1864   return 8;
1865 }
1866 
1867 // Vector ideal reg
1868 const int Matcher::vector_ideal_reg(int size) {
1869   assert(MaxVectorSize == 8, "");
1870   return Op_RegD;
1871 }
1872 
1873 const int Matcher::vector_shift_count_ideal_reg(int size) {
1874   fatal("vector shift is not supported");
1875   return Node::NotAMachineReg;
1876 }
1877 
1878 // Limits on vector size (number of elements) loaded into vector.
1879 const int Matcher::max_vector_size(const BasicType bt) {
1880   assert(is_java_primitive(bt), "only primitive type vectors");
1881   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1882 }
1883 
1884 const int Matcher::min_vector_size(const BasicType bt) {
1885   return max_vector_size(bt); // Same as max.
1886 }
1887 
1888 // SPARC doesn't support misaligned vectors store/load.
1889 const bool Matcher::misaligned_vectors_ok() {
1890   return false;
1891 }
1892 
1893 // USII supports fxtof through the whole range of number, USIII doesn't
1894 const bool Matcher::convL2FSupported(void) {
1895   return VM_Version::has_fast_fxtof();
1896 }
1897 
1898 // Is this branch offset short enough that a short branch can be used?
1899 //
1900 // NOTE: If the platform does not provide any short branch variants, then
1901 //       this method should return false for offset 0.
1902 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1903   // The passed offset is relative to address of the branch.
1904   // Don't need to adjust the offset.
1905   return UseCBCond && Assembler::is_simm12(offset);
1906 }
1907 
1908 const bool Matcher::isSimpleConstant64(jlong value) {
1909   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1910   // Depends on optimizations in MacroAssembler::setx.
1911   int hi = (int)(value >> 32);
1912   int lo = (int)(value & ~0);
1913   return (hi == 0) || (hi == -1) || (lo == 0);
1914 }
1915 
1916 // No scaling for the parameter the ClearArray node.
1917 const bool Matcher::init_array_count_is_in_bytes = true;
1918 
1919 // Threshold size for cleararray.
1920 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1921 
1922 // No additional cost for CMOVL.
1923 const int Matcher::long_cmove_cost() { return 0; }
1924 
1925 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1926 const int Matcher::float_cmove_cost() {
1927   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1928 }
1929 
1930 // Should the Matcher clone shifts on addressing modes, expecting them to
1931 // be subsumed into complex addressing expressions or compute them into
1932 // registers?  True for Intel but false for most RISCs
1933 const bool Matcher::clone_shift_expressions = false;
1934 
1935 // Do we need to mask the count passed to shift instructions or does
1936 // the cpu only look at the lower 5/6 bits anyway?
1937 const bool Matcher::need_masked_shift_count = false;
1938 
1939 bool Matcher::narrow_oop_use_complex_address() {
1940   NOT_LP64(ShouldNotCallThis());
1941   assert(UseCompressedOops, "only for compressed oops code");
1942   return false;
1943 }
1944 
1945 bool Matcher::narrow_klass_use_complex_address() {
1946   NOT_LP64(ShouldNotCallThis());
1947   assert(UseCompressedKlassPointers, "only for compressed klass code");
1948   return false;
1949 }
1950 
1951 // Is it better to copy float constants, or load them directly from memory?
1952 // Intel can load a float constant from a direct address, requiring no
1953 // extra registers.  Most RISCs will have to materialize an address into a
1954 // register first, so they would do better to copy the constant from stack.
1955 const bool Matcher::rematerialize_float_constants = false;
1956 
1957 // If CPU can load and store mis-aligned doubles directly then no fixup is
1958 // needed.  Else we split the double into 2 integer pieces and move it
1959 // piece-by-piece.  Only happens when passing doubles into C code as the
1960 // Java calling convention forces doubles to be aligned.
1961 #ifdef _LP64
1962 const bool Matcher::misaligned_doubles_ok = true;
1963 #else
1964 const bool Matcher::misaligned_doubles_ok = false;
1965 #endif
1966 
1967 // No-op on SPARC.
1968 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1969 }
1970 
1971 // Advertise here if the CPU requires explicit rounding operations
1972 // to implement the UseStrictFP mode.
1973 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1974 
1975 // Are floats conerted to double when stored to stack during deoptimization?
1976 // Sparc does not handle callee-save floats.
1977 bool Matcher::float_in_double() { return false; }
1978 
1979 // Do ints take an entire long register or just half?
1980 // Note that we if-def off of _LP64.
1981 // The relevant question is how the int is callee-saved.  In _LP64
1982 // the whole long is written but de-opt'ing will have to extract
1983 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1984 #ifdef _LP64
1985 const bool Matcher::int_in_long = true;
1986 #else
1987 const bool Matcher::int_in_long = false;
1988 #endif
1989 
1990 // Return whether or not this register is ever used as an argument.  This
1991 // function is used on startup to build the trampoline stubs in generateOptoStub.
1992 // Registers not mentioned will be killed by the VM call in the trampoline, and
1993 // arguments in those registers not be available to the callee.
1994 bool Matcher::can_be_java_arg( int reg ) {
1995   // Standard sparc 6 args in registers
1996   if( reg == R_I0_num ||
1997       reg == R_I1_num ||
1998       reg == R_I2_num ||
1999       reg == R_I3_num ||
2000       reg == R_I4_num ||
2001       reg == R_I5_num ) return true;
2002 #ifdef _LP64
2003   // 64-bit builds can pass 64-bit pointers and longs in
2004   // the high I registers
2005   if( reg == R_I0H_num ||
2006       reg == R_I1H_num ||
2007       reg == R_I2H_num ||
2008       reg == R_I3H_num ||
2009       reg == R_I4H_num ||
2010       reg == R_I5H_num ) return true;
2011 
2012   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2013     return true;
2014   }
2015 
2016 #else
2017   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2018   // Longs cannot be passed in O regs, because O regs become I regs
2019   // after a 'save' and I regs get their high bits chopped off on
2020   // interrupt.
2021   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2022   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2023 #endif
2024   // A few float args in registers
2025   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2026 
2027   return false;
2028 }
2029 
2030 bool Matcher::is_spillable_arg( int reg ) {
2031   return can_be_java_arg(reg);
2032 }
2033 
2034 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2035   // Use hardware SDIVX instruction when it is
2036   // faster than a code which use multiply.
2037   return VM_Version::has_fast_idiv();
2038 }
2039 
2040 // Register for DIVI projection of divmodI
2041 RegMask Matcher::divI_proj_mask() {
2042   ShouldNotReachHere();
2043   return RegMask();
2044 }
2045 
2046 // Register for MODI projection of divmodI
2047 RegMask Matcher::modI_proj_mask() {
2048   ShouldNotReachHere();
2049   return RegMask();
2050 }
2051 
2052 // Register for DIVL projection of divmodL
2053 RegMask Matcher::divL_proj_mask() {
2054   ShouldNotReachHere();
2055   return RegMask();
2056 }
2057 
2058 // Register for MODL projection of divmodL
2059 RegMask Matcher::modL_proj_mask() {
2060   ShouldNotReachHere();
2061   return RegMask();
2062 }
2063 
2064 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2065   return L7_REGP_mask();
2066 }
2067 
2068 %}
2069 
2070 
2071 // The intptr_t operand types, defined by textual substitution.
2072 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2073 #ifdef _LP64
2074 #define immX      immL
2075 #define immX13    immL13
2076 #define immX13m7  immL13m7
2077 #define iRegX     iRegL
2078 #define g1RegX    g1RegL
2079 #else
2080 #define immX      immI
2081 #define immX13    immI13
2082 #define immX13m7  immI13m7
2083 #define iRegX     iRegI
2084 #define g1RegX    g1RegI
2085 #endif
2086 
2087 //----------ENCODING BLOCK-----------------------------------------------------
2088 // This block specifies the encoding classes used by the compiler to output
2089 // byte streams.  Encoding classes are parameterized macros used by
2090 // Machine Instruction Nodes in order to generate the bit encoding of the
2091 // instruction.  Operands specify their base encoding interface with the
2092 // interface keyword.  There are currently supported four interfaces,
2093 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2094 // operand to generate a function which returns its register number when
2095 // queried.   CONST_INTER causes an operand to generate a function which
2096 // returns the value of the constant when queried.  MEMORY_INTER causes an
2097 // operand to generate four functions which return the Base Register, the
2098 // Index Register, the Scale Value, and the Offset Value of the operand when
2099 // queried.  COND_INTER causes an operand to generate six functions which
2100 // return the encoding code (ie - encoding bits for the instruction)
2101 // associated with each basic boolean condition for a conditional instruction.
2102 //
2103 // Instructions specify two basic values for encoding.  Again, a function
2104 // is available to check if the constant displacement is an oop. They use the
2105 // ins_encode keyword to specify their encoding classes (which must be
2106 // a sequence of enc_class names, and their parameters, specified in
2107 // the encoding block), and they use the
2108 // opcode keyword to specify, in order, their primary, secondary, and
2109 // tertiary opcode.  Only the opcode sections which a particular instruction
2110 // needs for encoding need to be specified.
2111 encode %{
2112   enc_class enc_untested %{
2113 #ifdef ASSERT
2114     MacroAssembler _masm(&cbuf);
2115     __ untested("encoding");
2116 #endif
2117   %}
2118 
2119   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2120     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2121                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2122   %}
2123 
2124   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2125     emit_form3_mem_reg(cbuf, this, $primary, -1,
2126                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2127   %}
2128 
2129   enc_class form3_mem_prefetch_read( memory mem ) %{
2130     emit_form3_mem_reg(cbuf, this, $primary, -1,
2131                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2132   %}
2133 
2134   enc_class form3_mem_prefetch_write( memory mem ) %{
2135     emit_form3_mem_reg(cbuf, this, $primary, -1,
2136                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2137   %}
2138 
2139   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2140     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2141     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2142     guarantee($mem$$index == R_G0_enc, "double index?");
2143     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2144     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2145     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2146     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2147   %}
2148 
2149   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2150     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2151     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2152     guarantee($mem$$index == R_G0_enc, "double index?");
2153     // Load long with 2 instructions
2154     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2155     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2156   %}
2157 
2158   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2159   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2160     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2161     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2162   %}
2163 
2164   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2165     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2166     if( $rs2$$reg != $rd$$reg )
2167       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2168   %}
2169 
2170   // Target lo half of long
2171   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2172     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2173     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2174       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2175   %}
2176 
2177   // Source lo half of long
2178   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2179     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2180     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2181       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2182   %}
2183 
2184   // Target hi half of long
2185   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2186     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2187   %}
2188 
2189   // Source lo half of long, and leave it sign extended.
2190   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2191     // Sign extend low half
2192     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2193   %}
2194 
2195   // Source hi half of long, and leave it sign extended.
2196   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2197     // Shift high half to low half
2198     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2199   %}
2200 
2201   // Source hi half of long
2202   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2203     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2204     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2205       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2206   %}
2207 
2208   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2209     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2210   %}
2211 
2212   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2213     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2214     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2215   %}
2216 
2217   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2218     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2219     // clear if nothing else is happening
2220     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2221     // blt,a,pn done
2222     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2223     // mov dst,-1 in delay slot
2224     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2225   %}
2226 
2227   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2228     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2229   %}
2230 
2231   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2232     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2233   %}
2234 
2235   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2236     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2237   %}
2238 
2239   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2240     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2241   %}
2242 
2243   enc_class move_return_pc_to_o1() %{
2244     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2245   %}
2246 
2247 #ifdef _LP64
2248   /* %%% merge with enc_to_bool */
2249   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2250     MacroAssembler _masm(&cbuf);
2251 
2252     Register   src_reg = reg_to_register_object($src$$reg);
2253     Register   dst_reg = reg_to_register_object($dst$$reg);
2254     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2255   %}
2256 #endif
2257 
2258   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2259     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2260     MacroAssembler _masm(&cbuf);
2261 
2262     Register   p_reg = reg_to_register_object($p$$reg);
2263     Register   q_reg = reg_to_register_object($q$$reg);
2264     Register   y_reg = reg_to_register_object($y$$reg);
2265     Register tmp_reg = reg_to_register_object($tmp$$reg);
2266 
2267     __ subcc( p_reg, q_reg,   p_reg );
2268     __ add  ( p_reg, y_reg, tmp_reg );
2269     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2270   %}
2271 
2272   enc_class form_d2i_helper(regD src, regF dst) %{
2273     // fcmp %fcc0,$src,$src
2274     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2275     // branch %fcc0 not-nan, predict taken
2276     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2277     // fdtoi $src,$dst
2278     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2279     // fitos $dst,$dst (if nan)
2280     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2281     // clear $dst (if nan)
2282     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2283     // carry on here...
2284   %}
2285 
2286   enc_class form_d2l_helper(regD src, regD dst) %{
2287     // fcmp %fcc0,$src,$src  check for NAN
2288     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2289     // branch %fcc0 not-nan, predict taken
2290     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2291     // fdtox $src,$dst   convert in delay slot
2292     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2293     // fxtod $dst,$dst  (if nan)
2294     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2295     // clear $dst (if nan)
2296     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2297     // carry on here...
2298   %}
2299 
2300   enc_class form_f2i_helper(regF src, regF dst) %{
2301     // fcmps %fcc0,$src,$src
2302     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2303     // branch %fcc0 not-nan, predict taken
2304     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2305     // fstoi $src,$dst
2306     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2307     // fitos $dst,$dst (if nan)
2308     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2309     // clear $dst (if nan)
2310     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2311     // carry on here...
2312   %}
2313 
2314   enc_class form_f2l_helper(regF src, regD dst) %{
2315     // fcmps %fcc0,$src,$src
2316     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2317     // branch %fcc0 not-nan, predict taken
2318     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2319     // fstox $src,$dst
2320     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2321     // fxtod $dst,$dst (if nan)
2322     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2323     // clear $dst (if nan)
2324     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2325     // carry on here...
2326   %}
2327 
2328   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2329   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2330   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2331   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2332 
2333   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2334 
2335   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2336   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2337 
2338   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2339     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2340   %}
2341 
2342   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2343     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2344   %}
2345 
2346   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2347     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2348   %}
2349 
2350   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2351     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2352   %}
2353 
2354   enc_class form3_convI2F(regF rs2, regF rd) %{
2355     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2356   %}
2357 
2358   // Encloding class for traceable jumps
2359   enc_class form_jmpl(g3RegP dest) %{
2360     emit_jmpl(cbuf, $dest$$reg);
2361   %}
2362 
2363   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2364     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2365   %}
2366 
2367   enc_class form2_nop() %{
2368     emit_nop(cbuf);
2369   %}
2370 
2371   enc_class form2_illtrap() %{
2372     emit_illtrap(cbuf);
2373   %}
2374 
2375 
2376   // Compare longs and convert into -1, 0, 1.
2377   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2378     // CMP $src1,$src2
2379     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2380     // blt,a,pn done
2381     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2382     // mov dst,-1 in delay slot
2383     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2384     // bgt,a,pn done
2385     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2386     // mov dst,1 in delay slot
2387     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2388     // CLR    $dst
2389     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2390   %}
2391 
2392   enc_class enc_PartialSubtypeCheck() %{
2393     MacroAssembler _masm(&cbuf);
2394     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2395     __ delayed()->nop();
2396   %}
2397 
2398   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2399     MacroAssembler _masm(&cbuf);
2400     Label* L = $labl$$label;
2401     Assembler::Predict predict_taken =
2402       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2403 
2404     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2405     __ delayed()->nop();
2406   %}
2407 
2408   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2409     MacroAssembler _masm(&cbuf);
2410     Label* L = $labl$$label;
2411     Assembler::Predict predict_taken =
2412       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2413 
2414     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2415     __ delayed()->nop();
2416   %}
2417 
2418   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2419     int op = (Assembler::arith_op << 30) |
2420              ($dst$$reg << 25) |
2421              (Assembler::movcc_op3 << 19) |
2422              (1 << 18) |                    // cc2 bit for 'icc'
2423              ($cmp$$cmpcode << 14) |
2424              (0 << 13) |                    // select register move
2425              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2426              ($src$$reg << 0);
2427     cbuf.insts()->emit_int32(op);
2428   %}
2429 
2430   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2431     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2432     int op = (Assembler::arith_op << 30) |
2433              ($dst$$reg << 25) |
2434              (Assembler::movcc_op3 << 19) |
2435              (1 << 18) |                    // cc2 bit for 'icc'
2436              ($cmp$$cmpcode << 14) |
2437              (1 << 13) |                    // select immediate move
2438              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2439              (simm11 << 0);
2440     cbuf.insts()->emit_int32(op);
2441   %}
2442 
2443   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2444     int op = (Assembler::arith_op << 30) |
2445              ($dst$$reg << 25) |
2446              (Assembler::movcc_op3 << 19) |
2447              (0 << 18) |                    // cc2 bit for 'fccX'
2448              ($cmp$$cmpcode << 14) |
2449              (0 << 13) |                    // select register move
2450              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2451              ($src$$reg << 0);
2452     cbuf.insts()->emit_int32(op);
2453   %}
2454 
2455   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2456     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2457     int op = (Assembler::arith_op << 30) |
2458              ($dst$$reg << 25) |
2459              (Assembler::movcc_op3 << 19) |
2460              (0 << 18) |                    // cc2 bit for 'fccX'
2461              ($cmp$$cmpcode << 14) |
2462              (1 << 13) |                    // select immediate move
2463              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2464              (simm11 << 0);
2465     cbuf.insts()->emit_int32(op);
2466   %}
2467 
2468   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2469     int op = (Assembler::arith_op << 30) |
2470              ($dst$$reg << 25) |
2471              (Assembler::fpop2_op3 << 19) |
2472              (0 << 18) |
2473              ($cmp$$cmpcode << 14) |
2474              (1 << 13) |                    // select register move
2475              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2476              ($primary << 5) |              // select single, double or quad
2477              ($src$$reg << 0);
2478     cbuf.insts()->emit_int32(op);
2479   %}
2480 
2481   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2482     int op = (Assembler::arith_op << 30) |
2483              ($dst$$reg << 25) |
2484              (Assembler::fpop2_op3 << 19) |
2485              (0 << 18) |
2486              ($cmp$$cmpcode << 14) |
2487              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2488              ($primary << 5) |              // select single, double or quad
2489              ($src$$reg << 0);
2490     cbuf.insts()->emit_int32(op);
2491   %}
2492 
2493   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2494   // the condition comes from opcode-field instead of an argument.
2495   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2496     int op = (Assembler::arith_op << 30) |
2497              ($dst$$reg << 25) |
2498              (Assembler::movcc_op3 << 19) |
2499              (1 << 18) |                    // cc2 bit for 'icc'
2500              ($primary << 14) |
2501              (0 << 13) |                    // select register move
2502              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2503              ($src$$reg << 0);
2504     cbuf.insts()->emit_int32(op);
2505   %}
2506 
2507   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2508     int op = (Assembler::arith_op << 30) |
2509              ($dst$$reg << 25) |
2510              (Assembler::movcc_op3 << 19) |
2511              (6 << 16) |                    // cc2 bit for 'xcc'
2512              ($primary << 14) |
2513              (0 << 13) |                    // select register move
2514              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2515              ($src$$reg << 0);
2516     cbuf.insts()->emit_int32(op);
2517   %}
2518 
2519   enc_class Set13( immI13 src, iRegI rd ) %{
2520     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2521   %}
2522 
2523   enc_class SetHi22( immI src, iRegI rd ) %{
2524     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2525   %}
2526 
2527   enc_class Set32( immI src, iRegI rd ) %{
2528     MacroAssembler _masm(&cbuf);
2529     __ set($src$$constant, reg_to_register_object($rd$$reg));
2530   %}
2531 
2532   enc_class call_epilog %{
2533     if( VerifyStackAtCalls ) {
2534       MacroAssembler _masm(&cbuf);
2535       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2536       Register temp_reg = G3;
2537       __ add(SP, framesize, temp_reg);
2538       __ cmp(temp_reg, FP);
2539       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2540     }
2541   %}
2542 
2543   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2544   // to G1 so the register allocator will not have to deal with the misaligned register
2545   // pair.
2546   enc_class adjust_long_from_native_call %{
2547 #ifndef _LP64
2548     if (returns_long()) {
2549       //    sllx  O0,32,O0
2550       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2551       //    srl   O1,0,O1
2552       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2553       //    or    O0,O1,G1
2554       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2555     }
2556 #endif
2557   %}
2558 
2559   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2560     // CALL directly to the runtime
2561     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2562     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2563                     /*preserve_g2=*/true);
2564   %}
2565 
2566   enc_class preserve_SP %{
2567     MacroAssembler _masm(&cbuf);
2568     __ mov(SP, L7_mh_SP_save);
2569   %}
2570 
2571   enc_class restore_SP %{
2572     MacroAssembler _masm(&cbuf);
2573     __ mov(L7_mh_SP_save, SP);
2574   %}
2575 
2576   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2577     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2578     // who we intended to call.
2579     if ( !_method ) {
2580       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2581     } else if (_optimized_virtual) {
2582       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2583     } else {
2584       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2585     }
2586     if( _method ) {  // Emit stub for static call
2587       emit_java_to_interp(cbuf);
2588     }
2589   %}
2590 
2591   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2592     MacroAssembler _masm(&cbuf);
2593     __ set_inst_mark();
2594     int vtable_index = this->_vtable_index;
2595     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2596     if (vtable_index < 0) {
2597       // must be invalid_vtable_index, not nonvirtual_vtable_index
2598       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2599       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2600       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2601       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2602       __ ic_call((address)$meth$$method);
2603     } else {
2604       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2605       // Just go thru the vtable
2606       // get receiver klass (receiver already checked for non-null)
2607       // If we end up going thru a c2i adapter interpreter expects method in G5
2608       int off = __ offset();
2609       __ load_klass(O0, G3_scratch);
2610       int klass_load_size;
2611       if (UseCompressedKlassPointers) {
2612         assert(Universe::heap() != NULL, "java heap should be initialized");
2613         if (Universe::narrow_klass_base() == NULL)
2614           klass_load_size = 2*BytesPerInstWord;
2615         else
2616           klass_load_size = 3*BytesPerInstWord;
2617       } else {
2618         klass_load_size = 1*BytesPerInstWord;
2619       }
2620       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2621       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2622       if (Assembler::is_simm13(v_off)) {
2623         __ ld_ptr(G3, v_off, G5_method);
2624       } else {
2625         // Generate 2 instructions
2626         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2627         __ or3(G5_method, v_off & 0x3ff, G5_method);
2628         // ld_ptr, set_hi, set
2629         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2630                "Unexpected instruction size(s)");
2631         __ ld_ptr(G3, G5_method, G5_method);
2632       }
2633       // NOTE: for vtable dispatches, the vtable entry will never be null.
2634       // However it may very well end up in handle_wrong_method if the
2635       // method is abstract for the particular class.
2636       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2637       // jump to target (either compiled code or c2iadapter)
2638       __ jmpl(G3_scratch, G0, O7);
2639       __ delayed()->nop();
2640     }
2641   %}
2642 
2643   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2644     MacroAssembler _masm(&cbuf);
2645 
2646     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2647     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2648                               // we might be calling a C2I adapter which needs it.
2649 
2650     assert(temp_reg != G5_ic_reg, "conflicting registers");
2651     // Load nmethod
2652     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2653 
2654     // CALL to compiled java, indirect the contents of G3
2655     __ set_inst_mark();
2656     __ callr(temp_reg, G0);
2657     __ delayed()->nop();
2658   %}
2659 
2660 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2661     MacroAssembler _masm(&cbuf);
2662     Register Rdividend = reg_to_register_object($src1$$reg);
2663     Register Rdivisor = reg_to_register_object($src2$$reg);
2664     Register Rresult = reg_to_register_object($dst$$reg);
2665 
2666     __ sra(Rdivisor, 0, Rdivisor);
2667     __ sra(Rdividend, 0, Rdividend);
2668     __ sdivx(Rdividend, Rdivisor, Rresult);
2669 %}
2670 
2671 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2672     MacroAssembler _masm(&cbuf);
2673 
2674     Register Rdividend = reg_to_register_object($src1$$reg);
2675     int divisor = $imm$$constant;
2676     Register Rresult = reg_to_register_object($dst$$reg);
2677 
2678     __ sra(Rdividend, 0, Rdividend);
2679     __ sdivx(Rdividend, divisor, Rresult);
2680 %}
2681 
2682 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2683     MacroAssembler _masm(&cbuf);
2684     Register Rsrc1 = reg_to_register_object($src1$$reg);
2685     Register Rsrc2 = reg_to_register_object($src2$$reg);
2686     Register Rdst  = reg_to_register_object($dst$$reg);
2687 
2688     __ sra( Rsrc1, 0, Rsrc1 );
2689     __ sra( Rsrc2, 0, Rsrc2 );
2690     __ mulx( Rsrc1, Rsrc2, Rdst );
2691     __ srlx( Rdst, 32, Rdst );
2692 %}
2693 
2694 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2695     MacroAssembler _masm(&cbuf);
2696     Register Rdividend = reg_to_register_object($src1$$reg);
2697     Register Rdivisor = reg_to_register_object($src2$$reg);
2698     Register Rresult = reg_to_register_object($dst$$reg);
2699     Register Rscratch = reg_to_register_object($scratch$$reg);
2700 
2701     assert(Rdividend != Rscratch, "");
2702     assert(Rdivisor  != Rscratch, "");
2703 
2704     __ sra(Rdividend, 0, Rdividend);
2705     __ sra(Rdivisor, 0, Rdivisor);
2706     __ sdivx(Rdividend, Rdivisor, Rscratch);
2707     __ mulx(Rscratch, Rdivisor, Rscratch);
2708     __ sub(Rdividend, Rscratch, Rresult);
2709 %}
2710 
2711 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2712     MacroAssembler _masm(&cbuf);
2713 
2714     Register Rdividend = reg_to_register_object($src1$$reg);
2715     int divisor = $imm$$constant;
2716     Register Rresult = reg_to_register_object($dst$$reg);
2717     Register Rscratch = reg_to_register_object($scratch$$reg);
2718 
2719     assert(Rdividend != Rscratch, "");
2720 
2721     __ sra(Rdividend, 0, Rdividend);
2722     __ sdivx(Rdividend, divisor, Rscratch);
2723     __ mulx(Rscratch, divisor, Rscratch);
2724     __ sub(Rdividend, Rscratch, Rresult);
2725 %}
2726 
2727 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2728     MacroAssembler _masm(&cbuf);
2729 
2730     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2731     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2732 
2733     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2734 %}
2735 
2736 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2737     MacroAssembler _masm(&cbuf);
2738 
2739     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2740     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2741 
2742     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2743 %}
2744 
2745 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2746     MacroAssembler _masm(&cbuf);
2747 
2748     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2749     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2750 
2751     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2752 %}
2753 
2754 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2755     MacroAssembler _masm(&cbuf);
2756 
2757     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2758     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2759 
2760     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2761 %}
2762 
2763 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2764     MacroAssembler _masm(&cbuf);
2765 
2766     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2767     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2768 
2769     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2770 %}
2771 
2772 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2773     MacroAssembler _masm(&cbuf);
2774 
2775     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2776     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2777 
2778     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2779 %}
2780 
2781 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2782     MacroAssembler _masm(&cbuf);
2783 
2784     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2785     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2786 
2787     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2788 %}
2789 
2790 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2791     MacroAssembler _masm(&cbuf);
2792 
2793     Register Roop  = reg_to_register_object($oop$$reg);
2794     Register Rbox  = reg_to_register_object($box$$reg);
2795     Register Rscratch = reg_to_register_object($scratch$$reg);
2796     Register Rmark =    reg_to_register_object($scratch2$$reg);
2797 
2798     assert(Roop  != Rscratch, "");
2799     assert(Roop  != Rmark, "");
2800     assert(Rbox  != Rscratch, "");
2801     assert(Rbox  != Rmark, "");
2802 
2803     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2804 %}
2805 
2806 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2807     MacroAssembler _masm(&cbuf);
2808 
2809     Register Roop  = reg_to_register_object($oop$$reg);
2810     Register Rbox  = reg_to_register_object($box$$reg);
2811     Register Rscratch = reg_to_register_object($scratch$$reg);
2812     Register Rmark =    reg_to_register_object($scratch2$$reg);
2813 
2814     assert(Roop  != Rscratch, "");
2815     assert(Roop  != Rmark, "");
2816     assert(Rbox  != Rscratch, "");
2817     assert(Rbox  != Rmark, "");
2818 
2819     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2820   %}
2821 
2822   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2823     MacroAssembler _masm(&cbuf);
2824     Register Rmem = reg_to_register_object($mem$$reg);
2825     Register Rold = reg_to_register_object($old$$reg);
2826     Register Rnew = reg_to_register_object($new$$reg);
2827 
2828     // casx_under_lock picks 1 of 3 encodings:
2829     // For 32-bit pointers you get a 32-bit CAS
2830     // For 64-bit pointers you get a 64-bit CASX
2831     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2832     __ cmp( Rold, Rnew );
2833   %}
2834 
2835   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2836     Register Rmem = reg_to_register_object($mem$$reg);
2837     Register Rold = reg_to_register_object($old$$reg);
2838     Register Rnew = reg_to_register_object($new$$reg);
2839 
2840     MacroAssembler _masm(&cbuf);
2841     __ mov(Rnew, O7);
2842     __ casx(Rmem, Rold, O7);
2843     __ cmp( Rold, O7 );
2844   %}
2845 
2846   // raw int cas, used for compareAndSwap
2847   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2848     Register Rmem = reg_to_register_object($mem$$reg);
2849     Register Rold = reg_to_register_object($old$$reg);
2850     Register Rnew = reg_to_register_object($new$$reg);
2851 
2852     MacroAssembler _masm(&cbuf);
2853     __ mov(Rnew, O7);
2854     __ cas(Rmem, Rold, O7);
2855     __ cmp( Rold, O7 );
2856   %}
2857 
2858   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2859     Register Rres = reg_to_register_object($res$$reg);
2860 
2861     MacroAssembler _masm(&cbuf);
2862     __ mov(1, Rres);
2863     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2864   %}
2865 
2866   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2867     Register Rres = reg_to_register_object($res$$reg);
2868 
2869     MacroAssembler _masm(&cbuf);
2870     __ mov(1, Rres);
2871     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2872   %}
2873 
2874   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2875     MacroAssembler _masm(&cbuf);
2876     Register Rdst = reg_to_register_object($dst$$reg);
2877     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2878                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2879     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2880                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2881 
2882     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2883     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2884   %}
2885 
2886 
2887   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2888     Label Ldone, Lloop;
2889     MacroAssembler _masm(&cbuf);
2890 
2891     Register   str1_reg = reg_to_register_object($str1$$reg);
2892     Register   str2_reg = reg_to_register_object($str2$$reg);
2893     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2894     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2895     Register result_reg = reg_to_register_object($result$$reg);
2896 
2897     assert(result_reg != str1_reg &&
2898            result_reg != str2_reg &&
2899            result_reg != cnt1_reg &&
2900            result_reg != cnt2_reg ,
2901            "need different registers");
2902 
2903     // Compute the minimum of the string lengths(str1_reg) and the
2904     // difference of the string lengths (stack)
2905 
2906     // See if the lengths are different, and calculate min in str1_reg.
2907     // Stash diff in O7 in case we need it for a tie-breaker.
2908     Label Lskip;
2909     __ subcc(cnt1_reg, cnt2_reg, O7);
2910     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2911     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2912     // cnt2 is shorter, so use its count:
2913     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2914     __ bind(Lskip);
2915 
2916     // reallocate cnt1_reg, cnt2_reg, result_reg
2917     // Note:  limit_reg holds the string length pre-scaled by 2
2918     Register limit_reg =   cnt1_reg;
2919     Register  chr2_reg =   cnt2_reg;
2920     Register  chr1_reg = result_reg;
2921     // str{12} are the base pointers
2922 
2923     // Is the minimum length zero?
2924     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2925     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2926     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2927 
2928     // Load first characters
2929     __ lduh(str1_reg, 0, chr1_reg);
2930     __ lduh(str2_reg, 0, chr2_reg);
2931 
2932     // Compare first characters
2933     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2934     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2935     assert(chr1_reg == result_reg, "result must be pre-placed");
2936     __ delayed()->nop();
2937 
2938     {
2939       // Check after comparing first character to see if strings are equivalent
2940       Label LSkip2;
2941       // Check if the strings start at same location
2942       __ cmp(str1_reg, str2_reg);
2943       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2944       __ delayed()->nop();
2945 
2946       // Check if the length difference is zero (in O7)
2947       __ cmp(G0, O7);
2948       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2949       __ delayed()->mov(G0, result_reg);  // result is zero
2950 
2951       // Strings might not be equal
2952       __ bind(LSkip2);
2953     }
2954 
2955     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2956     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2957     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2958 
2959     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2960     __ add(str1_reg, limit_reg, str1_reg);
2961     __ add(str2_reg, limit_reg, str2_reg);
2962     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2963 
2964     // Compare the rest of the characters
2965     __ lduh(str1_reg, limit_reg, chr1_reg);
2966     __ bind(Lloop);
2967     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2968     __ lduh(str2_reg, limit_reg, chr2_reg);
2969     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2970     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2971     assert(chr1_reg == result_reg, "result must be pre-placed");
2972     __ delayed()->inccc(limit_reg, sizeof(jchar));
2973     // annul LDUH if branch is not taken to prevent access past end of string
2974     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2975     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2976 
2977     // If strings are equal up to min length, return the length difference.
2978     __ mov(O7, result_reg);
2979 
2980     // Otherwise, return the difference between the first mismatched chars.
2981     __ bind(Ldone);
2982   %}
2983 
2984 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2985     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2986     MacroAssembler _masm(&cbuf);
2987 
2988     Register   str1_reg = reg_to_register_object($str1$$reg);
2989     Register   str2_reg = reg_to_register_object($str2$$reg);
2990     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2991     Register   tmp1_reg = O7;
2992     Register result_reg = reg_to_register_object($result$$reg);
2993 
2994     assert(result_reg != str1_reg &&
2995            result_reg != str2_reg &&
2996            result_reg !=  cnt_reg &&
2997            result_reg != tmp1_reg ,
2998            "need different registers");
2999 
3000     __ cmp(str1_reg, str2_reg); //same char[] ?
3001     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3002     __ delayed()->add(G0, 1, result_reg);
3003 
3004     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
3005     __ delayed()->add(G0, 1, result_reg); // count == 0
3006 
3007     //rename registers
3008     Register limit_reg =    cnt_reg;
3009     Register  chr1_reg = result_reg;
3010     Register  chr2_reg =   tmp1_reg;
3011 
3012     //check for alignment and position the pointers to the ends
3013     __ or3(str1_reg, str2_reg, chr1_reg);
3014     __ andcc(chr1_reg, 0x3, chr1_reg);
3015     // notZero means at least one not 4-byte aligned.
3016     // We could optimize the case when both arrays are not aligned
3017     // but it is not frequent case and it requires additional checks.
3018     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
3019     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
3020 
3021     // Compare char[] arrays aligned to 4 bytes.
3022     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3023                           chr1_reg, chr2_reg, Ldone);
3024     __ ba(Ldone);
3025     __ delayed()->add(G0, 1, result_reg);
3026 
3027     // char by char compare
3028     __ bind(Lchar);
3029     __ add(str1_reg, limit_reg, str1_reg);
3030     __ add(str2_reg, limit_reg, str2_reg);
3031     __ neg(limit_reg); //negate count
3032 
3033     __ lduh(str1_reg, limit_reg, chr1_reg);
3034     // Lchar_loop
3035     __ bind(Lchar_loop);
3036     __ lduh(str2_reg, limit_reg, chr2_reg);
3037     __ cmp(chr1_reg, chr2_reg);
3038     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3039     __ delayed()->mov(G0, result_reg); //not equal
3040     __ inccc(limit_reg, sizeof(jchar));
3041     // annul LDUH if branch is not taken to prevent access past end of string
3042     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3043     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3044 
3045     __ add(G0, 1, result_reg);  //equal
3046 
3047     __ bind(Ldone);
3048   %}
3049 
3050 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3051     Label Lvector, Ldone, Lloop;
3052     MacroAssembler _masm(&cbuf);
3053 
3054     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3055     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3056     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3057     Register   tmp2_reg = O7;
3058     Register result_reg = reg_to_register_object($result$$reg);
3059 
3060     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3061     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3062 
3063     // return true if the same array
3064     __ cmp(ary1_reg, ary2_reg);
3065     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3066     __ delayed()->add(G0, 1, result_reg); // equal
3067 
3068     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3069     __ delayed()->mov(G0, result_reg);    // not equal
3070 
3071     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3072     __ delayed()->mov(G0, result_reg);    // not equal
3073 
3074     //load the lengths of arrays
3075     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3076     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3077 
3078     // return false if the two arrays are not equal length
3079     __ cmp(tmp1_reg, tmp2_reg);
3080     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3081     __ delayed()->mov(G0, result_reg);     // not equal
3082 
3083     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3084     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3085 
3086     // load array addresses
3087     __ add(ary1_reg, base_offset, ary1_reg);
3088     __ add(ary2_reg, base_offset, ary2_reg);
3089 
3090     // renaming registers
3091     Register chr1_reg  =  result_reg; // for characters in ary1
3092     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3093     Register limit_reg =  tmp1_reg;   // length
3094 
3095     // set byte count
3096     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3097 
3098     // Compare char[] arrays aligned to 4 bytes.
3099     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3100                           chr1_reg, chr2_reg, Ldone);
3101     __ add(G0, 1, result_reg); // equals
3102 
3103     __ bind(Ldone);
3104   %}
3105 
3106   enc_class enc_rethrow() %{
3107     cbuf.set_insts_mark();
3108     Register temp_reg = G3;
3109     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3110     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3111     MacroAssembler _masm(&cbuf);
3112 #ifdef ASSERT
3113     __ save_frame(0);
3114     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3115     __ sethi(last_rethrow_addrlit, L1);
3116     Address addr(L1, last_rethrow_addrlit.low10());
3117     __ get_pc(L2);
3118     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3119     __ st_ptr(L2, addr);
3120     __ restore();
3121 #endif
3122     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3123     __ delayed()->nop();
3124   %}
3125 
3126   enc_class emit_mem_nop() %{
3127     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3128     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3129   %}
3130 
3131   enc_class emit_fadd_nop() %{
3132     // Generates the instruction FMOVS f31,f31
3133     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3134   %}
3135 
3136   enc_class emit_br_nop() %{
3137     // Generates the instruction BPN,PN .
3138     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3139   %}
3140 
3141   enc_class enc_membar_acquire %{
3142     MacroAssembler _masm(&cbuf);
3143     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3144   %}
3145 
3146   enc_class enc_membar_release %{
3147     MacroAssembler _masm(&cbuf);
3148     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3149   %}
3150 
3151   enc_class enc_membar_volatile %{
3152     MacroAssembler _masm(&cbuf);
3153     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3154   %}
3155 
3156 %}
3157 
3158 //----------FRAME--------------------------------------------------------------
3159 // Definition of frame structure and management information.
3160 //
3161 //  S T A C K   L A Y O U T    Allocators stack-slot number
3162 //                             |   (to get allocators register number
3163 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3164 //  r   CALLER     |        |
3165 //  o     |        +--------+      pad to even-align allocators stack-slot
3166 //  w     V        |  pad0  |        numbers; owned by CALLER
3167 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3168 //  h     ^        |   in   |  5
3169 //        |        |  args  |  4   Holes in incoming args owned by SELF
3170 //  |     |        |        |  3
3171 //  |     |        +--------+
3172 //  V     |        | old out|      Empty on Intel, window on Sparc
3173 //        |    old |preserve|      Must be even aligned.
3174 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3175 //        |        |   in   |  3   area for Intel ret address
3176 //     Owned by    |preserve|      Empty on Sparc.
3177 //       SELF      +--------+
3178 //        |        |  pad2  |  2   pad to align old SP
3179 //        |        +--------+  1
3180 //        |        | locks  |  0
3181 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3182 //        |        |  pad1  | 11   pad to align new SP
3183 //        |        +--------+
3184 //        |        |        | 10
3185 //        |        | spills |  9   spills
3186 //        V        |        |  8   (pad0 slot for callee)
3187 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3188 //        ^        |  out   |  7
3189 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3190 //     Owned by    +--------+
3191 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3192 //        |    new |preserve|      Must be even-aligned.
3193 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3194 //        |        |        |
3195 //
3196 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3197 //         known from SELF's arguments and the Java calling convention.
3198 //         Region 6-7 is determined per call site.
3199 // Note 2: If the calling convention leaves holes in the incoming argument
3200 //         area, those holes are owned by SELF.  Holes in the outgoing area
3201 //         are owned by the CALLEE.  Holes should not be nessecary in the
3202 //         incoming area, as the Java calling convention is completely under
3203 //         the control of the AD file.  Doubles can be sorted and packed to
3204 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3205 //         varargs C calling conventions.
3206 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3207 //         even aligned with pad0 as needed.
3208 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3209 //         region 6-11 is even aligned; it may be padded out more so that
3210 //         the region from SP to FP meets the minimum stack alignment.
3211 
3212 frame %{
3213   // What direction does stack grow in (assumed to be same for native & Java)
3214   stack_direction(TOWARDS_LOW);
3215 
3216   // These two registers define part of the calling convention
3217   // between compiled code and the interpreter.
3218   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3219   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3220 
3221   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3222   cisc_spilling_operand_name(indOffset);
3223 
3224   // Number of stack slots consumed by a Monitor enter
3225 #ifdef _LP64
3226   sync_stack_slots(2);
3227 #else
3228   sync_stack_slots(1);
3229 #endif
3230 
3231   // Compiled code's Frame Pointer
3232   frame_pointer(R_SP);
3233 
3234   // Stack alignment requirement
3235   stack_alignment(StackAlignmentInBytes);
3236   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3237   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3238 
3239   // Number of stack slots between incoming argument block and the start of
3240   // a new frame.  The PROLOG must add this many slots to the stack.  The
3241   // EPILOG must remove this many slots.
3242   in_preserve_stack_slots(0);
3243 
3244   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3245   // for calls to C.  Supports the var-args backing area for register parms.
3246   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3247 #ifdef _LP64
3248   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3249   varargs_C_out_slots_killed(12);
3250 #else
3251   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3252   varargs_C_out_slots_killed( 7);
3253 #endif
3254 
3255   // The after-PROLOG location of the return address.  Location of
3256   // return address specifies a type (REG or STACK) and a number
3257   // representing the register number (i.e. - use a register name) or
3258   // stack slot.
3259   return_addr(REG R_I7);          // Ret Addr is in register I7
3260 
3261   // Body of function which returns an OptoRegs array locating
3262   // arguments either in registers or in stack slots for calling
3263   // java
3264   calling_convention %{
3265     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3266 
3267   %}
3268 
3269   // Body of function which returns an OptoRegs array locating
3270   // arguments either in registers or in stack slots for callin
3271   // C.
3272   c_calling_convention %{
3273     // This is obviously always outgoing
3274     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3275   %}
3276 
3277   // Location of native (C/C++) and interpreter return values.  This is specified to
3278   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3279   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3280   // to and from the register pairs is done by the appropriate call and epilog
3281   // opcodes.  This simplifies the register allocator.
3282   c_return_value %{
3283     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3284 #ifdef     _LP64
3285     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3286     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3287     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3288     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3289 #else  // !_LP64
3290     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3291     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3292     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3293     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3294 #endif
3295     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3296                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3297   %}
3298 
3299   // Location of compiled Java return values.  Same as C
3300   return_value %{
3301     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3302 #ifdef     _LP64
3303     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3304     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3305     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3306     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3307 #else  // !_LP64
3308     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3309     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3310     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3311     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3312 #endif
3313     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3314                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3315   %}
3316 
3317 %}
3318 
3319 
3320 //----------ATTRIBUTES---------------------------------------------------------
3321 //----------Operand Attributes-------------------------------------------------
3322 op_attrib op_cost(1);          // Required cost attribute
3323 
3324 //----------Instruction Attributes---------------------------------------------
3325 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3326 ins_attrib ins_size(32);           // Required size attribute (in bits)
3327 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3328 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3329                                    // non-matching short branch variant of some
3330                                                             // long branch?
3331 
3332 //----------OPERANDS-----------------------------------------------------------
3333 // Operand definitions must precede instruction definitions for correct parsing
3334 // in the ADLC because operands constitute user defined types which are used in
3335 // instruction definitions.
3336 
3337 //----------Simple Operands----------------------------------------------------
3338 // Immediate Operands
3339 // Integer Immediate: 32-bit
3340 operand immI() %{
3341   match(ConI);
3342 
3343   op_cost(0);
3344   // formats are generated automatically for constants and base registers
3345   format %{ %}
3346   interface(CONST_INTER);
3347 %}
3348 
3349 // Integer Immediate: 8-bit
3350 operand immI8() %{
3351   predicate(Assembler::is_simm8(n->get_int()));
3352   match(ConI);
3353   op_cost(0);
3354   format %{ %}
3355   interface(CONST_INTER);
3356 %}
3357 
3358 // Integer Immediate: 13-bit
3359 operand immI13() %{
3360   predicate(Assembler::is_simm13(n->get_int()));
3361   match(ConI);
3362   op_cost(0);
3363 
3364   format %{ %}
3365   interface(CONST_INTER);
3366 %}
3367 
3368 // Integer Immediate: 13-bit minus 7
3369 operand immI13m7() %{
3370   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3371   match(ConI);
3372   op_cost(0);
3373 
3374   format %{ %}
3375   interface(CONST_INTER);
3376 %}
3377 
3378 // Integer Immediate: 16-bit
3379 operand immI16() %{
3380   predicate(Assembler::is_simm16(n->get_int()));
3381   match(ConI);
3382   op_cost(0);
3383   format %{ %}
3384   interface(CONST_INTER);
3385 %}
3386 
3387 // Unsigned (positive) Integer Immediate: 13-bit
3388 operand immU13() %{
3389   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3390   match(ConI);
3391   op_cost(0);
3392 
3393   format %{ %}
3394   interface(CONST_INTER);
3395 %}
3396 
3397 // Integer Immediate: 6-bit
3398 operand immU6() %{
3399   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3400   match(ConI);
3401   op_cost(0);
3402   format %{ %}
3403   interface(CONST_INTER);
3404 %}
3405 
3406 // Integer Immediate: 11-bit
3407 operand immI11() %{
3408   predicate(Assembler::is_simm11(n->get_int()));
3409   match(ConI);
3410   op_cost(0);
3411   format %{ %}
3412   interface(CONST_INTER);
3413 %}
3414 
3415 // Integer Immediate: 5-bit
3416 operand immI5() %{
3417   predicate(Assembler::is_simm5(n->get_int()));
3418   match(ConI);
3419   op_cost(0);
3420   format %{ %}
3421   interface(CONST_INTER);
3422 %}
3423 
3424 // Integer Immediate: 0-bit
3425 operand immI0() %{
3426   predicate(n->get_int() == 0);
3427   match(ConI);
3428   op_cost(0);
3429 
3430   format %{ %}
3431   interface(CONST_INTER);
3432 %}
3433 
3434 // Integer Immediate: the value 10
3435 operand immI10() %{
3436   predicate(n->get_int() == 10);
3437   match(ConI);
3438   op_cost(0);
3439 
3440   format %{ %}
3441   interface(CONST_INTER);
3442 %}
3443 
3444 // Integer Immediate: the values 0-31
3445 operand immU5() %{
3446   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3447   match(ConI);
3448   op_cost(0);
3449 
3450   format %{ %}
3451   interface(CONST_INTER);
3452 %}
3453 
3454 // Integer Immediate: the values 1-31
3455 operand immI_1_31() %{
3456   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3457   match(ConI);
3458   op_cost(0);
3459 
3460   format %{ %}
3461   interface(CONST_INTER);
3462 %}
3463 
3464 // Integer Immediate: the values 32-63
3465 operand immI_32_63() %{
3466   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3467   match(ConI);
3468   op_cost(0);
3469 
3470   format %{ %}
3471   interface(CONST_INTER);
3472 %}
3473 
3474 // Immediates for special shifts (sign extend)
3475 
3476 // Integer Immediate: the value 16
3477 operand immI_16() %{
3478   predicate(n->get_int() == 16);
3479   match(ConI);
3480   op_cost(0);
3481 
3482   format %{ %}
3483   interface(CONST_INTER);
3484 %}
3485 
3486 // Integer Immediate: the value 24
3487 operand immI_24() %{
3488   predicate(n->get_int() == 24);
3489   match(ConI);
3490   op_cost(0);
3491 
3492   format %{ %}
3493   interface(CONST_INTER);
3494 %}
3495 
3496 // Integer Immediate: the value 255
3497 operand immI_255() %{
3498   predicate( n->get_int() == 255 );
3499   match(ConI);
3500   op_cost(0);
3501 
3502   format %{ %}
3503   interface(CONST_INTER);
3504 %}
3505 
3506 // Integer Immediate: the value 65535
3507 operand immI_65535() %{
3508   predicate(n->get_int() == 65535);
3509   match(ConI);
3510   op_cost(0);
3511 
3512   format %{ %}
3513   interface(CONST_INTER);
3514 %}
3515 
3516 // Long Immediate: the value FF
3517 operand immL_FF() %{
3518   predicate( n->get_long() == 0xFFL );
3519   match(ConL);
3520   op_cost(0);
3521 
3522   format %{ %}
3523   interface(CONST_INTER);
3524 %}
3525 
3526 // Long Immediate: the value FFFF
3527 operand immL_FFFF() %{
3528   predicate( n->get_long() == 0xFFFFL );
3529   match(ConL);
3530   op_cost(0);
3531 
3532   format %{ %}
3533   interface(CONST_INTER);
3534 %}
3535 
3536 // Pointer Immediate: 32 or 64-bit
3537 operand immP() %{
3538   match(ConP);
3539 
3540   op_cost(5);
3541   // formats are generated automatically for constants and base registers
3542   format %{ %}
3543   interface(CONST_INTER);
3544 %}
3545 
3546 #ifdef _LP64
3547 // Pointer Immediate: 64-bit
3548 operand immP_set() %{
3549   predicate(!VM_Version::is_niagara_plus());
3550   match(ConP);
3551 
3552   op_cost(5);
3553   // formats are generated automatically for constants and base registers
3554   format %{ %}
3555   interface(CONST_INTER);
3556 %}
3557 
3558 // Pointer Immediate: 64-bit
3559 // From Niagara2 processors on a load should be better than materializing.
3560 operand immP_load() %{
3561   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3562   match(ConP);
3563 
3564   op_cost(5);
3565   // formats are generated automatically for constants and base registers
3566   format %{ %}
3567   interface(CONST_INTER);
3568 %}
3569 
3570 // Pointer Immediate: 64-bit
3571 operand immP_no_oop_cheap() %{
3572   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3573   match(ConP);
3574 
3575   op_cost(5);
3576   // formats are generated automatically for constants and base registers
3577   format %{ %}
3578   interface(CONST_INTER);
3579 %}
3580 #endif
3581 
3582 operand immP13() %{
3583   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3584   match(ConP);
3585   op_cost(0);
3586 
3587   format %{ %}
3588   interface(CONST_INTER);
3589 %}
3590 
3591 operand immP0() %{
3592   predicate(n->get_ptr() == 0);
3593   match(ConP);
3594   op_cost(0);
3595 
3596   format %{ %}
3597   interface(CONST_INTER);
3598 %}
3599 
3600 operand immP_poll() %{
3601   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3602   match(ConP);
3603 
3604   // formats are generated automatically for constants and base registers
3605   format %{ %}
3606   interface(CONST_INTER);
3607 %}
3608 
3609 // Pointer Immediate
3610 operand immN()
3611 %{
3612   match(ConN);
3613 
3614   op_cost(10);
3615   format %{ %}
3616   interface(CONST_INTER);
3617 %}
3618 
3619 operand immNKlass()
3620 %{
3621   match(ConNKlass);
3622 
3623   op_cost(10);
3624   format %{ %}
3625   interface(CONST_INTER);
3626 %}
3627 
3628 // NULL Pointer Immediate
3629 operand immN0()
3630 %{
3631   predicate(n->get_narrowcon() == 0);
3632   match(ConN);
3633 
3634   op_cost(0);
3635   format %{ %}
3636   interface(CONST_INTER);
3637 %}
3638 
3639 operand immL() %{
3640   match(ConL);
3641   op_cost(40);
3642   // formats are generated automatically for constants and base registers
3643   format %{ %}
3644   interface(CONST_INTER);
3645 %}
3646 
3647 operand immL0() %{
3648   predicate(n->get_long() == 0L);
3649   match(ConL);
3650   op_cost(0);
3651   // formats are generated automatically for constants and base registers
3652   format %{ %}
3653   interface(CONST_INTER);
3654 %}
3655 
3656 // Integer Immediate: 5-bit
3657 operand immL5() %{
3658   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3659   match(ConL);
3660   op_cost(0);
3661   format %{ %}
3662   interface(CONST_INTER);
3663 %}
3664 
3665 // Long Immediate: 13-bit
3666 operand immL13() %{
3667   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3668   match(ConL);
3669   op_cost(0);
3670 
3671   format %{ %}
3672   interface(CONST_INTER);
3673 %}
3674 
3675 // Long Immediate: 13-bit minus 7
3676 operand immL13m7() %{
3677   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3678   match(ConL);
3679   op_cost(0);
3680 
3681   format %{ %}
3682   interface(CONST_INTER);
3683 %}
3684 
3685 // Long Immediate: low 32-bit mask
3686 operand immL_32bits() %{
3687   predicate(n->get_long() == 0xFFFFFFFFL);
3688   match(ConL);
3689   op_cost(0);
3690 
3691   format %{ %}
3692   interface(CONST_INTER);
3693 %}
3694 
3695 // Long Immediate: cheap (materialize in <= 3 instructions)
3696 operand immL_cheap() %{
3697   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3698   match(ConL);
3699   op_cost(0);
3700 
3701   format %{ %}
3702   interface(CONST_INTER);
3703 %}
3704 
3705 // Long Immediate: expensive (materialize in > 3 instructions)
3706 operand immL_expensive() %{
3707   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3708   match(ConL);
3709   op_cost(0);
3710 
3711   format %{ %}
3712   interface(CONST_INTER);
3713 %}
3714 
3715 // Double Immediate
3716 operand immD() %{
3717   match(ConD);
3718 
3719   op_cost(40);
3720   format %{ %}
3721   interface(CONST_INTER);
3722 %}
3723 
3724 operand immD0() %{
3725 #ifdef _LP64
3726   // on 64-bit architectures this comparision is faster
3727   predicate(jlong_cast(n->getd()) == 0);
3728 #else
3729   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3730 #endif
3731   match(ConD);
3732 
3733   op_cost(0);
3734   format %{ %}
3735   interface(CONST_INTER);
3736 %}
3737 
3738 // Float Immediate
3739 operand immF() %{
3740   match(ConF);
3741 
3742   op_cost(20);
3743   format %{ %}
3744   interface(CONST_INTER);
3745 %}
3746 
3747 // Float Immediate: 0
3748 operand immF0() %{
3749   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3750   match(ConF);
3751 
3752   op_cost(0);
3753   format %{ %}
3754   interface(CONST_INTER);
3755 %}
3756 
3757 // Integer Register Operands
3758 // Integer Register
3759 operand iRegI() %{
3760   constraint(ALLOC_IN_RC(int_reg));
3761   match(RegI);
3762 
3763   match(notemp_iRegI);
3764   match(g1RegI);
3765   match(o0RegI);
3766   match(iRegIsafe);
3767 
3768   format %{ %}
3769   interface(REG_INTER);
3770 %}
3771 
3772 operand notemp_iRegI() %{
3773   constraint(ALLOC_IN_RC(notemp_int_reg));
3774   match(RegI);
3775 
3776   match(o0RegI);
3777 
3778   format %{ %}
3779   interface(REG_INTER);
3780 %}
3781 
3782 operand o0RegI() %{
3783   constraint(ALLOC_IN_RC(o0_regI));
3784   match(iRegI);
3785 
3786   format %{ %}
3787   interface(REG_INTER);
3788 %}
3789 
3790 // Pointer Register
3791 operand iRegP() %{
3792   constraint(ALLOC_IN_RC(ptr_reg));
3793   match(RegP);
3794 
3795   match(lock_ptr_RegP);
3796   match(g1RegP);
3797   match(g2RegP);
3798   match(g3RegP);
3799   match(g4RegP);
3800   match(i0RegP);
3801   match(o0RegP);
3802   match(o1RegP);
3803   match(l7RegP);
3804 
3805   format %{ %}
3806   interface(REG_INTER);
3807 %}
3808 
3809 operand sp_ptr_RegP() %{
3810   constraint(ALLOC_IN_RC(sp_ptr_reg));
3811   match(RegP);
3812   match(iRegP);
3813 
3814   format %{ %}
3815   interface(REG_INTER);
3816 %}
3817 
3818 operand lock_ptr_RegP() %{
3819   constraint(ALLOC_IN_RC(lock_ptr_reg));
3820   match(RegP);
3821   match(i0RegP);
3822   match(o0RegP);
3823   match(o1RegP);
3824   match(l7RegP);
3825 
3826   format %{ %}
3827   interface(REG_INTER);
3828 %}
3829 
3830 operand g1RegP() %{
3831   constraint(ALLOC_IN_RC(g1_regP));
3832   match(iRegP);
3833 
3834   format %{ %}
3835   interface(REG_INTER);
3836 %}
3837 
3838 operand g2RegP() %{
3839   constraint(ALLOC_IN_RC(g2_regP));
3840   match(iRegP);
3841 
3842   format %{ %}
3843   interface(REG_INTER);
3844 %}
3845 
3846 operand g3RegP() %{
3847   constraint(ALLOC_IN_RC(g3_regP));
3848   match(iRegP);
3849 
3850   format %{ %}
3851   interface(REG_INTER);
3852 %}
3853 
3854 operand g1RegI() %{
3855   constraint(ALLOC_IN_RC(g1_regI));
3856   match(iRegI);
3857 
3858   format %{ %}
3859   interface(REG_INTER);
3860 %}
3861 
3862 operand g3RegI() %{
3863   constraint(ALLOC_IN_RC(g3_regI));
3864   match(iRegI);
3865 
3866   format %{ %}
3867   interface(REG_INTER);
3868 %}
3869 
3870 operand g4RegI() %{
3871   constraint(ALLOC_IN_RC(g4_regI));
3872   match(iRegI);
3873 
3874   format %{ %}
3875   interface(REG_INTER);
3876 %}
3877 
3878 operand g4RegP() %{
3879   constraint(ALLOC_IN_RC(g4_regP));
3880   match(iRegP);
3881 
3882   format %{ %}
3883   interface(REG_INTER);
3884 %}
3885 
3886 operand i0RegP() %{
3887   constraint(ALLOC_IN_RC(i0_regP));
3888   match(iRegP);
3889 
3890   format %{ %}
3891   interface(REG_INTER);
3892 %}
3893 
3894 operand o0RegP() %{
3895   constraint(ALLOC_IN_RC(o0_regP));
3896   match(iRegP);
3897 
3898   format %{ %}
3899   interface(REG_INTER);
3900 %}
3901 
3902 operand o1RegP() %{
3903   constraint(ALLOC_IN_RC(o1_regP));
3904   match(iRegP);
3905 
3906   format %{ %}
3907   interface(REG_INTER);
3908 %}
3909 
3910 operand o2RegP() %{
3911   constraint(ALLOC_IN_RC(o2_regP));
3912   match(iRegP);
3913 
3914   format %{ %}
3915   interface(REG_INTER);
3916 %}
3917 
3918 operand o7RegP() %{
3919   constraint(ALLOC_IN_RC(o7_regP));
3920   match(iRegP);
3921 
3922   format %{ %}
3923   interface(REG_INTER);
3924 %}
3925 
3926 operand l7RegP() %{
3927   constraint(ALLOC_IN_RC(l7_regP));
3928   match(iRegP);
3929 
3930   format %{ %}
3931   interface(REG_INTER);
3932 %}
3933 
3934 operand o7RegI() %{
3935   constraint(ALLOC_IN_RC(o7_regI));
3936   match(iRegI);
3937 
3938   format %{ %}
3939   interface(REG_INTER);
3940 %}
3941 
3942 operand iRegN() %{
3943   constraint(ALLOC_IN_RC(int_reg));
3944   match(RegN);
3945 
3946   format %{ %}
3947   interface(REG_INTER);
3948 %}
3949 
3950 // Long Register
3951 operand iRegL() %{
3952   constraint(ALLOC_IN_RC(long_reg));
3953   match(RegL);
3954 
3955   format %{ %}
3956   interface(REG_INTER);
3957 %}
3958 
3959 operand o2RegL() %{
3960   constraint(ALLOC_IN_RC(o2_regL));
3961   match(iRegL);
3962 
3963   format %{ %}
3964   interface(REG_INTER);
3965 %}
3966 
3967 operand o7RegL() %{
3968   constraint(ALLOC_IN_RC(o7_regL));
3969   match(iRegL);
3970 
3971   format %{ %}
3972   interface(REG_INTER);
3973 %}
3974 
3975 operand g1RegL() %{
3976   constraint(ALLOC_IN_RC(g1_regL));
3977   match(iRegL);
3978 
3979   format %{ %}
3980   interface(REG_INTER);
3981 %}
3982 
3983 operand g3RegL() %{
3984   constraint(ALLOC_IN_RC(g3_regL));
3985   match(iRegL);
3986 
3987   format %{ %}
3988   interface(REG_INTER);
3989 %}
3990 
3991 // Int Register safe
3992 // This is 64bit safe
3993 operand iRegIsafe() %{
3994   constraint(ALLOC_IN_RC(long_reg));
3995 
3996   match(iRegI);
3997 
3998   format %{ %}
3999   interface(REG_INTER);
4000 %}
4001 
4002 // Condition Code Flag Register
4003 operand flagsReg() %{
4004   constraint(ALLOC_IN_RC(int_flags));
4005   match(RegFlags);
4006 
4007   format %{ "ccr" %} // both ICC and XCC
4008   interface(REG_INTER);
4009 %}
4010 
4011 // Condition Code Register, unsigned comparisons.
4012 operand flagsRegU() %{
4013   constraint(ALLOC_IN_RC(int_flags));
4014   match(RegFlags);
4015 
4016   format %{ "icc_U" %}
4017   interface(REG_INTER);
4018 %}
4019 
4020 // Condition Code Register, pointer comparisons.
4021 operand flagsRegP() %{
4022   constraint(ALLOC_IN_RC(int_flags));
4023   match(RegFlags);
4024 
4025 #ifdef _LP64
4026   format %{ "xcc_P" %}
4027 #else
4028   format %{ "icc_P" %}
4029 #endif
4030   interface(REG_INTER);
4031 %}
4032 
4033 // Condition Code Register, long comparisons.
4034 operand flagsRegL() %{
4035   constraint(ALLOC_IN_RC(int_flags));
4036   match(RegFlags);
4037 
4038   format %{ "xcc_L" %}
4039   interface(REG_INTER);
4040 %}
4041 
4042 // Condition Code Register, floating comparisons, unordered same as "less".
4043 operand flagsRegF() %{
4044   constraint(ALLOC_IN_RC(float_flags));
4045   match(RegFlags);
4046   match(flagsRegF0);
4047 
4048   format %{ %}
4049   interface(REG_INTER);
4050 %}
4051 
4052 operand flagsRegF0() %{
4053   constraint(ALLOC_IN_RC(float_flag0));
4054   match(RegFlags);
4055 
4056   format %{ %}
4057   interface(REG_INTER);
4058 %}
4059 
4060 
4061 // Condition Code Flag Register used by long compare
4062 operand flagsReg_long_LTGE() %{
4063   constraint(ALLOC_IN_RC(int_flags));
4064   match(RegFlags);
4065   format %{ "icc_LTGE" %}
4066   interface(REG_INTER);
4067 %}
4068 operand flagsReg_long_EQNE() %{
4069   constraint(ALLOC_IN_RC(int_flags));
4070   match(RegFlags);
4071   format %{ "icc_EQNE" %}
4072   interface(REG_INTER);
4073 %}
4074 operand flagsReg_long_LEGT() %{
4075   constraint(ALLOC_IN_RC(int_flags));
4076   match(RegFlags);
4077   format %{ "icc_LEGT" %}
4078   interface(REG_INTER);
4079 %}
4080 
4081 
4082 operand regD() %{
4083   constraint(ALLOC_IN_RC(dflt_reg));
4084   match(RegD);
4085 
4086   match(regD_low);
4087 
4088   format %{ %}
4089   interface(REG_INTER);
4090 %}
4091 
4092 operand regF() %{
4093   constraint(ALLOC_IN_RC(sflt_reg));
4094   match(RegF);
4095 
4096   format %{ %}
4097   interface(REG_INTER);
4098 %}
4099 
4100 operand regD_low() %{
4101   constraint(ALLOC_IN_RC(dflt_low_reg));
4102   match(regD);
4103 
4104   format %{ %}
4105   interface(REG_INTER);
4106 %}
4107 
4108 // Special Registers
4109 
4110 // Method Register
4111 operand inline_cache_regP(iRegP reg) %{
4112   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4113   match(reg);
4114   format %{ %}
4115   interface(REG_INTER);
4116 %}
4117 
4118 operand interpreter_method_oop_regP(iRegP reg) %{
4119   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4120   match(reg);
4121   format %{ %}
4122   interface(REG_INTER);
4123 %}
4124 
4125 
4126 //----------Complex Operands---------------------------------------------------
4127 // Indirect Memory Reference
4128 operand indirect(sp_ptr_RegP reg) %{
4129   constraint(ALLOC_IN_RC(sp_ptr_reg));
4130   match(reg);
4131 
4132   op_cost(100);
4133   format %{ "[$reg]" %}
4134   interface(MEMORY_INTER) %{
4135     base($reg);
4136     index(0x0);
4137     scale(0x0);
4138     disp(0x0);
4139   %}
4140 %}
4141 
4142 // Indirect with simm13 Offset
4143 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4144   constraint(ALLOC_IN_RC(sp_ptr_reg));
4145   match(AddP reg offset);
4146 
4147   op_cost(100);
4148   format %{ "[$reg + $offset]" %}
4149   interface(MEMORY_INTER) %{
4150     base($reg);
4151     index(0x0);
4152     scale(0x0);
4153     disp($offset);
4154   %}
4155 %}
4156 
4157 // Indirect with simm13 Offset minus 7
4158 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4159   constraint(ALLOC_IN_RC(sp_ptr_reg));
4160   match(AddP reg offset);
4161 
4162   op_cost(100);
4163   format %{ "[$reg + $offset]" %}
4164   interface(MEMORY_INTER) %{
4165     base($reg);
4166     index(0x0);
4167     scale(0x0);
4168     disp($offset);
4169   %}
4170 %}
4171 
4172 // Note:  Intel has a swapped version also, like this:
4173 //operand indOffsetX(iRegI reg, immP offset) %{
4174 //  constraint(ALLOC_IN_RC(int_reg));
4175 //  match(AddP offset reg);
4176 //
4177 //  op_cost(100);
4178 //  format %{ "[$reg + $offset]" %}
4179 //  interface(MEMORY_INTER) %{
4180 //    base($reg);
4181 //    index(0x0);
4182 //    scale(0x0);
4183 //    disp($offset);
4184 //  %}
4185 //%}
4186 //// However, it doesn't make sense for SPARC, since
4187 // we have no particularly good way to embed oops in
4188 // single instructions.
4189 
4190 // Indirect with Register Index
4191 operand indIndex(iRegP addr, iRegX index) %{
4192   constraint(ALLOC_IN_RC(ptr_reg));
4193   match(AddP addr index);
4194 
4195   op_cost(100);
4196   format %{ "[$addr + $index]" %}
4197   interface(MEMORY_INTER) %{
4198     base($addr);
4199     index($index);
4200     scale(0x0);
4201     disp(0x0);
4202   %}
4203 %}
4204 
4205 //----------Special Memory Operands--------------------------------------------
4206 // Stack Slot Operand - This operand is used for loading and storing temporary
4207 //                      values on the stack where a match requires a value to
4208 //                      flow through memory.
4209 operand stackSlotI(sRegI reg) %{
4210   constraint(ALLOC_IN_RC(stack_slots));
4211   op_cost(100);
4212   //match(RegI);
4213   format %{ "[$reg]" %}
4214   interface(MEMORY_INTER) %{
4215     base(0xE);   // R_SP
4216     index(0x0);
4217     scale(0x0);
4218     disp($reg);  // Stack Offset
4219   %}
4220 %}
4221 
4222 operand stackSlotP(sRegP reg) %{
4223   constraint(ALLOC_IN_RC(stack_slots));
4224   op_cost(100);
4225   //match(RegP);
4226   format %{ "[$reg]" %}
4227   interface(MEMORY_INTER) %{
4228     base(0xE);   // R_SP
4229     index(0x0);
4230     scale(0x0);
4231     disp($reg);  // Stack Offset
4232   %}
4233 %}
4234 
4235 operand stackSlotF(sRegF reg) %{
4236   constraint(ALLOC_IN_RC(stack_slots));
4237   op_cost(100);
4238   //match(RegF);
4239   format %{ "[$reg]" %}
4240   interface(MEMORY_INTER) %{
4241     base(0xE);   // R_SP
4242     index(0x0);
4243     scale(0x0);
4244     disp($reg);  // Stack Offset
4245   %}
4246 %}
4247 operand stackSlotD(sRegD reg) %{
4248   constraint(ALLOC_IN_RC(stack_slots));
4249   op_cost(100);
4250   //match(RegD);
4251   format %{ "[$reg]" %}
4252   interface(MEMORY_INTER) %{
4253     base(0xE);   // R_SP
4254     index(0x0);
4255     scale(0x0);
4256     disp($reg);  // Stack Offset
4257   %}
4258 %}
4259 operand stackSlotL(sRegL reg) %{
4260   constraint(ALLOC_IN_RC(stack_slots));
4261   op_cost(100);
4262   //match(RegL);
4263   format %{ "[$reg]" %}
4264   interface(MEMORY_INTER) %{
4265     base(0xE);   // R_SP
4266     index(0x0);
4267     scale(0x0);
4268     disp($reg);  // Stack Offset
4269   %}
4270 %}
4271 
4272 // Operands for expressing Control Flow
4273 // NOTE:  Label is a predefined operand which should not be redefined in
4274 //        the AD file.  It is generically handled within the ADLC.
4275 
4276 //----------Conditional Branch Operands----------------------------------------
4277 // Comparison Op  - This is the operation of the comparison, and is limited to
4278 //                  the following set of codes:
4279 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4280 //
4281 // Other attributes of the comparison, such as unsignedness, are specified
4282 // by the comparison instruction that sets a condition code flags register.
4283 // That result is represented by a flags operand whose subtype is appropriate
4284 // to the unsignedness (etc.) of the comparison.
4285 //
4286 // Later, the instruction which matches both the Comparison Op (a Bool) and
4287 // the flags (produced by the Cmp) specifies the coding of the comparison op
4288 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4289 
4290 operand cmpOp() %{
4291   match(Bool);
4292 
4293   format %{ "" %}
4294   interface(COND_INTER) %{
4295     equal(0x1);
4296     not_equal(0x9);
4297     less(0x3);
4298     greater_equal(0xB);
4299     less_equal(0x2);
4300     greater(0xA);
4301   %}
4302 %}
4303 
4304 // Comparison Op, unsigned
4305 operand cmpOpU() %{
4306   match(Bool);
4307 
4308   format %{ "u" %}
4309   interface(COND_INTER) %{
4310     equal(0x1);
4311     not_equal(0x9);
4312     less(0x5);
4313     greater_equal(0xD);
4314     less_equal(0x4);
4315     greater(0xC);
4316   %}
4317 %}
4318 
4319 // Comparison Op, pointer (same as unsigned)
4320 operand cmpOpP() %{
4321   match(Bool);
4322 
4323   format %{ "p" %}
4324   interface(COND_INTER) %{
4325     equal(0x1);
4326     not_equal(0x9);
4327     less(0x5);
4328     greater_equal(0xD);
4329     less_equal(0x4);
4330     greater(0xC);
4331   %}
4332 %}
4333 
4334 // Comparison Op, branch-register encoding
4335 operand cmpOp_reg() %{
4336   match(Bool);
4337 
4338   format %{ "" %}
4339   interface(COND_INTER) %{
4340     equal        (0x1);
4341     not_equal    (0x5);
4342     less         (0x3);
4343     greater_equal(0x7);
4344     less_equal   (0x2);
4345     greater      (0x6);
4346   %}
4347 %}
4348 
4349 // Comparison Code, floating, unordered same as less
4350 operand cmpOpF() %{
4351   match(Bool);
4352 
4353   format %{ "fl" %}
4354   interface(COND_INTER) %{
4355     equal(0x9);
4356     not_equal(0x1);
4357     less(0x3);
4358     greater_equal(0xB);
4359     less_equal(0xE);
4360     greater(0x6);
4361   %}
4362 %}
4363 
4364 // Used by long compare
4365 operand cmpOp_commute() %{
4366   match(Bool);
4367 
4368   format %{ "" %}
4369   interface(COND_INTER) %{
4370     equal(0x1);
4371     not_equal(0x9);
4372     less(0xA);
4373     greater_equal(0x2);
4374     less_equal(0xB);
4375     greater(0x3);
4376   %}
4377 %}
4378 
4379 //----------OPERAND CLASSES----------------------------------------------------
4380 // Operand Classes are groups of operands that are used to simplify
4381 // instruction definitions by not requiring the AD writer to specify separate
4382 // instructions for every form of operand when the instruction accepts
4383 // multiple operand types with the same basic encoding and format.  The classic
4384 // case of this is memory operands.
4385 opclass memory( indirect, indOffset13, indIndex );
4386 opclass indIndexMemory( indIndex );
4387 
4388 //----------PIPELINE-----------------------------------------------------------
4389 pipeline %{
4390 
4391 //----------ATTRIBUTES---------------------------------------------------------
4392 attributes %{
4393   fixed_size_instructions;           // Fixed size instructions
4394   branch_has_delay_slot;             // Branch has delay slot following
4395   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4396   instruction_unit_size = 4;         // An instruction is 4 bytes long
4397   instruction_fetch_unit_size = 16;  // The processor fetches one line
4398   instruction_fetch_units = 1;       // of 16 bytes
4399 
4400   // List of nop instructions
4401   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4402 %}
4403 
4404 //----------RESOURCES----------------------------------------------------------
4405 // Resources are the functional units available to the machine
4406 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4407 
4408 //----------PIPELINE DESCRIPTION-----------------------------------------------
4409 // Pipeline Description specifies the stages in the machine's pipeline
4410 
4411 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4412 
4413 //----------PIPELINE CLASSES---------------------------------------------------
4414 // Pipeline Classes describe the stages in which input and output are
4415 // referenced by the hardware pipeline.
4416 
4417 // Integer ALU reg-reg operation
4418 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4419     single_instruction;
4420     dst   : E(write);
4421     src1  : R(read);
4422     src2  : R(read);
4423     IALU  : R;
4424 %}
4425 
4426 // Integer ALU reg-reg long operation
4427 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4428     instruction_count(2);
4429     dst   : E(write);
4430     src1  : R(read);
4431     src2  : R(read);
4432     IALU  : R;
4433     IALU  : R;
4434 %}
4435 
4436 // Integer ALU reg-reg long dependent operation
4437 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4438     instruction_count(1); multiple_bundles;
4439     dst   : E(write);
4440     src1  : R(read);
4441     src2  : R(read);
4442     cr    : E(write);
4443     IALU  : R(2);
4444 %}
4445 
4446 // Integer ALU reg-imm operaion
4447 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4448     single_instruction;
4449     dst   : E(write);
4450     src1  : R(read);
4451     IALU  : R;
4452 %}
4453 
4454 // Integer ALU reg-reg operation with condition code
4455 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4456     single_instruction;
4457     dst   : E(write);
4458     cr    : E(write);
4459     src1  : R(read);
4460     src2  : R(read);
4461     IALU  : R;
4462 %}
4463 
4464 // Integer ALU reg-imm operation with condition code
4465 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4466     single_instruction;
4467     dst   : E(write);
4468     cr    : E(write);
4469     src1  : R(read);
4470     IALU  : R;
4471 %}
4472 
4473 // Integer ALU zero-reg operation
4474 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4475     single_instruction;
4476     dst   : E(write);
4477     src2  : R(read);
4478     IALU  : R;
4479 %}
4480 
4481 // Integer ALU zero-reg operation with condition code only
4482 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4483     single_instruction;
4484     cr    : E(write);
4485     src   : R(read);
4486     IALU  : R;
4487 %}
4488 
4489 // Integer ALU reg-reg operation with condition code only
4490 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4491     single_instruction;
4492     cr    : E(write);
4493     src1  : R(read);
4494     src2  : R(read);
4495     IALU  : R;
4496 %}
4497 
4498 // Integer ALU reg-imm operation with condition code only
4499 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4500     single_instruction;
4501     cr    : E(write);
4502     src1  : R(read);
4503     IALU  : R;
4504 %}
4505 
4506 // Integer ALU reg-reg-zero operation with condition code only
4507 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4508     single_instruction;
4509     cr    : E(write);
4510     src1  : R(read);
4511     src2  : R(read);
4512     IALU  : R;
4513 %}
4514 
4515 // Integer ALU reg-imm-zero operation with condition code only
4516 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4517     single_instruction;
4518     cr    : E(write);
4519     src1  : R(read);
4520     IALU  : R;
4521 %}
4522 
4523 // Integer ALU reg-reg operation with condition code, src1 modified
4524 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4525     single_instruction;
4526     cr    : E(write);
4527     src1  : E(write);
4528     src1  : R(read);
4529     src2  : R(read);
4530     IALU  : R;
4531 %}
4532 
4533 // Integer ALU reg-imm operation with condition code, src1 modified
4534 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4535     single_instruction;
4536     cr    : E(write);
4537     src1  : E(write);
4538     src1  : R(read);
4539     IALU  : R;
4540 %}
4541 
4542 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4543     multiple_bundles;
4544     dst   : E(write)+4;
4545     cr    : E(write);
4546     src1  : R(read);
4547     src2  : R(read);
4548     IALU  : R(3);
4549     BR    : R(2);
4550 %}
4551 
4552 // Integer ALU operation
4553 pipe_class ialu_none(iRegI dst) %{
4554     single_instruction;
4555     dst   : E(write);
4556     IALU  : R;
4557 %}
4558 
4559 // Integer ALU reg operation
4560 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4561     single_instruction; may_have_no_code;
4562     dst   : E(write);
4563     src   : R(read);
4564     IALU  : R;
4565 %}
4566 
4567 // Integer ALU reg conditional operation
4568 // This instruction has a 1 cycle stall, and cannot execute
4569 // in the same cycle as the instruction setting the condition
4570 // code. We kludge this by pretending to read the condition code
4571 // 1 cycle earlier, and by marking the functional units as busy
4572 // for 2 cycles with the result available 1 cycle later than
4573 // is really the case.
4574 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4575     single_instruction;
4576     op2_out : C(write);
4577     op1     : R(read);
4578     cr      : R(read);       // This is really E, with a 1 cycle stall
4579     BR      : R(2);
4580     MS      : R(2);
4581 %}
4582 
4583 #ifdef _LP64
4584 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4585     instruction_count(1); multiple_bundles;
4586     dst     : C(write)+1;
4587     src     : R(read)+1;
4588     IALU    : R(1);
4589     BR      : E(2);
4590     MS      : E(2);
4591 %}
4592 #endif
4593 
4594 // Integer ALU reg operation
4595 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4596     single_instruction; may_have_no_code;
4597     dst   : E(write);
4598     src   : R(read);
4599     IALU  : R;
4600 %}
4601 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4602     single_instruction; may_have_no_code;
4603     dst   : E(write);
4604     src   : R(read);
4605     IALU  : R;
4606 %}
4607 
4608 // Two integer ALU reg operations
4609 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4610     instruction_count(2);
4611     dst   : E(write);
4612     src   : R(read);
4613     A0    : R;
4614     A1    : R;
4615 %}
4616 
4617 // Two integer ALU reg operations
4618 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4619     instruction_count(2); may_have_no_code;
4620     dst   : E(write);
4621     src   : R(read);
4622     A0    : R;
4623     A1    : R;
4624 %}
4625 
4626 // Integer ALU imm operation
4627 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4628     single_instruction;
4629     dst   : E(write);
4630     IALU  : R;
4631 %}
4632 
4633 // Integer ALU reg-reg with carry operation
4634 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4635     single_instruction;
4636     dst   : E(write);
4637     src1  : R(read);
4638     src2  : R(read);
4639     IALU  : R;
4640 %}
4641 
4642 // Integer ALU cc operation
4643 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4644     single_instruction;
4645     dst   : E(write);
4646     cc    : R(read);
4647     IALU  : R;
4648 %}
4649 
4650 // Integer ALU cc / second IALU operation
4651 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4652     instruction_count(1); multiple_bundles;
4653     dst   : E(write)+1;
4654     src   : R(read);
4655     IALU  : R;
4656 %}
4657 
4658 // Integer ALU cc / second IALU operation
4659 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4660     instruction_count(1); multiple_bundles;
4661     dst   : E(write)+1;
4662     p     : R(read);
4663     q     : R(read);
4664     IALU  : R;
4665 %}
4666 
4667 // Integer ALU hi-lo-reg operation
4668 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4669     instruction_count(1); multiple_bundles;
4670     dst   : E(write)+1;
4671     IALU  : R(2);
4672 %}
4673 
4674 // Float ALU hi-lo-reg operation (with temp)
4675 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4676     instruction_count(1); multiple_bundles;
4677     dst   : E(write)+1;
4678     IALU  : R(2);
4679 %}
4680 
4681 // Long Constant
4682 pipe_class loadConL( iRegL dst, immL src ) %{
4683     instruction_count(2); multiple_bundles;
4684     dst   : E(write)+1;
4685     IALU  : R(2);
4686     IALU  : R(2);
4687 %}
4688 
4689 // Pointer Constant
4690 pipe_class loadConP( iRegP dst, immP src ) %{
4691     instruction_count(0); multiple_bundles;
4692     fixed_latency(6);
4693 %}
4694 
4695 // Polling Address
4696 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4697 #ifdef _LP64
4698     instruction_count(0); multiple_bundles;
4699     fixed_latency(6);
4700 #else
4701     dst   : E(write);
4702     IALU  : R;
4703 #endif
4704 %}
4705 
4706 // Long Constant small
4707 pipe_class loadConLlo( iRegL dst, immL src ) %{
4708     instruction_count(2);
4709     dst   : E(write);
4710     IALU  : R;
4711     IALU  : R;
4712 %}
4713 
4714 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4715 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4716     instruction_count(1); multiple_bundles;
4717     src   : R(read);
4718     dst   : M(write)+1;
4719     IALU  : R;
4720     MS    : E;
4721 %}
4722 
4723 // Integer ALU nop operation
4724 pipe_class ialu_nop() %{
4725     single_instruction;
4726     IALU  : R;
4727 %}
4728 
4729 // Integer ALU nop operation
4730 pipe_class ialu_nop_A0() %{
4731     single_instruction;
4732     A0    : R;
4733 %}
4734 
4735 // Integer ALU nop operation
4736 pipe_class ialu_nop_A1() %{
4737     single_instruction;
4738     A1    : R;
4739 %}
4740 
4741 // Integer Multiply reg-reg operation
4742 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4743     single_instruction;
4744     dst   : E(write);
4745     src1  : R(read);
4746     src2  : R(read);
4747     MS    : R(5);
4748 %}
4749 
4750 // Integer Multiply reg-imm operation
4751 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4752     single_instruction;
4753     dst   : E(write);
4754     src1  : R(read);
4755     MS    : R(5);
4756 %}
4757 
4758 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4759     single_instruction;
4760     dst   : E(write)+4;
4761     src1  : R(read);
4762     src2  : R(read);
4763     MS    : R(6);
4764 %}
4765 
4766 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4767     single_instruction;
4768     dst   : E(write)+4;
4769     src1  : R(read);
4770     MS    : R(6);
4771 %}
4772 
4773 // Integer Divide reg-reg
4774 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4775     instruction_count(1); multiple_bundles;
4776     dst   : E(write);
4777     temp  : E(write);
4778     src1  : R(read);
4779     src2  : R(read);
4780     temp  : R(read);
4781     MS    : R(38);
4782 %}
4783 
4784 // Integer Divide reg-imm
4785 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4786     instruction_count(1); multiple_bundles;
4787     dst   : E(write);
4788     temp  : E(write);
4789     src1  : R(read);
4790     temp  : R(read);
4791     MS    : R(38);
4792 %}
4793 
4794 // Long Divide
4795 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4796     dst  : E(write)+71;
4797     src1 : R(read);
4798     src2 : R(read)+1;
4799     MS   : R(70);
4800 %}
4801 
4802 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4803     dst  : E(write)+71;
4804     src1 : R(read);
4805     MS   : R(70);
4806 %}
4807 
4808 // Floating Point Add Float
4809 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4810     single_instruction;
4811     dst   : X(write);
4812     src1  : E(read);
4813     src2  : E(read);
4814     FA    : R;
4815 %}
4816 
4817 // Floating Point Add Double
4818 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4819     single_instruction;
4820     dst   : X(write);
4821     src1  : E(read);
4822     src2  : E(read);
4823     FA    : R;
4824 %}
4825 
4826 // Floating Point Conditional Move based on integer flags
4827 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4828     single_instruction;
4829     dst   : X(write);
4830     src   : E(read);
4831     cr    : R(read);
4832     FA    : R(2);
4833     BR    : R(2);
4834 %}
4835 
4836 // Floating Point Conditional Move based on integer flags
4837 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4838     single_instruction;
4839     dst   : X(write);
4840     src   : E(read);
4841     cr    : R(read);
4842     FA    : R(2);
4843     BR    : R(2);
4844 %}
4845 
4846 // Floating Point Multiply Float
4847 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4848     single_instruction;
4849     dst   : X(write);
4850     src1  : E(read);
4851     src2  : E(read);
4852     FM    : R;
4853 %}
4854 
4855 // Floating Point Multiply Double
4856 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4857     single_instruction;
4858     dst   : X(write);
4859     src1  : E(read);
4860     src2  : E(read);
4861     FM    : R;
4862 %}
4863 
4864 // Floating Point Divide Float
4865 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4866     single_instruction;
4867     dst   : X(write);
4868     src1  : E(read);
4869     src2  : E(read);
4870     FM    : R;
4871     FDIV  : C(14);
4872 %}
4873 
4874 // Floating Point Divide Double
4875 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4876     single_instruction;
4877     dst   : X(write);
4878     src1  : E(read);
4879     src2  : E(read);
4880     FM    : R;
4881     FDIV  : C(17);
4882 %}
4883 
4884 // Floating Point Move/Negate/Abs Float
4885 pipe_class faddF_reg(regF dst, regF src) %{
4886     single_instruction;
4887     dst   : W(write);
4888     src   : E(read);
4889     FA    : R(1);
4890 %}
4891 
4892 // Floating Point Move/Negate/Abs Double
4893 pipe_class faddD_reg(regD dst, regD src) %{
4894     single_instruction;
4895     dst   : W(write);
4896     src   : E(read);
4897     FA    : R;
4898 %}
4899 
4900 // Floating Point Convert F->D
4901 pipe_class fcvtF2D(regD dst, regF src) %{
4902     single_instruction;
4903     dst   : X(write);
4904     src   : E(read);
4905     FA    : R;
4906 %}
4907 
4908 // Floating Point Convert I->D
4909 pipe_class fcvtI2D(regD dst, regF src) %{
4910     single_instruction;
4911     dst   : X(write);
4912     src   : E(read);
4913     FA    : R;
4914 %}
4915 
4916 // Floating Point Convert LHi->D
4917 pipe_class fcvtLHi2D(regD dst, regD src) %{
4918     single_instruction;
4919     dst   : X(write);
4920     src   : E(read);
4921     FA    : R;
4922 %}
4923 
4924 // Floating Point Convert L->D
4925 pipe_class fcvtL2D(regD dst, regF src) %{
4926     single_instruction;
4927     dst   : X(write);
4928     src   : E(read);
4929     FA    : R;
4930 %}
4931 
4932 // Floating Point Convert L->F
4933 pipe_class fcvtL2F(regD dst, regF src) %{
4934     single_instruction;
4935     dst   : X(write);
4936     src   : E(read);
4937     FA    : R;
4938 %}
4939 
4940 // Floating Point Convert D->F
4941 pipe_class fcvtD2F(regD dst, regF src) %{
4942     single_instruction;
4943     dst   : X(write);
4944     src   : E(read);
4945     FA    : R;
4946 %}
4947 
4948 // Floating Point Convert I->L
4949 pipe_class fcvtI2L(regD dst, regF src) %{
4950     single_instruction;
4951     dst   : X(write);
4952     src   : E(read);
4953     FA    : R;
4954 %}
4955 
4956 // Floating Point Convert D->F
4957 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4958     instruction_count(1); multiple_bundles;
4959     dst   : X(write)+6;
4960     src   : E(read);
4961     FA    : R;
4962 %}
4963 
4964 // Floating Point Convert D->L
4965 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4966     instruction_count(1); multiple_bundles;
4967     dst   : X(write)+6;
4968     src   : E(read);
4969     FA    : R;
4970 %}
4971 
4972 // Floating Point Convert F->I
4973 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4974     instruction_count(1); multiple_bundles;
4975     dst   : X(write)+6;
4976     src   : E(read);
4977     FA    : R;
4978 %}
4979 
4980 // Floating Point Convert F->L
4981 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4982     instruction_count(1); multiple_bundles;
4983     dst   : X(write)+6;
4984     src   : E(read);
4985     FA    : R;
4986 %}
4987 
4988 // Floating Point Convert I->F
4989 pipe_class fcvtI2F(regF dst, regF src) %{
4990     single_instruction;
4991     dst   : X(write);
4992     src   : E(read);
4993     FA    : R;
4994 %}
4995 
4996 // Floating Point Compare
4997 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4998     single_instruction;
4999     cr    : X(write);
5000     src1  : E(read);
5001     src2  : E(read);
5002     FA    : R;
5003 %}
5004 
5005 // Floating Point Compare
5006 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5007     single_instruction;
5008     cr    : X(write);
5009     src1  : E(read);
5010     src2  : E(read);
5011     FA    : R;
5012 %}
5013 
5014 // Floating Add Nop
5015 pipe_class fadd_nop() %{
5016     single_instruction;
5017     FA  : R;
5018 %}
5019 
5020 // Integer Store to Memory
5021 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5022     single_instruction;
5023     mem   : R(read);
5024     src   : C(read);
5025     MS    : R;
5026 %}
5027 
5028 // Integer Store to Memory
5029 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5030     single_instruction;
5031     mem   : R(read);
5032     src   : C(read);
5033     MS    : R;
5034 %}
5035 
5036 // Integer Store Zero to Memory
5037 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5038     single_instruction;
5039     mem   : R(read);
5040     MS    : R;
5041 %}
5042 
5043 // Special Stack Slot Store
5044 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5045     single_instruction;
5046     stkSlot : R(read);
5047     src     : C(read);
5048     MS      : R;
5049 %}
5050 
5051 // Special Stack Slot Store
5052 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5053     instruction_count(2); multiple_bundles;
5054     stkSlot : R(read);
5055     src     : C(read);
5056     MS      : R(2);
5057 %}
5058 
5059 // Float Store
5060 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5061     single_instruction;
5062     mem : R(read);
5063     src : C(read);
5064     MS  : R;
5065 %}
5066 
5067 // Float Store
5068 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5069     single_instruction;
5070     mem : R(read);
5071     MS  : R;
5072 %}
5073 
5074 // Double Store
5075 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5076     instruction_count(1);
5077     mem : R(read);
5078     src : C(read);
5079     MS  : R;
5080 %}
5081 
5082 // Double Store
5083 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5084     single_instruction;
5085     mem : R(read);
5086     MS  : R;
5087 %}
5088 
5089 // Special Stack Slot Float Store
5090 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5091     single_instruction;
5092     stkSlot : R(read);
5093     src     : C(read);
5094     MS      : R;
5095 %}
5096 
5097 // Special Stack Slot Double Store
5098 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5099     single_instruction;
5100     stkSlot : R(read);
5101     src     : C(read);
5102     MS      : R;
5103 %}
5104 
5105 // Integer Load (when sign bit propagation not needed)
5106 pipe_class iload_mem(iRegI dst, memory mem) %{
5107     single_instruction;
5108     mem : R(read);
5109     dst : C(write);
5110     MS  : R;
5111 %}
5112 
5113 // Integer Load from stack operand
5114 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5115     single_instruction;
5116     mem : R(read);
5117     dst : C(write);
5118     MS  : R;
5119 %}
5120 
5121 // Integer Load (when sign bit propagation or masking is needed)
5122 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5123     single_instruction;
5124     mem : R(read);
5125     dst : M(write);
5126     MS  : R;
5127 %}
5128 
5129 // Float Load
5130 pipe_class floadF_mem(regF dst, memory mem) %{
5131     single_instruction;
5132     mem : R(read);
5133     dst : M(write);
5134     MS  : R;
5135 %}
5136 
5137 // Float Load
5138 pipe_class floadD_mem(regD dst, memory mem) %{
5139     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5140     mem : R(read);
5141     dst : M(write);
5142     MS  : R;
5143 %}
5144 
5145 // Float Load
5146 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5147     single_instruction;
5148     stkSlot : R(read);
5149     dst : M(write);
5150     MS  : R;
5151 %}
5152 
5153 // Float Load
5154 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5155     single_instruction;
5156     stkSlot : R(read);
5157     dst : M(write);
5158     MS  : R;
5159 %}
5160 
5161 // Memory Nop
5162 pipe_class mem_nop() %{
5163     single_instruction;
5164     MS  : R;
5165 %}
5166 
5167 pipe_class sethi(iRegP dst, immI src) %{
5168     single_instruction;
5169     dst  : E(write);
5170     IALU : R;
5171 %}
5172 
5173 pipe_class loadPollP(iRegP poll) %{
5174     single_instruction;
5175     poll : R(read);
5176     MS   : R;
5177 %}
5178 
5179 pipe_class br(Universe br, label labl) %{
5180     single_instruction_with_delay_slot;
5181     BR  : R;
5182 %}
5183 
5184 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5185     single_instruction_with_delay_slot;
5186     cr    : E(read);
5187     BR    : R;
5188 %}
5189 
5190 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5191     single_instruction_with_delay_slot;
5192     op1 : E(read);
5193     BR  : R;
5194     MS  : R;
5195 %}
5196 
5197 // Compare and branch
5198 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5199     instruction_count(2); has_delay_slot;
5200     cr    : E(write);
5201     src1  : R(read);
5202     src2  : R(read);
5203     IALU  : R;
5204     BR    : R;
5205 %}
5206 
5207 // Compare and branch
5208 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5209     instruction_count(2); has_delay_slot;
5210     cr    : E(write);
5211     src1  : R(read);
5212     IALU  : R;
5213     BR    : R;
5214 %}
5215 
5216 // Compare and branch using cbcond
5217 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5218     single_instruction;
5219     src1  : E(read);
5220     src2  : E(read);
5221     IALU  : R;
5222     BR    : R;
5223 %}
5224 
5225 // Compare and branch using cbcond
5226 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5227     single_instruction;
5228     src1  : E(read);
5229     IALU  : R;
5230     BR    : R;
5231 %}
5232 
5233 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5234     single_instruction_with_delay_slot;
5235     cr    : E(read);
5236     BR    : R;
5237 %}
5238 
5239 pipe_class br_nop() %{
5240     single_instruction;
5241     BR  : R;
5242 %}
5243 
5244 pipe_class simple_call(method meth) %{
5245     instruction_count(2); multiple_bundles; force_serialization;
5246     fixed_latency(100);
5247     BR  : R(1);
5248     MS  : R(1);
5249     A0  : R(1);
5250 %}
5251 
5252 pipe_class compiled_call(method meth) %{
5253     instruction_count(1); multiple_bundles; force_serialization;
5254     fixed_latency(100);
5255     MS  : R(1);
5256 %}
5257 
5258 pipe_class call(method meth) %{
5259     instruction_count(0); multiple_bundles; force_serialization;
5260     fixed_latency(100);
5261 %}
5262 
5263 pipe_class tail_call(Universe ignore, label labl) %{
5264     single_instruction; has_delay_slot;
5265     fixed_latency(100);
5266     BR  : R(1);
5267     MS  : R(1);
5268 %}
5269 
5270 pipe_class ret(Universe ignore) %{
5271     single_instruction; has_delay_slot;
5272     BR  : R(1);
5273     MS  : R(1);
5274 %}
5275 
5276 pipe_class ret_poll(g3RegP poll) %{
5277     instruction_count(3); has_delay_slot;
5278     poll : E(read);
5279     MS   : R;
5280 %}
5281 
5282 // The real do-nothing guy
5283 pipe_class empty( ) %{
5284     instruction_count(0);
5285 %}
5286 
5287 pipe_class long_memory_op() %{
5288     instruction_count(0); multiple_bundles; force_serialization;
5289     fixed_latency(25);
5290     MS  : R(1);
5291 %}
5292 
5293 // Check-cast
5294 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5295     array : R(read);
5296     match  : R(read);
5297     IALU   : R(2);
5298     BR     : R(2);
5299     MS     : R;
5300 %}
5301 
5302 // Convert FPU flags into +1,0,-1
5303 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5304     src1  : E(read);
5305     src2  : E(read);
5306     dst   : E(write);
5307     FA    : R;
5308     MS    : R(2);
5309     BR    : R(2);
5310 %}
5311 
5312 // Compare for p < q, and conditionally add y
5313 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5314     p     : E(read);
5315     q     : E(read);
5316     y     : E(read);
5317     IALU  : R(3)
5318 %}
5319 
5320 // Perform a compare, then move conditionally in a branch delay slot.
5321 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5322     src2   : E(read);
5323     srcdst : E(read);
5324     IALU   : R;
5325     BR     : R;
5326 %}
5327 
5328 // Define the class for the Nop node
5329 define %{
5330    MachNop = ialu_nop;
5331 %}
5332 
5333 %}
5334 
5335 //----------INSTRUCTIONS-------------------------------------------------------
5336 
5337 //------------Special Stack Slot instructions - no match rules-----------------
5338 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5339   // No match rule to avoid chain rule match.
5340   effect(DEF dst, USE src);
5341   ins_cost(MEMORY_REF_COST);
5342   size(4);
5343   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5344   opcode(Assembler::ldf_op3);
5345   ins_encode(simple_form3_mem_reg(src, dst));
5346   ins_pipe(floadF_stk);
5347 %}
5348 
5349 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5350   // No match rule to avoid chain rule match.
5351   effect(DEF dst, USE src);
5352   ins_cost(MEMORY_REF_COST);
5353   size(4);
5354   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5355   opcode(Assembler::lddf_op3);
5356   ins_encode(simple_form3_mem_reg(src, dst));
5357   ins_pipe(floadD_stk);
5358 %}
5359 
5360 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5361   // No match rule to avoid chain rule match.
5362   effect(DEF dst, USE src);
5363   ins_cost(MEMORY_REF_COST);
5364   size(4);
5365   format %{ "STF    $src,$dst\t! regF to stkI" %}
5366   opcode(Assembler::stf_op3);
5367   ins_encode(simple_form3_mem_reg(dst, src));
5368   ins_pipe(fstoreF_stk_reg);
5369 %}
5370 
5371 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5372   // No match rule to avoid chain rule match.
5373   effect(DEF dst, USE src);
5374   ins_cost(MEMORY_REF_COST);
5375   size(4);
5376   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5377   opcode(Assembler::stdf_op3);
5378   ins_encode(simple_form3_mem_reg(dst, src));
5379   ins_pipe(fstoreD_stk_reg);
5380 %}
5381 
5382 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5383   effect(DEF dst, USE src);
5384   ins_cost(MEMORY_REF_COST*2);
5385   size(8);
5386   format %{ "STW    $src,$dst.hi\t! long\n\t"
5387             "STW    R_G0,$dst.lo" %}
5388   opcode(Assembler::stw_op3);
5389   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5390   ins_pipe(lstoreI_stk_reg);
5391 %}
5392 
5393 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5394   // No match rule to avoid chain rule match.
5395   effect(DEF dst, USE src);
5396   ins_cost(MEMORY_REF_COST);
5397   size(4);
5398   format %{ "STX    $src,$dst\t! regL to stkD" %}
5399   opcode(Assembler::stx_op3);
5400   ins_encode(simple_form3_mem_reg( dst, src ) );
5401   ins_pipe(istore_stk_reg);
5402 %}
5403 
5404 //---------- Chain stack slots between similar types --------
5405 
5406 // Load integer from stack slot
5407 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5408   match(Set dst src);
5409   ins_cost(MEMORY_REF_COST);
5410 
5411   size(4);
5412   format %{ "LDUW   $src,$dst\t!stk" %}
5413   opcode(Assembler::lduw_op3);
5414   ins_encode(simple_form3_mem_reg( src, dst ) );
5415   ins_pipe(iload_mem);
5416 %}
5417 
5418 // Store integer to stack slot
5419 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5420   match(Set dst src);
5421   ins_cost(MEMORY_REF_COST);
5422 
5423   size(4);
5424   format %{ "STW    $src,$dst\t!stk" %}
5425   opcode(Assembler::stw_op3);
5426   ins_encode(simple_form3_mem_reg( dst, src ) );
5427   ins_pipe(istore_mem_reg);
5428 %}
5429 
5430 // Load long from stack slot
5431 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5432   match(Set dst src);
5433 
5434   ins_cost(MEMORY_REF_COST);
5435   size(4);
5436   format %{ "LDX    $src,$dst\t! long" %}
5437   opcode(Assembler::ldx_op3);
5438   ins_encode(simple_form3_mem_reg( src, dst ) );
5439   ins_pipe(iload_mem);
5440 %}
5441 
5442 // Store long to stack slot
5443 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5444   match(Set dst src);
5445 
5446   ins_cost(MEMORY_REF_COST);
5447   size(4);
5448   format %{ "STX    $src,$dst\t! long" %}
5449   opcode(Assembler::stx_op3);
5450   ins_encode(simple_form3_mem_reg( dst, src ) );
5451   ins_pipe(istore_mem_reg);
5452 %}
5453 
5454 #ifdef _LP64
5455 // Load pointer from stack slot, 64-bit encoding
5456 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5457   match(Set dst src);
5458   ins_cost(MEMORY_REF_COST);
5459   size(4);
5460   format %{ "LDX    $src,$dst\t!ptr" %}
5461   opcode(Assembler::ldx_op3);
5462   ins_encode(simple_form3_mem_reg( src, dst ) );
5463   ins_pipe(iload_mem);
5464 %}
5465 
5466 // Store pointer to stack slot
5467 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5468   match(Set dst src);
5469   ins_cost(MEMORY_REF_COST);
5470   size(4);
5471   format %{ "STX    $src,$dst\t!ptr" %}
5472   opcode(Assembler::stx_op3);
5473   ins_encode(simple_form3_mem_reg( dst, src ) );
5474   ins_pipe(istore_mem_reg);
5475 %}
5476 #else // _LP64
5477 // Load pointer from stack slot, 32-bit encoding
5478 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5479   match(Set dst src);
5480   ins_cost(MEMORY_REF_COST);
5481   format %{ "LDUW   $src,$dst\t!ptr" %}
5482   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5483   ins_encode(simple_form3_mem_reg( src, dst ) );
5484   ins_pipe(iload_mem);
5485 %}
5486 
5487 // Store pointer to stack slot
5488 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5489   match(Set dst src);
5490   ins_cost(MEMORY_REF_COST);
5491   format %{ "STW    $src,$dst\t!ptr" %}
5492   opcode(Assembler::stw_op3, Assembler::ldst_op);
5493   ins_encode(simple_form3_mem_reg( dst, src ) );
5494   ins_pipe(istore_mem_reg);
5495 %}
5496 #endif // _LP64
5497 
5498 //------------Special Nop instructions for bundling - no match rules-----------
5499 // Nop using the A0 functional unit
5500 instruct Nop_A0() %{
5501   ins_cost(0);
5502 
5503   format %{ "NOP    ! Alu Pipeline" %}
5504   opcode(Assembler::or_op3, Assembler::arith_op);
5505   ins_encode( form2_nop() );
5506   ins_pipe(ialu_nop_A0);
5507 %}
5508 
5509 // Nop using the A1 functional unit
5510 instruct Nop_A1( ) %{
5511   ins_cost(0);
5512 
5513   format %{ "NOP    ! Alu Pipeline" %}
5514   opcode(Assembler::or_op3, Assembler::arith_op);
5515   ins_encode( form2_nop() );
5516   ins_pipe(ialu_nop_A1);
5517 %}
5518 
5519 // Nop using the memory functional unit
5520 instruct Nop_MS( ) %{
5521   ins_cost(0);
5522 
5523   format %{ "NOP    ! Memory Pipeline" %}
5524   ins_encode( emit_mem_nop );
5525   ins_pipe(mem_nop);
5526 %}
5527 
5528 // Nop using the floating add functional unit
5529 instruct Nop_FA( ) %{
5530   ins_cost(0);
5531 
5532   format %{ "NOP    ! Floating Add Pipeline" %}
5533   ins_encode( emit_fadd_nop );
5534   ins_pipe(fadd_nop);
5535 %}
5536 
5537 // Nop using the branch functional unit
5538 instruct Nop_BR( ) %{
5539   ins_cost(0);
5540 
5541   format %{ "NOP    ! Branch Pipeline" %}
5542   ins_encode( emit_br_nop );
5543   ins_pipe(br_nop);
5544 %}
5545 
5546 //----------Load/Store/Move Instructions---------------------------------------
5547 //----------Load Instructions--------------------------------------------------
5548 // Load Byte (8bit signed)
5549 instruct loadB(iRegI dst, memory mem) %{
5550   match(Set dst (LoadB mem));
5551   ins_cost(MEMORY_REF_COST);
5552 
5553   size(4);
5554   format %{ "LDSB   $mem,$dst\t! byte" %}
5555   ins_encode %{
5556     __ ldsb($mem$$Address, $dst$$Register);
5557   %}
5558   ins_pipe(iload_mask_mem);
5559 %}
5560 
5561 // Load Byte (8bit signed) into a Long Register
5562 instruct loadB2L(iRegL dst, memory mem) %{
5563   match(Set dst (ConvI2L (LoadB mem)));
5564   ins_cost(MEMORY_REF_COST);
5565 
5566   size(4);
5567   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5568   ins_encode %{
5569     __ ldsb($mem$$Address, $dst$$Register);
5570   %}
5571   ins_pipe(iload_mask_mem);
5572 %}
5573 
5574 // Load Unsigned Byte (8bit UNsigned) into an int reg
5575 instruct loadUB(iRegI dst, memory mem) %{
5576   match(Set dst (LoadUB mem));
5577   ins_cost(MEMORY_REF_COST);
5578 
5579   size(4);
5580   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5581   ins_encode %{
5582     __ ldub($mem$$Address, $dst$$Register);
5583   %}
5584   ins_pipe(iload_mem);
5585 %}
5586 
5587 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5588 instruct loadUB2L(iRegL dst, memory mem) %{
5589   match(Set dst (ConvI2L (LoadUB mem)));
5590   ins_cost(MEMORY_REF_COST);
5591 
5592   size(4);
5593   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5594   ins_encode %{
5595     __ ldub($mem$$Address, $dst$$Register);
5596   %}
5597   ins_pipe(iload_mem);
5598 %}
5599 
5600 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5601 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5602   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5603   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5604 
5605   size(2*4);
5606   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5607             "AND    $dst,$mask,$dst" %}
5608   ins_encode %{
5609     __ ldub($mem$$Address, $dst$$Register);
5610     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5611   %}
5612   ins_pipe(iload_mem);
5613 %}
5614 
5615 // Load Short (16bit signed)
5616 instruct loadS(iRegI dst, memory mem) %{
5617   match(Set dst (LoadS mem));
5618   ins_cost(MEMORY_REF_COST);
5619 
5620   size(4);
5621   format %{ "LDSH   $mem,$dst\t! short" %}
5622   ins_encode %{
5623     __ ldsh($mem$$Address, $dst$$Register);
5624   %}
5625   ins_pipe(iload_mask_mem);
5626 %}
5627 
5628 // Load Short (16 bit signed) to Byte (8 bit signed)
5629 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5630   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5631   ins_cost(MEMORY_REF_COST);
5632 
5633   size(4);
5634 
5635   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5636   ins_encode %{
5637     __ ldsb($mem$$Address, $dst$$Register, 1);
5638   %}
5639   ins_pipe(iload_mask_mem);
5640 %}
5641 
5642 // Load Short (16bit signed) into a Long Register
5643 instruct loadS2L(iRegL dst, memory mem) %{
5644   match(Set dst (ConvI2L (LoadS mem)));
5645   ins_cost(MEMORY_REF_COST);
5646 
5647   size(4);
5648   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5649   ins_encode %{
5650     __ ldsh($mem$$Address, $dst$$Register);
5651   %}
5652   ins_pipe(iload_mask_mem);
5653 %}
5654 
5655 // Load Unsigned Short/Char (16bit UNsigned)
5656 instruct loadUS(iRegI dst, memory mem) %{
5657   match(Set dst (LoadUS mem));
5658   ins_cost(MEMORY_REF_COST);
5659 
5660   size(4);
5661   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5662   ins_encode %{
5663     __ lduh($mem$$Address, $dst$$Register);
5664   %}
5665   ins_pipe(iload_mem);
5666 %}
5667 
5668 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5669 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5670   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5671   ins_cost(MEMORY_REF_COST);
5672 
5673   size(4);
5674   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5675   ins_encode %{
5676     __ ldsb($mem$$Address, $dst$$Register, 1);
5677   %}
5678   ins_pipe(iload_mask_mem);
5679 %}
5680 
5681 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5682 instruct loadUS2L(iRegL dst, memory mem) %{
5683   match(Set dst (ConvI2L (LoadUS mem)));
5684   ins_cost(MEMORY_REF_COST);
5685 
5686   size(4);
5687   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5688   ins_encode %{
5689     __ lduh($mem$$Address, $dst$$Register);
5690   %}
5691   ins_pipe(iload_mem);
5692 %}
5693 
5694 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5695 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5696   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5697   ins_cost(MEMORY_REF_COST);
5698 
5699   size(4);
5700   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5701   ins_encode %{
5702     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5703   %}
5704   ins_pipe(iload_mem);
5705 %}
5706 
5707 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5708 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5709   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5710   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5711 
5712   size(2*4);
5713   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5714             "AND    $dst,$mask,$dst" %}
5715   ins_encode %{
5716     Register Rdst = $dst$$Register;
5717     __ lduh($mem$$Address, Rdst);
5718     __ and3(Rdst, $mask$$constant, Rdst);
5719   %}
5720   ins_pipe(iload_mem);
5721 %}
5722 
5723 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5724 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5725   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5726   effect(TEMP dst, TEMP tmp);
5727   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5728 
5729   size((3+1)*4);  // set may use two instructions.
5730   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5731             "SET    $mask,$tmp\n\t"
5732             "AND    $dst,$tmp,$dst" %}
5733   ins_encode %{
5734     Register Rdst = $dst$$Register;
5735     Register Rtmp = $tmp$$Register;
5736     __ lduh($mem$$Address, Rdst);
5737     __ set($mask$$constant, Rtmp);
5738     __ and3(Rdst, Rtmp, Rdst);
5739   %}
5740   ins_pipe(iload_mem);
5741 %}
5742 
5743 // Load Integer
5744 instruct loadI(iRegI dst, memory mem) %{
5745   match(Set dst (LoadI mem));
5746   ins_cost(MEMORY_REF_COST);
5747 
5748   size(4);
5749   format %{ "LDUW   $mem,$dst\t! int" %}
5750   ins_encode %{
5751     __ lduw($mem$$Address, $dst$$Register);
5752   %}
5753   ins_pipe(iload_mem);
5754 %}
5755 
5756 // Load Integer to Byte (8 bit signed)
5757 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5758   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5759   ins_cost(MEMORY_REF_COST);
5760 
5761   size(4);
5762 
5763   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5764   ins_encode %{
5765     __ ldsb($mem$$Address, $dst$$Register, 3);
5766   %}
5767   ins_pipe(iload_mask_mem);
5768 %}
5769 
5770 // Load Integer to Unsigned Byte (8 bit UNsigned)
5771 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5772   match(Set dst (AndI (LoadI mem) mask));
5773   ins_cost(MEMORY_REF_COST);
5774 
5775   size(4);
5776 
5777   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5778   ins_encode %{
5779     __ ldub($mem$$Address, $dst$$Register, 3);
5780   %}
5781   ins_pipe(iload_mask_mem);
5782 %}
5783 
5784 // Load Integer to Short (16 bit signed)
5785 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5786   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5787   ins_cost(MEMORY_REF_COST);
5788 
5789   size(4);
5790 
5791   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5792   ins_encode %{
5793     __ ldsh($mem$$Address, $dst$$Register, 2);
5794   %}
5795   ins_pipe(iload_mask_mem);
5796 %}
5797 
5798 // Load Integer to Unsigned Short (16 bit UNsigned)
5799 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5800   match(Set dst (AndI (LoadI mem) mask));
5801   ins_cost(MEMORY_REF_COST);
5802 
5803   size(4);
5804 
5805   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5806   ins_encode %{
5807     __ lduh($mem$$Address, $dst$$Register, 2);
5808   %}
5809   ins_pipe(iload_mask_mem);
5810 %}
5811 
5812 // Load Integer into a Long Register
5813 instruct loadI2L(iRegL dst, memory mem) %{
5814   match(Set dst (ConvI2L (LoadI mem)));
5815   ins_cost(MEMORY_REF_COST);
5816 
5817   size(4);
5818   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5819   ins_encode %{
5820     __ ldsw($mem$$Address, $dst$$Register);
5821   %}
5822   ins_pipe(iload_mask_mem);
5823 %}
5824 
5825 // Load Integer with mask 0xFF into a Long Register
5826 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5827   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5828   ins_cost(MEMORY_REF_COST);
5829 
5830   size(4);
5831   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5832   ins_encode %{
5833     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5834   %}
5835   ins_pipe(iload_mem);
5836 %}
5837 
5838 // Load Integer with mask 0xFFFF into a Long Register
5839 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5840   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5841   ins_cost(MEMORY_REF_COST);
5842 
5843   size(4);
5844   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5845   ins_encode %{
5846     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5847   %}
5848   ins_pipe(iload_mem);
5849 %}
5850 
5851 // Load Integer with a 13-bit mask into a Long Register
5852 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5853   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5854   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5855 
5856   size(2*4);
5857   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5858             "AND    $dst,$mask,$dst" %}
5859   ins_encode %{
5860     Register Rdst = $dst$$Register;
5861     __ lduw($mem$$Address, Rdst);
5862     __ and3(Rdst, $mask$$constant, Rdst);
5863   %}
5864   ins_pipe(iload_mem);
5865 %}
5866 
5867 // Load Integer with a 32-bit mask into a Long Register
5868 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5869   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5870   effect(TEMP dst, TEMP tmp);
5871   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5872 
5873   size((3+1)*4);  // set may use two instructions.
5874   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5875             "SET    $mask,$tmp\n\t"
5876             "AND    $dst,$tmp,$dst" %}
5877   ins_encode %{
5878     Register Rdst = $dst$$Register;
5879     Register Rtmp = $tmp$$Register;
5880     __ lduw($mem$$Address, Rdst);
5881     __ set($mask$$constant, Rtmp);
5882     __ and3(Rdst, Rtmp, Rdst);
5883   %}
5884   ins_pipe(iload_mem);
5885 %}
5886 
5887 // Load Unsigned Integer into a Long Register
5888 instruct loadUI2L(iRegL dst, memory mem) %{
5889   match(Set dst (LoadUI2L mem));
5890   ins_cost(MEMORY_REF_COST);
5891 
5892   size(4);
5893   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5894   ins_encode %{
5895     __ lduw($mem$$Address, $dst$$Register);
5896   %}
5897   ins_pipe(iload_mem);
5898 %}
5899 
5900 // Load Long - aligned
5901 instruct loadL(iRegL dst, memory mem ) %{
5902   match(Set dst (LoadL mem));
5903   ins_cost(MEMORY_REF_COST);
5904 
5905   size(4);
5906   format %{ "LDX    $mem,$dst\t! long" %}
5907   ins_encode %{
5908     __ ldx($mem$$Address, $dst$$Register);
5909   %}
5910   ins_pipe(iload_mem);
5911 %}
5912 
5913 // Load Long - UNaligned
5914 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5915   match(Set dst (LoadL_unaligned mem));
5916   effect(KILL tmp);
5917   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5918   size(16);
5919   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5920           "\tLDUW   $mem  ,$dst\n"
5921           "\tSLLX   #32, $dst, $dst\n"
5922           "\tOR     $dst, R_O7, $dst" %}
5923   opcode(Assembler::lduw_op3);
5924   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5925   ins_pipe(iload_mem);
5926 %}
5927 
5928 // Load Range
5929 instruct loadRange(iRegI dst, memory mem) %{
5930   match(Set dst (LoadRange mem));
5931   ins_cost(MEMORY_REF_COST);
5932 
5933   size(4);
5934   format %{ "LDUW   $mem,$dst\t! range" %}
5935   opcode(Assembler::lduw_op3);
5936   ins_encode(simple_form3_mem_reg( mem, dst ) );
5937   ins_pipe(iload_mem);
5938 %}
5939 
5940 // Load Integer into %f register (for fitos/fitod)
5941 instruct loadI_freg(regF dst, memory mem) %{
5942   match(Set dst (LoadI mem));
5943   ins_cost(MEMORY_REF_COST);
5944   size(4);
5945 
5946   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5947   opcode(Assembler::ldf_op3);
5948   ins_encode(simple_form3_mem_reg( mem, dst ) );
5949   ins_pipe(floadF_mem);
5950 %}
5951 
5952 // Load Pointer
5953 instruct loadP(iRegP dst, memory mem) %{
5954   match(Set dst (LoadP mem));
5955   ins_cost(MEMORY_REF_COST);
5956   size(4);
5957 
5958 #ifndef _LP64
5959   format %{ "LDUW   $mem,$dst\t! ptr" %}
5960   ins_encode %{
5961     __ lduw($mem$$Address, $dst$$Register);
5962   %}
5963 #else
5964   format %{ "LDX    $mem,$dst\t! ptr" %}
5965   ins_encode %{
5966     __ ldx($mem$$Address, $dst$$Register);
5967   %}
5968 #endif
5969   ins_pipe(iload_mem);
5970 %}
5971 
5972 // Load Compressed Pointer
5973 instruct loadN(iRegN dst, memory mem) %{
5974   match(Set dst (LoadN mem));
5975   ins_cost(MEMORY_REF_COST);
5976   size(4);
5977 
5978   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5979   ins_encode %{
5980     __ lduw($mem$$Address, $dst$$Register);
5981   %}
5982   ins_pipe(iload_mem);
5983 %}
5984 
5985 // Load Klass Pointer
5986 instruct loadKlass(iRegP dst, memory mem) %{
5987   match(Set dst (LoadKlass mem));
5988   ins_cost(MEMORY_REF_COST);
5989   size(4);
5990 
5991 #ifndef _LP64
5992   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5993   ins_encode %{
5994     __ lduw($mem$$Address, $dst$$Register);
5995   %}
5996 #else
5997   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5998   ins_encode %{
5999     __ ldx($mem$$Address, $dst$$Register);
6000   %}
6001 #endif
6002   ins_pipe(iload_mem);
6003 %}
6004 
6005 // Load narrow Klass Pointer
6006 instruct loadNKlass(iRegN dst, memory mem) %{
6007   match(Set dst (LoadNKlass mem));
6008   ins_cost(MEMORY_REF_COST);
6009   size(4);
6010 
6011   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6012   ins_encode %{
6013     __ lduw($mem$$Address, $dst$$Register);
6014   %}
6015   ins_pipe(iload_mem);
6016 %}
6017 
6018 // Load Double
6019 instruct loadD(regD dst, memory mem) %{
6020   match(Set dst (LoadD mem));
6021   ins_cost(MEMORY_REF_COST);
6022 
6023   size(4);
6024   format %{ "LDDF   $mem,$dst" %}
6025   opcode(Assembler::lddf_op3);
6026   ins_encode(simple_form3_mem_reg( mem, dst ) );
6027   ins_pipe(floadD_mem);
6028 %}
6029 
6030 // Load Double - UNaligned
6031 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6032   match(Set dst (LoadD_unaligned mem));
6033   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6034   size(8);
6035   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6036           "\tLDF    $mem+4,$dst.lo\t!" %}
6037   opcode(Assembler::ldf_op3);
6038   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6039   ins_pipe(iload_mem);
6040 %}
6041 
6042 // Load Float
6043 instruct loadF(regF dst, memory mem) %{
6044   match(Set dst (LoadF mem));
6045   ins_cost(MEMORY_REF_COST);
6046 
6047   size(4);
6048   format %{ "LDF    $mem,$dst" %}
6049   opcode(Assembler::ldf_op3);
6050   ins_encode(simple_form3_mem_reg( mem, dst ) );
6051   ins_pipe(floadF_mem);
6052 %}
6053 
6054 // Load Constant
6055 instruct loadConI( iRegI dst, immI src ) %{
6056   match(Set dst src);
6057   ins_cost(DEFAULT_COST * 3/2);
6058   format %{ "SET    $src,$dst" %}
6059   ins_encode( Set32(src, dst) );
6060   ins_pipe(ialu_hi_lo_reg);
6061 %}
6062 
6063 instruct loadConI13( iRegI dst, immI13 src ) %{
6064   match(Set dst src);
6065 
6066   size(4);
6067   format %{ "MOV    $src,$dst" %}
6068   ins_encode( Set13( src, dst ) );
6069   ins_pipe(ialu_imm);
6070 %}
6071 
6072 #ifndef _LP64
6073 instruct loadConP(iRegP dst, immP con) %{
6074   match(Set dst con);
6075   ins_cost(DEFAULT_COST * 3/2);
6076   format %{ "SET    $con,$dst\t!ptr" %}
6077   ins_encode %{
6078     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6079       intptr_t val = $con$$constant;
6080     if (constant_reloc == relocInfo::oop_type) {
6081       __ set_oop_constant((jobject) val, $dst$$Register);
6082     } else if (constant_reloc == relocInfo::metadata_type) {
6083       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6084     } else {          // non-oop pointers, e.g. card mark base, heap top
6085       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6086       __ set(val, $dst$$Register);
6087     }
6088   %}
6089   ins_pipe(loadConP);
6090 %}
6091 #else
6092 instruct loadConP_set(iRegP dst, immP_set con) %{
6093   match(Set dst con);
6094   ins_cost(DEFAULT_COST * 3/2);
6095   format %{ "SET    $con,$dst\t! ptr" %}
6096   ins_encode %{
6097     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6098       intptr_t val = $con$$constant;
6099     if (constant_reloc == relocInfo::oop_type) {
6100       __ set_oop_constant((jobject) val, $dst$$Register);
6101     } else if (constant_reloc == relocInfo::metadata_type) {
6102       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6103     } else {          // non-oop pointers, e.g. card mark base, heap top
6104       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6105       __ set(val, $dst$$Register);
6106     }
6107   %}
6108   ins_pipe(loadConP);
6109 %}
6110 
6111 instruct loadConP_load(iRegP dst, immP_load con) %{
6112   match(Set dst con);
6113   ins_cost(MEMORY_REF_COST);
6114   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6115   ins_encode %{
6116     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6117     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6118   %}
6119   ins_pipe(loadConP);
6120 %}
6121 
6122 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6123   match(Set dst con);
6124   ins_cost(DEFAULT_COST * 3/2);
6125   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6126   ins_encode %{
6127     __ set($con$$constant, $dst$$Register);
6128   %}
6129   ins_pipe(loadConP);
6130 %}
6131 #endif // _LP64
6132 
6133 instruct loadConP0(iRegP dst, immP0 src) %{
6134   match(Set dst src);
6135 
6136   size(4);
6137   format %{ "CLR    $dst\t!ptr" %}
6138   ins_encode %{
6139     __ clr($dst$$Register);
6140   %}
6141   ins_pipe(ialu_imm);
6142 %}
6143 
6144 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6145   match(Set dst src);
6146   ins_cost(DEFAULT_COST);
6147   format %{ "SET    $src,$dst\t!ptr" %}
6148   ins_encode %{
6149     AddressLiteral polling_page(os::get_polling_page());
6150     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6151   %}
6152   ins_pipe(loadConP_poll);
6153 %}
6154 
6155 instruct loadConN0(iRegN dst, immN0 src) %{
6156   match(Set dst src);
6157 
6158   size(4);
6159   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6160   ins_encode %{
6161     __ clr($dst$$Register);
6162   %}
6163   ins_pipe(ialu_imm);
6164 %}
6165 
6166 instruct loadConN(iRegN dst, immN src) %{
6167   match(Set dst src);
6168   ins_cost(DEFAULT_COST * 3/2);
6169   format %{ "SET    $src,$dst\t! compressed ptr" %}
6170   ins_encode %{
6171     Register dst = $dst$$Register;
6172     __ set_narrow_oop((jobject)$src$$constant, dst);
6173   %}
6174   ins_pipe(ialu_hi_lo_reg);
6175 %}
6176 
6177 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6178   match(Set dst src);
6179   ins_cost(DEFAULT_COST * 3/2);
6180   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6181   ins_encode %{
6182     Register dst = $dst$$Register;
6183     __ set_narrow_klass((Klass*)$src$$constant, dst);
6184   %}
6185   ins_pipe(ialu_hi_lo_reg);
6186 %}
6187 
6188 // Materialize long value (predicated by immL_cheap).
6189 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6190   match(Set dst con);
6191   effect(KILL tmp);
6192   ins_cost(DEFAULT_COST * 3);
6193   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6194   ins_encode %{
6195     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6196   %}
6197   ins_pipe(loadConL);
6198 %}
6199 
6200 // Load long value from constant table (predicated by immL_expensive).
6201 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6202   match(Set dst con);
6203   ins_cost(MEMORY_REF_COST);
6204   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6205   ins_encode %{
6206       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6207     __ ldx($constanttablebase, con_offset, $dst$$Register);
6208   %}
6209   ins_pipe(loadConL);
6210 %}
6211 
6212 instruct loadConL0( iRegL dst, immL0 src ) %{
6213   match(Set dst src);
6214   ins_cost(DEFAULT_COST);
6215   size(4);
6216   format %{ "CLR    $dst\t! long" %}
6217   ins_encode( Set13( src, dst ) );
6218   ins_pipe(ialu_imm);
6219 %}
6220 
6221 instruct loadConL13( iRegL dst, immL13 src ) %{
6222   match(Set dst src);
6223   ins_cost(DEFAULT_COST * 2);
6224 
6225   size(4);
6226   format %{ "MOV    $src,$dst\t! long" %}
6227   ins_encode( Set13( src, dst ) );
6228   ins_pipe(ialu_imm);
6229 %}
6230 
6231 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6232   match(Set dst con);
6233   effect(KILL tmp);
6234   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6235   ins_encode %{
6236       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6237     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6238   %}
6239   ins_pipe(loadConFD);
6240 %}
6241 
6242 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6243   match(Set dst con);
6244   effect(KILL tmp);
6245   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6246   ins_encode %{
6247     // XXX This is a quick fix for 6833573.
6248     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6249     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6250     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6251   %}
6252   ins_pipe(loadConFD);
6253 %}
6254 
6255 // Prefetch instructions.
6256 // Must be safe to execute with invalid address (cannot fault).
6257 
6258 instruct prefetchr( memory mem ) %{
6259   match( PrefetchRead mem );
6260   ins_cost(MEMORY_REF_COST);
6261   size(4);
6262 
6263   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6264   opcode(Assembler::prefetch_op3);
6265   ins_encode( form3_mem_prefetch_read( mem ) );
6266   ins_pipe(iload_mem);
6267 %}
6268 
6269 instruct prefetchw( memory mem ) %{
6270   match( PrefetchWrite mem );
6271   ins_cost(MEMORY_REF_COST);
6272   size(4);
6273 
6274   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6275   opcode(Assembler::prefetch_op3);
6276   ins_encode( form3_mem_prefetch_write( mem ) );
6277   ins_pipe(iload_mem);
6278 %}
6279 
6280 // Prefetch instructions for allocation.
6281 
6282 instruct prefetchAlloc( memory mem ) %{
6283   predicate(AllocatePrefetchInstr == 0);
6284   match( PrefetchAllocation mem );
6285   ins_cost(MEMORY_REF_COST);
6286   size(4);
6287 
6288   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6289   opcode(Assembler::prefetch_op3);
6290   ins_encode( form3_mem_prefetch_write( mem ) );
6291   ins_pipe(iload_mem);
6292 %}
6293 
6294 // Use BIS instruction to prefetch for allocation.
6295 // Could fault, need space at the end of TLAB.
6296 instruct prefetchAlloc_bis( iRegP dst ) %{
6297   predicate(AllocatePrefetchInstr == 1);
6298   match( PrefetchAllocation dst );
6299   ins_cost(MEMORY_REF_COST);
6300   size(4);
6301 
6302   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6303   ins_encode %{
6304     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6305   %}
6306   ins_pipe(istore_mem_reg);
6307 %}
6308 
6309 // Next code is used for finding next cache line address to prefetch.
6310 #ifndef _LP64
6311 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6312   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6313   ins_cost(DEFAULT_COST);
6314   size(4);
6315 
6316   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6317   ins_encode %{
6318     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6319   %}
6320   ins_pipe(ialu_reg_imm);
6321 %}
6322 #else
6323 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6324   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6325   ins_cost(DEFAULT_COST);
6326   size(4);
6327 
6328   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6329   ins_encode %{
6330     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6331   %}
6332   ins_pipe(ialu_reg_imm);
6333 %}
6334 #endif
6335 
6336 //----------Store Instructions-------------------------------------------------
6337 // Store Byte
6338 instruct storeB(memory mem, iRegI src) %{
6339   match(Set mem (StoreB mem src));
6340   ins_cost(MEMORY_REF_COST);
6341 
6342   size(4);
6343   format %{ "STB    $src,$mem\t! byte" %}
6344   opcode(Assembler::stb_op3);
6345   ins_encode(simple_form3_mem_reg( mem, src ) );
6346   ins_pipe(istore_mem_reg);
6347 %}
6348 
6349 instruct storeB0(memory mem, immI0 src) %{
6350   match(Set mem (StoreB mem src));
6351   ins_cost(MEMORY_REF_COST);
6352 
6353   size(4);
6354   format %{ "STB    $src,$mem\t! byte" %}
6355   opcode(Assembler::stb_op3);
6356   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6357   ins_pipe(istore_mem_zero);
6358 %}
6359 
6360 instruct storeCM0(memory mem, immI0 src) %{
6361   match(Set mem (StoreCM mem src));
6362   ins_cost(MEMORY_REF_COST);
6363 
6364   size(4);
6365   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6366   opcode(Assembler::stb_op3);
6367   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6368   ins_pipe(istore_mem_zero);
6369 %}
6370 
6371 // Store Char/Short
6372 instruct storeC(memory mem, iRegI src) %{
6373   match(Set mem (StoreC mem src));
6374   ins_cost(MEMORY_REF_COST);
6375 
6376   size(4);
6377   format %{ "STH    $src,$mem\t! short" %}
6378   opcode(Assembler::sth_op3);
6379   ins_encode(simple_form3_mem_reg( mem, src ) );
6380   ins_pipe(istore_mem_reg);
6381 %}
6382 
6383 instruct storeC0(memory mem, immI0 src) %{
6384   match(Set mem (StoreC mem src));
6385   ins_cost(MEMORY_REF_COST);
6386 
6387   size(4);
6388   format %{ "STH    $src,$mem\t! short" %}
6389   opcode(Assembler::sth_op3);
6390   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6391   ins_pipe(istore_mem_zero);
6392 %}
6393 
6394 // Store Integer
6395 instruct storeI(memory mem, iRegI src) %{
6396   match(Set mem (StoreI mem src));
6397   ins_cost(MEMORY_REF_COST);
6398 
6399   size(4);
6400   format %{ "STW    $src,$mem" %}
6401   opcode(Assembler::stw_op3);
6402   ins_encode(simple_form3_mem_reg( mem, src ) );
6403   ins_pipe(istore_mem_reg);
6404 %}
6405 
6406 // Store Long
6407 instruct storeL(memory mem, iRegL src) %{
6408   match(Set mem (StoreL mem src));
6409   ins_cost(MEMORY_REF_COST);
6410   size(4);
6411   format %{ "STX    $src,$mem\t! long" %}
6412   opcode(Assembler::stx_op3);
6413   ins_encode(simple_form3_mem_reg( mem, src ) );
6414   ins_pipe(istore_mem_reg);
6415 %}
6416 
6417 instruct storeI0(memory mem, immI0 src) %{
6418   match(Set mem (StoreI mem src));
6419   ins_cost(MEMORY_REF_COST);
6420 
6421   size(4);
6422   format %{ "STW    $src,$mem" %}
6423   opcode(Assembler::stw_op3);
6424   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6425   ins_pipe(istore_mem_zero);
6426 %}
6427 
6428 instruct storeL0(memory mem, immL0 src) %{
6429   match(Set mem (StoreL mem src));
6430   ins_cost(MEMORY_REF_COST);
6431 
6432   size(4);
6433   format %{ "STX    $src,$mem" %}
6434   opcode(Assembler::stx_op3);
6435   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6436   ins_pipe(istore_mem_zero);
6437 %}
6438 
6439 // Store Integer from float register (used after fstoi)
6440 instruct storeI_Freg(memory mem, regF src) %{
6441   match(Set mem (StoreI mem src));
6442   ins_cost(MEMORY_REF_COST);
6443 
6444   size(4);
6445   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6446   opcode(Assembler::stf_op3);
6447   ins_encode(simple_form3_mem_reg( mem, src ) );
6448   ins_pipe(fstoreF_mem_reg);
6449 %}
6450 
6451 // Store Pointer
6452 instruct storeP(memory dst, sp_ptr_RegP src) %{
6453   match(Set dst (StoreP dst src));
6454   ins_cost(MEMORY_REF_COST);
6455   size(4);
6456 
6457 #ifndef _LP64
6458   format %{ "STW    $src,$dst\t! ptr" %}
6459   opcode(Assembler::stw_op3, 0, REGP_OP);
6460 #else
6461   format %{ "STX    $src,$dst\t! ptr" %}
6462   opcode(Assembler::stx_op3, 0, REGP_OP);
6463 #endif
6464   ins_encode( form3_mem_reg( dst, src ) );
6465   ins_pipe(istore_mem_spORreg);
6466 %}
6467 
6468 instruct storeP0(memory dst, immP0 src) %{
6469   match(Set dst (StoreP dst src));
6470   ins_cost(MEMORY_REF_COST);
6471   size(4);
6472 
6473 #ifndef _LP64
6474   format %{ "STW    $src,$dst\t! ptr" %}
6475   opcode(Assembler::stw_op3, 0, REGP_OP);
6476 #else
6477   format %{ "STX    $src,$dst\t! ptr" %}
6478   opcode(Assembler::stx_op3, 0, REGP_OP);
6479 #endif
6480   ins_encode( form3_mem_reg( dst, R_G0 ) );
6481   ins_pipe(istore_mem_zero);
6482 %}
6483 
6484 // Store Compressed Pointer
6485 instruct storeN(memory dst, iRegN src) %{
6486    match(Set dst (StoreN dst src));
6487    ins_cost(MEMORY_REF_COST);
6488    size(4);
6489 
6490    format %{ "STW    $src,$dst\t! compressed ptr" %}
6491    ins_encode %{
6492      Register base = as_Register($dst$$base);
6493      Register index = as_Register($dst$$index);
6494      Register src = $src$$Register;
6495      if (index != G0) {
6496        __ stw(src, base, index);
6497      } else {
6498        __ stw(src, base, $dst$$disp);
6499      }
6500    %}
6501    ins_pipe(istore_mem_spORreg);
6502 %}
6503 
6504 instruct storeNKlass(memory dst, iRegN src) %{
6505    match(Set dst (StoreNKlass dst src));
6506    ins_cost(MEMORY_REF_COST);
6507    size(4);
6508 
6509    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6510    ins_encode %{
6511      Register base = as_Register($dst$$base);
6512      Register index = as_Register($dst$$index);
6513      Register src = $src$$Register;
6514      if (index != G0) {
6515        __ stw(src, base, index);
6516      } else {
6517        __ stw(src, base, $dst$$disp);
6518      }
6519    %}
6520    ins_pipe(istore_mem_spORreg);
6521 %}
6522 
6523 instruct storeN0(memory dst, immN0 src) %{
6524    match(Set dst (StoreN dst src));
6525    ins_cost(MEMORY_REF_COST);
6526    size(4);
6527 
6528    format %{ "STW    $src,$dst\t! compressed ptr" %}
6529    ins_encode %{
6530      Register base = as_Register($dst$$base);
6531      Register index = as_Register($dst$$index);
6532      if (index != G0) {
6533        __ stw(0, base, index);
6534      } else {
6535        __ stw(0, base, $dst$$disp);
6536      }
6537    %}
6538    ins_pipe(istore_mem_zero);
6539 %}
6540 
6541 // Store Double
6542 instruct storeD( memory mem, regD src) %{
6543   match(Set mem (StoreD mem src));
6544   ins_cost(MEMORY_REF_COST);
6545 
6546   size(4);
6547   format %{ "STDF   $src,$mem" %}
6548   opcode(Assembler::stdf_op3);
6549   ins_encode(simple_form3_mem_reg( mem, src ) );
6550   ins_pipe(fstoreD_mem_reg);
6551 %}
6552 
6553 instruct storeD0( memory mem, immD0 src) %{
6554   match(Set mem (StoreD mem src));
6555   ins_cost(MEMORY_REF_COST);
6556 
6557   size(4);
6558   format %{ "STX    $src,$mem" %}
6559   opcode(Assembler::stx_op3);
6560   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6561   ins_pipe(fstoreD_mem_zero);
6562 %}
6563 
6564 // Store Float
6565 instruct storeF( memory mem, regF src) %{
6566   match(Set mem (StoreF mem src));
6567   ins_cost(MEMORY_REF_COST);
6568 
6569   size(4);
6570   format %{ "STF    $src,$mem" %}
6571   opcode(Assembler::stf_op3);
6572   ins_encode(simple_form3_mem_reg( mem, src ) );
6573   ins_pipe(fstoreF_mem_reg);
6574 %}
6575 
6576 instruct storeF0( memory mem, immF0 src) %{
6577   match(Set mem (StoreF mem src));
6578   ins_cost(MEMORY_REF_COST);
6579 
6580   size(4);
6581   format %{ "STW    $src,$mem\t! storeF0" %}
6582   opcode(Assembler::stw_op3);
6583   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6584   ins_pipe(fstoreF_mem_zero);
6585 %}
6586 
6587 // Convert oop pointer into compressed form
6588 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6589   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6590   match(Set dst (EncodeP src));
6591   format %{ "encode_heap_oop $src, $dst" %}
6592   ins_encode %{
6593     __ encode_heap_oop($src$$Register, $dst$$Register);
6594   %}
6595   ins_pipe(ialu_reg);
6596 %}
6597 
6598 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6599   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6600   match(Set dst (EncodeP src));
6601   format %{ "encode_heap_oop_not_null $src, $dst" %}
6602   ins_encode %{
6603     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6604   %}
6605   ins_pipe(ialu_reg);
6606 %}
6607 
6608 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6609   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6610             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6611   match(Set dst (DecodeN src));
6612   format %{ "decode_heap_oop $src, $dst" %}
6613   ins_encode %{
6614     __ decode_heap_oop($src$$Register, $dst$$Register);
6615   %}
6616   ins_pipe(ialu_reg);
6617 %}
6618 
6619 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6620   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6621             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6622   match(Set dst (DecodeN src));
6623   format %{ "decode_heap_oop_not_null $src, $dst" %}
6624   ins_encode %{
6625     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6626   %}
6627   ins_pipe(ialu_reg);
6628 %}
6629 
6630 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6631   match(Set dst (EncodePKlass src));
6632   format %{ "encode_klass_not_null $src, $dst" %}
6633   ins_encode %{
6634     __ encode_klass_not_null($src$$Register, $dst$$Register);
6635   %}
6636   ins_pipe(ialu_reg);
6637 %}
6638 
6639 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6640   match(Set dst (DecodeNKlass src));
6641   format %{ "decode_klass_not_null $src, $dst" %}
6642   ins_encode %{
6643     __ decode_klass_not_null($src$$Register, $dst$$Register);
6644   %}
6645   ins_pipe(ialu_reg);
6646 %}
6647 
6648 //----------MemBar Instructions-----------------------------------------------
6649 // Memory barrier flavors
6650 
6651 instruct membar_acquire() %{
6652   match(MemBarAcquire);
6653   ins_cost(4*MEMORY_REF_COST);
6654 
6655   size(0);
6656   format %{ "MEMBAR-acquire" %}
6657   ins_encode( enc_membar_acquire );
6658   ins_pipe(long_memory_op);
6659 %}
6660 
6661 instruct membar_acquire_lock() %{
6662   match(MemBarAcquireLock);
6663   ins_cost(0);
6664 
6665   size(0);
6666   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6667   ins_encode( );
6668   ins_pipe(empty);
6669 %}
6670 
6671 instruct membar_release() %{
6672   match(MemBarRelease);
6673   ins_cost(4*MEMORY_REF_COST);
6674 
6675   size(0);
6676   format %{ "MEMBAR-release" %}
6677   ins_encode( enc_membar_release );
6678   ins_pipe(long_memory_op);
6679 %}
6680 
6681 instruct membar_release_lock() %{
6682   match(MemBarReleaseLock);
6683   ins_cost(0);
6684 
6685   size(0);
6686   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6687   ins_encode( );
6688   ins_pipe(empty);
6689 %}
6690 
6691 instruct membar_volatile() %{
6692   match(MemBarVolatile);
6693   ins_cost(4*MEMORY_REF_COST);
6694 
6695   size(4);
6696   format %{ "MEMBAR-volatile" %}
6697   ins_encode( enc_membar_volatile );
6698   ins_pipe(long_memory_op);
6699 %}
6700 
6701 instruct unnecessary_membar_volatile() %{
6702   match(MemBarVolatile);
6703   predicate(Matcher::post_store_load_barrier(n));
6704   ins_cost(0);
6705 
6706   size(0);
6707   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6708   ins_encode( );
6709   ins_pipe(empty);
6710 %}
6711 
6712 instruct membar_storestore() %{
6713   match(MemBarStoreStore);
6714   ins_cost(0);
6715 
6716   size(0);
6717   format %{ "!MEMBAR-storestore (empty encoding)" %}
6718   ins_encode( );
6719   ins_pipe(empty);
6720 %}
6721 
6722 //----------Register Move Instructions-----------------------------------------
6723 instruct roundDouble_nop(regD dst) %{
6724   match(Set dst (RoundDouble dst));
6725   ins_cost(0);
6726   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6727   ins_encode( );
6728   ins_pipe(empty);
6729 %}
6730 
6731 
6732 instruct roundFloat_nop(regF dst) %{
6733   match(Set dst (RoundFloat dst));
6734   ins_cost(0);
6735   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6736   ins_encode( );
6737   ins_pipe(empty);
6738 %}
6739 
6740 
6741 // Cast Index to Pointer for unsafe natives
6742 instruct castX2P(iRegX src, iRegP dst) %{
6743   match(Set dst (CastX2P src));
6744 
6745   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6746   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6747   ins_pipe(ialu_reg);
6748 %}
6749 
6750 // Cast Pointer to Index for unsafe natives
6751 instruct castP2X(iRegP src, iRegX dst) %{
6752   match(Set dst (CastP2X src));
6753 
6754   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6755   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6756   ins_pipe(ialu_reg);
6757 %}
6758 
6759 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6760   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6761   match(Set stkSlot src);   // chain rule
6762   ins_cost(MEMORY_REF_COST);
6763   format %{ "STDF   $src,$stkSlot\t!stk" %}
6764   opcode(Assembler::stdf_op3);
6765   ins_encode(simple_form3_mem_reg(stkSlot, src));
6766   ins_pipe(fstoreD_stk_reg);
6767 %}
6768 
6769 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6770   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6771   match(Set dst stkSlot);   // chain rule
6772   ins_cost(MEMORY_REF_COST);
6773   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6774   opcode(Assembler::lddf_op3);
6775   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6776   ins_pipe(floadD_stk);
6777 %}
6778 
6779 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6780   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6781   match(Set stkSlot src);   // chain rule
6782   ins_cost(MEMORY_REF_COST);
6783   format %{ "STF   $src,$stkSlot\t!stk" %}
6784   opcode(Assembler::stf_op3);
6785   ins_encode(simple_form3_mem_reg(stkSlot, src));
6786   ins_pipe(fstoreF_stk_reg);
6787 %}
6788 
6789 //----------Conditional Move---------------------------------------------------
6790 // Conditional move
6791 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6792   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6793   ins_cost(150);
6794   format %{ "MOV$cmp $pcc,$src,$dst" %}
6795   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6796   ins_pipe(ialu_reg);
6797 %}
6798 
6799 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6800   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6801   ins_cost(140);
6802   format %{ "MOV$cmp $pcc,$src,$dst" %}
6803   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6804   ins_pipe(ialu_imm);
6805 %}
6806 
6807 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6808   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6809   ins_cost(150);
6810   size(4);
6811   format %{ "MOV$cmp  $icc,$src,$dst" %}
6812   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6813   ins_pipe(ialu_reg);
6814 %}
6815 
6816 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6817   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6818   ins_cost(140);
6819   size(4);
6820   format %{ "MOV$cmp  $icc,$src,$dst" %}
6821   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6822   ins_pipe(ialu_imm);
6823 %}
6824 
6825 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6826   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6827   ins_cost(150);
6828   size(4);
6829   format %{ "MOV$cmp  $icc,$src,$dst" %}
6830   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6831   ins_pipe(ialu_reg);
6832 %}
6833 
6834 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6835   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6836   ins_cost(140);
6837   size(4);
6838   format %{ "MOV$cmp  $icc,$src,$dst" %}
6839   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6840   ins_pipe(ialu_imm);
6841 %}
6842 
6843 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6844   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6845   ins_cost(150);
6846   size(4);
6847   format %{ "MOV$cmp $fcc,$src,$dst" %}
6848   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6849   ins_pipe(ialu_reg);
6850 %}
6851 
6852 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6853   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6854   ins_cost(140);
6855   size(4);
6856   format %{ "MOV$cmp $fcc,$src,$dst" %}
6857   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6858   ins_pipe(ialu_imm);
6859 %}
6860 
6861 // Conditional move for RegN. Only cmov(reg,reg).
6862 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6863   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6864   ins_cost(150);
6865   format %{ "MOV$cmp $pcc,$src,$dst" %}
6866   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6867   ins_pipe(ialu_reg);
6868 %}
6869 
6870 // This instruction also works with CmpN so we don't need cmovNN_reg.
6871 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6872   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6873   ins_cost(150);
6874   size(4);
6875   format %{ "MOV$cmp  $icc,$src,$dst" %}
6876   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6877   ins_pipe(ialu_reg);
6878 %}
6879 
6880 // This instruction also works with CmpN so we don't need cmovNN_reg.
6881 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6882   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6883   ins_cost(150);
6884   size(4);
6885   format %{ "MOV$cmp  $icc,$src,$dst" %}
6886   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6887   ins_pipe(ialu_reg);
6888 %}
6889 
6890 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6891   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6892   ins_cost(150);
6893   size(4);
6894   format %{ "MOV$cmp $fcc,$src,$dst" %}
6895   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6896   ins_pipe(ialu_reg);
6897 %}
6898 
6899 // Conditional move
6900 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6901   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6902   ins_cost(150);
6903   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6904   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6905   ins_pipe(ialu_reg);
6906 %}
6907 
6908 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6909   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6910   ins_cost(140);
6911   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6912   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6913   ins_pipe(ialu_imm);
6914 %}
6915 
6916 // This instruction also works with CmpN so we don't need cmovPN_reg.
6917 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6918   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6919   ins_cost(150);
6920 
6921   size(4);
6922   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6923   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6924   ins_pipe(ialu_reg);
6925 %}
6926 
6927 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6928   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6929   ins_cost(150);
6930 
6931   size(4);
6932   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6933   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6934   ins_pipe(ialu_reg);
6935 %}
6936 
6937 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6938   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6939   ins_cost(140);
6940 
6941   size(4);
6942   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6943   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6944   ins_pipe(ialu_imm);
6945 %}
6946 
6947 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6948   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6949   ins_cost(140);
6950 
6951   size(4);
6952   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6953   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6954   ins_pipe(ialu_imm);
6955 %}
6956 
6957 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6958   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6959   ins_cost(150);
6960   size(4);
6961   format %{ "MOV$cmp $fcc,$src,$dst" %}
6962   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6963   ins_pipe(ialu_imm);
6964 %}
6965 
6966 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6967   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6968   ins_cost(140);
6969   size(4);
6970   format %{ "MOV$cmp $fcc,$src,$dst" %}
6971   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6972   ins_pipe(ialu_imm);
6973 %}
6974 
6975 // Conditional move
6976 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6977   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6978   ins_cost(150);
6979   opcode(0x101);
6980   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6981   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6982   ins_pipe(int_conditional_float_move);
6983 %}
6984 
6985 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6986   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6987   ins_cost(150);
6988 
6989   size(4);
6990   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6991   opcode(0x101);
6992   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6993   ins_pipe(int_conditional_float_move);
6994 %}
6995 
6996 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6997   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6998   ins_cost(150);
6999 
7000   size(4);
7001   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7002   opcode(0x101);
7003   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7004   ins_pipe(int_conditional_float_move);
7005 %}
7006 
7007 // Conditional move,
7008 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7009   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7010   ins_cost(150);
7011   size(4);
7012   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7013   opcode(0x1);
7014   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7015   ins_pipe(int_conditional_double_move);
7016 %}
7017 
7018 // Conditional move
7019 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7020   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7021   ins_cost(150);
7022   size(4);
7023   opcode(0x102);
7024   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7025   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7026   ins_pipe(int_conditional_double_move);
7027 %}
7028 
7029 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7030   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7031   ins_cost(150);
7032 
7033   size(4);
7034   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7035   opcode(0x102);
7036   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7037   ins_pipe(int_conditional_double_move);
7038 %}
7039 
7040 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7041   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7042   ins_cost(150);
7043 
7044   size(4);
7045   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7046   opcode(0x102);
7047   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7048   ins_pipe(int_conditional_double_move);
7049 %}
7050 
7051 // Conditional move,
7052 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7053   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7054   ins_cost(150);
7055   size(4);
7056   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7057   opcode(0x2);
7058   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7059   ins_pipe(int_conditional_double_move);
7060 %}
7061 
7062 // Conditional move
7063 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7064   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7065   ins_cost(150);
7066   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7067   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7068   ins_pipe(ialu_reg);
7069 %}
7070 
7071 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7072   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7073   ins_cost(140);
7074   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7075   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7076   ins_pipe(ialu_imm);
7077 %}
7078 
7079 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7080   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7081   ins_cost(150);
7082 
7083   size(4);
7084   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7085   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7086   ins_pipe(ialu_reg);
7087 %}
7088 
7089 
7090 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7091   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7092   ins_cost(150);
7093 
7094   size(4);
7095   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7096   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7097   ins_pipe(ialu_reg);
7098 %}
7099 
7100 
7101 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7102   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7103   ins_cost(150);
7104 
7105   size(4);
7106   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7107   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7108   ins_pipe(ialu_reg);
7109 %}
7110 
7111 
7112 
7113 //----------OS and Locking Instructions----------------------------------------
7114 
7115 // This name is KNOWN by the ADLC and cannot be changed.
7116 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7117 // for this guy.
7118 instruct tlsLoadP(g2RegP dst) %{
7119   match(Set dst (ThreadLocal));
7120 
7121   size(0);
7122   ins_cost(0);
7123   format %{ "# TLS is in G2" %}
7124   ins_encode( /*empty encoding*/ );
7125   ins_pipe(ialu_none);
7126 %}
7127 
7128 instruct checkCastPP( iRegP dst ) %{
7129   match(Set dst (CheckCastPP dst));
7130 
7131   size(0);
7132   format %{ "# checkcastPP of $dst" %}
7133   ins_encode( /*empty encoding*/ );
7134   ins_pipe(empty);
7135 %}
7136 
7137 
7138 instruct castPP( iRegP dst ) %{
7139   match(Set dst (CastPP dst));
7140   format %{ "# castPP of $dst" %}
7141   ins_encode( /*empty encoding*/ );
7142   ins_pipe(empty);
7143 %}
7144 
7145 instruct castII( iRegI dst ) %{
7146   match(Set dst (CastII dst));
7147   format %{ "# castII of $dst" %}
7148   ins_encode( /*empty encoding*/ );
7149   ins_cost(0);
7150   ins_pipe(empty);
7151 %}
7152 
7153 //----------Arithmetic Instructions--------------------------------------------
7154 // Addition Instructions
7155 // Register Addition
7156 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7157   match(Set dst (AddI src1 src2));
7158 
7159   size(4);
7160   format %{ "ADD    $src1,$src2,$dst" %}
7161   ins_encode %{
7162     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7163   %}
7164   ins_pipe(ialu_reg_reg);
7165 %}
7166 
7167 // Immediate Addition
7168 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7169   match(Set dst (AddI src1 src2));
7170 
7171   size(4);
7172   format %{ "ADD    $src1,$src2,$dst" %}
7173   opcode(Assembler::add_op3, Assembler::arith_op);
7174   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7175   ins_pipe(ialu_reg_imm);
7176 %}
7177 
7178 // Pointer Register Addition
7179 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7180   match(Set dst (AddP src1 src2));
7181 
7182   size(4);
7183   format %{ "ADD    $src1,$src2,$dst" %}
7184   opcode(Assembler::add_op3, Assembler::arith_op);
7185   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7186   ins_pipe(ialu_reg_reg);
7187 %}
7188 
7189 // Pointer Immediate Addition
7190 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7191   match(Set dst (AddP src1 src2));
7192 
7193   size(4);
7194   format %{ "ADD    $src1,$src2,$dst" %}
7195   opcode(Assembler::add_op3, Assembler::arith_op);
7196   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7197   ins_pipe(ialu_reg_imm);
7198 %}
7199 
7200 // Long Addition
7201 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7202   match(Set dst (AddL src1 src2));
7203 
7204   size(4);
7205   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7206   opcode(Assembler::add_op3, Assembler::arith_op);
7207   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7208   ins_pipe(ialu_reg_reg);
7209 %}
7210 
7211 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7212   match(Set dst (AddL src1 con));
7213 
7214   size(4);
7215   format %{ "ADD    $src1,$con,$dst" %}
7216   opcode(Assembler::add_op3, Assembler::arith_op);
7217   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7218   ins_pipe(ialu_reg_imm);
7219 %}
7220 
7221 //----------Conditional_store--------------------------------------------------
7222 // Conditional-store of the updated heap-top.
7223 // Used during allocation of the shared heap.
7224 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7225 
7226 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7227 instruct loadPLocked(iRegP dst, memory mem) %{
7228   match(Set dst (LoadPLocked mem));
7229   ins_cost(MEMORY_REF_COST);
7230 
7231 #ifndef _LP64
7232   size(4);
7233   format %{ "LDUW   $mem,$dst\t! ptr" %}
7234   opcode(Assembler::lduw_op3, 0, REGP_OP);
7235 #else
7236   format %{ "LDX    $mem,$dst\t! ptr" %}
7237   opcode(Assembler::ldx_op3, 0, REGP_OP);
7238 #endif
7239   ins_encode( form3_mem_reg( mem, dst ) );
7240   ins_pipe(iload_mem);
7241 %}
7242 
7243 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7244   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7245   effect( KILL newval );
7246   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7247             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7248   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7249   ins_pipe( long_memory_op );
7250 %}
7251 
7252 // Conditional-store of an int value.
7253 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7254   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7255   effect( KILL newval );
7256   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7257             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7258   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7259   ins_pipe( long_memory_op );
7260 %}
7261 
7262 // Conditional-store of a long value.
7263 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7264   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7265   effect( KILL newval );
7266   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7267             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7268   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7269   ins_pipe( long_memory_op );
7270 %}
7271 
7272 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7273 
7274 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7275   predicate(VM_Version::supports_cx8());
7276   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7277   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7278   format %{
7279             "MOV    $newval,O7\n\t"
7280             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7281             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7282             "MOV    1,$res\n\t"
7283             "MOVne  xcc,R_G0,$res"
7284   %}
7285   ins_encode( enc_casx(mem_ptr, oldval, newval),
7286               enc_lflags_ne_to_boolean(res) );
7287   ins_pipe( long_memory_op );
7288 %}
7289 
7290 
7291 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7292   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7293   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7294   format %{
7295             "MOV    $newval,O7\n\t"
7296             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7297             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7298             "MOV    1,$res\n\t"
7299             "MOVne  icc,R_G0,$res"
7300   %}
7301   ins_encode( enc_casi(mem_ptr, oldval, newval),
7302               enc_iflags_ne_to_boolean(res) );
7303   ins_pipe( long_memory_op );
7304 %}
7305 
7306 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7307 #ifdef _LP64
7308   predicate(VM_Version::supports_cx8());
7309 #endif
7310   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7311   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7312   format %{
7313             "MOV    $newval,O7\n\t"
7314             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7315             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7316             "MOV    1,$res\n\t"
7317             "MOVne  xcc,R_G0,$res"
7318   %}
7319 #ifdef _LP64
7320   ins_encode( enc_casx(mem_ptr, oldval, newval),
7321               enc_lflags_ne_to_boolean(res) );
7322 #else
7323   ins_encode( enc_casi(mem_ptr, oldval, newval),
7324               enc_iflags_ne_to_boolean(res) );
7325 #endif
7326   ins_pipe( long_memory_op );
7327 %}
7328 
7329 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7330   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7331   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7332   format %{
7333             "MOV    $newval,O7\n\t"
7334             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7335             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7336             "MOV    1,$res\n\t"
7337             "MOVne  icc,R_G0,$res"
7338   %}
7339   ins_encode( enc_casi(mem_ptr, oldval, newval),
7340               enc_iflags_ne_to_boolean(res) );
7341   ins_pipe( long_memory_op );
7342 %}
7343 
7344 instruct xchgI( memory mem, iRegI newval) %{
7345   match(Set newval (GetAndSetI mem newval));
7346   format %{ "SWAP  [$mem],$newval" %}
7347   size(4);
7348   ins_encode %{
7349     __ swap($mem$$Address, $newval$$Register);
7350   %}
7351   ins_pipe( long_memory_op );
7352 %}
7353 
7354 #ifndef _LP64
7355 instruct xchgP( memory mem, iRegP newval) %{
7356   match(Set newval (GetAndSetP mem newval));
7357   format %{ "SWAP  [$mem],$newval" %}
7358   size(4);
7359   ins_encode %{
7360     __ swap($mem$$Address, $newval$$Register);
7361   %}
7362   ins_pipe( long_memory_op );
7363 %}
7364 #endif
7365 
7366 instruct xchgN( memory mem, iRegN newval) %{
7367   match(Set newval (GetAndSetN mem newval));
7368   format %{ "SWAP  [$mem],$newval" %}
7369   size(4);
7370   ins_encode %{
7371     __ swap($mem$$Address, $newval$$Register);
7372   %}
7373   ins_pipe( long_memory_op );
7374 %}
7375 
7376 //---------------------
7377 // Subtraction Instructions
7378 // Register Subtraction
7379 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7380   match(Set dst (SubI src1 src2));
7381 
7382   size(4);
7383   format %{ "SUB    $src1,$src2,$dst" %}
7384   opcode(Assembler::sub_op3, Assembler::arith_op);
7385   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7386   ins_pipe(ialu_reg_reg);
7387 %}
7388 
7389 // Immediate Subtraction
7390 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7391   match(Set dst (SubI src1 src2));
7392 
7393   size(4);
7394   format %{ "SUB    $src1,$src2,$dst" %}
7395   opcode(Assembler::sub_op3, Assembler::arith_op);
7396   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7397   ins_pipe(ialu_reg_imm);
7398 %}
7399 
7400 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7401   match(Set dst (SubI zero src2));
7402 
7403   size(4);
7404   format %{ "NEG    $src2,$dst" %}
7405   opcode(Assembler::sub_op3, Assembler::arith_op);
7406   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7407   ins_pipe(ialu_zero_reg);
7408 %}
7409 
7410 // Long subtraction
7411 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7412   match(Set dst (SubL src1 src2));
7413 
7414   size(4);
7415   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7416   opcode(Assembler::sub_op3, Assembler::arith_op);
7417   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7418   ins_pipe(ialu_reg_reg);
7419 %}
7420 
7421 // Immediate Subtraction
7422 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7423   match(Set dst (SubL src1 con));
7424 
7425   size(4);
7426   format %{ "SUB    $src1,$con,$dst\t! long" %}
7427   opcode(Assembler::sub_op3, Assembler::arith_op);
7428   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7429   ins_pipe(ialu_reg_imm);
7430 %}
7431 
7432 // Long negation
7433 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7434   match(Set dst (SubL zero src2));
7435 
7436   size(4);
7437   format %{ "NEG    $src2,$dst\t! long" %}
7438   opcode(Assembler::sub_op3, Assembler::arith_op);
7439   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7440   ins_pipe(ialu_zero_reg);
7441 %}
7442 
7443 // Multiplication Instructions
7444 // Integer Multiplication
7445 // Register Multiplication
7446 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7447   match(Set dst (MulI src1 src2));
7448 
7449   size(4);
7450   format %{ "MULX   $src1,$src2,$dst" %}
7451   opcode(Assembler::mulx_op3, Assembler::arith_op);
7452   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7453   ins_pipe(imul_reg_reg);
7454 %}
7455 
7456 // Immediate Multiplication
7457 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7458   match(Set dst (MulI src1 src2));
7459 
7460   size(4);
7461   format %{ "MULX   $src1,$src2,$dst" %}
7462   opcode(Assembler::mulx_op3, Assembler::arith_op);
7463   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7464   ins_pipe(imul_reg_imm);
7465 %}
7466 
7467 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7468   match(Set dst (MulL src1 src2));
7469   ins_cost(DEFAULT_COST * 5);
7470   size(4);
7471   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7472   opcode(Assembler::mulx_op3, Assembler::arith_op);
7473   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7474   ins_pipe(mulL_reg_reg);
7475 %}
7476 
7477 // Immediate Multiplication
7478 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7479   match(Set dst (MulL src1 src2));
7480   ins_cost(DEFAULT_COST * 5);
7481   size(4);
7482   format %{ "MULX   $src1,$src2,$dst" %}
7483   opcode(Assembler::mulx_op3, Assembler::arith_op);
7484   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7485   ins_pipe(mulL_reg_imm);
7486 %}
7487 
7488 // Integer Division
7489 // Register Division
7490 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7491   match(Set dst (DivI src1 src2));
7492   ins_cost((2+71)*DEFAULT_COST);
7493 
7494   format %{ "SRA     $src2,0,$src2\n\t"
7495             "SRA     $src1,0,$src1\n\t"
7496             "SDIVX   $src1,$src2,$dst" %}
7497   ins_encode( idiv_reg( src1, src2, dst ) );
7498   ins_pipe(sdiv_reg_reg);
7499 %}
7500 
7501 // Immediate Division
7502 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7503   match(Set dst (DivI src1 src2));
7504   ins_cost((2+71)*DEFAULT_COST);
7505 
7506   format %{ "SRA     $src1,0,$src1\n\t"
7507             "SDIVX   $src1,$src2,$dst" %}
7508   ins_encode( idiv_imm( src1, src2, dst ) );
7509   ins_pipe(sdiv_reg_imm);
7510 %}
7511 
7512 //----------Div-By-10-Expansion------------------------------------------------
7513 // Extract hi bits of a 32x32->64 bit multiply.
7514 // Expand rule only, not matched
7515 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7516   effect( DEF dst, USE src1, USE src2 );
7517   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7518             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7519   ins_encode( enc_mul_hi(dst,src1,src2));
7520   ins_pipe(sdiv_reg_reg);
7521 %}
7522 
7523 // Magic constant, reciprocal of 10
7524 instruct loadConI_x66666667(iRegIsafe dst) %{
7525   effect( DEF dst );
7526 
7527   size(8);
7528   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7529   ins_encode( Set32(0x66666667, dst) );
7530   ins_pipe(ialu_hi_lo_reg);
7531 %}
7532 
7533 // Register Shift Right Arithmetic Long by 32-63
7534 instruct sra_31( iRegI dst, iRegI src ) %{
7535   effect( DEF dst, USE src );
7536   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7537   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7538   ins_pipe(ialu_reg_reg);
7539 %}
7540 
7541 // Arithmetic Shift Right by 8-bit immediate
7542 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7543   effect( DEF dst, USE src );
7544   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7545   opcode(Assembler::sra_op3, Assembler::arith_op);
7546   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7547   ins_pipe(ialu_reg_imm);
7548 %}
7549 
7550 // Integer DIV with 10
7551 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7552   match(Set dst (DivI src div));
7553   ins_cost((6+6)*DEFAULT_COST);
7554   expand %{
7555     iRegIsafe tmp1;               // Killed temps;
7556     iRegIsafe tmp2;               // Killed temps;
7557     iRegI tmp3;                   // Killed temps;
7558     iRegI tmp4;                   // Killed temps;
7559     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7560     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7561     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7562     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7563     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7564   %}
7565 %}
7566 
7567 // Register Long Division
7568 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7569   match(Set dst (DivL src1 src2));
7570   ins_cost(DEFAULT_COST*71);
7571   size(4);
7572   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7573   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7574   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7575   ins_pipe(divL_reg_reg);
7576 %}
7577 
7578 // Register Long Division
7579 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7580   match(Set dst (DivL src1 src2));
7581   ins_cost(DEFAULT_COST*71);
7582   size(4);
7583   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7584   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7585   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7586   ins_pipe(divL_reg_imm);
7587 %}
7588 
7589 // Integer Remainder
7590 // Register Remainder
7591 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7592   match(Set dst (ModI src1 src2));
7593   effect( KILL ccr, KILL temp);
7594 
7595   format %{ "SREM   $src1,$src2,$dst" %}
7596   ins_encode( irem_reg(src1, src2, dst, temp) );
7597   ins_pipe(sdiv_reg_reg);
7598 %}
7599 
7600 // Immediate Remainder
7601 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7602   match(Set dst (ModI src1 src2));
7603   effect( KILL ccr, KILL temp);
7604 
7605   format %{ "SREM   $src1,$src2,$dst" %}
7606   ins_encode( irem_imm(src1, src2, dst, temp) );
7607   ins_pipe(sdiv_reg_imm);
7608 %}
7609 
7610 // Register Long Remainder
7611 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7612   effect(DEF dst, USE src1, USE src2);
7613   size(4);
7614   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7615   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7616   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7617   ins_pipe(divL_reg_reg);
7618 %}
7619 
7620 // Register Long Division
7621 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7622   effect(DEF dst, USE src1, USE src2);
7623   size(4);
7624   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7625   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7626   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7627   ins_pipe(divL_reg_imm);
7628 %}
7629 
7630 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7631   effect(DEF dst, USE src1, USE src2);
7632   size(4);
7633   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7634   opcode(Assembler::mulx_op3, Assembler::arith_op);
7635   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7636   ins_pipe(mulL_reg_reg);
7637 %}
7638 
7639 // Immediate Multiplication
7640 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7641   effect(DEF dst, USE src1, USE src2);
7642   size(4);
7643   format %{ "MULX   $src1,$src2,$dst" %}
7644   opcode(Assembler::mulx_op3, Assembler::arith_op);
7645   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7646   ins_pipe(mulL_reg_imm);
7647 %}
7648 
7649 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7650   effect(DEF dst, USE src1, USE src2);
7651   size(4);
7652   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7653   opcode(Assembler::sub_op3, Assembler::arith_op);
7654   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7655   ins_pipe(ialu_reg_reg);
7656 %}
7657 
7658 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7659   effect(DEF dst, USE src1, USE src2);
7660   size(4);
7661   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7662   opcode(Assembler::sub_op3, Assembler::arith_op);
7663   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7664   ins_pipe(ialu_reg_reg);
7665 %}
7666 
7667 // Register Long Remainder
7668 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7669   match(Set dst (ModL src1 src2));
7670   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7671   expand %{
7672     iRegL tmp1;
7673     iRegL tmp2;
7674     divL_reg_reg_1(tmp1, src1, src2);
7675     mulL_reg_reg_1(tmp2, tmp1, src2);
7676     subL_reg_reg_1(dst,  src1, tmp2);
7677   %}
7678 %}
7679 
7680 // Register Long Remainder
7681 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7682   match(Set dst (ModL src1 src2));
7683   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7684   expand %{
7685     iRegL tmp1;
7686     iRegL tmp2;
7687     divL_reg_imm13_1(tmp1, src1, src2);
7688     mulL_reg_imm13_1(tmp2, tmp1, src2);
7689     subL_reg_reg_2  (dst,  src1, tmp2);
7690   %}
7691 %}
7692 
7693 // Integer Shift Instructions
7694 // Register Shift Left
7695 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7696   match(Set dst (LShiftI src1 src2));
7697 
7698   size(4);
7699   format %{ "SLL    $src1,$src2,$dst" %}
7700   opcode(Assembler::sll_op3, Assembler::arith_op);
7701   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7702   ins_pipe(ialu_reg_reg);
7703 %}
7704 
7705 // Register Shift Left Immediate
7706 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7707   match(Set dst (LShiftI src1 src2));
7708 
7709   size(4);
7710   format %{ "SLL    $src1,$src2,$dst" %}
7711   opcode(Assembler::sll_op3, Assembler::arith_op);
7712   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7713   ins_pipe(ialu_reg_imm);
7714 %}
7715 
7716 // Register Shift Left
7717 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7718   match(Set dst (LShiftL src1 src2));
7719 
7720   size(4);
7721   format %{ "SLLX   $src1,$src2,$dst" %}
7722   opcode(Assembler::sllx_op3, Assembler::arith_op);
7723   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7724   ins_pipe(ialu_reg_reg);
7725 %}
7726 
7727 // Register Shift Left Immediate
7728 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7729   match(Set dst (LShiftL src1 src2));
7730 
7731   size(4);
7732   format %{ "SLLX   $src1,$src2,$dst" %}
7733   opcode(Assembler::sllx_op3, Assembler::arith_op);
7734   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7735   ins_pipe(ialu_reg_imm);
7736 %}
7737 
7738 // Register Arithmetic Shift Right
7739 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7740   match(Set dst (RShiftI src1 src2));
7741   size(4);
7742   format %{ "SRA    $src1,$src2,$dst" %}
7743   opcode(Assembler::sra_op3, Assembler::arith_op);
7744   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7745   ins_pipe(ialu_reg_reg);
7746 %}
7747 
7748 // Register Arithmetic Shift Right Immediate
7749 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7750   match(Set dst (RShiftI src1 src2));
7751 
7752   size(4);
7753   format %{ "SRA    $src1,$src2,$dst" %}
7754   opcode(Assembler::sra_op3, Assembler::arith_op);
7755   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7756   ins_pipe(ialu_reg_imm);
7757 %}
7758 
7759 // Register Shift Right Arithmatic Long
7760 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7761   match(Set dst (RShiftL src1 src2));
7762 
7763   size(4);
7764   format %{ "SRAX   $src1,$src2,$dst" %}
7765   opcode(Assembler::srax_op3, Assembler::arith_op);
7766   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7767   ins_pipe(ialu_reg_reg);
7768 %}
7769 
7770 // Register Shift Left Immediate
7771 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7772   match(Set dst (RShiftL src1 src2));
7773 
7774   size(4);
7775   format %{ "SRAX   $src1,$src2,$dst" %}
7776   opcode(Assembler::srax_op3, Assembler::arith_op);
7777   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7778   ins_pipe(ialu_reg_imm);
7779 %}
7780 
7781 // Register Shift Right
7782 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7783   match(Set dst (URShiftI src1 src2));
7784 
7785   size(4);
7786   format %{ "SRL    $src1,$src2,$dst" %}
7787   opcode(Assembler::srl_op3, Assembler::arith_op);
7788   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7789   ins_pipe(ialu_reg_reg);
7790 %}
7791 
7792 // Register Shift Right Immediate
7793 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7794   match(Set dst (URShiftI src1 src2));
7795 
7796   size(4);
7797   format %{ "SRL    $src1,$src2,$dst" %}
7798   opcode(Assembler::srl_op3, Assembler::arith_op);
7799   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7800   ins_pipe(ialu_reg_imm);
7801 %}
7802 
7803 // Register Shift Right
7804 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7805   match(Set dst (URShiftL src1 src2));
7806 
7807   size(4);
7808   format %{ "SRLX   $src1,$src2,$dst" %}
7809   opcode(Assembler::srlx_op3, Assembler::arith_op);
7810   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7811   ins_pipe(ialu_reg_reg);
7812 %}
7813 
7814 // Register Shift Right Immediate
7815 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7816   match(Set dst (URShiftL src1 src2));
7817 
7818   size(4);
7819   format %{ "SRLX   $src1,$src2,$dst" %}
7820   opcode(Assembler::srlx_op3, Assembler::arith_op);
7821   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7822   ins_pipe(ialu_reg_imm);
7823 %}
7824 
7825 // Register Shift Right Immediate with a CastP2X
7826 #ifdef _LP64
7827 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7828   match(Set dst (URShiftL (CastP2X src1) src2));
7829   size(4);
7830   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7831   opcode(Assembler::srlx_op3, Assembler::arith_op);
7832   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7833   ins_pipe(ialu_reg_imm);
7834 %}
7835 #else
7836 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7837   match(Set dst (URShiftI (CastP2X src1) src2));
7838   size(4);
7839   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7840   opcode(Assembler::srl_op3, Assembler::arith_op);
7841   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7842   ins_pipe(ialu_reg_imm);
7843 %}
7844 #endif
7845 
7846 
7847 //----------Floating Point Arithmetic Instructions-----------------------------
7848 
7849 //  Add float single precision
7850 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7851   match(Set dst (AddF src1 src2));
7852 
7853   size(4);
7854   format %{ "FADDS  $src1,$src2,$dst" %}
7855   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7856   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7857   ins_pipe(faddF_reg_reg);
7858 %}
7859 
7860 //  Add float double precision
7861 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7862   match(Set dst (AddD src1 src2));
7863 
7864   size(4);
7865   format %{ "FADDD  $src1,$src2,$dst" %}
7866   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7867   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7868   ins_pipe(faddD_reg_reg);
7869 %}
7870 
7871 //  Sub float single precision
7872 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7873   match(Set dst (SubF src1 src2));
7874 
7875   size(4);
7876   format %{ "FSUBS  $src1,$src2,$dst" %}
7877   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7878   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7879   ins_pipe(faddF_reg_reg);
7880 %}
7881 
7882 //  Sub float double precision
7883 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7884   match(Set dst (SubD src1 src2));
7885 
7886   size(4);
7887   format %{ "FSUBD  $src1,$src2,$dst" %}
7888   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7889   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7890   ins_pipe(faddD_reg_reg);
7891 %}
7892 
7893 //  Mul float single precision
7894 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7895   match(Set dst (MulF src1 src2));
7896 
7897   size(4);
7898   format %{ "FMULS  $src1,$src2,$dst" %}
7899   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7900   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7901   ins_pipe(fmulF_reg_reg);
7902 %}
7903 
7904 //  Mul float double precision
7905 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7906   match(Set dst (MulD src1 src2));
7907 
7908   size(4);
7909   format %{ "FMULD  $src1,$src2,$dst" %}
7910   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7911   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7912   ins_pipe(fmulD_reg_reg);
7913 %}
7914 
7915 //  Div float single precision
7916 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7917   match(Set dst (DivF src1 src2));
7918 
7919   size(4);
7920   format %{ "FDIVS  $src1,$src2,$dst" %}
7921   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7922   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7923   ins_pipe(fdivF_reg_reg);
7924 %}
7925 
7926 //  Div float double precision
7927 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7928   match(Set dst (DivD src1 src2));
7929 
7930   size(4);
7931   format %{ "FDIVD  $src1,$src2,$dst" %}
7932   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7933   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7934   ins_pipe(fdivD_reg_reg);
7935 %}
7936 
7937 //  Absolute float double precision
7938 instruct absD_reg(regD dst, regD src) %{
7939   match(Set dst (AbsD src));
7940 
7941   format %{ "FABSd  $src,$dst" %}
7942   ins_encode(fabsd(dst, src));
7943   ins_pipe(faddD_reg);
7944 %}
7945 
7946 //  Absolute float single precision
7947 instruct absF_reg(regF dst, regF src) %{
7948   match(Set dst (AbsF src));
7949 
7950   format %{ "FABSs  $src,$dst" %}
7951   ins_encode(fabss(dst, src));
7952   ins_pipe(faddF_reg);
7953 %}
7954 
7955 instruct negF_reg(regF dst, regF src) %{
7956   match(Set dst (NegF src));
7957 
7958   size(4);
7959   format %{ "FNEGs  $src,$dst" %}
7960   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7961   ins_encode(form3_opf_rs2F_rdF(src, dst));
7962   ins_pipe(faddF_reg);
7963 %}
7964 
7965 instruct negD_reg(regD dst, regD src) %{
7966   match(Set dst (NegD src));
7967 
7968   format %{ "FNEGd  $src,$dst" %}
7969   ins_encode(fnegd(dst, src));
7970   ins_pipe(faddD_reg);
7971 %}
7972 
7973 //  Sqrt float double precision
7974 instruct sqrtF_reg_reg(regF dst, regF src) %{
7975   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7976 
7977   size(4);
7978   format %{ "FSQRTS $src,$dst" %}
7979   ins_encode(fsqrts(dst, src));
7980   ins_pipe(fdivF_reg_reg);
7981 %}
7982 
7983 //  Sqrt float double precision
7984 instruct sqrtD_reg_reg(regD dst, regD src) %{
7985   match(Set dst (SqrtD src));
7986 
7987   size(4);
7988   format %{ "FSQRTD $src,$dst" %}
7989   ins_encode(fsqrtd(dst, src));
7990   ins_pipe(fdivD_reg_reg);
7991 %}
7992 
7993 //----------Logical Instructions-----------------------------------------------
7994 // And Instructions
7995 // Register And
7996 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7997   match(Set dst (AndI src1 src2));
7998 
7999   size(4);
8000   format %{ "AND    $src1,$src2,$dst" %}
8001   opcode(Assembler::and_op3, Assembler::arith_op);
8002   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8003   ins_pipe(ialu_reg_reg);
8004 %}
8005 
8006 // Immediate And
8007 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8008   match(Set dst (AndI src1 src2));
8009 
8010   size(4);
8011   format %{ "AND    $src1,$src2,$dst" %}
8012   opcode(Assembler::and_op3, Assembler::arith_op);
8013   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8014   ins_pipe(ialu_reg_imm);
8015 %}
8016 
8017 // Register And Long
8018 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8019   match(Set dst (AndL src1 src2));
8020 
8021   ins_cost(DEFAULT_COST);
8022   size(4);
8023   format %{ "AND    $src1,$src2,$dst\t! long" %}
8024   opcode(Assembler::and_op3, Assembler::arith_op);
8025   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8026   ins_pipe(ialu_reg_reg);
8027 %}
8028 
8029 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8030   match(Set dst (AndL src1 con));
8031 
8032   ins_cost(DEFAULT_COST);
8033   size(4);
8034   format %{ "AND    $src1,$con,$dst\t! long" %}
8035   opcode(Assembler::and_op3, Assembler::arith_op);
8036   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8037   ins_pipe(ialu_reg_imm);
8038 %}
8039 
8040 // Or Instructions
8041 // Register Or
8042 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8043   match(Set dst (OrI src1 src2));
8044 
8045   size(4);
8046   format %{ "OR     $src1,$src2,$dst" %}
8047   opcode(Assembler::or_op3, Assembler::arith_op);
8048   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8049   ins_pipe(ialu_reg_reg);
8050 %}
8051 
8052 // Immediate Or
8053 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8054   match(Set dst (OrI src1 src2));
8055 
8056   size(4);
8057   format %{ "OR     $src1,$src2,$dst" %}
8058   opcode(Assembler::or_op3, Assembler::arith_op);
8059   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8060   ins_pipe(ialu_reg_imm);
8061 %}
8062 
8063 // Register Or Long
8064 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8065   match(Set dst (OrL src1 src2));
8066 
8067   ins_cost(DEFAULT_COST);
8068   size(4);
8069   format %{ "OR     $src1,$src2,$dst\t! long" %}
8070   opcode(Assembler::or_op3, Assembler::arith_op);
8071   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8072   ins_pipe(ialu_reg_reg);
8073 %}
8074 
8075 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8076   match(Set dst (OrL src1 con));
8077   ins_cost(DEFAULT_COST*2);
8078 
8079   ins_cost(DEFAULT_COST);
8080   size(4);
8081   format %{ "OR     $src1,$con,$dst\t! long" %}
8082   opcode(Assembler::or_op3, Assembler::arith_op);
8083   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8084   ins_pipe(ialu_reg_imm);
8085 %}
8086 
8087 #ifndef _LP64
8088 
8089 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8090 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8091   match(Set dst (OrI src1 (CastP2X src2)));
8092 
8093   size(4);
8094   format %{ "OR     $src1,$src2,$dst" %}
8095   opcode(Assembler::or_op3, Assembler::arith_op);
8096   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8097   ins_pipe(ialu_reg_reg);
8098 %}
8099 
8100 #else
8101 
8102 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8103   match(Set dst (OrL src1 (CastP2X src2)));
8104 
8105   ins_cost(DEFAULT_COST);
8106   size(4);
8107   format %{ "OR     $src1,$src2,$dst\t! long" %}
8108   opcode(Assembler::or_op3, Assembler::arith_op);
8109   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8110   ins_pipe(ialu_reg_reg);
8111 %}
8112 
8113 #endif
8114 
8115 // Xor Instructions
8116 // Register Xor
8117 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8118   match(Set dst (XorI src1 src2));
8119 
8120   size(4);
8121   format %{ "XOR    $src1,$src2,$dst" %}
8122   opcode(Assembler::xor_op3, Assembler::arith_op);
8123   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8124   ins_pipe(ialu_reg_reg);
8125 %}
8126 
8127 // Immediate Xor
8128 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8129   match(Set dst (XorI src1 src2));
8130 
8131   size(4);
8132   format %{ "XOR    $src1,$src2,$dst" %}
8133   opcode(Assembler::xor_op3, Assembler::arith_op);
8134   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8135   ins_pipe(ialu_reg_imm);
8136 %}
8137 
8138 // Register Xor Long
8139 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8140   match(Set dst (XorL src1 src2));
8141 
8142   ins_cost(DEFAULT_COST);
8143   size(4);
8144   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8145   opcode(Assembler::xor_op3, Assembler::arith_op);
8146   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8147   ins_pipe(ialu_reg_reg);
8148 %}
8149 
8150 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8151   match(Set dst (XorL src1 con));
8152 
8153   ins_cost(DEFAULT_COST);
8154   size(4);
8155   format %{ "XOR    $src1,$con,$dst\t! long" %}
8156   opcode(Assembler::xor_op3, Assembler::arith_op);
8157   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8158   ins_pipe(ialu_reg_imm);
8159 %}
8160 
8161 //----------Convert to Boolean-------------------------------------------------
8162 // Nice hack for 32-bit tests but doesn't work for
8163 // 64-bit pointers.
8164 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8165   match(Set dst (Conv2B src));
8166   effect( KILL ccr );
8167   ins_cost(DEFAULT_COST*2);
8168   format %{ "CMP    R_G0,$src\n\t"
8169             "ADDX   R_G0,0,$dst" %}
8170   ins_encode( enc_to_bool( src, dst ) );
8171   ins_pipe(ialu_reg_ialu);
8172 %}
8173 
8174 #ifndef _LP64
8175 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8176   match(Set dst (Conv2B src));
8177   effect( KILL ccr );
8178   ins_cost(DEFAULT_COST*2);
8179   format %{ "CMP    R_G0,$src\n\t"
8180             "ADDX   R_G0,0,$dst" %}
8181   ins_encode( enc_to_bool( src, dst ) );
8182   ins_pipe(ialu_reg_ialu);
8183 %}
8184 #else
8185 instruct convP2B( iRegI dst, iRegP src ) %{
8186   match(Set dst (Conv2B src));
8187   ins_cost(DEFAULT_COST*2);
8188   format %{ "MOV    $src,$dst\n\t"
8189             "MOVRNZ $src,1,$dst" %}
8190   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8191   ins_pipe(ialu_clr_and_mover);
8192 %}
8193 #endif
8194 
8195 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8196   match(Set dst (CmpLTMask src zero));
8197   effect(KILL ccr);
8198   size(4);
8199   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8200   ins_encode %{
8201     __ sra($src$$Register, 31, $dst$$Register);
8202   %}
8203   ins_pipe(ialu_reg_imm);
8204 %}
8205 
8206 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8207   match(Set dst (CmpLTMask p q));
8208   effect( KILL ccr );
8209   ins_cost(DEFAULT_COST*4);
8210   format %{ "CMP    $p,$q\n\t"
8211             "MOV    #0,$dst\n\t"
8212             "BLT,a  .+8\n\t"
8213             "MOV    #-1,$dst" %}
8214   ins_encode( enc_ltmask(p,q,dst) );
8215   ins_pipe(ialu_reg_reg_ialu);
8216 %}
8217 
8218 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8219   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8220   effect(KILL ccr, TEMP tmp);
8221   ins_cost(DEFAULT_COST*3);
8222 
8223   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8224             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8225             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8226   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8227   ins_pipe( cadd_cmpltmask );
8228 %}
8229 
8230 
8231 //-----------------------------------------------------------------
8232 // Direct raw moves between float and general registers using VIS3.
8233 
8234 //  ins_pipe(faddF_reg);
8235 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8236   predicate(UseVIS >= 3);
8237   match(Set dst (MoveF2I src));
8238 
8239   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8240   ins_encode %{
8241     __ movstouw($src$$FloatRegister, $dst$$Register);
8242   %}
8243   ins_pipe(ialu_reg_reg);
8244 %}
8245 
8246 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8247   predicate(UseVIS >= 3);
8248   match(Set dst (MoveI2F src));
8249 
8250   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8251   ins_encode %{
8252     __ movwtos($src$$Register, $dst$$FloatRegister);
8253   %}
8254   ins_pipe(ialu_reg_reg);
8255 %}
8256 
8257 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8258   predicate(UseVIS >= 3);
8259   match(Set dst (MoveD2L src));
8260 
8261   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8262   ins_encode %{
8263     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8264   %}
8265   ins_pipe(ialu_reg_reg);
8266 %}
8267 
8268 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8269   predicate(UseVIS >= 3);
8270   match(Set dst (MoveL2D src));
8271 
8272   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8273   ins_encode %{
8274     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8275   %}
8276   ins_pipe(ialu_reg_reg);
8277 %}
8278 
8279 
8280 // Raw moves between float and general registers using stack.
8281 
8282 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8283   match(Set dst (MoveF2I src));
8284   effect(DEF dst, USE src);
8285   ins_cost(MEMORY_REF_COST);
8286 
8287   size(4);
8288   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8289   opcode(Assembler::lduw_op3);
8290   ins_encode(simple_form3_mem_reg( src, dst ) );
8291   ins_pipe(iload_mem);
8292 %}
8293 
8294 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8295   match(Set dst (MoveI2F src));
8296   effect(DEF dst, USE src);
8297   ins_cost(MEMORY_REF_COST);
8298 
8299   size(4);
8300   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8301   opcode(Assembler::ldf_op3);
8302   ins_encode(simple_form3_mem_reg(src, dst));
8303   ins_pipe(floadF_stk);
8304 %}
8305 
8306 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8307   match(Set dst (MoveD2L src));
8308   effect(DEF dst, USE src);
8309   ins_cost(MEMORY_REF_COST);
8310 
8311   size(4);
8312   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8313   opcode(Assembler::ldx_op3);
8314   ins_encode(simple_form3_mem_reg( src, dst ) );
8315   ins_pipe(iload_mem);
8316 %}
8317 
8318 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8319   match(Set dst (MoveL2D src));
8320   effect(DEF dst, USE src);
8321   ins_cost(MEMORY_REF_COST);
8322 
8323   size(4);
8324   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8325   opcode(Assembler::lddf_op3);
8326   ins_encode(simple_form3_mem_reg(src, dst));
8327   ins_pipe(floadD_stk);
8328 %}
8329 
8330 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8331   match(Set dst (MoveF2I src));
8332   effect(DEF dst, USE src);
8333   ins_cost(MEMORY_REF_COST);
8334 
8335   size(4);
8336   format %{ "STF   $src,$dst\t! MoveF2I" %}
8337   opcode(Assembler::stf_op3);
8338   ins_encode(simple_form3_mem_reg(dst, src));
8339   ins_pipe(fstoreF_stk_reg);
8340 %}
8341 
8342 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8343   match(Set dst (MoveI2F src));
8344   effect(DEF dst, USE src);
8345   ins_cost(MEMORY_REF_COST);
8346 
8347   size(4);
8348   format %{ "STW    $src,$dst\t! MoveI2F" %}
8349   opcode(Assembler::stw_op3);
8350   ins_encode(simple_form3_mem_reg( dst, src ) );
8351   ins_pipe(istore_mem_reg);
8352 %}
8353 
8354 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8355   match(Set dst (MoveD2L src));
8356   effect(DEF dst, USE src);
8357   ins_cost(MEMORY_REF_COST);
8358 
8359   size(4);
8360   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8361   opcode(Assembler::stdf_op3);
8362   ins_encode(simple_form3_mem_reg(dst, src));
8363   ins_pipe(fstoreD_stk_reg);
8364 %}
8365 
8366 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8367   match(Set dst (MoveL2D src));
8368   effect(DEF dst, USE src);
8369   ins_cost(MEMORY_REF_COST);
8370 
8371   size(4);
8372   format %{ "STX    $src,$dst\t! MoveL2D" %}
8373   opcode(Assembler::stx_op3);
8374   ins_encode(simple_form3_mem_reg( dst, src ) );
8375   ins_pipe(istore_mem_reg);
8376 %}
8377 
8378 
8379 //----------Arithmetic Conversion Instructions---------------------------------
8380 // The conversions operations are all Alpha sorted.  Please keep it that way!
8381 
8382 instruct convD2F_reg(regF dst, regD src) %{
8383   match(Set dst (ConvD2F src));
8384   size(4);
8385   format %{ "FDTOS  $src,$dst" %}
8386   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8387   ins_encode(form3_opf_rs2D_rdF(src, dst));
8388   ins_pipe(fcvtD2F);
8389 %}
8390 
8391 
8392 // Convert a double to an int in a float register.
8393 // If the double is a NAN, stuff a zero in instead.
8394 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8395   effect(DEF dst, USE src, KILL fcc0);
8396   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8397             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8398             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8399             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8400             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8401       "skip:" %}
8402   ins_encode(form_d2i_helper(src,dst));
8403   ins_pipe(fcvtD2I);
8404 %}
8405 
8406 instruct convD2I_stk(stackSlotI dst, regD src) %{
8407   match(Set dst (ConvD2I src));
8408   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8409   expand %{
8410     regF tmp;
8411     convD2I_helper(tmp, src);
8412     regF_to_stkI(dst, tmp);
8413   %}
8414 %}
8415 
8416 instruct convD2I_reg(iRegI dst, regD src) %{
8417   predicate(UseVIS >= 3);
8418   match(Set dst (ConvD2I src));
8419   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8420   expand %{
8421     regF tmp;
8422     convD2I_helper(tmp, src);
8423     MoveF2I_reg_reg(dst, tmp);
8424   %}
8425 %}
8426 
8427 
8428 // Convert a double to a long in a double register.
8429 // If the double is a NAN, stuff a zero in instead.
8430 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8431   effect(DEF dst, USE src, KILL fcc0);
8432   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8433             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8434             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8435             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8436             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8437       "skip:" %}
8438   ins_encode(form_d2l_helper(src,dst));
8439   ins_pipe(fcvtD2L);
8440 %}
8441 
8442 instruct convD2L_stk(stackSlotL dst, regD src) %{
8443   match(Set dst (ConvD2L src));
8444   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8445   expand %{
8446     regD tmp;
8447     convD2L_helper(tmp, src);
8448     regD_to_stkL(dst, tmp);
8449   %}
8450 %}
8451 
8452 instruct convD2L_reg(iRegL dst, regD src) %{
8453   predicate(UseVIS >= 3);
8454   match(Set dst (ConvD2L src));
8455   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8456   expand %{
8457     regD tmp;
8458     convD2L_helper(tmp, src);
8459     MoveD2L_reg_reg(dst, tmp);
8460   %}
8461 %}
8462 
8463 
8464 instruct convF2D_reg(regD dst, regF src) %{
8465   match(Set dst (ConvF2D src));
8466   format %{ "FSTOD  $src,$dst" %}
8467   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8468   ins_encode(form3_opf_rs2F_rdD(src, dst));
8469   ins_pipe(fcvtF2D);
8470 %}
8471 
8472 
8473 // Convert a float to an int in a float register.
8474 // If the float is a NAN, stuff a zero in instead.
8475 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8476   effect(DEF dst, USE src, KILL fcc0);
8477   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8478             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8479             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8480             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8481             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8482       "skip:" %}
8483   ins_encode(form_f2i_helper(src,dst));
8484   ins_pipe(fcvtF2I);
8485 %}
8486 
8487 instruct convF2I_stk(stackSlotI dst, regF src) %{
8488   match(Set dst (ConvF2I src));
8489   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8490   expand %{
8491     regF tmp;
8492     convF2I_helper(tmp, src);
8493     regF_to_stkI(dst, tmp);
8494   %}
8495 %}
8496 
8497 instruct convF2I_reg(iRegI dst, regF src) %{
8498   predicate(UseVIS >= 3);
8499   match(Set dst (ConvF2I src));
8500   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8501   expand %{
8502     regF tmp;
8503     convF2I_helper(tmp, src);
8504     MoveF2I_reg_reg(dst, tmp);
8505   %}
8506 %}
8507 
8508 
8509 // Convert a float to a long in a float register.
8510 // If the float is a NAN, stuff a zero in instead.
8511 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8512   effect(DEF dst, USE src, KILL fcc0);
8513   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8514             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8515             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8516             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8517             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8518       "skip:" %}
8519   ins_encode(form_f2l_helper(src,dst));
8520   ins_pipe(fcvtF2L);
8521 %}
8522 
8523 instruct convF2L_stk(stackSlotL dst, regF src) %{
8524   match(Set dst (ConvF2L src));
8525   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8526   expand %{
8527     regD tmp;
8528     convF2L_helper(tmp, src);
8529     regD_to_stkL(dst, tmp);
8530   %}
8531 %}
8532 
8533 instruct convF2L_reg(iRegL dst, regF src) %{
8534   predicate(UseVIS >= 3);
8535   match(Set dst (ConvF2L src));
8536   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8537   expand %{
8538     regD tmp;
8539     convF2L_helper(tmp, src);
8540     MoveD2L_reg_reg(dst, tmp);
8541   %}
8542 %}
8543 
8544 
8545 instruct convI2D_helper(regD dst, regF tmp) %{
8546   effect(USE tmp, DEF dst);
8547   format %{ "FITOD  $tmp,$dst" %}
8548   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8549   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8550   ins_pipe(fcvtI2D);
8551 %}
8552 
8553 instruct convI2D_stk(stackSlotI src, regD dst) %{
8554   match(Set dst (ConvI2D src));
8555   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8556   expand %{
8557     regF tmp;
8558     stkI_to_regF(tmp, src);
8559     convI2D_helper(dst, tmp);
8560   %}
8561 %}
8562 
8563 instruct convI2D_reg(regD_low dst, iRegI src) %{
8564   predicate(UseVIS >= 3);
8565   match(Set dst (ConvI2D src));
8566   expand %{
8567     regF tmp;
8568     MoveI2F_reg_reg(tmp, src);
8569     convI2D_helper(dst, tmp);
8570   %}
8571 %}
8572 
8573 instruct convI2D_mem(regD_low dst, memory mem) %{
8574   match(Set dst (ConvI2D (LoadI mem)));
8575   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8576   size(8);
8577   format %{ "LDF    $mem,$dst\n\t"
8578             "FITOD  $dst,$dst" %}
8579   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8580   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8581   ins_pipe(floadF_mem);
8582 %}
8583 
8584 
8585 instruct convI2F_helper(regF dst, regF tmp) %{
8586   effect(DEF dst, USE tmp);
8587   format %{ "FITOS  $tmp,$dst" %}
8588   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8589   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8590   ins_pipe(fcvtI2F);
8591 %}
8592 
8593 instruct convI2F_stk(regF dst, stackSlotI src) %{
8594   match(Set dst (ConvI2F src));
8595   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8596   expand %{
8597     regF tmp;
8598     stkI_to_regF(tmp,src);
8599     convI2F_helper(dst, tmp);
8600   %}
8601 %}
8602 
8603 instruct convI2F_reg(regF dst, iRegI src) %{
8604   predicate(UseVIS >= 3);
8605   match(Set dst (ConvI2F src));
8606   ins_cost(DEFAULT_COST);
8607   expand %{
8608     regF tmp;
8609     MoveI2F_reg_reg(tmp, src);
8610     convI2F_helper(dst, tmp);
8611   %}
8612 %}
8613 
8614 instruct convI2F_mem( regF dst, memory mem ) %{
8615   match(Set dst (ConvI2F (LoadI mem)));
8616   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8617   size(8);
8618   format %{ "LDF    $mem,$dst\n\t"
8619             "FITOS  $dst,$dst" %}
8620   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8621   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8622   ins_pipe(floadF_mem);
8623 %}
8624 
8625 
8626 instruct convI2L_reg(iRegL dst, iRegI src) %{
8627   match(Set dst (ConvI2L src));
8628   size(4);
8629   format %{ "SRA    $src,0,$dst\t! int->long" %}
8630   opcode(Assembler::sra_op3, Assembler::arith_op);
8631   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8632   ins_pipe(ialu_reg_reg);
8633 %}
8634 
8635 // Zero-extend convert int to long
8636 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8637   match(Set dst (AndL (ConvI2L src) mask) );
8638   size(4);
8639   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8640   opcode(Assembler::srl_op3, Assembler::arith_op);
8641   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8642   ins_pipe(ialu_reg_reg);
8643 %}
8644 
8645 // Zero-extend long
8646 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8647   match(Set dst (AndL src mask) );
8648   size(4);
8649   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8650   opcode(Assembler::srl_op3, Assembler::arith_op);
8651   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8652   ins_pipe(ialu_reg_reg);
8653 %}
8654 
8655 
8656 //-----------
8657 // Long to Double conversion using V8 opcodes.
8658 // Still useful because cheetah traps and becomes
8659 // amazingly slow for some common numbers.
8660 
8661 // Magic constant, 0x43300000
8662 instruct loadConI_x43300000(iRegI dst) %{
8663   effect(DEF dst);
8664   size(4);
8665   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8666   ins_encode(SetHi22(0x43300000, dst));
8667   ins_pipe(ialu_none);
8668 %}
8669 
8670 // Magic constant, 0x41f00000
8671 instruct loadConI_x41f00000(iRegI dst) %{
8672   effect(DEF dst);
8673   size(4);
8674   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8675   ins_encode(SetHi22(0x41f00000, dst));
8676   ins_pipe(ialu_none);
8677 %}
8678 
8679 // Construct a double from two float halves
8680 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8681   effect(DEF dst, USE src1, USE src2);
8682   size(8);
8683   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8684             "FMOVS  $src2.lo,$dst.lo" %}
8685   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8686   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8687   ins_pipe(faddD_reg_reg);
8688 %}
8689 
8690 // Convert integer in high half of a double register (in the lower half of
8691 // the double register file) to double
8692 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8693   effect(DEF dst, USE src);
8694   size(4);
8695   format %{ "FITOD  $src,$dst" %}
8696   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8697   ins_encode(form3_opf_rs2D_rdD(src, dst));
8698   ins_pipe(fcvtLHi2D);
8699 %}
8700 
8701 // Add float double precision
8702 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8703   effect(DEF dst, USE src1, USE src2);
8704   size(4);
8705   format %{ "FADDD  $src1,$src2,$dst" %}
8706   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8707   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8708   ins_pipe(faddD_reg_reg);
8709 %}
8710 
8711 // Sub float double precision
8712 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8713   effect(DEF dst, USE src1, USE src2);
8714   size(4);
8715   format %{ "FSUBD  $src1,$src2,$dst" %}
8716   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8717   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8718   ins_pipe(faddD_reg_reg);
8719 %}
8720 
8721 // Mul float double precision
8722 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8723   effect(DEF dst, USE src1, USE src2);
8724   size(4);
8725   format %{ "FMULD  $src1,$src2,$dst" %}
8726   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8727   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8728   ins_pipe(fmulD_reg_reg);
8729 %}
8730 
8731 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8732   match(Set dst (ConvL2D src));
8733   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8734 
8735   expand %{
8736     regD_low   tmpsrc;
8737     iRegI      ix43300000;
8738     iRegI      ix41f00000;
8739     stackSlotL lx43300000;
8740     stackSlotL lx41f00000;
8741     regD_low   dx43300000;
8742     regD       dx41f00000;
8743     regD       tmp1;
8744     regD_low   tmp2;
8745     regD       tmp3;
8746     regD       tmp4;
8747 
8748     stkL_to_regD(tmpsrc, src);
8749 
8750     loadConI_x43300000(ix43300000);
8751     loadConI_x41f00000(ix41f00000);
8752     regI_to_stkLHi(lx43300000, ix43300000);
8753     regI_to_stkLHi(lx41f00000, ix41f00000);
8754     stkL_to_regD(dx43300000, lx43300000);
8755     stkL_to_regD(dx41f00000, lx41f00000);
8756 
8757     convI2D_regDHi_regD(tmp1, tmpsrc);
8758     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8759     subD_regD_regD(tmp3, tmp2, dx43300000);
8760     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8761     addD_regD_regD(dst, tmp3, tmp4);
8762   %}
8763 %}
8764 
8765 // Long to Double conversion using fast fxtof
8766 instruct convL2D_helper(regD dst, regD tmp) %{
8767   effect(DEF dst, USE tmp);
8768   size(4);
8769   format %{ "FXTOD  $tmp,$dst" %}
8770   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8771   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8772   ins_pipe(fcvtL2D);
8773 %}
8774 
8775 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8776   predicate(VM_Version::has_fast_fxtof());
8777   match(Set dst (ConvL2D src));
8778   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8779   expand %{
8780     regD tmp;
8781     stkL_to_regD(tmp, src);
8782     convL2D_helper(dst, tmp);
8783   %}
8784 %}
8785 
8786 instruct convL2D_reg(regD dst, iRegL src) %{
8787   predicate(UseVIS >= 3);
8788   match(Set dst (ConvL2D src));
8789   expand %{
8790     regD tmp;
8791     MoveL2D_reg_reg(tmp, src);
8792     convL2D_helper(dst, tmp);
8793   %}
8794 %}
8795 
8796 // Long to Float conversion using fast fxtof
8797 instruct convL2F_helper(regF dst, regD tmp) %{
8798   effect(DEF dst, USE tmp);
8799   size(4);
8800   format %{ "FXTOS  $tmp,$dst" %}
8801   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8802   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8803   ins_pipe(fcvtL2F);
8804 %}
8805 
8806 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8807   match(Set dst (ConvL2F src));
8808   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8809   expand %{
8810     regD tmp;
8811     stkL_to_regD(tmp, src);
8812     convL2F_helper(dst, tmp);
8813   %}
8814 %}
8815 
8816 instruct convL2F_reg(regF dst, iRegL src) %{
8817   predicate(UseVIS >= 3);
8818   match(Set dst (ConvL2F src));
8819   ins_cost(DEFAULT_COST);
8820   expand %{
8821     regD tmp;
8822     MoveL2D_reg_reg(tmp, src);
8823     convL2F_helper(dst, tmp);
8824   %}
8825 %}
8826 
8827 //-----------
8828 
8829 instruct convL2I_reg(iRegI dst, iRegL src) %{
8830   match(Set dst (ConvL2I src));
8831 #ifndef _LP64
8832   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8833   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8834   ins_pipe(ialu_move_reg_I_to_L);
8835 #else
8836   size(4);
8837   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8838   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8839   ins_pipe(ialu_reg);
8840 #endif
8841 %}
8842 
8843 // Register Shift Right Immediate
8844 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8845   match(Set dst (ConvL2I (RShiftL src cnt)));
8846 
8847   size(4);
8848   format %{ "SRAX   $src,$cnt,$dst" %}
8849   opcode(Assembler::srax_op3, Assembler::arith_op);
8850   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8851   ins_pipe(ialu_reg_imm);
8852 %}
8853 
8854 //----------Control Flow Instructions------------------------------------------
8855 // Compare Instructions
8856 // Compare Integers
8857 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8858   match(Set icc (CmpI op1 op2));
8859   effect( DEF icc, USE op1, USE op2 );
8860 
8861   size(4);
8862   format %{ "CMP    $op1,$op2" %}
8863   opcode(Assembler::subcc_op3, Assembler::arith_op);
8864   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8865   ins_pipe(ialu_cconly_reg_reg);
8866 %}
8867 
8868 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8869   match(Set icc (CmpU op1 op2));
8870 
8871   size(4);
8872   format %{ "CMP    $op1,$op2\t! unsigned" %}
8873   opcode(Assembler::subcc_op3, Assembler::arith_op);
8874   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8875   ins_pipe(ialu_cconly_reg_reg);
8876 %}
8877 
8878 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8879   match(Set icc (CmpI op1 op2));
8880   effect( DEF icc, USE op1 );
8881 
8882   size(4);
8883   format %{ "CMP    $op1,$op2" %}
8884   opcode(Assembler::subcc_op3, Assembler::arith_op);
8885   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8886   ins_pipe(ialu_cconly_reg_imm);
8887 %}
8888 
8889 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8890   match(Set icc (CmpI (AndI op1 op2) zero));
8891 
8892   size(4);
8893   format %{ "BTST   $op2,$op1" %}
8894   opcode(Assembler::andcc_op3, Assembler::arith_op);
8895   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8896   ins_pipe(ialu_cconly_reg_reg_zero);
8897 %}
8898 
8899 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8900   match(Set icc (CmpI (AndI op1 op2) zero));
8901 
8902   size(4);
8903   format %{ "BTST   $op2,$op1" %}
8904   opcode(Assembler::andcc_op3, Assembler::arith_op);
8905   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8906   ins_pipe(ialu_cconly_reg_imm_zero);
8907 %}
8908 
8909 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8910   match(Set xcc (CmpL op1 op2));
8911   effect( DEF xcc, USE op1, USE op2 );
8912 
8913   size(4);
8914   format %{ "CMP    $op1,$op2\t\t! long" %}
8915   opcode(Assembler::subcc_op3, Assembler::arith_op);
8916   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8917   ins_pipe(ialu_cconly_reg_reg);
8918 %}
8919 
8920 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8921   match(Set xcc (CmpL op1 con));
8922   effect( DEF xcc, USE op1, USE con );
8923 
8924   size(4);
8925   format %{ "CMP    $op1,$con\t\t! long" %}
8926   opcode(Assembler::subcc_op3, Assembler::arith_op);
8927   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8928   ins_pipe(ialu_cconly_reg_reg);
8929 %}
8930 
8931 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8932   match(Set xcc (CmpL (AndL op1 op2) zero));
8933   effect( DEF xcc, USE op1, USE op2 );
8934 
8935   size(4);
8936   format %{ "BTST   $op1,$op2\t\t! long" %}
8937   opcode(Assembler::andcc_op3, Assembler::arith_op);
8938   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8939   ins_pipe(ialu_cconly_reg_reg);
8940 %}
8941 
8942 // useful for checking the alignment of a pointer:
8943 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8944   match(Set xcc (CmpL (AndL op1 con) zero));
8945   effect( DEF xcc, USE op1, USE con );
8946 
8947   size(4);
8948   format %{ "BTST   $op1,$con\t\t! long" %}
8949   opcode(Assembler::andcc_op3, Assembler::arith_op);
8950   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8951   ins_pipe(ialu_cconly_reg_reg);
8952 %}
8953 
8954 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8955   match(Set icc (CmpU op1 op2));
8956 
8957   size(4);
8958   format %{ "CMP    $op1,$op2\t! unsigned" %}
8959   opcode(Assembler::subcc_op3, Assembler::arith_op);
8960   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8961   ins_pipe(ialu_cconly_reg_imm);
8962 %}
8963 
8964 // Compare Pointers
8965 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8966   match(Set pcc (CmpP op1 op2));
8967 
8968   size(4);
8969   format %{ "CMP    $op1,$op2\t! ptr" %}
8970   opcode(Assembler::subcc_op3, Assembler::arith_op);
8971   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8972   ins_pipe(ialu_cconly_reg_reg);
8973 %}
8974 
8975 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8976   match(Set pcc (CmpP op1 op2));
8977 
8978   size(4);
8979   format %{ "CMP    $op1,$op2\t! ptr" %}
8980   opcode(Assembler::subcc_op3, Assembler::arith_op);
8981   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8982   ins_pipe(ialu_cconly_reg_imm);
8983 %}
8984 
8985 // Compare Narrow oops
8986 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8987   match(Set icc (CmpN op1 op2));
8988 
8989   size(4);
8990   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8991   opcode(Assembler::subcc_op3, Assembler::arith_op);
8992   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8993   ins_pipe(ialu_cconly_reg_reg);
8994 %}
8995 
8996 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8997   match(Set icc (CmpN op1 op2));
8998 
8999   size(4);
9000   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9001   opcode(Assembler::subcc_op3, Assembler::arith_op);
9002   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9003   ins_pipe(ialu_cconly_reg_imm);
9004 %}
9005 
9006 //----------Max and Min--------------------------------------------------------
9007 // Min Instructions
9008 // Conditional move for min
9009 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9010   effect( USE_DEF op2, USE op1, USE icc );
9011 
9012   size(4);
9013   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9014   opcode(Assembler::less);
9015   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9016   ins_pipe(ialu_reg_flags);
9017 %}
9018 
9019 // Min Register with Register.
9020 instruct minI_eReg(iRegI op1, iRegI op2) %{
9021   match(Set op2 (MinI op1 op2));
9022   ins_cost(DEFAULT_COST*2);
9023   expand %{
9024     flagsReg icc;
9025     compI_iReg(icc,op1,op2);
9026     cmovI_reg_lt(op2,op1,icc);
9027   %}
9028 %}
9029 
9030 // Max Instructions
9031 // Conditional move for max
9032 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9033   effect( USE_DEF op2, USE op1, USE icc );
9034   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9035   opcode(Assembler::greater);
9036   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9037   ins_pipe(ialu_reg_flags);
9038 %}
9039 
9040 // Max Register with Register
9041 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9042   match(Set op2 (MaxI op1 op2));
9043   ins_cost(DEFAULT_COST*2);
9044   expand %{
9045     flagsReg icc;
9046     compI_iReg(icc,op1,op2);
9047     cmovI_reg_gt(op2,op1,icc);
9048   %}
9049 %}
9050 
9051 
9052 //----------Float Compares----------------------------------------------------
9053 // Compare floating, generate condition code
9054 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9055   match(Set fcc (CmpF src1 src2));
9056 
9057   size(4);
9058   format %{ "FCMPs  $fcc,$src1,$src2" %}
9059   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9060   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9061   ins_pipe(faddF_fcc_reg_reg_zero);
9062 %}
9063 
9064 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9065   match(Set fcc (CmpD src1 src2));
9066 
9067   size(4);
9068   format %{ "FCMPd  $fcc,$src1,$src2" %}
9069   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9070   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9071   ins_pipe(faddD_fcc_reg_reg_zero);
9072 %}
9073 
9074 
9075 // Compare floating, generate -1,0,1
9076 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9077   match(Set dst (CmpF3 src1 src2));
9078   effect(KILL fcc0);
9079   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9080   format %{ "fcmpl  $dst,$src1,$src2" %}
9081   // Primary = float
9082   opcode( true );
9083   ins_encode( floating_cmp( dst, src1, src2 ) );
9084   ins_pipe( floating_cmp );
9085 %}
9086 
9087 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9088   match(Set dst (CmpD3 src1 src2));
9089   effect(KILL fcc0);
9090   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9091   format %{ "dcmpl  $dst,$src1,$src2" %}
9092   // Primary = double (not float)
9093   opcode( false );
9094   ins_encode( floating_cmp( dst, src1, src2 ) );
9095   ins_pipe( floating_cmp );
9096 %}
9097 
9098 //----------Branches---------------------------------------------------------
9099 // Jump
9100 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9101 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9102   match(Jump switch_val);
9103   effect(TEMP table);
9104 
9105   ins_cost(350);
9106 
9107   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9108              "LD     [O7 + $switch_val], O7\n\t"
9109              "JUMP   O7" %}
9110   ins_encode %{
9111     // Calculate table address into a register.
9112     Register table_reg;
9113     Register label_reg = O7;
9114     // If we are calculating the size of this instruction don't trust
9115     // zero offsets because they might change when
9116     // MachConstantBaseNode decides to optimize the constant table
9117     // base.
9118     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9119       table_reg = $constanttablebase;
9120     } else {
9121       table_reg = O7;
9122       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9123       __ add($constanttablebase, con_offset, table_reg);
9124     }
9125 
9126     // Jump to base address + switch value
9127     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9128     __ jmp(label_reg, G0);
9129     __ delayed()->nop();
9130   %}
9131   ins_pipe(ialu_reg_reg);
9132 %}
9133 
9134 // Direct Branch.  Use V8 version with longer range.
9135 instruct branch(label labl) %{
9136   match(Goto);
9137   effect(USE labl);
9138 
9139   size(8);
9140   ins_cost(BRANCH_COST);
9141   format %{ "BA     $labl" %}
9142   ins_encode %{
9143     Label* L = $labl$$label;
9144     __ ba(*L);
9145     __ delayed()->nop();
9146   %}
9147   ins_pipe(br);
9148 %}
9149 
9150 // Direct Branch, short with no delay slot
9151 instruct branch_short(label labl) %{
9152   match(Goto);
9153   predicate(UseCBCond);
9154   effect(USE labl);
9155 
9156   size(4);
9157   ins_cost(BRANCH_COST);
9158   format %{ "BA     $labl\t! short branch" %}
9159   ins_encode %{ 
9160     Label* L = $labl$$label;
9161     assert(__ use_cbcond(*L), "back to back cbcond");
9162     __ ba_short(*L);
9163   %}
9164   ins_short_branch(1);
9165   ins_avoid_back_to_back(1);
9166   ins_pipe(cbcond_reg_imm);
9167 %}
9168 
9169 // Conditional Direct Branch
9170 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9171   match(If cmp icc);
9172   effect(USE labl);
9173 
9174   size(8);
9175   ins_cost(BRANCH_COST);
9176   format %{ "BP$cmp   $icc,$labl" %}
9177   // Prim = bits 24-22, Secnd = bits 31-30
9178   ins_encode( enc_bp( labl, cmp, icc ) );
9179   ins_pipe(br_cc);
9180 %}
9181 
9182 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9183   match(If cmp icc);
9184   effect(USE labl);
9185 
9186   ins_cost(BRANCH_COST);
9187   format %{ "BP$cmp  $icc,$labl" %}
9188   // Prim = bits 24-22, Secnd = bits 31-30
9189   ins_encode( enc_bp( labl, cmp, icc ) );
9190   ins_pipe(br_cc);
9191 %}
9192 
9193 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9194   match(If cmp pcc);
9195   effect(USE labl);
9196 
9197   size(8);
9198   ins_cost(BRANCH_COST);
9199   format %{ "BP$cmp  $pcc,$labl" %}
9200   ins_encode %{
9201     Label* L = $labl$$label;
9202     Assembler::Predict predict_taken =
9203       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9204 
9205     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9206     __ delayed()->nop();
9207   %}
9208   ins_pipe(br_cc);
9209 %}
9210 
9211 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9212   match(If cmp fcc);
9213   effect(USE labl);
9214 
9215   size(8);
9216   ins_cost(BRANCH_COST);
9217   format %{ "FBP$cmp $fcc,$labl" %}
9218   ins_encode %{
9219     Label* L = $labl$$label;
9220     Assembler::Predict predict_taken =
9221       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9222 
9223     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9224     __ delayed()->nop();
9225   %}
9226   ins_pipe(br_fcc);
9227 %}
9228 
9229 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9230   match(CountedLoopEnd cmp icc);
9231   effect(USE labl);
9232 
9233   size(8);
9234   ins_cost(BRANCH_COST);
9235   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9236   // Prim = bits 24-22, Secnd = bits 31-30
9237   ins_encode( enc_bp( labl, cmp, icc ) );
9238   ins_pipe(br_cc);
9239 %}
9240 
9241 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9242   match(CountedLoopEnd cmp icc);
9243   effect(USE labl);
9244 
9245   size(8);
9246   ins_cost(BRANCH_COST);
9247   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9248   // Prim = bits 24-22, Secnd = bits 31-30
9249   ins_encode( enc_bp( labl, cmp, icc ) );
9250   ins_pipe(br_cc);
9251 %}
9252 
9253 // Compare and branch instructions
9254 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9255   match(If cmp (CmpI op1 op2));
9256   effect(USE labl, KILL icc);
9257 
9258   size(12);
9259   ins_cost(BRANCH_COST);
9260   format %{ "CMP    $op1,$op2\t! int\n\t"
9261             "BP$cmp   $labl" %}
9262   ins_encode %{
9263     Label* L = $labl$$label;
9264     Assembler::Predict predict_taken =
9265       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9266     __ cmp($op1$$Register, $op2$$Register);
9267     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9268     __ delayed()->nop();
9269   %}
9270   ins_pipe(cmp_br_reg_reg);
9271 %}
9272 
9273 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9274   match(If cmp (CmpI op1 op2));
9275   effect(USE labl, KILL icc);
9276 
9277   size(12);
9278   ins_cost(BRANCH_COST);
9279   format %{ "CMP    $op1,$op2\t! int\n\t"
9280             "BP$cmp   $labl" %}
9281   ins_encode %{
9282     Label* L = $labl$$label;
9283     Assembler::Predict predict_taken =
9284       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9285     __ cmp($op1$$Register, $op2$$constant);
9286     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9287     __ delayed()->nop();
9288   %}
9289   ins_pipe(cmp_br_reg_imm);
9290 %}
9291 
9292 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9293   match(If cmp (CmpU op1 op2));
9294   effect(USE labl, KILL icc);
9295 
9296   size(12);
9297   ins_cost(BRANCH_COST);
9298   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9299             "BP$cmp  $labl" %}
9300   ins_encode %{
9301     Label* L = $labl$$label;
9302     Assembler::Predict predict_taken =
9303       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9304     __ cmp($op1$$Register, $op2$$Register);
9305     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9306     __ delayed()->nop();
9307   %}
9308   ins_pipe(cmp_br_reg_reg);
9309 %}
9310 
9311 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9312   match(If cmp (CmpU op1 op2));
9313   effect(USE labl, KILL icc);
9314 
9315   size(12);
9316   ins_cost(BRANCH_COST);
9317   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9318             "BP$cmp  $labl" %}
9319   ins_encode %{
9320     Label* L = $labl$$label;
9321     Assembler::Predict predict_taken =
9322       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9323     __ cmp($op1$$Register, $op2$$constant);
9324     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9325     __ delayed()->nop();
9326   %}
9327   ins_pipe(cmp_br_reg_imm);
9328 %}
9329 
9330 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9331   match(If cmp (CmpL op1 op2));
9332   effect(USE labl, KILL xcc);
9333 
9334   size(12);
9335   ins_cost(BRANCH_COST);
9336   format %{ "CMP    $op1,$op2\t! long\n\t"
9337             "BP$cmp   $labl" %}
9338   ins_encode %{
9339     Label* L = $labl$$label;
9340     Assembler::Predict predict_taken =
9341       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9342     __ cmp($op1$$Register, $op2$$Register);
9343     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9344     __ delayed()->nop();
9345   %}
9346   ins_pipe(cmp_br_reg_reg);
9347 %}
9348 
9349 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9350   match(If cmp (CmpL op1 op2));
9351   effect(USE labl, KILL xcc);
9352 
9353   size(12);
9354   ins_cost(BRANCH_COST);
9355   format %{ "CMP    $op1,$op2\t! long\n\t"
9356             "BP$cmp   $labl" %}
9357   ins_encode %{
9358     Label* L = $labl$$label;
9359     Assembler::Predict predict_taken =
9360       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9361     __ cmp($op1$$Register, $op2$$constant);
9362     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9363     __ delayed()->nop();
9364   %}
9365   ins_pipe(cmp_br_reg_imm);
9366 %}
9367 
9368 // Compare Pointers and branch
9369 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9370   match(If cmp (CmpP op1 op2));
9371   effect(USE labl, KILL pcc);
9372 
9373   size(12);
9374   ins_cost(BRANCH_COST);
9375   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9376             "B$cmp   $labl" %}
9377   ins_encode %{
9378     Label* L = $labl$$label;
9379     Assembler::Predict predict_taken =
9380       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9381     __ cmp($op1$$Register, $op2$$Register);
9382     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9383     __ delayed()->nop();
9384   %}
9385   ins_pipe(cmp_br_reg_reg);
9386 %}
9387 
9388 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9389   match(If cmp (CmpP op1 null));
9390   effect(USE labl, KILL pcc);
9391 
9392   size(12);
9393   ins_cost(BRANCH_COST);
9394   format %{ "CMP    $op1,0\t! ptr\n\t"
9395             "B$cmp   $labl" %}
9396   ins_encode %{
9397     Label* L = $labl$$label;
9398     Assembler::Predict predict_taken =
9399       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9400     __ cmp($op1$$Register, G0);
9401     // bpr() is not used here since it has shorter distance.
9402     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9403     __ delayed()->nop();
9404   %}
9405   ins_pipe(cmp_br_reg_reg);
9406 %}
9407 
9408 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9409   match(If cmp (CmpN op1 op2));
9410   effect(USE labl, KILL icc);
9411 
9412   size(12);
9413   ins_cost(BRANCH_COST);
9414   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9415             "BP$cmp   $labl" %}
9416   ins_encode %{
9417     Label* L = $labl$$label;
9418     Assembler::Predict predict_taken =
9419       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9420     __ cmp($op1$$Register, $op2$$Register);
9421     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9422     __ delayed()->nop();
9423   %}
9424   ins_pipe(cmp_br_reg_reg);
9425 %}
9426 
9427 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9428   match(If cmp (CmpN op1 null));
9429   effect(USE labl, KILL icc);
9430 
9431   size(12);
9432   ins_cost(BRANCH_COST);
9433   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9434             "BP$cmp   $labl" %}
9435   ins_encode %{
9436     Label* L = $labl$$label;
9437     Assembler::Predict predict_taken =
9438       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9439     __ cmp($op1$$Register, G0);
9440     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9441     __ delayed()->nop();
9442   %}
9443   ins_pipe(cmp_br_reg_reg);
9444 %}
9445 
9446 // Loop back branch
9447 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9448   match(CountedLoopEnd cmp (CmpI op1 op2));
9449   effect(USE labl, KILL icc);
9450 
9451   size(12);
9452   ins_cost(BRANCH_COST);
9453   format %{ "CMP    $op1,$op2\t! int\n\t"
9454             "BP$cmp   $labl\t! Loop end" %}
9455   ins_encode %{
9456     Label* L = $labl$$label;
9457     Assembler::Predict predict_taken =
9458       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9459     __ cmp($op1$$Register, $op2$$Register);
9460     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9461     __ delayed()->nop();
9462   %}
9463   ins_pipe(cmp_br_reg_reg);
9464 %}
9465 
9466 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9467   match(CountedLoopEnd cmp (CmpI op1 op2));
9468   effect(USE labl, KILL icc);
9469 
9470   size(12);
9471   ins_cost(BRANCH_COST);
9472   format %{ "CMP    $op1,$op2\t! int\n\t"
9473             "BP$cmp   $labl\t! Loop end" %}
9474   ins_encode %{
9475     Label* L = $labl$$label;
9476     Assembler::Predict predict_taken =
9477       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9478     __ cmp($op1$$Register, $op2$$constant);
9479     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9480     __ delayed()->nop();
9481   %}
9482   ins_pipe(cmp_br_reg_imm);
9483 %}
9484 
9485 // Short compare and branch instructions
9486 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9487   match(If cmp (CmpI op1 op2));
9488   predicate(UseCBCond);
9489   effect(USE labl, KILL icc);
9490 
9491   size(4);
9492   ins_cost(BRANCH_COST);
9493   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9494   ins_encode %{
9495     Label* L = $labl$$label;
9496     assert(__ use_cbcond(*L), "back to back cbcond");
9497     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9498   %}
9499   ins_short_branch(1);
9500   ins_avoid_back_to_back(1);
9501   ins_pipe(cbcond_reg_reg);
9502 %}
9503 
9504 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9505   match(If cmp (CmpI op1 op2));
9506   predicate(UseCBCond);
9507   effect(USE labl, KILL icc);
9508 
9509   size(4);
9510   ins_cost(BRANCH_COST);
9511   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9512   ins_encode %{
9513     Label* L = $labl$$label;
9514     assert(__ use_cbcond(*L), "back to back cbcond");
9515     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9516   %}
9517   ins_short_branch(1);
9518   ins_avoid_back_to_back(1);
9519   ins_pipe(cbcond_reg_imm);
9520 %}
9521 
9522 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9523   match(If cmp (CmpU op1 op2));
9524   predicate(UseCBCond);
9525   effect(USE labl, KILL icc);
9526 
9527   size(4);
9528   ins_cost(BRANCH_COST);
9529   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9530   ins_encode %{
9531     Label* L = $labl$$label;
9532     assert(__ use_cbcond(*L), "back to back cbcond");
9533     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9534   %}
9535   ins_short_branch(1);
9536   ins_avoid_back_to_back(1);
9537   ins_pipe(cbcond_reg_reg);
9538 %}
9539 
9540 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9541   match(If cmp (CmpU op1 op2));
9542   predicate(UseCBCond);
9543   effect(USE labl, KILL icc);
9544 
9545   size(4);
9546   ins_cost(BRANCH_COST);
9547   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9548   ins_encode %{
9549     Label* L = $labl$$label;
9550     assert(__ use_cbcond(*L), "back to back cbcond");
9551     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9552   %}
9553   ins_short_branch(1);
9554   ins_avoid_back_to_back(1);
9555   ins_pipe(cbcond_reg_imm);
9556 %}
9557 
9558 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9559   match(If cmp (CmpL op1 op2));
9560   predicate(UseCBCond);
9561   effect(USE labl, KILL xcc);
9562 
9563   size(4);
9564   ins_cost(BRANCH_COST);
9565   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9566   ins_encode %{
9567     Label* L = $labl$$label;
9568     assert(__ use_cbcond(*L), "back to back cbcond");
9569     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9570   %}
9571   ins_short_branch(1);
9572   ins_avoid_back_to_back(1);
9573   ins_pipe(cbcond_reg_reg);
9574 %}
9575 
9576 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9577   match(If cmp (CmpL op1 op2));
9578   predicate(UseCBCond);
9579   effect(USE labl, KILL xcc);
9580 
9581   size(4);
9582   ins_cost(BRANCH_COST);
9583   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9584   ins_encode %{
9585     Label* L = $labl$$label;
9586     assert(__ use_cbcond(*L), "back to back cbcond");
9587     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9588   %}
9589   ins_short_branch(1);
9590   ins_avoid_back_to_back(1);
9591   ins_pipe(cbcond_reg_imm);
9592 %}
9593 
9594 // Compare Pointers and branch
9595 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9596   match(If cmp (CmpP op1 op2));
9597   predicate(UseCBCond);
9598   effect(USE labl, KILL pcc);
9599 
9600   size(4);
9601   ins_cost(BRANCH_COST);
9602 #ifdef _LP64
9603   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9604 #else
9605   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9606 #endif
9607   ins_encode %{
9608     Label* L = $labl$$label;
9609     assert(__ use_cbcond(*L), "back to back cbcond");
9610     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9611   %}
9612   ins_short_branch(1);
9613   ins_avoid_back_to_back(1);
9614   ins_pipe(cbcond_reg_reg);
9615 %}
9616 
9617 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9618   match(If cmp (CmpP op1 null));
9619   predicate(UseCBCond);
9620   effect(USE labl, KILL pcc);
9621 
9622   size(4);
9623   ins_cost(BRANCH_COST);
9624 #ifdef _LP64
9625   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9626 #else
9627   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9628 #endif
9629   ins_encode %{
9630     Label* L = $labl$$label;
9631     assert(__ use_cbcond(*L), "back to back cbcond");
9632     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9633   %}
9634   ins_short_branch(1);
9635   ins_avoid_back_to_back(1);
9636   ins_pipe(cbcond_reg_reg);
9637 %}
9638 
9639 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9640   match(If cmp (CmpN op1 op2));
9641   predicate(UseCBCond);
9642   effect(USE labl, KILL icc);
9643 
9644   size(4);
9645   ins_cost(BRANCH_COST);
9646   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9647   ins_encode %{
9648     Label* L = $labl$$label;
9649     assert(__ use_cbcond(*L), "back to back cbcond");
9650     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9651   %}
9652   ins_short_branch(1);
9653   ins_avoid_back_to_back(1);
9654   ins_pipe(cbcond_reg_reg);
9655 %}
9656 
9657 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9658   match(If cmp (CmpN op1 null));
9659   predicate(UseCBCond);
9660   effect(USE labl, KILL icc);
9661 
9662   size(4);
9663   ins_cost(BRANCH_COST);
9664   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9665   ins_encode %{
9666     Label* L = $labl$$label;
9667     assert(__ use_cbcond(*L), "back to back cbcond");
9668     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9669   %}
9670   ins_short_branch(1);
9671   ins_avoid_back_to_back(1);
9672   ins_pipe(cbcond_reg_reg);
9673 %}
9674 
9675 // Loop back branch
9676 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9677   match(CountedLoopEnd cmp (CmpI op1 op2));
9678   predicate(UseCBCond);
9679   effect(USE labl, KILL icc);
9680 
9681   size(4);
9682   ins_cost(BRANCH_COST);
9683   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9684   ins_encode %{
9685     Label* L = $labl$$label;
9686     assert(__ use_cbcond(*L), "back to back cbcond");
9687     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9688   %}
9689   ins_short_branch(1);
9690   ins_avoid_back_to_back(1);
9691   ins_pipe(cbcond_reg_reg);
9692 %}
9693 
9694 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9695   match(CountedLoopEnd cmp (CmpI op1 op2));
9696   predicate(UseCBCond);
9697   effect(USE labl, KILL icc);
9698 
9699   size(4);
9700   ins_cost(BRANCH_COST);
9701   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9702   ins_encode %{
9703     Label* L = $labl$$label;
9704     assert(__ use_cbcond(*L), "back to back cbcond");
9705     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9706   %}
9707   ins_short_branch(1);
9708   ins_avoid_back_to_back(1);
9709   ins_pipe(cbcond_reg_imm);
9710 %}
9711 
9712 // Branch-on-register tests all 64 bits.  We assume that values
9713 // in 64-bit registers always remains zero or sign extended
9714 // unless our code munges the high bits.  Interrupts can chop
9715 // the high order bits to zero or sign at any time.
9716 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9717   match(If cmp (CmpI op1 zero));
9718   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9719   effect(USE labl);
9720 
9721   size(8);
9722   ins_cost(BRANCH_COST);
9723   format %{ "BR$cmp   $op1,$labl" %}
9724   ins_encode( enc_bpr( labl, cmp, op1 ) );
9725   ins_pipe(br_reg);
9726 %}
9727 
9728 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9729   match(If cmp (CmpP op1 null));
9730   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9731   effect(USE labl);
9732 
9733   size(8);
9734   ins_cost(BRANCH_COST);
9735   format %{ "BR$cmp   $op1,$labl" %}
9736   ins_encode( enc_bpr( labl, cmp, op1 ) );
9737   ins_pipe(br_reg);
9738 %}
9739 
9740 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9741   match(If cmp (CmpL op1 zero));
9742   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9743   effect(USE labl);
9744 
9745   size(8);
9746   ins_cost(BRANCH_COST);
9747   format %{ "BR$cmp   $op1,$labl" %}
9748   ins_encode( enc_bpr( labl, cmp, op1 ) );
9749   ins_pipe(br_reg);
9750 %}
9751 
9752 
9753 // ============================================================================
9754 // Long Compare
9755 //
9756 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9757 // is tricky.  The flavor of compare used depends on whether we are testing
9758 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9759 // The GE test is the negated LT test.  The LE test can be had by commuting
9760 // the operands (yielding a GE test) and then negating; negate again for the
9761 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9762 // NE test is negated from that.
9763 
9764 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9765 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9766 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9767 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9768 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9769 // foo match ends up with the wrong leaf.  One fix is to not match both
9770 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9771 // both forms beat the trinary form of long-compare and both are very useful
9772 // on Intel which has so few registers.
9773 
9774 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9775   match(If cmp xcc);
9776   effect(USE labl);
9777 
9778   size(8);
9779   ins_cost(BRANCH_COST);
9780   format %{ "BP$cmp   $xcc,$labl" %}
9781   ins_encode %{
9782     Label* L = $labl$$label;
9783     Assembler::Predict predict_taken =
9784       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9785 
9786     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9787     __ delayed()->nop();
9788   %}
9789   ins_pipe(br_cc);
9790 %}
9791 
9792 // Manifest a CmpL3 result in an integer register.  Very painful.
9793 // This is the test to avoid.
9794 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9795   match(Set dst (CmpL3 src1 src2) );
9796   effect( KILL ccr );
9797   ins_cost(6*DEFAULT_COST);
9798   size(24);
9799   format %{ "CMP    $src1,$src2\t\t! long\n"
9800           "\tBLT,a,pn done\n"
9801           "\tMOV    -1,$dst\t! delay slot\n"
9802           "\tBGT,a,pn done\n"
9803           "\tMOV    1,$dst\t! delay slot\n"
9804           "\tCLR    $dst\n"
9805     "done:"     %}
9806   ins_encode( cmpl_flag(src1,src2,dst) );
9807   ins_pipe(cmpL_reg);
9808 %}
9809 
9810 // Conditional move
9811 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9812   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9813   ins_cost(150);
9814   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9815   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9816   ins_pipe(ialu_reg);
9817 %}
9818 
9819 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9820   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9821   ins_cost(140);
9822   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9823   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9824   ins_pipe(ialu_imm);
9825 %}
9826 
9827 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9828   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9829   ins_cost(150);
9830   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9831   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9832   ins_pipe(ialu_reg);
9833 %}
9834 
9835 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9836   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9837   ins_cost(140);
9838   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9839   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9840   ins_pipe(ialu_imm);
9841 %}
9842 
9843 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9844   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9845   ins_cost(150);
9846   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9847   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9848   ins_pipe(ialu_reg);
9849 %}
9850 
9851 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9852   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9853   ins_cost(150);
9854   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9855   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9856   ins_pipe(ialu_reg);
9857 %}
9858 
9859 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9860   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9861   ins_cost(140);
9862   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9863   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9864   ins_pipe(ialu_imm);
9865 %}
9866 
9867 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9868   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9869   ins_cost(150);
9870   opcode(0x101);
9871   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9872   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9873   ins_pipe(int_conditional_float_move);
9874 %}
9875 
9876 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9877   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9878   ins_cost(150);
9879   opcode(0x102);
9880   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9881   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9882   ins_pipe(int_conditional_float_move);
9883 %}
9884 
9885 // ============================================================================
9886 // Safepoint Instruction
9887 instruct safePoint_poll(iRegP poll) %{
9888   match(SafePoint poll);
9889   effect(USE poll);
9890 
9891   size(4);
9892 #ifdef _LP64
9893   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9894 #else
9895   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9896 #endif
9897   ins_encode %{
9898     __ relocate(relocInfo::poll_type);
9899     __ ld_ptr($poll$$Register, 0, G0);
9900   %}
9901   ins_pipe(loadPollP);
9902 %}
9903 
9904 // ============================================================================
9905 // Call Instructions
9906 // Call Java Static Instruction
9907 instruct CallStaticJavaDirect( method meth ) %{
9908   match(CallStaticJava);
9909   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9910   effect(USE meth);
9911 
9912   size(8);
9913   ins_cost(CALL_COST);
9914   format %{ "CALL,static  ; NOP ==> " %}
9915   ins_encode( Java_Static_Call( meth ), call_epilog );
9916   ins_pipe(simple_call);
9917 %}
9918 
9919 // Call Java Static Instruction (method handle version)
9920 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9921   match(CallStaticJava);
9922   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9923   effect(USE meth, KILL l7_mh_SP_save);
9924 
9925   size(16);
9926   ins_cost(CALL_COST);
9927   format %{ "CALL,static/MethodHandle" %}
9928   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9929   ins_pipe(simple_call);
9930 %}
9931 
9932 // Call Java Dynamic Instruction
9933 instruct CallDynamicJavaDirect( method meth ) %{
9934   match(CallDynamicJava);
9935   effect(USE meth);
9936 
9937   ins_cost(CALL_COST);
9938   format %{ "SET    (empty),R_G5\n\t"
9939             "CALL,dynamic  ; NOP ==> " %}
9940   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9941   ins_pipe(call);
9942 %}
9943 
9944 // Call Runtime Instruction
9945 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9946   match(CallRuntime);
9947   effect(USE meth, KILL l7);
9948   ins_cost(CALL_COST);
9949   format %{ "CALL,runtime" %}
9950   ins_encode( Java_To_Runtime( meth ),
9951               call_epilog, adjust_long_from_native_call );
9952   ins_pipe(simple_call);
9953 %}
9954 
9955 // Call runtime without safepoint - same as CallRuntime
9956 instruct CallLeafDirect(method meth, l7RegP l7) %{
9957   match(CallLeaf);
9958   effect(USE meth, KILL l7);
9959   ins_cost(CALL_COST);
9960   format %{ "CALL,runtime leaf" %}
9961   ins_encode( Java_To_Runtime( meth ),
9962               call_epilog,
9963               adjust_long_from_native_call );
9964   ins_pipe(simple_call);
9965 %}
9966 
9967 // Call runtime without safepoint - same as CallLeaf
9968 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9969   match(CallLeafNoFP);
9970   effect(USE meth, KILL l7);
9971   ins_cost(CALL_COST);
9972   format %{ "CALL,runtime leaf nofp" %}
9973   ins_encode( Java_To_Runtime( meth ),
9974               call_epilog,
9975               adjust_long_from_native_call );
9976   ins_pipe(simple_call);
9977 %}
9978 
9979 // Tail Call; Jump from runtime stub to Java code.
9980 // Also known as an 'interprocedural jump'.
9981 // Target of jump will eventually return to caller.
9982 // TailJump below removes the return address.
9983 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9984   match(TailCall jump_target method_oop );
9985 
9986   ins_cost(CALL_COST);
9987   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9988   ins_encode(form_jmpl(jump_target));
9989   ins_pipe(tail_call);
9990 %}
9991 
9992 
9993 // Return Instruction
9994 instruct Ret() %{
9995   match(Return);
9996 
9997   // The epilogue node did the ret already.
9998   size(0);
9999   format %{ "! return" %}
10000   ins_encode();
10001   ins_pipe(empty);
10002 %}
10003 
10004 
10005 // Tail Jump; remove the return address; jump to target.
10006 // TailCall above leaves the return address around.
10007 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10008 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10009 // "restore" before this instruction (in Epilogue), we need to materialize it
10010 // in %i0.
10011 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10012   match( TailJump jump_target ex_oop );
10013   ins_cost(CALL_COST);
10014   format %{ "! discard R_O7\n\t"
10015             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10016   ins_encode(form_jmpl_set_exception_pc(jump_target));
10017   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10018   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10019   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10020   ins_pipe(tail_call);
10021 %}
10022 
10023 // Create exception oop: created by stack-crawling runtime code.
10024 // Created exception is now available to this handler, and is setup
10025 // just prior to jumping to this handler.  No code emitted.
10026 instruct CreateException( o0RegP ex_oop )
10027 %{
10028   match(Set ex_oop (CreateEx));
10029   ins_cost(0);
10030 
10031   size(0);
10032   // use the following format syntax
10033   format %{ "! exception oop is in R_O0; no code emitted" %}
10034   ins_encode();
10035   ins_pipe(empty);
10036 %}
10037 
10038 
10039 // Rethrow exception:
10040 // The exception oop will come in the first argument position.
10041 // Then JUMP (not call) to the rethrow stub code.
10042 instruct RethrowException()
10043 %{
10044   match(Rethrow);
10045   ins_cost(CALL_COST);
10046 
10047   // use the following format syntax
10048   format %{ "Jmp    rethrow_stub" %}
10049   ins_encode(enc_rethrow);
10050   ins_pipe(tail_call);
10051 %}
10052 
10053 
10054 // Die now
10055 instruct ShouldNotReachHere( )
10056 %{
10057   match(Halt);
10058   ins_cost(CALL_COST);
10059 
10060   size(4);
10061   // Use the following format syntax
10062   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10063   ins_encode( form2_illtrap() );
10064   ins_pipe(tail_call);
10065 %}
10066 
10067 // ============================================================================
10068 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10069 // array for an instance of the superklass.  Set a hidden internal cache on a
10070 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10071 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10072 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10073   match(Set index (PartialSubtypeCheck sub super));
10074   effect( KILL pcc, KILL o7 );
10075   ins_cost(DEFAULT_COST*10);
10076   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10077   ins_encode( enc_PartialSubtypeCheck() );
10078   ins_pipe(partial_subtype_check_pipe);
10079 %}
10080 
10081 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10082   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10083   effect( KILL idx, KILL o7 );
10084   ins_cost(DEFAULT_COST*10);
10085   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10086   ins_encode( enc_PartialSubtypeCheck() );
10087   ins_pipe(partial_subtype_check_pipe);
10088 %}
10089 
10090 
10091 // ============================================================================
10092 // inlined locking and unlocking
10093 
10094 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10095   match(Set pcc (FastLock object box));
10096 
10097   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10098   ins_cost(100);
10099 
10100   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10101   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10102   ins_pipe(long_memory_op);
10103 %}
10104 
10105 
10106 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10107   match(Set pcc (FastUnlock object box));
10108   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10109   ins_cost(100);
10110 
10111   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10112   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10113   ins_pipe(long_memory_op);
10114 %}
10115 
10116 // The encodings are generic.
10117 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10118   predicate(!use_block_zeroing(n->in(2)) );
10119   match(Set dummy (ClearArray cnt base));
10120   effect(TEMP temp, KILL ccr);
10121   ins_cost(300);
10122   format %{ "MOV    $cnt,$temp\n"
10123     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10124     "        BRge   loop\t\t! Clearing loop\n"
10125     "        STX    G0,[$base+$temp]\t! delay slot" %}
10126 
10127   ins_encode %{
10128     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10129     Register nof_bytes_arg    = $cnt$$Register;
10130     Register nof_bytes_tmp    = $temp$$Register;
10131     Register base_pointer_arg = $base$$Register;
10132 
10133     Label loop;
10134     __ mov(nof_bytes_arg, nof_bytes_tmp);
10135 
10136     // Loop and clear, walking backwards through the array.
10137     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10138     __ bind(loop);
10139     __ deccc(nof_bytes_tmp, 8);
10140     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10141     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10142     // %%%% this mini-loop must not cross a cache boundary!
10143   %}
10144   ins_pipe(long_memory_op);
10145 %}
10146 
10147 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10148   predicate(use_block_zeroing(n->in(2)));
10149   match(Set dummy (ClearArray cnt base));
10150   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10151   ins_cost(300);
10152   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10153 
10154   ins_encode %{
10155 
10156     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10157     Register to    = $base$$Register;
10158     Register count = $cnt$$Register;
10159 
10160     Label Ldone;
10161     __ nop(); // Separate short branches
10162     // Use BIS for zeroing (temp is not used).
10163     __ bis_zeroing(to, count, G0, Ldone);
10164     __ bind(Ldone);
10165 
10166   %}
10167   ins_pipe(long_memory_op);
10168 %}
10169 
10170 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10171   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10172   match(Set dummy (ClearArray cnt base));
10173   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10174   ins_cost(300);
10175   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10176 
10177   ins_encode %{
10178 
10179     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10180     Register to    = $base$$Register;
10181     Register count = $cnt$$Register;
10182     Register temp  = $tmp$$Register;
10183 
10184     Label Ldone;
10185     __ nop(); // Separate short branches
10186     // Use BIS for zeroing
10187     __ bis_zeroing(to, count, temp, Ldone);
10188     __ bind(Ldone);
10189 
10190   %}
10191   ins_pipe(long_memory_op);
10192 %}
10193 
10194 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10195                         o7RegI tmp, flagsReg ccr) %{
10196   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10197   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10198   ins_cost(300);
10199   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10200   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10201   ins_pipe(long_memory_op);
10202 %}
10203 
10204 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10205                        o7RegI tmp, flagsReg ccr) %{
10206   match(Set result (StrEquals (Binary str1 str2) cnt));
10207   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10208   ins_cost(300);
10209   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10210   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10211   ins_pipe(long_memory_op);
10212 %}
10213 
10214 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10215                       o7RegI tmp2, flagsReg ccr) %{
10216   match(Set result (AryEq ary1 ary2));
10217   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10218   ins_cost(300);
10219   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10220   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10221   ins_pipe(long_memory_op);
10222 %}
10223 
10224 
10225 //---------- Zeros Count Instructions ------------------------------------------
10226 
10227 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
10228   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10229   match(Set dst (CountLeadingZerosI src));
10230   effect(TEMP dst, TEMP tmp, KILL cr);
10231 
10232   // x |= (x >> 1);
10233   // x |= (x >> 2);
10234   // x |= (x >> 4);
10235   // x |= (x >> 8);
10236   // x |= (x >> 16);
10237   // return (WORDBITS - popc(x));
10238   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10239             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10240             "OR      $dst,$tmp,$dst\n\t"
10241             "SRL     $dst,2,$tmp\n\t"
10242             "OR      $dst,$tmp,$dst\n\t"
10243             "SRL     $dst,4,$tmp\n\t"
10244             "OR      $dst,$tmp,$dst\n\t"
10245             "SRL     $dst,8,$tmp\n\t"
10246             "OR      $dst,$tmp,$dst\n\t"
10247             "SRL     $dst,16,$tmp\n\t"
10248             "OR      $dst,$tmp,$dst\n\t"
10249             "POPC    $dst,$dst\n\t"
10250             "MOV     32,$tmp\n\t"
10251             "SUB     $tmp,$dst,$dst" %}
10252   ins_encode %{
10253     Register Rdst = $dst$$Register;
10254     Register Rsrc = $src$$Register;
10255     Register Rtmp = $tmp$$Register;
10256     __ srl(Rsrc, 1,    Rtmp);
10257     __ srl(Rsrc, 0,    Rdst);
10258     __ or3(Rdst, Rtmp, Rdst);
10259     __ srl(Rdst, 2,    Rtmp);
10260     __ or3(Rdst, Rtmp, Rdst);
10261     __ srl(Rdst, 4,    Rtmp);
10262     __ or3(Rdst, Rtmp, Rdst);
10263     __ srl(Rdst, 8,    Rtmp);
10264     __ or3(Rdst, Rtmp, Rdst);
10265     __ srl(Rdst, 16,   Rtmp);
10266     __ or3(Rdst, Rtmp, Rdst);
10267     __ popc(Rdst, Rdst);
10268     __ mov(BitsPerInt, Rtmp);
10269     __ sub(Rtmp, Rdst, Rdst);
10270   %}
10271   ins_pipe(ialu_reg);
10272 %}
10273 
10274 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10275   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10276   match(Set dst (CountLeadingZerosL src));
10277   effect(TEMP dst, TEMP tmp, KILL cr);
10278 
10279   // x |= (x >> 1);
10280   // x |= (x >> 2);
10281   // x |= (x >> 4);
10282   // x |= (x >> 8);
10283   // x |= (x >> 16);
10284   // x |= (x >> 32);
10285   // return (WORDBITS - popc(x));
10286   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10287             "OR      $src,$tmp,$dst\n\t"
10288             "SRLX    $dst,2,$tmp\n\t"
10289             "OR      $dst,$tmp,$dst\n\t"
10290             "SRLX    $dst,4,$tmp\n\t"
10291             "OR      $dst,$tmp,$dst\n\t"
10292             "SRLX    $dst,8,$tmp\n\t"
10293             "OR      $dst,$tmp,$dst\n\t"
10294             "SRLX    $dst,16,$tmp\n\t"
10295             "OR      $dst,$tmp,$dst\n\t"
10296             "SRLX    $dst,32,$tmp\n\t"
10297             "OR      $dst,$tmp,$dst\n\t"
10298             "POPC    $dst,$dst\n\t"
10299             "MOV     64,$tmp\n\t"
10300             "SUB     $tmp,$dst,$dst" %}
10301   ins_encode %{
10302     Register Rdst = $dst$$Register;
10303     Register Rsrc = $src$$Register;
10304     Register Rtmp = $tmp$$Register;
10305     __ srlx(Rsrc, 1,    Rtmp);
10306     __ or3( Rsrc, Rtmp, Rdst);
10307     __ srlx(Rdst, 2,    Rtmp);
10308     __ or3( Rdst, Rtmp, Rdst);
10309     __ srlx(Rdst, 4,    Rtmp);
10310     __ or3( Rdst, Rtmp, Rdst);
10311     __ srlx(Rdst, 8,    Rtmp);
10312     __ or3( Rdst, Rtmp, Rdst);
10313     __ srlx(Rdst, 16,   Rtmp);
10314     __ or3( Rdst, Rtmp, Rdst);
10315     __ srlx(Rdst, 32,   Rtmp);
10316     __ or3( Rdst, Rtmp, Rdst);
10317     __ popc(Rdst, Rdst);
10318     __ mov(BitsPerLong, Rtmp);
10319     __ sub(Rtmp, Rdst, Rdst);
10320   %}
10321   ins_pipe(ialu_reg);
10322 %}
10323 
10324 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
10325   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10326   match(Set dst (CountTrailingZerosI src));
10327   effect(TEMP dst, KILL cr);
10328 
10329   // return popc(~x & (x - 1));
10330   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10331             "ANDN    $dst,$src,$dst\n\t"
10332             "SRL     $dst,R_G0,$dst\n\t"
10333             "POPC    $dst,$dst" %}
10334   ins_encode %{
10335     Register Rdst = $dst$$Register;
10336     Register Rsrc = $src$$Register;
10337     __ sub(Rsrc, 1, Rdst);
10338     __ andn(Rdst, Rsrc, Rdst);
10339     __ srl(Rdst, G0, Rdst);
10340     __ popc(Rdst, Rdst);
10341   %}
10342   ins_pipe(ialu_reg);
10343 %}
10344 
10345 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10346   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10347   match(Set dst (CountTrailingZerosL src));
10348   effect(TEMP dst, KILL cr);
10349 
10350   // return popc(~x & (x - 1));
10351   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10352             "ANDN    $dst,$src,$dst\n\t"
10353             "POPC    $dst,$dst" %}
10354   ins_encode %{
10355     Register Rdst = $dst$$Register;
10356     Register Rsrc = $src$$Register;
10357     __ sub(Rsrc, 1, Rdst);
10358     __ andn(Rdst, Rsrc, Rdst);
10359     __ popc(Rdst, Rdst);
10360   %}
10361   ins_pipe(ialu_reg);
10362 %}
10363 
10364 
10365 //---------- Population Count Instructions -------------------------------------
10366 
10367 instruct popCountI(iRegI dst, iRegI src) %{
10368   predicate(UsePopCountInstruction);
10369   match(Set dst (PopCountI src));
10370 
10371   format %{ "POPC   $src, $dst" %}
10372   ins_encode %{
10373     __ popc($src$$Register, $dst$$Register);
10374   %}
10375   ins_pipe(ialu_reg);
10376 %}
10377 
10378 // Note: Long.bitCount(long) returns an int.
10379 instruct popCountL(iRegI dst, iRegL src) %{
10380   predicate(UsePopCountInstruction);
10381   match(Set dst (PopCountL src));
10382 
10383   format %{ "POPC   $src, $dst" %}
10384   ins_encode %{
10385     __ popc($src$$Register, $dst$$Register);
10386   %}
10387   ins_pipe(ialu_reg);
10388 %}
10389 
10390 
10391 // ============================================================================
10392 //------------Bytes reverse--------------------------------------------------
10393 
10394 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10395   match(Set dst (ReverseBytesI src));
10396 
10397   // Op cost is artificially doubled to make sure that load or store
10398   // instructions are preferred over this one which requires a spill
10399   // onto a stack slot.
10400   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10401   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10402 
10403   ins_encode %{
10404     __ set($src$$disp + STACK_BIAS, O7);
10405     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10406   %}
10407   ins_pipe( iload_mem );
10408 %}
10409 
10410 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10411   match(Set dst (ReverseBytesL src));
10412 
10413   // Op cost is artificially doubled to make sure that load or store
10414   // instructions are preferred over this one which requires a spill
10415   // onto a stack slot.
10416   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10417   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10418 
10419   ins_encode %{
10420     __ set($src$$disp + STACK_BIAS, O7);
10421     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10422   %}
10423   ins_pipe( iload_mem );
10424 %}
10425 
10426 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10427   match(Set dst (ReverseBytesUS src));
10428 
10429   // Op cost is artificially doubled to make sure that load or store
10430   // instructions are preferred over this one which requires a spill
10431   // onto a stack slot.
10432   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10433   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10434 
10435   ins_encode %{
10436     // the value was spilled as an int so bias the load
10437     __ set($src$$disp + STACK_BIAS + 2, O7);
10438     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10439   %}
10440   ins_pipe( iload_mem );
10441 %}
10442 
10443 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10444   match(Set dst (ReverseBytesS src));
10445 
10446   // Op cost is artificially doubled to make sure that load or store
10447   // instructions are preferred over this one which requires a spill
10448   // onto a stack slot.
10449   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10450   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10451 
10452   ins_encode %{
10453     // the value was spilled as an int so bias the load
10454     __ set($src$$disp + STACK_BIAS + 2, O7);
10455     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10456   %}
10457   ins_pipe( iload_mem );
10458 %}
10459 
10460 // Load Integer reversed byte order
10461 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10462   match(Set dst (ReverseBytesI (LoadI src)));
10463 
10464   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10465   size(4);
10466   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10467 
10468   ins_encode %{
10469     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10470   %}
10471   ins_pipe(iload_mem);
10472 %}
10473 
10474 // Load Long - aligned and reversed
10475 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10476   match(Set dst (ReverseBytesL (LoadL src)));
10477 
10478   ins_cost(MEMORY_REF_COST);
10479   size(4);
10480   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10481 
10482   ins_encode %{
10483     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10484   %}
10485   ins_pipe(iload_mem);
10486 %}
10487 
10488 // Load unsigned short / char reversed byte order
10489 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10490   match(Set dst (ReverseBytesUS (LoadUS src)));
10491 
10492   ins_cost(MEMORY_REF_COST);
10493   size(4);
10494   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10495 
10496   ins_encode %{
10497     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10498   %}
10499   ins_pipe(iload_mem);
10500 %}
10501 
10502 // Load short reversed byte order
10503 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10504   match(Set dst (ReverseBytesS (LoadS src)));
10505 
10506   ins_cost(MEMORY_REF_COST);
10507   size(4);
10508   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10509 
10510   ins_encode %{
10511     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10512   %}
10513   ins_pipe(iload_mem);
10514 %}
10515 
10516 // Store Integer reversed byte order
10517 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10518   match(Set dst (StoreI dst (ReverseBytesI src)));
10519 
10520   ins_cost(MEMORY_REF_COST);
10521   size(4);
10522   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10523 
10524   ins_encode %{
10525     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10526   %}
10527   ins_pipe(istore_mem_reg);
10528 %}
10529 
10530 // Store Long reversed byte order
10531 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10532   match(Set dst (StoreL dst (ReverseBytesL src)));
10533 
10534   ins_cost(MEMORY_REF_COST);
10535   size(4);
10536   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10537 
10538   ins_encode %{
10539     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10540   %}
10541   ins_pipe(istore_mem_reg);
10542 %}
10543 
10544 // Store unsighed short/char reversed byte order
10545 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10546   match(Set dst (StoreC dst (ReverseBytesUS src)));
10547 
10548   ins_cost(MEMORY_REF_COST);
10549   size(4);
10550   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10551 
10552   ins_encode %{
10553     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10554   %}
10555   ins_pipe(istore_mem_reg);
10556 %}
10557 
10558 // Store short reversed byte order
10559 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10560   match(Set dst (StoreC dst (ReverseBytesS src)));
10561 
10562   ins_cost(MEMORY_REF_COST);
10563   size(4);
10564   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10565 
10566   ins_encode %{
10567     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10568   %}
10569   ins_pipe(istore_mem_reg);
10570 %}
10571 
10572 // ====================VECTOR INSTRUCTIONS=====================================
10573 
10574 // Load Aligned Packed values into a Double Register
10575 instruct loadV8(regD dst, memory mem) %{
10576   predicate(n->as_LoadVector()->memory_size() == 8);
10577   match(Set dst (LoadVector mem));
10578   ins_cost(MEMORY_REF_COST);
10579   size(4);
10580   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10581   ins_encode %{
10582     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10583   %}
10584   ins_pipe(floadD_mem);
10585 %}
10586 
10587 // Store Vector in Double register to memory
10588 instruct storeV8(memory mem, regD src) %{
10589   predicate(n->as_StoreVector()->memory_size() == 8);
10590   match(Set mem (StoreVector mem src));
10591   ins_cost(MEMORY_REF_COST);
10592   size(4);
10593   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10594   ins_encode %{
10595     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10596   %}
10597   ins_pipe(fstoreD_mem_reg);
10598 %}
10599 
10600 // Store Zero into vector in memory
10601 instruct storeV8B_zero(memory mem, immI0 zero) %{
10602   predicate(n->as_StoreVector()->memory_size() == 8);
10603   match(Set mem (StoreVector mem (ReplicateB zero)));
10604   ins_cost(MEMORY_REF_COST);
10605   size(4);
10606   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10607   ins_encode %{
10608     __ stx(G0, $mem$$Address);
10609   %}
10610   ins_pipe(fstoreD_mem_zero);
10611 %}
10612 
10613 instruct storeV4S_zero(memory mem, immI0 zero) %{
10614   predicate(n->as_StoreVector()->memory_size() == 8);
10615   match(Set mem (StoreVector mem (ReplicateS zero)));
10616   ins_cost(MEMORY_REF_COST);
10617   size(4);
10618   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10619   ins_encode %{
10620     __ stx(G0, $mem$$Address);
10621   %}
10622   ins_pipe(fstoreD_mem_zero);
10623 %}
10624 
10625 instruct storeV2I_zero(memory mem, immI0 zero) %{
10626   predicate(n->as_StoreVector()->memory_size() == 8);
10627   match(Set mem (StoreVector mem (ReplicateI zero)));
10628   ins_cost(MEMORY_REF_COST);
10629   size(4);
10630   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10631   ins_encode %{
10632     __ stx(G0, $mem$$Address);
10633   %}
10634   ins_pipe(fstoreD_mem_zero);
10635 %}
10636 
10637 instruct storeV2F_zero(memory mem, immF0 zero) %{
10638   predicate(n->as_StoreVector()->memory_size() == 8);
10639   match(Set mem (StoreVector mem (ReplicateF zero)));
10640   ins_cost(MEMORY_REF_COST);
10641   size(4);
10642   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10643   ins_encode %{
10644     __ stx(G0, $mem$$Address);
10645   %}
10646   ins_pipe(fstoreD_mem_zero);
10647 %}
10648 
10649 // Replicate scalar to packed byte values into Double register
10650 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10651   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10652   match(Set dst (ReplicateB src));
10653   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10654   format %{ "SLLX  $src,56,$tmp\n\t"
10655             "SRLX  $tmp, 8,$tmp2\n\t"
10656             "OR    $tmp,$tmp2,$tmp\n\t"
10657             "SRLX  $tmp,16,$tmp2\n\t"
10658             "OR    $tmp,$tmp2,$tmp\n\t"
10659             "SRLX  $tmp,32,$tmp2\n\t"
10660             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10661             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10662   ins_encode %{
10663     Register Rsrc = $src$$Register;
10664     Register Rtmp = $tmp$$Register;
10665     Register Rtmp2 = $tmp2$$Register;
10666     __ sllx(Rsrc,    56, Rtmp);
10667     __ srlx(Rtmp,     8, Rtmp2);
10668     __ or3 (Rtmp, Rtmp2, Rtmp);
10669     __ srlx(Rtmp,    16, Rtmp2);
10670     __ or3 (Rtmp, Rtmp2, Rtmp);
10671     __ srlx(Rtmp,    32, Rtmp2);
10672     __ or3 (Rtmp, Rtmp2, Rtmp);
10673     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10674   %}
10675   ins_pipe(ialu_reg);
10676 %}
10677 
10678 // Replicate scalar to packed byte values into Double stack
10679 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10680   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10681   match(Set dst (ReplicateB src));
10682   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10683   format %{ "SLLX  $src,56,$tmp\n\t"
10684             "SRLX  $tmp, 8,$tmp2\n\t"
10685             "OR    $tmp,$tmp2,$tmp\n\t"
10686             "SRLX  $tmp,16,$tmp2\n\t"
10687             "OR    $tmp,$tmp2,$tmp\n\t"
10688             "SRLX  $tmp,32,$tmp2\n\t"
10689             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10690             "STX   $tmp,$dst\t! regL to stkD" %}
10691   ins_encode %{
10692     Register Rsrc = $src$$Register;
10693     Register Rtmp = $tmp$$Register;
10694     Register Rtmp2 = $tmp2$$Register;
10695     __ sllx(Rsrc,    56, Rtmp);
10696     __ srlx(Rtmp,     8, Rtmp2);
10697     __ or3 (Rtmp, Rtmp2, Rtmp);
10698     __ srlx(Rtmp,    16, Rtmp2);
10699     __ or3 (Rtmp, Rtmp2, Rtmp);
10700     __ srlx(Rtmp,    32, Rtmp2);
10701     __ or3 (Rtmp, Rtmp2, Rtmp);
10702     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10703     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10704   %}
10705   ins_pipe(ialu_reg);
10706 %}
10707 
10708 // Replicate scalar constant to packed byte values in Double register
10709 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10710   predicate(n->as_Vector()->length() == 8);
10711   match(Set dst (ReplicateB con));
10712   effect(KILL tmp);
10713   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10714   ins_encode %{
10715     // XXX This is a quick fix for 6833573.
10716     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10717     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10718     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10719   %}
10720   ins_pipe(loadConFD);
10721 %}
10722 
10723 // Replicate scalar to packed char/short values into Double register
10724 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10725   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10726   match(Set dst (ReplicateS src));
10727   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10728   format %{ "SLLX  $src,48,$tmp\n\t"
10729             "SRLX  $tmp,16,$tmp2\n\t"
10730             "OR    $tmp,$tmp2,$tmp\n\t"
10731             "SRLX  $tmp,32,$tmp2\n\t"
10732             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10733             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10734   ins_encode %{
10735     Register Rsrc = $src$$Register;
10736     Register Rtmp = $tmp$$Register;
10737     Register Rtmp2 = $tmp2$$Register;
10738     __ sllx(Rsrc,    48, Rtmp);
10739     __ srlx(Rtmp,    16, Rtmp2);
10740     __ or3 (Rtmp, Rtmp2, Rtmp);
10741     __ srlx(Rtmp,    32, Rtmp2);
10742     __ or3 (Rtmp, Rtmp2, Rtmp);
10743     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10744   %}
10745   ins_pipe(ialu_reg);
10746 %}
10747 
10748 // Replicate scalar to packed char/short values into Double stack
10749 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10750   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10751   match(Set dst (ReplicateS src));
10752   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10753   format %{ "SLLX  $src,48,$tmp\n\t"
10754             "SRLX  $tmp,16,$tmp2\n\t"
10755             "OR    $tmp,$tmp2,$tmp\n\t"
10756             "SRLX  $tmp,32,$tmp2\n\t"
10757             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10758             "STX   $tmp,$dst\t! regL to stkD" %}
10759   ins_encode %{
10760     Register Rsrc = $src$$Register;
10761     Register Rtmp = $tmp$$Register;
10762     Register Rtmp2 = $tmp2$$Register;
10763     __ sllx(Rsrc,    48, Rtmp);
10764     __ srlx(Rtmp,    16, Rtmp2);
10765     __ or3 (Rtmp, Rtmp2, Rtmp);
10766     __ srlx(Rtmp,    32, Rtmp2);
10767     __ or3 (Rtmp, Rtmp2, Rtmp);
10768     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10769     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10770   %}
10771   ins_pipe(ialu_reg);
10772 %}
10773 
10774 // Replicate scalar constant to packed char/short values in Double register
10775 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10776   predicate(n->as_Vector()->length() == 4);
10777   match(Set dst (ReplicateS con));
10778   effect(KILL tmp);
10779   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10780   ins_encode %{
10781     // XXX This is a quick fix for 6833573.
10782     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10783     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10784     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10785   %}
10786   ins_pipe(loadConFD);
10787 %}
10788 
10789 // Replicate scalar to packed int values into Double register
10790 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10791   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10792   match(Set dst (ReplicateI src));
10793   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10794   format %{ "SLLX  $src,32,$tmp\n\t"
10795             "SRLX  $tmp,32,$tmp2\n\t"
10796             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10797             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10798   ins_encode %{
10799     Register Rsrc = $src$$Register;
10800     Register Rtmp = $tmp$$Register;
10801     Register Rtmp2 = $tmp2$$Register;
10802     __ sllx(Rsrc,    32, Rtmp);
10803     __ srlx(Rtmp,    32, Rtmp2);
10804     __ or3 (Rtmp, Rtmp2, Rtmp);
10805     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10806   %}
10807   ins_pipe(ialu_reg);
10808 %}
10809 
10810 // Replicate scalar to packed int values into Double stack
10811 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10812   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10813   match(Set dst (ReplicateI src));
10814   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10815   format %{ "SLLX  $src,32,$tmp\n\t"
10816             "SRLX  $tmp,32,$tmp2\n\t"
10817             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10818             "STX   $tmp,$dst\t! regL to stkD" %}
10819   ins_encode %{
10820     Register Rsrc = $src$$Register;
10821     Register Rtmp = $tmp$$Register;
10822     Register Rtmp2 = $tmp2$$Register;
10823     __ sllx(Rsrc,    32, Rtmp);
10824     __ srlx(Rtmp,    32, Rtmp2);
10825     __ or3 (Rtmp, Rtmp2, Rtmp);
10826     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10827     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10828   %}
10829   ins_pipe(ialu_reg);
10830 %}
10831 
10832 // Replicate scalar zero constant to packed int values in Double register
10833 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10834   predicate(n->as_Vector()->length() == 2);
10835   match(Set dst (ReplicateI con));
10836   effect(KILL tmp);
10837   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10838   ins_encode %{
10839     // XXX This is a quick fix for 6833573.
10840     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10841     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10842     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10843   %}
10844   ins_pipe(loadConFD);
10845 %}
10846 
10847 // Replicate scalar to packed float values into Double stack
10848 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10849   predicate(n->as_Vector()->length() == 2);
10850   match(Set dst (ReplicateF src));
10851   ins_cost(MEMORY_REF_COST*2);
10852   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10853             "STF    $src,$dst.lo" %}
10854   opcode(Assembler::stf_op3);
10855   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10856   ins_pipe(fstoreF_stk_reg);
10857 %}
10858 
10859 // Replicate scalar zero constant to packed float values in Double register
10860 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10861   predicate(n->as_Vector()->length() == 2);
10862   match(Set dst (ReplicateF con));
10863   effect(KILL tmp);
10864   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10865   ins_encode %{
10866     // XXX This is a quick fix for 6833573.
10867     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10868     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10869     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10870   %}
10871   ins_pipe(loadConFD);
10872 %}
10873 
10874 //----------PEEPHOLE RULES-----------------------------------------------------
10875 // These must follow all instruction definitions as they use the names
10876 // defined in the instructions definitions.
10877 //
10878 // peepmatch ( root_instr_name [preceding_instruction]* );
10879 //
10880 // peepconstraint %{
10881 // (instruction_number.operand_name relational_op instruction_number.operand_name
10882 //  [, ...] );
10883 // // instruction numbers are zero-based using left to right order in peepmatch
10884 //
10885 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10886 // // provide an instruction_number.operand_name for each operand that appears
10887 // // in the replacement instruction's match rule
10888 //
10889 // ---------VM FLAGS---------------------------------------------------------
10890 //
10891 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10892 //
10893 // Each peephole rule is given an identifying number starting with zero and
10894 // increasing by one in the order seen by the parser.  An individual peephole
10895 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10896 // on the command-line.
10897 //
10898 // ---------CURRENT LIMITATIONS----------------------------------------------
10899 //
10900 // Only match adjacent instructions in same basic block
10901 // Only equality constraints
10902 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10903 // Only one replacement instruction
10904 //
10905 // ---------EXAMPLE----------------------------------------------------------
10906 //
10907 // // pertinent parts of existing instructions in architecture description
10908 // instruct movI(eRegI dst, eRegI src) %{
10909 //   match(Set dst (CopyI src));
10910 // %}
10911 //
10912 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10913 //   match(Set dst (AddI dst src));
10914 //   effect(KILL cr);
10915 // %}
10916 //
10917 // // Change (inc mov) to lea
10918 // peephole %{
10919 //   // increment preceeded by register-register move
10920 //   peepmatch ( incI_eReg movI );
10921 //   // require that the destination register of the increment
10922 //   // match the destination register of the move
10923 //   peepconstraint ( 0.dst == 1.dst );
10924 //   // construct a replacement instruction that sets
10925 //   // the destination to ( move's source register + one )
10926 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10927 // %}
10928 //
10929 
10930 // // Change load of spilled value to only a spill
10931 // instruct storeI(memory mem, eRegI src) %{
10932 //   match(Set mem (StoreI mem src));
10933 // %}
10934 //
10935 // instruct loadI(eRegI dst, memory mem) %{
10936 //   match(Set dst (LoadI mem));
10937 // %}
10938 //
10939 // peephole %{
10940 //   peepmatch ( loadI storeI );
10941 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10942 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10943 // %}
10944 
10945 //----------SMARTSPILL RULES---------------------------------------------------
10946 // These must follow all instruction definitions as they use the names
10947 // defined in the instructions definitions.
10948 //
10949 // SPARC will probably not have any of these rules due to RISC instruction set.
10950 
10951 //----------PIPELINE-----------------------------------------------------------
10952 // Rules which define the behavior of the target architectures pipeline.