1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 class BiasedLockingCounters;
  29 
  30 // Contains all the definitions needed for x86 assembly code generation.
  31 
  32 // Calling convention
  33 class Argument VALUE_OBJ_CLASS_SPEC {
  34  public:
  35   enum {
  36 #ifdef _LP64
  37 #ifdef _WIN64
  38     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  39     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  40 #else
  41     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  43 #endif // _WIN64
  44     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  45     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  46 #else
  47     n_register_parameters = 0   // 0 registers used to pass arguments
  48 #endif // _LP64
  49   };
  50 };
  51 
  52 
  53 #ifdef _LP64
  54 // Symbolically name the register arguments used by the c calling convention.
  55 // Windows is different from linux/solaris. So much for standards...
  56 
  57 #ifdef _WIN64
  58 
  59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  61 REGISTER_DECLARATION(Register, c_rarg2, r8);
  62 REGISTER_DECLARATION(Register, c_rarg3, r9);
  63 
  64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  68 
  69 #else
  70 
  71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  75 REGISTER_DECLARATION(Register, c_rarg4, r8);
  76 REGISTER_DECLARATION(Register, c_rarg5, r9);
  77 
  78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  86 
  87 #endif // _WIN64
  88 
  89 // Symbolically name the register arguments used by the Java calling convention.
  90 // We have control over the convention for java so we can do what we please.
  91 // What pleases us is to offset the java calling convention so that when
  92 // we call a suitable jni method the arguments are lined up and we don't
  93 // have to do little shuffling. A suitable jni method is non-static and a
  94 // small number of arguments (two fewer args on windows)
  95 //
  96 //        |-------------------------------------------------------|
  97 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
  98 //        |-------------------------------------------------------|
  99 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 100 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 101 //        |-------------------------------------------------------|
 102 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 103 //        |-------------------------------------------------------|
 104 
 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 108 // Windows runs out of register args here
 109 #ifdef _WIN64
 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 112 #else
 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 115 #endif /* _WIN64 */
 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 117 
 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 126 
 127 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 128 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 129 
 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 132 
 133 #else
 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
 135 // Using noreg ensures if the dead code is incorrectly live and executed it
 136 // will cause an assertion failure
 137 #define rscratch1 noreg
 138 #define rscratch2 noreg
 139 
 140 #endif // _LP64
 141 
 142 // JSR 292 fixed register usages:
 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
 144 
 145 // Address is an abstraction used to represent a memory location
 146 // using any of the amd64 addressing modes with one object.
 147 //
 148 // Note: A register location is represented via a Register, not
 149 //       via an address for efficiency & simplicity reasons.
 150 
 151 class ArrayAddress;
 152 
 153 class Address VALUE_OBJ_CLASS_SPEC {
 154  public:
 155   enum ScaleFactor {
 156     no_scale = -1,
 157     times_1  =  0,
 158     times_2  =  1,
 159     times_4  =  2,
 160     times_8  =  3,
 161     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 162   };
 163   static ScaleFactor times(int size) {
 164     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 165     if (size == 8)  return times_8;
 166     if (size == 4)  return times_4;
 167     if (size == 2)  return times_2;
 168     return times_1;
 169   }
 170   static int scale_size(ScaleFactor scale) {
 171     assert(scale != no_scale, "");
 172     assert(((1 << (int)times_1) == 1 &&
 173             (1 << (int)times_2) == 2 &&
 174             (1 << (int)times_4) == 4 &&
 175             (1 << (int)times_8) == 8), "");
 176     return (1 << (int)scale);
 177   }
 178 
 179  private:
 180   Register         _base;
 181   Register         _index;
 182   ScaleFactor      _scale;
 183   int              _disp;
 184   RelocationHolder _rspec;
 185 
 186   // Easily misused constructors make them private
 187   // %%% can we make these go away?
 188   NOT_LP64(Address(address loc, RelocationHolder spec);)
 189   Address(int disp, address loc, relocInfo::relocType rtype);
 190   Address(int disp, address loc, RelocationHolder spec);
 191 
 192  public:
 193 
 194  int disp() { return _disp; }
 195   // creation
 196   Address()
 197     : _base(noreg),
 198       _index(noreg),
 199       _scale(no_scale),
 200       _disp(0) {
 201   }
 202 
 203   // No default displacement otherwise Register can be implicitly
 204   // converted to 0(Register) which is quite a different animal.
 205 
 206   Address(Register base, int disp)
 207     : _base(base),
 208       _index(noreg),
 209       _scale(no_scale),
 210       _disp(disp) {
 211   }
 212 
 213   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 214     : _base (base),
 215       _index(index),
 216       _scale(scale),
 217       _disp (disp) {
 218     assert(!index->is_valid() == (scale == Address::no_scale),
 219            "inconsistent address");
 220   }
 221 
 222   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 223     : _base (base),
 224       _index(index.register_or_noreg()),
 225       _scale(scale),
 226       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 227     if (!index.is_register())  scale = Address::no_scale;
 228     assert(!_index->is_valid() == (scale == Address::no_scale),
 229            "inconsistent address");
 230   }
 231 
 232   Address plus_disp(int disp) const {
 233     Address a = (*this);
 234     a._disp += disp;
 235     return a;
 236   }
 237   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 238     Address a = (*this);
 239     a._disp += disp.constant_or_zero() * scale_size(scale);
 240     if (disp.is_register()) {
 241       assert(!a.index()->is_valid(), "competing indexes");
 242       a._index = disp.as_register();
 243       a._scale = scale;
 244     }
 245     return a;
 246   }
 247   bool is_same_address(Address a) const {
 248     // disregard _rspec
 249     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 250   }
 251 
 252   // The following two overloads are used in connection with the
 253   // ByteSize type (see sizes.hpp).  They simplify the use of
 254   // ByteSize'd arguments in assembly code. Note that their equivalent
 255   // for the optimized build are the member functions with int disp
 256   // argument since ByteSize is mapped to an int type in that case.
 257   //
 258   // Note: DO NOT introduce similar overloaded functions for WordSize
 259   // arguments as in the optimized mode, both ByteSize and WordSize
 260   // are mapped to the same type and thus the compiler cannot make a
 261   // distinction anymore (=> compiler errors).
 262 
 263 #ifdef ASSERT
 264   Address(Register base, ByteSize disp)
 265     : _base(base),
 266       _index(noreg),
 267       _scale(no_scale),
 268       _disp(in_bytes(disp)) {
 269   }
 270 
 271   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 272     : _base(base),
 273       _index(index),
 274       _scale(scale),
 275       _disp(in_bytes(disp)) {
 276     assert(!index->is_valid() == (scale == Address::no_scale),
 277            "inconsistent address");
 278   }
 279 
 280   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 281     : _base (base),
 282       _index(index.register_or_noreg()),
 283       _scale(scale),
 284       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 285     if (!index.is_register())  scale = Address::no_scale;
 286     assert(!_index->is_valid() == (scale == Address::no_scale),
 287            "inconsistent address");
 288   }
 289 
 290 #endif // ASSERT
 291 
 292   // accessors
 293   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 294   Register    base()             const { return _base;  }
 295   Register    index()            const { return _index; }
 296   ScaleFactor scale()            const { return _scale; }
 297   int         disp()             const { return _disp;  }
 298 
 299   // Convert the raw encoding form into the form expected by the constructor for
 300   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 301   // that to noreg for the Address constructor.
 302   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
 303 
 304   static Address make_array(ArrayAddress);
 305 
 306  private:
 307   bool base_needs_rex() const {
 308     return _base != noreg && _base->encoding() >= 8;
 309   }
 310 
 311   bool index_needs_rex() const {
 312     return _index != noreg &&_index->encoding() >= 8;
 313   }
 314 
 315   relocInfo::relocType reloc() const { return _rspec.type(); }
 316 
 317   friend class Assembler;
 318   friend class MacroAssembler;
 319   friend class LIR_Assembler; // base/index/scale/disp
 320 };
 321 
 322 //
 323 // AddressLiteral has been split out from Address because operands of this type
 324 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 325 // the few instructions that need to deal with address literals are unique and the
 326 // MacroAssembler does not have to implement every instruction in the Assembler
 327 // in order to search for address literals that may need special handling depending
 328 // on the instruction and the platform. As small step on the way to merging i486/amd64
 329 // directories.
 330 //
 331 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 332   friend class ArrayAddress;
 333   RelocationHolder _rspec;
 334   // Typically we use AddressLiterals we want to use their rval
 335   // However in some situations we want the lval (effect address) of the item.
 336   // We provide a special factory for making those lvals.
 337   bool _is_lval;
 338 
 339   // If the target is far we'll need to load the ea of this to
 340   // a register to reach it. Otherwise if near we can do rip
 341   // relative addressing.
 342 
 343   address          _target;
 344 
 345  protected:
 346   // creation
 347   AddressLiteral()
 348     : _is_lval(false),
 349       _target(NULL)
 350   {}
 351 
 352   public:
 353 
 354 
 355   AddressLiteral(address target, relocInfo::relocType rtype);
 356 
 357   AddressLiteral(address target, RelocationHolder const& rspec)
 358     : _rspec(rspec),
 359       _is_lval(false),
 360       _target(target)
 361   {}
 362 
 363   AddressLiteral addr() {
 364     AddressLiteral ret = *this;
 365     ret._is_lval = true;
 366     return ret;
 367   }
 368 
 369 
 370  private:
 371 
 372   address target() { return _target; }
 373   bool is_lval() { return _is_lval; }
 374 
 375   relocInfo::relocType reloc() const { return _rspec.type(); }
 376   const RelocationHolder& rspec() const { return _rspec; }
 377 
 378   friend class Assembler;
 379   friend class MacroAssembler;
 380   friend class Address;
 381   friend class LIR_Assembler;
 382 };
 383 
 384 // Convience classes
 385 class RuntimeAddress: public AddressLiteral {
 386 
 387   public:
 388 
 389   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 390 
 391 };
 392 
 393 class ExternalAddress: public AddressLiteral {
 394  private:
 395   static relocInfo::relocType reloc_for_target(address target) {
 396     // Sometimes ExternalAddress is used for values which aren't
 397     // exactly addresses, like the card table base.
 398     // external_word_type can't be used for values in the first page
 399     // so just skip the reloc in that case.
 400     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 401   }
 402 
 403  public:
 404 
 405   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 406 
 407 };
 408 
 409 class InternalAddress: public AddressLiteral {
 410 
 411   public:
 412 
 413   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 414 
 415 };
 416 
 417 // x86 can do array addressing as a single operation since disp can be an absolute
 418 // address amd64 can't. We create a class that expresses the concept but does extra
 419 // magic on amd64 to get the final result
 420 
 421 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 422   private:
 423 
 424   AddressLiteral _base;
 425   Address        _index;
 426 
 427   public:
 428 
 429   ArrayAddress() {};
 430   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 431   AddressLiteral base() { return _base; }
 432   Address index() { return _index; }
 433 
 434 };
 435 
 436 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 437 
 438 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 439 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 440 // is what you get. The Assembler is generating code into a CodeBuffer.
 441 
 442 class Assembler : public AbstractAssembler  {
 443   friend class AbstractAssembler; // for the non-virtual hack
 444   friend class LIR_Assembler; // as_Address()
 445   friend class StubGenerator;
 446 
 447  public:
 448   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 449     zero          = 0x4,
 450     notZero       = 0x5,
 451     equal         = 0x4,
 452     notEqual      = 0x5,
 453     less          = 0xc,
 454     lessEqual     = 0xe,
 455     greater       = 0xf,
 456     greaterEqual  = 0xd,
 457     below         = 0x2,
 458     belowEqual    = 0x6,
 459     above         = 0x7,
 460     aboveEqual    = 0x3,
 461     overflow      = 0x0,
 462     noOverflow    = 0x1,
 463     carrySet      = 0x2,
 464     carryClear    = 0x3,
 465     negative      = 0x8,
 466     positive      = 0x9,
 467     parity        = 0xa,
 468     noParity      = 0xb
 469   };
 470 
 471   enum Prefix {
 472     // segment overrides
 473     CS_segment = 0x2e,
 474     SS_segment = 0x36,
 475     DS_segment = 0x3e,
 476     ES_segment = 0x26,
 477     FS_segment = 0x64,
 478     GS_segment = 0x65,
 479 
 480     REX        = 0x40,
 481 
 482     REX_B      = 0x41,
 483     REX_X      = 0x42,
 484     REX_XB     = 0x43,
 485     REX_R      = 0x44,
 486     REX_RB     = 0x45,
 487     REX_RX     = 0x46,
 488     REX_RXB    = 0x47,
 489 
 490     REX_W      = 0x48,
 491 
 492     REX_WB     = 0x49,
 493     REX_WX     = 0x4A,
 494     REX_WXB    = 0x4B,
 495     REX_WR     = 0x4C,
 496     REX_WRB    = 0x4D,
 497     REX_WRX    = 0x4E,
 498     REX_WRXB   = 0x4F,
 499 
 500     VEX_3bytes = 0xC4,
 501     VEX_2bytes = 0xC5
 502   };
 503 
 504   enum VexPrefix {
 505     VEX_B = 0x20,
 506     VEX_X = 0x40,
 507     VEX_R = 0x80,
 508     VEX_W = 0x80
 509   };
 510 
 511   enum VexSimdPrefix {
 512     VEX_SIMD_NONE = 0x0,
 513     VEX_SIMD_66   = 0x1,
 514     VEX_SIMD_F3   = 0x2,
 515     VEX_SIMD_F2   = 0x3
 516   };
 517 
 518   enum VexOpcode {
 519     VEX_OPCODE_NONE  = 0x0,
 520     VEX_OPCODE_0F    = 0x1,
 521     VEX_OPCODE_0F_38 = 0x2,
 522     VEX_OPCODE_0F_3A = 0x3
 523   };
 524 
 525   enum WhichOperand {
 526     // input to locate_operand, and format code for relocations
 527     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 528     disp32_operand = 1,          // embedded 32-bit displacement or address
 529     call32_operand = 2,          // embedded 32-bit self-relative displacement
 530 #ifndef _LP64
 531     _WhichOperand_limit = 3
 532 #else
 533      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 534     _WhichOperand_limit = 4
 535 #endif
 536   };
 537 
 538 
 539 
 540   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 541   // of instructions are freely declared without the need for wrapping them an ifdef.
 542   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 543   // In the .cpp file the implementations are wrapped so that they are dropped out
 544   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
 545   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 546   //
 547   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 548   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 549 
 550 private:
 551 
 552 
 553   // 64bit prefixes
 554   int prefix_and_encode(int reg_enc, bool byteinst = false);
 555   int prefixq_and_encode(int reg_enc);
 556 
 557   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 558   int prefixq_and_encode(int dst_enc, int src_enc);
 559 
 560   void prefix(Register reg);
 561   void prefix(Address adr);
 562   void prefixq(Address adr);
 563 
 564   void prefix(Address adr, Register reg,  bool byteinst = false);
 565   void prefix(Address adr, XMMRegister reg);
 566   void prefixq(Address adr, Register reg);
 567   void prefixq(Address adr, XMMRegister reg);
 568 
 569   void prefetch_prefix(Address src);
 570 
 571   void rex_prefix(Address adr, XMMRegister xreg,
 572                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 573   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 574                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 575 
 576   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
 577                   int nds_enc, VexSimdPrefix pre, VexOpcode opc,
 578                   bool vector256);
 579 
 580   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 581                   VexSimdPrefix pre, VexOpcode opc,
 582                   bool vex_w, bool vector256);
 583 
 584   void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
 585                   VexSimdPrefix pre, bool vector256 = false) {
 586     int dst_enc = dst->encoding();
 587     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 588     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
 589   }
 590 
 591   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 592                              VexSimdPrefix pre, VexOpcode opc,
 593                              bool vex_w, bool vector256);
 594 
 595   int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 596                              VexSimdPrefix pre, bool vector256 = false,
 597                              VexOpcode opc = VEX_OPCODE_0F) {
 598     int src_enc = src->encoding();
 599     int dst_enc = dst->encoding();
 600     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 601     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
 602   }
 603 
 604   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
 605                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 606                    bool rex_w = false, bool vector256 = false);
 607 
 608   void simd_prefix(XMMRegister dst, Address src,
 609                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 610     simd_prefix(dst, xnoreg, src, pre, opc);
 611   }
 612 
 613   void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
 614     simd_prefix(src, dst, pre);
 615   }
 616   void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
 617                      VexSimdPrefix pre) {
 618     bool rex_w = true;
 619     simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
 620   }
 621 
 622   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 623                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 624                              bool rex_w = false, bool vector256 = false);
 625 
 626   // Move/convert 32-bit integer value.
 627   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
 628                              VexSimdPrefix pre) {
 629     // It is OK to cast from Register to XMMRegister to pass argument here
 630     // since only encoding is used in simd_prefix_and_encode() and number of
 631     // Gen and Xmm registers are the same.
 632     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
 633   }
 634   int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
 635     return simd_prefix_and_encode(dst, xnoreg, src, pre);
 636   }
 637   int simd_prefix_and_encode(Register dst, XMMRegister src,
 638                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 639     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
 640   }
 641 
 642   // Move/convert 64-bit integer value.
 643   int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
 644                                VexSimdPrefix pre) {
 645     bool rex_w = true;
 646     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
 647   }
 648   int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
 649     return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
 650   }
 651   int simd_prefix_and_encode_q(Register dst, XMMRegister src,
 652                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 653     bool rex_w = true;
 654     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
 655   }
 656 
 657   // Helper functions for groups of instructions
 658   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 659 
 660   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 661   // Force generation of a 4 byte immediate value even if it fits into 8bit
 662   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 663   void emit_arith(int op1, int op2, Register dst, Register src);
 664 
 665   void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
 666   void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
 667   void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
 668   void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
 669   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 670                       Address src, VexSimdPrefix pre, bool vector256);
 671   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 672                       XMMRegister src, VexSimdPrefix pre, bool vector256);
 673 
 674   void emit_operand(Register reg,
 675                     Register base, Register index, Address::ScaleFactor scale,
 676                     int disp,
 677                     RelocationHolder const& rspec,
 678                     int rip_relative_correction = 0);
 679 
 680   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 681 
 682   // operands that only take the original 32bit registers
 683   void emit_operand32(Register reg, Address adr);
 684 
 685   void emit_operand(XMMRegister reg,
 686                     Register base, Register index, Address::ScaleFactor scale,
 687                     int disp,
 688                     RelocationHolder const& rspec);
 689 
 690   void emit_operand(XMMRegister reg, Address adr);
 691 
 692   void emit_operand(MMXRegister reg, Address adr);
 693 
 694   // workaround gcc (3.2.1-7) bug
 695   void emit_operand(Address adr, MMXRegister reg);
 696 
 697 
 698   // Immediate-to-memory forms
 699   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 700 
 701   void emit_farith(int b1, int b2, int i);
 702 
 703 
 704  protected:
 705   #ifdef ASSERT
 706   void check_relocation(RelocationHolder const& rspec, int format);
 707   #endif
 708 
 709   inline void emit_long64(jlong x);
 710 
 711   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 712   void emit_data(jint data, RelocationHolder const& rspec, int format);
 713   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 714   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 715 
 716   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 717 
 718   // These are all easily abused and hence protected
 719 
 720   // 32BIT ONLY SECTION
 721 #ifndef _LP64
 722   // Make these disappear in 64bit mode since they would never be correct
 723   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 724   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 725 
 726   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 727   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 728 
 729   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 730 #else
 731   // 64BIT ONLY SECTION
 732   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 733 
 734   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 735   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 736 
 737   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 738   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 739 #endif // _LP64
 740 
 741   // These are unique in that we are ensured by the caller that the 32bit
 742   // relative in these instructions will always be able to reach the potentially
 743   // 64bit address described by entry. Since they can take a 64bit address they
 744   // don't have the 32 suffix like the other instructions in this class.
 745 
 746   void call_literal(address entry, RelocationHolder const& rspec);
 747   void jmp_literal(address entry, RelocationHolder const& rspec);
 748 
 749   // Avoid using directly section
 750   // Instructions in this section are actually usable by anyone without danger
 751   // of failure but have performance issues that are addressed my enhanced
 752   // instructions which will do the proper thing base on the particular cpu.
 753   // We protect them because we don't trust you...
 754 
 755   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 756   // could cause a partial flag stall since they don't set CF flag.
 757   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 758   // which call inc() & dec() or add() & sub() in accordance with
 759   // the product flag UseIncDec value.
 760 
 761   void decl(Register dst);
 762   void decl(Address dst);
 763   void decq(Register dst);
 764   void decq(Address dst);
 765 
 766   void incl(Register dst);
 767   void incl(Address dst);
 768   void incq(Register dst);
 769   void incq(Address dst);
 770 
 771   // New cpus require use of movsd and movss to avoid partial register stall
 772   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 773   // The selection is done in MacroAssembler::movdbl() and movflt().
 774 
 775   // Move Scalar Single-Precision Floating-Point Values
 776   void movss(XMMRegister dst, Address src);
 777   void movss(XMMRegister dst, XMMRegister src);
 778   void movss(Address dst, XMMRegister src);
 779 
 780   // Move Scalar Double-Precision Floating-Point Values
 781   void movsd(XMMRegister dst, Address src);
 782   void movsd(XMMRegister dst, XMMRegister src);
 783   void movsd(Address dst, XMMRegister src);
 784   void movlpd(XMMRegister dst, Address src);
 785 
 786   // New cpus require use of movaps and movapd to avoid partial register stall
 787   // when moving between registers.
 788   void movaps(XMMRegister dst, XMMRegister src);
 789   void movapd(XMMRegister dst, XMMRegister src);
 790 
 791   // End avoid using directly
 792 
 793 
 794   // Instruction prefixes
 795   void prefix(Prefix p);
 796 
 797   public:
 798 
 799   // Creation
 800   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
 801 
 802   // Decoding
 803   static address locate_operand(address inst, WhichOperand which);
 804   static address locate_next_instruction(address inst);
 805 
 806   // Utilities
 807   static bool is_polling_page_far() NOT_LP64({ return false;});
 808 
 809   // Generic instructions
 810   // Does 32bit or 64bit as needed for the platform. In some sense these
 811   // belong in macro assembler but there is no need for both varieties to exist
 812 
 813   void lea(Register dst, Address src);
 814 
 815   void mov(Register dst, Register src);
 816 
 817   void pusha();
 818   void popa();
 819 
 820   void pushf();
 821   void popf();
 822 
 823   void push(int32_t imm32);
 824 
 825   void push(Register src);
 826 
 827   void pop(Register dst);
 828 
 829   // These are dummies to prevent surprise implicit conversions to Register
 830   void push(void* v);
 831   void pop(void* v);
 832 
 833   // These do register sized moves/scans
 834   void rep_mov();
 835   void rep_set();
 836   void repne_scan();
 837 #ifdef _LP64
 838   void repne_scanl();
 839 #endif
 840 
 841   // Vanilla instructions in lexical order
 842 
 843   void adcl(Address dst, int32_t imm32);
 844   void adcl(Address dst, Register src);
 845   void adcl(Register dst, int32_t imm32);
 846   void adcl(Register dst, Address src);
 847   void adcl(Register dst, Register src);
 848 
 849   void adcq(Register dst, int32_t imm32);
 850   void adcq(Register dst, Address src);
 851   void adcq(Register dst, Register src);
 852 
 853   void addl(Address dst, int32_t imm32);
 854   void addl(Address dst, Register src);
 855   void addl(Register dst, int32_t imm32);
 856   void addl(Register dst, Address src);
 857   void addl(Register dst, Register src);
 858 
 859   void addq(Address dst, int32_t imm32);
 860   void addq(Address dst, Register src);
 861   void addq(Register dst, int32_t imm32);
 862   void addq(Register dst, Address src);
 863   void addq(Register dst, Register src);
 864 
 865   void addr_nop_4();
 866   void addr_nop_5();
 867   void addr_nop_7();
 868   void addr_nop_8();
 869 
 870   // Add Scalar Double-Precision Floating-Point Values
 871   void addsd(XMMRegister dst, Address src);
 872   void addsd(XMMRegister dst, XMMRegister src);
 873 
 874   // Add Scalar Single-Precision Floating-Point Values
 875   void addss(XMMRegister dst, Address src);
 876   void addss(XMMRegister dst, XMMRegister src);
 877 
 878   void andl(Address  dst, int32_t imm32);
 879   void andl(Register dst, int32_t imm32);
 880   void andl(Register dst, Address src);
 881   void andl(Register dst, Register src);
 882 
 883   void andq(Address  dst, int32_t imm32);
 884   void andq(Register dst, int32_t imm32);
 885   void andq(Register dst, Address src);
 886   void andq(Register dst, Register src);
 887 
 888   void bsfl(Register dst, Register src);
 889   void bsrl(Register dst, Register src);
 890 
 891 #ifdef _LP64
 892   void bsfq(Register dst, Register src);
 893   void bsrq(Register dst, Register src);
 894 #endif
 895 
 896   void bswapl(Register reg);
 897 
 898   void bswapq(Register reg);
 899 
 900   void call(Label& L, relocInfo::relocType rtype);
 901   void call(Register reg);  // push pc; pc <- reg
 902   void call(Address adr);   // push pc; pc <- adr
 903 
 904   void cdql();
 905 
 906   void cdqq();
 907 
 908   void cld() { emit_byte(0xfc); }
 909 
 910   void clflush(Address adr);
 911 
 912   void cmovl(Condition cc, Register dst, Register src);
 913   void cmovl(Condition cc, Register dst, Address src);
 914 
 915   void cmovq(Condition cc, Register dst, Register src);
 916   void cmovq(Condition cc, Register dst, Address src);
 917 
 918 
 919   void cmpb(Address dst, int imm8);
 920 
 921   void cmpl(Address dst, int32_t imm32);
 922 
 923   void cmpl(Register dst, int32_t imm32);
 924   void cmpl(Register dst, Register src);
 925   void cmpl(Register dst, Address src);
 926 
 927   void cmpq(Address dst, int32_t imm32);
 928   void cmpq(Address dst, Register src);
 929 
 930   void cmpq(Register dst, int32_t imm32);
 931   void cmpq(Register dst, Register src);
 932   void cmpq(Register dst, Address src);
 933 
 934   // these are dummies used to catch attempting to convert NULL to Register
 935   void cmpl(Register dst, void* junk); // dummy
 936   void cmpq(Register dst, void* junk); // dummy
 937 
 938   void cmpw(Address dst, int imm16);
 939 
 940   void cmpxchg8 (Address adr);
 941 
 942   void cmpxchgl(Register reg, Address adr);
 943 
 944   void cmpxchgq(Register reg, Address adr);
 945 
 946   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
 947   void comisd(XMMRegister dst, Address src);
 948   void comisd(XMMRegister dst, XMMRegister src);
 949 
 950   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
 951   void comiss(XMMRegister dst, Address src);
 952   void comiss(XMMRegister dst, XMMRegister src);
 953 
 954   // Identify processor type and features
 955   void cpuid() {
 956     emit_byte(0x0F);
 957     emit_byte(0xA2);
 958   }
 959 
 960   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
 961   void cvtsd2ss(XMMRegister dst, XMMRegister src);
 962   void cvtsd2ss(XMMRegister dst, Address src);
 963 
 964   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
 965   void cvtsi2sdl(XMMRegister dst, Register src);
 966   void cvtsi2sdl(XMMRegister dst, Address src);
 967   void cvtsi2sdq(XMMRegister dst, Register src);
 968   void cvtsi2sdq(XMMRegister dst, Address src);
 969 
 970   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
 971   void cvtsi2ssl(XMMRegister dst, Register src);
 972   void cvtsi2ssl(XMMRegister dst, Address src);
 973   void cvtsi2ssq(XMMRegister dst, Register src);
 974   void cvtsi2ssq(XMMRegister dst, Address src);
 975 
 976   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
 977   void cvtdq2pd(XMMRegister dst, XMMRegister src);
 978 
 979   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
 980   void cvtdq2ps(XMMRegister dst, XMMRegister src);
 981 
 982   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
 983   void cvtss2sd(XMMRegister dst, XMMRegister src);
 984   void cvtss2sd(XMMRegister dst, Address src);
 985 
 986   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
 987   void cvttsd2sil(Register dst, Address src);
 988   void cvttsd2sil(Register dst, XMMRegister src);
 989   void cvttsd2siq(Register dst, XMMRegister src);
 990 
 991   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
 992   void cvttss2sil(Register dst, XMMRegister src);
 993   void cvttss2siq(Register dst, XMMRegister src);
 994 
 995   // Divide Scalar Double-Precision Floating-Point Values
 996   void divsd(XMMRegister dst, Address src);
 997   void divsd(XMMRegister dst, XMMRegister src);
 998 
 999   // Divide Scalar Single-Precision Floating-Point Values
1000   void divss(XMMRegister dst, Address src);
1001   void divss(XMMRegister dst, XMMRegister src);
1002 
1003   void emms();
1004 
1005   void fabs();
1006 
1007   void fadd(int i);
1008 
1009   void fadd_d(Address src);
1010   void fadd_s(Address src);
1011 
1012   // "Alternate" versions of x87 instructions place result down in FPU
1013   // stack instead of on TOS
1014 
1015   void fadda(int i); // "alternate" fadd
1016   void faddp(int i = 1);
1017 
1018   void fchs();
1019 
1020   void fcom(int i);
1021 
1022   void fcomp(int i = 1);
1023   void fcomp_d(Address src);
1024   void fcomp_s(Address src);
1025 
1026   void fcompp();
1027 
1028   void fcos();
1029 
1030   void fdecstp();
1031 
1032   void fdiv(int i);
1033   void fdiv_d(Address src);
1034   void fdivr_s(Address src);
1035   void fdiva(int i);  // "alternate" fdiv
1036   void fdivp(int i = 1);
1037 
1038   void fdivr(int i);
1039   void fdivr_d(Address src);
1040   void fdiv_s(Address src);
1041 
1042   void fdivra(int i); // "alternate" reversed fdiv
1043 
1044   void fdivrp(int i = 1);
1045 
1046   void ffree(int i = 0);
1047 
1048   void fild_d(Address adr);
1049   void fild_s(Address adr);
1050 
1051   void fincstp();
1052 
1053   void finit();
1054 
1055   void fist_s (Address adr);
1056   void fistp_d(Address adr);
1057   void fistp_s(Address adr);
1058 
1059   void fld1();
1060 
1061   void fld_d(Address adr);
1062   void fld_s(Address adr);
1063   void fld_s(int index);
1064   void fld_x(Address adr);  // extended-precision (80-bit) format
1065 
1066   void fldcw(Address src);
1067 
1068   void fldenv(Address src);
1069 
1070   void fldlg2();
1071 
1072   void fldln2();
1073 
1074   void fldz();
1075 
1076   void flog();
1077   void flog10();
1078 
1079   void fmul(int i);
1080 
1081   void fmul_d(Address src);
1082   void fmul_s(Address src);
1083 
1084   void fmula(int i);  // "alternate" fmul
1085 
1086   void fmulp(int i = 1);
1087 
1088   void fnsave(Address dst);
1089 
1090   void fnstcw(Address src);
1091 
1092   void fnstsw_ax();
1093 
1094   void fprem();
1095   void fprem1();
1096 
1097   void frstor(Address src);
1098 
1099   void fsin();
1100 
1101   void fsqrt();
1102 
1103   void fst_d(Address adr);
1104   void fst_s(Address adr);
1105 
1106   void fstp_d(Address adr);
1107   void fstp_d(int index);
1108   void fstp_s(Address adr);
1109   void fstp_x(Address adr); // extended-precision (80-bit) format
1110 
1111   void fsub(int i);
1112   void fsub_d(Address src);
1113   void fsub_s(Address src);
1114 
1115   void fsuba(int i);  // "alternate" fsub
1116 
1117   void fsubp(int i = 1);
1118 
1119   void fsubr(int i);
1120   void fsubr_d(Address src);
1121   void fsubr_s(Address src);
1122 
1123   void fsubra(int i); // "alternate" reversed fsub
1124 
1125   void fsubrp(int i = 1);
1126 
1127   void ftan();
1128 
1129   void ftst();
1130 
1131   void fucomi(int i = 1);
1132   void fucomip(int i = 1);
1133 
1134   void fwait();
1135 
1136   void fxch(int i = 1);
1137 
1138   void fxrstor(Address src);
1139 
1140   void fxsave(Address dst);
1141 
1142   void fyl2x();
1143   void frndint();
1144   void f2xm1();
1145   void fldl2e();
1146 
1147   void hlt();
1148 
1149   void idivl(Register src);
1150   void divl(Register src); // Unsigned division
1151 
1152   void idivq(Register src);
1153 
1154   void imull(Register dst, Register src);
1155   void imull(Register dst, Register src, int value);
1156 
1157   void imulq(Register dst, Register src);
1158   void imulq(Register dst, Register src, int value);
1159 
1160 
1161   // jcc is the generic conditional branch generator to run-
1162   // time routines, jcc is used for branches to labels. jcc
1163   // takes a branch opcode (cc) and a label (L) and generates
1164   // either a backward branch or a forward branch and links it
1165   // to the label fixup chain. Usage:
1166   //
1167   // Label L;      // unbound label
1168   // jcc(cc, L);   // forward branch to unbound label
1169   // bind(L);      // bind label to the current pc
1170   // jcc(cc, L);   // backward branch to bound label
1171   // bind(L);      // illegal: a label may be bound only once
1172   //
1173   // Note: The same Label can be used for forward and backward branches
1174   // but it may be bound only once.
1175 
1176   void jcc(Condition cc, Label& L, bool maybe_short = true);
1177 
1178   // Conditional jump to a 8-bit offset to L.
1179   // WARNING: be very careful using this for forward jumps.  If the label is
1180   // not bound within an 8-bit offset of this instruction, a run-time error
1181   // will occur.
1182   void jccb(Condition cc, Label& L);
1183 
1184   void jmp(Address entry);    // pc <- entry
1185 
1186   // Label operations & relative jumps (PPUM Appendix D)
1187   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1188 
1189   void jmp(Register entry); // pc <- entry
1190 
1191   // Unconditional 8-bit offset jump to L.
1192   // WARNING: be very careful using this for forward jumps.  If the label is
1193   // not bound within an 8-bit offset of this instruction, a run-time error
1194   // will occur.
1195   void jmpb(Label& L);
1196 
1197   void ldmxcsr( Address src );
1198 
1199   void leal(Register dst, Address src);
1200 
1201   void leaq(Register dst, Address src);
1202 
1203   void lfence() {
1204     emit_byte(0x0F);
1205     emit_byte(0xAE);
1206     emit_byte(0xE8);
1207   }
1208 
1209   void lock();
1210 
1211   void lzcntl(Register dst, Register src);
1212 
1213 #ifdef _LP64
1214   void lzcntq(Register dst, Register src);
1215 #endif
1216 
1217   enum Membar_mask_bits {
1218     StoreStore = 1 << 3,
1219     LoadStore  = 1 << 2,
1220     StoreLoad  = 1 << 1,
1221     LoadLoad   = 1 << 0
1222   };
1223 
1224   // Serializes memory and blows flags
1225   void membar(Membar_mask_bits order_constraint) {
1226     if (os::is_MP()) {
1227       // We only have to handle StoreLoad
1228       if (order_constraint & StoreLoad) {
1229         // All usable chips support "locked" instructions which suffice
1230         // as barriers, and are much faster than the alternative of
1231         // using cpuid instruction. We use here a locked add [esp],0.
1232         // This is conveniently otherwise a no-op except for blowing
1233         // flags.
1234         // Any change to this code may need to revisit other places in
1235         // the code where this idiom is used, in particular the
1236         // orderAccess code.
1237         lock();
1238         addl(Address(rsp, 0), 0);// Assert the lock# signal here
1239       }
1240     }
1241   }
1242 
1243   void mfence();
1244 
1245   // Moves
1246 
1247   void mov64(Register dst, int64_t imm64);
1248 
1249   void movb(Address dst, Register src);
1250   void movb(Address dst, int imm8);
1251   void movb(Register dst, Address src);
1252 
1253   void movdl(XMMRegister dst, Register src);
1254   void movdl(Register dst, XMMRegister src);
1255   void movdl(XMMRegister dst, Address src);
1256   void movdl(Address dst, XMMRegister src);
1257 
1258   // Move Double Quadword
1259   void movdq(XMMRegister dst, Register src);
1260   void movdq(Register dst, XMMRegister src);
1261 
1262   // Move Aligned Double Quadword
1263   void movdqa(XMMRegister dst, XMMRegister src);
1264 
1265   // Move Unaligned Double Quadword
1266   void movdqu(Address     dst, XMMRegister src);
1267   void movdqu(XMMRegister dst, Address src);
1268   void movdqu(XMMRegister dst, XMMRegister src);
1269 
1270   // Move Unaligned 256bit Vector
1271   void vmovdqu(Address dst, XMMRegister src);
1272   void vmovdqu(XMMRegister dst, Address src);
1273   void vmovdqu(XMMRegister dst, XMMRegister src);
1274 
1275   // Move lower 64bit to high 64bit in 128bit register
1276   void movlhps(XMMRegister dst, XMMRegister src);
1277 
1278   void movl(Register dst, int32_t imm32);
1279   void movl(Address dst, int32_t imm32);
1280   void movl(Register dst, Register src);
1281   void movl(Register dst, Address src);
1282   void movl(Address dst, Register src);
1283 
1284   // These dummies prevent using movl from converting a zero (like NULL) into Register
1285   // by giving the compiler two choices it can't resolve
1286 
1287   void movl(Address  dst, void* junk);
1288   void movl(Register dst, void* junk);
1289 
1290 #ifdef _LP64
1291   void movq(Register dst, Register src);
1292   void movq(Register dst, Address src);
1293   void movq(Address  dst, Register src);
1294 #endif
1295 
1296   void movq(Address     dst, MMXRegister src );
1297   void movq(MMXRegister dst, Address src );
1298 
1299 #ifdef _LP64
1300   // These dummies prevent using movq from converting a zero (like NULL) into Register
1301   // by giving the compiler two choices it can't resolve
1302 
1303   void movq(Address  dst, void* dummy);
1304   void movq(Register dst, void* dummy);
1305 #endif
1306 
1307   // Move Quadword
1308   void movq(Address     dst, XMMRegister src);
1309   void movq(XMMRegister dst, Address src);
1310 
1311   void movsbl(Register dst, Address src);
1312   void movsbl(Register dst, Register src);
1313 
1314 #ifdef _LP64
1315   void movsbq(Register dst, Address src);
1316   void movsbq(Register dst, Register src);
1317 
1318   // Move signed 32bit immediate to 64bit extending sign
1319   void movslq(Address  dst, int32_t imm64);
1320   void movslq(Register dst, int32_t imm64);
1321 
1322   void movslq(Register dst, Address src);
1323   void movslq(Register dst, Register src);
1324   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1325 #endif
1326 
1327   void movswl(Register dst, Address src);
1328   void movswl(Register dst, Register src);
1329 
1330 #ifdef _LP64
1331   void movswq(Register dst, Address src);
1332   void movswq(Register dst, Register src);
1333 #endif
1334 
1335   void movw(Address dst, int imm16);
1336   void movw(Register dst, Address src);
1337   void movw(Address dst, Register src);
1338 
1339   void movzbl(Register dst, Address src);
1340   void movzbl(Register dst, Register src);
1341 
1342 #ifdef _LP64
1343   void movzbq(Register dst, Address src);
1344   void movzbq(Register dst, Register src);
1345 #endif
1346 
1347   void movzwl(Register dst, Address src);
1348   void movzwl(Register dst, Register src);
1349 
1350 #ifdef _LP64
1351   void movzwq(Register dst, Address src);
1352   void movzwq(Register dst, Register src);
1353 #endif
1354 
1355   void mull(Address src);
1356   void mull(Register src);
1357 
1358   // Multiply Scalar Double-Precision Floating-Point Values
1359   void mulsd(XMMRegister dst, Address src);
1360   void mulsd(XMMRegister dst, XMMRegister src);
1361 
1362   // Multiply Scalar Single-Precision Floating-Point Values
1363   void mulss(XMMRegister dst, Address src);
1364   void mulss(XMMRegister dst, XMMRegister src);
1365 
1366   void negl(Register dst);
1367 
1368 #ifdef _LP64
1369   void negq(Register dst);
1370 #endif
1371 
1372   void nop(int i = 1);
1373 
1374   void notl(Register dst);
1375 
1376 #ifdef _LP64
1377   void notq(Register dst);
1378 #endif
1379 
1380   void orl(Address dst, int32_t imm32);
1381   void orl(Register dst, int32_t imm32);
1382   void orl(Register dst, Address src);
1383   void orl(Register dst, Register src);
1384 
1385   void orq(Address dst, int32_t imm32);
1386   void orq(Register dst, int32_t imm32);
1387   void orq(Register dst, Address src);
1388   void orq(Register dst, Register src);
1389 
1390   // Pack with unsigned saturation
1391   void packuswb(XMMRegister dst, XMMRegister src);
1392   void packuswb(XMMRegister dst, Address src);
1393 
1394   // SSE4.2 string instructions
1395   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1396   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1397 
1398   // SSE4.1 packed move
1399   void pmovzxbw(XMMRegister dst, XMMRegister src);
1400   void pmovzxbw(XMMRegister dst, Address src);
1401 
1402 #ifndef _LP64 // no 32bit push/pop on amd64
1403   void popl(Address dst);
1404 #endif
1405 
1406 #ifdef _LP64
1407   void popq(Address dst);
1408 #endif
1409 
1410   void popcntl(Register dst, Address src);
1411   void popcntl(Register dst, Register src);
1412 
1413 #ifdef _LP64
1414   void popcntq(Register dst, Address src);
1415   void popcntq(Register dst, Register src);
1416 #endif
1417 
1418   // Prefetches (SSE, SSE2, 3DNOW only)
1419 
1420   void prefetchnta(Address src);
1421   void prefetchr(Address src);
1422   void prefetcht0(Address src);
1423   void prefetcht1(Address src);
1424   void prefetcht2(Address src);
1425   void prefetchw(Address src);
1426 
1427   // Shuffle Packed Doublewords
1428   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1429   void pshufd(XMMRegister dst, Address src,     int mode);
1430 
1431   // Shuffle Packed Low Words
1432   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1433   void pshuflw(XMMRegister dst, Address src,     int mode);
1434 
1435   // Shift Right by bytes Logical DoubleQuadword Immediate
1436   void psrldq(XMMRegister dst, int shift);
1437 
1438   // Logical Compare Double Quadword
1439   void ptest(XMMRegister dst, XMMRegister src);
1440   void ptest(XMMRegister dst, Address src);
1441 
1442   // Interleave Low Bytes
1443   void punpcklbw(XMMRegister dst, XMMRegister src);
1444   void punpcklbw(XMMRegister dst, Address src);
1445 
1446   // Interleave Low Doublewords
1447   void punpckldq(XMMRegister dst, XMMRegister src);
1448   void punpckldq(XMMRegister dst, Address src);
1449 
1450   // Interleave Low Quadwords
1451   void punpcklqdq(XMMRegister dst, XMMRegister src);
1452 
1453 #ifndef _LP64 // no 32bit push/pop on amd64
1454   void pushl(Address src);
1455 #endif
1456 
1457   void pushq(Address src);
1458 
1459   void rcll(Register dst, int imm8);
1460 
1461   void rclq(Register dst, int imm8);
1462 
1463   void ret(int imm16);
1464 
1465   void sahf();
1466 
1467   void sarl(Register dst, int imm8);
1468   void sarl(Register dst);
1469 
1470   void sarq(Register dst, int imm8);
1471   void sarq(Register dst);
1472 
1473   void sbbl(Address dst, int32_t imm32);
1474   void sbbl(Register dst, int32_t imm32);
1475   void sbbl(Register dst, Address src);
1476   void sbbl(Register dst, Register src);
1477 
1478   void sbbq(Address dst, int32_t imm32);
1479   void sbbq(Register dst, int32_t imm32);
1480   void sbbq(Register dst, Address src);
1481   void sbbq(Register dst, Register src);
1482 
1483   void setb(Condition cc, Register dst);
1484 
1485   void shldl(Register dst, Register src);
1486 
1487   void shll(Register dst, int imm8);
1488   void shll(Register dst);
1489 
1490   void shlq(Register dst, int imm8);
1491   void shlq(Register dst);
1492 
1493   void shrdl(Register dst, Register src);
1494 
1495   void shrl(Register dst, int imm8);
1496   void shrl(Register dst);
1497 
1498   void shrq(Register dst, int imm8);
1499   void shrq(Register dst);
1500 
1501   void smovl(); // QQQ generic?
1502 
1503   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1504   void sqrtsd(XMMRegister dst, Address src);
1505   void sqrtsd(XMMRegister dst, XMMRegister src);
1506 
1507   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1508   void sqrtss(XMMRegister dst, Address src);
1509   void sqrtss(XMMRegister dst, XMMRegister src);
1510 
1511   void std() { emit_byte(0xfd); }
1512 
1513   void stmxcsr( Address dst );
1514 
1515   void subl(Address dst, int32_t imm32);
1516   void subl(Address dst, Register src);
1517   void subl(Register dst, int32_t imm32);
1518   void subl(Register dst, Address src);
1519   void subl(Register dst, Register src);
1520 
1521   void subq(Address dst, int32_t imm32);
1522   void subq(Address dst, Register src);
1523   void subq(Register dst, int32_t imm32);
1524   void subq(Register dst, Address src);
1525   void subq(Register dst, Register src);
1526 
1527   // Force generation of a 4 byte immediate value even if it fits into 8bit
1528   void subl_imm32(Register dst, int32_t imm32);
1529   void subq_imm32(Register dst, int32_t imm32);
1530 
1531   // Subtract Scalar Double-Precision Floating-Point Values
1532   void subsd(XMMRegister dst, Address src);
1533   void subsd(XMMRegister dst, XMMRegister src);
1534 
1535   // Subtract Scalar Single-Precision Floating-Point Values
1536   void subss(XMMRegister dst, Address src);
1537   void subss(XMMRegister dst, XMMRegister src);
1538 
1539   void testb(Register dst, int imm8);
1540 
1541   void testl(Register dst, int32_t imm32);
1542   void testl(Register dst, Register src);
1543   void testl(Register dst, Address src);
1544 
1545   void testq(Register dst, int32_t imm32);
1546   void testq(Register dst, Register src);
1547 
1548 
1549   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1550   void ucomisd(XMMRegister dst, Address src);
1551   void ucomisd(XMMRegister dst, XMMRegister src);
1552 
1553   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1554   void ucomiss(XMMRegister dst, Address src);
1555   void ucomiss(XMMRegister dst, XMMRegister src);
1556 
1557   void xaddl(Address dst, Register src);
1558 
1559   void xaddq(Address dst, Register src);
1560 
1561   void xchgl(Register reg, Address adr);
1562   void xchgl(Register dst, Register src);
1563 
1564   void xchgq(Register reg, Address adr);
1565   void xchgq(Register dst, Register src);
1566 
1567   // Get Value of Extended Control Register
1568   void xgetbv() {
1569     emit_byte(0x0F);
1570     emit_byte(0x01);
1571     emit_byte(0xD0);
1572   }
1573 
1574   void xorl(Register dst, int32_t imm32);
1575   void xorl(Register dst, Address src);
1576   void xorl(Register dst, Register src);
1577 
1578   void xorq(Register dst, Address src);
1579   void xorq(Register dst, Register src);
1580 
1581   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1582 
1583   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1584 
1585   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1586   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1587   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1588   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1589   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1590   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1591   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1592   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1593   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1594   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1595   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1596   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1597   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1598   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1599   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1600   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1601 
1602 
1603   //====================VECTOR ARITHMETIC=====================================
1604 
1605   // Add Packed Floating-Point Values
1606   void addpd(XMMRegister dst, XMMRegister src);
1607   void addps(XMMRegister dst, XMMRegister src);
1608   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1609   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1610   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1611   void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1612 
1613   // Subtract Packed Floating-Point Values
1614   void subpd(XMMRegister dst, XMMRegister src);
1615   void subps(XMMRegister dst, XMMRegister src);
1616   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1617   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1618   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1619   void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1620 
1621   // Multiply Packed Floating-Point Values
1622   void mulpd(XMMRegister dst, XMMRegister src);
1623   void mulps(XMMRegister dst, XMMRegister src);
1624   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1625   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1626   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1627   void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1628 
1629   // Divide Packed Floating-Point Values
1630   void divpd(XMMRegister dst, XMMRegister src);
1631   void divps(XMMRegister dst, XMMRegister src);
1632   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1633   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1634   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1635   void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1636 
1637   // Bitwise Logical AND of Packed Floating-Point Values
1638   void andpd(XMMRegister dst, XMMRegister src);
1639   void andps(XMMRegister dst, XMMRegister src);
1640   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1641   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1642   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1643   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1644 
1645   // Bitwise Logical XOR of Packed Floating-Point Values
1646   void xorpd(XMMRegister dst, XMMRegister src);
1647   void xorps(XMMRegister dst, XMMRegister src);
1648   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1649   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1650   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1651   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1652 
1653   // Add packed integers
1654   void paddb(XMMRegister dst, XMMRegister src);
1655   void paddw(XMMRegister dst, XMMRegister src);
1656   void paddd(XMMRegister dst, XMMRegister src);
1657   void paddq(XMMRegister dst, XMMRegister src);
1658   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1659   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1660   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1661   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1662   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1663   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1664   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1665   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1666 
1667   // Sub packed integers
1668   void psubb(XMMRegister dst, XMMRegister src);
1669   void psubw(XMMRegister dst, XMMRegister src);
1670   void psubd(XMMRegister dst, XMMRegister src);
1671   void psubq(XMMRegister dst, XMMRegister src);
1672   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1673   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1674   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1675   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1676   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1677   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1678   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1679   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1680 
1681   // Multiply packed integers (only shorts and ints)
1682   void pmullw(XMMRegister dst, XMMRegister src);
1683   void pmulld(XMMRegister dst, XMMRegister src);
1684   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1685   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1686   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1687   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1688 
1689   // Shift left packed integers
1690   void psllw(XMMRegister dst, int shift);
1691   void pslld(XMMRegister dst, int shift);
1692   void psllq(XMMRegister dst, int shift);
1693   void psllw(XMMRegister dst, XMMRegister shift);
1694   void pslld(XMMRegister dst, XMMRegister shift);
1695   void psllq(XMMRegister dst, XMMRegister shift);
1696   void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1697   void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1698   void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1699   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1700   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1701   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1702 
1703   // Logical shift right packed integers
1704   void psrlw(XMMRegister dst, int shift);
1705   void psrld(XMMRegister dst, int shift);
1706   void psrlq(XMMRegister dst, int shift);
1707   void psrlw(XMMRegister dst, XMMRegister shift);
1708   void psrld(XMMRegister dst, XMMRegister shift);
1709   void psrlq(XMMRegister dst, XMMRegister shift);
1710   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1711   void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1712   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1713   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1714   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1715   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1716 
1717   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
1718   void psraw(XMMRegister dst, int shift);
1719   void psrad(XMMRegister dst, int shift);
1720   void psraw(XMMRegister dst, XMMRegister shift);
1721   void psrad(XMMRegister dst, XMMRegister shift);
1722   void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1723   void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1724   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1725   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1726 
1727   // And packed integers
1728   void pand(XMMRegister dst, XMMRegister src);
1729   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1730   void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1731 
1732   // Or packed integers
1733   void por(XMMRegister dst, XMMRegister src);
1734   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1735   void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1736 
1737   // Xor packed integers
1738   void pxor(XMMRegister dst, XMMRegister src);
1739   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1740   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1741 
1742   // Copy low 128bit into high 128bit of YMM registers.
1743   void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1744   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1745 
1746   // Load/store high 128bit of YMM registers which does not destroy other half.
1747   void vinsertf128h(XMMRegister dst, Address src);
1748   void vinserti128h(XMMRegister dst, Address src);
1749   void vextractf128h(Address dst, XMMRegister src);
1750   void vextracti128h(Address dst, XMMRegister src);
1751 
1752   // AVX instruction which is used to clear upper 128 bits of YMM registers and
1753   // to avoid transaction penalty between AVX and SSE states. There is no
1754   // penalty if legacy SSE instructions are encoded using VEX prefix because
1755   // they always clear upper 128 bits. It should be used before calling
1756   // runtime code and native libraries.
1757   void vzeroupper();
1758 
1759  protected:
1760   // Next instructions require address alignment 16 bytes SSE mode.
1761   // They should be called only from corresponding MacroAssembler instructions.
1762   void andpd(XMMRegister dst, Address src);
1763   void andps(XMMRegister dst, Address src);
1764   void xorpd(XMMRegister dst, Address src);
1765   void xorps(XMMRegister dst, Address src);
1766 
1767 };
1768 
1769 
1770 // MacroAssembler extends Assembler by frequently used macros.
1771 //
1772 // Instructions for which a 'better' code sequence exists depending
1773 // on arguments should also go in here.
1774 
1775 class MacroAssembler: public Assembler {
1776   friend class LIR_Assembler;
1777   friend class Runtime1;      // as_Address()
1778 
1779  protected:
1780 
1781   Address as_Address(AddressLiteral adr);
1782   Address as_Address(ArrayAddress adr);
1783 
1784   // Support for VM calls
1785   //
1786   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1787   // may customize this version by overriding it for its purposes (e.g., to save/restore
1788   // additional registers when doing a VM call).
1789 #ifdef CC_INTERP
1790   // c++ interpreter never wants to use interp_masm version of call_VM
1791   #define VIRTUAL
1792 #else
1793   #define VIRTUAL virtual
1794 #endif
1795 
1796   VIRTUAL void call_VM_leaf_base(
1797     address entry_point,               // the entry point
1798     int     number_of_arguments        // the number of arguments to pop after the call
1799   );
1800 
1801   // This is the base routine called by the different versions of call_VM. The interpreter
1802   // may customize this version by overriding it for its purposes (e.g., to save/restore
1803   // additional registers when doing a VM call).
1804   //
1805   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1806   // returns the register which contains the thread upon return. If a thread register has been
1807   // specified, the return value will correspond to that register. If no last_java_sp is specified
1808   // (noreg) than rsp will be used instead.
1809   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1810     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1811     Register java_thread,              // the thread if computed before     ; use noreg otherwise
1812     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1813     address  entry_point,              // the entry point
1814     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1815     bool     check_exceptions          // whether to check for pending exceptions after return
1816   );
1817 
1818   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1819   // The implementation is only non-empty for the InterpreterMacroAssembler,
1820   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1821   virtual void check_and_handle_popframe(Register java_thread);
1822   virtual void check_and_handle_earlyret(Register java_thread);
1823 
1824   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1825 
1826   // helpers for FPU flag access
1827   // tmp is a temporary register, if none is available use noreg
1828   void save_rax   (Register tmp);
1829   void restore_rax(Register tmp);
1830 
1831  public:
1832   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1833 
1834   // Support for NULL-checks
1835   //
1836   // Generates code that causes a NULL OS exception if the content of reg is NULL.
1837   // If the accessed location is M[reg + offset] and the offset is known, provide the
1838   // offset. No explicit code generation is needed if the offset is within a certain
1839   // range (0 <= offset <= page_size).
1840 
1841   void null_check(Register reg, int offset = -1);
1842   static bool needs_explicit_null_check(intptr_t offset);
1843 
1844   // Required platform-specific helpers for Label::patch_instructions.
1845   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1846   void pd_patch_instruction(address branch, address target);
1847 #ifndef PRODUCT
1848   static void pd_print_patched_instruction(address branch);
1849 #endif
1850 
1851   // The following 4 methods return the offset of the appropriate move instruction
1852 
1853   // Support for fast byte/short loading with zero extension (depending on particular CPU)
1854   int load_unsigned_byte(Register dst, Address src);
1855   int load_unsigned_short(Register dst, Address src);
1856 
1857   // Support for fast byte/short loading with sign extension (depending on particular CPU)
1858   int load_signed_byte(Register dst, Address src);
1859   int load_signed_short(Register dst, Address src);
1860 
1861   // Support for sign-extension (hi:lo = extend_sign(lo))
1862   void extend_sign(Register hi, Register lo);
1863 
1864   // Load and store values by size and signed-ness
1865   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
1866   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
1867 
1868   // Support for inc/dec with optimal instruction selection depending on value
1869 
1870   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1871   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1872 
1873   void decrementl(Address dst, int value = 1);
1874   void decrementl(Register reg, int value = 1);
1875 
1876   void decrementq(Register reg, int value = 1);
1877   void decrementq(Address dst, int value = 1);
1878 
1879   void incrementl(Address dst, int value = 1);
1880   void incrementl(Register reg, int value = 1);
1881 
1882   void incrementq(Register reg, int value = 1);
1883   void incrementq(Address dst, int value = 1);
1884 
1885 
1886   // Support optimal SSE move instructions.
1887   void movflt(XMMRegister dst, XMMRegister src) {
1888     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1889     else                       { movss (dst, src); return; }
1890   }
1891   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1892   void movflt(XMMRegister dst, AddressLiteral src);
1893   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1894 
1895   void movdbl(XMMRegister dst, XMMRegister src) {
1896     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1897     else                       { movsd (dst, src); return; }
1898   }
1899 
1900   void movdbl(XMMRegister dst, AddressLiteral src);
1901 
1902   void movdbl(XMMRegister dst, Address src) {
1903     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1904     else                         { movlpd(dst, src); return; }
1905   }
1906   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1907 
1908   void incrementl(AddressLiteral dst);
1909   void incrementl(ArrayAddress dst);
1910 
1911   // Alignment
1912   void align(int modulus);
1913 
1914   // A 5 byte nop that is safe for patching (see patch_verified_entry)
1915   void fat_nop();
1916 
1917   // Stack frame creation/removal
1918   void enter();
1919   void leave();
1920 
1921   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1922   // The pointer will be loaded into the thread register.
1923   void get_thread(Register thread);
1924 
1925 
1926   // Support for VM calls
1927   //
1928   // It is imperative that all calls into the VM are handled via the call_VM macros.
1929   // They make sure that the stack linkage is setup correctly. call_VM's correspond
1930   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1931 
1932 
1933   void call_VM(Register oop_result,
1934                address entry_point,
1935                bool check_exceptions = true);
1936   void call_VM(Register oop_result,
1937                address entry_point,
1938                Register arg_1,
1939                bool check_exceptions = true);
1940   void call_VM(Register oop_result,
1941                address entry_point,
1942                Register arg_1, Register arg_2,
1943                bool check_exceptions = true);
1944   void call_VM(Register oop_result,
1945                address entry_point,
1946                Register arg_1, Register arg_2, Register arg_3,
1947                bool check_exceptions = true);
1948 
1949   // Overloadings with last_Java_sp
1950   void call_VM(Register oop_result,
1951                Register last_java_sp,
1952                address entry_point,
1953                int number_of_arguments = 0,
1954                bool check_exceptions = true);
1955   void call_VM(Register oop_result,
1956                Register last_java_sp,
1957                address entry_point,
1958                Register arg_1, bool
1959                check_exceptions = true);
1960   void call_VM(Register oop_result,
1961                Register last_java_sp,
1962                address entry_point,
1963                Register arg_1, Register arg_2,
1964                bool check_exceptions = true);
1965   void call_VM(Register oop_result,
1966                Register last_java_sp,
1967                address entry_point,
1968                Register arg_1, Register arg_2, Register arg_3,
1969                bool check_exceptions = true);
1970 
1971   void get_vm_result  (Register oop_result, Register thread);
1972   void get_vm_result_2(Register metadata_result, Register thread);
1973 
1974   // These always tightly bind to MacroAssembler::call_VM_base
1975   // bypassing the virtual implementation
1976   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
1977   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
1978   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
1979   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
1980   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
1981 
1982   void call_VM_leaf(address entry_point,
1983                     int number_of_arguments = 0);
1984   void call_VM_leaf(address entry_point,
1985                     Register arg_1);
1986   void call_VM_leaf(address entry_point,
1987                     Register arg_1, Register arg_2);
1988   void call_VM_leaf(address entry_point,
1989                     Register arg_1, Register arg_2, Register arg_3);
1990 
1991   // These always tightly bind to MacroAssembler::call_VM_leaf_base
1992   // bypassing the virtual implementation
1993   void super_call_VM_leaf(address entry_point);
1994   void super_call_VM_leaf(address entry_point, Register arg_1);
1995   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
1996   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
1997   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
1998 
1999   // last Java Frame (fills frame anchor)
2000   void set_last_Java_frame(Register thread,
2001                            Register last_java_sp,
2002                            Register last_java_fp,
2003                            address last_java_pc);
2004 
2005   // thread in the default location (r15_thread on 64bit)
2006   void set_last_Java_frame(Register last_java_sp,
2007                            Register last_java_fp,
2008                            address last_java_pc);
2009 
2010   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
2011 
2012   // thread in the default location (r15_thread on 64bit)
2013   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
2014 
2015   // Stores
2016   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
2017   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
2018 
2019 #ifndef SERIALGC
2020 
2021   void g1_write_barrier_pre(Register obj,
2022                             Register pre_val,
2023                             Register thread,
2024                             Register tmp,
2025                             bool tosca_live,
2026                             bool expand_call);
2027 
2028   void g1_write_barrier_post(Register store_addr,
2029                              Register new_val,
2030                              Register thread,
2031                              Register tmp,
2032                              Register tmp2);
2033 
2034 #endif // SERIALGC
2035 
2036   // split store_check(Register obj) to enhance instruction interleaving
2037   void store_check_part_1(Register obj);
2038   void store_check_part_2(Register obj);
2039 
2040   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
2041   void c2bool(Register x);
2042 
2043   // C++ bool manipulation
2044 
2045   void movbool(Register dst, Address src);
2046   void movbool(Address dst, bool boolconst);
2047   void movbool(Address dst, Register src);
2048   void testbool(Register dst);
2049 
2050   // oop manipulations
2051   void load_klass(Register dst, Register src);
2052   void store_klass(Register dst, Register src);
2053 
2054   void load_heap_oop(Register dst, Address src);
2055   void load_heap_oop_not_null(Register dst, Address src);
2056   void store_heap_oop(Address dst, Register src);
2057   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
2058 
2059   // Used for storing NULL. All other oop constants should be
2060   // stored using routines that take a jobject.
2061   void store_heap_oop_null(Address dst);
2062 
2063   void load_prototype_header(Register dst, Register src);
2064 
2065 #ifdef _LP64
2066   void store_klass_gap(Register dst, Register src);
2067 
2068   // This dummy is to prevent a call to store_heap_oop from
2069   // converting a zero (like NULL) into a Register by giving
2070   // the compiler two choices it can't resolve
2071 
2072   void store_heap_oop(Address dst, void* dummy);
2073 
2074   void encode_heap_oop(Register r);
2075   void decode_heap_oop(Register r);
2076   void encode_heap_oop_not_null(Register r);
2077   void decode_heap_oop_not_null(Register r);
2078   void encode_heap_oop_not_null(Register dst, Register src);
2079   void decode_heap_oop_not_null(Register dst, Register src);
2080 
2081   void set_narrow_oop(Register dst, jobject obj);
2082   void set_narrow_oop(Address dst, jobject obj);
2083   void cmp_narrow_oop(Register dst, jobject obj);
2084   void cmp_narrow_oop(Address dst, jobject obj);
2085 
2086   // if heap base register is used - reinit it with the correct value
2087   void reinit_heapbase();
2088 
2089   DEBUG_ONLY(void verify_heapbase(const char* msg);)
2090 
2091 #endif // _LP64
2092 
2093   // Int division/remainder for Java
2094   // (as idivl, but checks for special case as described in JVM spec.)
2095   // returns idivl instruction offset for implicit exception handling
2096   int corrected_idivl(Register reg);
2097 
2098   // Long division/remainder for Java
2099   // (as idivq, but checks for special case as described in JVM spec.)
2100   // returns idivq instruction offset for implicit exception handling
2101   int corrected_idivq(Register reg);
2102 
2103   void int3();
2104 
2105   // Long operation macros for a 32bit cpu
2106   // Long negation for Java
2107   void lneg(Register hi, Register lo);
2108 
2109   // Long multiplication for Java
2110   // (destroys contents of eax, ebx, ecx and edx)
2111   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
2112 
2113   // Long shifts for Java
2114   // (semantics as described in JVM spec.)
2115   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
2116   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
2117 
2118   // Long compare for Java
2119   // (semantics as described in JVM spec.)
2120   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
2121 
2122 
2123   // misc
2124 
2125   // Sign extension
2126   void sign_extend_short(Register reg);
2127   void sign_extend_byte(Register reg);
2128 
2129   // Division by power of 2, rounding towards 0
2130   void division_with_shift(Register reg, int shift_value);
2131 
2132   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
2133   //
2134   // CF (corresponds to C0) if x < y
2135   // PF (corresponds to C2) if unordered
2136   // ZF (corresponds to C3) if x = y
2137   //
2138   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
2139   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
2140   void fcmp(Register tmp);
2141   // Variant of the above which allows y to be further down the stack
2142   // and which only pops x and y if specified. If pop_right is
2143   // specified then pop_left must also be specified.
2144   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
2145 
2146   // Floating-point comparison for Java
2147   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
2148   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
2149   // (semantics as described in JVM spec.)
2150   void fcmp2int(Register dst, bool unordered_is_less);
2151   // Variant of the above which allows y to be further down the stack
2152   // and which only pops x and y if specified. If pop_right is
2153   // specified then pop_left must also be specified.
2154   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
2155 
2156   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
2157   // tmp is a temporary register, if none is available use noreg
2158   void fremr(Register tmp);
2159 
2160 
2161   // same as fcmp2int, but using SSE2
2162   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
2163   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
2164 
2165   // Inlined sin/cos generator for Java; must not use CPU instruction
2166   // directly on Intel as it does not have high enough precision
2167   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
2168   // number of FPU stack slots in use; all but the topmost will
2169   // require saving if a slow case is necessary. Assumes argument is
2170   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
2171   // this code.
2172   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
2173 
2174   // branch to L if FPU flag C2 is set/not set
2175   // tmp is a temporary register, if none is available use noreg
2176   void jC2 (Register tmp, Label& L);
2177   void jnC2(Register tmp, Label& L);
2178 
2179   // Pop ST (ffree & fincstp combined)
2180   void fpop();
2181 
2182   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
2183   void push_fTOS();
2184 
2185   // pops double TOS element from CPU stack and pushes on FPU stack
2186   void pop_fTOS();
2187 
2188   void empty_FPU_stack();
2189 
2190   void push_IU_state();
2191   void pop_IU_state();
2192 
2193   void push_FPU_state();
2194   void pop_FPU_state();
2195 
2196   void push_CPU_state();
2197   void pop_CPU_state();
2198 
2199   // Round up to a power of two
2200   void round_to(Register reg, int modulus);
2201 
2202   // Callee saved registers handling
2203   void push_callee_saved_registers();
2204   void pop_callee_saved_registers();
2205 
2206   // allocation
2207   void eden_allocate(
2208     Register obj,                      // result: pointer to object after successful allocation
2209     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2210     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2211     Register t1,                       // temp register
2212     Label&   slow_case                 // continuation point if fast allocation fails
2213   );
2214   void tlab_allocate(
2215     Register obj,                      // result: pointer to object after successful allocation
2216     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2217     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2218     Register t1,                       // temp register
2219     Register t2,                       // temp register
2220     Label&   slow_case                 // continuation point if fast allocation fails
2221   );
2222   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
2223   void incr_allocated_bytes(Register thread,
2224                             Register var_size_in_bytes, int con_size_in_bytes,
2225                             Register t1 = noreg);
2226 
2227   // interface method calling
2228   void lookup_interface_method(Register recv_klass,
2229                                Register intf_klass,
2230                                RegisterOrConstant itable_index,
2231                                Register method_result,
2232                                Register scan_temp,
2233                                Label& no_such_interface);
2234 
2235   // virtual method calling
2236   void lookup_virtual_method(Register recv_klass,
2237                              RegisterOrConstant vtable_index,
2238                              Register method_result);
2239 
2240   // Test sub_klass against super_klass, with fast and slow paths.
2241 
2242   // The fast path produces a tri-state answer: yes / no / maybe-slow.
2243   // One of the three labels can be NULL, meaning take the fall-through.
2244   // If super_check_offset is -1, the value is loaded up from super_klass.
2245   // No registers are killed, except temp_reg.
2246   void check_klass_subtype_fast_path(Register sub_klass,
2247                                      Register super_klass,
2248                                      Register temp_reg,
2249                                      Label* L_success,
2250                                      Label* L_failure,
2251                                      Label* L_slow_path,
2252                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
2253 
2254   // The rest of the type check; must be wired to a corresponding fast path.
2255   // It does not repeat the fast path logic, so don't use it standalone.
2256   // The temp_reg and temp2_reg can be noreg, if no temps are available.
2257   // Updates the sub's secondary super cache as necessary.
2258   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
2259   void check_klass_subtype_slow_path(Register sub_klass,
2260                                      Register super_klass,
2261                                      Register temp_reg,
2262                                      Register temp2_reg,
2263                                      Label* L_success,
2264                                      Label* L_failure,
2265                                      bool set_cond_codes = false);
2266 
2267   // Simplified, combined version, good for typical uses.
2268   // Falls through on failure.
2269   void check_klass_subtype(Register sub_klass,
2270                            Register super_klass,
2271                            Register temp_reg,
2272                            Label& L_success);
2273 
2274   // method handles (JSR 292)
2275   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
2276 
2277   //----
2278   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
2279 
2280   // Debugging
2281 
2282   // only if +VerifyOops
2283   // TODO: Make these macros with file and line like sparc version!
2284   void verify_oop(Register reg, const char* s = "broken oop");
2285   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
2286 
2287   // TODO: verify method and klass metadata (compare against vptr?)
2288   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
2289   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
2290 
2291 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
2292 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
2293 
2294   // only if +VerifyFPU
2295   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
2296 
2297   // prints msg, dumps registers and stops execution
2298   void stop(const char* msg);
2299 
2300   // prints msg and continues
2301   void warn(const char* msg);
2302 
2303   // dumps registers and other state
2304   void print_state();
2305 
2306   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
2307   static void debug64(char* msg, int64_t pc, int64_t regs[]);
2308   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
2309   static void print_state64(int64_t pc, int64_t regs[]);
2310 
2311   void os_breakpoint();
2312 
2313   void untested()                                { stop("untested"); }
2314 
2315   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
2316 
2317   void should_not_reach_here()                   { stop("should not reach here"); }
2318 
2319   void print_CPU_state();
2320 
2321   // Stack overflow checking
2322   void bang_stack_with_offset(int offset) {
2323     // stack grows down, caller passes positive offset
2324     assert(offset > 0, "must bang with negative offset");
2325     movl(Address(rsp, (-offset)), rax);
2326   }
2327 
2328   // Writes to stack successive pages until offset reached to check for
2329   // stack overflow + shadow pages.  Also, clobbers tmp
2330   void bang_stack_size(Register size, Register tmp);
2331 
2332   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2333                                                 Register tmp,
2334                                                 int offset);
2335 
2336   // Support for serializing memory accesses between threads
2337   void serialize_memory(Register thread, Register tmp);
2338 
2339   void verify_tlab();
2340 
2341   // Biased locking support
2342   // lock_reg and obj_reg must be loaded up with the appropriate values.
2343   // swap_reg must be rax, and is killed.
2344   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
2345   // be killed; if not supplied, push/pop will be used internally to
2346   // allocate a temporary (inefficient, avoid if possible).
2347   // Optional slow case is for implementations (interpreter and C1) which branch to
2348   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
2349   // Returns offset of first potentially-faulting instruction for null
2350   // check info (currently consumed only by C1). If
2351   // swap_reg_contains_mark is true then returns -1 as it is assumed
2352   // the calling code has already passed any potential faults.
2353   int biased_locking_enter(Register lock_reg, Register obj_reg,
2354                            Register swap_reg, Register tmp_reg,
2355                            bool swap_reg_contains_mark,
2356                            Label& done, Label* slow_case = NULL,
2357                            BiasedLockingCounters* counters = NULL);
2358   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
2359 
2360 
2361   Condition negate_condition(Condition cond);
2362 
2363   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
2364   // operands. In general the names are modified to avoid hiding the instruction in Assembler
2365   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
2366   // here in MacroAssembler. The major exception to this rule is call
2367 
2368   // Arithmetics
2369 
2370 
2371   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
2372   void addptr(Address dst, Register src);
2373 
2374   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
2375   void addptr(Register dst, int32_t src);
2376   void addptr(Register dst, Register src);
2377   void addptr(Register dst, RegisterOrConstant src) {
2378     if (src.is_constant()) addptr(dst, (int) src.as_constant());
2379     else                   addptr(dst,       src.as_register());
2380   }
2381 
2382   void andptr(Register dst, int32_t src);
2383   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
2384 
2385   void cmp8(AddressLiteral src1, int imm);
2386 
2387   // renamed to drag out the casting of address to int32_t/intptr_t
2388   void cmp32(Register src1, int32_t imm);
2389 
2390   void cmp32(AddressLiteral src1, int32_t imm);
2391   // compare reg - mem, or reg - &mem
2392   void cmp32(Register src1, AddressLiteral src2);
2393 
2394   void cmp32(Register src1, Address src2);
2395 
2396 #ifndef _LP64
2397   void cmpklass(Address dst, Metadata* obj);
2398   void cmpklass(Register dst, Metadata* obj);
2399   void cmpoop(Address dst, jobject obj);
2400   void cmpoop(Register dst, jobject obj);
2401 #endif // _LP64
2402 
2403   // NOTE src2 must be the lval. This is NOT an mem-mem compare
2404   void cmpptr(Address src1, AddressLiteral src2);
2405 
2406   void cmpptr(Register src1, AddressLiteral src2);
2407 
2408   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2409   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2410   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2411 
2412   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2413   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2414 
2415   // cmp64 to avoild hiding cmpq
2416   void cmp64(Register src1, AddressLiteral src);
2417 
2418   void cmpxchgptr(Register reg, Address adr);
2419 
2420   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
2421 
2422 
2423   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
2424 
2425 
2426   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2427 
2428   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2429 
2430   void shlptr(Register dst, int32_t shift);
2431   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2432 
2433   void shrptr(Register dst, int32_t shift);
2434   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2435 
2436   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2437   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2438 
2439   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2440 
2441   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2442   void subptr(Register dst, int32_t src);
2443   // Force generation of a 4 byte immediate value even if it fits into 8bit
2444   void subptr_imm32(Register dst, int32_t src);
2445   void subptr(Register dst, Register src);
2446   void subptr(Register dst, RegisterOrConstant src) {
2447     if (src.is_constant()) subptr(dst, (int) src.as_constant());
2448     else                   subptr(dst,       src.as_register());
2449   }
2450 
2451   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2452   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2453 
2454   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2455   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2456 
2457   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2458 
2459 
2460 
2461   // Helper functions for statistics gathering.
2462   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2463   void cond_inc32(Condition cond, AddressLiteral counter_addr);
2464   // Unconditional atomic increment.
2465   void atomic_incl(AddressLiteral counter_addr);
2466 
2467   void lea(Register dst, AddressLiteral adr);
2468   void lea(Address dst, AddressLiteral adr);
2469   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2470 
2471   void leal32(Register dst, Address src) { leal(dst, src); }
2472 
2473   // Import other testl() methods from the parent class or else
2474   // they will be hidden by the following overriding declaration.
2475   using Assembler::testl;
2476   void testl(Register dst, AddressLiteral src);
2477 
2478   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2479   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2480   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2481 
2482   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2483   void testptr(Register src1, Register src2);
2484 
2485   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2486   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2487 
2488   // Calls
2489 
2490   void call(Label& L, relocInfo::relocType rtype);
2491   void call(Register entry);
2492 
2493   // NOTE: this call tranfers to the effective address of entry NOT
2494   // the address contained by entry. This is because this is more natural
2495   // for jumps/calls.
2496   void call(AddressLiteral entry);
2497 
2498   // Emit the CompiledIC call idiom
2499   void ic_call(address entry);
2500 
2501   // Jumps
2502 
2503   // NOTE: these jumps tranfer to the effective address of dst NOT
2504   // the address contained by dst. This is because this is more natural
2505   // for jumps/calls.
2506   void jump(AddressLiteral dst);
2507   void jump_cc(Condition cc, AddressLiteral dst);
2508 
2509   // 32bit can do a case table jump in one instruction but we no longer allow the base
2510   // to be installed in the Address class. This jump will tranfers to the address
2511   // contained in the location described by entry (not the address of entry)
2512   void jump(ArrayAddress entry);
2513 
2514   // Floating
2515 
2516   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2517   void andpd(XMMRegister dst, AddressLiteral src);
2518 
2519   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
2520   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
2521   void andps(XMMRegister dst, AddressLiteral src);
2522 
2523   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
2524   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2525   void comiss(XMMRegister dst, AddressLiteral src);
2526 
2527   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
2528   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2529   void comisd(XMMRegister dst, AddressLiteral src);
2530 
2531   void fadd_s(Address src)        { Assembler::fadd_s(src); }
2532   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
2533 
2534   void fldcw(Address src) { Assembler::fldcw(src); }
2535   void fldcw(AddressLiteral src);
2536 
2537   void fld_s(int index)   { Assembler::fld_s(index); }
2538   void fld_s(Address src) { Assembler::fld_s(src); }
2539   void fld_s(AddressLiteral src);
2540 
2541   void fld_d(Address src) { Assembler::fld_d(src); }
2542   void fld_d(AddressLiteral src);
2543 
2544   void fld_x(Address src) { Assembler::fld_x(src); }
2545   void fld_x(AddressLiteral src);
2546 
2547   void fmul_s(Address src)        { Assembler::fmul_s(src); }
2548   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
2549 
2550   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2551   void ldmxcsr(AddressLiteral src);
2552 
2553   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
2554   // all corner cases and may result in NaN and require fallback to a
2555   // runtime call.
2556   void fast_pow();
2557   void fast_exp();
2558   void increase_precision();
2559   void restore_precision();
2560 
2561   // computes exp(x). Fallback to runtime call included.
2562   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
2563   // computes pow(x,y). Fallback to runtime call included.
2564   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
2565 
2566 private:
2567 
2568   // call runtime as a fallback for trig functions and pow/exp.
2569   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
2570 
2571   // computes 2^(Ylog2X); Ylog2X in ST(0)
2572   void pow_exp_core_encoding();
2573 
2574   // computes pow(x,y) or exp(x). Fallback to runtime call included.
2575   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
2576 
2577   // these are private because users should be doing movflt/movdbl
2578 
2579   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2580   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2581   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2582   void movss(XMMRegister dst, AddressLiteral src);
2583 
2584   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
2585   void movlpd(XMMRegister dst, AddressLiteral src);
2586 
2587 public:
2588 
2589   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
2590   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
2591   void addsd(XMMRegister dst, AddressLiteral src);
2592 
2593   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
2594   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
2595   void addss(XMMRegister dst, AddressLiteral src);
2596 
2597   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
2598   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
2599   void divsd(XMMRegister dst, AddressLiteral src);
2600 
2601   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
2602   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
2603   void divss(XMMRegister dst, AddressLiteral src);
2604 
2605   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2606   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2607   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2608   void movsd(XMMRegister dst, AddressLiteral src);
2609 
2610   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
2611   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
2612   void mulsd(XMMRegister dst, AddressLiteral src);
2613 
2614   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
2615   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
2616   void mulss(XMMRegister dst, AddressLiteral src);
2617 
2618   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
2619   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
2620   void sqrtsd(XMMRegister dst, AddressLiteral src);
2621 
2622   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
2623   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
2624   void sqrtss(XMMRegister dst, AddressLiteral src);
2625 
2626   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
2627   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
2628   void subsd(XMMRegister dst, AddressLiteral src);
2629 
2630   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
2631   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
2632   void subss(XMMRegister dst, AddressLiteral src);
2633 
2634   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2635   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
2636   void ucomiss(XMMRegister dst, AddressLiteral src);
2637 
2638   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2639   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
2640   void ucomisd(XMMRegister dst, AddressLiteral src);
2641 
2642   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2643   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2644   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2645   void xorpd(XMMRegister dst, AddressLiteral src);
2646 
2647   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2648   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2649   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2650   void xorps(XMMRegister dst, AddressLiteral src);
2651 
2652   // AVX 3-operands instructions
2653 
2654   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
2655   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
2656   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2657 
2658   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
2659   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
2660   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2661 
2662   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
2663   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
2664   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2665 
2666   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
2667   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
2668   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2669 
2670   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
2671   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
2672   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2673 
2674   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
2675   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
2676   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2677 
2678   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
2679   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
2680   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2681 
2682   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
2683   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
2684   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2685 
2686   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
2687   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
2688   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2689 
2690   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
2691   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
2692   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2693 
2694   // AVX Vector instructions
2695 
2696   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
2697   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
2698   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2699 
2700   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
2701   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
2702   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2703 
2704   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2705     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
2706       Assembler::vpxor(dst, nds, src, vector256);
2707     else
2708       Assembler::vxorpd(dst, nds, src, vector256);
2709   }
2710   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
2711     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
2712       Assembler::vpxor(dst, nds, src, vector256);
2713     else
2714       Assembler::vxorpd(dst, nds, src, vector256);
2715   }
2716 
2717   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
2718   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2719     if (UseAVX > 1) // vinserti128h is available only in AVX2
2720       Assembler::vinserti128h(dst, nds, src);
2721     else
2722       Assembler::vinsertf128h(dst, nds, src);
2723   }
2724 
2725   // Data
2726 
2727   void cmov32( Condition cc, Register dst, Address  src);
2728   void cmov32( Condition cc, Register dst, Register src);
2729 
2730   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
2731 
2732   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2733   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2734 
2735   void movoop(Register dst, jobject obj);
2736   void movoop(Address dst, jobject obj);
2737 
2738   void mov_metadata(Register dst, Metadata* obj);
2739   void mov_metadata(Address dst, Metadata* obj);
2740 
2741   void movptr(ArrayAddress dst, Register src);
2742   // can this do an lea?
2743   void movptr(Register dst, ArrayAddress src);
2744 
2745   void movptr(Register dst, Address src);
2746 
2747   void movptr(Register dst, AddressLiteral src);
2748 
2749   void movptr(Register dst, intptr_t src);
2750   void movptr(Register dst, Register src);
2751   void movptr(Address dst, intptr_t src);
2752 
2753   void movptr(Address dst, Register src);
2754 
2755   void movptr(Register dst, RegisterOrConstant src) {
2756     if (src.is_constant()) movptr(dst, src.as_constant());
2757     else                   movptr(dst, src.as_register());
2758   }
2759 
2760 #ifdef _LP64
2761   // Generally the next two are only used for moving NULL
2762   // Although there are situations in initializing the mark word where
2763   // they could be used. They are dangerous.
2764 
2765   // They only exist on LP64 so that int32_t and intptr_t are not the same
2766   // and we have ambiguous declarations.
2767 
2768   void movptr(Address dst, int32_t imm32);
2769   void movptr(Register dst, int32_t imm32);
2770 #endif // _LP64
2771 
2772   // to avoid hiding movl
2773   void mov32(AddressLiteral dst, Register src);
2774   void mov32(Register dst, AddressLiteral src);
2775 
2776   // to avoid hiding movb
2777   void movbyte(ArrayAddress dst, int src);
2778 
2779   // Import other mov() methods from the parent class or else
2780   // they will be hidden by the following overriding declaration.
2781   using Assembler::movdl;
2782   using Assembler::movq;
2783   void movdl(XMMRegister dst, AddressLiteral src);
2784   void movq(XMMRegister dst, AddressLiteral src);
2785 
2786   // Can push value or effective address
2787   void pushptr(AddressLiteral src);
2788 
2789   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2790   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2791 
2792   void pushoop(jobject obj);
2793   void pushklass(Metadata* obj);
2794 
2795   // sign extend as need a l to ptr sized element
2796   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2797   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2798 
2799   // C2 compiled method's prolog code.
2800   void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
2801 
2802   // IndexOf strings.
2803   // Small strings are loaded through stack if they cross page boundary.
2804   void string_indexof(Register str1, Register str2,
2805                       Register cnt1, Register cnt2,
2806                       int int_cnt2,  Register result,
2807                       XMMRegister vec, Register tmp);
2808 
2809   // IndexOf for constant substrings with size >= 8 elements
2810   // which don't need to be loaded through stack.
2811   void string_indexofC8(Register str1, Register str2,
2812                       Register cnt1, Register cnt2,
2813                       int int_cnt2,  Register result,
2814                       XMMRegister vec, Register tmp);
2815 
2816     // Smallest code: we don't need to load through stack,
2817     // check string tail.
2818 
2819   // Compare strings.
2820   void string_compare(Register str1, Register str2,
2821                       Register cnt1, Register cnt2, Register result,
2822                       XMMRegister vec1);
2823 
2824   // Compare char[] arrays.
2825   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
2826                           Register limit, Register result, Register chr,
2827                           XMMRegister vec1, XMMRegister vec2);
2828 
2829   // Fill primitive arrays
2830   void generate_fill(BasicType t, bool aligned,
2831                      Register to, Register value, Register count,
2832                      Register rtmp, XMMRegister xtmp);
2833 
2834 #undef VIRTUAL
2835 
2836 };
2837 
2838 /**
2839  * class SkipIfEqual:
2840  *
2841  * Instantiating this class will result in assembly code being output that will
2842  * jump around any code emitted between the creation of the instance and it's
2843  * automatic destruction at the end of a scope block, depending on the value of
2844  * the flag passed to the constructor, which will be checked at run-time.
2845  */
2846 class SkipIfEqual {
2847  private:
2848   MacroAssembler* _masm;
2849   Label _label;
2850 
2851  public:
2852    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2853    ~SkipIfEqual();
2854 };
2855 
2856 #ifdef ASSERT
2857 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2858 #endif
2859 
2860 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP