1 //
   2 // Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  78 // allocator, and only shows up in the encodings.
  79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  81 // Ok so here's the trick FPR1 is really st(0) except in the midst
  82 // of emission of assembly for a machnode. During the emission the fpu stack
  83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  84 // the stack will not have this element so FPR1 == st(0) from the
  85 // oopMap viewpoint. This same weirdness with numbering causes
  86 // instruction encoding to have to play games with the register
  87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  88 // where it does flt->flt moves to see an example
  89 //
  90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
  97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
  98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
  99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 104 
 105 // Specify priority of register selection within phases of register
 106 // allocation.  Highest priority is first.  A useful heuristic is to
 107 // give registers a low priority when they are required by machine
 108 // instructions, like EAX and EDX.  Registers which are used as
 109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 110 // For the Intel integer registers, the equivalent Long pairs are
 111 // EDX:EAX, EBX:ECX, and EDI:EBP.
 112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 115                     FPR6L, FPR6H, FPR7L, FPR7H );
 116 
 117 
 118 //----------Architecture Description Register Classes--------------------------
 119 // Several register classes are automatically defined based upon information in
 120 // this architecture description.
 121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 125 //
 126 // Class for all registers
 127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 128 // Class for general registers
 129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 130 // Class for general registers which may be used for implicit null checks on win95
 131 // Also safe for use by tailjump. We don't want to allocate in rbp,
 132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 133 // Class of "X" registers
 134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
 135 // Class of registers that can appear in an address with no offset.
 136 // EBP and ESP require an extra instruction byte for zero offset.
 137 // Used in fast-unlock
 138 reg_class p_reg(EDX, EDI, ESI, EBX);
 139 // Class for general registers not including ECX
 140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 141 // Class for general registers not including EAX
 142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 143 // Class for general registers not including EAX or EBX.
 144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 145 // Class of EAX (for multiply and divide operations)
 146 reg_class eax_reg(EAX);
 147 // Class of EBX (for atomic add)
 148 reg_class ebx_reg(EBX);
 149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 150 reg_class ecx_reg(ECX);
 151 // Class of EDX (for multiply and divide operations)
 152 reg_class edx_reg(EDX);
 153 // Class of EDI (for synchronization)
 154 reg_class edi_reg(EDI);
 155 // Class of ESI (for synchronization)
 156 reg_class esi_reg(ESI);
 157 // Singleton class for interpreter's stack pointer
 158 reg_class ebp_reg(EBP);
 159 // Singleton class for stack pointer
 160 reg_class sp_reg(ESP);
 161 // Singleton class for instruction pointer
 162 // reg_class ip_reg(EIP);
 163 // Class of integer register pairs
 164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 165 // Class of integer register pairs that aligns with calling convention
 166 reg_class eadx_reg( EAX,EDX );
 167 reg_class ebcx_reg( ECX,EBX );
 168 // Not AX or DX, used in divides
 169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 170 
 171 // Floating point registers.  Notice FPR0 is not a choice.
 172 // FPR0 is not ever allocated; we use clever encodings to fake
 173 // a 2-address instructions out of Intels FP stack.
 174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 175 
 176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 178                       FPR7L,FPR7H );
 179 
 180 reg_class fp_flt_reg0( FPR1L );
 181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
 182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
 183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 185 
 186 %}
 187 
 188 
 189 //----------SOURCE BLOCK-------------------------------------------------------
 190 // This is a block of C++ code which provides values, functions, and
 191 // definitions necessary in the rest of the architecture description
 192 source_hpp %{
 193 // Must be visible to the DFA in dfa_x86_32.cpp
 194 extern bool is_operand_hi32_zero(Node* n);
 195 %}
 196 
 197 source %{
 198 #define   RELOC_IMM32    Assembler::imm_operand
 199 #define   RELOC_DISP32   Assembler::disp32_operand
 200 
 201 #define __ _masm.
 202 
 203 // How to find the high register of a Long pair, given the low register
 204 #define   HIGH_FROM_LOW(x) ((x)+2)
 205 
 206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 208 // fast versions of NegF/NegD and AbsF/AbsD.
 209 
 210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 213   // of 128-bits operands for SSE instructions.
 214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 215   // Store the value to a 128-bits operand.
 216   operand[0] = lo;
 217   operand[1] = hi;
 218   return operand;
 219 }
 220 
 221 // Buffer for 128-bits masks used by SSE instructions.
 222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 223 
 224 // Static initialization during VM startup.
 225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 229 
 230 // Offset hacking within calls.
 231 static int pre_call_FPU_size() {
 232   if (Compile::current()->in_24_bit_fp_mode())
 233     return 6; // fldcw
 234   return 0;
 235 }
 236 
 237 static int preserve_SP_size() {
 238   return 2;  // op, rm(reg/reg)
 239 }
 240 
 241 // !!!!! Special hack to get all type of calls to specify the byte offset
 242 //       from the start of the call to the point where the return address
 243 //       will point.
 244 int MachCallStaticJavaNode::ret_addr_offset() {
 245   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
 246   if (_method_handle_invoke)
 247     offset += preserve_SP_size();
 248   return offset;
 249 }
 250 
 251 int MachCallDynamicJavaNode::ret_addr_offset() {
 252   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
 253 }
 254 
 255 static int sizeof_FFree_Float_Stack_All = -1;
 256 
 257 int MachCallRuntimeNode::ret_addr_offset() {
 258   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 259   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
 260 }
 261 
 262 // Indicate if the safepoint node needs the polling page as an input.
 263 // Since x86 does have absolute addressing, it doesn't.
 264 bool SafePointNode::needs_polling_address_input() {
 265   return false;
 266 }
 267 
 268 //
 269 // Compute padding required for nodes which need alignment
 270 //
 271 
 272 // The address of the call instruction needs to be 4-byte aligned to
 273 // ensure that it does not span a cache line so that it can be patched.
 274 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 275   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 276   current_offset += 1;      // skip call opcode byte
 277   return round_to(current_offset, alignment_required()) - current_offset;
 278 }
 279 
 280 // The address of the call instruction needs to be 4-byte aligned to
 281 // ensure that it does not span a cache line so that it can be patched.
 282 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 283   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 284   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 285   current_offset += 1;      // skip call opcode byte
 286   return round_to(current_offset, alignment_required()) - current_offset;
 287 }
 288 
 289 // The address of the call instruction needs to be 4-byte aligned to
 290 // ensure that it does not span a cache line so that it can be patched.
 291 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 292   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 293   current_offset += 5;      // skip MOV instruction
 294   current_offset += 1;      // skip call opcode byte
 295   return round_to(current_offset, alignment_required()) - current_offset;
 296 }
 297 
 298 // EMIT_RM()
 299 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 300   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 301   cbuf.insts()->emit_int8(c);
 302 }
 303 
 304 // EMIT_CC()
 305 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 306   unsigned char c = (unsigned char)( f1 | f2 );
 307   cbuf.insts()->emit_int8(c);
 308 }
 309 
 310 // EMIT_OPCODE()
 311 void emit_opcode(CodeBuffer &cbuf, int code) {
 312   cbuf.insts()->emit_int8((unsigned char) code);
 313 }
 314 
 315 // EMIT_OPCODE() w/ relocation information
 316 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 317   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 318   emit_opcode(cbuf, code);
 319 }
 320 
 321 // EMIT_D8()
 322 void emit_d8(CodeBuffer &cbuf, int d8) {
 323   cbuf.insts()->emit_int8((unsigned char) d8);
 324 }
 325 
 326 // EMIT_D16()
 327 void emit_d16(CodeBuffer &cbuf, int d16) {
 328   cbuf.insts()->emit_int16(d16);
 329 }
 330 
 331 // EMIT_D32()
 332 void emit_d32(CodeBuffer &cbuf, int d32) {
 333   cbuf.insts()->emit_int32(d32);
 334 }
 335 
 336 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 337 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 338         int format) {
 339   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 340   cbuf.insts()->emit_int32(d32);
 341 }
 342 
 343 // emit 32 bit value and construct relocation entry from RelocationHolder
 344 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 345         int format) {
 346 #ifdef ASSERT
 347   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 348     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 349   }
 350 #endif
 351   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 352   cbuf.insts()->emit_int32(d32);
 353 }
 354 
 355 // Access stack slot for load or store
 356 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 357   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 358   if( -128 <= disp && disp <= 127 ) {
 359     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 360     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 361     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 362   } else {
 363     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 364     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 365     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 366   }
 367 }
 368 
 369    // rRegI ereg, memory mem) %{    // emit_reg_mem
 370 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
 371   // There is no index & no scale, use form without SIB byte
 372   if ((index == 0x4) &&
 373       (scale == 0) && (base != ESP_enc)) {
 374     // If no displacement, mode is 0x0; unless base is [EBP]
 375     if ( (displace == 0) && (base != EBP_enc) ) {
 376       emit_rm(cbuf, 0x0, reg_encoding, base);
 377     }
 378     else {                    // If 8-bit displacement, mode 0x1
 379       if ((displace >= -128) && (displace <= 127)
 380           && (disp_reloc == relocInfo::none) ) {
 381         emit_rm(cbuf, 0x1, reg_encoding, base);
 382         emit_d8(cbuf, displace);
 383       }
 384       else {                  // If 32-bit displacement
 385         if (base == -1) { // Special flag for absolute address
 386           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 387           // (manual lies; no SIB needed here)
 388           if ( disp_reloc != relocInfo::none ) {
 389             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 390           } else {
 391             emit_d32      (cbuf, displace);
 392           }
 393         }
 394         else {                // Normal base + offset
 395           emit_rm(cbuf, 0x2, reg_encoding, base);
 396           if ( disp_reloc != relocInfo::none ) {
 397             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 398           } else {
 399             emit_d32      (cbuf, displace);
 400           }
 401         }
 402       }
 403     }
 404   }
 405   else {                      // Else, encode with the SIB byte
 406     // If no displacement, mode is 0x0; unless base is [EBP]
 407     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 408       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 409       emit_rm(cbuf, scale, index, base);
 410     }
 411     else {                    // If 8-bit displacement, mode 0x1
 412       if ((displace >= -128) && (displace <= 127)
 413           && (disp_reloc == relocInfo::none) ) {
 414         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 415         emit_rm(cbuf, scale, index, base);
 416         emit_d8(cbuf, displace);
 417       }
 418       else {                  // If 32-bit displacement
 419         if (base == 0x04 ) {
 420           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 421           emit_rm(cbuf, scale, index, 0x04);
 422         } else {
 423           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 424           emit_rm(cbuf, scale, index, base);
 425         }
 426         if ( disp_reloc != relocInfo::none ) {
 427           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 428         } else {
 429           emit_d32      (cbuf, displace);
 430         }
 431       }
 432     }
 433   }
 434 }
 435 
 436 
 437 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 438   if( dst_encoding == src_encoding ) {
 439     // reg-reg copy, use an empty encoding
 440   } else {
 441     emit_opcode( cbuf, 0x8B );
 442     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 443   }
 444 }
 445 
 446 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 447   Label exit;
 448   __ jccb(Assembler::noParity, exit);
 449   __ pushf();
 450   //
 451   // comiss/ucomiss instructions set ZF,PF,CF flags and
 452   // zero OF,AF,SF for NaN values.
 453   // Fixup flags by zeroing ZF,PF so that compare of NaN
 454   // values returns 'less than' result (CF is set).
 455   // Leave the rest of flags unchanged.
 456   //
 457   //    7 6 5 4 3 2 1 0
 458   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 459   //    0 0 1 0 1 0 1 1   (0x2B)
 460   //
 461   __ andl(Address(rsp, 0), 0xffffff2b);
 462   __ popf();
 463   __ bind(exit);
 464 }
 465 
 466 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 467   Label done;
 468   __ movl(dst, -1);
 469   __ jcc(Assembler::parity, done);
 470   __ jcc(Assembler::below, done);
 471   __ setb(Assembler::notEqual, dst);
 472   __ movzbl(dst, dst);
 473   __ bind(done);
 474 }
 475 
 476 
 477 //=============================================================================
 478 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 479 
 480 int Compile::ConstantTable::calculate_table_base_offset() const {
 481   return 0;  // absolute addressing, no offset
 482 }
 483 
 484 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 485   // Empty encoding
 486 }
 487 
 488 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 489   return 0;
 490 }
 491 
 492 #ifndef PRODUCT
 493 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 494   st->print("# MachConstantBaseNode (empty encoding)");
 495 }
 496 #endif
 497 
 498 
 499 //=============================================================================
 500 #ifndef PRODUCT
 501 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 502   Compile* C = ra_->C;
 503 
 504   int framesize = C->frame_slots() << LogBytesPerInt;
 505   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 506   // Remove wordSize for return addr which is already pushed.
 507   framesize -= wordSize;
 508 
 509   if (C->need_stack_bang(framesize)) {
 510     framesize -= wordSize;
 511     st->print("# stack bang");
 512     st->print("\n\t");
 513     st->print("PUSH   EBP\t# Save EBP");
 514     if (framesize) {
 515       st->print("\n\t");
 516       st->print("SUB    ESP, #%d\t# Create frame",framesize);
 517     }
 518   } else {
 519     st->print("SUB    ESP, #%d\t# Create frame",framesize);
 520     st->print("\n\t");
 521     framesize -= wordSize;
 522     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
 523   }
 524 
 525   if (VerifyStackAtCalls) {
 526     st->print("\n\t");
 527     framesize -= wordSize;
 528     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
 529   }
 530 
 531   if( C->in_24_bit_fp_mode() ) {
 532     st->print("\n\t");
 533     st->print("FLDCW  \t# load 24 bit fpu control word");
 534   }
 535   if (UseSSE >= 2 && VerifyFPU) {
 536     st->print("\n\t");
 537     st->print("# verify FPU stack (must be clean on entry)");
 538   }
 539 
 540 #ifdef ASSERT
 541   if (VerifyStackAtCalls) {
 542     st->print("\n\t");
 543     st->print("# stack alignment check");
 544   }
 545 #endif
 546   st->cr();
 547 }
 548 #endif
 549 
 550 
 551 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 552   Compile* C = ra_->C;
 553   MacroAssembler _masm(&cbuf);
 554 
 555   int framesize = C->frame_slots() << LogBytesPerInt;
 556 
 557   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
 558 
 559   C->set_frame_complete(cbuf.insts_size());
 560 
 561   if (C->has_mach_constant_base_node()) {
 562     // NOTE: We set the table base offset here because users might be
 563     // emitted before MachConstantBaseNode.
 564     Compile::ConstantTable& constant_table = C->constant_table();
 565     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 566   }
 567 }
 568 
 569 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 570   return MachNode::size(ra_); // too many variables; just compute it the hard way
 571 }
 572 
 573 int MachPrologNode::reloc() const {
 574   return 0; // a large enough number
 575 }
 576 
 577 //=============================================================================
 578 #ifndef PRODUCT
 579 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 580   Compile *C = ra_->C;
 581   int framesize = C->frame_slots() << LogBytesPerInt;
 582   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 583   // Remove two words for return addr and rbp,
 584   framesize -= 2*wordSize;
 585 
 586   if( C->in_24_bit_fp_mode() ) {
 587     st->print("FLDCW  standard control word");
 588     st->cr(); st->print("\t");
 589   }
 590   if( framesize ) {
 591     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 592     st->cr(); st->print("\t");
 593   }
 594   st->print_cr("POPL   EBP"); st->print("\t");
 595   if( do_polling() && C->is_method_compilation() ) {
 596     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 597     st->cr(); st->print("\t");
 598   }
 599 }
 600 #endif
 601 
 602 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 603   Compile *C = ra_->C;
 604 
 605   // If method set FPU control word, restore to standard control word
 606   if( C->in_24_bit_fp_mode() ) {
 607     MacroAssembler masm(&cbuf);
 608     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 609   }
 610 
 611   int framesize = C->frame_slots() << LogBytesPerInt;
 612   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 613   // Remove two words for return addr and rbp,
 614   framesize -= 2*wordSize;
 615 
 616   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 617 
 618   if( framesize >= 128 ) {
 619     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 620     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 621     emit_d32(cbuf, framesize);
 622   }
 623   else if( framesize ) {
 624     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 625     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 626     emit_d8(cbuf, framesize);
 627   }
 628 
 629   emit_opcode(cbuf, 0x58 | EBP_enc);
 630 
 631   if( do_polling() && C->is_method_compilation() ) {
 632     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 633     emit_opcode(cbuf,0x85);
 634     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 635     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 636   }
 637 }
 638 
 639 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 640   Compile *C = ra_->C;
 641   // If method set FPU control word, restore to standard control word
 642   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 643   if( do_polling() && C->is_method_compilation() ) size += 6;
 644 
 645   int framesize = C->frame_slots() << LogBytesPerInt;
 646   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 647   // Remove two words for return addr and rbp,
 648   framesize -= 2*wordSize;
 649 
 650   size++; // popl rbp,
 651 
 652   if( framesize >= 128 ) {
 653     size += 6;
 654   } else {
 655     size += framesize ? 3 : 0;
 656   }
 657   return size;
 658 }
 659 
 660 int MachEpilogNode::reloc() const {
 661   return 0; // a large enough number
 662 }
 663 
 664 const Pipeline * MachEpilogNode::pipeline() const {
 665   return MachNode::pipeline_class();
 666 }
 667 
 668 int MachEpilogNode::safepoint_offset() const { return 0; }
 669 
 670 //=============================================================================
 671 
 672 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 673 static enum RC rc_class( OptoReg::Name reg ) {
 674 
 675   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 676   if (OptoReg::is_stack(reg)) return rc_stack;
 677 
 678   VMReg r = OptoReg::as_VMReg(reg);
 679   if (r->is_Register()) return rc_int;
 680   if (r->is_FloatRegister()) {
 681     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 682     return rc_float;
 683   }
 684   assert(r->is_XMMRegister(), "must be");
 685   return rc_xmm;
 686 }
 687 
 688 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 689                         int opcode, const char *op_str, int size, outputStream* st ) {
 690   if( cbuf ) {
 691     emit_opcode  (*cbuf, opcode );
 692     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
 693 #ifndef PRODUCT
 694   } else if( !do_size ) {
 695     if( size != 0 ) st->print("\n\t");
 696     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 697       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 698       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 699     } else { // FLD, FST, PUSH, POP
 700       st->print("%s [ESP + #%d]",op_str,offset);
 701     }
 702 #endif
 703   }
 704   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 705   return size+3+offset_size;
 706 }
 707 
 708 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 709 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 710                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 711   if (cbuf) {
 712     MacroAssembler _masm(cbuf);
 713     if (reg_lo+1 == reg_hi) { // double move?
 714       if (is_load) {
 715         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 716       } else {
 717         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 718       }
 719     } else {
 720       if (is_load) {
 721         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 722       } else {
 723         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 724       }
 725     }
 726 #ifndef PRODUCT
 727   } else if (!do_size) {
 728     if (size != 0) st->print("\n\t");
 729     if (reg_lo+1 == reg_hi) { // double move?
 730       if (is_load) st->print("%s %s,[ESP + #%d]",
 731                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 732                               Matcher::regName[reg_lo], offset);
 733       else         st->print("MOVSD  [ESP + #%d],%s",
 734                               offset, Matcher::regName[reg_lo]);
 735     } else {
 736       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
 737                               Matcher::regName[reg_lo], offset);
 738       else         st->print("MOVSS  [ESP + #%d],%s",
 739                               offset, Matcher::regName[reg_lo]);
 740     }
 741 #endif
 742   }
 743   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 744   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
 745   return size+5+offset_size;
 746 }
 747 
 748 
 749 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 750                             int src_hi, int dst_hi, int size, outputStream* st ) {
 751   if (cbuf) {
 752     MacroAssembler _masm(cbuf);
 753     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 754       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 755                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 756     } else {
 757       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 758                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 759     }
 760 #ifndef PRODUCT
 761   } else if (!do_size) {
 762     if (size != 0) st->print("\n\t");
 763     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
 764       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 765         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 766       } else {
 767         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 768       }
 769     } else {
 770       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 771         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 772       } else {
 773         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 774       }
 775     }
 776 #endif
 777   }
 778   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
 779   // Only MOVAPS SSE prefix uses 1 byte.
 780   int sz = 4;
 781   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
 782       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
 783   return size + sz;
 784 }
 785 
 786 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 787                             int src_hi, int dst_hi, int size, outputStream* st ) {
 788   // 32-bit
 789   if (cbuf) {
 790     MacroAssembler _masm(cbuf);
 791     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 792              as_Register(Matcher::_regEncode[src_lo]));
 793 #ifndef PRODUCT
 794   } else if (!do_size) {
 795     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 796 #endif
 797   }
 798   return 4;
 799 }
 800 
 801 
 802 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 803                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 804   // 32-bit
 805   if (cbuf) {
 806     MacroAssembler _masm(cbuf);
 807     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
 808              as_XMMRegister(Matcher::_regEncode[src_lo]));
 809 #ifndef PRODUCT
 810   } else if (!do_size) {
 811     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 812 #endif
 813   }
 814   return 4;
 815 }
 816 
 817 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 818   if( cbuf ) {
 819     emit_opcode(*cbuf, 0x8B );
 820     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 821 #ifndef PRODUCT
 822   } else if( !do_size ) {
 823     if( size != 0 ) st->print("\n\t");
 824     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 825 #endif
 826   }
 827   return size+2;
 828 }
 829 
 830 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 831                                  int offset, int size, outputStream* st ) {
 832   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 833     if( cbuf ) {
 834       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 835       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 836 #ifndef PRODUCT
 837     } else if( !do_size ) {
 838       if( size != 0 ) st->print("\n\t");
 839       st->print("FLD    %s",Matcher::regName[src_lo]);
 840 #endif
 841     }
 842     size += 2;
 843   }
 844 
 845   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 846   const char *op_str;
 847   int op;
 848   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 849     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 850     op = 0xDD;
 851   } else {                   // 32-bit store
 852     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 853     op = 0xD9;
 854     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 855   }
 856 
 857   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 858 }
 859 
 860 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 861 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 862                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 863 
 864 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 865                             int stack_offset, int reg, uint ireg, outputStream* st);
 866 
 867 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
 868                                      int dst_offset, uint ireg, outputStream* st) {
 869   int calc_size = 0;
 870   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 871   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 872   switch (ireg) {
 873   case Op_VecS:
 874     calc_size = 3+src_offset_size + 3+dst_offset_size;
 875     break;
 876   case Op_VecD:
 877     calc_size = 3+src_offset_size + 3+dst_offset_size;
 878     src_offset += 4;
 879     dst_offset += 4;
 880     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 881     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 882     calc_size += 3+src_offset_size + 3+dst_offset_size;
 883     break;
 884   case Op_VecX:
 885     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 886     break;
 887   case Op_VecY:
 888     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 889     break;
 890   default:
 891     ShouldNotReachHere();
 892   }
 893   if (cbuf) {
 894     MacroAssembler _masm(cbuf);
 895     int offset = __ offset();
 896     switch (ireg) {
 897     case Op_VecS:
 898       __ pushl(Address(rsp, src_offset));
 899       __ popl (Address(rsp, dst_offset));
 900       break;
 901     case Op_VecD:
 902       __ pushl(Address(rsp, src_offset));
 903       __ popl (Address(rsp, dst_offset));
 904       __ pushl(Address(rsp, src_offset+4));
 905       __ popl (Address(rsp, dst_offset+4));
 906       break;
 907     case Op_VecX:
 908       __ movdqu(Address(rsp, -16), xmm0);
 909       __ movdqu(xmm0, Address(rsp, src_offset));
 910       __ movdqu(Address(rsp, dst_offset), xmm0);
 911       __ movdqu(xmm0, Address(rsp, -16));
 912       break;
 913     case Op_VecY:
 914       __ vmovdqu(Address(rsp, -32), xmm0);
 915       __ vmovdqu(xmm0, Address(rsp, src_offset));
 916       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 917       __ vmovdqu(xmm0, Address(rsp, -32));
 918       break;
 919     default:
 920       ShouldNotReachHere();
 921     }
 922     int size = __ offset() - offset;
 923     assert(size == calc_size, "incorrect size calculattion");
 924     return size;
 925 #ifndef PRODUCT
 926   } else if (!do_size) {
 927     switch (ireg) {
 928     case Op_VecS:
 929       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
 930                 "popl    [rsp + #%d]",
 931                 src_offset, dst_offset);
 932       break;
 933     case Op_VecD:
 934       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 935                 "popq    [rsp + #%d]\n\t"
 936                 "pushl   [rsp + #%d]\n\t"
 937                 "popq    [rsp + #%d]",
 938                 src_offset, dst_offset, src_offset+4, dst_offset+4);
 939       break;
 940      case Op_VecX:
 941       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
 942                 "movdqu  xmm0, [rsp + #%d]\n\t"
 943                 "movdqu  [rsp + #%d], xmm0\n\t"
 944                 "movdqu  xmm0, [rsp - #16]",
 945                 src_offset, dst_offset);
 946       break;
 947     case Op_VecY:
 948       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
 949                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 950                 "vmovdqu [rsp + #%d], xmm0\n\t"
 951                 "vmovdqu xmm0, [rsp - #32]",
 952                 src_offset, dst_offset);
 953       break;
 954     default:
 955       ShouldNotReachHere();
 956     }
 957 #endif
 958   }
 959   return calc_size;
 960 }
 961 
 962 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 963   // Get registers to move
 964   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 965   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 966   OptoReg::Name dst_second = ra_->get_reg_second(this );
 967   OptoReg::Name dst_first = ra_->get_reg_first(this );
 968 
 969   enum RC src_second_rc = rc_class(src_second);
 970   enum RC src_first_rc = rc_class(src_first);
 971   enum RC dst_second_rc = rc_class(dst_second);
 972   enum RC dst_first_rc = rc_class(dst_first);
 973 
 974   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 975 
 976   // Generate spill code!
 977   int size = 0;
 978 
 979   if( src_first == dst_first && src_second == dst_second )
 980     return size;            // Self copy, no move
 981 
 982   if (bottom_type()->isa_vect() != NULL) {
 983     uint ireg = ideal_reg();
 984     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
 985     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
 986     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
 987     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
 988       // mem -> mem
 989       int src_offset = ra_->reg2offset(src_first);
 990       int dst_offset = ra_->reg2offset(dst_first);
 991       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
 992     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
 993       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
 994     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
 995       int stack_offset = ra_->reg2offset(dst_first);
 996       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
 997     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
 998       int stack_offset = ra_->reg2offset(src_first);
 999       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1000     } else {
1001       ShouldNotReachHere();
1002     }
1003   }
1004 
1005   // --------------------------------------
1006   // Check for mem-mem move.  push/pop to move.
1007   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1008     if( src_second == dst_first ) { // overlapping stack copy ranges
1009       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1010       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1011       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1012       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1013     }
1014     // move low bits
1015     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1016     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1017     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1018       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1019       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1020     }
1021     return size;
1022   }
1023 
1024   // --------------------------------------
1025   // Check for integer reg-reg copy
1026   if( src_first_rc == rc_int && dst_first_rc == rc_int )
1027     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1028 
1029   // Check for integer store
1030   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1031     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1032 
1033   // Check for integer load
1034   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1035     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1036 
1037   // Check for integer reg-xmm reg copy
1038   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1039     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1040             "no 64 bit integer-float reg moves" );
1041     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1042   }
1043   // --------------------------------------
1044   // Check for float reg-reg copy
1045   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1046     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1047             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1048     if( cbuf ) {
1049 
1050       // Note the mucking with the register encode to compensate for the 0/1
1051       // indexing issue mentioned in a comment in the reg_def sections
1052       // for FPR registers many lines above here.
1053 
1054       if( src_first != FPR1L_num ) {
1055         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1056         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1057         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1058         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1059      } else {
1060         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1061         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1062      }
1063 #ifndef PRODUCT
1064     } else if( !do_size ) {
1065       if( size != 0 ) st->print("\n\t");
1066       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1067       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1068 #endif
1069     }
1070     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1071   }
1072 
1073   // Check for float store
1074   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1075     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1076   }
1077 
1078   // Check for float load
1079   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1080     int offset = ra_->reg2offset(src_first);
1081     const char *op_str;
1082     int op;
1083     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1084       op_str = "FLD_D";
1085       op = 0xDD;
1086     } else {                   // 32-bit load
1087       op_str = "FLD_S";
1088       op = 0xD9;
1089       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1090     }
1091     if( cbuf ) {
1092       emit_opcode  (*cbuf, op );
1093       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
1094       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1095       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1096 #ifndef PRODUCT
1097     } else if( !do_size ) {
1098       if( size != 0 ) st->print("\n\t");
1099       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1100 #endif
1101     }
1102     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1103     return size + 3+offset_size+2;
1104   }
1105 
1106   // Check for xmm reg-reg copy
1107   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1108     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1109             (src_first+1 == src_second && dst_first+1 == dst_second),
1110             "no non-adjacent float-moves" );
1111     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1112   }
1113 
1114   // Check for xmm reg-integer reg copy
1115   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1116     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1117             "no 64 bit float-integer reg moves" );
1118     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1119   }
1120 
1121   // Check for xmm store
1122   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1123     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1124   }
1125 
1126   // Check for float xmm load
1127   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1128     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1129   }
1130 
1131   // Copy from float reg to xmm reg
1132   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1133     // copy to the top of stack from floating point reg
1134     // and use LEA to preserve flags
1135     if( cbuf ) {
1136       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1137       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1138       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1139       emit_d8(*cbuf,0xF8);
1140 #ifndef PRODUCT
1141     } else if( !do_size ) {
1142       if( size != 0 ) st->print("\n\t");
1143       st->print("LEA    ESP,[ESP-8]");
1144 #endif
1145     }
1146     size += 4;
1147 
1148     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1149 
1150     // Copy from the temp memory to the xmm reg.
1151     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1152 
1153     if( cbuf ) {
1154       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1155       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1156       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1157       emit_d8(*cbuf,0x08);
1158 #ifndef PRODUCT
1159     } else if( !do_size ) {
1160       if( size != 0 ) st->print("\n\t");
1161       st->print("LEA    ESP,[ESP+8]");
1162 #endif
1163     }
1164     size += 4;
1165     return size;
1166   }
1167 
1168   assert( size > 0, "missed a case" );
1169 
1170   // --------------------------------------------------------------------
1171   // Check for second bits still needing moving.
1172   if( src_second == dst_second )
1173     return size;               // Self copy; no move
1174   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1175 
1176   // Check for second word int-int move
1177   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1178     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1179 
1180   // Check for second word integer store
1181   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1182     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1183 
1184   // Check for second word integer load
1185   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1186     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1187 
1188 
1189   Unimplemented();
1190 }
1191 
1192 #ifndef PRODUCT
1193 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1194   implementation( NULL, ra_, false, st );
1195 }
1196 #endif
1197 
1198 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1199   implementation( &cbuf, ra_, false, NULL );
1200 }
1201 
1202 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1203   return implementation( NULL, ra_, true, NULL );
1204 }
1205 
1206 
1207 //=============================================================================
1208 #ifndef PRODUCT
1209 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1210   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1211   int reg = ra_->get_reg_first(this);
1212   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1213 }
1214 #endif
1215 
1216 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1217   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1218   int reg = ra_->get_encode(this);
1219   if( offset >= 128 ) {
1220     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1221     emit_rm(cbuf, 0x2, reg, 0x04);
1222     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1223     emit_d32(cbuf, offset);
1224   }
1225   else {
1226     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1227     emit_rm(cbuf, 0x1, reg, 0x04);
1228     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1229     emit_d8(cbuf, offset);
1230   }
1231 }
1232 
1233 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1234   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1235   if( offset >= 128 ) {
1236     return 7;
1237   }
1238   else {
1239     return 4;
1240   }
1241 }
1242 
1243 //=============================================================================
1244 
1245 // emit call stub, compiled java to interpreter
1246 void emit_java_to_interp(CodeBuffer &cbuf ) {
1247   // Stub is fixed up when the corresponding call is converted from calling
1248   // compiled code to calling interpreted code.
1249   // mov rbx,0
1250   // jmp -1
1251 
1252   address mark = cbuf.insts_mark();  // get mark within main instrs section
1253 
1254   // Note that the code buffer's insts_mark is always relative to insts.
1255   // That's why we must use the macroassembler to generate a stub.
1256   MacroAssembler _masm(&cbuf);
1257 
1258   address base =
1259   __ start_a_stub(Compile::MAX_stubs_size);
1260   if (base == NULL)  return;  // CodeBuffer::expand failed
1261   // static stub relocation stores the instruction address of the call
1262   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1263   // static stub relocation also tags the Method* in the code-stream.
1264   __ mov_metadata(rbx, (Metadata*)NULL);  // method is zapped till fixup time
1265   // This is recognized as unresolved by relocs/nativeInst/ic code
1266   __ jump(RuntimeAddress(__ pc()));
1267 
1268   __ end_a_stub();
1269   // Update current stubs pointer and restore insts_end.
1270 }
1271 // size of call stub, compiled java to interpretor
1272 uint size_java_to_interp() {
1273   return 10;  // movl; jmp
1274 }
1275 // relocation entries for call stub, compiled java to interpretor
1276 uint reloc_java_to_interp() {
1277   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1278 }
1279 
1280 //=============================================================================
1281 #ifndef PRODUCT
1282 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1283   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1284   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1285   st->print_cr("\tNOP");
1286   st->print_cr("\tNOP");
1287   if( !OptoBreakpoint )
1288     st->print_cr("\tNOP");
1289 }
1290 #endif
1291 
1292 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1293   MacroAssembler masm(&cbuf);
1294 #ifdef ASSERT
1295   uint insts_size = cbuf.insts_size();
1296 #endif
1297   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1298   masm.jump_cc(Assembler::notEqual,
1299                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1300   /* WARNING these NOPs are critical so that verified entry point is properly
1301      aligned for patching by NativeJump::patch_verified_entry() */
1302   int nops_cnt = 2;
1303   if( !OptoBreakpoint ) // Leave space for int3
1304      nops_cnt += 1;
1305   masm.nop(nops_cnt);
1306 
1307   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1308 }
1309 
1310 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1311   return OptoBreakpoint ? 11 : 12;
1312 }
1313 
1314 
1315 //=============================================================================
1316 uint size_exception_handler() {
1317   // NativeCall instruction size is the same as NativeJump.
1318   // exception handler starts out as jump and can be patched to
1319   // a call be deoptimization.  (4932387)
1320   // Note that this value is also credited (in output.cpp) to
1321   // the size of the code section.
1322   return NativeJump::instruction_size;
1323 }
1324 
1325 // Emit exception handler code.  Stuff framesize into a register
1326 // and call a VM stub routine.
1327 int emit_exception_handler(CodeBuffer& cbuf) {
1328 
1329   // Note that the code buffer's insts_mark is always relative to insts.
1330   // That's why we must use the macroassembler to generate a handler.
1331   MacroAssembler _masm(&cbuf);
1332   address base =
1333   __ start_a_stub(size_exception_handler());
1334   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1335   int offset = __ offset();
1336   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1337   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1338   __ end_a_stub();
1339   return offset;
1340 }
1341 
1342 uint size_deopt_handler() {
1343   // NativeCall instruction size is the same as NativeJump.
1344   // exception handler starts out as jump and can be patched to
1345   // a call be deoptimization.  (4932387)
1346   // Note that this value is also credited (in output.cpp) to
1347   // the size of the code section.
1348   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1349 }
1350 
1351 // Emit deopt handler code.
1352 int emit_deopt_handler(CodeBuffer& cbuf) {
1353 
1354   // Note that the code buffer's insts_mark is always relative to insts.
1355   // That's why we must use the macroassembler to generate a handler.
1356   MacroAssembler _masm(&cbuf);
1357   address base =
1358   __ start_a_stub(size_exception_handler());
1359   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1360   int offset = __ offset();
1361   InternalAddress here(__ pc());
1362   __ pushptr(here.addr());
1363 
1364   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1365   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1366   __ end_a_stub();
1367   return offset;
1368 }
1369 
1370 int Matcher::regnum_to_fpu_offset(int regnum) {
1371   return regnum - 32; // The FP registers are in the second chunk
1372 }
1373 
1374 // This is UltraSparc specific, true just means we have fast l2f conversion
1375 const bool Matcher::convL2FSupported(void) {
1376   return true;
1377 }
1378 
1379 // Is this branch offset short enough that a short branch can be used?
1380 //
1381 // NOTE: If the platform does not provide any short branch variants, then
1382 //       this method should return false for offset 0.
1383 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1384   // The passed offset is relative to address of the branch.
1385   // On 86 a branch displacement is calculated relative to address
1386   // of a next instruction.
1387   offset -= br_size;
1388 
1389   // the short version of jmpConUCF2 contains multiple branches,
1390   // making the reach slightly less
1391   if (rule == jmpConUCF2_rule)
1392     return (-126 <= offset && offset <= 125);
1393   return (-128 <= offset && offset <= 127);
1394 }
1395 
1396 const bool Matcher::isSimpleConstant64(jlong value) {
1397   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1398   return false;
1399 }
1400 
1401 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1402 const bool Matcher::init_array_count_is_in_bytes = false;
1403 
1404 // Threshold size for cleararray.
1405 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1406 
1407 // Needs 2 CMOV's for longs.
1408 const int Matcher::long_cmove_cost() { return 1; }
1409 
1410 // No CMOVF/CMOVD with SSE/SSE2
1411 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1412 
1413 // Should the Matcher clone shifts on addressing modes, expecting them to
1414 // be subsumed into complex addressing expressions or compute them into
1415 // registers?  True for Intel but false for most RISCs
1416 const bool Matcher::clone_shift_expressions = true;
1417 
1418 // Do we need to mask the count passed to shift instructions or does
1419 // the cpu only look at the lower 5/6 bits anyway?
1420 const bool Matcher::need_masked_shift_count = false;
1421 
1422 bool Matcher::narrow_oop_use_complex_address() {
1423   ShouldNotCallThis();
1424   return true;
1425 }
1426 
1427 bool Matcher::narrow_klass_use_complex_address() {
1428   ShouldNotCallThis();
1429   return true;
1430 }
1431 
1432 
1433 // Is it better to copy float constants, or load them directly from memory?
1434 // Intel can load a float constant from a direct address, requiring no
1435 // extra registers.  Most RISCs will have to materialize an address into a
1436 // register first, so they would do better to copy the constant from stack.
1437 const bool Matcher::rematerialize_float_constants = true;
1438 
1439 // If CPU can load and store mis-aligned doubles directly then no fixup is
1440 // needed.  Else we split the double into 2 integer pieces and move it
1441 // piece-by-piece.  Only happens when passing doubles into C code as the
1442 // Java calling convention forces doubles to be aligned.
1443 const bool Matcher::misaligned_doubles_ok = true;
1444 
1445 
1446 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1447   // Get the memory operand from the node
1448   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1449   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1450   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1451   uint opcnt     = 1;                 // First operand
1452   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1453   while( idx >= skipped+num_edges ) {
1454     skipped += num_edges;
1455     opcnt++;                          // Bump operand count
1456     assert( opcnt < numopnds, "Accessing non-existent operand" );
1457     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1458   }
1459 
1460   MachOper *memory = node->_opnds[opcnt];
1461   MachOper *new_memory = NULL;
1462   switch (memory->opcode()) {
1463   case DIRECT:
1464   case INDOFFSET32X:
1465     // No transformation necessary.
1466     return;
1467   case INDIRECT:
1468     new_memory = new (C) indirect_win95_safeOper( );
1469     break;
1470   case INDOFFSET8:
1471     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1472     break;
1473   case INDOFFSET32:
1474     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1475     break;
1476   case INDINDEXOFFSET:
1477     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1478     break;
1479   case INDINDEXSCALE:
1480     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1481     break;
1482   case INDINDEXSCALEOFFSET:
1483     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1484     break;
1485   case LOAD_LONG_INDIRECT:
1486   case LOAD_LONG_INDOFFSET32:
1487     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1488     return;
1489   default:
1490     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1491     return;
1492   }
1493   node->_opnds[opcnt] = new_memory;
1494 }
1495 
1496 // Advertise here if the CPU requires explicit rounding operations
1497 // to implement the UseStrictFP mode.
1498 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1499 
1500 // Are floats conerted to double when stored to stack during deoptimization?
1501 // On x32 it is stored with convertion only when FPU is used for floats.
1502 bool Matcher::float_in_double() { return (UseSSE == 0); }
1503 
1504 // Do ints take an entire long register or just half?
1505 const bool Matcher::int_in_long = false;
1506 
1507 // Return whether or not this register is ever used as an argument.  This
1508 // function is used on startup to build the trampoline stubs in generateOptoStub.
1509 // Registers not mentioned will be killed by the VM call in the trampoline, and
1510 // arguments in those registers not be available to the callee.
1511 bool Matcher::can_be_java_arg( int reg ) {
1512   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1513   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1514   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1515   return false;
1516 }
1517 
1518 bool Matcher::is_spillable_arg( int reg ) {
1519   return can_be_java_arg(reg);
1520 }
1521 
1522 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1523   // Use hardware integer DIV instruction when
1524   // it is faster than a code which use multiply.
1525   // Only when constant divisor fits into 32 bit
1526   // (min_jint is excluded to get only correct
1527   // positive 32 bit values from negative).
1528   return VM_Version::has_fast_idiv() &&
1529          (divisor == (int)divisor && divisor != min_jint);
1530 }
1531 
1532 // Register for DIVI projection of divmodI
1533 RegMask Matcher::divI_proj_mask() {
1534   return EAX_REG_mask();
1535 }
1536 
1537 // Register for MODI projection of divmodI
1538 RegMask Matcher::modI_proj_mask() {
1539   return EDX_REG_mask();
1540 }
1541 
1542 // Register for DIVL projection of divmodL
1543 RegMask Matcher::divL_proj_mask() {
1544   ShouldNotReachHere();
1545   return RegMask();
1546 }
1547 
1548 // Register for MODL projection of divmodL
1549 RegMask Matcher::modL_proj_mask() {
1550   ShouldNotReachHere();
1551   return RegMask();
1552 }
1553 
1554 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1555   return EBP_REG_mask();
1556 }
1557 
1558 // Returns true if the high 32 bits of the value is known to be zero.
1559 bool is_operand_hi32_zero(Node* n) {
1560   int opc = n->Opcode();
1561   if (opc == Op_LoadUI2L) {
1562     return true;
1563   }
1564   if (opc == Op_AndL) {
1565     Node* o2 = n->in(2);
1566     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1567       return true;
1568     }
1569   }
1570   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1571     return true;
1572   }
1573   return false;
1574 }
1575 
1576 %}
1577 
1578 //----------ENCODING BLOCK-----------------------------------------------------
1579 // This block specifies the encoding classes used by the compiler to output
1580 // byte streams.  Encoding classes generate functions which are called by
1581 // Machine Instruction Nodes in order to generate the bit encoding of the
1582 // instruction.  Operands specify their base encoding interface with the
1583 // interface keyword.  There are currently supported four interfaces,
1584 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1585 // operand to generate a function which returns its register number when
1586 // queried.   CONST_INTER causes an operand to generate a function which
1587 // returns the value of the constant when queried.  MEMORY_INTER causes an
1588 // operand to generate four functions which return the Base Register, the
1589 // Index Register, the Scale Value, and the Offset Value of the operand when
1590 // queried.  COND_INTER causes an operand to generate six functions which
1591 // return the encoding code (ie - encoding bits for the instruction)
1592 // associated with each basic boolean condition for a conditional instruction.
1593 // Instructions specify two basic values for encoding.  They use the
1594 // ins_encode keyword to specify their encoding class (which must be one of
1595 // the class names specified in the encoding block), and they use the
1596 // opcode keyword to specify, in order, their primary, secondary, and
1597 // tertiary opcode.  Only the opcode sections which a particular instruction
1598 // needs for encoding need to be specified.
1599 encode %{
1600   // Build emit functions for each basic byte or larger field in the intel
1601   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1602   // code in the enc_class source block.  Emit functions will live in the
1603   // main source block for now.  In future, we can generalize this by
1604   // adding a syntax that specifies the sizes of fields in an order,
1605   // so that the adlc can build the emit functions automagically
1606 
1607   // Emit primary opcode
1608   enc_class OpcP %{
1609     emit_opcode(cbuf, $primary);
1610   %}
1611 
1612   // Emit secondary opcode
1613   enc_class OpcS %{
1614     emit_opcode(cbuf, $secondary);
1615   %}
1616 
1617   // Emit opcode directly
1618   enc_class Opcode(immI d8) %{
1619     emit_opcode(cbuf, $d8$$constant);
1620   %}
1621 
1622   enc_class SizePrefix %{
1623     emit_opcode(cbuf,0x66);
1624   %}
1625 
1626   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1627     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1628   %}
1629 
1630   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1631     emit_opcode(cbuf,$opcode$$constant);
1632     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1633   %}
1634 
1635   enc_class mov_r32_imm0( rRegI dst ) %{
1636     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1637     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1638   %}
1639 
1640   enc_class cdq_enc %{
1641     // Full implementation of Java idiv and irem; checks for
1642     // special case as described in JVM spec., p.243 & p.271.
1643     //
1644     //         normal case                           special case
1645     //
1646     // input : rax,: dividend                         min_int
1647     //         reg: divisor                          -1
1648     //
1649     // output: rax,: quotient  (= rax, idiv reg)       min_int
1650     //         rdx: remainder (= rax, irem reg)       0
1651     //
1652     //  Code sequnce:
1653     //
1654     //  81 F8 00 00 00 80    cmp         rax,80000000h
1655     //  0F 85 0B 00 00 00    jne         normal_case
1656     //  33 D2                xor         rdx,edx
1657     //  83 F9 FF             cmp         rcx,0FFh
1658     //  0F 84 03 00 00 00    je          done
1659     //                  normal_case:
1660     //  99                   cdq
1661     //  F7 F9                idiv        rax,ecx
1662     //                  done:
1663     //
1664     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1665     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1666     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1667     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1668     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1669     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1670     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1671     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1672     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1673     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1674     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1675     // normal_case:
1676     emit_opcode(cbuf,0x99);                                         // cdq
1677     // idiv (note: must be emitted by the user of this rule)
1678     // normal:
1679   %}
1680 
1681   // Dense encoding for older common ops
1682   enc_class Opc_plus(immI opcode, rRegI reg) %{
1683     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1684   %}
1685 
1686 
1687   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1688   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1689     // Check for 8-bit immediate, and set sign extend bit in opcode
1690     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1691       emit_opcode(cbuf, $primary | 0x02);
1692     }
1693     else {                          // If 32-bit immediate
1694       emit_opcode(cbuf, $primary);
1695     }
1696   %}
1697 
1698   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1699     // Emit primary opcode and set sign-extend bit
1700     // Check for 8-bit immediate, and set sign extend bit in opcode
1701     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1702       emit_opcode(cbuf, $primary | 0x02);    }
1703     else {                          // If 32-bit immediate
1704       emit_opcode(cbuf, $primary);
1705     }
1706     // Emit r/m byte with secondary opcode, after primary opcode.
1707     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1708   %}
1709 
1710   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1711     // Check for 8-bit immediate, and set sign extend bit in opcode
1712     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1713       $$$emit8$imm$$constant;
1714     }
1715     else {                          // If 32-bit immediate
1716       // Output immediate
1717       $$$emit32$imm$$constant;
1718     }
1719   %}
1720 
1721   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1722     // Emit primary opcode and set sign-extend bit
1723     // Check for 8-bit immediate, and set sign extend bit in opcode
1724     int con = (int)$imm$$constant; // Throw away top bits
1725     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1726     // Emit r/m byte with secondary opcode, after primary opcode.
1727     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1728     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1729     else                               emit_d32(cbuf,con);
1730   %}
1731 
1732   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1733     // Emit primary opcode and set sign-extend bit
1734     // Check for 8-bit immediate, and set sign extend bit in opcode
1735     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1736     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1737     // Emit r/m byte with tertiary opcode, after primary opcode.
1738     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1739     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1740     else                               emit_d32(cbuf,con);
1741   %}
1742 
1743   enc_class OpcSReg (rRegI dst) %{    // BSWAP
1744     emit_cc(cbuf, $secondary, $dst$$reg );
1745   %}
1746 
1747   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1748     int destlo = $dst$$reg;
1749     int desthi = HIGH_FROM_LOW(destlo);
1750     // bswap lo
1751     emit_opcode(cbuf, 0x0F);
1752     emit_cc(cbuf, 0xC8, destlo);
1753     // bswap hi
1754     emit_opcode(cbuf, 0x0F);
1755     emit_cc(cbuf, 0xC8, desthi);
1756     // xchg lo and hi
1757     emit_opcode(cbuf, 0x87);
1758     emit_rm(cbuf, 0x3, destlo, desthi);
1759   %}
1760 
1761   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1762     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1763   %}
1764 
1765   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1766     $$$emit8$primary;
1767     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1768   %}
1769 
1770   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1771     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1772     emit_d8(cbuf, op >> 8 );
1773     emit_d8(cbuf, op & 255);
1774   %}
1775 
1776   // emulate a CMOV with a conditional branch around a MOV
1777   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1778     // Invert sense of branch from sense of CMOV
1779     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1780     emit_d8( cbuf, $brOffs$$constant );
1781   %}
1782 
1783   enc_class enc_PartialSubtypeCheck( ) %{
1784     Register Redi = as_Register(EDI_enc); // result register
1785     Register Reax = as_Register(EAX_enc); // super class
1786     Register Recx = as_Register(ECX_enc); // killed
1787     Register Resi = as_Register(ESI_enc); // sub class
1788     Label miss;
1789 
1790     MacroAssembler _masm(&cbuf);
1791     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1792                                      NULL, &miss,
1793                                      /*set_cond_codes:*/ true);
1794     if ($primary) {
1795       __ xorptr(Redi, Redi);
1796     }
1797     __ bind(miss);
1798   %}
1799 
1800   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1801     MacroAssembler masm(&cbuf);
1802     int start = masm.offset();
1803     if (UseSSE >= 2) {
1804       if (VerifyFPU) {
1805         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1806       }
1807     } else {
1808       // External c_calling_convention expects the FPU stack to be 'clean'.
1809       // Compiled code leaves it dirty.  Do cleanup now.
1810       masm.empty_FPU_stack();
1811     }
1812     if (sizeof_FFree_Float_Stack_All == -1) {
1813       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1814     } else {
1815       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1816     }
1817   %}
1818 
1819   enc_class Verify_FPU_For_Leaf %{
1820     if( VerifyFPU ) {
1821       MacroAssembler masm(&cbuf);
1822       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1823     }
1824   %}
1825 
1826   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1827     // This is the instruction starting address for relocation info.
1828     cbuf.set_insts_mark();
1829     $$$emit8$primary;
1830     // CALL directly to the runtime
1831     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1832                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1833 
1834     if (UseSSE >= 2) {
1835       MacroAssembler _masm(&cbuf);
1836       BasicType rt = tf()->return_type();
1837 
1838       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1839         // A C runtime call where the return value is unused.  In SSE2+
1840         // mode the result needs to be removed from the FPU stack.  It's
1841         // likely that this function call could be removed by the
1842         // optimizer if the C function is a pure function.
1843         __ ffree(0);
1844       } else if (rt == T_FLOAT) {
1845         __ lea(rsp, Address(rsp, -4));
1846         __ fstp_s(Address(rsp, 0));
1847         __ movflt(xmm0, Address(rsp, 0));
1848         __ lea(rsp, Address(rsp,  4));
1849       } else if (rt == T_DOUBLE) {
1850         __ lea(rsp, Address(rsp, -8));
1851         __ fstp_d(Address(rsp, 0));
1852         __ movdbl(xmm0, Address(rsp, 0));
1853         __ lea(rsp, Address(rsp,  8));
1854       }
1855     }
1856   %}
1857 
1858 
1859   enc_class pre_call_FPU %{
1860     // If method sets FPU control word restore it here
1861     debug_only(int off0 = cbuf.insts_size());
1862     if( Compile::current()->in_24_bit_fp_mode() ) {
1863       MacroAssembler masm(&cbuf);
1864       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1865     }
1866     debug_only(int off1 = cbuf.insts_size());
1867     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
1868   %}
1869 
1870   enc_class post_call_FPU %{
1871     // If method sets FPU control word do it here also
1872     if( Compile::current()->in_24_bit_fp_mode() ) {
1873       MacroAssembler masm(&cbuf);
1874       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1875     }
1876   %}
1877 
1878   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1879     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1880     // who we intended to call.
1881     cbuf.set_insts_mark();
1882     $$$emit8$primary;
1883     if ( !_method ) {
1884       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1885                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1886     } else if(_optimized_virtual) {
1887       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1888                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1889     } else {
1890       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1891                      static_call_Relocation::spec(), RELOC_IMM32 );
1892     }
1893     if( _method ) {  // Emit stub for static call
1894       emit_java_to_interp(cbuf);
1895     }
1896   %}
1897 
1898   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1899     MacroAssembler _masm(&cbuf);
1900     __ ic_call((address)$meth$$method);
1901   %}
1902 
1903   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1904     int disp = in_bytes(Method::from_compiled_offset());
1905     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1906 
1907     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
1908     cbuf.set_insts_mark();
1909     $$$emit8$primary;
1910     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1911     emit_d8(cbuf, disp);             // Displacement
1912 
1913   %}
1914 
1915 //   Following encoding is no longer used, but may be restored if calling
1916 //   convention changes significantly.
1917 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1918 //
1919 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1920 //     // int ic_reg     = Matcher::inline_cache_reg();
1921 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1922 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1923 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1924 //
1925 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1926 //     // // so we load it immediately before the call
1927 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1928 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1929 //
1930 //     // xor rbp,ebp
1931 //     emit_opcode(cbuf, 0x33);
1932 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1933 //
1934 //     // CALL to interpreter.
1935 //     cbuf.set_insts_mark();
1936 //     $$$emit8$primary;
1937 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1938 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1939 //   %}
1940 
1941   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1942     $$$emit8$primary;
1943     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1944     $$$emit8$shift$$constant;
1945   %}
1946 
1947   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1948     // Load immediate does not have a zero or sign extended version
1949     // for 8-bit immediates
1950     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1951     $$$emit32$src$$constant;
1952   %}
1953 
1954   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1955     // Load immediate does not have a zero or sign extended version
1956     // for 8-bit immediates
1957     emit_opcode(cbuf, $primary + $dst$$reg);
1958     $$$emit32$src$$constant;
1959   %}
1960 
1961   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1962     // Load immediate does not have a zero or sign extended version
1963     // for 8-bit immediates
1964     int dst_enc = $dst$$reg;
1965     int src_con = $src$$constant & 0x0FFFFFFFFL;
1966     if (src_con == 0) {
1967       // xor dst, dst
1968       emit_opcode(cbuf, 0x33);
1969       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1970     } else {
1971       emit_opcode(cbuf, $primary + dst_enc);
1972       emit_d32(cbuf, src_con);
1973     }
1974   %}
1975 
1976   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1977     // Load immediate does not have a zero or sign extended version
1978     // for 8-bit immediates
1979     int dst_enc = $dst$$reg + 2;
1980     int src_con = ((julong)($src$$constant)) >> 32;
1981     if (src_con == 0) {
1982       // xor dst, dst
1983       emit_opcode(cbuf, 0x33);
1984       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1985     } else {
1986       emit_opcode(cbuf, $primary + dst_enc);
1987       emit_d32(cbuf, src_con);
1988     }
1989   %}
1990 
1991 
1992   // Encode a reg-reg copy.  If it is useless, then empty encoding.
1993   enc_class enc_Copy( rRegI dst, rRegI src ) %{
1994     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1995   %}
1996 
1997   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
1998     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1999   %}
2000 
2001   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
2002     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2003   %}
2004 
2005   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2006     $$$emit8$primary;
2007     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2008   %}
2009 
2010   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2011     $$$emit8$secondary;
2012     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2013   %}
2014 
2015   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2016     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2017   %}
2018 
2019   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2020     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2021   %}
2022 
2023   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
2024     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2025   %}
2026 
2027   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2028     // Output immediate
2029     $$$emit32$src$$constant;
2030   %}
2031 
2032   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
2033     // Output Float immediate bits
2034     jfloat jf = $src$$constant;
2035     int    jf_as_bits = jint_cast( jf );
2036     emit_d32(cbuf, jf_as_bits);
2037   %}
2038 
2039   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
2040     // Output Float immediate bits
2041     jfloat jf = $src$$constant;
2042     int    jf_as_bits = jint_cast( jf );
2043     emit_d32(cbuf, jf_as_bits);
2044   %}
2045 
2046   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2047     // Output immediate
2048     $$$emit16$src$$constant;
2049   %}
2050 
2051   enc_class Con_d32(immI src) %{
2052     emit_d32(cbuf,$src$$constant);
2053   %}
2054 
2055   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2056     // Output immediate memory reference
2057     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2058     emit_d32(cbuf, 0x00);
2059   %}
2060 
2061   enc_class lock_prefix( ) %{
2062     if( os::is_MP() )
2063       emit_opcode(cbuf,0xF0);         // [Lock]
2064   %}
2065 
2066   // Cmp-xchg long value.
2067   // Note: we need to swap rbx, and rcx before and after the
2068   //       cmpxchg8 instruction because the instruction uses
2069   //       rcx as the high order word of the new value to store but
2070   //       our register encoding uses rbx,.
2071   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2072 
2073     // XCHG  rbx,ecx
2074     emit_opcode(cbuf,0x87);
2075     emit_opcode(cbuf,0xD9);
2076     // [Lock]
2077     if( os::is_MP() )
2078       emit_opcode(cbuf,0xF0);
2079     // CMPXCHG8 [Eptr]
2080     emit_opcode(cbuf,0x0F);
2081     emit_opcode(cbuf,0xC7);
2082     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2083     // XCHG  rbx,ecx
2084     emit_opcode(cbuf,0x87);
2085     emit_opcode(cbuf,0xD9);
2086   %}
2087 
2088   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2089     // [Lock]
2090     if( os::is_MP() )
2091       emit_opcode(cbuf,0xF0);
2092 
2093     // CMPXCHG [Eptr]
2094     emit_opcode(cbuf,0x0F);
2095     emit_opcode(cbuf,0xB1);
2096     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2097   %}
2098 
2099   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2100     int res_encoding = $res$$reg;
2101 
2102     // MOV  res,0
2103     emit_opcode( cbuf, 0xB8 + res_encoding);
2104     emit_d32( cbuf, 0 );
2105     // JNE,s  fail
2106     emit_opcode(cbuf,0x75);
2107     emit_d8(cbuf, 5 );
2108     // MOV  res,1
2109     emit_opcode( cbuf, 0xB8 + res_encoding);
2110     emit_d32( cbuf, 1 );
2111     // fail:
2112   %}
2113 
2114   enc_class set_instruction_start( ) %{
2115     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2116   %}
2117 
2118   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2119     int reg_encoding = $ereg$$reg;
2120     int base  = $mem$$base;
2121     int index = $mem$$index;
2122     int scale = $mem$$scale;
2123     int displace = $mem$$disp;
2124     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2125     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2126   %}
2127 
2128   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2129     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2130     int base  = $mem$$base;
2131     int index = $mem$$index;
2132     int scale = $mem$$scale;
2133     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2134     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
2135     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
2136   %}
2137 
2138   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2139     int r1, r2;
2140     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2141     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2142     emit_opcode(cbuf,0x0F);
2143     emit_opcode(cbuf,$tertiary);
2144     emit_rm(cbuf, 0x3, r1, r2);
2145     emit_d8(cbuf,$cnt$$constant);
2146     emit_d8(cbuf,$primary);
2147     emit_rm(cbuf, 0x3, $secondary, r1);
2148     emit_d8(cbuf,$cnt$$constant);
2149   %}
2150 
2151   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2152     emit_opcode( cbuf, 0x8B ); // Move
2153     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2154     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2155       emit_d8(cbuf,$primary);
2156       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2157       emit_d8(cbuf,$cnt$$constant-32);
2158     }
2159     emit_d8(cbuf,$primary);
2160     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2161     emit_d8(cbuf,31);
2162   %}
2163 
2164   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2165     int r1, r2;
2166     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2167     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2168 
2169     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2170     emit_rm(cbuf, 0x3, r1, r2);
2171     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2172       emit_opcode(cbuf,$primary);
2173       emit_rm(cbuf, 0x3, $secondary, r1);
2174       emit_d8(cbuf,$cnt$$constant-32);
2175     }
2176     emit_opcode(cbuf,0x33);  // XOR r2,r2
2177     emit_rm(cbuf, 0x3, r2, r2);
2178   %}
2179 
2180   // Clone of RegMem but accepts an extra parameter to access each
2181   // half of a double in memory; it never needs relocation info.
2182   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2183     emit_opcode(cbuf,$opcode$$constant);
2184     int reg_encoding = $rm_reg$$reg;
2185     int base     = $mem$$base;
2186     int index    = $mem$$index;
2187     int scale    = $mem$$scale;
2188     int displace = $mem$$disp + $disp_for_half$$constant;
2189     relocInfo::relocType disp_reloc = relocInfo::none;
2190     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2191   %}
2192 
2193   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2194   //
2195   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2196   // and it never needs relocation information.
2197   // Frequently used to move data between FPU's Stack Top and memory.
2198   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2199     int rm_byte_opcode = $rm_opcode$$constant;
2200     int base     = $mem$$base;
2201     int index    = $mem$$index;
2202     int scale    = $mem$$scale;
2203     int displace = $mem$$disp;
2204     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
2205     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
2206   %}
2207 
2208   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2209     int rm_byte_opcode = $rm_opcode$$constant;
2210     int base     = $mem$$base;
2211     int index    = $mem$$index;
2212     int scale    = $mem$$scale;
2213     int displace = $mem$$disp;
2214     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2215     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
2216   %}
2217 
2218   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2219     int reg_encoding = $dst$$reg;
2220     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2221     int index        = 0x04;            // 0x04 indicates no index
2222     int scale        = 0x00;            // 0x00 indicates no scale
2223     int displace     = $src1$$constant; // 0x00 indicates no displacement
2224     relocInfo::relocType disp_reloc = relocInfo::none;
2225     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2226   %}
2227 
2228   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2229     // Compare dst,src
2230     emit_opcode(cbuf,0x3B);
2231     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2232     // jmp dst < src around move
2233     emit_opcode(cbuf,0x7C);
2234     emit_d8(cbuf,2);
2235     // move dst,src
2236     emit_opcode(cbuf,0x8B);
2237     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2238   %}
2239 
2240   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2241     // Compare dst,src
2242     emit_opcode(cbuf,0x3B);
2243     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2244     // jmp dst > src around move
2245     emit_opcode(cbuf,0x7F);
2246     emit_d8(cbuf,2);
2247     // move dst,src
2248     emit_opcode(cbuf,0x8B);
2249     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2250   %}
2251 
2252   enc_class enc_FPR_store(memory mem, regDPR src) %{
2253     // If src is FPR1, we can just FST to store it.
2254     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2255     int reg_encoding = 0x2; // Just store
2256     int base  = $mem$$base;
2257     int index = $mem$$index;
2258     int scale = $mem$$scale;
2259     int displace = $mem$$disp;
2260     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2261     if( $src$$reg != FPR1L_enc ) {
2262       reg_encoding = 0x3;  // Store & pop
2263       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2264       emit_d8( cbuf, 0xC0-1+$src$$reg );
2265     }
2266     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2267     emit_opcode(cbuf,$primary);
2268     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2269   %}
2270 
2271   enc_class neg_reg(rRegI dst) %{
2272     // NEG $dst
2273     emit_opcode(cbuf,0xF7);
2274     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2275   %}
2276 
2277   enc_class setLT_reg(eCXRegI dst) %{
2278     // SETLT $dst
2279     emit_opcode(cbuf,0x0F);
2280     emit_opcode(cbuf,0x9C);
2281     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2282   %}
2283 
2284   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2285     int tmpReg = $tmp$$reg;
2286 
2287     // SUB $p,$q
2288     emit_opcode(cbuf,0x2B);
2289     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2290     // SBB $tmp,$tmp
2291     emit_opcode(cbuf,0x1B);
2292     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2293     // AND $tmp,$y
2294     emit_opcode(cbuf,0x23);
2295     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2296     // ADD $p,$tmp
2297     emit_opcode(cbuf,0x03);
2298     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2299   %}
2300 
2301   enc_class enc_cmpLTP_mem(rRegI p, rRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2302     int tmpReg = $tmp$$reg;
2303 
2304     // SUB $p,$q
2305     emit_opcode(cbuf,0x2B);
2306     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2307     // SBB $tmp,$tmp
2308     emit_opcode(cbuf,0x1B);
2309     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2310     // AND $tmp,$y
2311     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2312     emit_opcode(cbuf,0x23);
2313     int reg_encoding = tmpReg;
2314     int base  = $mem$$base;
2315     int index = $mem$$index;
2316     int scale = $mem$$scale;
2317     int displace = $mem$$disp;
2318     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2319     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2320     // ADD $p,$tmp
2321     emit_opcode(cbuf,0x03);
2322     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2323   %}
2324 
2325   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2326     // TEST shift,32
2327     emit_opcode(cbuf,0xF7);
2328     emit_rm(cbuf, 0x3, 0, ECX_enc);
2329     emit_d32(cbuf,0x20);
2330     // JEQ,s small
2331     emit_opcode(cbuf, 0x74);
2332     emit_d8(cbuf, 0x04);
2333     // MOV    $dst.hi,$dst.lo
2334     emit_opcode( cbuf, 0x8B );
2335     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2336     // CLR    $dst.lo
2337     emit_opcode(cbuf, 0x33);
2338     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2339 // small:
2340     // SHLD   $dst.hi,$dst.lo,$shift
2341     emit_opcode(cbuf,0x0F);
2342     emit_opcode(cbuf,0xA5);
2343     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2344     // SHL    $dst.lo,$shift"
2345     emit_opcode(cbuf,0xD3);
2346     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2347   %}
2348 
2349   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2350     // TEST shift,32
2351     emit_opcode(cbuf,0xF7);
2352     emit_rm(cbuf, 0x3, 0, ECX_enc);
2353     emit_d32(cbuf,0x20);
2354     // JEQ,s small
2355     emit_opcode(cbuf, 0x74);
2356     emit_d8(cbuf, 0x04);
2357     // MOV    $dst.lo,$dst.hi
2358     emit_opcode( cbuf, 0x8B );
2359     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2360     // CLR    $dst.hi
2361     emit_opcode(cbuf, 0x33);
2362     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2363 // small:
2364     // SHRD   $dst.lo,$dst.hi,$shift
2365     emit_opcode(cbuf,0x0F);
2366     emit_opcode(cbuf,0xAD);
2367     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2368     // SHR    $dst.hi,$shift"
2369     emit_opcode(cbuf,0xD3);
2370     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2371   %}
2372 
2373   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2374     // TEST shift,32
2375     emit_opcode(cbuf,0xF7);
2376     emit_rm(cbuf, 0x3, 0, ECX_enc);
2377     emit_d32(cbuf,0x20);
2378     // JEQ,s small
2379     emit_opcode(cbuf, 0x74);
2380     emit_d8(cbuf, 0x05);
2381     // MOV    $dst.lo,$dst.hi
2382     emit_opcode( cbuf, 0x8B );
2383     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2384     // SAR    $dst.hi,31
2385     emit_opcode(cbuf, 0xC1);
2386     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2387     emit_d8(cbuf, 0x1F );
2388 // small:
2389     // SHRD   $dst.lo,$dst.hi,$shift
2390     emit_opcode(cbuf,0x0F);
2391     emit_opcode(cbuf,0xAD);
2392     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2393     // SAR    $dst.hi,$shift"
2394     emit_opcode(cbuf,0xD3);
2395     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2396   %}
2397 
2398 
2399   // ----------------- Encodings for floating point unit -----------------
2400   // May leave result in FPU-TOS or FPU reg depending on opcodes
2401   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2402     $$$emit8$primary;
2403     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2404   %}
2405 
2406   // Pop argument in FPR0 with FSTP ST(0)
2407   enc_class PopFPU() %{
2408     emit_opcode( cbuf, 0xDD );
2409     emit_d8( cbuf, 0xD8 );
2410   %}
2411 
2412   // !!!!! equivalent to Pop_Reg_F
2413   enc_class Pop_Reg_DPR( regDPR dst ) %{
2414     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2415     emit_d8( cbuf, 0xD8+$dst$$reg );
2416   %}
2417 
2418   enc_class Push_Reg_DPR( regDPR dst ) %{
2419     emit_opcode( cbuf, 0xD9 );
2420     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2421   %}
2422 
2423   enc_class strictfp_bias1( regDPR dst ) %{
2424     emit_opcode( cbuf, 0xDB );           // FLD m80real
2425     emit_opcode( cbuf, 0x2D );
2426     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2427     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2428     emit_opcode( cbuf, 0xC8+$dst$$reg );
2429   %}
2430 
2431   enc_class strictfp_bias2( regDPR dst ) %{
2432     emit_opcode( cbuf, 0xDB );           // FLD m80real
2433     emit_opcode( cbuf, 0x2D );
2434     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2435     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2436     emit_opcode( cbuf, 0xC8+$dst$$reg );
2437   %}
2438 
2439   // Special case for moving an integer register to a stack slot.
2440   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2441     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2442   %}
2443 
2444   // Special case for moving a register to a stack slot.
2445   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2446     // Opcode already emitted
2447     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2448     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2449     emit_d32(cbuf, $dst$$disp);   // Displacement
2450   %}
2451 
2452   // Push the integer in stackSlot 'src' onto FP-stack
2453   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2454     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2455   %}
2456 
2457   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2458   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2459     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2460   %}
2461 
2462   // Same as Pop_Mem_F except for opcode
2463   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2464   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2465     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2466   %}
2467 
2468   enc_class Pop_Reg_FPR( regFPR dst ) %{
2469     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2470     emit_d8( cbuf, 0xD8+$dst$$reg );
2471   %}
2472 
2473   enc_class Push_Reg_FPR( regFPR dst ) %{
2474     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2475     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2476   %}
2477 
2478   // Push FPU's float to a stack-slot, and pop FPU-stack
2479   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2480     int pop = 0x02;
2481     if ($src$$reg != FPR1L_enc) {
2482       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2483       emit_d8( cbuf, 0xC0-1+$src$$reg );
2484       pop = 0x03;
2485     }
2486     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2487   %}
2488 
2489   // Push FPU's double to a stack-slot, and pop FPU-stack
2490   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2491     int pop = 0x02;
2492     if ($src$$reg != FPR1L_enc) {
2493       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2494       emit_d8( cbuf, 0xC0-1+$src$$reg );
2495       pop = 0x03;
2496     }
2497     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2498   %}
2499 
2500   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2501   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2502     int pop = 0xD0 - 1; // -1 since we skip FLD
2503     if ($src$$reg != FPR1L_enc) {
2504       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2505       emit_d8( cbuf, 0xC0-1+$src$$reg );
2506       pop = 0xD8;
2507     }
2508     emit_opcode( cbuf, 0xDD );
2509     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2510   %}
2511 
2512 
2513   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2514     // load dst in FPR0
2515     emit_opcode( cbuf, 0xD9 );
2516     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2517     if ($src$$reg != FPR1L_enc) {
2518       // fincstp
2519       emit_opcode (cbuf, 0xD9);
2520       emit_opcode (cbuf, 0xF7);
2521       // swap src with FPR1:
2522       // FXCH FPR1 with src
2523       emit_opcode(cbuf, 0xD9);
2524       emit_d8(cbuf, 0xC8-1+$src$$reg );
2525       // fdecstp
2526       emit_opcode (cbuf, 0xD9);
2527       emit_opcode (cbuf, 0xF6);
2528     }
2529   %}
2530 
2531   enc_class Push_ModD_encoding(regD src0, regD src1) %{
2532     MacroAssembler _masm(&cbuf);
2533     __ subptr(rsp, 8);
2534     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2535     __ fld_d(Address(rsp, 0));
2536     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2537     __ fld_d(Address(rsp, 0));
2538   %}
2539 
2540   enc_class Push_ModF_encoding(regF src0, regF src1) %{
2541     MacroAssembler _masm(&cbuf);
2542     __ subptr(rsp, 4);
2543     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2544     __ fld_s(Address(rsp, 0));
2545     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2546     __ fld_s(Address(rsp, 0));
2547   %}
2548 
2549   enc_class Push_ResultD(regD dst) %{
2550     MacroAssembler _masm(&cbuf);
2551     __ fstp_d(Address(rsp, 0));
2552     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2553     __ addptr(rsp, 8);
2554   %}
2555 
2556   enc_class Push_ResultF(regF dst, immI d8) %{
2557     MacroAssembler _masm(&cbuf);
2558     __ fstp_s(Address(rsp, 0));
2559     __ movflt($dst$$XMMRegister, Address(rsp, 0));
2560     __ addptr(rsp, $d8$$constant);
2561   %}
2562 
2563   enc_class Push_SrcD(regD src) %{
2564     MacroAssembler _masm(&cbuf);
2565     __ subptr(rsp, 8);
2566     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2567     __ fld_d(Address(rsp, 0));
2568   %}
2569 
2570   enc_class push_stack_temp_qword() %{
2571     MacroAssembler _masm(&cbuf);
2572     __ subptr(rsp, 8);
2573   %}
2574 
2575   enc_class pop_stack_temp_qword() %{
2576     MacroAssembler _masm(&cbuf);
2577     __ addptr(rsp, 8);
2578   %}
2579 
2580   enc_class push_xmm_to_fpr1(regD src) %{
2581     MacroAssembler _masm(&cbuf);
2582     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2583     __ fld_d(Address(rsp, 0));
2584   %}
2585 
2586   enc_class Push_Result_Mod_DPR( regDPR src) %{
2587     if ($src$$reg != FPR1L_enc) {
2588       // fincstp
2589       emit_opcode (cbuf, 0xD9);
2590       emit_opcode (cbuf, 0xF7);
2591       // FXCH FPR1 with src
2592       emit_opcode(cbuf, 0xD9);
2593       emit_d8(cbuf, 0xC8-1+$src$$reg );
2594       // fdecstp
2595       emit_opcode (cbuf, 0xD9);
2596       emit_opcode (cbuf, 0xF6);
2597     }
2598     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2599     // // FSTP   FPR$dst$$reg
2600     // emit_opcode( cbuf, 0xDD );
2601     // emit_d8( cbuf, 0xD8+$dst$$reg );
2602   %}
2603 
2604   enc_class fnstsw_sahf_skip_parity() %{
2605     // fnstsw ax
2606     emit_opcode( cbuf, 0xDF );
2607     emit_opcode( cbuf, 0xE0 );
2608     // sahf
2609     emit_opcode( cbuf, 0x9E );
2610     // jnp  ::skip
2611     emit_opcode( cbuf, 0x7B );
2612     emit_opcode( cbuf, 0x05 );
2613   %}
2614 
2615   enc_class emitModDPR() %{
2616     // fprem must be iterative
2617     // :: loop
2618     // fprem
2619     emit_opcode( cbuf, 0xD9 );
2620     emit_opcode( cbuf, 0xF8 );
2621     // wait
2622     emit_opcode( cbuf, 0x9b );
2623     // fnstsw ax
2624     emit_opcode( cbuf, 0xDF );
2625     emit_opcode( cbuf, 0xE0 );
2626     // sahf
2627     emit_opcode( cbuf, 0x9E );
2628     // jp  ::loop
2629     emit_opcode( cbuf, 0x0F );
2630     emit_opcode( cbuf, 0x8A );
2631     emit_opcode( cbuf, 0xF4 );
2632     emit_opcode( cbuf, 0xFF );
2633     emit_opcode( cbuf, 0xFF );
2634     emit_opcode( cbuf, 0xFF );
2635   %}
2636 
2637   enc_class fpu_flags() %{
2638     // fnstsw_ax
2639     emit_opcode( cbuf, 0xDF);
2640     emit_opcode( cbuf, 0xE0);
2641     // test ax,0x0400
2642     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2643     emit_opcode( cbuf, 0xA9 );
2644     emit_d16   ( cbuf, 0x0400 );
2645     // // // This sequence works, but stalls for 12-16 cycles on PPro
2646     // // test rax,0x0400
2647     // emit_opcode( cbuf, 0xA9 );
2648     // emit_d32   ( cbuf, 0x00000400 );
2649     //
2650     // jz exit (no unordered comparison)
2651     emit_opcode( cbuf, 0x74 );
2652     emit_d8    ( cbuf, 0x02 );
2653     // mov ah,1 - treat as LT case (set carry flag)
2654     emit_opcode( cbuf, 0xB4 );
2655     emit_d8    ( cbuf, 0x01 );
2656     // sahf
2657     emit_opcode( cbuf, 0x9E);
2658   %}
2659 
2660   enc_class cmpF_P6_fixup() %{
2661     // Fixup the integer flags in case comparison involved a NaN
2662     //
2663     // JNP exit (no unordered comparison, P-flag is set by NaN)
2664     emit_opcode( cbuf, 0x7B );
2665     emit_d8    ( cbuf, 0x03 );
2666     // MOV AH,1 - treat as LT case (set carry flag)
2667     emit_opcode( cbuf, 0xB4 );
2668     emit_d8    ( cbuf, 0x01 );
2669     // SAHF
2670     emit_opcode( cbuf, 0x9E);
2671     // NOP     // target for branch to avoid branch to branch
2672     emit_opcode( cbuf, 0x90);
2673   %}
2674 
2675 //     fnstsw_ax();
2676 //     sahf();
2677 //     movl(dst, nan_result);
2678 //     jcc(Assembler::parity, exit);
2679 //     movl(dst, less_result);
2680 //     jcc(Assembler::below, exit);
2681 //     movl(dst, equal_result);
2682 //     jcc(Assembler::equal, exit);
2683 //     movl(dst, greater_result);
2684 
2685 // less_result     =  1;
2686 // greater_result  = -1;
2687 // equal_result    = 0;
2688 // nan_result      = -1;
2689 
2690   enc_class CmpF_Result(rRegI dst) %{
2691     // fnstsw_ax();
2692     emit_opcode( cbuf, 0xDF);
2693     emit_opcode( cbuf, 0xE0);
2694     // sahf
2695     emit_opcode( cbuf, 0x9E);
2696     // movl(dst, nan_result);
2697     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2698     emit_d32( cbuf, -1 );
2699     // jcc(Assembler::parity, exit);
2700     emit_opcode( cbuf, 0x7A );
2701     emit_d8    ( cbuf, 0x13 );
2702     // movl(dst, less_result);
2703     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2704     emit_d32( cbuf, -1 );
2705     // jcc(Assembler::below, exit);
2706     emit_opcode( cbuf, 0x72 );
2707     emit_d8    ( cbuf, 0x0C );
2708     // movl(dst, equal_result);
2709     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2710     emit_d32( cbuf, 0 );
2711     // jcc(Assembler::equal, exit);
2712     emit_opcode( cbuf, 0x74 );
2713     emit_d8    ( cbuf, 0x05 );
2714     // movl(dst, greater_result);
2715     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2716     emit_d32( cbuf, 1 );
2717   %}
2718 
2719 
2720   // Compare the longs and set flags
2721   // BROKEN!  Do Not use as-is
2722   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2723     // CMP    $src1.hi,$src2.hi
2724     emit_opcode( cbuf, 0x3B );
2725     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2726     // JNE,s  done
2727     emit_opcode(cbuf,0x75);
2728     emit_d8(cbuf, 2 );
2729     // CMP    $src1.lo,$src2.lo
2730     emit_opcode( cbuf, 0x3B );
2731     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2732 // done:
2733   %}
2734 
2735   enc_class convert_int_long( regL dst, rRegI src ) %{
2736     // mov $dst.lo,$src
2737     int dst_encoding = $dst$$reg;
2738     int src_encoding = $src$$reg;
2739     encode_Copy( cbuf, dst_encoding  , src_encoding );
2740     // mov $dst.hi,$src
2741     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2742     // sar $dst.hi,31
2743     emit_opcode( cbuf, 0xC1 );
2744     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2745     emit_d8(cbuf, 0x1F );
2746   %}
2747 
2748   enc_class convert_long_double( eRegL src ) %{
2749     // push $src.hi
2750     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2751     // push $src.lo
2752     emit_opcode(cbuf, 0x50+$src$$reg  );
2753     // fild 64-bits at [SP]
2754     emit_opcode(cbuf,0xdf);
2755     emit_d8(cbuf, 0x6C);
2756     emit_d8(cbuf, 0x24);
2757     emit_d8(cbuf, 0x00);
2758     // pop stack
2759     emit_opcode(cbuf, 0x83); // add  SP, #8
2760     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2761     emit_d8(cbuf, 0x8);
2762   %}
2763 
2764   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2765     // IMUL   EDX:EAX,$src1
2766     emit_opcode( cbuf, 0xF7 );
2767     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2768     // SAR    EDX,$cnt-32
2769     int shift_count = ((int)$cnt$$constant) - 32;
2770     if (shift_count > 0) {
2771       emit_opcode(cbuf, 0xC1);
2772       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2773       emit_d8(cbuf, shift_count);
2774     }
2775   %}
2776 
2777   // this version doesn't have add sp, 8
2778   enc_class convert_long_double2( eRegL src ) %{
2779     // push $src.hi
2780     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2781     // push $src.lo
2782     emit_opcode(cbuf, 0x50+$src$$reg  );
2783     // fild 64-bits at [SP]
2784     emit_opcode(cbuf,0xdf);
2785     emit_d8(cbuf, 0x6C);
2786     emit_d8(cbuf, 0x24);
2787     emit_d8(cbuf, 0x00);
2788   %}
2789 
2790   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2791     // Basic idea: long = (long)int * (long)int
2792     // IMUL EDX:EAX, src
2793     emit_opcode( cbuf, 0xF7 );
2794     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2795   %}
2796 
2797   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2798     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2799     // MUL EDX:EAX, src
2800     emit_opcode( cbuf, 0xF7 );
2801     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2802   %}
2803 
2804   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2805     // Basic idea: lo(result) = lo(x_lo * y_lo)
2806     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2807     // MOV    $tmp,$src.lo
2808     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2809     // IMUL   $tmp,EDX
2810     emit_opcode( cbuf, 0x0F );
2811     emit_opcode( cbuf, 0xAF );
2812     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2813     // MOV    EDX,$src.hi
2814     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2815     // IMUL   EDX,EAX
2816     emit_opcode( cbuf, 0x0F );
2817     emit_opcode( cbuf, 0xAF );
2818     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2819     // ADD    $tmp,EDX
2820     emit_opcode( cbuf, 0x03 );
2821     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2822     // MUL   EDX:EAX,$src.lo
2823     emit_opcode( cbuf, 0xF7 );
2824     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2825     // ADD    EDX,ESI
2826     emit_opcode( cbuf, 0x03 );
2827     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2828   %}
2829 
2830   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2831     // Basic idea: lo(result) = lo(src * y_lo)
2832     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2833     // IMUL   $tmp,EDX,$src
2834     emit_opcode( cbuf, 0x6B );
2835     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2836     emit_d8( cbuf, (int)$src$$constant );
2837     // MOV    EDX,$src
2838     emit_opcode(cbuf, 0xB8 + EDX_enc);
2839     emit_d32( cbuf, (int)$src$$constant );
2840     // MUL   EDX:EAX,EDX
2841     emit_opcode( cbuf, 0xF7 );
2842     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2843     // ADD    EDX,ESI
2844     emit_opcode( cbuf, 0x03 );
2845     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2846   %}
2847 
2848   enc_class long_div( eRegL src1, eRegL src2 ) %{
2849     // PUSH src1.hi
2850     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2851     // PUSH src1.lo
2852     emit_opcode(cbuf,               0x50+$src1$$reg  );
2853     // PUSH src2.hi
2854     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2855     // PUSH src2.lo
2856     emit_opcode(cbuf,               0x50+$src2$$reg  );
2857     // CALL directly to the runtime
2858     cbuf.set_insts_mark();
2859     emit_opcode(cbuf,0xE8);       // Call into runtime
2860     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2861     // Restore stack
2862     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2863     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2864     emit_d8(cbuf, 4*4);
2865   %}
2866 
2867   enc_class long_mod( eRegL src1, eRegL src2 ) %{
2868     // PUSH src1.hi
2869     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2870     // PUSH src1.lo
2871     emit_opcode(cbuf,               0x50+$src1$$reg  );
2872     // PUSH src2.hi
2873     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2874     // PUSH src2.lo
2875     emit_opcode(cbuf,               0x50+$src2$$reg  );
2876     // CALL directly to the runtime
2877     cbuf.set_insts_mark();
2878     emit_opcode(cbuf,0xE8);       // Call into runtime
2879     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2880     // Restore stack
2881     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2882     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2883     emit_d8(cbuf, 4*4);
2884   %}
2885 
2886   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2887     // MOV   $tmp,$src.lo
2888     emit_opcode(cbuf, 0x8B);
2889     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2890     // OR    $tmp,$src.hi
2891     emit_opcode(cbuf, 0x0B);
2892     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2893   %}
2894 
2895   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2896     // CMP    $src1.lo,$src2.lo
2897     emit_opcode( cbuf, 0x3B );
2898     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2899     // JNE,s  skip
2900     emit_cc(cbuf, 0x70, 0x5);
2901     emit_d8(cbuf,2);
2902     // CMP    $src1.hi,$src2.hi
2903     emit_opcode( cbuf, 0x3B );
2904     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2905   %}
2906 
2907   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2908     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2909     emit_opcode( cbuf, 0x3B );
2910     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2911     // MOV    $tmp,$src1.hi
2912     emit_opcode( cbuf, 0x8B );
2913     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2914     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2915     emit_opcode( cbuf, 0x1B );
2916     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2917   %}
2918 
2919   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2920     // XOR    $tmp,$tmp
2921     emit_opcode(cbuf,0x33);  // XOR
2922     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2923     // CMP    $tmp,$src.lo
2924     emit_opcode( cbuf, 0x3B );
2925     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2926     // SBB    $tmp,$src.hi
2927     emit_opcode( cbuf, 0x1B );
2928     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2929   %}
2930 
2931  // Sniff, sniff... smells like Gnu Superoptimizer
2932   enc_class neg_long( eRegL dst ) %{
2933     emit_opcode(cbuf,0xF7);    // NEG hi
2934     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2935     emit_opcode(cbuf,0xF7);    // NEG lo
2936     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2937     emit_opcode(cbuf,0x83);    // SBB hi,0
2938     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2939     emit_d8    (cbuf,0 );
2940   %}
2941 
2942 
2943   // Because the transitions from emitted code to the runtime
2944   // monitorenter/exit helper stubs are so slow it's critical that
2945   // we inline both the stack-locking fast-path and the inflated fast path.
2946   //
2947   // See also: cmpFastLock and cmpFastUnlock.
2948   //
2949   // What follows is a specialized inline transliteration of the code
2950   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
2951   // another option would be to emit TrySlowEnter and TrySlowExit methods
2952   // at startup-time.  These methods would accept arguments as
2953   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
2954   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
2955   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
2956   // In practice, however, the # of lock sites is bounded and is usually small.
2957   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
2958   // if the processor uses simple bimodal branch predictors keyed by EIP
2959   // Since the helper routines would be called from multiple synchronization
2960   // sites.
2961   //
2962   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
2963   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
2964   // to those specialized methods.  That'd give us a mostly platform-independent
2965   // implementation that the JITs could optimize and inline at their pleasure.
2966   // Done correctly, the only time we'd need to cross to native could would be
2967   // to park() or unpark() threads.  We'd also need a few more unsafe operators
2968   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
2969   // (b) explicit barriers or fence operations.
2970   //
2971   // TODO:
2972   //
2973   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
2974   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
2975   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
2976   //    the lock operators would typically be faster than reifying Self.
2977   //
2978   // *  Ideally I'd define the primitives as:
2979   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
2980   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
2981   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
2982   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
2983   //    Furthermore the register assignments are overconstrained, possibly resulting in
2984   //    sub-optimal code near the synchronization site.
2985   //
2986   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
2987   //    Alternately, use a better sp-proximity test.
2988   //
2989   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
2990   //    Either one is sufficient to uniquely identify a thread.
2991   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
2992   //
2993   // *  Intrinsify notify() and notifyAll() for the common cases where the
2994   //    object is locked by the calling thread but the waitlist is empty.
2995   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
2996   //
2997   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
2998   //    But beware of excessive branch density on AMD Opterons.
2999   //
3000   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3001   //    or failure of the fast-path.  If the fast-path fails then we pass
3002   //    control to the slow-path, typically in C.  In Fast_Lock and
3003   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3004   //    will emit a conditional branch immediately after the node.
3005   //    So we have branches to branches and lots of ICC.ZF games.
3006   //    Instead, it might be better to have C2 pass a "FailureLabel"
3007   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3008   //    will drop through the node.  ICC.ZF is undefined at exit.
3009   //    In the case of failure, the node will branch directly to the
3010   //    FailureLabel
3011 
3012 
3013   // obj: object to lock
3014   // box: on-stack box address (displaced header location) - KILLED
3015   // rax,: tmp -- KILLED
3016   // scr: tmp -- KILLED
3017   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3018 
3019     Register objReg = as_Register($obj$$reg);
3020     Register boxReg = as_Register($box$$reg);
3021     Register tmpReg = as_Register($tmp$$reg);
3022     Register scrReg = as_Register($scr$$reg);
3023 
3024     // Ensure the register assignents are disjoint
3025     guarantee (objReg != boxReg, "") ;
3026     guarantee (objReg != tmpReg, "") ;
3027     guarantee (objReg != scrReg, "") ;
3028     guarantee (boxReg != tmpReg, "") ;
3029     guarantee (boxReg != scrReg, "") ;
3030     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3031 
3032     MacroAssembler masm(&cbuf);
3033 
3034     if (_counters != NULL) {
3035       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3036     }
3037     if (EmitSync & 1) {
3038         // set box->dhw = unused_mark (3)
3039         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3040         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3041         masm.cmpptr (rsp, (int32_t)0) ;                        
3042     } else 
3043     if (EmitSync & 2) { 
3044         Label DONE_LABEL ;           
3045         if (UseBiasedLocking) {
3046            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3047            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3048         }
3049 
3050         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3051         masm.orptr (tmpReg, 0x1);
3052         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3053         if (os::is_MP()) { masm.lock();  }
3054         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3055         masm.jcc(Assembler::equal, DONE_LABEL);
3056         // Recursive locking
3057         masm.subptr(tmpReg, rsp);
3058         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3059         masm.movptr(Address(boxReg, 0), tmpReg);
3060         masm.bind(DONE_LABEL) ; 
3061     } else {  
3062       // Possible cases that we'll encounter in fast_lock 
3063       // ------------------------------------------------
3064       // * Inflated
3065       //    -- unlocked
3066       //    -- Locked
3067       //       = by self
3068       //       = by other
3069       // * biased
3070       //    -- by Self
3071       //    -- by other
3072       // * neutral
3073       // * stack-locked
3074       //    -- by self
3075       //       = sp-proximity test hits
3076       //       = sp-proximity test generates false-negative
3077       //    -- by other
3078       //
3079 
3080       Label IsInflated, DONE_LABEL, PopDone ;
3081 
3082       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3083       // order to reduce the number of conditional branches in the most common cases.
3084       // Beware -- there's a subtle invariant that fetch of the markword
3085       // at [FETCH], below, will never observe a biased encoding (*101b).
3086       // If this invariant is not held we risk exclusion (safety) failure.
3087       if (UseBiasedLocking && !UseOptoBiasInlining) {
3088         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3089       }
3090 
3091       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3092       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3093       masm.jccb  (Assembler::notZero, IsInflated) ;
3094 
3095       // Attempt stack-locking ...
3096       masm.orptr (tmpReg, 0x1);
3097       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3098       if (os::is_MP()) { masm.lock();  }
3099       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3100       if (_counters != NULL) {
3101         masm.cond_inc32(Assembler::equal,
3102                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3103       }
3104       masm.jccb (Assembler::equal, DONE_LABEL);
3105 
3106       // Recursive locking
3107       masm.subptr(tmpReg, rsp);
3108       masm.andptr(tmpReg, 0xFFFFF003 );
3109       masm.movptr(Address(boxReg, 0), tmpReg);
3110       if (_counters != NULL) {
3111         masm.cond_inc32(Assembler::equal,
3112                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3113       }
3114       masm.jmp  (DONE_LABEL) ;
3115 
3116       masm.bind (IsInflated) ;
3117 
3118       // The object is inflated.
3119       //
3120       // TODO-FIXME: eliminate the ugly use of manifest constants:
3121       //   Use markOopDesc::monitor_value instead of "2".
3122       //   use markOop::unused_mark() instead of "3".
3123       // The tmpReg value is an objectMonitor reference ORed with
3124       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3125       // objectmonitor pointer by masking off the "2" bit or we can just
3126       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3127       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3128       //
3129       // I use the latter as it avoids AGI stalls.
3130       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3131       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3132       //
3133       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3134 
3135       // boxReg refers to the on-stack BasicLock in the current frame.
3136       // We'd like to write:
3137       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3138       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3139       // additional latency as we have another ST in the store buffer that must drain.
3140 
3141       if (EmitSync & 8192) { 
3142          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3143          masm.get_thread (scrReg) ; 
3144          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3145          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3146          if (os::is_MP()) { masm.lock(); } 
3147          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3148       } else 
3149       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3150          masm.movptr(scrReg, boxReg) ; 
3151          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3152 
3153          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3154          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3155             // prefetchw [eax + Offset(_owner)-2]
3156             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3157          }
3158 
3159          if ((EmitSync & 64) == 0) {
3160            // Optimistic form: consider XORL tmpReg,tmpReg
3161            masm.movptr(tmpReg, NULL_WORD) ; 
3162          } else { 
3163            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3164            // Test-And-CAS instead of CAS
3165            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3166            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3167            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3168          }
3169 
3170          // Appears unlocked - try to swing _owner from null to non-null.
3171          // Ideally, I'd manifest "Self" with get_thread and then attempt
3172          // to CAS the register containing Self into m->Owner.
3173          // But we don't have enough registers, so instead we can either try to CAS
3174          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3175          // we later store "Self" into m->Owner.  Transiently storing a stack address
3176          // (rsp or the address of the box) into  m->owner is harmless.
3177          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3178          if (os::is_MP()) { masm.lock();  }
3179          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3180          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3181          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3182          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3183          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3184          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3185                        
3186          // If the CAS fails we can either retry or pass control to the slow-path.  
3187          // We use the latter tactic.  
3188          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3189          // If the CAS was successful ...
3190          //   Self has acquired the lock
3191          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3192          // Intentional fall-through into DONE_LABEL ...
3193       } else {
3194          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3195          masm.movptr(boxReg, tmpReg) ; 
3196 
3197          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3198          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3199             // prefetchw [eax + Offset(_owner)-2]
3200             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3201          }
3202 
3203          if ((EmitSync & 64) == 0) {
3204            // Optimistic form
3205            masm.xorptr  (tmpReg, tmpReg) ; 
3206          } else { 
3207            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3208            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3209            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3210            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3211          }
3212 
3213          // Appears unlocked - try to swing _owner from null to non-null.
3214          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3215          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3216          masm.get_thread (scrReg) ;
3217          if (os::is_MP()) { masm.lock(); }
3218          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3219 
3220          // If the CAS fails we can either retry or pass control to the slow-path.
3221          // We use the latter tactic.
3222          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3223          // If the CAS was successful ...
3224          //   Self has acquired the lock
3225          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3226          // Intentional fall-through into DONE_LABEL ...
3227       }
3228 
3229       // DONE_LABEL is a hot target - we'd really like to place it at the
3230       // start of cache line by padding with NOPs.
3231       // See the AMD and Intel software optimization manuals for the
3232       // most efficient "long" NOP encodings.
3233       // Unfortunately none of our alignment mechanisms suffice.
3234       masm.bind(DONE_LABEL);
3235 
3236       // Avoid branch-to-branch on AMD processors
3237       // This appears to be superstition.
3238       if (EmitSync & 32) masm.nop() ;
3239 
3240 
3241       // At DONE_LABEL the icc ZFlag is set as follows ...
3242       // Fast_Unlock uses the same protocol.
3243       // ZFlag == 1 -> Success
3244       // ZFlag == 0 -> Failure - force control through the slow-path
3245     }
3246   %}
3247 
3248   // obj: object to unlock
3249   // box: box address (displaced header location), killed.  Must be EAX.
3250   // rbx,: killed tmp; cannot be obj nor box.
3251   //
3252   // Some commentary on balanced locking:
3253   //
3254   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3255   // Methods that don't have provably balanced locking are forced to run in the
3256   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3257   // The interpreter provides two properties:
3258   // I1:  At return-time the interpreter automatically and quietly unlocks any
3259   //      objects acquired the current activation (frame).  Recall that the
3260   //      interpreter maintains an on-stack list of locks currently held by
3261   //      a frame.
3262   // I2:  If a method attempts to unlock an object that is not held by the
3263   //      the frame the interpreter throws IMSX.
3264   //
3265   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3266   // B() doesn't have provably balanced locking so it runs in the interpreter.
3267   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3268   // is still locked by A().
3269   //
3270   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3271   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3272   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3273   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3274 
3275   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3276 
3277     Register objReg = as_Register($obj$$reg);
3278     Register boxReg = as_Register($box$$reg);
3279     Register tmpReg = as_Register($tmp$$reg);
3280 
3281     guarantee (objReg != boxReg, "") ;
3282     guarantee (objReg != tmpReg, "") ;
3283     guarantee (boxReg != tmpReg, "") ;
3284     guarantee (boxReg == as_Register(EAX_enc), "") ;
3285     MacroAssembler masm(&cbuf);
3286 
3287     if (EmitSync & 4) {
3288       // Disable - inhibit all inlining.  Force control through the slow-path
3289       masm.cmpptr (rsp, 0) ; 
3290     } else 
3291     if (EmitSync & 8) {
3292       Label DONE_LABEL ;
3293       if (UseBiasedLocking) {
3294          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3295       }
3296       // classic stack-locking code ...
3297       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3298       masm.testptr(tmpReg, tmpReg) ;
3299       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3300       if (os::is_MP()) { masm.lock(); }
3301       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3302       masm.bind(DONE_LABEL);
3303     } else {
3304       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3305 
3306       // Critically, the biased locking test must have precedence over
3307       // and appear before the (box->dhw == 0) recursive stack-lock test.
3308       if (UseBiasedLocking && !UseOptoBiasInlining) {
3309          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3310       }
3311       
3312       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3313       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3314       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3315 
3316       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3317       masm.jccb  (Assembler::zero, Stacked) ;
3318 
3319       masm.bind  (Inflated) ;
3320       // It's inflated.
3321       // Despite our balanced locking property we still check that m->_owner == Self
3322       // as java routines or native JNI code called by this thread might
3323       // have released the lock.
3324       // Refer to the comments in synchronizer.cpp for how we might encode extra
3325       // state in _succ so we can avoid fetching EntryList|cxq.
3326       //
3327       // I'd like to add more cases in fast_lock() and fast_unlock() --
3328       // such as recursive enter and exit -- but we have to be wary of
3329       // I$ bloat, T$ effects and BP$ effects.
3330       //
3331       // If there's no contention try a 1-0 exit.  That is, exit without
3332       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3333       // we detect and recover from the race that the 1-0 exit admits.
3334       //
3335       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3336       // before it STs null into _owner, releasing the lock.  Updates
3337       // to data protected by the critical section must be visible before
3338       // we drop the lock (and thus before any other thread could acquire
3339       // the lock and observe the fields protected by the lock).
3340       // IA32's memory-model is SPO, so STs are ordered with respect to
3341       // each other and there's no need for an explicit barrier (fence).
3342       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3343 
3344       masm.get_thread (boxReg) ;
3345       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3346         // prefetchw [ebx + Offset(_owner)-2]
3347         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3348       }
3349 
3350       // Note that we could employ various encoding schemes to reduce
3351       // the number of loads below (currently 4) to just 2 or 3.
3352       // Refer to the comments in synchronizer.cpp.
3353       // In practice the chain of fetches doesn't seem to impact performance, however.
3354       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3355          // Attempt to reduce branch density - AMD's branch predictor.
3356          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3357          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3358          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3359          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3360          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3361          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3362          masm.jmpb  (DONE_LABEL) ; 
3363       } else { 
3364          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3365          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3366          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3367          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3368          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3369          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3370          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3371          masm.jmpb  (DONE_LABEL) ; 
3372       }
3373 
3374       // The Following code fragment (EmitSync & 65536) improves the performance of
3375       // contended applications and contended synchronization microbenchmarks.
3376       // Unfortunately the emission of the code - even though not executed - causes regressions
3377       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3378       // with an equal number of never-executed NOPs results in the same regression.
3379       // We leave it off by default.
3380 
3381       if ((EmitSync & 65536) != 0) {
3382          Label LSuccess, LGoSlowPath ;
3383 
3384          masm.bind  (CheckSucc) ;
3385 
3386          // Optional pre-test ... it's safe to elide this
3387          if ((EmitSync & 16) == 0) { 
3388             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3389             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3390          }
3391 
3392          // We have a classic Dekker-style idiom:
3393          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3394          // There are a number of ways to implement the barrier:
3395          // (1) lock:andl &m->_owner, 0
3396          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3397          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3398          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3399          // (2) If supported, an explicit MFENCE is appealing.
3400          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3401          //     particularly if the write-buffer is full as might be the case if
3402          //     if stores closely precede the fence or fence-equivalent instruction.
3403          //     In more modern implementations MFENCE appears faster, however.
3404          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3405          //     The $lines underlying the top-of-stack should be in M-state.
3406          //     The locked add instruction is serializing, of course.
3407          // (4) Use xchg, which is serializing
3408          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3409          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3410          //     The integer condition codes will tell us if succ was 0.
3411          //     Since _succ and _owner should reside in the same $line and
3412          //     we just stored into _owner, it's likely that the $line
3413          //     remains in M-state for the lock:orl.
3414          //
3415          // We currently use (3), although it's likely that switching to (2)
3416          // is correct for the future.
3417             
3418          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3419          if (os::is_MP()) { 
3420             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3421               masm.mfence();
3422             } else { 
3423               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3424             }
3425          }
3426          // Ratify _succ remains non-null
3427          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3428          masm.jccb  (Assembler::notZero, LSuccess) ; 
3429 
3430          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3431          if (os::is_MP()) { masm.lock(); }
3432          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3433          masm.jccb  (Assembler::notEqual, LSuccess) ;
3434          // Since we're low on registers we installed rsp as a placeholding in _owner.
3435          // Now install Self over rsp.  This is safe as we're transitioning from
3436          // non-null to non=null
3437          masm.get_thread (boxReg) ;
3438          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3439          // Intentional fall-through into LGoSlowPath ...
3440 
3441          masm.bind  (LGoSlowPath) ; 
3442          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3443          masm.jmpb  (DONE_LABEL) ; 
3444 
3445          masm.bind  (LSuccess) ; 
3446          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3447          masm.jmpb  (DONE_LABEL) ; 
3448       }
3449 
3450       masm.bind (Stacked) ;
3451       // It's not inflated and it's not recursively stack-locked and it's not biased.
3452       // It must be stack-locked.
3453       // Try to reset the header to displaced header.
3454       // The "box" value on the stack is stable, so we can reload
3455       // and be assured we observe the same value as above.
3456       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3457       if (os::is_MP()) {   masm.lock();    }
3458       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3459       // Intention fall-thru into DONE_LABEL
3460 
3461 
3462       // DONE_LABEL is a hot target - we'd really like to place it at the
3463       // start of cache line by padding with NOPs.
3464       // See the AMD and Intel software optimization manuals for the
3465       // most efficient "long" NOP encodings.
3466       // Unfortunately none of our alignment mechanisms suffice.
3467       if ((EmitSync & 65536) == 0) {
3468          masm.bind (CheckSucc) ;
3469       }
3470       masm.bind(DONE_LABEL);
3471 
3472       // Avoid branch to branch on AMD processors
3473       if (EmitSync & 32768) { masm.nop() ; }
3474     }
3475   %}
3476 
3477 
3478   enc_class enc_pop_rdx() %{
3479     emit_opcode(cbuf,0x5A);
3480   %}
3481 
3482   enc_class enc_rethrow() %{
3483     cbuf.set_insts_mark();
3484     emit_opcode(cbuf, 0xE9);        // jmp    entry
3485     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3486                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3487   %}
3488 
3489 
3490   // Convert a double to an int.  Java semantics require we do complex
3491   // manglelations in the corner cases.  So we set the rounding mode to
3492   // 'zero', store the darned double down as an int, and reset the
3493   // rounding mode to 'nearest'.  The hardware throws an exception which
3494   // patches up the correct value directly to the stack.
3495   enc_class DPR2I_encoding( regDPR src ) %{
3496     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3497     // exceptions here, so that a NAN or other corner-case value will
3498     // thrown an exception (but normal values get converted at full speed).
3499     // However, I2C adapters and other float-stack manglers leave pending
3500     // invalid-op exceptions hanging.  We would have to clear them before
3501     // enabling them and that is more expensive than just testing for the
3502     // invalid value Intel stores down in the corner cases.
3503     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3504     emit_opcode(cbuf,0x2D);
3505     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3506     // Allocate a word
3507     emit_opcode(cbuf,0x83);            // SUB ESP,4
3508     emit_opcode(cbuf,0xEC);
3509     emit_d8(cbuf,0x04);
3510     // Encoding assumes a double has been pushed into FPR0.
3511     // Store down the double as an int, popping the FPU stack
3512     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3513     emit_opcode(cbuf,0x1C);
3514     emit_d8(cbuf,0x24);
3515     // Restore the rounding mode; mask the exception
3516     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3517     emit_opcode(cbuf,0x2D);
3518     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3519         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3520         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3521 
3522     // Load the converted int; adjust CPU stack
3523     emit_opcode(cbuf,0x58);       // POP EAX
3524     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3525     emit_d32   (cbuf,0x80000000); //         0x80000000
3526     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3527     emit_d8    (cbuf,0x07);       // Size of slow_call
3528     // Push src onto stack slow-path
3529     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3530     emit_d8    (cbuf,0xC0-1+$src$$reg );
3531     // CALL directly to the runtime
3532     cbuf.set_insts_mark();
3533     emit_opcode(cbuf,0xE8);       // Call into runtime
3534     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3535     // Carry on here...
3536   %}
3537 
3538   enc_class DPR2L_encoding( regDPR src ) %{
3539     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3540     emit_opcode(cbuf,0x2D);
3541     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3542     // Allocate a word
3543     emit_opcode(cbuf,0x83);            // SUB ESP,8
3544     emit_opcode(cbuf,0xEC);
3545     emit_d8(cbuf,0x08);
3546     // Encoding assumes a double has been pushed into FPR0.
3547     // Store down the double as a long, popping the FPU stack
3548     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3549     emit_opcode(cbuf,0x3C);
3550     emit_d8(cbuf,0x24);
3551     // Restore the rounding mode; mask the exception
3552     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3553     emit_opcode(cbuf,0x2D);
3554     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3555         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3556         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3557 
3558     // Load the converted int; adjust CPU stack
3559     emit_opcode(cbuf,0x58);       // POP EAX
3560     emit_opcode(cbuf,0x5A);       // POP EDX
3561     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3562     emit_d8    (cbuf,0xFA);       // rdx
3563     emit_d32   (cbuf,0x80000000); //         0x80000000
3564     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3565     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3566     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3567     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3568     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3569     emit_d8    (cbuf,0x07);       // Size of slow_call
3570     // Push src onto stack slow-path
3571     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3572     emit_d8    (cbuf,0xC0-1+$src$$reg );
3573     // CALL directly to the runtime
3574     cbuf.set_insts_mark();
3575     emit_opcode(cbuf,0xE8);       // Call into runtime
3576     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3577     // Carry on here...
3578   %}
3579 
3580   enc_class FMul_ST_reg( eRegFPR src1 ) %{
3581     // Operand was loaded from memory into fp ST (stack top)
3582     // FMUL   ST,$src  /* D8 C8+i */
3583     emit_opcode(cbuf, 0xD8);
3584     emit_opcode(cbuf, 0xC8 + $src1$$reg);
3585   %}
3586 
3587   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
3588     // FADDP  ST,src2  /* D8 C0+i */
3589     emit_opcode(cbuf, 0xD8);
3590     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3591     //could use FADDP  src2,fpST  /* DE C0+i */
3592   %}
3593 
3594   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
3595     // FADDP  src2,ST  /* DE C0+i */
3596     emit_opcode(cbuf, 0xDE);
3597     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3598   %}
3599 
3600   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
3601     // Operand has been loaded into fp ST (stack top)
3602       // FSUB   ST,$src1
3603       emit_opcode(cbuf, 0xD8);
3604       emit_opcode(cbuf, 0xE0 + $src1$$reg);
3605 
3606       // FDIV
3607       emit_opcode(cbuf, 0xD8);
3608       emit_opcode(cbuf, 0xF0 + $src2$$reg);
3609   %}
3610 
3611   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
3612     // Operand was loaded from memory into fp ST (stack top)
3613     // FADD   ST,$src  /* D8 C0+i */
3614     emit_opcode(cbuf, 0xD8);
3615     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3616 
3617     // FMUL  ST,src2  /* D8 C*+i */
3618     emit_opcode(cbuf, 0xD8);
3619     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3620   %}
3621 
3622 
3623   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3624     // Operand was loaded from memory into fp ST (stack top)
3625     // FADD   ST,$src  /* D8 C0+i */
3626     emit_opcode(cbuf, 0xD8);
3627     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3628 
3629     // FMULP  src2,ST  /* DE C8+i */
3630     emit_opcode(cbuf, 0xDE);
3631     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3632   %}
3633 
3634   // Atomically load the volatile long
3635   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3636     emit_opcode(cbuf,0xDF);
3637     int rm_byte_opcode = 0x05;
3638     int base     = $mem$$base;
3639     int index    = $mem$$index;
3640     int scale    = $mem$$scale;
3641     int displace = $mem$$disp;
3642     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3643     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3644     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3645   %}
3646 
3647   // Volatile Store Long.  Must be atomic, so move it into
3648   // the FP TOS and then do a 64-bit FIST.  Has to probe the
3649   // target address before the store (for null-ptr checks)
3650   // so the memory operand is used twice in the encoding.
3651   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3652     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3653     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3654     emit_opcode(cbuf,0xDF);
3655     int rm_byte_opcode = 0x07;
3656     int base     = $mem$$base;
3657     int index    = $mem$$index;
3658     int scale    = $mem$$scale;
3659     int displace = $mem$$disp;
3660     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3661     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3662   %}
3663 
3664   // Safepoint Poll.  This polls the safepoint page, and causes an
3665   // exception if it is not readable. Unfortunately, it kills the condition code
3666   // in the process
3667   // We current use TESTL [spp],EDI
3668   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3669 
3670   enc_class Safepoint_Poll() %{
3671     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3672     emit_opcode(cbuf,0x85);
3673     emit_rm (cbuf, 0x0, 0x7, 0x5);
3674     emit_d32(cbuf, (intptr_t)os::get_polling_page());
3675   %}
3676 %}
3677 
3678 
3679 //----------FRAME--------------------------------------------------------------
3680 // Definition of frame structure and management information.
3681 //
3682 //  S T A C K   L A Y O U T    Allocators stack-slot number
3683 //                             |   (to get allocators register number
3684 //  G  Owned by    |        |  v    add OptoReg::stack0())
3685 //  r   CALLER     |        |
3686 //  o     |        +--------+      pad to even-align allocators stack-slot
3687 //  w     V        |  pad0  |        numbers; owned by CALLER
3688 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3689 //  h     ^        |   in   |  5
3690 //        |        |  args  |  4   Holes in incoming args owned by SELF
3691 //  |     |        |        |  3
3692 //  |     |        +--------+
3693 //  V     |        | old out|      Empty on Intel, window on Sparc
3694 //        |    old |preserve|      Must be even aligned.
3695 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3696 //        |        |   in   |  3   area for Intel ret address
3697 //     Owned by    |preserve|      Empty on Sparc.
3698 //       SELF      +--------+
3699 //        |        |  pad2  |  2   pad to align old SP
3700 //        |        +--------+  1
3701 //        |        | locks  |  0
3702 //        |        +--------+----> OptoReg::stack0(), even aligned
3703 //        |        |  pad1  | 11   pad to align new SP
3704 //        |        +--------+
3705 //        |        |        | 10
3706 //        |        | spills |  9   spills
3707 //        V        |        |  8   (pad0 slot for callee)
3708 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3709 //        ^        |  out   |  7
3710 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3711 //     Owned by    +--------+
3712 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3713 //        |    new |preserve|      Must be even-aligned.
3714 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3715 //        |        |        |
3716 //
3717 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3718 //         known from SELF's arguments and the Java calling convention.
3719 //         Region 6-7 is determined per call site.
3720 // Note 2: If the calling convention leaves holes in the incoming argument
3721 //         area, those holes are owned by SELF.  Holes in the outgoing area
3722 //         are owned by the CALLEE.  Holes should not be nessecary in the
3723 //         incoming area, as the Java calling convention is completely under
3724 //         the control of the AD file.  Doubles can be sorted and packed to
3725 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3726 //         varargs C calling conventions.
3727 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3728 //         even aligned with pad0 as needed.
3729 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3730 //         region 6-11 is even aligned; it may be padded out more so that
3731 //         the region from SP to FP meets the minimum stack alignment.
3732 
3733 frame %{
3734   // What direction does stack grow in (assumed to be same for C & Java)
3735   stack_direction(TOWARDS_LOW);
3736 
3737   // These three registers define part of the calling convention
3738   // between compiled code and the interpreter.
3739   inline_cache_reg(EAX);                // Inline Cache Register
3740   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3741 
3742   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3743   cisc_spilling_operand_name(indOffset32);
3744 
3745   // Number of stack slots consumed by locking an object
3746   sync_stack_slots(1);
3747 
3748   // Compiled code's Frame Pointer
3749   frame_pointer(ESP);
3750   // Interpreter stores its frame pointer in a register which is
3751   // stored to the stack by I2CAdaptors.
3752   // I2CAdaptors convert from interpreted java to compiled java.
3753   interpreter_frame_pointer(EBP);
3754 
3755   // Stack alignment requirement
3756   // Alignment size in bytes (128-bit -> 16 bytes)
3757   stack_alignment(StackAlignmentInBytes);
3758 
3759   // Number of stack slots between incoming argument block and the start of
3760   // a new frame.  The PROLOG must add this many slots to the stack.  The
3761   // EPILOG must remove this many slots.  Intel needs one slot for
3762   // return address and one for rbp, (must save rbp)
3763   in_preserve_stack_slots(2+VerifyStackAtCalls);
3764 
3765   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3766   // for calls to C.  Supports the var-args backing area for register parms.
3767   varargs_C_out_slots_killed(0);
3768 
3769   // The after-PROLOG location of the return address.  Location of
3770   // return address specifies a type (REG or STACK) and a number
3771   // representing the register number (i.e. - use a register name) or
3772   // stack slot.
3773   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3774   // Otherwise, it is above the locks and verification slot and alignment word
3775   return_addr(STACK - 1 +
3776               round_to((Compile::current()->in_preserve_stack_slots() +
3777                         Compile::current()->fixed_slots()),
3778                        stack_alignment_in_slots()));
3779 
3780   // Body of function which returns an integer array locating
3781   // arguments either in registers or in stack slots.  Passed an array
3782   // of ideal registers called "sig" and a "length" count.  Stack-slot
3783   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3784   // arguments for a CALLEE.  Incoming stack arguments are
3785   // automatically biased by the preserve_stack_slots field above.
3786   calling_convention %{
3787     // No difference between ingoing/outgoing just pass false
3788     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3789   %}
3790 
3791 
3792   // Body of function which returns an integer array locating
3793   // arguments either in registers or in stack slots.  Passed an array
3794   // of ideal registers called "sig" and a "length" count.  Stack-slot
3795   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3796   // arguments for a CALLEE.  Incoming stack arguments are
3797   // automatically biased by the preserve_stack_slots field above.
3798   c_calling_convention %{
3799     // This is obviously always outgoing
3800     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3801   %}
3802 
3803   // Location of C & interpreter return values
3804   c_return_value %{
3805     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3806     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3807     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3808 
3809     // in SSE2+ mode we want to keep the FPU stack clean so pretend
3810     // that C functions return float and double results in XMM0.
3811     if( ideal_reg == Op_RegD && UseSSE>=2 )
3812       return OptoRegPair(XMM0b_num,XMM0_num);
3813     if( ideal_reg == Op_RegF && UseSSE>=2 )
3814       return OptoRegPair(OptoReg::Bad,XMM0_num);
3815 
3816     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3817   %}
3818 
3819   // Location of return values
3820   return_value %{
3821     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3822     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3823     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3824     if( ideal_reg == Op_RegD && UseSSE>=2 )
3825       return OptoRegPair(XMM0b_num,XMM0_num);
3826     if( ideal_reg == Op_RegF && UseSSE>=1 )
3827       return OptoRegPair(OptoReg::Bad,XMM0_num);
3828     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3829   %}
3830 
3831 %}
3832 
3833 //----------ATTRIBUTES---------------------------------------------------------
3834 //----------Operand Attributes-------------------------------------------------
3835 op_attrib op_cost(0);        // Required cost attribute
3836 
3837 //----------Instruction Attributes---------------------------------------------
3838 ins_attrib ins_cost(100);       // Required cost attribute
3839 ins_attrib ins_size(8);         // Required size attribute (in bits)
3840 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3841                                 // non-matching short branch variant of some
3842                                                             // long branch?
3843 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3844                                 // specifies the alignment that some part of the instruction (not
3845                                 // necessarily the start) requires.  If > 1, a compute_padding()
3846                                 // function must be provided for the instruction
3847 
3848 //----------OPERANDS-----------------------------------------------------------
3849 // Operand definitions must precede instruction definitions for correct parsing
3850 // in the ADLC because operands constitute user defined types which are used in
3851 // instruction definitions.
3852 
3853 //----------Simple Operands----------------------------------------------------
3854 // Immediate Operands
3855 // Integer Immediate
3856 operand immI() %{
3857   match(ConI);
3858 
3859   op_cost(10);
3860   format %{ %}
3861   interface(CONST_INTER);
3862 %}
3863 
3864 // Constant for test vs zero
3865 operand immI0() %{
3866   predicate(n->get_int() == 0);
3867   match(ConI);
3868 
3869   op_cost(0);
3870   format %{ %}
3871   interface(CONST_INTER);
3872 %}
3873 
3874 // Constant for increment
3875 operand immI1() %{
3876   predicate(n->get_int() == 1);
3877   match(ConI);
3878 
3879   op_cost(0);
3880   format %{ %}
3881   interface(CONST_INTER);
3882 %}
3883 
3884 // Constant for decrement
3885 operand immI_M1() %{
3886   predicate(n->get_int() == -1);
3887   match(ConI);
3888 
3889   op_cost(0);
3890   format %{ %}
3891   interface(CONST_INTER);
3892 %}
3893 
3894 // Valid scale values for addressing modes
3895 operand immI2() %{
3896   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3897   match(ConI);
3898 
3899   format %{ %}
3900   interface(CONST_INTER);
3901 %}
3902 
3903 operand immI8() %{
3904   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3905   match(ConI);
3906 
3907   op_cost(5);
3908   format %{ %}
3909   interface(CONST_INTER);
3910 %}
3911 
3912 operand immI16() %{
3913   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3914   match(ConI);
3915 
3916   op_cost(10);
3917   format %{ %}
3918   interface(CONST_INTER);
3919 %}
3920 
3921 // Constant for long shifts
3922 operand immI_32() %{
3923   predicate( n->get_int() == 32 );
3924   match(ConI);
3925 
3926   op_cost(0);
3927   format %{ %}
3928   interface(CONST_INTER);
3929 %}
3930 
3931 operand immI_1_31() %{
3932   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3933   match(ConI);
3934 
3935   op_cost(0);
3936   format %{ %}
3937   interface(CONST_INTER);
3938 %}
3939 
3940 operand immI_32_63() %{
3941   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3942   match(ConI);
3943   op_cost(0);
3944 
3945   format %{ %}
3946   interface(CONST_INTER);
3947 %}
3948 
3949 operand immI_1() %{
3950   predicate( n->get_int() == 1 );
3951   match(ConI);
3952 
3953   op_cost(0);
3954   format %{ %}
3955   interface(CONST_INTER);
3956 %}
3957 
3958 operand immI_2() %{
3959   predicate( n->get_int() == 2 );
3960   match(ConI);
3961 
3962   op_cost(0);
3963   format %{ %}
3964   interface(CONST_INTER);
3965 %}
3966 
3967 operand immI_3() %{
3968   predicate( n->get_int() == 3 );
3969   match(ConI);
3970 
3971   op_cost(0);
3972   format %{ %}
3973   interface(CONST_INTER);
3974 %}
3975 
3976 // Pointer Immediate
3977 operand immP() %{
3978   match(ConP);
3979 
3980   op_cost(10);
3981   format %{ %}
3982   interface(CONST_INTER);
3983 %}
3984 
3985 // NULL Pointer Immediate
3986 operand immP0() %{
3987   predicate( n->get_ptr() == 0 );
3988   match(ConP);
3989   op_cost(0);
3990 
3991   format %{ %}
3992   interface(CONST_INTER);
3993 %}
3994 
3995 // Long Immediate
3996 operand immL() %{
3997   match(ConL);
3998 
3999   op_cost(20);
4000   format %{ %}
4001   interface(CONST_INTER);
4002 %}
4003 
4004 // Long Immediate zero
4005 operand immL0() %{
4006   predicate( n->get_long() == 0L );
4007   match(ConL);
4008   op_cost(0);
4009 
4010   format %{ %}
4011   interface(CONST_INTER);
4012 %}
4013 
4014 // Long Immediate zero
4015 operand immL_M1() %{
4016   predicate( n->get_long() == -1L );
4017   match(ConL);
4018   op_cost(0);
4019 
4020   format %{ %}
4021   interface(CONST_INTER);
4022 %}
4023 
4024 // Long immediate from 0 to 127.
4025 // Used for a shorter form of long mul by 10.
4026 operand immL_127() %{
4027   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4028   match(ConL);
4029   op_cost(0);
4030 
4031   format %{ %}
4032   interface(CONST_INTER);
4033 %}
4034 
4035 // Long Immediate: low 32-bit mask
4036 operand immL_32bits() %{
4037   predicate(n->get_long() == 0xFFFFFFFFL);
4038   match(ConL);
4039   op_cost(0);
4040 
4041   format %{ %}
4042   interface(CONST_INTER);
4043 %}
4044 
4045 // Long Immediate: low 32-bit mask
4046 operand immL32() %{
4047   predicate(n->get_long() == (int)(n->get_long()));
4048   match(ConL);
4049   op_cost(20);
4050 
4051   format %{ %}
4052   interface(CONST_INTER);
4053 %}
4054 
4055 //Double Immediate zero
4056 operand immDPR0() %{
4057   // Do additional (and counter-intuitive) test against NaN to work around VC++
4058   // bug that generates code such that NaNs compare equal to 0.0
4059   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4060   match(ConD);
4061 
4062   op_cost(5);
4063   format %{ %}
4064   interface(CONST_INTER);
4065 %}
4066 
4067 // Double Immediate one
4068 operand immDPR1() %{
4069   predicate( UseSSE<=1 && n->getd() == 1.0 );
4070   match(ConD);
4071 
4072   op_cost(5);
4073   format %{ %}
4074   interface(CONST_INTER);
4075 %}
4076 
4077 // Double Immediate
4078 operand immDPR() %{
4079   predicate(UseSSE<=1);
4080   match(ConD);
4081 
4082   op_cost(5);
4083   format %{ %}
4084   interface(CONST_INTER);
4085 %}
4086 
4087 operand immD() %{
4088   predicate(UseSSE>=2);
4089   match(ConD);
4090 
4091   op_cost(5);
4092   format %{ %}
4093   interface(CONST_INTER);
4094 %}
4095 
4096 // Double Immediate zero
4097 operand immD0() %{
4098   // Do additional (and counter-intuitive) test against NaN to work around VC++
4099   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4100   // compare equal to -0.0.
4101   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4102   match(ConD);
4103 
4104   format %{ %}
4105   interface(CONST_INTER);
4106 %}
4107 
4108 // Float Immediate zero
4109 operand immFPR0() %{
4110   predicate(UseSSE == 0 && n->getf() == 0.0F);
4111   match(ConF);
4112 
4113   op_cost(5);
4114   format %{ %}
4115   interface(CONST_INTER);
4116 %}
4117 
4118 // Float Immediate one
4119 operand immFPR1() %{
4120   predicate(UseSSE == 0 && n->getf() == 1.0F);
4121   match(ConF);
4122 
4123   op_cost(5);
4124   format %{ %}
4125   interface(CONST_INTER);
4126 %}
4127 
4128 // Float Immediate
4129 operand immFPR() %{
4130   predicate( UseSSE == 0 );
4131   match(ConF);
4132 
4133   op_cost(5);
4134   format %{ %}
4135   interface(CONST_INTER);
4136 %}
4137 
4138 // Float Immediate
4139 operand immF() %{
4140   predicate(UseSSE >= 1);
4141   match(ConF);
4142 
4143   op_cost(5);
4144   format %{ %}
4145   interface(CONST_INTER);
4146 %}
4147 
4148 // Float Immediate zero.  Zero and not -0.0
4149 operand immF0() %{
4150   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4151   match(ConF);
4152 
4153   op_cost(5);
4154   format %{ %}
4155   interface(CONST_INTER);
4156 %}
4157 
4158 // Immediates for special shifts (sign extend)
4159 
4160 // Constants for increment
4161 operand immI_16() %{
4162   predicate( n->get_int() == 16 );
4163   match(ConI);
4164 
4165   format %{ %}
4166   interface(CONST_INTER);
4167 %}
4168 
4169 operand immI_24() %{
4170   predicate( n->get_int() == 24 );
4171   match(ConI);
4172 
4173   format %{ %}
4174   interface(CONST_INTER);
4175 %}
4176 
4177 // Constant for byte-wide masking
4178 operand immI_255() %{
4179   predicate( n->get_int() == 255 );
4180   match(ConI);
4181 
4182   format %{ %}
4183   interface(CONST_INTER);
4184 %}
4185 
4186 // Constant for short-wide masking
4187 operand immI_65535() %{
4188   predicate(n->get_int() == 65535);
4189   match(ConI);
4190 
4191   format %{ %}
4192   interface(CONST_INTER);
4193 %}
4194 
4195 // Register Operands
4196 // Integer Register
4197 operand rRegI() %{
4198   constraint(ALLOC_IN_RC(int_reg));
4199   match(RegI);
4200   match(xRegI);
4201   match(eAXRegI);
4202   match(eBXRegI);
4203   match(eCXRegI);
4204   match(eDXRegI);
4205   match(eDIRegI);
4206   match(eSIRegI);
4207 
4208   format %{ %}
4209   interface(REG_INTER);
4210 %}
4211 
4212 // Subset of Integer Register
4213 operand xRegI(rRegI reg) %{
4214   constraint(ALLOC_IN_RC(int_x_reg));
4215   match(reg);
4216   match(eAXRegI);
4217   match(eBXRegI);
4218   match(eCXRegI);
4219   match(eDXRegI);
4220 
4221   format %{ %}
4222   interface(REG_INTER);
4223 %}
4224 
4225 // Special Registers
4226 operand eAXRegI(xRegI reg) %{
4227   constraint(ALLOC_IN_RC(eax_reg));
4228   match(reg);
4229   match(rRegI);
4230 
4231   format %{ "EAX" %}
4232   interface(REG_INTER);
4233 %}
4234 
4235 // Special Registers
4236 operand eBXRegI(xRegI reg) %{
4237   constraint(ALLOC_IN_RC(ebx_reg));
4238   match(reg);
4239   match(rRegI);
4240 
4241   format %{ "EBX" %}
4242   interface(REG_INTER);
4243 %}
4244 
4245 operand eCXRegI(xRegI reg) %{
4246   constraint(ALLOC_IN_RC(ecx_reg));
4247   match(reg);
4248   match(rRegI);
4249 
4250   format %{ "ECX" %}
4251   interface(REG_INTER);
4252 %}
4253 
4254 operand eDXRegI(xRegI reg) %{
4255   constraint(ALLOC_IN_RC(edx_reg));
4256   match(reg);
4257   match(rRegI);
4258 
4259   format %{ "EDX" %}
4260   interface(REG_INTER);
4261 %}
4262 
4263 operand eDIRegI(xRegI reg) %{
4264   constraint(ALLOC_IN_RC(edi_reg));
4265   match(reg);
4266   match(rRegI);
4267 
4268   format %{ "EDI" %}
4269   interface(REG_INTER);
4270 %}
4271 
4272 operand naxRegI() %{
4273   constraint(ALLOC_IN_RC(nax_reg));
4274   match(RegI);
4275   match(eCXRegI);
4276   match(eDXRegI);
4277   match(eSIRegI);
4278   match(eDIRegI);
4279 
4280   format %{ %}
4281   interface(REG_INTER);
4282 %}
4283 
4284 operand nadxRegI() %{
4285   constraint(ALLOC_IN_RC(nadx_reg));
4286   match(RegI);
4287   match(eBXRegI);
4288   match(eCXRegI);
4289   match(eSIRegI);
4290   match(eDIRegI);
4291 
4292   format %{ %}
4293   interface(REG_INTER);
4294 %}
4295 
4296 operand ncxRegI() %{
4297   constraint(ALLOC_IN_RC(ncx_reg));
4298   match(RegI);
4299   match(eAXRegI);
4300   match(eDXRegI);
4301   match(eSIRegI);
4302   match(eDIRegI);
4303 
4304   format %{ %}
4305   interface(REG_INTER);
4306 %}
4307 
4308 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4309 // //
4310 operand eSIRegI(xRegI reg) %{
4311    constraint(ALLOC_IN_RC(esi_reg));
4312    match(reg);
4313    match(rRegI);
4314 
4315    format %{ "ESI" %}
4316    interface(REG_INTER);
4317 %}
4318 
4319 // Pointer Register
4320 operand anyRegP() %{
4321   constraint(ALLOC_IN_RC(any_reg));
4322   match(RegP);
4323   match(eAXRegP);
4324   match(eBXRegP);
4325   match(eCXRegP);
4326   match(eDIRegP);
4327   match(eRegP);
4328 
4329   format %{ %}
4330   interface(REG_INTER);
4331 %}
4332 
4333 operand eRegP() %{
4334   constraint(ALLOC_IN_RC(int_reg));
4335   match(RegP);
4336   match(eAXRegP);
4337   match(eBXRegP);
4338   match(eCXRegP);
4339   match(eDIRegP);
4340 
4341   format %{ %}
4342   interface(REG_INTER);
4343 %}
4344 
4345 // On windows95, EBP is not safe to use for implicit null tests.
4346 operand eRegP_no_EBP() %{
4347   constraint(ALLOC_IN_RC(int_reg_no_rbp));
4348   match(RegP);
4349   match(eAXRegP);
4350   match(eBXRegP);
4351   match(eCXRegP);
4352   match(eDIRegP);
4353 
4354   op_cost(100);
4355   format %{ %}
4356   interface(REG_INTER);
4357 %}
4358 
4359 operand naxRegP() %{
4360   constraint(ALLOC_IN_RC(nax_reg));
4361   match(RegP);
4362   match(eBXRegP);
4363   match(eDXRegP);
4364   match(eCXRegP);
4365   match(eSIRegP);
4366   match(eDIRegP);
4367 
4368   format %{ %}
4369   interface(REG_INTER);
4370 %}
4371 
4372 operand nabxRegP() %{
4373   constraint(ALLOC_IN_RC(nabx_reg));
4374   match(RegP);
4375   match(eCXRegP);
4376   match(eDXRegP);
4377   match(eSIRegP);
4378   match(eDIRegP);
4379 
4380   format %{ %}
4381   interface(REG_INTER);
4382 %}
4383 
4384 operand pRegP() %{
4385   constraint(ALLOC_IN_RC(p_reg));
4386   match(RegP);
4387   match(eBXRegP);
4388   match(eDXRegP);
4389   match(eSIRegP);
4390   match(eDIRegP);
4391 
4392   format %{ %}
4393   interface(REG_INTER);
4394 %}
4395 
4396 // Special Registers
4397 // Return a pointer value
4398 operand eAXRegP(eRegP reg) %{
4399   constraint(ALLOC_IN_RC(eax_reg));
4400   match(reg);
4401   format %{ "EAX" %}
4402   interface(REG_INTER);
4403 %}
4404 
4405 // Used in AtomicAdd
4406 operand eBXRegP(eRegP reg) %{
4407   constraint(ALLOC_IN_RC(ebx_reg));
4408   match(reg);
4409   format %{ "EBX" %}
4410   interface(REG_INTER);
4411 %}
4412 
4413 // Tail-call (interprocedural jump) to interpreter
4414 operand eCXRegP(eRegP reg) %{
4415   constraint(ALLOC_IN_RC(ecx_reg));
4416   match(reg);
4417   format %{ "ECX" %}
4418   interface(REG_INTER);
4419 %}
4420 
4421 operand eSIRegP(eRegP reg) %{
4422   constraint(ALLOC_IN_RC(esi_reg));
4423   match(reg);
4424   format %{ "ESI" %}
4425   interface(REG_INTER);
4426 %}
4427 
4428 // Used in rep stosw
4429 operand eDIRegP(eRegP reg) %{
4430   constraint(ALLOC_IN_RC(edi_reg));
4431   match(reg);
4432   format %{ "EDI" %}
4433   interface(REG_INTER);
4434 %}
4435 
4436 operand eBPRegP() %{
4437   constraint(ALLOC_IN_RC(ebp_reg));
4438   match(RegP);
4439   format %{ "EBP" %}
4440   interface(REG_INTER);
4441 %}
4442 
4443 operand eRegL() %{
4444   constraint(ALLOC_IN_RC(long_reg));
4445   match(RegL);
4446   match(eADXRegL);
4447 
4448   format %{ %}
4449   interface(REG_INTER);
4450 %}
4451 
4452 operand eADXRegL( eRegL reg ) %{
4453   constraint(ALLOC_IN_RC(eadx_reg));
4454   match(reg);
4455 
4456   format %{ "EDX:EAX" %}
4457   interface(REG_INTER);
4458 %}
4459 
4460 operand eBCXRegL( eRegL reg ) %{
4461   constraint(ALLOC_IN_RC(ebcx_reg));
4462   match(reg);
4463 
4464   format %{ "EBX:ECX" %}
4465   interface(REG_INTER);
4466 %}
4467 
4468 // Special case for integer high multiply
4469 operand eADXRegL_low_only() %{
4470   constraint(ALLOC_IN_RC(eadx_reg));
4471   match(RegL);
4472 
4473   format %{ "EAX" %}
4474   interface(REG_INTER);
4475 %}
4476 
4477 // Flags register, used as output of compare instructions
4478 operand eFlagsReg() %{
4479   constraint(ALLOC_IN_RC(int_flags));
4480   match(RegFlags);
4481 
4482   format %{ "EFLAGS" %}
4483   interface(REG_INTER);
4484 %}
4485 
4486 // Flags register, used as output of FLOATING POINT compare instructions
4487 operand eFlagsRegU() %{
4488   constraint(ALLOC_IN_RC(int_flags));
4489   match(RegFlags);
4490 
4491   format %{ "EFLAGS_U" %}
4492   interface(REG_INTER);
4493 %}
4494 
4495 operand eFlagsRegUCF() %{
4496   constraint(ALLOC_IN_RC(int_flags));
4497   match(RegFlags);
4498   predicate(false);
4499 
4500   format %{ "EFLAGS_U_CF" %}
4501   interface(REG_INTER);
4502 %}
4503 
4504 // Condition Code Register used by long compare
4505 operand flagsReg_long_LTGE() %{
4506   constraint(ALLOC_IN_RC(int_flags));
4507   match(RegFlags);
4508   format %{ "FLAGS_LTGE" %}
4509   interface(REG_INTER);
4510 %}
4511 operand flagsReg_long_EQNE() %{
4512   constraint(ALLOC_IN_RC(int_flags));
4513   match(RegFlags);
4514   format %{ "FLAGS_EQNE" %}
4515   interface(REG_INTER);
4516 %}
4517 operand flagsReg_long_LEGT() %{
4518   constraint(ALLOC_IN_RC(int_flags));
4519   match(RegFlags);
4520   format %{ "FLAGS_LEGT" %}
4521   interface(REG_INTER);
4522 %}
4523 
4524 // Float register operands
4525 operand regDPR() %{
4526   predicate( UseSSE < 2 );
4527   constraint(ALLOC_IN_RC(fp_dbl_reg));
4528   match(RegD);
4529   match(regDPR1);
4530   match(regDPR2);
4531   format %{ %}
4532   interface(REG_INTER);
4533 %}
4534 
4535 operand regDPR1(regDPR reg) %{
4536   predicate( UseSSE < 2 );
4537   constraint(ALLOC_IN_RC(fp_dbl_reg0));
4538   match(reg);
4539   format %{ "FPR1" %}
4540   interface(REG_INTER);
4541 %}
4542 
4543 operand regDPR2(regDPR reg) %{
4544   predicate( UseSSE < 2 );
4545   constraint(ALLOC_IN_RC(fp_dbl_reg1));
4546   match(reg);
4547   format %{ "FPR2" %}
4548   interface(REG_INTER);
4549 %}
4550 
4551 operand regnotDPR1(regDPR reg) %{
4552   predicate( UseSSE < 2 );
4553   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
4554   match(reg);
4555   format %{ %}
4556   interface(REG_INTER);
4557 %}
4558 
4559 // Float register operands
4560 operand regFPR() %{
4561   predicate( UseSSE < 2 );
4562   constraint(ALLOC_IN_RC(fp_flt_reg));
4563   match(RegF);
4564   match(regFPR1);
4565   format %{ %}
4566   interface(REG_INTER);
4567 %}
4568 
4569 // Float register operands
4570 operand regFPR1(regFPR reg) %{
4571   predicate( UseSSE < 2 );
4572   constraint(ALLOC_IN_RC(fp_flt_reg0));
4573   match(reg);
4574   format %{ "FPR1" %}
4575   interface(REG_INTER);
4576 %}
4577 
4578 // XMM Float register operands
4579 operand regF() %{
4580   predicate( UseSSE>=1 );
4581   constraint(ALLOC_IN_RC(float_reg));
4582   match(RegF);
4583   format %{ %}
4584   interface(REG_INTER);
4585 %}
4586 
4587 // XMM Double register operands
4588 operand regD() %{
4589   predicate( UseSSE>=2 );
4590   constraint(ALLOC_IN_RC(double_reg));
4591   match(RegD);
4592   format %{ %}
4593   interface(REG_INTER);
4594 %}
4595 
4596 
4597 //----------Memory Operands----------------------------------------------------
4598 // Direct Memory Operand
4599 operand direct(immP addr) %{
4600   match(addr);
4601 
4602   format %{ "[$addr]" %}
4603   interface(MEMORY_INTER) %{
4604     base(0xFFFFFFFF);
4605     index(0x4);
4606     scale(0x0);
4607     disp($addr);
4608   %}
4609 %}
4610 
4611 // Indirect Memory Operand
4612 operand indirect(eRegP reg) %{
4613   constraint(ALLOC_IN_RC(int_reg));
4614   match(reg);
4615 
4616   format %{ "[$reg]" %}
4617   interface(MEMORY_INTER) %{
4618     base($reg);
4619     index(0x4);
4620     scale(0x0);
4621     disp(0x0);
4622   %}
4623 %}
4624 
4625 // Indirect Memory Plus Short Offset Operand
4626 operand indOffset8(eRegP reg, immI8 off) %{
4627   match(AddP reg off);
4628 
4629   format %{ "[$reg + $off]" %}
4630   interface(MEMORY_INTER) %{
4631     base($reg);
4632     index(0x4);
4633     scale(0x0);
4634     disp($off);
4635   %}
4636 %}
4637 
4638 // Indirect Memory Plus Long Offset Operand
4639 operand indOffset32(eRegP reg, immI off) %{
4640   match(AddP reg off);
4641 
4642   format %{ "[$reg + $off]" %}
4643   interface(MEMORY_INTER) %{
4644     base($reg);
4645     index(0x4);
4646     scale(0x0);
4647     disp($off);
4648   %}
4649 %}
4650 
4651 // Indirect Memory Plus Long Offset Operand
4652 operand indOffset32X(rRegI reg, immP off) %{
4653   match(AddP off reg);
4654 
4655   format %{ "[$reg + $off]" %}
4656   interface(MEMORY_INTER) %{
4657     base($reg);
4658     index(0x4);
4659     scale(0x0);
4660     disp($off);
4661   %}
4662 %}
4663 
4664 // Indirect Memory Plus Index Register Plus Offset Operand
4665 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4666   match(AddP (AddP reg ireg) off);
4667 
4668   op_cost(10);
4669   format %{"[$reg + $off + $ireg]" %}
4670   interface(MEMORY_INTER) %{
4671     base($reg);
4672     index($ireg);
4673     scale(0x0);
4674     disp($off);
4675   %}
4676 %}
4677 
4678 // Indirect Memory Plus Index Register Plus Offset Operand
4679 operand indIndex(eRegP reg, rRegI ireg) %{
4680   match(AddP reg ireg);
4681 
4682   op_cost(10);
4683   format %{"[$reg + $ireg]" %}
4684   interface(MEMORY_INTER) %{
4685     base($reg);
4686     index($ireg);
4687     scale(0x0);
4688     disp(0x0);
4689   %}
4690 %}
4691 
4692 // // -------------------------------------------------------------------------
4693 // // 486 architecture doesn't support "scale * index + offset" with out a base
4694 // // -------------------------------------------------------------------------
4695 // // Scaled Memory Operands
4696 // // Indirect Memory Times Scale Plus Offset Operand
4697 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4698 //   match(AddP off (LShiftI ireg scale));
4699 //
4700 //   op_cost(10);
4701 //   format %{"[$off + $ireg << $scale]" %}
4702 //   interface(MEMORY_INTER) %{
4703 //     base(0x4);
4704 //     index($ireg);
4705 //     scale($scale);
4706 //     disp($off);
4707 //   %}
4708 // %}
4709 
4710 // Indirect Memory Times Scale Plus Index Register
4711 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4712   match(AddP reg (LShiftI ireg scale));
4713 
4714   op_cost(10);
4715   format %{"[$reg + $ireg << $scale]" %}
4716   interface(MEMORY_INTER) %{
4717     base($reg);
4718     index($ireg);
4719     scale($scale);
4720     disp(0x0);
4721   %}
4722 %}
4723 
4724 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4725 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4726   match(AddP (AddP reg (LShiftI ireg scale)) off);
4727 
4728   op_cost(10);
4729   format %{"[$reg + $off + $ireg << $scale]" %}
4730   interface(MEMORY_INTER) %{
4731     base($reg);
4732     index($ireg);
4733     scale($scale);
4734     disp($off);
4735   %}
4736 %}
4737 
4738 //----------Load Long Memory Operands------------------------------------------
4739 // The load-long idiom will use it's address expression again after loading
4740 // the first word of the long.  If the load-long destination overlaps with
4741 // registers used in the addressing expression, the 2nd half will be loaded
4742 // from a clobbered address.  Fix this by requiring that load-long use
4743 // address registers that do not overlap with the load-long target.
4744 
4745 // load-long support
4746 operand load_long_RegP() %{
4747   constraint(ALLOC_IN_RC(esi_reg));
4748   match(RegP);
4749   match(eSIRegP);
4750   op_cost(100);
4751   format %{  %}
4752   interface(REG_INTER);
4753 %}
4754 
4755 // Indirect Memory Operand Long
4756 operand load_long_indirect(load_long_RegP reg) %{
4757   constraint(ALLOC_IN_RC(esi_reg));
4758   match(reg);
4759 
4760   format %{ "[$reg]" %}
4761   interface(MEMORY_INTER) %{
4762     base($reg);
4763     index(0x4);
4764     scale(0x0);
4765     disp(0x0);
4766   %}
4767 %}
4768 
4769 // Indirect Memory Plus Long Offset Operand
4770 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4771   match(AddP reg off);
4772 
4773   format %{ "[$reg + $off]" %}
4774   interface(MEMORY_INTER) %{
4775     base($reg);
4776     index(0x4);
4777     scale(0x0);
4778     disp($off);
4779   %}
4780 %}
4781 
4782 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4783 
4784 
4785 //----------Special Memory Operands--------------------------------------------
4786 // Stack Slot Operand - This operand is used for loading and storing temporary
4787 //                      values on the stack where a match requires a value to
4788 //                      flow through memory.
4789 operand stackSlotP(sRegP reg) %{
4790   constraint(ALLOC_IN_RC(stack_slots));
4791   // No match rule because this operand is only generated in matching
4792   format %{ "[$reg]" %}
4793   interface(MEMORY_INTER) %{
4794     base(0x4);   // ESP
4795     index(0x4);  // No Index
4796     scale(0x0);  // No Scale
4797     disp($reg);  // Stack Offset
4798   %}
4799 %}
4800 
4801 operand stackSlotI(sRegI reg) %{
4802   constraint(ALLOC_IN_RC(stack_slots));
4803   // No match rule because this operand is only generated in matching
4804   format %{ "[$reg]" %}
4805   interface(MEMORY_INTER) %{
4806     base(0x4);   // ESP
4807     index(0x4);  // No Index
4808     scale(0x0);  // No Scale
4809     disp($reg);  // Stack Offset
4810   %}
4811 %}
4812 
4813 operand stackSlotF(sRegF reg) %{
4814   constraint(ALLOC_IN_RC(stack_slots));
4815   // No match rule because this operand is only generated in matching
4816   format %{ "[$reg]" %}
4817   interface(MEMORY_INTER) %{
4818     base(0x4);   // ESP
4819     index(0x4);  // No Index
4820     scale(0x0);  // No Scale
4821     disp($reg);  // Stack Offset
4822   %}
4823 %}
4824 
4825 operand stackSlotD(sRegD reg) %{
4826   constraint(ALLOC_IN_RC(stack_slots));
4827   // No match rule because this operand is only generated in matching
4828   format %{ "[$reg]" %}
4829   interface(MEMORY_INTER) %{
4830     base(0x4);   // ESP
4831     index(0x4);  // No Index
4832     scale(0x0);  // No Scale
4833     disp($reg);  // Stack Offset
4834   %}
4835 %}
4836 
4837 operand stackSlotL(sRegL reg) %{
4838   constraint(ALLOC_IN_RC(stack_slots));
4839   // No match rule because this operand is only generated in matching
4840   format %{ "[$reg]" %}
4841   interface(MEMORY_INTER) %{
4842     base(0x4);   // ESP
4843     index(0x4);  // No Index
4844     scale(0x0);  // No Scale
4845     disp($reg);  // Stack Offset
4846   %}
4847 %}
4848 
4849 //----------Memory Operands - Win95 Implicit Null Variants----------------
4850 // Indirect Memory Operand
4851 operand indirect_win95_safe(eRegP_no_EBP reg)
4852 %{
4853   constraint(ALLOC_IN_RC(int_reg));
4854   match(reg);
4855 
4856   op_cost(100);
4857   format %{ "[$reg]" %}
4858   interface(MEMORY_INTER) %{
4859     base($reg);
4860     index(0x4);
4861     scale(0x0);
4862     disp(0x0);
4863   %}
4864 %}
4865 
4866 // Indirect Memory Plus Short Offset Operand
4867 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4868 %{
4869   match(AddP reg off);
4870 
4871   op_cost(100);
4872   format %{ "[$reg + $off]" %}
4873   interface(MEMORY_INTER) %{
4874     base($reg);
4875     index(0x4);
4876     scale(0x0);
4877     disp($off);
4878   %}
4879 %}
4880 
4881 // Indirect Memory Plus Long Offset Operand
4882 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4883 %{
4884   match(AddP reg off);
4885 
4886   op_cost(100);
4887   format %{ "[$reg + $off]" %}
4888   interface(MEMORY_INTER) %{
4889     base($reg);
4890     index(0x4);
4891     scale(0x0);
4892     disp($off);
4893   %}
4894 %}
4895 
4896 // Indirect Memory Plus Index Register Plus Offset Operand
4897 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4898 %{
4899   match(AddP (AddP reg ireg) off);
4900 
4901   op_cost(100);
4902   format %{"[$reg + $off + $ireg]" %}
4903   interface(MEMORY_INTER) %{
4904     base($reg);
4905     index($ireg);
4906     scale(0x0);
4907     disp($off);
4908   %}
4909 %}
4910 
4911 // Indirect Memory Times Scale Plus Index Register
4912 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4913 %{
4914   match(AddP reg (LShiftI ireg scale));
4915 
4916   op_cost(100);
4917   format %{"[$reg + $ireg << $scale]" %}
4918   interface(MEMORY_INTER) %{
4919     base($reg);
4920     index($ireg);
4921     scale($scale);
4922     disp(0x0);
4923   %}
4924 %}
4925 
4926 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4927 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4928 %{
4929   match(AddP (AddP reg (LShiftI ireg scale)) off);
4930 
4931   op_cost(100);
4932   format %{"[$reg + $off + $ireg << $scale]" %}
4933   interface(MEMORY_INTER) %{
4934     base($reg);
4935     index($ireg);
4936     scale($scale);
4937     disp($off);
4938   %}
4939 %}
4940 
4941 //----------Conditional Branch Operands----------------------------------------
4942 // Comparison Op  - This is the operation of the comparison, and is limited to
4943 //                  the following set of codes:
4944 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4945 //
4946 // Other attributes of the comparison, such as unsignedness, are specified
4947 // by the comparison instruction that sets a condition code flags register.
4948 // That result is represented by a flags operand whose subtype is appropriate
4949 // to the unsignedness (etc.) of the comparison.
4950 //
4951 // Later, the instruction which matches both the Comparison Op (a Bool) and
4952 // the flags (produced by the Cmp) specifies the coding of the comparison op
4953 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4954 
4955 // Comparision Code
4956 operand cmpOp() %{
4957   match(Bool);
4958 
4959   format %{ "" %}
4960   interface(COND_INTER) %{
4961     equal(0x4, "e");
4962     not_equal(0x5, "ne");
4963     less(0xC, "l");
4964     greater_equal(0xD, "ge");
4965     less_equal(0xE, "le");
4966     greater(0xF, "g");
4967   %}
4968 %}
4969 
4970 // Comparison Code, unsigned compare.  Used by FP also, with
4971 // C2 (unordered) turned into GT or LT already.  The other bits
4972 // C0 and C3 are turned into Carry & Zero flags.
4973 operand cmpOpU() %{
4974   match(Bool);
4975 
4976   format %{ "" %}
4977   interface(COND_INTER) %{
4978     equal(0x4, "e");
4979     not_equal(0x5, "ne");
4980     less(0x2, "b");
4981     greater_equal(0x3, "nb");
4982     less_equal(0x6, "be");
4983     greater(0x7, "nbe");
4984   %}
4985 %}
4986 
4987 // Floating comparisons that don't require any fixup for the unordered case
4988 operand cmpOpUCF() %{
4989   match(Bool);
4990   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4991             n->as_Bool()->_test._test == BoolTest::ge ||
4992             n->as_Bool()->_test._test == BoolTest::le ||
4993             n->as_Bool()->_test._test == BoolTest::gt);
4994   format %{ "" %}
4995   interface(COND_INTER) %{
4996     equal(0x4, "e");
4997     not_equal(0x5, "ne");
4998     less(0x2, "b");
4999     greater_equal(0x3, "nb");
5000     less_equal(0x6, "be");
5001     greater(0x7, "nbe");
5002   %}
5003 %}
5004 
5005 
5006 // Floating comparisons that can be fixed up with extra conditional jumps
5007 operand cmpOpUCF2() %{
5008   match(Bool);
5009   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5010             n->as_Bool()->_test._test == BoolTest::eq);
5011   format %{ "" %}
5012   interface(COND_INTER) %{
5013     equal(0x4, "e");
5014     not_equal(0x5, "ne");
5015     less(0x2, "b");
5016     greater_equal(0x3, "nb");
5017     less_equal(0x6, "be");
5018     greater(0x7, "nbe");
5019   %}
5020 %}
5021 
5022 // Comparison Code for FP conditional move
5023 operand cmpOp_fcmov() %{
5024   match(Bool);
5025 
5026   format %{ "" %}
5027   interface(COND_INTER) %{
5028     equal        (0x0C8);
5029     not_equal    (0x1C8);
5030     less         (0x0C0);
5031     greater_equal(0x1C0);
5032     less_equal   (0x0D0);
5033     greater      (0x1D0);
5034   %}
5035 %}
5036 
5037 // Comparision Code used in long compares
5038 operand cmpOp_commute() %{
5039   match(Bool);
5040 
5041   format %{ "" %}
5042   interface(COND_INTER) %{
5043     equal(0x4, "e");
5044     not_equal(0x5, "ne");
5045     less(0xF, "g");
5046     greater_equal(0xE, "le");
5047     less_equal(0xD, "ge");
5048     greater(0xC, "l");
5049   %}
5050 %}
5051 
5052 //----------OPERAND CLASSES----------------------------------------------------
5053 // Operand Classes are groups of operands that are used as to simplify
5054 // instruction definitions by not requiring the AD writer to specify separate
5055 // instructions for every form of operand when the instruction accepts
5056 // multiple operand types with the same basic encoding and format.  The classic
5057 // case of this is memory operands.
5058 
5059 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5060                indIndex, indIndexScale, indIndexScaleOffset);
5061 
5062 // Long memory operations are encoded in 2 instructions and a +4 offset.
5063 // This means some kind of offset is always required and you cannot use
5064 // an oop as the offset (done when working on static globals).
5065 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5066                     indIndex, indIndexScale, indIndexScaleOffset);
5067 
5068 
5069 //----------PIPELINE-----------------------------------------------------------
5070 // Rules which define the behavior of the target architectures pipeline.
5071 pipeline %{
5072 
5073 //----------ATTRIBUTES---------------------------------------------------------
5074 attributes %{
5075   variable_size_instructions;        // Fixed size instructions
5076   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5077   instruction_unit_size = 1;         // An instruction is 1 bytes long
5078   instruction_fetch_unit_size = 16;  // The processor fetches one line
5079   instruction_fetch_units = 1;       // of 16 bytes
5080 
5081   // List of nop instructions
5082   nops( MachNop );
5083 %}
5084 
5085 //----------RESOURCES----------------------------------------------------------
5086 // Resources are the functional units available to the machine
5087 
5088 // Generic P2/P3 pipeline
5089 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5090 // 3 instructions decoded per cycle.
5091 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5092 // 2 ALU op, only ALU0 handles mul/div instructions.
5093 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5094            MS0, MS1, MEM = MS0 | MS1,
5095            BR, FPU,
5096            ALU0, ALU1, ALU = ALU0 | ALU1 );
5097 
5098 //----------PIPELINE DESCRIPTION-----------------------------------------------
5099 // Pipeline Description specifies the stages in the machine's pipeline
5100 
5101 // Generic P2/P3 pipeline
5102 pipe_desc(S0, S1, S2, S3, S4, S5);
5103 
5104 //----------PIPELINE CLASSES---------------------------------------------------
5105 // Pipeline Classes describe the stages in which input and output are
5106 // referenced by the hardware pipeline.
5107 
5108 // Naming convention: ialu or fpu
5109 // Then: _reg
5110 // Then: _reg if there is a 2nd register
5111 // Then: _long if it's a pair of instructions implementing a long
5112 // Then: _fat if it requires the big decoder
5113 //   Or: _mem if it requires the big decoder and a memory unit.
5114 
5115 // Integer ALU reg operation
5116 pipe_class ialu_reg(rRegI dst) %{
5117     single_instruction;
5118     dst    : S4(write);
5119     dst    : S3(read);
5120     DECODE : S0;        // any decoder
5121     ALU    : S3;        // any alu
5122 %}
5123 
5124 // Long ALU reg operation
5125 pipe_class ialu_reg_long(eRegL dst) %{
5126     instruction_count(2);
5127     dst    : S4(write);
5128     dst    : S3(read);
5129     DECODE : S0(2);     // any 2 decoders
5130     ALU    : S3(2);     // both alus
5131 %}
5132 
5133 // Integer ALU reg operation using big decoder
5134 pipe_class ialu_reg_fat(rRegI dst) %{
5135     single_instruction;
5136     dst    : S4(write);
5137     dst    : S3(read);
5138     D0     : S0;        // big decoder only
5139     ALU    : S3;        // any alu
5140 %}
5141 
5142 // Long ALU reg operation using big decoder
5143 pipe_class ialu_reg_long_fat(eRegL dst) %{
5144     instruction_count(2);
5145     dst    : S4(write);
5146     dst    : S3(read);
5147     D0     : S0(2);     // big decoder only; twice
5148     ALU    : S3(2);     // any 2 alus
5149 %}
5150 
5151 // Integer ALU reg-reg operation
5152 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
5153     single_instruction;
5154     dst    : S4(write);
5155     src    : S3(read);
5156     DECODE : S0;        // any decoder
5157     ALU    : S3;        // any alu
5158 %}
5159 
5160 // Long ALU reg-reg operation
5161 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5162     instruction_count(2);
5163     dst    : S4(write);
5164     src    : S3(read);
5165     DECODE : S0(2);     // any 2 decoders
5166     ALU    : S3(2);     // both alus
5167 %}
5168 
5169 // Integer ALU reg-reg operation
5170 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
5171     single_instruction;
5172     dst    : S4(write);
5173     src    : S3(read);
5174     D0     : S0;        // big decoder only
5175     ALU    : S3;        // any alu
5176 %}
5177 
5178 // Long ALU reg-reg operation
5179 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5180     instruction_count(2);
5181     dst    : S4(write);
5182     src    : S3(read);
5183     D0     : S0(2);     // big decoder only; twice
5184     ALU    : S3(2);     // both alus
5185 %}
5186 
5187 // Integer ALU reg-mem operation
5188 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
5189     single_instruction;
5190     dst    : S5(write);
5191     mem    : S3(read);
5192     D0     : S0;        // big decoder only
5193     ALU    : S4;        // any alu
5194     MEM    : S3;        // any mem
5195 %}
5196 
5197 // Long ALU reg-mem operation
5198 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5199     instruction_count(2);
5200     dst    : S5(write);
5201     mem    : S3(read);
5202     D0     : S0(2);     // big decoder only; twice
5203     ALU    : S4(2);     // any 2 alus
5204     MEM    : S3(2);     // both mems
5205 %}
5206 
5207 // Integer mem operation (prefetch)
5208 pipe_class ialu_mem(memory mem)
5209 %{
5210     single_instruction;
5211     mem    : S3(read);
5212     D0     : S0;        // big decoder only
5213     MEM    : S3;        // any mem
5214 %}
5215 
5216 // Integer Store to Memory
5217 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
5218     single_instruction;
5219     mem    : S3(read);
5220     src    : S5(read);
5221     D0     : S0;        // big decoder only
5222     ALU    : S4;        // any alu
5223     MEM    : S3;
5224 %}
5225 
5226 // Long Store to Memory
5227 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5228     instruction_count(2);
5229     mem    : S3(read);
5230     src    : S5(read);
5231     D0     : S0(2);     // big decoder only; twice
5232     ALU    : S4(2);     // any 2 alus
5233     MEM    : S3(2);     // Both mems
5234 %}
5235 
5236 // Integer Store to Memory
5237 pipe_class ialu_mem_imm(memory mem) %{
5238     single_instruction;
5239     mem    : S3(read);
5240     D0     : S0;        // big decoder only
5241     ALU    : S4;        // any alu
5242     MEM    : S3;
5243 %}
5244 
5245 // Integer ALU0 reg-reg operation
5246 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
5247     single_instruction;
5248     dst    : S4(write);
5249     src    : S3(read);
5250     D0     : S0;        // Big decoder only
5251     ALU0   : S3;        // only alu0
5252 %}
5253 
5254 // Integer ALU0 reg-mem operation
5255 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
5256     single_instruction;
5257     dst    : S5(write);
5258     mem    : S3(read);
5259     D0     : S0;        // big decoder only
5260     ALU0   : S4;        // ALU0 only
5261     MEM    : S3;        // any mem
5262 %}
5263 
5264 // Integer ALU reg-reg operation
5265 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
5266     single_instruction;
5267     cr     : S4(write);
5268     src1   : S3(read);
5269     src2   : S3(read);
5270     DECODE : S0;        // any decoder
5271     ALU    : S3;        // any alu
5272 %}
5273 
5274 // Integer ALU reg-imm operation
5275 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
5276     single_instruction;
5277     cr     : S4(write);
5278     src1   : S3(read);
5279     DECODE : S0;        // any decoder
5280     ALU    : S3;        // any alu
5281 %}
5282 
5283 // Integer ALU reg-mem operation
5284 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
5285     single_instruction;
5286     cr     : S4(write);
5287     src1   : S3(read);
5288     src2   : S3(read);
5289     D0     : S0;        // big decoder only
5290     ALU    : S4;        // any alu
5291     MEM    : S3;
5292 %}
5293 
5294 // Conditional move reg-reg
5295 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
5296     instruction_count(4);
5297     y      : S4(read);
5298     q      : S3(read);
5299     p      : S3(read);
5300     DECODE : S0(4);     // any decoder
5301 %}
5302 
5303 // Conditional move reg-reg
5304 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
5305     single_instruction;
5306     dst    : S4(write);
5307     src    : S3(read);
5308     cr     : S3(read);
5309     DECODE : S0;        // any decoder
5310 %}
5311 
5312 // Conditional move reg-mem
5313 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
5314     single_instruction;
5315     dst    : S4(write);
5316     src    : S3(read);
5317     cr     : S3(read);
5318     DECODE : S0;        // any decoder
5319     MEM    : S3;
5320 %}
5321 
5322 // Conditional move reg-reg long
5323 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5324     single_instruction;
5325     dst    : S4(write);
5326     src    : S3(read);
5327     cr     : S3(read);
5328     DECODE : S0(2);     // any 2 decoders
5329 %}
5330 
5331 // Conditional move double reg-reg
5332 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
5333     single_instruction;
5334     dst    : S4(write);
5335     src    : S3(read);
5336     cr     : S3(read);
5337     DECODE : S0;        // any decoder
5338 %}
5339 
5340 // Float reg-reg operation
5341 pipe_class fpu_reg(regDPR dst) %{
5342     instruction_count(2);
5343     dst    : S3(read);
5344     DECODE : S0(2);     // any 2 decoders
5345     FPU    : S3;
5346 %}
5347 
5348 // Float reg-reg operation
5349 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
5350     instruction_count(2);
5351     dst    : S4(write);
5352     src    : S3(read);
5353     DECODE : S0(2);     // any 2 decoders
5354     FPU    : S3;
5355 %}
5356 
5357 // Float reg-reg operation
5358 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
5359     instruction_count(3);
5360     dst    : S4(write);
5361     src1   : S3(read);
5362     src2   : S3(read);
5363     DECODE : S0(3);     // any 3 decoders
5364     FPU    : S3(2);
5365 %}
5366 
5367 // Float reg-reg operation
5368 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
5369     instruction_count(4);
5370     dst    : S4(write);
5371     src1   : S3(read);
5372     src2   : S3(read);
5373     src3   : S3(read);
5374     DECODE : S0(4);     // any 3 decoders
5375     FPU    : S3(2);
5376 %}
5377 
5378 // Float reg-reg operation
5379 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
5380     instruction_count(4);
5381     dst    : S4(write);
5382     src1   : S3(read);
5383     src2   : S3(read);
5384     src3   : S3(read);
5385     DECODE : S1(3);     // any 3 decoders
5386     D0     : S0;        // Big decoder only
5387     FPU    : S3(2);
5388     MEM    : S3;
5389 %}
5390 
5391 // Float reg-mem operation
5392 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
5393     instruction_count(2);
5394     dst    : S5(write);
5395     mem    : S3(read);
5396     D0     : S0;        // big decoder only
5397     DECODE : S1;        // any decoder for FPU POP
5398     FPU    : S4;
5399     MEM    : S3;        // any mem
5400 %}
5401 
5402 // Float reg-mem operation
5403 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
5404     instruction_count(3);
5405     dst    : S5(write);
5406     src1   : S3(read);
5407     mem    : S3(read);
5408     D0     : S0;        // big decoder only
5409     DECODE : S1(2);     // any decoder for FPU POP
5410     FPU    : S4;
5411     MEM    : S3;        // any mem
5412 %}
5413 
5414 // Float mem-reg operation
5415 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
5416     instruction_count(2);
5417     src    : S5(read);
5418     mem    : S3(read);
5419     DECODE : S0;        // any decoder for FPU PUSH
5420     D0     : S1;        // big decoder only
5421     FPU    : S4;
5422     MEM    : S3;        // any mem
5423 %}
5424 
5425 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
5426     instruction_count(3);
5427     src1   : S3(read);
5428     src2   : S3(read);
5429     mem    : S3(read);
5430     DECODE : S0(2);     // any decoder for FPU PUSH
5431     D0     : S1;        // big decoder only
5432     FPU    : S4;
5433     MEM    : S3;        // any mem
5434 %}
5435 
5436 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
5437     instruction_count(3);
5438     src1   : S3(read);
5439     src2   : S3(read);
5440     mem    : S4(read);
5441     DECODE : S0;        // any decoder for FPU PUSH
5442     D0     : S0(2);     // big decoder only
5443     FPU    : S4;
5444     MEM    : S3(2);     // any mem
5445 %}
5446 
5447 pipe_class fpu_mem_mem(memory dst, memory src1) %{
5448     instruction_count(2);
5449     src1   : S3(read);
5450     dst    : S4(read);
5451     D0     : S0(2);     // big decoder only
5452     MEM    : S3(2);     // any mem
5453 %}
5454 
5455 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
5456     instruction_count(3);
5457     src1   : S3(read);
5458     src2   : S3(read);
5459     dst    : S4(read);
5460     D0     : S0(3);     // big decoder only
5461     FPU    : S4;
5462     MEM    : S3(3);     // any mem
5463 %}
5464 
5465 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
5466     instruction_count(3);
5467     src1   : S4(read);
5468     mem    : S4(read);
5469     DECODE : S0;        // any decoder for FPU PUSH
5470     D0     : S0(2);     // big decoder only
5471     FPU    : S4;
5472     MEM    : S3(2);     // any mem
5473 %}
5474 
5475 // Float load constant
5476 pipe_class fpu_reg_con(regDPR dst) %{
5477     instruction_count(2);
5478     dst    : S5(write);
5479     D0     : S0;        // big decoder only for the load
5480     DECODE : S1;        // any decoder for FPU POP
5481     FPU    : S4;
5482     MEM    : S3;        // any mem
5483 %}
5484 
5485 // Float load constant
5486 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
5487     instruction_count(3);
5488     dst    : S5(write);
5489     src    : S3(read);
5490     D0     : S0;        // big decoder only for the load
5491     DECODE : S1(2);     // any decoder for FPU POP
5492     FPU    : S4;
5493     MEM    : S3;        // any mem
5494 %}
5495 
5496 // UnConditional branch
5497 pipe_class pipe_jmp( label labl ) %{
5498     single_instruction;
5499     BR   : S3;
5500 %}
5501 
5502 // Conditional branch
5503 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
5504     single_instruction;
5505     cr    : S1(read);
5506     BR    : S3;
5507 %}
5508 
5509 // Allocation idiom
5510 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
5511     instruction_count(1); force_serialization;
5512     fixed_latency(6);
5513     heap_ptr : S3(read);
5514     DECODE   : S0(3);
5515     D0       : S2;
5516     MEM      : S3;
5517     ALU      : S3(2);
5518     dst      : S5(write);
5519     BR       : S5;
5520 %}
5521 
5522 // Generic big/slow expanded idiom
5523 pipe_class pipe_slow(  ) %{
5524     instruction_count(10); multiple_bundles; force_serialization;
5525     fixed_latency(100);
5526     D0  : S0(2);
5527     MEM : S3(2);
5528 %}
5529 
5530 // The real do-nothing guy
5531 pipe_class empty( ) %{
5532     instruction_count(0);
5533 %}
5534 
5535 // Define the class for the Nop node
5536 define %{
5537    MachNop = empty;
5538 %}
5539 
5540 %}
5541 
5542 //----------INSTRUCTIONS-------------------------------------------------------
5543 //
5544 // match      -- States which machine-independent subtree may be replaced
5545 //               by this instruction.
5546 // ins_cost   -- The estimated cost of this instruction is used by instruction
5547 //               selection to identify a minimum cost tree of machine
5548 //               instructions that matches a tree of machine-independent
5549 //               instructions.
5550 // format     -- A string providing the disassembly for this instruction.
5551 //               The value of an instruction's operand may be inserted
5552 //               by referring to it with a '$' prefix.
5553 // opcode     -- Three instruction opcodes may be provided.  These are referred
5554 //               to within an encode class as $primary, $secondary, and $tertiary
5555 //               respectively.  The primary opcode is commonly used to
5556 //               indicate the type of machine instruction, while secondary
5557 //               and tertiary are often used for prefix options or addressing
5558 //               modes.
5559 // ins_encode -- A list of encode classes with parameters. The encode class
5560 //               name must have been defined in an 'enc_class' specification
5561 //               in the encode section of the architecture description.
5562 
5563 //----------BSWAP-Instruction--------------------------------------------------
5564 instruct bytes_reverse_int(rRegI dst) %{
5565   match(Set dst (ReverseBytesI dst));
5566 
5567   format %{ "BSWAP  $dst" %}
5568   opcode(0x0F, 0xC8);
5569   ins_encode( OpcP, OpcSReg(dst) );
5570   ins_pipe( ialu_reg );
5571 %}
5572 
5573 instruct bytes_reverse_long(eRegL dst) %{
5574   match(Set dst (ReverseBytesL dst));
5575 
5576   format %{ "BSWAP  $dst.lo\n\t"
5577             "BSWAP  $dst.hi\n\t"
5578             "XCHG   $dst.lo $dst.hi" %}
5579 
5580   ins_cost(125);
5581   ins_encode( bswap_long_bytes(dst) );
5582   ins_pipe( ialu_reg_reg);
5583 %}
5584 
5585 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
5586   match(Set dst (ReverseBytesUS dst));
5587   effect(KILL cr);
5588 
5589   format %{ "BSWAP  $dst\n\t" 
5590             "SHR    $dst,16\n\t" %}
5591   ins_encode %{
5592     __ bswapl($dst$$Register);
5593     __ shrl($dst$$Register, 16); 
5594   %}
5595   ins_pipe( ialu_reg );
5596 %}
5597 
5598 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5599   match(Set dst (ReverseBytesS dst));
5600   effect(KILL cr);
5601 
5602   format %{ "BSWAP  $dst\n\t" 
5603             "SAR    $dst,16\n\t" %}
5604   ins_encode %{
5605     __ bswapl($dst$$Register);
5606     __ sarl($dst$$Register, 16); 
5607   %}
5608   ins_pipe( ialu_reg );
5609 %}
5610 
5611 
5612 //---------- Zeros Count Instructions ------------------------------------------
5613 
5614 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5615   predicate(UseCountLeadingZerosInstruction);
5616   match(Set dst (CountLeadingZerosI src));
5617   effect(KILL cr);
5618 
5619   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5620   ins_encode %{
5621     __ lzcntl($dst$$Register, $src$$Register);
5622   %}
5623   ins_pipe(ialu_reg);
5624 %}
5625 
5626 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5627   predicate(!UseCountLeadingZerosInstruction);
5628   match(Set dst (CountLeadingZerosI src));
5629   effect(KILL cr);
5630 
5631   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5632             "JNZ    skip\n\t"
5633             "MOV    $dst, -1\n"
5634       "skip:\n\t"
5635             "NEG    $dst\n\t"
5636             "ADD    $dst, 31" %}
5637   ins_encode %{
5638     Register Rdst = $dst$$Register;
5639     Register Rsrc = $src$$Register;
5640     Label skip;
5641     __ bsrl(Rdst, Rsrc);
5642     __ jccb(Assembler::notZero, skip);
5643     __ movl(Rdst, -1);
5644     __ bind(skip);
5645     __ negl(Rdst);
5646     __ addl(Rdst, BitsPerInt - 1);
5647   %}
5648   ins_pipe(ialu_reg);
5649 %}
5650 
5651 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5652   predicate(UseCountLeadingZerosInstruction);
5653   match(Set dst (CountLeadingZerosL src));
5654   effect(TEMP dst, KILL cr);
5655 
5656   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5657             "JNC    done\n\t"
5658             "LZCNT  $dst, $src.lo\n\t"
5659             "ADD    $dst, 32\n"
5660       "done:" %}
5661   ins_encode %{
5662     Register Rdst = $dst$$Register;
5663     Register Rsrc = $src$$Register;
5664     Label done;
5665     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5666     __ jccb(Assembler::carryClear, done);
5667     __ lzcntl(Rdst, Rsrc);
5668     __ addl(Rdst, BitsPerInt);
5669     __ bind(done);
5670   %}
5671   ins_pipe(ialu_reg);
5672 %}
5673 
5674 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5675   predicate(!UseCountLeadingZerosInstruction);
5676   match(Set dst (CountLeadingZerosL src));
5677   effect(TEMP dst, KILL cr);
5678 
5679   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5680             "JZ     msw_is_zero\n\t"
5681             "ADD    $dst, 32\n\t"
5682             "JMP    not_zero\n"
5683       "msw_is_zero:\n\t"
5684             "BSR    $dst, $src.lo\n\t"
5685             "JNZ    not_zero\n\t"
5686             "MOV    $dst, -1\n"
5687       "not_zero:\n\t"
5688             "NEG    $dst\n\t"
5689             "ADD    $dst, 63\n" %}
5690  ins_encode %{
5691     Register Rdst = $dst$$Register;
5692     Register Rsrc = $src$$Register;
5693     Label msw_is_zero;
5694     Label not_zero;
5695     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5696     __ jccb(Assembler::zero, msw_is_zero);
5697     __ addl(Rdst, BitsPerInt);
5698     __ jmpb(not_zero);
5699     __ bind(msw_is_zero);
5700     __ bsrl(Rdst, Rsrc);
5701     __ jccb(Assembler::notZero, not_zero);
5702     __ movl(Rdst, -1);
5703     __ bind(not_zero);
5704     __ negl(Rdst);
5705     __ addl(Rdst, BitsPerLong - 1);
5706   %}
5707   ins_pipe(ialu_reg);
5708 %}
5709 
5710 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5711   match(Set dst (CountTrailingZerosI src));
5712   effect(KILL cr);
5713 
5714   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5715             "JNZ    done\n\t"
5716             "MOV    $dst, 32\n"
5717       "done:" %}
5718   ins_encode %{
5719     Register Rdst = $dst$$Register;
5720     Label done;
5721     __ bsfl(Rdst, $src$$Register);
5722     __ jccb(Assembler::notZero, done);
5723     __ movl(Rdst, BitsPerInt);
5724     __ bind(done);
5725   %}
5726   ins_pipe(ialu_reg);
5727 %}
5728 
5729 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5730   match(Set dst (CountTrailingZerosL src));
5731   effect(TEMP dst, KILL cr);
5732 
5733   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5734             "JNZ    done\n\t"
5735             "BSF    $dst, $src.hi\n\t"
5736             "JNZ    msw_not_zero\n\t"
5737             "MOV    $dst, 32\n"
5738       "msw_not_zero:\n\t"
5739             "ADD    $dst, 32\n"
5740       "done:" %}
5741   ins_encode %{
5742     Register Rdst = $dst$$Register;
5743     Register Rsrc = $src$$Register;
5744     Label msw_not_zero;
5745     Label done;
5746     __ bsfl(Rdst, Rsrc);
5747     __ jccb(Assembler::notZero, done);
5748     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5749     __ jccb(Assembler::notZero, msw_not_zero);
5750     __ movl(Rdst, BitsPerInt);
5751     __ bind(msw_not_zero);
5752     __ addl(Rdst, BitsPerInt);
5753     __ bind(done);
5754   %}
5755   ins_pipe(ialu_reg);
5756 %}
5757 
5758 
5759 //---------- Population Count Instructions -------------------------------------
5760 
5761 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5762   predicate(UsePopCountInstruction);
5763   match(Set dst (PopCountI src));
5764   effect(KILL cr);
5765 
5766   format %{ "POPCNT $dst, $src" %}
5767   ins_encode %{
5768     __ popcntl($dst$$Register, $src$$Register);
5769   %}
5770   ins_pipe(ialu_reg);
5771 %}
5772 
5773 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5774   predicate(UsePopCountInstruction);
5775   match(Set dst (PopCountI (LoadI mem)));
5776   effect(KILL cr);
5777 
5778   format %{ "POPCNT $dst, $mem" %}
5779   ins_encode %{
5780     __ popcntl($dst$$Register, $mem$$Address);
5781   %}
5782   ins_pipe(ialu_reg);
5783 %}
5784 
5785 // Note: Long.bitCount(long) returns an int.
5786 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5787   predicate(UsePopCountInstruction);
5788   match(Set dst (PopCountL src));
5789   effect(KILL cr, TEMP tmp, TEMP dst);
5790 
5791   format %{ "POPCNT $dst, $src.lo\n\t"
5792             "POPCNT $tmp, $src.hi\n\t"
5793             "ADD    $dst, $tmp" %}
5794   ins_encode %{
5795     __ popcntl($dst$$Register, $src$$Register);
5796     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5797     __ addl($dst$$Register, $tmp$$Register);
5798   %}
5799   ins_pipe(ialu_reg);
5800 %}
5801 
5802 // Note: Long.bitCount(long) returns an int.
5803 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5804   predicate(UsePopCountInstruction);
5805   match(Set dst (PopCountL (LoadL mem)));
5806   effect(KILL cr, TEMP tmp, TEMP dst);
5807 
5808   format %{ "POPCNT $dst, $mem\n\t"
5809             "POPCNT $tmp, $mem+4\n\t"
5810             "ADD    $dst, $tmp" %}
5811   ins_encode %{
5812     //__ popcntl($dst$$Register, $mem$$Address$$first);
5813     //__ popcntl($tmp$$Register, $mem$$Address$$second);
5814     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
5815     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
5816     __ addl($dst$$Register, $tmp$$Register);
5817   %}
5818   ins_pipe(ialu_reg);
5819 %}
5820 
5821 
5822 //----------Load/Store/Move Instructions---------------------------------------
5823 //----------Load Instructions--------------------------------------------------
5824 // Load Byte (8bit signed)
5825 instruct loadB(xRegI dst, memory mem) %{
5826   match(Set dst (LoadB mem));
5827 
5828   ins_cost(125);
5829   format %{ "MOVSX8 $dst,$mem\t# byte" %}
5830 
5831   ins_encode %{
5832     __ movsbl($dst$$Register, $mem$$Address);
5833   %}
5834 
5835   ins_pipe(ialu_reg_mem);
5836 %}
5837 
5838 // Load Byte (8bit signed) into Long Register
5839 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5840   match(Set dst (ConvI2L (LoadB mem)));
5841   effect(KILL cr);
5842 
5843   ins_cost(375);
5844   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5845             "MOV    $dst.hi,$dst.lo\n\t"
5846             "SAR    $dst.hi,7" %}
5847 
5848   ins_encode %{
5849     __ movsbl($dst$$Register, $mem$$Address);
5850     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5851     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5852   %}
5853 
5854   ins_pipe(ialu_reg_mem);
5855 %}
5856 
5857 // Load Unsigned Byte (8bit UNsigned)
5858 instruct loadUB(xRegI dst, memory mem) %{
5859   match(Set dst (LoadUB mem));
5860 
5861   ins_cost(125);
5862   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5863 
5864   ins_encode %{
5865     __ movzbl($dst$$Register, $mem$$Address);
5866   %}
5867 
5868   ins_pipe(ialu_reg_mem);
5869 %}
5870 
5871 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5872 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5873   match(Set dst (ConvI2L (LoadUB mem)));
5874   effect(KILL cr);
5875 
5876   ins_cost(250);
5877   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5878             "XOR    $dst.hi,$dst.hi" %}
5879 
5880   ins_encode %{
5881     Register Rdst = $dst$$Register;
5882     __ movzbl(Rdst, $mem$$Address);
5883     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5884   %}
5885 
5886   ins_pipe(ialu_reg_mem);
5887 %}
5888 
5889 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5890 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5891   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5892   effect(KILL cr);
5893 
5894   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5895             "XOR    $dst.hi,$dst.hi\n\t"
5896             "AND    $dst.lo,$mask" %}
5897   ins_encode %{
5898     Register Rdst = $dst$$Register;
5899     __ movzbl(Rdst, $mem$$Address);
5900     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5901     __ andl(Rdst, $mask$$constant);
5902   %}
5903   ins_pipe(ialu_reg_mem);
5904 %}
5905 
5906 // Load Short (16bit signed)
5907 instruct loadS(rRegI dst, memory mem) %{
5908   match(Set dst (LoadS mem));
5909 
5910   ins_cost(125);
5911   format %{ "MOVSX  $dst,$mem\t# short" %}
5912 
5913   ins_encode %{
5914     __ movswl($dst$$Register, $mem$$Address);
5915   %}
5916 
5917   ins_pipe(ialu_reg_mem);
5918 %}
5919 
5920 // Load Short (16 bit signed) to Byte (8 bit signed)
5921 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5922   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5923 
5924   ins_cost(125);
5925   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5926   ins_encode %{
5927     __ movsbl($dst$$Register, $mem$$Address);
5928   %}
5929   ins_pipe(ialu_reg_mem);
5930 %}
5931 
5932 // Load Short (16bit signed) into Long Register
5933 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5934   match(Set dst (ConvI2L (LoadS mem)));
5935   effect(KILL cr);
5936 
5937   ins_cost(375);
5938   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5939             "MOV    $dst.hi,$dst.lo\n\t"
5940             "SAR    $dst.hi,15" %}
5941 
5942   ins_encode %{
5943     __ movswl($dst$$Register, $mem$$Address);
5944     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5945     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5946   %}
5947 
5948   ins_pipe(ialu_reg_mem);
5949 %}
5950 
5951 // Load Unsigned Short/Char (16bit unsigned)
5952 instruct loadUS(rRegI dst, memory mem) %{
5953   match(Set dst (LoadUS mem));
5954 
5955   ins_cost(125);
5956   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5957 
5958   ins_encode %{
5959     __ movzwl($dst$$Register, $mem$$Address);
5960   %}
5961 
5962   ins_pipe(ialu_reg_mem);
5963 %}
5964 
5965 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5966 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5967   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5968 
5969   ins_cost(125);
5970   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
5971   ins_encode %{
5972     __ movsbl($dst$$Register, $mem$$Address);
5973   %}
5974   ins_pipe(ialu_reg_mem);
5975 %}
5976 
5977 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5978 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5979   match(Set dst (ConvI2L (LoadUS mem)));
5980   effect(KILL cr);
5981 
5982   ins_cost(250);
5983   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
5984             "XOR    $dst.hi,$dst.hi" %}
5985 
5986   ins_encode %{
5987     __ movzwl($dst$$Register, $mem$$Address);
5988     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5989   %}
5990 
5991   ins_pipe(ialu_reg_mem);
5992 %}
5993 
5994 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5995 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5996   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5997   effect(KILL cr);
5998 
5999   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6000             "XOR    $dst.hi,$dst.hi" %}
6001   ins_encode %{
6002     Register Rdst = $dst$$Register;
6003     __ movzbl(Rdst, $mem$$Address);
6004     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6005   %}
6006   ins_pipe(ialu_reg_mem);
6007 %}
6008 
6009 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6010 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6011   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6012   effect(KILL cr);
6013 
6014   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6015             "XOR    $dst.hi,$dst.hi\n\t"
6016             "AND    $dst.lo,$mask" %}
6017   ins_encode %{
6018     Register Rdst = $dst$$Register;
6019     __ movzwl(Rdst, $mem$$Address);
6020     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6021     __ andl(Rdst, $mask$$constant);
6022   %}
6023   ins_pipe(ialu_reg_mem);
6024 %}
6025 
6026 // Load Integer
6027 instruct loadI(rRegI dst, memory mem) %{
6028   match(Set dst (LoadI mem));
6029 
6030   ins_cost(125);
6031   format %{ "MOV    $dst,$mem\t# int" %}
6032 
6033   ins_encode %{
6034     __ movl($dst$$Register, $mem$$Address);
6035   %}
6036 
6037   ins_pipe(ialu_reg_mem);
6038 %}
6039 
6040 // Load Integer (32 bit signed) to Byte (8 bit signed)
6041 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
6042   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6043 
6044   ins_cost(125);
6045   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6046   ins_encode %{
6047     __ movsbl($dst$$Register, $mem$$Address);
6048   %}
6049   ins_pipe(ialu_reg_mem);
6050 %}
6051 
6052 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6053 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
6054   match(Set dst (AndI (LoadI mem) mask));
6055 
6056   ins_cost(125);
6057   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6058   ins_encode %{
6059     __ movzbl($dst$$Register, $mem$$Address);
6060   %}
6061   ins_pipe(ialu_reg_mem);
6062 %}
6063 
6064 // Load Integer (32 bit signed) to Short (16 bit signed)
6065 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
6066   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6067 
6068   ins_cost(125);
6069   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6070   ins_encode %{
6071     __ movswl($dst$$Register, $mem$$Address);
6072   %}
6073   ins_pipe(ialu_reg_mem);
6074 %}
6075 
6076 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6077 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
6078   match(Set dst (AndI (LoadI mem) mask));
6079 
6080   ins_cost(125);
6081   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6082   ins_encode %{
6083     __ movzwl($dst$$Register, $mem$$Address);
6084   %}
6085   ins_pipe(ialu_reg_mem);
6086 %}
6087 
6088 // Load Integer into Long Register
6089 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6090   match(Set dst (ConvI2L (LoadI mem)));
6091   effect(KILL cr);
6092 
6093   ins_cost(375);
6094   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6095             "MOV    $dst.hi,$dst.lo\n\t"
6096             "SAR    $dst.hi,31" %}
6097 
6098   ins_encode %{
6099     __ movl($dst$$Register, $mem$$Address);
6100     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6101     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6102   %}
6103 
6104   ins_pipe(ialu_reg_mem);
6105 %}
6106 
6107 // Load Integer with mask 0xFF into Long Register
6108 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6109   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6110   effect(KILL cr);
6111 
6112   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6113             "XOR    $dst.hi,$dst.hi" %}
6114   ins_encode %{
6115     Register Rdst = $dst$$Register;
6116     __ movzbl(Rdst, $mem$$Address);
6117     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6118   %}
6119   ins_pipe(ialu_reg_mem);
6120 %}
6121 
6122 // Load Integer with mask 0xFFFF into Long Register
6123 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6124   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6125   effect(KILL cr);
6126 
6127   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6128             "XOR    $dst.hi,$dst.hi" %}
6129   ins_encode %{
6130     Register Rdst = $dst$$Register;
6131     __ movzwl(Rdst, $mem$$Address);
6132     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6133   %}
6134   ins_pipe(ialu_reg_mem);
6135 %}
6136 
6137 // Load Integer with 32-bit mask into Long Register
6138 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6139   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6140   effect(KILL cr);
6141 
6142   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6143             "XOR    $dst.hi,$dst.hi\n\t"
6144             "AND    $dst.lo,$mask" %}
6145   ins_encode %{
6146     Register Rdst = $dst$$Register;
6147     __ movl(Rdst, $mem$$Address);
6148     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6149     __ andl(Rdst, $mask$$constant);
6150   %}
6151   ins_pipe(ialu_reg_mem);
6152 %}
6153 
6154 // Load Unsigned Integer into Long Register
6155 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6156   match(Set dst (LoadUI2L mem));
6157   effect(KILL cr);
6158 
6159   ins_cost(250);
6160   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6161             "XOR    $dst.hi,$dst.hi" %}
6162 
6163   ins_encode %{
6164     __ movl($dst$$Register, $mem$$Address);
6165     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6166   %}
6167 
6168   ins_pipe(ialu_reg_mem);
6169 %}
6170 
6171 // Load Long.  Cannot clobber address while loading, so restrict address
6172 // register to ESI
6173 instruct loadL(eRegL dst, load_long_memory mem) %{
6174   predicate(!((LoadLNode*)n)->require_atomic_access());
6175   match(Set dst (LoadL mem));
6176 
6177   ins_cost(250);
6178   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6179             "MOV    $dst.hi,$mem+4" %}
6180 
6181   ins_encode %{
6182     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
6183     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
6184     __ movl($dst$$Register, Amemlo);
6185     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6186   %}
6187 
6188   ins_pipe(ialu_reg_long_mem);
6189 %}
6190 
6191 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6192 // then store it down to the stack and reload on the int
6193 // side.
6194 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6195   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6196   match(Set dst (LoadL mem));
6197 
6198   ins_cost(200);
6199   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6200             "FISTp  $dst" %}
6201   ins_encode(enc_loadL_volatile(mem,dst));
6202   ins_pipe( fpu_reg_mem );
6203 %}
6204 
6205 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
6206   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6207   match(Set dst (LoadL mem));
6208   effect(TEMP tmp);
6209   ins_cost(180);
6210   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6211             "MOVSD  $dst,$tmp" %}
6212   ins_encode %{
6213     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6214     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
6215   %}
6216   ins_pipe( pipe_slow );
6217 %}
6218 
6219 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
6220   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6221   match(Set dst (LoadL mem));
6222   effect(TEMP tmp);
6223   ins_cost(160);
6224   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6225             "MOVD   $dst.lo,$tmp\n\t"
6226             "PSRLQ  $tmp,32\n\t"
6227             "MOVD   $dst.hi,$tmp" %}
6228   ins_encode %{
6229     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6230     __ movdl($dst$$Register, $tmp$$XMMRegister);
6231     __ psrlq($tmp$$XMMRegister, 32);
6232     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
6233   %}
6234   ins_pipe( pipe_slow );
6235 %}
6236 
6237 // Load Range
6238 instruct loadRange(rRegI dst, memory mem) %{
6239   match(Set dst (LoadRange mem));
6240 
6241   ins_cost(125);
6242   format %{ "MOV    $dst,$mem" %}
6243   opcode(0x8B);
6244   ins_encode( OpcP, RegMem(dst,mem));
6245   ins_pipe( ialu_reg_mem );
6246 %}
6247 
6248 
6249 // Load Pointer
6250 instruct loadP(eRegP dst, memory mem) %{
6251   match(Set dst (LoadP mem));
6252 
6253   ins_cost(125);
6254   format %{ "MOV    $dst,$mem" %}
6255   opcode(0x8B);
6256   ins_encode( OpcP, RegMem(dst,mem));
6257   ins_pipe( ialu_reg_mem );
6258 %}
6259 
6260 // Load Klass Pointer
6261 instruct loadKlass(eRegP dst, memory mem) %{
6262   match(Set dst (LoadKlass mem));
6263 
6264   ins_cost(125);
6265   format %{ "MOV    $dst,$mem" %}
6266   opcode(0x8B);
6267   ins_encode( OpcP, RegMem(dst,mem));
6268   ins_pipe( ialu_reg_mem );
6269 %}
6270 
6271 // Load Double
6272 instruct loadDPR(regDPR dst, memory mem) %{
6273   predicate(UseSSE<=1);
6274   match(Set dst (LoadD mem));
6275 
6276   ins_cost(150);
6277   format %{ "FLD_D  ST,$mem\n\t"
6278             "FSTP   $dst" %}
6279   opcode(0xDD);               /* DD /0 */
6280   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6281               Pop_Reg_DPR(dst) );
6282   ins_pipe( fpu_reg_mem );
6283 %}
6284 
6285 // Load Double to XMM
6286 instruct loadD(regD dst, memory mem) %{
6287   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6288   match(Set dst (LoadD mem));
6289   ins_cost(145);
6290   format %{ "MOVSD  $dst,$mem" %}
6291   ins_encode %{
6292     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6293   %}
6294   ins_pipe( pipe_slow );
6295 %}
6296 
6297 instruct loadD_partial(regD dst, memory mem) %{
6298   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6299   match(Set dst (LoadD mem));
6300   ins_cost(145);
6301   format %{ "MOVLPD $dst,$mem" %}
6302   ins_encode %{
6303     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6304   %}
6305   ins_pipe( pipe_slow );
6306 %}
6307 
6308 // Load to XMM register (single-precision floating point)
6309 // MOVSS instruction
6310 instruct loadF(regF dst, memory mem) %{
6311   predicate(UseSSE>=1);
6312   match(Set dst (LoadF mem));
6313   ins_cost(145);
6314   format %{ "MOVSS  $dst,$mem" %}
6315   ins_encode %{
6316     __ movflt ($dst$$XMMRegister, $mem$$Address);
6317   %}
6318   ins_pipe( pipe_slow );
6319 %}
6320 
6321 // Load Float
6322 instruct loadFPR(regFPR dst, memory mem) %{
6323   predicate(UseSSE==0);
6324   match(Set dst (LoadF mem));
6325 
6326   ins_cost(150);
6327   format %{ "FLD_S  ST,$mem\n\t"
6328             "FSTP   $dst" %}
6329   opcode(0xD9);               /* D9 /0 */
6330   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6331               Pop_Reg_FPR(dst) );
6332   ins_pipe( fpu_reg_mem );
6333 %}
6334 
6335 // Load Effective Address
6336 instruct leaP8(eRegP dst, indOffset8 mem) %{
6337   match(Set dst mem);
6338 
6339   ins_cost(110);
6340   format %{ "LEA    $dst,$mem" %}
6341   opcode(0x8D);
6342   ins_encode( OpcP, RegMem(dst,mem));
6343   ins_pipe( ialu_reg_reg_fat );
6344 %}
6345 
6346 instruct leaP32(eRegP dst, indOffset32 mem) %{
6347   match(Set dst mem);
6348 
6349   ins_cost(110);
6350   format %{ "LEA    $dst,$mem" %}
6351   opcode(0x8D);
6352   ins_encode( OpcP, RegMem(dst,mem));
6353   ins_pipe( ialu_reg_reg_fat );
6354 %}
6355 
6356 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6357   match(Set dst mem);
6358 
6359   ins_cost(110);
6360   format %{ "LEA    $dst,$mem" %}
6361   opcode(0x8D);
6362   ins_encode( OpcP, RegMem(dst,mem));
6363   ins_pipe( ialu_reg_reg_fat );
6364 %}
6365 
6366 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6367   match(Set dst mem);
6368 
6369   ins_cost(110);
6370   format %{ "LEA    $dst,$mem" %}
6371   opcode(0x8D);
6372   ins_encode( OpcP, RegMem(dst,mem));
6373   ins_pipe( ialu_reg_reg_fat );
6374 %}
6375 
6376 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6377   match(Set dst mem);
6378 
6379   ins_cost(110);
6380   format %{ "LEA    $dst,$mem" %}
6381   opcode(0x8D);
6382   ins_encode( OpcP, RegMem(dst,mem));
6383   ins_pipe( ialu_reg_reg_fat );
6384 %}
6385 
6386 // Load Constant
6387 instruct loadConI(rRegI dst, immI src) %{
6388   match(Set dst src);
6389 
6390   format %{ "MOV    $dst,$src" %}
6391   ins_encode( LdImmI(dst, src) );
6392   ins_pipe( ialu_reg_fat );
6393 %}
6394 
6395 // Load Constant zero
6396 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
6397   match(Set dst src);
6398   effect(KILL cr);
6399 
6400   ins_cost(50);
6401   format %{ "XOR    $dst,$dst" %}
6402   opcode(0x33);  /* + rd */
6403   ins_encode( OpcP, RegReg( dst, dst ) );
6404   ins_pipe( ialu_reg );
6405 %}
6406 
6407 instruct loadConP(eRegP dst, immP src) %{
6408   match(Set dst src);
6409 
6410   format %{ "MOV    $dst,$src" %}
6411   opcode(0xB8);  /* + rd */
6412   ins_encode( LdImmP(dst, src) );
6413   ins_pipe( ialu_reg_fat );
6414 %}
6415 
6416 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6417   match(Set dst src);
6418   effect(KILL cr);
6419   ins_cost(200);
6420   format %{ "MOV    $dst.lo,$src.lo\n\t"
6421             "MOV    $dst.hi,$src.hi" %}
6422   opcode(0xB8);
6423   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6424   ins_pipe( ialu_reg_long_fat );
6425 %}
6426 
6427 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6428   match(Set dst src);
6429   effect(KILL cr);
6430   ins_cost(150);
6431   format %{ "XOR    $dst.lo,$dst.lo\n\t"
6432             "XOR    $dst.hi,$dst.hi" %}
6433   opcode(0x33,0x33);
6434   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6435   ins_pipe( ialu_reg_long );
6436 %}
6437 
6438 // The instruction usage is guarded by predicate in operand immFPR().
6439 instruct loadConFPR(regFPR dst, immFPR con) %{
6440   match(Set dst con);
6441   ins_cost(125);
6442   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
6443             "FSTP   $dst" %}
6444   ins_encode %{
6445     __ fld_s($constantaddress($con));
6446     __ fstp_d($dst$$reg);
6447   %}
6448   ins_pipe(fpu_reg_con);
6449 %}
6450 
6451 // The instruction usage is guarded by predicate in operand immFPR0().
6452 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
6453   match(Set dst con);
6454   ins_cost(125);
6455   format %{ "FLDZ   ST\n\t"
6456             "FSTP   $dst" %}
6457   ins_encode %{
6458     __ fldz();
6459     __ fstp_d($dst$$reg);
6460   %}
6461   ins_pipe(fpu_reg_con);
6462 %}
6463 
6464 // The instruction usage is guarded by predicate in operand immFPR1().
6465 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
6466   match(Set dst con);
6467   ins_cost(125);
6468   format %{ "FLD1   ST\n\t"
6469             "FSTP   $dst" %}
6470   ins_encode %{
6471     __ fld1();
6472     __ fstp_d($dst$$reg);
6473   %}
6474   ins_pipe(fpu_reg_con);
6475 %}
6476 
6477 // The instruction usage is guarded by predicate in operand immF().
6478 instruct loadConF(regF dst, immF con) %{
6479   match(Set dst con);
6480   ins_cost(125);
6481   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
6482   ins_encode %{
6483     __ movflt($dst$$XMMRegister, $constantaddress($con));
6484   %}
6485   ins_pipe(pipe_slow);
6486 %}
6487 
6488 // The instruction usage is guarded by predicate in operand immF0().
6489 instruct loadConF0(regF dst, immF0 src) %{
6490   match(Set dst src);
6491   ins_cost(100);
6492   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6493   ins_encode %{
6494     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
6495   %}
6496   ins_pipe(pipe_slow);
6497 %}
6498 
6499 // The instruction usage is guarded by predicate in operand immDPR().
6500 instruct loadConDPR(regDPR dst, immDPR con) %{
6501   match(Set dst con);
6502   ins_cost(125);
6503 
6504   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
6505             "FSTP   $dst" %}
6506   ins_encode %{
6507     __ fld_d($constantaddress($con));
6508     __ fstp_d($dst$$reg);
6509   %}
6510   ins_pipe(fpu_reg_con);
6511 %}
6512 
6513 // The instruction usage is guarded by predicate in operand immDPR0().
6514 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
6515   match(Set dst con);
6516   ins_cost(125);
6517 
6518   format %{ "FLDZ   ST\n\t"
6519             "FSTP   $dst" %}
6520   ins_encode %{
6521     __ fldz();
6522     __ fstp_d($dst$$reg);
6523   %}
6524   ins_pipe(fpu_reg_con);
6525 %}
6526 
6527 // The instruction usage is guarded by predicate in operand immDPR1().
6528 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
6529   match(Set dst con);
6530   ins_cost(125);
6531 
6532   format %{ "FLD1   ST\n\t"
6533             "FSTP   $dst" %}
6534   ins_encode %{
6535     __ fld1();
6536     __ fstp_d($dst$$reg);
6537   %}
6538   ins_pipe(fpu_reg_con);
6539 %}
6540 
6541 // The instruction usage is guarded by predicate in operand immD().
6542 instruct loadConD(regD dst, immD con) %{
6543   match(Set dst con);
6544   ins_cost(125);
6545   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
6546   ins_encode %{
6547     __ movdbl($dst$$XMMRegister, $constantaddress($con));
6548   %}
6549   ins_pipe(pipe_slow);
6550 %}
6551 
6552 // The instruction usage is guarded by predicate in operand immD0().
6553 instruct loadConD0(regD dst, immD0 src) %{
6554   match(Set dst src);
6555   ins_cost(100);
6556   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6557   ins_encode %{
6558     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6559   %}
6560   ins_pipe( pipe_slow );
6561 %}
6562 
6563 // Load Stack Slot
6564 instruct loadSSI(rRegI dst, stackSlotI src) %{
6565   match(Set dst src);
6566   ins_cost(125);
6567 
6568   format %{ "MOV    $dst,$src" %}
6569   opcode(0x8B);
6570   ins_encode( OpcP, RegMem(dst,src));
6571   ins_pipe( ialu_reg_mem );
6572 %}
6573 
6574 instruct loadSSL(eRegL dst, stackSlotL src) %{
6575   match(Set dst src);
6576 
6577   ins_cost(200);
6578   format %{ "MOV    $dst,$src.lo\n\t"
6579             "MOV    $dst+4,$src.hi" %}
6580   opcode(0x8B, 0x8B);
6581   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6582   ins_pipe( ialu_mem_long_reg );
6583 %}
6584 
6585 // Load Stack Slot
6586 instruct loadSSP(eRegP dst, stackSlotP src) %{
6587   match(Set dst src);
6588   ins_cost(125);
6589 
6590   format %{ "MOV    $dst,$src" %}
6591   opcode(0x8B);
6592   ins_encode( OpcP, RegMem(dst,src));
6593   ins_pipe( ialu_reg_mem );
6594 %}
6595 
6596 // Load Stack Slot
6597 instruct loadSSF(regFPR dst, stackSlotF src) %{
6598   match(Set dst src);
6599   ins_cost(125);
6600 
6601   format %{ "FLD_S  $src\n\t"
6602             "FSTP   $dst" %}
6603   opcode(0xD9);               /* D9 /0, FLD m32real */
6604   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6605               Pop_Reg_FPR(dst) );
6606   ins_pipe( fpu_reg_mem );
6607 %}
6608 
6609 // Load Stack Slot
6610 instruct loadSSD(regDPR dst, stackSlotD src) %{
6611   match(Set dst src);
6612   ins_cost(125);
6613 
6614   format %{ "FLD_D  $src\n\t"
6615             "FSTP   $dst" %}
6616   opcode(0xDD);               /* DD /0, FLD m64real */
6617   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6618               Pop_Reg_DPR(dst) );
6619   ins_pipe( fpu_reg_mem );
6620 %}
6621 
6622 // Prefetch instructions.
6623 // Must be safe to execute with invalid address (cannot fault).
6624 
6625 instruct prefetchr0( memory mem ) %{
6626   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6627   match(PrefetchRead mem);
6628   ins_cost(0);
6629   size(0);
6630   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6631   ins_encode();
6632   ins_pipe(empty);
6633 %}
6634 
6635 instruct prefetchr( memory mem ) %{
6636   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
6637   match(PrefetchRead mem);
6638   ins_cost(100);
6639 
6640   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6641   ins_encode %{
6642     __ prefetchr($mem$$Address);
6643   %}
6644   ins_pipe(ialu_mem);
6645 %}
6646 
6647 instruct prefetchrNTA( memory mem ) %{
6648   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6649   match(PrefetchRead mem);
6650   ins_cost(100);
6651 
6652   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6653   ins_encode %{
6654     __ prefetchnta($mem$$Address);
6655   %}
6656   ins_pipe(ialu_mem);
6657 %}
6658 
6659 instruct prefetchrT0( memory mem ) %{
6660   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6661   match(PrefetchRead mem);
6662   ins_cost(100);
6663 
6664   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6665   ins_encode %{
6666     __ prefetcht0($mem$$Address);
6667   %}
6668   ins_pipe(ialu_mem);
6669 %}
6670 
6671 instruct prefetchrT2( memory mem ) %{
6672   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6673   match(PrefetchRead mem);
6674   ins_cost(100);
6675 
6676   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6677   ins_encode %{
6678     __ prefetcht2($mem$$Address);
6679   %}
6680   ins_pipe(ialu_mem);
6681 %}
6682 
6683 instruct prefetchw0( memory mem ) %{
6684   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6685   match(PrefetchWrite mem);
6686   ins_cost(0);
6687   size(0);
6688   format %{ "Prefetch (non-SSE is empty encoding)" %}
6689   ins_encode();
6690   ins_pipe(empty);
6691 %}
6692 
6693 instruct prefetchw( memory mem ) %{
6694   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
6695   match( PrefetchWrite mem );
6696   ins_cost(100);
6697 
6698   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6699   ins_encode %{
6700     __ prefetchw($mem$$Address);
6701   %}
6702   ins_pipe(ialu_mem);
6703 %}
6704 
6705 instruct prefetchwNTA( memory mem ) %{
6706   predicate(UseSSE>=1);
6707   match(PrefetchWrite mem);
6708   ins_cost(100);
6709 
6710   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6711   ins_encode %{
6712     __ prefetchnta($mem$$Address);
6713   %}
6714   ins_pipe(ialu_mem);
6715 %}
6716 
6717 // Prefetch instructions for allocation.
6718 
6719 instruct prefetchAlloc0( memory mem ) %{
6720   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6721   match(PrefetchAllocation mem);
6722   ins_cost(0);
6723   size(0);
6724   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6725   ins_encode();
6726   ins_pipe(empty);
6727 %}
6728 
6729 instruct prefetchAlloc( memory mem ) %{
6730   predicate(AllocatePrefetchInstr==3);
6731   match( PrefetchAllocation mem );
6732   ins_cost(100);
6733 
6734   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6735   ins_encode %{
6736     __ prefetchw($mem$$Address);
6737   %}
6738   ins_pipe(ialu_mem);
6739 %}
6740 
6741 instruct prefetchAllocNTA( memory mem ) %{
6742   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6743   match(PrefetchAllocation mem);
6744   ins_cost(100);
6745 
6746   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6747   ins_encode %{
6748     __ prefetchnta($mem$$Address);
6749   %}
6750   ins_pipe(ialu_mem);
6751 %}
6752 
6753 instruct prefetchAllocT0( memory mem ) %{
6754   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6755   match(PrefetchAllocation mem);
6756   ins_cost(100);
6757 
6758   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6759   ins_encode %{
6760     __ prefetcht0($mem$$Address);
6761   %}
6762   ins_pipe(ialu_mem);
6763 %}
6764 
6765 instruct prefetchAllocT2( memory mem ) %{
6766   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6767   match(PrefetchAllocation mem);
6768   ins_cost(100);
6769 
6770   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6771   ins_encode %{
6772     __ prefetcht2($mem$$Address);
6773   %}
6774   ins_pipe(ialu_mem);
6775 %}
6776 
6777 //----------Store Instructions-------------------------------------------------
6778 
6779 // Store Byte
6780 instruct storeB(memory mem, xRegI src) %{
6781   match(Set mem (StoreB mem src));
6782 
6783   ins_cost(125);
6784   format %{ "MOV8   $mem,$src" %}
6785   opcode(0x88);
6786   ins_encode( OpcP, RegMem( src, mem ) );
6787   ins_pipe( ialu_mem_reg );
6788 %}
6789 
6790 // Store Char/Short
6791 instruct storeC(memory mem, rRegI src) %{
6792   match(Set mem (StoreC mem src));
6793 
6794   ins_cost(125);
6795   format %{ "MOV16  $mem,$src" %}
6796   opcode(0x89, 0x66);
6797   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6798   ins_pipe( ialu_mem_reg );
6799 %}
6800 
6801 // Store Integer
6802 instruct storeI(memory mem, rRegI src) %{
6803   match(Set mem (StoreI mem src));
6804 
6805   ins_cost(125);
6806   format %{ "MOV    $mem,$src" %}
6807   opcode(0x89);
6808   ins_encode( OpcP, RegMem( src, mem ) );
6809   ins_pipe( ialu_mem_reg );
6810 %}
6811 
6812 // Store Long
6813 instruct storeL(long_memory mem, eRegL src) %{
6814   predicate(!((StoreLNode*)n)->require_atomic_access());
6815   match(Set mem (StoreL mem src));
6816 
6817   ins_cost(200);
6818   format %{ "MOV    $mem,$src.lo\n\t"
6819             "MOV    $mem+4,$src.hi" %}
6820   opcode(0x89, 0x89);
6821   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6822   ins_pipe( ialu_mem_long_reg );
6823 %}
6824 
6825 // Store Long to Integer
6826 instruct storeL2I(memory mem, eRegL src) %{
6827   match(Set mem (StoreI mem (ConvL2I src)));
6828 
6829   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6830   ins_encode %{
6831     __ movl($mem$$Address, $src$$Register);
6832   %}
6833   ins_pipe(ialu_mem_reg);
6834 %}
6835 
6836 // Volatile Store Long.  Must be atomic, so move it into
6837 // the FP TOS and then do a 64-bit FIST.  Has to probe the
6838 // target address before the store (for null-ptr checks)
6839 // so the memory operand is used twice in the encoding.
6840 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6841   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6842   match(Set mem (StoreL mem src));
6843   effect( KILL cr );
6844   ins_cost(400);
6845   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6846             "FILD   $src\n\t"
6847             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6848   opcode(0x3B);
6849   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6850   ins_pipe( fpu_reg_mem );
6851 %}
6852 
6853 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6854   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6855   match(Set mem (StoreL mem src));
6856   effect( TEMP tmp, KILL cr );
6857   ins_cost(380);
6858   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6859             "MOVSD  $tmp,$src\n\t"
6860             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6861   ins_encode %{
6862     __ cmpl(rax, $mem$$Address);
6863     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6864     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6865   %}
6866   ins_pipe( pipe_slow );
6867 %}
6868 
6869 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6870   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6871   match(Set mem (StoreL mem src));
6872   effect( TEMP tmp2 , TEMP tmp, KILL cr );
6873   ins_cost(360);
6874   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6875             "MOVD   $tmp,$src.lo\n\t"
6876             "MOVD   $tmp2,$src.hi\n\t"
6877             "PUNPCKLDQ $tmp,$tmp2\n\t"
6878             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6879   ins_encode %{
6880     __ cmpl(rax, $mem$$Address);
6881     __ movdl($tmp$$XMMRegister, $src$$Register);
6882     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6883     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6884     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6885   %}
6886   ins_pipe( pipe_slow );
6887 %}
6888 
6889 // Store Pointer; for storing unknown oops and raw pointers
6890 instruct storeP(memory mem, anyRegP src) %{
6891   match(Set mem (StoreP mem src));
6892 
6893   ins_cost(125);
6894   format %{ "MOV    $mem,$src" %}
6895   opcode(0x89);
6896   ins_encode( OpcP, RegMem( src, mem ) );
6897   ins_pipe( ialu_mem_reg );
6898 %}
6899 
6900 // Store Integer Immediate
6901 instruct storeImmI(memory mem, immI src) %{
6902   match(Set mem (StoreI mem src));
6903 
6904   ins_cost(150);
6905   format %{ "MOV    $mem,$src" %}
6906   opcode(0xC7);               /* C7 /0 */
6907   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6908   ins_pipe( ialu_mem_imm );
6909 %}
6910 
6911 // Store Short/Char Immediate
6912 instruct storeImmI16(memory mem, immI16 src) %{
6913   predicate(UseStoreImmI16);
6914   match(Set mem (StoreC mem src));
6915 
6916   ins_cost(150);
6917   format %{ "MOV16  $mem,$src" %}
6918   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6919   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6920   ins_pipe( ialu_mem_imm );
6921 %}
6922 
6923 // Store Pointer Immediate; null pointers or constant oops that do not
6924 // need card-mark barriers.
6925 instruct storeImmP(memory mem, immP src) %{
6926   match(Set mem (StoreP mem src));
6927 
6928   ins_cost(150);
6929   format %{ "MOV    $mem,$src" %}
6930   opcode(0xC7);               /* C7 /0 */
6931   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6932   ins_pipe( ialu_mem_imm );
6933 %}
6934 
6935 // Store Byte Immediate
6936 instruct storeImmB(memory mem, immI8 src) %{
6937   match(Set mem (StoreB mem src));
6938 
6939   ins_cost(150);
6940   format %{ "MOV8   $mem,$src" %}
6941   opcode(0xC6);               /* C6 /0 */
6942   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6943   ins_pipe( ialu_mem_imm );
6944 %}
6945 
6946 // Store CMS card-mark Immediate
6947 instruct storeImmCM(memory mem, immI8 src) %{
6948   match(Set mem (StoreCM mem src));
6949 
6950   ins_cost(150);
6951   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6952   opcode(0xC6);               /* C6 /0 */
6953   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6954   ins_pipe( ialu_mem_imm );
6955 %}
6956 
6957 // Store Double
6958 instruct storeDPR( memory mem, regDPR1 src) %{
6959   predicate(UseSSE<=1);
6960   match(Set mem (StoreD mem src));
6961 
6962   ins_cost(100);
6963   format %{ "FST_D  $mem,$src" %}
6964   opcode(0xDD);       /* DD /2 */
6965   ins_encode( enc_FPR_store(mem,src) );
6966   ins_pipe( fpu_mem_reg );
6967 %}
6968 
6969 // Store double does rounding on x86
6970 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
6971   predicate(UseSSE<=1);
6972   match(Set mem (StoreD mem (RoundDouble src)));
6973 
6974   ins_cost(100);
6975   format %{ "FST_D  $mem,$src\t# round" %}
6976   opcode(0xDD);       /* DD /2 */
6977   ins_encode( enc_FPR_store(mem,src) );
6978   ins_pipe( fpu_mem_reg );
6979 %}
6980 
6981 // Store XMM register to memory (double-precision floating points)
6982 // MOVSD instruction
6983 instruct storeD(memory mem, regD src) %{
6984   predicate(UseSSE>=2);
6985   match(Set mem (StoreD mem src));
6986   ins_cost(95);
6987   format %{ "MOVSD  $mem,$src" %}
6988   ins_encode %{
6989     __ movdbl($mem$$Address, $src$$XMMRegister);
6990   %}
6991   ins_pipe( pipe_slow );
6992 %}
6993 
6994 // Store XMM register to memory (single-precision floating point)
6995 // MOVSS instruction
6996 instruct storeF(memory mem, regF src) %{
6997   predicate(UseSSE>=1);
6998   match(Set mem (StoreF mem src));
6999   ins_cost(95);
7000   format %{ "MOVSS  $mem,$src" %}
7001   ins_encode %{
7002     __ movflt($mem$$Address, $src$$XMMRegister);
7003   %}
7004   ins_pipe( pipe_slow );
7005 %}
7006 
7007 // Store Float
7008 instruct storeFPR( memory mem, regFPR1 src) %{
7009   predicate(UseSSE==0);
7010   match(Set mem (StoreF mem src));
7011 
7012   ins_cost(100);
7013   format %{ "FST_S  $mem,$src" %}
7014   opcode(0xD9);       /* D9 /2 */
7015   ins_encode( enc_FPR_store(mem,src) );
7016   ins_pipe( fpu_mem_reg );
7017 %}
7018 
7019 // Store Float does rounding on x86
7020 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
7021   predicate(UseSSE==0);
7022   match(Set mem (StoreF mem (RoundFloat src)));
7023 
7024   ins_cost(100);
7025   format %{ "FST_S  $mem,$src\t# round" %}
7026   opcode(0xD9);       /* D9 /2 */
7027   ins_encode( enc_FPR_store(mem,src) );
7028   ins_pipe( fpu_mem_reg );
7029 %}
7030 
7031 // Store Float does rounding on x86
7032 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
7033   predicate(UseSSE<=1);
7034   match(Set mem (StoreF mem (ConvD2F src)));
7035 
7036   ins_cost(100);
7037   format %{ "FST_S  $mem,$src\t# D-round" %}
7038   opcode(0xD9);       /* D9 /2 */
7039   ins_encode( enc_FPR_store(mem,src) );
7040   ins_pipe( fpu_mem_reg );
7041 %}
7042 
7043 // Store immediate Float value (it is faster than store from FPU register)
7044 // The instruction usage is guarded by predicate in operand immFPR().
7045 instruct storeFPR_imm( memory mem, immFPR src) %{
7046   match(Set mem (StoreF mem src));
7047 
7048   ins_cost(50);
7049   format %{ "MOV    $mem,$src\t# store float" %}
7050   opcode(0xC7);               /* C7 /0 */
7051   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
7052   ins_pipe( ialu_mem_imm );
7053 %}
7054 
7055 // Store immediate Float value (it is faster than store from XMM register)
7056 // The instruction usage is guarded by predicate in operand immF().
7057 instruct storeF_imm( memory mem, immF src) %{
7058   match(Set mem (StoreF mem src));
7059 
7060   ins_cost(50);
7061   format %{ "MOV    $mem,$src\t# store float" %}
7062   opcode(0xC7);               /* C7 /0 */
7063   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7064   ins_pipe( ialu_mem_imm );
7065 %}
7066 
7067 // Store Integer to stack slot
7068 instruct storeSSI(stackSlotI dst, rRegI src) %{
7069   match(Set dst src);
7070 
7071   ins_cost(100);
7072   format %{ "MOV    $dst,$src" %}
7073   opcode(0x89);
7074   ins_encode( OpcPRegSS( dst, src ) );
7075   ins_pipe( ialu_mem_reg );
7076 %}
7077 
7078 // Store Integer to stack slot
7079 instruct storeSSP(stackSlotP dst, eRegP src) %{
7080   match(Set dst src);
7081 
7082   ins_cost(100);
7083   format %{ "MOV    $dst,$src" %}
7084   opcode(0x89);
7085   ins_encode( OpcPRegSS( dst, src ) );
7086   ins_pipe( ialu_mem_reg );
7087 %}
7088 
7089 // Store Long to stack slot
7090 instruct storeSSL(stackSlotL dst, eRegL src) %{
7091   match(Set dst src);
7092 
7093   ins_cost(200);
7094   format %{ "MOV    $dst,$src.lo\n\t"
7095             "MOV    $dst+4,$src.hi" %}
7096   opcode(0x89, 0x89);
7097   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7098   ins_pipe( ialu_mem_long_reg );
7099 %}
7100 
7101 //----------MemBar Instructions-----------------------------------------------
7102 // Memory barrier flavors
7103 
7104 instruct membar_acquire() %{
7105   match(MemBarAcquire);
7106   ins_cost(400);
7107 
7108   size(0);
7109   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7110   ins_encode();
7111   ins_pipe(empty);
7112 %}
7113 
7114 instruct membar_acquire_lock() %{
7115   match(MemBarAcquireLock);
7116   ins_cost(0);
7117 
7118   size(0);
7119   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7120   ins_encode( );
7121   ins_pipe(empty);
7122 %}
7123 
7124 instruct membar_release() %{
7125   match(MemBarRelease);
7126   ins_cost(400);
7127 
7128   size(0);
7129   format %{ "MEMBAR-release ! (empty encoding)" %}
7130   ins_encode( );
7131   ins_pipe(empty);
7132 %}
7133 
7134 instruct membar_release_lock() %{
7135   match(MemBarReleaseLock);
7136   ins_cost(0);
7137 
7138   size(0);
7139   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7140   ins_encode( );
7141   ins_pipe(empty);
7142 %}
7143 
7144 instruct membar_volatile(eFlagsReg cr) %{
7145   match(MemBarVolatile);
7146   effect(KILL cr);
7147   ins_cost(400);
7148 
7149   format %{ 
7150     $$template
7151     if (os::is_MP()) {
7152       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7153     } else {
7154       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7155     }
7156   %}
7157   ins_encode %{
7158     __ membar(Assembler::StoreLoad);
7159   %}
7160   ins_pipe(pipe_slow);
7161 %}
7162 
7163 instruct unnecessary_membar_volatile() %{
7164   match(MemBarVolatile);
7165   predicate(Matcher::post_store_load_barrier(n));
7166   ins_cost(0);
7167 
7168   size(0);
7169   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7170   ins_encode( );
7171   ins_pipe(empty);
7172 %}
7173 
7174 instruct membar_storestore() %{
7175   match(MemBarStoreStore);
7176   ins_cost(0);
7177 
7178   size(0);
7179   format %{ "MEMBAR-storestore (empty encoding)" %}
7180   ins_encode( );
7181   ins_pipe(empty);
7182 %}
7183 
7184 //----------Move Instructions--------------------------------------------------
7185 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7186   match(Set dst (CastX2P src));
7187   format %{ "# X2P  $dst, $src" %}
7188   ins_encode( /*empty encoding*/ );
7189   ins_cost(0);
7190   ins_pipe(empty);
7191 %}
7192 
7193 instruct castP2X(rRegI dst, eRegP src ) %{
7194   match(Set dst (CastP2X src));
7195   ins_cost(50);
7196   format %{ "MOV    $dst, $src\t# CastP2X" %}
7197   ins_encode( enc_Copy( dst, src) );
7198   ins_pipe( ialu_reg_reg );
7199 %}
7200 
7201 //----------Conditional Move---------------------------------------------------
7202 // Conditional move
7203 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
7204   predicate(!VM_Version::supports_cmov() );
7205   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7206   ins_cost(200);
7207   format %{ "J$cop,us skip\t# signed cmove\n\t"
7208             "MOV    $dst,$src\n"
7209       "skip:" %}
7210   ins_encode %{
7211     Label Lskip;
7212     // Invert sense of branch from sense of CMOV
7213     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7214     __ movl($dst$$Register, $src$$Register);
7215     __ bind(Lskip);
7216   %}
7217   ins_pipe( pipe_cmov_reg );
7218 %}
7219 
7220 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
7221   predicate(!VM_Version::supports_cmov() );
7222   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7223   ins_cost(200);
7224   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
7225             "MOV    $dst,$src\n"
7226       "skip:" %}
7227   ins_encode %{
7228     Label Lskip;
7229     // Invert sense of branch from sense of CMOV
7230     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7231     __ movl($dst$$Register, $src$$Register);
7232     __ bind(Lskip);
7233   %}
7234   ins_pipe( pipe_cmov_reg );
7235 %}
7236 
7237 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
7238   predicate(VM_Version::supports_cmov() );
7239   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7240   ins_cost(200);
7241   format %{ "CMOV$cop $dst,$src" %}
7242   opcode(0x0F,0x40);
7243   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7244   ins_pipe( pipe_cmov_reg );
7245 %}
7246 
7247 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
7248   predicate(VM_Version::supports_cmov() );
7249   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7250   ins_cost(200);
7251   format %{ "CMOV$cop $dst,$src" %}
7252   opcode(0x0F,0x40);
7253   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7254   ins_pipe( pipe_cmov_reg );
7255 %}
7256 
7257 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
7258   predicate(VM_Version::supports_cmov() );
7259   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7260   ins_cost(200);
7261   expand %{
7262     cmovI_regU(cop, cr, dst, src);
7263   %}
7264 %}
7265 
7266 // Conditional move
7267 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
7268   predicate(VM_Version::supports_cmov() );
7269   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7270   ins_cost(250);
7271   format %{ "CMOV$cop $dst,$src" %}
7272   opcode(0x0F,0x40);
7273   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7274   ins_pipe( pipe_cmov_mem );
7275 %}
7276 
7277 // Conditional move
7278 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
7279   predicate(VM_Version::supports_cmov() );
7280   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7281   ins_cost(250);
7282   format %{ "CMOV$cop $dst,$src" %}
7283   opcode(0x0F,0x40);
7284   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7285   ins_pipe( pipe_cmov_mem );
7286 %}
7287 
7288 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
7289   predicate(VM_Version::supports_cmov() );
7290   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7291   ins_cost(250);
7292   expand %{
7293     cmovI_memU(cop, cr, dst, src);
7294   %}
7295 %}
7296 
7297 // Conditional move
7298 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7299   predicate(VM_Version::supports_cmov() );
7300   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7301   ins_cost(200);
7302   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7303   opcode(0x0F,0x40);
7304   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7305   ins_pipe( pipe_cmov_reg );
7306 %}
7307 
7308 // Conditional move (non-P6 version)
7309 // Note:  a CMoveP is generated for  stubs and native wrappers
7310 //        regardless of whether we are on a P6, so we
7311 //        emulate a cmov here
7312 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7313   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7314   ins_cost(300);
7315   format %{ "Jn$cop   skip\n\t"
7316           "MOV    $dst,$src\t# pointer\n"
7317       "skip:" %}
7318   opcode(0x8b);
7319   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7320   ins_pipe( pipe_cmov_reg );
7321 %}
7322 
7323 // Conditional move
7324 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7325   predicate(VM_Version::supports_cmov() );
7326   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7327   ins_cost(200);
7328   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7329   opcode(0x0F,0x40);
7330   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7331   ins_pipe( pipe_cmov_reg );
7332 %}
7333 
7334 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7335   predicate(VM_Version::supports_cmov() );
7336   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7337   ins_cost(200);
7338   expand %{
7339     cmovP_regU(cop, cr, dst, src);
7340   %}
7341 %}
7342 
7343 // DISABLED: Requires the ADLC to emit a bottom_type call that
7344 // correctly meets the two pointer arguments; one is an incoming
7345 // register but the other is a memory operand.  ALSO appears to
7346 // be buggy with implicit null checks.
7347 //
7348 //// Conditional move
7349 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7350 //  predicate(VM_Version::supports_cmov() );
7351 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7352 //  ins_cost(250);
7353 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7354 //  opcode(0x0F,0x40);
7355 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7356 //  ins_pipe( pipe_cmov_mem );
7357 //%}
7358 //
7359 //// Conditional move
7360 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7361 //  predicate(VM_Version::supports_cmov() );
7362 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7363 //  ins_cost(250);
7364 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7365 //  opcode(0x0F,0x40);
7366 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7367 //  ins_pipe( pipe_cmov_mem );
7368 //%}
7369 
7370 // Conditional move
7371 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
7372   predicate(UseSSE<=1);
7373   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7374   ins_cost(200);
7375   format %{ "FCMOV$cop $dst,$src\t# double" %}
7376   opcode(0xDA);
7377   ins_encode( enc_cmov_dpr(cop,src) );
7378   ins_pipe( pipe_cmovDPR_reg );
7379 %}
7380 
7381 // Conditional move
7382 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
7383   predicate(UseSSE==0);
7384   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7385   ins_cost(200);
7386   format %{ "FCMOV$cop $dst,$src\t# float" %}
7387   opcode(0xDA);
7388   ins_encode( enc_cmov_dpr(cop,src) );
7389   ins_pipe( pipe_cmovDPR_reg );
7390 %}
7391 
7392 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7393 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
7394   predicate(UseSSE<=1);
7395   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7396   ins_cost(200);
7397   format %{ "Jn$cop   skip\n\t"
7398             "MOV    $dst,$src\t# double\n"
7399       "skip:" %}
7400   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7401   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
7402   ins_pipe( pipe_cmovDPR_reg );
7403 %}
7404 
7405 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7406 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
7407   predicate(UseSSE==0);
7408   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7409   ins_cost(200);
7410   format %{ "Jn$cop    skip\n\t"
7411             "MOV    $dst,$src\t# float\n"
7412       "skip:" %}
7413   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7414   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
7415   ins_pipe( pipe_cmovDPR_reg );
7416 %}
7417 
7418 // No CMOVE with SSE/SSE2
7419 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7420   predicate (UseSSE>=1);
7421   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7422   ins_cost(200);
7423   format %{ "Jn$cop   skip\n\t"
7424             "MOVSS  $dst,$src\t# float\n"
7425       "skip:" %}
7426   ins_encode %{
7427     Label skip;
7428     // Invert sense of branch from sense of CMOV
7429     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7430     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7431     __ bind(skip);
7432   %}
7433   ins_pipe( pipe_slow );
7434 %}
7435 
7436 // No CMOVE with SSE/SSE2
7437 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7438   predicate (UseSSE>=2);
7439   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7440   ins_cost(200);
7441   format %{ "Jn$cop   skip\n\t"
7442             "MOVSD  $dst,$src\t# float\n"
7443       "skip:" %}
7444   ins_encode %{
7445     Label skip;
7446     // Invert sense of branch from sense of CMOV
7447     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7448     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7449     __ bind(skip);
7450   %}
7451   ins_pipe( pipe_slow );
7452 %}
7453 
7454 // unsigned version
7455 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
7456   predicate (UseSSE>=1);
7457   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7458   ins_cost(200);
7459   format %{ "Jn$cop   skip\n\t"
7460             "MOVSS  $dst,$src\t# float\n"
7461       "skip:" %}
7462   ins_encode %{
7463     Label skip;
7464     // Invert sense of branch from sense of CMOV
7465     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7466     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7467     __ bind(skip);
7468   %}
7469   ins_pipe( pipe_slow );
7470 %}
7471 
7472 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
7473   predicate (UseSSE>=1);
7474   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7475   ins_cost(200);
7476   expand %{
7477     fcmovF_regU(cop, cr, dst, src);
7478   %}
7479 %}
7480 
7481 // unsigned version
7482 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
7483   predicate (UseSSE>=2);
7484   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7485   ins_cost(200);
7486   format %{ "Jn$cop   skip\n\t"
7487             "MOVSD  $dst,$src\t# float\n"
7488       "skip:" %}
7489   ins_encode %{
7490     Label skip;
7491     // Invert sense of branch from sense of CMOV
7492     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7493     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7494     __ bind(skip);
7495   %}
7496   ins_pipe( pipe_slow );
7497 %}
7498 
7499 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
7500   predicate (UseSSE>=2);
7501   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7502   ins_cost(200);
7503   expand %{
7504     fcmovD_regU(cop, cr, dst, src);
7505   %}
7506 %}
7507 
7508 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7509   predicate(VM_Version::supports_cmov() );
7510   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7511   ins_cost(200);
7512   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7513             "CMOV$cop $dst.hi,$src.hi" %}
7514   opcode(0x0F,0x40);
7515   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7516   ins_pipe( pipe_cmov_reg_long );
7517 %}
7518 
7519 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7520   predicate(VM_Version::supports_cmov() );
7521   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7522   ins_cost(200);
7523   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7524             "CMOV$cop $dst.hi,$src.hi" %}
7525   opcode(0x0F,0x40);
7526   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7527   ins_pipe( pipe_cmov_reg_long );
7528 %}
7529 
7530 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7531   predicate(VM_Version::supports_cmov() );
7532   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7533   ins_cost(200);
7534   expand %{
7535     cmovL_regU(cop, cr, dst, src);
7536   %}
7537 %}
7538 
7539 //----------Arithmetic Instructions--------------------------------------------
7540 //----------Addition Instructions----------------------------------------------
7541 // Integer Addition Instructions
7542 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7543   match(Set dst (AddI dst src));
7544   effect(KILL cr);
7545 
7546   size(2);
7547   format %{ "ADD    $dst,$src" %}
7548   opcode(0x03);
7549   ins_encode( OpcP, RegReg( dst, src) );
7550   ins_pipe( ialu_reg_reg );
7551 %}
7552 
7553 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7554   match(Set dst (AddI dst src));
7555   effect(KILL cr);
7556 
7557   format %{ "ADD    $dst,$src" %}
7558   opcode(0x81, 0x00); /* /0 id */
7559   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7560   ins_pipe( ialu_reg );
7561 %}
7562 
7563 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
7564   predicate(UseIncDec);
7565   match(Set dst (AddI dst src));
7566   effect(KILL cr);
7567 
7568   size(1);
7569   format %{ "INC    $dst" %}
7570   opcode(0x40); /*  */
7571   ins_encode( Opc_plus( primary, dst ) );
7572   ins_pipe( ialu_reg );
7573 %}
7574 
7575 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
7576   match(Set dst (AddI src0 src1));
7577   ins_cost(110);
7578 
7579   format %{ "LEA    $dst,[$src0 + $src1]" %}
7580   opcode(0x8D); /* 0x8D /r */
7581   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7582   ins_pipe( ialu_reg_reg );
7583 %}
7584 
7585 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7586   match(Set dst (AddP src0 src1));
7587   ins_cost(110);
7588 
7589   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7590   opcode(0x8D); /* 0x8D /r */
7591   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7592   ins_pipe( ialu_reg_reg );
7593 %}
7594 
7595 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
7596   predicate(UseIncDec);
7597   match(Set dst (AddI dst src));
7598   effect(KILL cr);
7599 
7600   size(1);
7601   format %{ "DEC    $dst" %}
7602   opcode(0x48); /*  */
7603   ins_encode( Opc_plus( primary, dst ) );
7604   ins_pipe( ialu_reg );
7605 %}
7606 
7607 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
7608   match(Set dst (AddP dst src));
7609   effect(KILL cr);
7610 
7611   size(2);
7612   format %{ "ADD    $dst,$src" %}
7613   opcode(0x03);
7614   ins_encode( OpcP, RegReg( dst, src) );
7615   ins_pipe( ialu_reg_reg );
7616 %}
7617 
7618 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7619   match(Set dst (AddP dst src));
7620   effect(KILL cr);
7621 
7622   format %{ "ADD    $dst,$src" %}
7623   opcode(0x81,0x00); /* Opcode 81 /0 id */
7624   // ins_encode( RegImm( dst, src) );
7625   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7626   ins_pipe( ialu_reg );
7627 %}
7628 
7629 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7630   match(Set dst (AddI dst (LoadI src)));
7631   effect(KILL cr);
7632 
7633   ins_cost(125);
7634   format %{ "ADD    $dst,$src" %}
7635   opcode(0x03);
7636   ins_encode( OpcP, RegMem( dst, src) );
7637   ins_pipe( ialu_reg_mem );
7638 %}
7639 
7640 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7641   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7642   effect(KILL cr);
7643 
7644   ins_cost(150);
7645   format %{ "ADD    $dst,$src" %}
7646   opcode(0x01);  /* Opcode 01 /r */
7647   ins_encode( OpcP, RegMem( src, dst ) );
7648   ins_pipe( ialu_mem_reg );
7649 %}
7650 
7651 // Add Memory with Immediate
7652 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7653   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7654   effect(KILL cr);
7655 
7656   ins_cost(125);
7657   format %{ "ADD    $dst,$src" %}
7658   opcode(0x81);               /* Opcode 81 /0 id */
7659   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7660   ins_pipe( ialu_mem_imm );
7661 %}
7662 
7663 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7664   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7665   effect(KILL cr);
7666 
7667   ins_cost(125);
7668   format %{ "INC    $dst" %}
7669   opcode(0xFF);               /* Opcode FF /0 */
7670   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7671   ins_pipe( ialu_mem_imm );
7672 %}
7673 
7674 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7675   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7676   effect(KILL cr);
7677 
7678   ins_cost(125);
7679   format %{ "DEC    $dst" %}
7680   opcode(0xFF);               /* Opcode FF /1 */
7681   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7682   ins_pipe( ialu_mem_imm );
7683 %}
7684 
7685 
7686 instruct checkCastPP( eRegP dst ) %{
7687   match(Set dst (CheckCastPP dst));
7688 
7689   size(0);
7690   format %{ "#checkcastPP of $dst" %}
7691   ins_encode( /*empty encoding*/ );
7692   ins_pipe( empty );
7693 %}
7694 
7695 instruct castPP( eRegP dst ) %{
7696   match(Set dst (CastPP dst));
7697   format %{ "#castPP of $dst" %}
7698   ins_encode( /*empty encoding*/ );
7699   ins_pipe( empty );
7700 %}
7701 
7702 instruct castII( rRegI dst ) %{
7703   match(Set dst (CastII dst));
7704   format %{ "#castII of $dst" %}
7705   ins_encode( /*empty encoding*/ );
7706   ins_cost(0);
7707   ins_pipe( empty );
7708 %}
7709 
7710 
7711 // Load-locked - same as a regular pointer load when used with compare-swap
7712 instruct loadPLocked(eRegP dst, memory mem) %{
7713   match(Set dst (LoadPLocked mem));
7714 
7715   ins_cost(125);
7716   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7717   opcode(0x8B);
7718   ins_encode( OpcP, RegMem(dst,mem));
7719   ins_pipe( ialu_reg_mem );
7720 %}
7721 
7722 // Conditional-store of the updated heap-top.
7723 // Used during allocation of the shared heap.
7724 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7725 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7726   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7727   // EAX is killed if there is contention, but then it's also unused.
7728   // In the common case of no contention, EAX holds the new oop address.
7729   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7730   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7731   ins_pipe( pipe_cmpxchg );
7732 %}
7733 
7734 // Conditional-store of an int value.
7735 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7736 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7737   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7738   effect(KILL oldval);
7739   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7740   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7741   ins_pipe( pipe_cmpxchg );
7742 %}
7743 
7744 // Conditional-store of a long value.
7745 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7746 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7747   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7748   effect(KILL oldval);
7749   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7750             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7751             "XCHG   EBX,ECX"
7752   %}
7753   ins_encode %{
7754     // Note: we need to swap rbx, and rcx before and after the
7755     //       cmpxchg8 instruction because the instruction uses
7756     //       rcx as the high order word of the new value to store but
7757     //       our register encoding uses rbx.
7758     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7759     if( os::is_MP() )
7760       __ lock();
7761     __ cmpxchg8($mem$$Address);
7762     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7763   %}
7764   ins_pipe( pipe_cmpxchg );
7765 %}
7766 
7767 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7768 
7769 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7770   predicate(VM_Version::supports_cx8());
7771   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7772   effect(KILL cr, KILL oldval);
7773   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7774             "MOV    $res,0\n\t"
7775             "JNE,s  fail\n\t"
7776             "MOV    $res,1\n"
7777           "fail:" %}
7778   ins_encode( enc_cmpxchg8(mem_ptr),
7779               enc_flags_ne_to_boolean(res) );
7780   ins_pipe( pipe_cmpxchg );
7781 %}
7782 
7783 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7784   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7785   effect(KILL cr, KILL oldval);
7786   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7787             "MOV    $res,0\n\t"
7788             "JNE,s  fail\n\t"
7789             "MOV    $res,1\n"
7790           "fail:" %}
7791   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7792   ins_pipe( pipe_cmpxchg );
7793 %}
7794 
7795 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7796   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7797   effect(KILL cr, KILL oldval);
7798   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7799             "MOV    $res,0\n\t"
7800             "JNE,s  fail\n\t"
7801             "MOV    $res,1\n"
7802           "fail:" %}
7803   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7804   ins_pipe( pipe_cmpxchg );
7805 %}
7806 
7807 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
7808   predicate(n->as_LoadStore()->result_not_used());
7809   match(Set dummy (GetAndAddI mem add));
7810   effect(KILL cr);
7811   format %{ "ADDL  [$mem],$add" %}
7812   ins_encode %{
7813     if (os::is_MP()) { __ lock(); }
7814     __ addl($mem$$Address, $add$$constant);
7815   %}
7816   ins_pipe( pipe_cmpxchg );
7817 %}
7818 
7819 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
7820   match(Set newval (GetAndAddI mem newval));
7821   effect(KILL cr);
7822   format %{ "XADDL  [$mem],$newval" %}
7823   ins_encode %{
7824     if (os::is_MP()) { __ lock(); }
7825     __ xaddl($mem$$Address, $newval$$Register);
7826   %}
7827   ins_pipe( pipe_cmpxchg );
7828 %}
7829 
7830 instruct xchgI( memory mem, rRegI newval) %{
7831   match(Set newval (GetAndSetI mem newval));
7832   format %{ "XCHGL  $newval,[$mem]" %}
7833   ins_encode %{
7834     __ xchgl($newval$$Register, $mem$$Address);
7835   %}
7836   ins_pipe( pipe_cmpxchg );
7837 %}
7838 
7839 instruct xchgP( memory mem, pRegP newval) %{
7840   match(Set newval (GetAndSetP mem newval));
7841   format %{ "XCHGL  $newval,[$mem]" %}
7842   ins_encode %{
7843     __ xchgl($newval$$Register, $mem$$Address);
7844   %}
7845   ins_pipe( pipe_cmpxchg );
7846 %}
7847 
7848 //----------Subtraction Instructions-------------------------------------------
7849 // Integer Subtraction Instructions
7850 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7851   match(Set dst (SubI dst src));
7852   effect(KILL cr);
7853 
7854   size(2);
7855   format %{ "SUB    $dst,$src" %}
7856   opcode(0x2B);
7857   ins_encode( OpcP, RegReg( dst, src) );
7858   ins_pipe( ialu_reg_reg );
7859 %}
7860 
7861 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7862   match(Set dst (SubI dst src));
7863   effect(KILL cr);
7864 
7865   format %{ "SUB    $dst,$src" %}
7866   opcode(0x81,0x05);  /* Opcode 81 /5 */
7867   // ins_encode( RegImm( dst, src) );
7868   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7869   ins_pipe( ialu_reg );
7870 %}
7871 
7872 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7873   match(Set dst (SubI dst (LoadI src)));
7874   effect(KILL cr);
7875 
7876   ins_cost(125);
7877   format %{ "SUB    $dst,$src" %}
7878   opcode(0x2B);
7879   ins_encode( OpcP, RegMem( dst, src) );
7880   ins_pipe( ialu_reg_mem );
7881 %}
7882 
7883 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7884   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7885   effect(KILL cr);
7886 
7887   ins_cost(150);
7888   format %{ "SUB    $dst,$src" %}
7889   opcode(0x29);  /* Opcode 29 /r */
7890   ins_encode( OpcP, RegMem( src, dst ) );
7891   ins_pipe( ialu_mem_reg );
7892 %}
7893 
7894 // Subtract from a pointer
7895 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
7896   match(Set dst (AddP dst (SubI zero src)));
7897   effect(KILL cr);
7898 
7899   size(2);
7900   format %{ "SUB    $dst,$src" %}
7901   opcode(0x2B);
7902   ins_encode( OpcP, RegReg( dst, src) );
7903   ins_pipe( ialu_reg_reg );
7904 %}
7905 
7906 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
7907   match(Set dst (SubI zero dst));
7908   effect(KILL cr);
7909 
7910   size(2);
7911   format %{ "NEG    $dst" %}
7912   opcode(0xF7,0x03);  // Opcode F7 /3
7913   ins_encode( OpcP, RegOpc( dst ) );
7914   ins_pipe( ialu_reg );
7915 %}
7916 
7917 
7918 //----------Multiplication/Division Instructions-------------------------------
7919 // Integer Multiplication Instructions
7920 // Multiply Register
7921 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7922   match(Set dst (MulI dst src));
7923   effect(KILL cr);
7924 
7925   size(3);
7926   ins_cost(300);
7927   format %{ "IMUL   $dst,$src" %}
7928   opcode(0xAF, 0x0F);
7929   ins_encode( OpcS, OpcP, RegReg( dst, src) );
7930   ins_pipe( ialu_reg_reg_alu0 );
7931 %}
7932 
7933 // Multiply 32-bit Immediate
7934 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
7935   match(Set dst (MulI src imm));
7936   effect(KILL cr);
7937 
7938   ins_cost(300);
7939   format %{ "IMUL   $dst,$src,$imm" %}
7940   opcode(0x69);  /* 69 /r id */
7941   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7942   ins_pipe( ialu_reg_reg_alu0 );
7943 %}
7944 
7945 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7946   match(Set dst src);
7947   effect(KILL cr);
7948 
7949   // Note that this is artificially increased to make it more expensive than loadConL
7950   ins_cost(250);
7951   format %{ "MOV    EAX,$src\t// low word only" %}
7952   opcode(0xB8);
7953   ins_encode( LdImmL_Lo(dst, src) );
7954   ins_pipe( ialu_reg_fat );
7955 %}
7956 
7957 // Multiply by 32-bit Immediate, taking the shifted high order results
7958 //  (special case for shift by 32)
7959 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
7960   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7961   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7962              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7963              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7964   effect(USE src1, KILL cr);
7965 
7966   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7967   ins_cost(0*100 + 1*400 - 150);
7968   format %{ "IMUL   EDX:EAX,$src1" %}
7969   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7970   ins_pipe( pipe_slow );
7971 %}
7972 
7973 // Multiply by 32-bit Immediate, taking the shifted high order results
7974 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
7975   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7976   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7977              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7978              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7979   effect(USE src1, KILL cr);
7980 
7981   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7982   ins_cost(1*100 + 1*400 - 150);
7983   format %{ "IMUL   EDX:EAX,$src1\n\t"
7984             "SAR    EDX,$cnt-32" %}
7985   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7986   ins_pipe( pipe_slow );
7987 %}
7988 
7989 // Multiply Memory 32-bit Immediate
7990 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
7991   match(Set dst (MulI (LoadI src) imm));
7992   effect(KILL cr);
7993 
7994   ins_cost(300);
7995   format %{ "IMUL   $dst,$src,$imm" %}
7996   opcode(0x69);  /* 69 /r id */
7997   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
7998   ins_pipe( ialu_reg_mem_alu0 );
7999 %}
8000 
8001 // Multiply Memory
8002 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
8003   match(Set dst (MulI dst (LoadI src)));
8004   effect(KILL cr);
8005 
8006   ins_cost(350);
8007   format %{ "IMUL   $dst,$src" %}
8008   opcode(0xAF, 0x0F);
8009   ins_encode( OpcS, OpcP, RegMem( dst, src) );
8010   ins_pipe( ialu_reg_mem_alu0 );
8011 %}
8012 
8013 // Multiply Register Int to Long
8014 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8015   // Basic Idea: long = (long)int * (long)int
8016   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8017   effect(DEF dst, USE src, USE src1, KILL flags);
8018 
8019   ins_cost(300);
8020   format %{ "IMUL   $dst,$src1" %}
8021 
8022   ins_encode( long_int_multiply( dst, src1 ) );
8023   ins_pipe( ialu_reg_reg_alu0 );
8024 %}
8025 
8026 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8027   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8028   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8029   effect(KILL flags);
8030 
8031   ins_cost(300);
8032   format %{ "MUL    $dst,$src1" %}
8033 
8034   ins_encode( long_uint_multiply(dst, src1) );
8035   ins_pipe( ialu_reg_reg_alu0 );
8036 %}
8037 
8038 // Multiply Register Long
8039 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8040   match(Set dst (MulL dst src));
8041   effect(KILL cr, TEMP tmp);
8042   ins_cost(4*100+3*400);
8043 // Basic idea: lo(result) = lo(x_lo * y_lo)
8044 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8045   format %{ "MOV    $tmp,$src.lo\n\t"
8046             "IMUL   $tmp,EDX\n\t"
8047             "MOV    EDX,$src.hi\n\t"
8048             "IMUL   EDX,EAX\n\t"
8049             "ADD    $tmp,EDX\n\t"
8050             "MUL    EDX:EAX,$src.lo\n\t"
8051             "ADD    EDX,$tmp" %}
8052   ins_encode( long_multiply( dst, src, tmp ) );
8053   ins_pipe( pipe_slow );
8054 %}
8055 
8056 // Multiply Register Long where the left operand's high 32 bits are zero
8057 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8058   predicate(is_operand_hi32_zero(n->in(1)));
8059   match(Set dst (MulL dst src));
8060   effect(KILL cr, TEMP tmp);
8061   ins_cost(2*100+2*400);
8062 // Basic idea: lo(result) = lo(x_lo * y_lo)
8063 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8064   format %{ "MOV    $tmp,$src.hi\n\t"
8065             "IMUL   $tmp,EAX\n\t"
8066             "MUL    EDX:EAX,$src.lo\n\t"
8067             "ADD    EDX,$tmp" %}
8068   ins_encode %{
8069     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8070     __ imull($tmp$$Register, rax);
8071     __ mull($src$$Register);
8072     __ addl(rdx, $tmp$$Register);
8073   %}
8074   ins_pipe( pipe_slow );
8075 %}
8076 
8077 // Multiply Register Long where the right operand's high 32 bits are zero
8078 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8079   predicate(is_operand_hi32_zero(n->in(2)));
8080   match(Set dst (MulL dst src));
8081   effect(KILL cr, TEMP tmp);
8082   ins_cost(2*100+2*400);
8083 // Basic idea: lo(result) = lo(x_lo * y_lo)
8084 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8085   format %{ "MOV    $tmp,$src.lo\n\t"
8086             "IMUL   $tmp,EDX\n\t"
8087             "MUL    EDX:EAX,$src.lo\n\t"
8088             "ADD    EDX,$tmp" %}
8089   ins_encode %{
8090     __ movl($tmp$$Register, $src$$Register);
8091     __ imull($tmp$$Register, rdx);
8092     __ mull($src$$Register);
8093     __ addl(rdx, $tmp$$Register);
8094   %}
8095   ins_pipe( pipe_slow );
8096 %}
8097 
8098 // Multiply Register Long where the left and the right operands' high 32 bits are zero
8099 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8100   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8101   match(Set dst (MulL dst src));
8102   effect(KILL cr);
8103   ins_cost(1*400);
8104 // Basic idea: lo(result) = lo(x_lo * y_lo)
8105 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8106   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8107   ins_encode %{
8108     __ mull($src$$Register);
8109   %}
8110   ins_pipe( pipe_slow );
8111 %}
8112 
8113 // Multiply Register Long by small constant
8114 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
8115   match(Set dst (MulL dst src));
8116   effect(KILL cr, TEMP tmp);
8117   ins_cost(2*100+2*400);
8118   size(12);
8119 // Basic idea: lo(result) = lo(src * EAX)
8120 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8121   format %{ "IMUL   $tmp,EDX,$src\n\t"
8122             "MOV    EDX,$src\n\t"
8123             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8124             "ADD    EDX,$tmp" %}
8125   ins_encode( long_multiply_con( dst, src, tmp ) );
8126   ins_pipe( pipe_slow );
8127 %}
8128 
8129 // Integer DIV with Register
8130 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8131   match(Set rax (DivI rax div));
8132   effect(KILL rdx, KILL cr);
8133   size(26);
8134   ins_cost(30*100+10*100);
8135   format %{ "CMP    EAX,0x80000000\n\t"
8136             "JNE,s  normal\n\t"
8137             "XOR    EDX,EDX\n\t"
8138             "CMP    ECX,-1\n\t"
8139             "JE,s   done\n"
8140     "normal: CDQ\n\t"
8141             "IDIV   $div\n\t"
8142     "done:"        %}
8143   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8144   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8145   ins_pipe( ialu_reg_reg_alu0 );
8146 %}
8147 
8148 // Divide Register Long
8149 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8150   match(Set dst (DivL src1 src2));
8151   effect( KILL cr, KILL cx, KILL bx );
8152   ins_cost(10000);
8153   format %{ "PUSH   $src1.hi\n\t"
8154             "PUSH   $src1.lo\n\t"
8155             "PUSH   $src2.hi\n\t"
8156             "PUSH   $src2.lo\n\t"
8157             "CALL   SharedRuntime::ldiv\n\t"
8158             "ADD    ESP,16" %}
8159   ins_encode( long_div(src1,src2) );
8160   ins_pipe( pipe_slow );
8161 %}
8162 
8163 // Integer DIVMOD with Register, both quotient and mod results
8164 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8165   match(DivModI rax div);
8166   effect(KILL cr);
8167   size(26);
8168   ins_cost(30*100+10*100);
8169   format %{ "CMP    EAX,0x80000000\n\t"
8170             "JNE,s  normal\n\t"
8171             "XOR    EDX,EDX\n\t"
8172             "CMP    ECX,-1\n\t"
8173             "JE,s   done\n"
8174     "normal: CDQ\n\t"
8175             "IDIV   $div\n\t"
8176     "done:"        %}
8177   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8178   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8179   ins_pipe( pipe_slow );
8180 %}
8181 
8182 // Integer MOD with Register
8183 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8184   match(Set rdx (ModI rax div));
8185   effect(KILL rax, KILL cr);
8186 
8187   size(26);
8188   ins_cost(300);
8189   format %{ "CDQ\n\t"
8190             "IDIV   $div" %}
8191   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8192   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8193   ins_pipe( ialu_reg_reg_alu0 );
8194 %}
8195 
8196 // Remainder Register Long
8197 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8198   match(Set dst (ModL src1 src2));
8199   effect( KILL cr, KILL cx, KILL bx );
8200   ins_cost(10000);
8201   format %{ "PUSH   $src1.hi\n\t"
8202             "PUSH   $src1.lo\n\t"
8203             "PUSH   $src2.hi\n\t"
8204             "PUSH   $src2.lo\n\t"
8205             "CALL   SharedRuntime::lrem\n\t"
8206             "ADD    ESP,16" %}
8207   ins_encode( long_mod(src1,src2) );
8208   ins_pipe( pipe_slow );
8209 %}
8210 
8211 // Divide Register Long (no special case since divisor != -1)
8212 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8213   match(Set dst (DivL dst imm));
8214   effect( TEMP tmp, TEMP tmp2, KILL cr );
8215   ins_cost(1000);
8216   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8217             "XOR    $tmp2,$tmp2\n\t"
8218             "CMP    $tmp,EDX\n\t"
8219             "JA,s   fast\n\t"
8220             "MOV    $tmp2,EAX\n\t"
8221             "MOV    EAX,EDX\n\t"
8222             "MOV    EDX,0\n\t"
8223             "JLE,s  pos\n\t"
8224             "LNEG   EAX : $tmp2\n\t"
8225             "DIV    $tmp # unsigned division\n\t"
8226             "XCHG   EAX,$tmp2\n\t"
8227             "DIV    $tmp\n\t"
8228             "LNEG   $tmp2 : EAX\n\t"
8229             "JMP,s  done\n"
8230     "pos:\n\t"
8231             "DIV    $tmp\n\t"
8232             "XCHG   EAX,$tmp2\n"
8233     "fast:\n\t"
8234             "DIV    $tmp\n"
8235     "done:\n\t"
8236             "MOV    EDX,$tmp2\n\t"
8237             "NEG    EDX:EAX # if $imm < 0" %}
8238   ins_encode %{
8239     int con = (int)$imm$$constant;
8240     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8241     int pcon = (con > 0) ? con : -con;
8242     Label Lfast, Lpos, Ldone;
8243 
8244     __ movl($tmp$$Register, pcon);
8245     __ xorl($tmp2$$Register,$tmp2$$Register);
8246     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8247     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8248 
8249     __ movl($tmp2$$Register, $dst$$Register); // save
8250     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8251     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8252     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8253 
8254     // Negative dividend.
8255     // convert value to positive to use unsigned division
8256     __ lneg($dst$$Register, $tmp2$$Register);
8257     __ divl($tmp$$Register);
8258     __ xchgl($dst$$Register, $tmp2$$Register);
8259     __ divl($tmp$$Register);
8260     // revert result back to negative
8261     __ lneg($tmp2$$Register, $dst$$Register);
8262     __ jmpb(Ldone);
8263 
8264     __ bind(Lpos);
8265     __ divl($tmp$$Register); // Use unsigned division
8266     __ xchgl($dst$$Register, $tmp2$$Register);
8267     // Fallthrow for final divide, tmp2 has 32 bit hi result
8268 
8269     __ bind(Lfast);
8270     // fast path: src is positive
8271     __ divl($tmp$$Register); // Use unsigned division
8272 
8273     __ bind(Ldone);
8274     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8275     if (con < 0) {
8276       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8277     }
8278   %}
8279   ins_pipe( pipe_slow );
8280 %}
8281 
8282 // Remainder Register Long (remainder fit into 32 bits)
8283 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8284   match(Set dst (ModL dst imm));
8285   effect( TEMP tmp, TEMP tmp2, KILL cr );
8286   ins_cost(1000);
8287   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8288             "CMP    $tmp,EDX\n\t"
8289             "JA,s   fast\n\t"
8290             "MOV    $tmp2,EAX\n\t"
8291             "MOV    EAX,EDX\n\t"
8292             "MOV    EDX,0\n\t"
8293             "JLE,s  pos\n\t"
8294             "LNEG   EAX : $tmp2\n\t"
8295             "DIV    $tmp # unsigned division\n\t"
8296             "MOV    EAX,$tmp2\n\t"
8297             "DIV    $tmp\n\t"
8298             "NEG    EDX\n\t"
8299             "JMP,s  done\n"
8300     "pos:\n\t"
8301             "DIV    $tmp\n\t"
8302             "MOV    EAX,$tmp2\n"
8303     "fast:\n\t"
8304             "DIV    $tmp\n"
8305     "done:\n\t"
8306             "MOV    EAX,EDX\n\t"
8307             "SAR    EDX,31\n\t" %}
8308   ins_encode %{
8309     int con = (int)$imm$$constant;
8310     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8311     int pcon = (con > 0) ? con : -con;
8312     Label  Lfast, Lpos, Ldone;
8313 
8314     __ movl($tmp$$Register, pcon);
8315     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8316     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8317 
8318     __ movl($tmp2$$Register, $dst$$Register); // save
8319     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8320     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8321     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8322 
8323     // Negative dividend.
8324     // convert value to positive to use unsigned division
8325     __ lneg($dst$$Register, $tmp2$$Register);
8326     __ divl($tmp$$Register);
8327     __ movl($dst$$Register, $tmp2$$Register);
8328     __ divl($tmp$$Register);
8329     // revert remainder back to negative
8330     __ negl(HIGH_FROM_LOW($dst$$Register));
8331     __ jmpb(Ldone);
8332 
8333     __ bind(Lpos);
8334     __ divl($tmp$$Register);
8335     __ movl($dst$$Register, $tmp2$$Register);
8336 
8337     __ bind(Lfast);
8338     // fast path: src is positive
8339     __ divl($tmp$$Register);
8340 
8341     __ bind(Ldone);
8342     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8343     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
8344 
8345   %}
8346   ins_pipe( pipe_slow );
8347 %}
8348 
8349 // Integer Shift Instructions
8350 // Shift Left by one
8351 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8352   match(Set dst (LShiftI dst shift));
8353   effect(KILL cr);
8354 
8355   size(2);
8356   format %{ "SHL    $dst,$shift" %}
8357   opcode(0xD1, 0x4);  /* D1 /4 */
8358   ins_encode( OpcP, RegOpc( dst ) );
8359   ins_pipe( ialu_reg );
8360 %}
8361 
8362 // Shift Left by 8-bit immediate
8363 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8364   match(Set dst (LShiftI dst shift));
8365   effect(KILL cr);
8366 
8367   size(3);
8368   format %{ "SHL    $dst,$shift" %}
8369   opcode(0xC1, 0x4);  /* C1 /4 ib */
8370   ins_encode( RegOpcImm( dst, shift) );
8371   ins_pipe( ialu_reg );
8372 %}
8373 
8374 // Shift Left by variable
8375 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8376   match(Set dst (LShiftI dst shift));
8377   effect(KILL cr);
8378 
8379   size(2);
8380   format %{ "SHL    $dst,$shift" %}
8381   opcode(0xD3, 0x4);  /* D3 /4 */
8382   ins_encode( OpcP, RegOpc( dst ) );
8383   ins_pipe( ialu_reg_reg );
8384 %}
8385 
8386 // Arithmetic shift right by one
8387 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8388   match(Set dst (RShiftI dst shift));
8389   effect(KILL cr);
8390 
8391   size(2);
8392   format %{ "SAR    $dst,$shift" %}
8393   opcode(0xD1, 0x7);  /* D1 /7 */
8394   ins_encode( OpcP, RegOpc( dst ) );
8395   ins_pipe( ialu_reg );
8396 %}
8397 
8398 // Arithmetic shift right by one
8399 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8400   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8401   effect(KILL cr);
8402   format %{ "SAR    $dst,$shift" %}
8403   opcode(0xD1, 0x7);  /* D1 /7 */
8404   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8405   ins_pipe( ialu_mem_imm );
8406 %}
8407 
8408 // Arithmetic Shift Right by 8-bit immediate
8409 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8410   match(Set dst (RShiftI dst shift));
8411   effect(KILL cr);
8412 
8413   size(3);
8414   format %{ "SAR    $dst,$shift" %}
8415   opcode(0xC1, 0x7);  /* C1 /7 ib */
8416   ins_encode( RegOpcImm( dst, shift ) );
8417   ins_pipe( ialu_mem_imm );
8418 %}
8419 
8420 // Arithmetic Shift Right by 8-bit immediate
8421 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8422   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8423   effect(KILL cr);
8424 
8425   format %{ "SAR    $dst,$shift" %}
8426   opcode(0xC1, 0x7);  /* C1 /7 ib */
8427   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8428   ins_pipe( ialu_mem_imm );
8429 %}
8430 
8431 // Arithmetic Shift Right by variable
8432 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8433   match(Set dst (RShiftI dst shift));
8434   effect(KILL cr);
8435 
8436   size(2);
8437   format %{ "SAR    $dst,$shift" %}
8438   opcode(0xD3, 0x7);  /* D3 /7 */
8439   ins_encode( OpcP, RegOpc( dst ) );
8440   ins_pipe( ialu_reg_reg );
8441 %}
8442 
8443 // Logical shift right by one
8444 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8445   match(Set dst (URShiftI dst shift));
8446   effect(KILL cr);
8447 
8448   size(2);
8449   format %{ "SHR    $dst,$shift" %}
8450   opcode(0xD1, 0x5);  /* D1 /5 */
8451   ins_encode( OpcP, RegOpc( dst ) );
8452   ins_pipe( ialu_reg );
8453 %}
8454 
8455 // Logical Shift Right by 8-bit immediate
8456 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8457   match(Set dst (URShiftI dst shift));
8458   effect(KILL cr);
8459 
8460   size(3);
8461   format %{ "SHR    $dst,$shift" %}
8462   opcode(0xC1, 0x5);  /* C1 /5 ib */
8463   ins_encode( RegOpcImm( dst, shift) );
8464   ins_pipe( ialu_reg );
8465 %}
8466 
8467 
8468 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8469 // This idiom is used by the compiler for the i2b bytecode.
8470 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
8471   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8472 
8473   size(3);
8474   format %{ "MOVSX  $dst,$src :8" %}
8475   ins_encode %{
8476     __ movsbl($dst$$Register, $src$$Register);
8477   %}
8478   ins_pipe(ialu_reg_reg);
8479 %}
8480 
8481 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8482 // This idiom is used by the compiler the i2s bytecode.
8483 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
8484   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8485 
8486   size(3);
8487   format %{ "MOVSX  $dst,$src :16" %}
8488   ins_encode %{
8489     __ movswl($dst$$Register, $src$$Register);
8490   %}
8491   ins_pipe(ialu_reg_reg);
8492 %}
8493 
8494 
8495 // Logical Shift Right by variable
8496 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8497   match(Set dst (URShiftI dst shift));
8498   effect(KILL cr);
8499 
8500   size(2);
8501   format %{ "SHR    $dst,$shift" %}
8502   opcode(0xD3, 0x5);  /* D3 /5 */
8503   ins_encode( OpcP, RegOpc( dst ) );
8504   ins_pipe( ialu_reg_reg );
8505 %}
8506 
8507 
8508 //----------Logical Instructions-----------------------------------------------
8509 //----------Integer Logical Instructions---------------------------------------
8510 // And Instructions
8511 // And Register with Register
8512 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8513   match(Set dst (AndI dst src));
8514   effect(KILL cr);
8515 
8516   size(2);
8517   format %{ "AND    $dst,$src" %}
8518   opcode(0x23);
8519   ins_encode( OpcP, RegReg( dst, src) );
8520   ins_pipe( ialu_reg_reg );
8521 %}
8522 
8523 // And Register with Immediate
8524 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8525   match(Set dst (AndI dst src));
8526   effect(KILL cr);
8527 
8528   format %{ "AND    $dst,$src" %}
8529   opcode(0x81,0x04);  /* Opcode 81 /4 */
8530   // ins_encode( RegImm( dst, src) );
8531   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8532   ins_pipe( ialu_reg );
8533 %}
8534 
8535 // And Register with Memory
8536 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8537   match(Set dst (AndI dst (LoadI src)));
8538   effect(KILL cr);
8539 
8540   ins_cost(125);
8541   format %{ "AND    $dst,$src" %}
8542   opcode(0x23);
8543   ins_encode( OpcP, RegMem( dst, src) );
8544   ins_pipe( ialu_reg_mem );
8545 %}
8546 
8547 // And Memory with Register
8548 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8549   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8550   effect(KILL cr);
8551 
8552   ins_cost(150);
8553   format %{ "AND    $dst,$src" %}
8554   opcode(0x21);  /* Opcode 21 /r */
8555   ins_encode( OpcP, RegMem( src, dst ) );
8556   ins_pipe( ialu_mem_reg );
8557 %}
8558 
8559 // And Memory with Immediate
8560 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8561   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8562   effect(KILL cr);
8563 
8564   ins_cost(125);
8565   format %{ "AND    $dst,$src" %}
8566   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8567   // ins_encode( MemImm( dst, src) );
8568   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8569   ins_pipe( ialu_mem_imm );
8570 %}
8571 
8572 // Or Instructions
8573 // Or Register with Register
8574 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8575   match(Set dst (OrI dst src));
8576   effect(KILL cr);
8577 
8578   size(2);
8579   format %{ "OR     $dst,$src" %}
8580   opcode(0x0B);
8581   ins_encode( OpcP, RegReg( dst, src) );
8582   ins_pipe( ialu_reg_reg );
8583 %}
8584 
8585 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8586   match(Set dst (OrI dst (CastP2X src)));
8587   effect(KILL cr);
8588 
8589   size(2);
8590   format %{ "OR     $dst,$src" %}
8591   opcode(0x0B);
8592   ins_encode( OpcP, RegReg( dst, src) );
8593   ins_pipe( ialu_reg_reg );
8594 %}
8595 
8596 
8597 // Or Register with Immediate
8598 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8599   match(Set dst (OrI dst src));
8600   effect(KILL cr);
8601 
8602   format %{ "OR     $dst,$src" %}
8603   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8604   // ins_encode( RegImm( dst, src) );
8605   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8606   ins_pipe( ialu_reg );
8607 %}
8608 
8609 // Or Register with Memory
8610 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8611   match(Set dst (OrI dst (LoadI src)));
8612   effect(KILL cr);
8613 
8614   ins_cost(125);
8615   format %{ "OR     $dst,$src" %}
8616   opcode(0x0B);
8617   ins_encode( OpcP, RegMem( dst, src) );
8618   ins_pipe( ialu_reg_mem );
8619 %}
8620 
8621 // Or Memory with Register
8622 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8623   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8624   effect(KILL cr);
8625 
8626   ins_cost(150);
8627   format %{ "OR     $dst,$src" %}
8628   opcode(0x09);  /* Opcode 09 /r */
8629   ins_encode( OpcP, RegMem( src, dst ) );
8630   ins_pipe( ialu_mem_reg );
8631 %}
8632 
8633 // Or Memory with Immediate
8634 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8635   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8636   effect(KILL cr);
8637 
8638   ins_cost(125);
8639   format %{ "OR     $dst,$src" %}
8640   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8641   // ins_encode( MemImm( dst, src) );
8642   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8643   ins_pipe( ialu_mem_imm );
8644 %}
8645 
8646 // ROL/ROR
8647 // ROL expand
8648 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8649   effect(USE_DEF dst, USE shift, KILL cr);
8650 
8651   format %{ "ROL    $dst, $shift" %}
8652   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8653   ins_encode( OpcP, RegOpc( dst ));
8654   ins_pipe( ialu_reg );
8655 %}
8656 
8657 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8658   effect(USE_DEF dst, USE shift, KILL cr);
8659 
8660   format %{ "ROL    $dst, $shift" %}
8661   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8662   ins_encode( RegOpcImm(dst, shift) );
8663   ins_pipe(ialu_reg);
8664 %}
8665 
8666 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8667   effect(USE_DEF dst, USE shift, KILL cr);
8668 
8669   format %{ "ROL    $dst, $shift" %}
8670   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8671   ins_encode(OpcP, RegOpc(dst));
8672   ins_pipe( ialu_reg_reg );
8673 %}
8674 // end of ROL expand
8675 
8676 // ROL 32bit by one once
8677 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8678   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8679 
8680   expand %{
8681     rolI_eReg_imm1(dst, lshift, cr);
8682   %}
8683 %}
8684 
8685 // ROL 32bit var by imm8 once
8686 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8687   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8688   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8689 
8690   expand %{
8691     rolI_eReg_imm8(dst, lshift, cr);
8692   %}
8693 %}
8694 
8695 // ROL 32bit var by var once
8696 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8697   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8698 
8699   expand %{
8700     rolI_eReg_CL(dst, shift, cr);
8701   %}
8702 %}
8703 
8704 // ROL 32bit var by var once
8705 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8706   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8707 
8708   expand %{
8709     rolI_eReg_CL(dst, shift, cr);
8710   %}
8711 %}
8712 
8713 // ROR expand
8714 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8715   effect(USE_DEF dst, USE shift, KILL cr);
8716 
8717   format %{ "ROR    $dst, $shift" %}
8718   opcode(0xD1,0x1);  /* Opcode D1 /1 */
8719   ins_encode( OpcP, RegOpc( dst ) );
8720   ins_pipe( ialu_reg );
8721 %}
8722 
8723 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8724   effect (USE_DEF dst, USE shift, KILL cr);
8725 
8726   format %{ "ROR    $dst, $shift" %}
8727   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8728   ins_encode( RegOpcImm(dst, shift) );
8729   ins_pipe( ialu_reg );
8730 %}
8731 
8732 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8733   effect(USE_DEF dst, USE shift, KILL cr);
8734 
8735   format %{ "ROR    $dst, $shift" %}
8736   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8737   ins_encode(OpcP, RegOpc(dst));
8738   ins_pipe( ialu_reg_reg );
8739 %}
8740 // end of ROR expand
8741 
8742 // ROR right once
8743 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8744   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8745 
8746   expand %{
8747     rorI_eReg_imm1(dst, rshift, cr);
8748   %}
8749 %}
8750 
8751 // ROR 32bit by immI8 once
8752 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8753   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8754   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8755 
8756   expand %{
8757     rorI_eReg_imm8(dst, rshift, cr);
8758   %}
8759 %}
8760 
8761 // ROR 32bit var by var once
8762 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8763   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8764 
8765   expand %{
8766     rorI_eReg_CL(dst, shift, cr);
8767   %}
8768 %}
8769 
8770 // ROR 32bit var by var once
8771 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8772   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8773 
8774   expand %{
8775     rorI_eReg_CL(dst, shift, cr);
8776   %}
8777 %}
8778 
8779 // Xor Instructions
8780 // Xor Register with Register
8781 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8782   match(Set dst (XorI dst src));
8783   effect(KILL cr);
8784 
8785   size(2);
8786   format %{ "XOR    $dst,$src" %}
8787   opcode(0x33);
8788   ins_encode( OpcP, RegReg( dst, src) );
8789   ins_pipe( ialu_reg_reg );
8790 %}
8791 
8792 // Xor Register with Immediate -1
8793 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
8794   match(Set dst (XorI dst imm));  
8795 
8796   size(2);
8797   format %{ "NOT    $dst" %}  
8798   ins_encode %{
8799      __ notl($dst$$Register);
8800   %}
8801   ins_pipe( ialu_reg );
8802 %}
8803 
8804 // Xor Register with Immediate
8805 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8806   match(Set dst (XorI dst src));
8807   effect(KILL cr);
8808 
8809   format %{ "XOR    $dst,$src" %}
8810   opcode(0x81,0x06);  /* Opcode 81 /6 id */
8811   // ins_encode( RegImm( dst, src) );
8812   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8813   ins_pipe( ialu_reg );
8814 %}
8815 
8816 // Xor Register with Memory
8817 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8818   match(Set dst (XorI dst (LoadI src)));
8819   effect(KILL cr);
8820 
8821   ins_cost(125);
8822   format %{ "XOR    $dst,$src" %}
8823   opcode(0x33);
8824   ins_encode( OpcP, RegMem(dst, src) );
8825   ins_pipe( ialu_reg_mem );
8826 %}
8827 
8828 // Xor Memory with Register
8829 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8830   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8831   effect(KILL cr);
8832 
8833   ins_cost(150);
8834   format %{ "XOR    $dst,$src" %}
8835   opcode(0x31);  /* Opcode 31 /r */
8836   ins_encode( OpcP, RegMem( src, dst ) );
8837   ins_pipe( ialu_mem_reg );
8838 %}
8839 
8840 // Xor Memory with Immediate
8841 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8842   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8843   effect(KILL cr);
8844 
8845   ins_cost(125);
8846   format %{ "XOR    $dst,$src" %}
8847   opcode(0x81,0x6);  /* Opcode 81 /6 id */
8848   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8849   ins_pipe( ialu_mem_imm );
8850 %}
8851 
8852 //----------Convert Int to Boolean---------------------------------------------
8853 
8854 instruct movI_nocopy(rRegI dst, rRegI src) %{
8855   effect( DEF dst, USE src );
8856   format %{ "MOV    $dst,$src" %}
8857   ins_encode( enc_Copy( dst, src) );
8858   ins_pipe( ialu_reg_reg );
8859 %}
8860 
8861 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
8862   effect( USE_DEF dst, USE src, KILL cr );
8863 
8864   size(4);
8865   format %{ "NEG    $dst\n\t"
8866             "ADC    $dst,$src" %}
8867   ins_encode( neg_reg(dst),
8868               OpcRegReg(0x13,dst,src) );
8869   ins_pipe( ialu_reg_reg_long );
8870 %}
8871 
8872 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
8873   match(Set dst (Conv2B src));
8874 
8875   expand %{
8876     movI_nocopy(dst,src);
8877     ci2b(dst,src,cr);
8878   %}
8879 %}
8880 
8881 instruct movP_nocopy(rRegI dst, eRegP src) %{
8882   effect( DEF dst, USE src );
8883   format %{ "MOV    $dst,$src" %}
8884   ins_encode( enc_Copy( dst, src) );
8885   ins_pipe( ialu_reg_reg );
8886 %}
8887 
8888 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
8889   effect( USE_DEF dst, USE src, KILL cr );
8890   format %{ "NEG    $dst\n\t"
8891             "ADC    $dst,$src" %}
8892   ins_encode( neg_reg(dst),
8893               OpcRegReg(0x13,dst,src) );
8894   ins_pipe( ialu_reg_reg_long );
8895 %}
8896 
8897 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
8898   match(Set dst (Conv2B src));
8899 
8900   expand %{
8901     movP_nocopy(dst,src);
8902     cp2b(dst,src,cr);
8903   %}
8904 %}
8905 
8906 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
8907   match(Set dst (CmpLTMask p q));
8908   effect( KILL cr );
8909   ins_cost(400);
8910 
8911   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8912   format %{ "XOR    $dst,$dst\n\t"
8913             "CMP    $p,$q\n\t"
8914             "SETlt  $dst\n\t"
8915             "NEG    $dst" %}
8916   ins_encode( OpcRegReg(0x33,dst,dst),
8917               OpcRegReg(0x3B,p,q),
8918               setLT_reg(dst), neg_reg(dst) );
8919   ins_pipe( pipe_slow );
8920 %}
8921 
8922 instruct cmpLTMask0( rRegI dst, immI0 zero, eFlagsReg cr ) %{
8923   match(Set dst (CmpLTMask dst zero));
8924   effect( DEF dst, KILL cr );
8925   ins_cost(100);
8926 
8927   format %{ "SAR    $dst,31" %}
8928   opcode(0xC1, 0x7);  /* C1 /7 ib */
8929   ins_encode( RegOpcImm( dst, 0x1F ) );
8930   ins_pipe( ialu_reg );
8931 %}
8932 
8933 
8934 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
8935   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8936   effect( KILL tmp, KILL cr );
8937   ins_cost(400);
8938   // annoyingly, $tmp has no edges so you cant ask for it in
8939   // any format or encoding
8940   format %{ "SUB    $p,$q\n\t"
8941             "SBB    ECX,ECX\n\t"
8942             "AND    ECX,$y\n\t"
8943             "ADD    $p,ECX" %}
8944   ins_encode( enc_cmpLTP(p,q,y,tmp) );
8945   ins_pipe( pipe_cmplt );
8946 %}
8947 
8948 /* If I enable this, I encourage spilling in the inner loop of compress.
8949 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
8950   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8951   effect( USE_KILL tmp, KILL cr );
8952   ins_cost(400);
8953 
8954   format %{ "SUB    $p,$q\n\t"
8955             "SBB    ECX,ECX\n\t"
8956             "AND    ECX,$y\n\t"
8957             "ADD    $p,ECX" %}
8958   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
8959 %}
8960 */
8961 
8962 //----------Long Instructions------------------------------------------------
8963 // Add Long Register with Register
8964 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8965   match(Set dst (AddL dst src));
8966   effect(KILL cr);
8967   ins_cost(200);
8968   format %{ "ADD    $dst.lo,$src.lo\n\t"
8969             "ADC    $dst.hi,$src.hi" %}
8970   opcode(0x03, 0x13);
8971   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8972   ins_pipe( ialu_reg_reg_long );
8973 %}
8974 
8975 // Add Long Register with Immediate
8976 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8977   match(Set dst (AddL dst src));
8978   effect(KILL cr);
8979   format %{ "ADD    $dst.lo,$src.lo\n\t"
8980             "ADC    $dst.hi,$src.hi" %}
8981   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
8982   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8983   ins_pipe( ialu_reg_long );
8984 %}
8985 
8986 // Add Long Register with Memory
8987 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8988   match(Set dst (AddL dst (LoadL mem)));
8989   effect(KILL cr);
8990   ins_cost(125);
8991   format %{ "ADD    $dst.lo,$mem\n\t"
8992             "ADC    $dst.hi,$mem+4" %}
8993   opcode(0x03, 0x13);
8994   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8995   ins_pipe( ialu_reg_long_mem );
8996 %}
8997 
8998 // Subtract Long Register with Register.
8999 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9000   match(Set dst (SubL dst src));
9001   effect(KILL cr);
9002   ins_cost(200);
9003   format %{ "SUB    $dst.lo,$src.lo\n\t"
9004             "SBB    $dst.hi,$src.hi" %}
9005   opcode(0x2B, 0x1B);
9006   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9007   ins_pipe( ialu_reg_reg_long );
9008 %}
9009 
9010 // Subtract Long Register with Immediate
9011 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9012   match(Set dst (SubL dst src));
9013   effect(KILL cr);
9014   format %{ "SUB    $dst.lo,$src.lo\n\t"
9015             "SBB    $dst.hi,$src.hi" %}
9016   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9017   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9018   ins_pipe( ialu_reg_long );
9019 %}
9020 
9021 // Subtract Long Register with Memory
9022 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9023   match(Set dst (SubL dst (LoadL mem)));
9024   effect(KILL cr);
9025   ins_cost(125);
9026   format %{ "SUB    $dst.lo,$mem\n\t"
9027             "SBB    $dst.hi,$mem+4" %}
9028   opcode(0x2B, 0x1B);
9029   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9030   ins_pipe( ialu_reg_long_mem );
9031 %}
9032 
9033 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9034   match(Set dst (SubL zero dst));
9035   effect(KILL cr);
9036   ins_cost(300);
9037   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9038   ins_encode( neg_long(dst) );
9039   ins_pipe( ialu_reg_reg_long );
9040 %}
9041 
9042 // And Long Register with Register
9043 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9044   match(Set dst (AndL dst src));
9045   effect(KILL cr);
9046   format %{ "AND    $dst.lo,$src.lo\n\t"
9047             "AND    $dst.hi,$src.hi" %}
9048   opcode(0x23,0x23);
9049   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9050   ins_pipe( ialu_reg_reg_long );
9051 %}
9052 
9053 // And Long Register with Immediate
9054 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9055   match(Set dst (AndL dst src));
9056   effect(KILL cr);
9057   format %{ "AND    $dst.lo,$src.lo\n\t"
9058             "AND    $dst.hi,$src.hi" %}
9059   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9060   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9061   ins_pipe( ialu_reg_long );
9062 %}
9063 
9064 // And Long Register with Memory
9065 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9066   match(Set dst (AndL dst (LoadL mem)));
9067   effect(KILL cr);
9068   ins_cost(125);
9069   format %{ "AND    $dst.lo,$mem\n\t"
9070             "AND    $dst.hi,$mem+4" %}
9071   opcode(0x23, 0x23);
9072   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9073   ins_pipe( ialu_reg_long_mem );
9074 %}
9075 
9076 // Or Long Register with Register
9077 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9078   match(Set dst (OrL dst src));
9079   effect(KILL cr);
9080   format %{ "OR     $dst.lo,$src.lo\n\t"
9081             "OR     $dst.hi,$src.hi" %}
9082   opcode(0x0B,0x0B);
9083   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9084   ins_pipe( ialu_reg_reg_long );
9085 %}
9086 
9087 // Or Long Register with Immediate
9088 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9089   match(Set dst (OrL dst src));
9090   effect(KILL cr);
9091   format %{ "OR     $dst.lo,$src.lo\n\t"
9092             "OR     $dst.hi,$src.hi" %}
9093   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9094   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9095   ins_pipe( ialu_reg_long );
9096 %}
9097 
9098 // Or Long Register with Memory
9099 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9100   match(Set dst (OrL dst (LoadL mem)));
9101   effect(KILL cr);
9102   ins_cost(125);
9103   format %{ "OR     $dst.lo,$mem\n\t"
9104             "OR     $dst.hi,$mem+4" %}
9105   opcode(0x0B,0x0B);
9106   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9107   ins_pipe( ialu_reg_long_mem );
9108 %}
9109 
9110 // Xor Long Register with Register
9111 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9112   match(Set dst (XorL dst src));
9113   effect(KILL cr);
9114   format %{ "XOR    $dst.lo,$src.lo\n\t"
9115             "XOR    $dst.hi,$src.hi" %}
9116   opcode(0x33,0x33);
9117   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9118   ins_pipe( ialu_reg_reg_long );
9119 %}
9120 
9121 // Xor Long Register with Immediate -1
9122 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9123   match(Set dst (XorL dst imm));  
9124   format %{ "NOT    $dst.lo\n\t"
9125             "NOT    $dst.hi" %}
9126   ins_encode %{
9127      __ notl($dst$$Register);
9128      __ notl(HIGH_FROM_LOW($dst$$Register));
9129   %}
9130   ins_pipe( ialu_reg_long );
9131 %}
9132 
9133 // Xor Long Register with Immediate
9134 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9135   match(Set dst (XorL dst src));
9136   effect(KILL cr);
9137   format %{ "XOR    $dst.lo,$src.lo\n\t"
9138             "XOR    $dst.hi,$src.hi" %}
9139   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9140   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9141   ins_pipe( ialu_reg_long );
9142 %}
9143 
9144 // Xor Long Register with Memory
9145 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9146   match(Set dst (XorL dst (LoadL mem)));
9147   effect(KILL cr);
9148   ins_cost(125);
9149   format %{ "XOR    $dst.lo,$mem\n\t"
9150             "XOR    $dst.hi,$mem+4" %}
9151   opcode(0x33,0x33);
9152   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9153   ins_pipe( ialu_reg_long_mem );
9154 %}
9155 
9156 // Shift Left Long by 1
9157 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9158   predicate(UseNewLongLShift);
9159   match(Set dst (LShiftL dst cnt));
9160   effect(KILL cr);
9161   ins_cost(100);
9162   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9163             "ADC    $dst.hi,$dst.hi" %}
9164   ins_encode %{
9165     __ addl($dst$$Register,$dst$$Register);
9166     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9167   %}
9168   ins_pipe( ialu_reg_long );
9169 %}
9170 
9171 // Shift Left Long by 2
9172 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9173   predicate(UseNewLongLShift);
9174   match(Set dst (LShiftL dst cnt));
9175   effect(KILL cr);
9176   ins_cost(100);
9177   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9178             "ADC    $dst.hi,$dst.hi\n\t" 
9179             "ADD    $dst.lo,$dst.lo\n\t"
9180             "ADC    $dst.hi,$dst.hi" %}
9181   ins_encode %{
9182     __ addl($dst$$Register,$dst$$Register);
9183     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9184     __ addl($dst$$Register,$dst$$Register);
9185     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9186   %}
9187   ins_pipe( ialu_reg_long );
9188 %}
9189 
9190 // Shift Left Long by 3
9191 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9192   predicate(UseNewLongLShift);
9193   match(Set dst (LShiftL dst cnt));
9194   effect(KILL cr);
9195   ins_cost(100);
9196   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9197             "ADC    $dst.hi,$dst.hi\n\t" 
9198             "ADD    $dst.lo,$dst.lo\n\t"
9199             "ADC    $dst.hi,$dst.hi\n\t" 
9200             "ADD    $dst.lo,$dst.lo\n\t"
9201             "ADC    $dst.hi,$dst.hi" %}
9202   ins_encode %{
9203     __ addl($dst$$Register,$dst$$Register);
9204     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9205     __ addl($dst$$Register,$dst$$Register);
9206     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9207     __ addl($dst$$Register,$dst$$Register);
9208     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9209   %}
9210   ins_pipe( ialu_reg_long );
9211 %}
9212 
9213 // Shift Left Long by 1-31
9214 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9215   match(Set dst (LShiftL dst cnt));
9216   effect(KILL cr);
9217   ins_cost(200);
9218   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9219             "SHL    $dst.lo,$cnt" %}
9220   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9221   ins_encode( move_long_small_shift(dst,cnt) );
9222   ins_pipe( ialu_reg_long );
9223 %}
9224 
9225 // Shift Left Long by 32-63
9226 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9227   match(Set dst (LShiftL dst cnt));
9228   effect(KILL cr);
9229   ins_cost(300);
9230   format %{ "MOV    $dst.hi,$dst.lo\n"
9231           "\tSHL    $dst.hi,$cnt-32\n"
9232           "\tXOR    $dst.lo,$dst.lo" %}
9233   opcode(0xC1, 0x4);  /* C1 /4 ib */
9234   ins_encode( move_long_big_shift_clr(dst,cnt) );
9235   ins_pipe( ialu_reg_long );
9236 %}
9237 
9238 // Shift Left Long by variable
9239 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9240   match(Set dst (LShiftL dst shift));
9241   effect(KILL cr);
9242   ins_cost(500+200);
9243   size(17);
9244   format %{ "TEST   $shift,32\n\t"
9245             "JEQ,s  small\n\t"
9246             "MOV    $dst.hi,$dst.lo\n\t"
9247             "XOR    $dst.lo,$dst.lo\n"
9248     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9249             "SHL    $dst.lo,$shift" %}
9250   ins_encode( shift_left_long( dst, shift ) );
9251   ins_pipe( pipe_slow );
9252 %}
9253 
9254 // Shift Right Long by 1-31
9255 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9256   match(Set dst (URShiftL dst cnt));
9257   effect(KILL cr);
9258   ins_cost(200);
9259   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9260             "SHR    $dst.hi,$cnt" %}
9261   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9262   ins_encode( move_long_small_shift(dst,cnt) );
9263   ins_pipe( ialu_reg_long );
9264 %}
9265 
9266 // Shift Right Long by 32-63
9267 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9268   match(Set dst (URShiftL dst cnt));
9269   effect(KILL cr);
9270   ins_cost(300);
9271   format %{ "MOV    $dst.lo,$dst.hi\n"
9272           "\tSHR    $dst.lo,$cnt-32\n"
9273           "\tXOR    $dst.hi,$dst.hi" %}
9274   opcode(0xC1, 0x5);  /* C1 /5 ib */
9275   ins_encode( move_long_big_shift_clr(dst,cnt) );
9276   ins_pipe( ialu_reg_long );
9277 %}
9278 
9279 // Shift Right Long by variable
9280 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9281   match(Set dst (URShiftL dst shift));
9282   effect(KILL cr);
9283   ins_cost(600);
9284   size(17);
9285   format %{ "TEST   $shift,32\n\t"
9286             "JEQ,s  small\n\t"
9287             "MOV    $dst.lo,$dst.hi\n\t"
9288             "XOR    $dst.hi,$dst.hi\n"
9289     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9290             "SHR    $dst.hi,$shift" %}
9291   ins_encode( shift_right_long( dst, shift ) );
9292   ins_pipe( pipe_slow );
9293 %}
9294 
9295 // Shift Right Long by 1-31
9296 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9297   match(Set dst (RShiftL dst cnt));
9298   effect(KILL cr);
9299   ins_cost(200);
9300   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9301             "SAR    $dst.hi,$cnt" %}
9302   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9303   ins_encode( move_long_small_shift(dst,cnt) );
9304   ins_pipe( ialu_reg_long );
9305 %}
9306 
9307 // Shift Right Long by 32-63
9308 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9309   match(Set dst (RShiftL dst cnt));
9310   effect(KILL cr);
9311   ins_cost(300);
9312   format %{ "MOV    $dst.lo,$dst.hi\n"
9313           "\tSAR    $dst.lo,$cnt-32\n"
9314           "\tSAR    $dst.hi,31" %}
9315   opcode(0xC1, 0x7);  /* C1 /7 ib */
9316   ins_encode( move_long_big_shift_sign(dst,cnt) );
9317   ins_pipe( ialu_reg_long );
9318 %}
9319 
9320 // Shift Right arithmetic Long by variable
9321 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9322   match(Set dst (RShiftL dst shift));
9323   effect(KILL cr);
9324   ins_cost(600);
9325   size(18);
9326   format %{ "TEST   $shift,32\n\t"
9327             "JEQ,s  small\n\t"
9328             "MOV    $dst.lo,$dst.hi\n\t"
9329             "SAR    $dst.hi,31\n"
9330     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9331             "SAR    $dst.hi,$shift" %}
9332   ins_encode( shift_right_arith_long( dst, shift ) );
9333   ins_pipe( pipe_slow );
9334 %}
9335 
9336 
9337 //----------Double Instructions------------------------------------------------
9338 // Double Math
9339 
9340 // Compare & branch
9341 
9342 // P6 version of float compare, sets condition codes in EFLAGS
9343 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9344   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9345   match(Set cr (CmpD src1 src2));
9346   effect(KILL rax);
9347   ins_cost(150);
9348   format %{ "FLD    $src1\n\t"
9349             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9350             "JNP    exit\n\t"
9351             "MOV    ah,1       // saw a NaN, set CF\n\t"
9352             "SAHF\n"
9353      "exit:\tNOP               // avoid branch to branch" %}
9354   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9355   ins_encode( Push_Reg_DPR(src1),
9356               OpcP, RegOpc(src2),
9357               cmpF_P6_fixup );
9358   ins_pipe( pipe_slow );
9359 %}
9360 
9361 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9362   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9363   match(Set cr (CmpD src1 src2));
9364   ins_cost(150);
9365   format %{ "FLD    $src1\n\t"
9366             "FUCOMIP ST,$src2  // P6 instruction" %}
9367   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9368   ins_encode( Push_Reg_DPR(src1),
9369               OpcP, RegOpc(src2));
9370   ins_pipe( pipe_slow );
9371 %}
9372 
9373 // Compare & branch
9374 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9375   predicate(UseSSE<=1);
9376   match(Set cr (CmpD src1 src2));
9377   effect(KILL rax);
9378   ins_cost(200);
9379   format %{ "FLD    $src1\n\t"
9380             "FCOMp  $src2\n\t"
9381             "FNSTSW AX\n\t"
9382             "TEST   AX,0x400\n\t"
9383             "JZ,s   flags\n\t"
9384             "MOV    AH,1\t# unordered treat as LT\n"
9385     "flags:\tSAHF" %}
9386   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9387   ins_encode( Push_Reg_DPR(src1),
9388               OpcP, RegOpc(src2),
9389               fpu_flags);
9390   ins_pipe( pipe_slow );
9391 %}
9392 
9393 // Compare vs zero into -1,0,1
9394 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9395   predicate(UseSSE<=1);
9396   match(Set dst (CmpD3 src1 zero));
9397   effect(KILL cr, KILL rax);
9398   ins_cost(280);
9399   format %{ "FTSTD  $dst,$src1" %}
9400   opcode(0xE4, 0xD9);
9401   ins_encode( Push_Reg_DPR(src1),
9402               OpcS, OpcP, PopFPU,
9403               CmpF_Result(dst));
9404   ins_pipe( pipe_slow );
9405 %}
9406 
9407 // Compare into -1,0,1
9408 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9409   predicate(UseSSE<=1);
9410   match(Set dst (CmpD3 src1 src2));
9411   effect(KILL cr, KILL rax);
9412   ins_cost(300);
9413   format %{ "FCMPD  $dst,$src1,$src2" %}
9414   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9415   ins_encode( Push_Reg_DPR(src1),
9416               OpcP, RegOpc(src2),
9417               CmpF_Result(dst));
9418   ins_pipe( pipe_slow );
9419 %}
9420 
9421 // float compare and set condition codes in EFLAGS by XMM regs
9422 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9423   predicate(UseSSE>=2);
9424   match(Set cr (CmpD src1 src2));
9425   ins_cost(145);
9426   format %{ "UCOMISD $src1,$src2\n\t"
9427             "JNP,s   exit\n\t"
9428             "PUSHF\t# saw NaN, set CF\n\t"
9429             "AND     [rsp], #0xffffff2b\n\t"
9430             "POPF\n"
9431     "exit:" %}
9432   ins_encode %{
9433     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9434     emit_cmpfp_fixup(_masm);
9435   %}
9436   ins_pipe( pipe_slow );
9437 %}
9438 
9439 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9440   predicate(UseSSE>=2);
9441   match(Set cr (CmpD src1 src2));
9442   ins_cost(100);
9443   format %{ "UCOMISD $src1,$src2" %}
9444   ins_encode %{
9445     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9446   %}
9447   ins_pipe( pipe_slow );
9448 %}
9449 
9450 // float compare and set condition codes in EFLAGS by XMM regs
9451 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9452   predicate(UseSSE>=2);
9453   match(Set cr (CmpD src1 (LoadD src2)));
9454   ins_cost(145);
9455   format %{ "UCOMISD $src1,$src2\n\t"
9456             "JNP,s   exit\n\t"
9457             "PUSHF\t# saw NaN, set CF\n\t"
9458             "AND     [rsp], #0xffffff2b\n\t"
9459             "POPF\n"
9460     "exit:" %}
9461   ins_encode %{
9462     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9463     emit_cmpfp_fixup(_masm);
9464   %}
9465   ins_pipe( pipe_slow );
9466 %}
9467 
9468 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9469   predicate(UseSSE>=2);
9470   match(Set cr (CmpD src1 (LoadD src2)));
9471   ins_cost(100);
9472   format %{ "UCOMISD $src1,$src2" %}
9473   ins_encode %{
9474     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9475   %}
9476   ins_pipe( pipe_slow );
9477 %}
9478 
9479 // Compare into -1,0,1 in XMM
9480 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
9481   predicate(UseSSE>=2);
9482   match(Set dst (CmpD3 src1 src2));
9483   effect(KILL cr);
9484   ins_cost(255);
9485   format %{ "UCOMISD $src1, $src2\n\t"
9486             "MOV     $dst, #-1\n\t"
9487             "JP,s    done\n\t"
9488             "JB,s    done\n\t"
9489             "SETNE   $dst\n\t"
9490             "MOVZB   $dst, $dst\n"
9491     "done:" %}
9492   ins_encode %{
9493     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9494     emit_cmpfp3(_masm, $dst$$Register);
9495   %}
9496   ins_pipe( pipe_slow );
9497 %}
9498 
9499 // Compare into -1,0,1 in XMM and memory
9500 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
9501   predicate(UseSSE>=2);
9502   match(Set dst (CmpD3 src1 (LoadD src2)));
9503   effect(KILL cr);
9504   ins_cost(275);
9505   format %{ "UCOMISD $src1, $src2\n\t"
9506             "MOV     $dst, #-1\n\t"
9507             "JP,s    done\n\t"
9508             "JB,s    done\n\t"
9509             "SETNE   $dst\n\t"
9510             "MOVZB   $dst, $dst\n"
9511     "done:" %}
9512   ins_encode %{
9513     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9514     emit_cmpfp3(_masm, $dst$$Register);
9515   %}
9516   ins_pipe( pipe_slow );
9517 %}
9518 
9519 
9520 instruct subDPR_reg(regDPR dst, regDPR src) %{
9521   predicate (UseSSE <=1);
9522   match(Set dst (SubD dst src));
9523 
9524   format %{ "FLD    $src\n\t"
9525             "DSUBp  $dst,ST" %}
9526   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9527   ins_cost(150);
9528   ins_encode( Push_Reg_DPR(src),
9529               OpcP, RegOpc(dst) );
9530   ins_pipe( fpu_reg_reg );
9531 %}
9532 
9533 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9534   predicate (UseSSE <=1);
9535   match(Set dst (RoundDouble (SubD src1 src2)));
9536   ins_cost(250);
9537 
9538   format %{ "FLD    $src2\n\t"
9539             "DSUB   ST,$src1\n\t"
9540             "FSTP_D $dst\t# D-round" %}
9541   opcode(0xD8, 0x5);
9542   ins_encode( Push_Reg_DPR(src2),
9543               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9544   ins_pipe( fpu_mem_reg_reg );
9545 %}
9546 
9547 
9548 instruct subDPR_reg_mem(regDPR dst, memory src) %{
9549   predicate (UseSSE <=1);
9550   match(Set dst (SubD dst (LoadD src)));
9551   ins_cost(150);
9552 
9553   format %{ "FLD    $src\n\t"
9554             "DSUBp  $dst,ST" %}
9555   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9556   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9557               OpcP, RegOpc(dst) );
9558   ins_pipe( fpu_reg_mem );
9559 %}
9560 
9561 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
9562   predicate (UseSSE<=1);
9563   match(Set dst (AbsD src));
9564   ins_cost(100);
9565   format %{ "FABS" %}
9566   opcode(0xE1, 0xD9);
9567   ins_encode( OpcS, OpcP );
9568   ins_pipe( fpu_reg_reg );
9569 %}
9570 
9571 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
9572   predicate(UseSSE<=1);
9573   match(Set dst (NegD src));
9574   ins_cost(100);
9575   format %{ "FCHS" %}
9576   opcode(0xE0, 0xD9);
9577   ins_encode( OpcS, OpcP );
9578   ins_pipe( fpu_reg_reg );
9579 %}
9580 
9581 instruct addDPR_reg(regDPR dst, regDPR src) %{
9582   predicate(UseSSE<=1);
9583   match(Set dst (AddD dst src));
9584   format %{ "FLD    $src\n\t"
9585             "DADD   $dst,ST" %}
9586   size(4);
9587   ins_cost(150);
9588   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9589   ins_encode( Push_Reg_DPR(src),
9590               OpcP, RegOpc(dst) );
9591   ins_pipe( fpu_reg_reg );
9592 %}
9593 
9594 
9595 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9596   predicate(UseSSE<=1);
9597   match(Set dst (RoundDouble (AddD src1 src2)));
9598   ins_cost(250);
9599 
9600   format %{ "FLD    $src2\n\t"
9601             "DADD   ST,$src1\n\t"
9602             "FSTP_D $dst\t# D-round" %}
9603   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9604   ins_encode( Push_Reg_DPR(src2),
9605               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9606   ins_pipe( fpu_mem_reg_reg );
9607 %}
9608 
9609 
9610 instruct addDPR_reg_mem(regDPR dst, memory src) %{
9611   predicate(UseSSE<=1);
9612   match(Set dst (AddD dst (LoadD src)));
9613   ins_cost(150);
9614 
9615   format %{ "FLD    $src\n\t"
9616             "DADDp  $dst,ST" %}
9617   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9618   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9619               OpcP, RegOpc(dst) );
9620   ins_pipe( fpu_reg_mem );
9621 %}
9622 
9623 // add-to-memory
9624 instruct addDPR_mem_reg(memory dst, regDPR src) %{
9625   predicate(UseSSE<=1);
9626   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9627   ins_cost(150);
9628 
9629   format %{ "FLD_D  $dst\n\t"
9630             "DADD   ST,$src\n\t"
9631             "FST_D  $dst" %}
9632   opcode(0xDD, 0x0);
9633   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9634               Opcode(0xD8), RegOpc(src),
9635               set_instruction_start,
9636               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9637   ins_pipe( fpu_reg_mem );
9638 %}
9639 
9640 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
9641   predicate(UseSSE<=1);
9642   match(Set dst (AddD dst con));
9643   ins_cost(125);
9644   format %{ "FLD1\n\t"
9645             "DADDp  $dst,ST" %}
9646   ins_encode %{
9647     __ fld1();
9648     __ faddp($dst$$reg);
9649   %}
9650   ins_pipe(fpu_reg);
9651 %}
9652 
9653 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
9654   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9655   match(Set dst (AddD dst con));
9656   ins_cost(200);
9657   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9658             "DADDp  $dst,ST" %}
9659   ins_encode %{
9660     __ fld_d($constantaddress($con));
9661     __ faddp($dst$$reg);
9662   %}
9663   ins_pipe(fpu_reg_mem);
9664 %}
9665 
9666 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
9667   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9668   match(Set dst (RoundDouble (AddD src con)));
9669   ins_cost(200);
9670   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9671             "DADD   ST,$src\n\t"
9672             "FSTP_D $dst\t# D-round" %}
9673   ins_encode %{
9674     __ fld_d($constantaddress($con));
9675     __ fadd($src$$reg);
9676     __ fstp_d(Address(rsp, $dst$$disp));
9677   %}
9678   ins_pipe(fpu_mem_reg_con);
9679 %}
9680 
9681 instruct mulDPR_reg(regDPR dst, regDPR src) %{
9682   predicate(UseSSE<=1);
9683   match(Set dst (MulD dst src));
9684   format %{ "FLD    $src\n\t"
9685             "DMULp  $dst,ST" %}
9686   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9687   ins_cost(150);
9688   ins_encode( Push_Reg_DPR(src),
9689               OpcP, RegOpc(dst) );
9690   ins_pipe( fpu_reg_reg );
9691 %}
9692 
9693 // Strict FP instruction biases argument before multiply then
9694 // biases result to avoid double rounding of subnormals.
9695 //
9696 // scale arg1 by multiplying arg1 by 2^(-15360)
9697 // load arg2
9698 // multiply scaled arg1 by arg2
9699 // rescale product by 2^(15360)
9700 //
9701 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9702   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9703   match(Set dst (MulD dst src));
9704   ins_cost(1);   // Select this instruction for all strict FP double multiplies
9705 
9706   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9707             "DMULp  $dst,ST\n\t"
9708             "FLD    $src\n\t"
9709             "DMULp  $dst,ST\n\t"
9710             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9711             "DMULp  $dst,ST\n\t" %}
9712   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9713   ins_encode( strictfp_bias1(dst),
9714               Push_Reg_DPR(src),
9715               OpcP, RegOpc(dst),
9716               strictfp_bias2(dst) );
9717   ins_pipe( fpu_reg_reg );
9718 %}
9719 
9720 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
9721   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9722   match(Set dst (MulD dst con));
9723   ins_cost(200);
9724   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9725             "DMULp  $dst,ST" %}
9726   ins_encode %{
9727     __ fld_d($constantaddress($con));
9728     __ fmulp($dst$$reg);
9729   %}
9730   ins_pipe(fpu_reg_mem);
9731 %}
9732 
9733 
9734 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
9735   predicate( UseSSE<=1 );
9736   match(Set dst (MulD dst (LoadD src)));
9737   ins_cost(200);
9738   format %{ "FLD_D  $src\n\t"
9739             "DMULp  $dst,ST" %}
9740   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9741   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9742               OpcP, RegOpc(dst) );
9743   ins_pipe( fpu_reg_mem );
9744 %}
9745 
9746 //
9747 // Cisc-alternate to reg-reg multiply
9748 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
9749   predicate( UseSSE<=1 );
9750   match(Set dst (MulD src (LoadD mem)));
9751   ins_cost(250);
9752   format %{ "FLD_D  $mem\n\t"
9753             "DMUL   ST,$src\n\t"
9754             "FSTP_D $dst" %}
9755   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9756   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9757               OpcReg_FPR(src),
9758               Pop_Reg_DPR(dst) );
9759   ins_pipe( fpu_reg_reg_mem );
9760 %}
9761 
9762 
9763 // MACRO3 -- addDPR a mulDPR
9764 // This instruction is a '2-address' instruction in that the result goes
9765 // back to src2.  This eliminates a move from the macro; possibly the
9766 // register allocator will have to add it back (and maybe not).
9767 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9768   predicate( UseSSE<=1 );
9769   match(Set src2 (AddD (MulD src0 src1) src2));
9770   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9771             "DMUL   ST,$src1\n\t"
9772             "DADDp  $src2,ST" %}
9773   ins_cost(250);
9774   opcode(0xDD); /* LoadD DD /0 */
9775   ins_encode( Push_Reg_FPR(src0),
9776               FMul_ST_reg(src1),
9777               FAddP_reg_ST(src2) );
9778   ins_pipe( fpu_reg_reg_reg );
9779 %}
9780 
9781 
9782 // MACRO3 -- subDPR a mulDPR
9783 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9784   predicate( UseSSE<=1 );
9785   match(Set src2 (SubD (MulD src0 src1) src2));
9786   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9787             "DMUL   ST,$src1\n\t"
9788             "DSUBRp $src2,ST" %}
9789   ins_cost(250);
9790   ins_encode( Push_Reg_FPR(src0),
9791               FMul_ST_reg(src1),
9792               Opcode(0xDE), Opc_plus(0xE0,src2));
9793   ins_pipe( fpu_reg_reg_reg );
9794 %}
9795 
9796 
9797 instruct divDPR_reg(regDPR dst, regDPR src) %{
9798   predicate( UseSSE<=1 );
9799   match(Set dst (DivD dst src));
9800 
9801   format %{ "FLD    $src\n\t"
9802             "FDIVp  $dst,ST" %}
9803   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9804   ins_cost(150);
9805   ins_encode( Push_Reg_DPR(src),
9806               OpcP, RegOpc(dst) );
9807   ins_pipe( fpu_reg_reg );
9808 %}
9809 
9810 // Strict FP instruction biases argument before division then
9811 // biases result, to avoid double rounding of subnormals.
9812 //
9813 // scale dividend by multiplying dividend by 2^(-15360)
9814 // load divisor
9815 // divide scaled dividend by divisor
9816 // rescale quotient by 2^(15360)
9817 //
9818 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9819   predicate (UseSSE<=1);
9820   match(Set dst (DivD dst src));
9821   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9822   ins_cost(01);
9823 
9824   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9825             "DMULp  $dst,ST\n\t"
9826             "FLD    $src\n\t"
9827             "FDIVp  $dst,ST\n\t"
9828             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9829             "DMULp  $dst,ST\n\t" %}
9830   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9831   ins_encode( strictfp_bias1(dst),
9832               Push_Reg_DPR(src),
9833               OpcP, RegOpc(dst),
9834               strictfp_bias2(dst) );
9835   ins_pipe( fpu_reg_reg );
9836 %}
9837 
9838 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9839   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9840   match(Set dst (RoundDouble (DivD src1 src2)));
9841 
9842   format %{ "FLD    $src1\n\t"
9843             "FDIV   ST,$src2\n\t"
9844             "FSTP_D $dst\t# D-round" %}
9845   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9846   ins_encode( Push_Reg_DPR(src1),
9847               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
9848   ins_pipe( fpu_mem_reg_reg );
9849 %}
9850 
9851 
9852 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
9853   predicate(UseSSE<=1);
9854   match(Set dst (ModD dst src));
9855   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
9856 
9857   format %{ "DMOD   $dst,$src" %}
9858   ins_cost(250);
9859   ins_encode(Push_Reg_Mod_DPR(dst, src),
9860               emitModDPR(),
9861               Push_Result_Mod_DPR(src),
9862               Pop_Reg_DPR(dst));
9863   ins_pipe( pipe_slow );
9864 %}
9865 
9866 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
9867   predicate(UseSSE>=2);
9868   match(Set dst (ModD src0 src1));
9869   effect(KILL rax, KILL cr);
9870 
9871   format %{ "SUB    ESP,8\t # DMOD\n"
9872           "\tMOVSD  [ESP+0],$src1\n"
9873           "\tFLD_D  [ESP+0]\n"
9874           "\tMOVSD  [ESP+0],$src0\n"
9875           "\tFLD_D  [ESP+0]\n"
9876      "loop:\tFPREM\n"
9877           "\tFWAIT\n"
9878           "\tFNSTSW AX\n"
9879           "\tSAHF\n"
9880           "\tJP     loop\n"
9881           "\tFSTP_D [ESP+0]\n"
9882           "\tMOVSD  $dst,[ESP+0]\n"
9883           "\tADD    ESP,8\n"
9884           "\tFSTP   ST0\t # Restore FPU Stack"
9885     %}
9886   ins_cost(250);
9887   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
9888   ins_pipe( pipe_slow );
9889 %}
9890 
9891 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
9892   predicate (UseSSE<=1);
9893   match(Set dst (SinD src));
9894   ins_cost(1800);
9895   format %{ "DSIN   $dst" %}
9896   opcode(0xD9, 0xFE);
9897   ins_encode( OpcP, OpcS );
9898   ins_pipe( pipe_slow );
9899 %}
9900 
9901 instruct sinD_reg(regD dst, eFlagsReg cr) %{
9902   predicate (UseSSE>=2);
9903   match(Set dst (SinD dst));
9904   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9905   ins_cost(1800);
9906   format %{ "DSIN   $dst" %}
9907   opcode(0xD9, 0xFE);
9908   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9909   ins_pipe( pipe_slow );
9910 %}
9911 
9912 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
9913   predicate (UseSSE<=1);
9914   match(Set dst (CosD src));
9915   ins_cost(1800);
9916   format %{ "DCOS   $dst" %}
9917   opcode(0xD9, 0xFF);
9918   ins_encode( OpcP, OpcS );
9919   ins_pipe( pipe_slow );
9920 %}
9921 
9922 instruct cosD_reg(regD dst, eFlagsReg cr) %{
9923   predicate (UseSSE>=2);
9924   match(Set dst (CosD dst));
9925   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9926   ins_cost(1800);
9927   format %{ "DCOS   $dst" %}
9928   opcode(0xD9, 0xFF);
9929   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9930   ins_pipe( pipe_slow );
9931 %}
9932 
9933 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
9934   predicate (UseSSE<=1);
9935   match(Set dst(TanD src));
9936   format %{ "DTAN   $dst" %}
9937   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
9938               Opcode(0xDD), Opcode(0xD8));   // fstp st
9939   ins_pipe( pipe_slow );
9940 %}
9941 
9942 instruct tanD_reg(regD dst, eFlagsReg cr) %{
9943   predicate (UseSSE>=2);
9944   match(Set dst(TanD dst));
9945   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9946   format %{ "DTAN   $dst" %}
9947   ins_encode( Push_SrcD(dst),
9948               Opcode(0xD9), Opcode(0xF2),    // fptan
9949               Opcode(0xDD), Opcode(0xD8),   // fstp st
9950               Push_ResultD(dst) );
9951   ins_pipe( pipe_slow );
9952 %}
9953 
9954 instruct atanDPR_reg(regDPR dst, regDPR src) %{
9955   predicate (UseSSE<=1);
9956   match(Set dst(AtanD dst src));
9957   format %{ "DATA   $dst,$src" %}
9958   opcode(0xD9, 0xF3);
9959   ins_encode( Push_Reg_DPR(src),
9960               OpcP, OpcS, RegOpc(dst) );
9961   ins_pipe( pipe_slow );
9962 %}
9963 
9964 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
9965   predicate (UseSSE>=2);
9966   match(Set dst(AtanD dst src));
9967   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9968   format %{ "DATA   $dst,$src" %}
9969   opcode(0xD9, 0xF3);
9970   ins_encode( Push_SrcD(src),
9971               OpcP, OpcS, Push_ResultD(dst) );
9972   ins_pipe( pipe_slow );
9973 %}
9974 
9975 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
9976   predicate (UseSSE<=1);
9977   match(Set dst (SqrtD src));
9978   format %{ "DSQRT  $dst,$src" %}
9979   opcode(0xFA, 0xD9);
9980   ins_encode( Push_Reg_DPR(src),
9981               OpcS, OpcP, Pop_Reg_DPR(dst) );
9982   ins_pipe( pipe_slow );
9983 %}
9984 
9985 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9986   predicate (UseSSE<=1);
9987   match(Set Y (PowD X Y));  // Raise X to the Yth power
9988   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9989   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
9990   ins_encode %{
9991     __ subptr(rsp, 8);
9992     __ fld_s($X$$reg - 1);
9993     __ fast_pow();
9994     __ addptr(rsp, 8);
9995   %}
9996   ins_pipe( pipe_slow );
9997 %}
9998 
9999 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10000   predicate (UseSSE>=2);
10001   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10002   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
10003   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
10004   ins_encode %{
10005     __ subptr(rsp, 8);
10006     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
10007     __ fld_d(Address(rsp, 0));
10008     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
10009     __ fld_d(Address(rsp, 0));
10010     __ fast_pow();
10011     __ fstp_d(Address(rsp, 0));
10012     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10013     __ addptr(rsp, 8);
10014   %}
10015   ins_pipe( pipe_slow );
10016 %}
10017 
10018 
10019 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10020   predicate (UseSSE<=1);
10021   match(Set dpr1 (ExpD dpr1));
10022   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10023   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
10024   ins_encode %{
10025     __ fast_exp();
10026   %}
10027   ins_pipe( pipe_slow );
10028 %}
10029 
10030 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10031   predicate (UseSSE>=2);
10032   match(Set dst (ExpD src));
10033   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10034   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
10035   ins_encode %{
10036     __ subptr(rsp, 8);
10037     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10038     __ fld_d(Address(rsp, 0));
10039     __ fast_exp();
10040     __ fstp_d(Address(rsp, 0));
10041     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10042     __ addptr(rsp, 8);
10043   %}
10044   ins_pipe( pipe_slow );
10045 %}
10046 
10047 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
10048   predicate (UseSSE<=1);
10049   // The source Double operand on FPU stack
10050   match(Set dst (Log10D src));
10051   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10052   // fxch         ; swap ST(0) with ST(1)
10053   // fyl2x        ; compute log_10(2) * log_2(x)
10054   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10055             "FXCH   \n\t"
10056             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10057          %}
10058   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10059               Opcode(0xD9), Opcode(0xC9),   // fxch
10060               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10061 
10062   ins_pipe( pipe_slow );
10063 %}
10064 
10065 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
10066   predicate (UseSSE>=2);
10067   effect(KILL cr);
10068   match(Set dst (Log10D src));
10069   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10070   // fyl2x        ; compute log_10(2) * log_2(x)
10071   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10072             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10073          %}
10074   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10075               Push_SrcD(src),
10076               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10077               Push_ResultD(dst));
10078 
10079   ins_pipe( pipe_slow );
10080 %}
10081 
10082 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
10083   predicate (UseSSE<=1);
10084   // The source Double operand on FPU stack
10085   match(Set dst (LogD src));
10086   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10087   // fxch         ; swap ST(0) with ST(1)
10088   // fyl2x        ; compute log_e(2) * log_2(x)
10089   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10090             "FXCH   \n\t"
10091             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10092          %}
10093   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10094               Opcode(0xD9), Opcode(0xC9),   // fxch
10095               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10096 
10097   ins_pipe( pipe_slow );
10098 %}
10099 
10100 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
10101   predicate (UseSSE>=2);
10102   effect(KILL cr);
10103   // The source and result Double operands in XMM registers
10104   match(Set dst (LogD src));
10105   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10106   // fyl2x        ; compute log_e(2) * log_2(x)
10107   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10108             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10109          %}
10110   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10111               Push_SrcD(src),
10112               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10113               Push_ResultD(dst));
10114   ins_pipe( pipe_slow );
10115 %}
10116 
10117 //-------------Float Instructions-------------------------------
10118 // Float Math
10119 
10120 // Code for float compare:
10121 //     fcompp();
10122 //     fwait(); fnstsw_ax();
10123 //     sahf();
10124 //     movl(dst, unordered_result);
10125 //     jcc(Assembler::parity, exit);
10126 //     movl(dst, less_result);
10127 //     jcc(Assembler::below, exit);
10128 //     movl(dst, equal_result);
10129 //     jcc(Assembler::equal, exit);
10130 //     movl(dst, greater_result);
10131 //   exit:
10132 
10133 // P6 version of float compare, sets condition codes in EFLAGS
10134 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10135   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10136   match(Set cr (CmpF src1 src2));
10137   effect(KILL rax);
10138   ins_cost(150);
10139   format %{ "FLD    $src1\n\t"
10140             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10141             "JNP    exit\n\t"
10142             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10143             "SAHF\n"
10144      "exit:\tNOP               // avoid branch to branch" %}
10145   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10146   ins_encode( Push_Reg_DPR(src1),
10147               OpcP, RegOpc(src2),
10148               cmpF_P6_fixup );
10149   ins_pipe( pipe_slow );
10150 %}
10151 
10152 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
10153   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10154   match(Set cr (CmpF src1 src2));
10155   ins_cost(100);
10156   format %{ "FLD    $src1\n\t"
10157             "FUCOMIP ST,$src2  // P6 instruction" %}
10158   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10159   ins_encode( Push_Reg_DPR(src1),
10160               OpcP, RegOpc(src2));
10161   ins_pipe( pipe_slow );
10162 %}
10163 
10164 
10165 // Compare & branch
10166 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10167   predicate(UseSSE == 0);
10168   match(Set cr (CmpF src1 src2));
10169   effect(KILL rax);
10170   ins_cost(200);
10171   format %{ "FLD    $src1\n\t"
10172             "FCOMp  $src2\n\t"
10173             "FNSTSW AX\n\t"
10174             "TEST   AX,0x400\n\t"
10175             "JZ,s   flags\n\t"
10176             "MOV    AH,1\t# unordered treat as LT\n"
10177     "flags:\tSAHF" %}
10178   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10179   ins_encode( Push_Reg_DPR(src1),
10180               OpcP, RegOpc(src2),
10181               fpu_flags);
10182   ins_pipe( pipe_slow );
10183 %}
10184 
10185 // Compare vs zero into -1,0,1
10186 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
10187   predicate(UseSSE == 0);
10188   match(Set dst (CmpF3 src1 zero));
10189   effect(KILL cr, KILL rax);
10190   ins_cost(280);
10191   format %{ "FTSTF  $dst,$src1" %}
10192   opcode(0xE4, 0xD9);
10193   ins_encode( Push_Reg_DPR(src1),
10194               OpcS, OpcP, PopFPU,
10195               CmpF_Result(dst));
10196   ins_pipe( pipe_slow );
10197 %}
10198 
10199 // Compare into -1,0,1
10200 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10201   predicate(UseSSE == 0);
10202   match(Set dst (CmpF3 src1 src2));
10203   effect(KILL cr, KILL rax);
10204   ins_cost(300);
10205   format %{ "FCMPF  $dst,$src1,$src2" %}
10206   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10207   ins_encode( Push_Reg_DPR(src1),
10208               OpcP, RegOpc(src2),
10209               CmpF_Result(dst));
10210   ins_pipe( pipe_slow );
10211 %}
10212 
10213 // float compare and set condition codes in EFLAGS by XMM regs
10214 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10215   predicate(UseSSE>=1);
10216   match(Set cr (CmpF src1 src2));
10217   ins_cost(145);
10218   format %{ "UCOMISS $src1,$src2\n\t"
10219             "JNP,s   exit\n\t"
10220             "PUSHF\t# saw NaN, set CF\n\t"
10221             "AND     [rsp], #0xffffff2b\n\t"
10222             "POPF\n"
10223     "exit:" %}
10224   ins_encode %{
10225     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10226     emit_cmpfp_fixup(_masm);
10227   %}
10228   ins_pipe( pipe_slow );
10229 %}
10230 
10231 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10232   predicate(UseSSE>=1);
10233   match(Set cr (CmpF src1 src2));
10234   ins_cost(100);
10235   format %{ "UCOMISS $src1,$src2" %}
10236   ins_encode %{
10237     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10238   %}
10239   ins_pipe( pipe_slow );
10240 %}
10241 
10242 // float compare and set condition codes in EFLAGS by XMM regs
10243 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10244   predicate(UseSSE>=1);
10245   match(Set cr (CmpF src1 (LoadF src2)));
10246   ins_cost(165);
10247   format %{ "UCOMISS $src1,$src2\n\t"
10248             "JNP,s   exit\n\t"
10249             "PUSHF\t# saw NaN, set CF\n\t"
10250             "AND     [rsp], #0xffffff2b\n\t"
10251             "POPF\n"
10252     "exit:" %}
10253   ins_encode %{
10254     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10255     emit_cmpfp_fixup(_masm);
10256   %}
10257   ins_pipe( pipe_slow );
10258 %}
10259 
10260 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10261   predicate(UseSSE>=1);
10262   match(Set cr (CmpF src1 (LoadF src2)));
10263   ins_cost(100);
10264   format %{ "UCOMISS $src1,$src2" %}
10265   ins_encode %{
10266     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10267   %}
10268   ins_pipe( pipe_slow );
10269 %}
10270 
10271 // Compare into -1,0,1 in XMM
10272 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10273   predicate(UseSSE>=1);
10274   match(Set dst (CmpF3 src1 src2));
10275   effect(KILL cr);
10276   ins_cost(255);
10277   format %{ "UCOMISS $src1, $src2\n\t"
10278             "MOV     $dst, #-1\n\t"
10279             "JP,s    done\n\t"
10280             "JB,s    done\n\t"
10281             "SETNE   $dst\n\t"
10282             "MOVZB   $dst, $dst\n"
10283     "done:" %}
10284   ins_encode %{
10285     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10286     emit_cmpfp3(_masm, $dst$$Register);
10287   %}
10288   ins_pipe( pipe_slow );
10289 %}
10290 
10291 // Compare into -1,0,1 in XMM and memory
10292 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10293   predicate(UseSSE>=1);
10294   match(Set dst (CmpF3 src1 (LoadF src2)));
10295   effect(KILL cr);
10296   ins_cost(275);
10297   format %{ "UCOMISS $src1, $src2\n\t"
10298             "MOV     $dst, #-1\n\t"
10299             "JP,s    done\n\t"
10300             "JB,s    done\n\t"
10301             "SETNE   $dst\n\t"
10302             "MOVZB   $dst, $dst\n"
10303     "done:" %}
10304   ins_encode %{
10305     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10306     emit_cmpfp3(_masm, $dst$$Register);
10307   %}
10308   ins_pipe( pipe_slow );
10309 %}
10310 
10311 // Spill to obtain 24-bit precision
10312 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10313   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10314   match(Set dst (SubF src1 src2));
10315 
10316   format %{ "FSUB   $dst,$src1 - $src2" %}
10317   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10318   ins_encode( Push_Reg_FPR(src1),
10319               OpcReg_FPR(src2),
10320               Pop_Mem_FPR(dst) );
10321   ins_pipe( fpu_mem_reg_reg );
10322 %}
10323 //
10324 // This instruction does not round to 24-bits
10325 instruct subFPR_reg(regFPR dst, regFPR src) %{
10326   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10327   match(Set dst (SubF dst src));
10328 
10329   format %{ "FSUB   $dst,$src" %}
10330   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10331   ins_encode( Push_Reg_FPR(src),
10332               OpcP, RegOpc(dst) );
10333   ins_pipe( fpu_reg_reg );
10334 %}
10335 
10336 // Spill to obtain 24-bit precision
10337 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10338   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10339   match(Set dst (AddF src1 src2));
10340 
10341   format %{ "FADD   $dst,$src1,$src2" %}
10342   opcode(0xD8, 0x0); /* D8 C0+i */
10343   ins_encode( Push_Reg_FPR(src2),
10344               OpcReg_FPR(src1),
10345               Pop_Mem_FPR(dst) );
10346   ins_pipe( fpu_mem_reg_reg );
10347 %}
10348 //
10349 // This instruction does not round to 24-bits
10350 instruct addFPR_reg(regFPR dst, regFPR src) %{
10351   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10352   match(Set dst (AddF dst src));
10353 
10354   format %{ "FLD    $src\n\t"
10355             "FADDp  $dst,ST" %}
10356   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10357   ins_encode( Push_Reg_FPR(src),
10358               OpcP, RegOpc(dst) );
10359   ins_pipe( fpu_reg_reg );
10360 %}
10361 
10362 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10363   predicate(UseSSE==0);
10364   match(Set dst (AbsF src));
10365   ins_cost(100);
10366   format %{ "FABS" %}
10367   opcode(0xE1, 0xD9);
10368   ins_encode( OpcS, OpcP );
10369   ins_pipe( fpu_reg_reg );
10370 %}
10371 
10372 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10373   predicate(UseSSE==0);
10374   match(Set dst (NegF src));
10375   ins_cost(100);
10376   format %{ "FCHS" %}
10377   opcode(0xE0, 0xD9);
10378   ins_encode( OpcS, OpcP );
10379   ins_pipe( fpu_reg_reg );
10380 %}
10381 
10382 // Cisc-alternate to addFPR_reg
10383 // Spill to obtain 24-bit precision
10384 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10385   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10386   match(Set dst (AddF src1 (LoadF src2)));
10387 
10388   format %{ "FLD    $src2\n\t"
10389             "FADD   ST,$src1\n\t"
10390             "FSTP_S $dst" %}
10391   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10392   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10393               OpcReg_FPR(src1),
10394               Pop_Mem_FPR(dst) );
10395   ins_pipe( fpu_mem_reg_mem );
10396 %}
10397 //
10398 // Cisc-alternate to addFPR_reg
10399 // This instruction does not round to 24-bits
10400 instruct addFPR_reg_mem(regFPR dst, memory src) %{
10401   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10402   match(Set dst (AddF dst (LoadF src)));
10403 
10404   format %{ "FADD   $dst,$src" %}
10405   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10406   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10407               OpcP, RegOpc(dst) );
10408   ins_pipe( fpu_reg_mem );
10409 %}
10410 
10411 // // Following two instructions for _222_mpegaudio
10412 // Spill to obtain 24-bit precision
10413 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10414   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10415   match(Set dst (AddF src1 src2));
10416 
10417   format %{ "FADD   $dst,$src1,$src2" %}
10418   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10419   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10420               OpcReg_FPR(src2),
10421               Pop_Mem_FPR(dst) );
10422   ins_pipe( fpu_mem_reg_mem );
10423 %}
10424 
10425 // Cisc-spill variant
10426 // Spill to obtain 24-bit precision
10427 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10428   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10429   match(Set dst (AddF src1 (LoadF src2)));
10430 
10431   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10432   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10433   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10434               set_instruction_start,
10435               OpcP, RMopc_Mem(secondary,src1),
10436               Pop_Mem_FPR(dst) );
10437   ins_pipe( fpu_mem_mem_mem );
10438 %}
10439 
10440 // Spill to obtain 24-bit precision
10441 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10442   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10443   match(Set dst (AddF src1 src2));
10444 
10445   format %{ "FADD   $dst,$src1,$src2" %}
10446   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10447   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10448               set_instruction_start,
10449               OpcP, RMopc_Mem(secondary,src1),
10450               Pop_Mem_FPR(dst) );
10451   ins_pipe( fpu_mem_mem_mem );
10452 %}
10453 
10454 
10455 // Spill to obtain 24-bit precision
10456 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10457   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10458   match(Set dst (AddF src con));
10459   format %{ "FLD    $src\n\t"
10460             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10461             "FSTP_S $dst"  %}
10462   ins_encode %{
10463     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10464     __ fadd_s($constantaddress($con));
10465     __ fstp_s(Address(rsp, $dst$$disp));
10466   %}
10467   ins_pipe(fpu_mem_reg_con);
10468 %}
10469 //
10470 // This instruction does not round to 24-bits
10471 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10472   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10473   match(Set dst (AddF src con));
10474   format %{ "FLD    $src\n\t"
10475             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10476             "FSTP   $dst"  %}
10477   ins_encode %{
10478     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10479     __ fadd_s($constantaddress($con));
10480     __ fstp_d($dst$$reg);
10481   %}
10482   ins_pipe(fpu_reg_reg_con);
10483 %}
10484 
10485 // Spill to obtain 24-bit precision
10486 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10487   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10488   match(Set dst (MulF src1 src2));
10489 
10490   format %{ "FLD    $src1\n\t"
10491             "FMUL   $src2\n\t"
10492             "FSTP_S $dst"  %}
10493   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10494   ins_encode( Push_Reg_FPR(src1),
10495               OpcReg_FPR(src2),
10496               Pop_Mem_FPR(dst) );
10497   ins_pipe( fpu_mem_reg_reg );
10498 %}
10499 //
10500 // This instruction does not round to 24-bits
10501 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
10502   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10503   match(Set dst (MulF src1 src2));
10504 
10505   format %{ "FLD    $src1\n\t"
10506             "FMUL   $src2\n\t"
10507             "FSTP_S $dst"  %}
10508   opcode(0xD8, 0x1); /* D8 C8+i */
10509   ins_encode( Push_Reg_FPR(src2),
10510               OpcReg_FPR(src1),
10511               Pop_Reg_FPR(dst) );
10512   ins_pipe( fpu_reg_reg_reg );
10513 %}
10514 
10515 
10516 // Spill to obtain 24-bit precision
10517 // Cisc-alternate to reg-reg multiply
10518 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10519   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10520   match(Set dst (MulF src1 (LoadF src2)));
10521 
10522   format %{ "FLD_S  $src2\n\t"
10523             "FMUL   $src1\n\t"
10524             "FSTP_S $dst"  %}
10525   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10526   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10527               OpcReg_FPR(src1),
10528               Pop_Mem_FPR(dst) );
10529   ins_pipe( fpu_mem_reg_mem );
10530 %}
10531 //
10532 // This instruction does not round to 24-bits
10533 // Cisc-alternate to reg-reg multiply
10534 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
10535   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10536   match(Set dst (MulF src1 (LoadF src2)));
10537 
10538   format %{ "FMUL   $dst,$src1,$src2" %}
10539   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10540   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10541               OpcReg_FPR(src1),
10542               Pop_Reg_FPR(dst) );
10543   ins_pipe( fpu_reg_reg_mem );
10544 %}
10545 
10546 // Spill to obtain 24-bit precision
10547 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10548   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10549   match(Set dst (MulF src1 src2));
10550 
10551   format %{ "FMUL   $dst,$src1,$src2" %}
10552   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10553   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10554               set_instruction_start,
10555               OpcP, RMopc_Mem(secondary,src1),
10556               Pop_Mem_FPR(dst) );
10557   ins_pipe( fpu_mem_mem_mem );
10558 %}
10559 
10560 // Spill to obtain 24-bit precision
10561 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10562   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10563   match(Set dst (MulF src con));
10564 
10565   format %{ "FLD    $src\n\t"
10566             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10567             "FSTP_S $dst"  %}
10568   ins_encode %{
10569     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10570     __ fmul_s($constantaddress($con));
10571     __ fstp_s(Address(rsp, $dst$$disp));
10572   %}
10573   ins_pipe(fpu_mem_reg_con);
10574 %}
10575 //
10576 // This instruction does not round to 24-bits
10577 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10578   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10579   match(Set dst (MulF src con));
10580 
10581   format %{ "FLD    $src\n\t"
10582             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10583             "FSTP   $dst"  %}
10584   ins_encode %{
10585     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10586     __ fmul_s($constantaddress($con));
10587     __ fstp_d($dst$$reg);
10588   %}
10589   ins_pipe(fpu_reg_reg_con);
10590 %}
10591 
10592 
10593 //
10594 // MACRO1 -- subsume unshared load into mulFPR
10595 // This instruction does not round to 24-bits
10596 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
10597   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10598   match(Set dst (MulF (LoadF mem1) src));
10599 
10600   format %{ "FLD    $mem1    ===MACRO1===\n\t"
10601             "FMUL   ST,$src\n\t"
10602             "FSTP   $dst" %}
10603   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10604   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10605               OpcReg_FPR(src),
10606               Pop_Reg_FPR(dst) );
10607   ins_pipe( fpu_reg_reg_mem );
10608 %}
10609 //
10610 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
10611 // This instruction does not round to 24-bits
10612 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
10613   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10614   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10615   ins_cost(95);
10616 
10617   format %{ "FLD    $mem1     ===MACRO2===\n\t"
10618             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
10619             "FADD   ST,$src2\n\t"
10620             "FSTP   $dst" %}
10621   opcode(0xD9); /* LoadF D9 /0 */
10622   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10623               FMul_ST_reg(src1),
10624               FAdd_ST_reg(src2),
10625               Pop_Reg_FPR(dst) );
10626   ins_pipe( fpu_reg_mem_reg_reg );
10627 %}
10628 
10629 // MACRO3 -- addFPR a mulFPR
10630 // This instruction does not round to 24-bits.  It is a '2-address'
10631 // instruction in that the result goes back to src2.  This eliminates
10632 // a move from the macro; possibly the register allocator will have
10633 // to add it back (and maybe not).
10634 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
10635   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10636   match(Set src2 (AddF (MulF src0 src1) src2));
10637 
10638   format %{ "FLD    $src0     ===MACRO3===\n\t"
10639             "FMUL   ST,$src1\n\t"
10640             "FADDP  $src2,ST" %}
10641   opcode(0xD9); /* LoadF D9 /0 */
10642   ins_encode( Push_Reg_FPR(src0),
10643               FMul_ST_reg(src1),
10644               FAddP_reg_ST(src2) );
10645   ins_pipe( fpu_reg_reg_reg );
10646 %}
10647 
10648 // MACRO4 -- divFPR subFPR
10649 // This instruction does not round to 24-bits
10650 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
10651   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10652   match(Set dst (DivF (SubF src2 src1) src3));
10653 
10654   format %{ "FLD    $src2   ===MACRO4===\n\t"
10655             "FSUB   ST,$src1\n\t"
10656             "FDIV   ST,$src3\n\t"
10657             "FSTP  $dst" %}
10658   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10659   ins_encode( Push_Reg_FPR(src2),
10660               subFPR_divFPR_encode(src1,src3),
10661               Pop_Reg_FPR(dst) );
10662   ins_pipe( fpu_reg_reg_reg_reg );
10663 %}
10664 
10665 // Spill to obtain 24-bit precision
10666 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10667   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10668   match(Set dst (DivF src1 src2));
10669 
10670   format %{ "FDIV   $dst,$src1,$src2" %}
10671   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10672   ins_encode( Push_Reg_FPR(src1),
10673               OpcReg_FPR(src2),
10674               Pop_Mem_FPR(dst) );
10675   ins_pipe( fpu_mem_reg_reg );
10676 %}
10677 //
10678 // This instruction does not round to 24-bits
10679 instruct divFPR_reg(regFPR dst, regFPR src) %{
10680   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10681   match(Set dst (DivF dst src));
10682 
10683   format %{ "FDIV   $dst,$src" %}
10684   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10685   ins_encode( Push_Reg_FPR(src),
10686               OpcP, RegOpc(dst) );
10687   ins_pipe( fpu_reg_reg );
10688 %}
10689 
10690 
10691 // Spill to obtain 24-bit precision
10692 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10693   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10694   match(Set dst (ModF src1 src2));
10695   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10696 
10697   format %{ "FMOD   $dst,$src1,$src2" %}
10698   ins_encode( Push_Reg_Mod_DPR(src1, src2),
10699               emitModDPR(),
10700               Push_Result_Mod_DPR(src2),
10701               Pop_Mem_FPR(dst));
10702   ins_pipe( pipe_slow );
10703 %}
10704 //
10705 // This instruction does not round to 24-bits
10706 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
10707   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10708   match(Set dst (ModF dst src));
10709   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10710 
10711   format %{ "FMOD   $dst,$src" %}
10712   ins_encode(Push_Reg_Mod_DPR(dst, src),
10713               emitModDPR(),
10714               Push_Result_Mod_DPR(src),
10715               Pop_Reg_FPR(dst));
10716   ins_pipe( pipe_slow );
10717 %}
10718 
10719 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
10720   predicate(UseSSE>=1);
10721   match(Set dst (ModF src0 src1));
10722   effect(KILL rax, KILL cr);
10723   format %{ "SUB    ESP,4\t # FMOD\n"
10724           "\tMOVSS  [ESP+0],$src1\n"
10725           "\tFLD_S  [ESP+0]\n"
10726           "\tMOVSS  [ESP+0],$src0\n"
10727           "\tFLD_S  [ESP+0]\n"
10728      "loop:\tFPREM\n"
10729           "\tFWAIT\n"
10730           "\tFNSTSW AX\n"
10731           "\tSAHF\n"
10732           "\tJP     loop\n"
10733           "\tFSTP_S [ESP+0]\n"
10734           "\tMOVSS  $dst,[ESP+0]\n"
10735           "\tADD    ESP,4\n"
10736           "\tFSTP   ST0\t # Restore FPU Stack"
10737     %}
10738   ins_cost(250);
10739   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
10740   ins_pipe( pipe_slow );
10741 %}
10742 
10743 
10744 //----------Arithmetic Conversion Instructions---------------------------------
10745 // The conversions operations are all Alpha sorted.  Please keep it that way!
10746 
10747 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
10748   predicate(UseSSE==0);
10749   match(Set dst (RoundFloat src));
10750   ins_cost(125);
10751   format %{ "FST_S  $dst,$src\t# F-round" %}
10752   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
10753   ins_pipe( fpu_mem_reg );
10754 %}
10755 
10756 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
10757   predicate(UseSSE<=1);
10758   match(Set dst (RoundDouble src));
10759   ins_cost(125);
10760   format %{ "FST_D  $dst,$src\t# D-round" %}
10761   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
10762   ins_pipe( fpu_mem_reg );
10763 %}
10764 
10765 // Force rounding to 24-bit precision and 6-bit exponent
10766 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
10767   predicate(UseSSE==0);
10768   match(Set dst (ConvD2F src));
10769   format %{ "FST_S  $dst,$src\t# F-round" %}
10770   expand %{
10771     roundFloat_mem_reg(dst,src);
10772   %}
10773 %}
10774 
10775 // Force rounding to 24-bit precision and 6-bit exponent
10776 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
10777   predicate(UseSSE==1);
10778   match(Set dst (ConvD2F src));
10779   effect( KILL cr );
10780   format %{ "SUB    ESP,4\n\t"
10781             "FST_S  [ESP],$src\t# F-round\n\t"
10782             "MOVSS  $dst,[ESP]\n\t"
10783             "ADD ESP,4" %}
10784   ins_encode %{
10785     __ subptr(rsp, 4);
10786     if ($src$$reg != FPR1L_enc) {
10787       __ fld_s($src$$reg-1);
10788       __ fstp_s(Address(rsp, 0));
10789     } else {
10790       __ fst_s(Address(rsp, 0));
10791     }
10792     __ movflt($dst$$XMMRegister, Address(rsp, 0));
10793     __ addptr(rsp, 4);
10794   %}
10795   ins_pipe( pipe_slow );
10796 %}
10797 
10798 // Force rounding double precision to single precision
10799 instruct convD2F_reg(regF dst, regD src) %{
10800   predicate(UseSSE>=2);
10801   match(Set dst (ConvD2F src));
10802   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10803   ins_encode %{
10804     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10805   %}
10806   ins_pipe( pipe_slow );
10807 %}
10808 
10809 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
10810   predicate(UseSSE==0);
10811   match(Set dst (ConvF2D src));
10812   format %{ "FST_S  $dst,$src\t# D-round" %}
10813   ins_encode( Pop_Reg_Reg_DPR(dst, src));
10814   ins_pipe( fpu_reg_reg );
10815 %}
10816 
10817 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
10818   predicate(UseSSE==1);
10819   match(Set dst (ConvF2D src));
10820   format %{ "FST_D  $dst,$src\t# D-round" %}
10821   expand %{
10822     roundDouble_mem_reg(dst,src);
10823   %}
10824 %}
10825 
10826 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
10827   predicate(UseSSE==1);
10828   match(Set dst (ConvF2D src));
10829   effect( KILL cr );
10830   format %{ "SUB    ESP,4\n\t"
10831             "MOVSS  [ESP] $src\n\t"
10832             "FLD_S  [ESP]\n\t"
10833             "ADD    ESP,4\n\t"
10834             "FSTP   $dst\t# D-round" %}
10835   ins_encode %{
10836     __ subptr(rsp, 4);
10837     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10838     __ fld_s(Address(rsp, 0));
10839     __ addptr(rsp, 4);
10840     __ fstp_d($dst$$reg);
10841   %}
10842   ins_pipe( pipe_slow );
10843 %}
10844 
10845 instruct convF2D_reg(regD dst, regF src) %{
10846   predicate(UseSSE>=2);
10847   match(Set dst (ConvF2D src));
10848   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10849   ins_encode %{
10850     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10851   %}
10852   ins_pipe( pipe_slow );
10853 %}
10854 
10855 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10856 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
10857   predicate(UseSSE<=1);
10858   match(Set dst (ConvD2I src));
10859   effect( KILL tmp, KILL cr );
10860   format %{ "FLD    $src\t# Convert double to int \n\t"
10861             "FLDCW  trunc mode\n\t"
10862             "SUB    ESP,4\n\t"
10863             "FISTp  [ESP + #0]\n\t"
10864             "FLDCW  std/24-bit mode\n\t"
10865             "POP    EAX\n\t"
10866             "CMP    EAX,0x80000000\n\t"
10867             "JNE,s  fast\n\t"
10868             "FLD_D  $src\n\t"
10869             "CALL   d2i_wrapper\n"
10870       "fast:" %}
10871   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
10872   ins_pipe( pipe_slow );
10873 %}
10874 
10875 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10876 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10877   predicate(UseSSE>=2);
10878   match(Set dst (ConvD2I src));
10879   effect( KILL tmp, KILL cr );
10880   format %{ "CVTTSD2SI $dst, $src\n\t"
10881             "CMP    $dst,0x80000000\n\t"
10882             "JNE,s  fast\n\t"
10883             "SUB    ESP, 8\n\t"
10884             "MOVSD  [ESP], $src\n\t"
10885             "FLD_D  [ESP]\n\t"
10886             "ADD    ESP, 8\n\t"
10887             "CALL   d2i_wrapper\n"
10888       "fast:" %}
10889   ins_encode %{
10890     Label fast;
10891     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10892     __ cmpl($dst$$Register, 0x80000000);
10893     __ jccb(Assembler::notEqual, fast);
10894     __ subptr(rsp, 8);
10895     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10896     __ fld_d(Address(rsp, 0));
10897     __ addptr(rsp, 8);
10898     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10899     __ bind(fast);
10900   %}
10901   ins_pipe( pipe_slow );
10902 %}
10903 
10904 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
10905   predicate(UseSSE<=1);
10906   match(Set dst (ConvD2L src));
10907   effect( KILL cr );
10908   format %{ "FLD    $src\t# Convert double to long\n\t"
10909             "FLDCW  trunc mode\n\t"
10910             "SUB    ESP,8\n\t"
10911             "FISTp  [ESP + #0]\n\t"
10912             "FLDCW  std/24-bit mode\n\t"
10913             "POP    EAX\n\t"
10914             "POP    EDX\n\t"
10915             "CMP    EDX,0x80000000\n\t"
10916             "JNE,s  fast\n\t"
10917             "TEST   EAX,EAX\n\t"
10918             "JNE,s  fast\n\t"
10919             "FLD    $src\n\t"
10920             "CALL   d2l_wrapper\n"
10921       "fast:" %}
10922   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
10923   ins_pipe( pipe_slow );
10924 %}
10925 
10926 // XMM lacks a float/double->long conversion, so use the old FPU stack.
10927 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
10928   predicate (UseSSE>=2);
10929   match(Set dst (ConvD2L src));
10930   effect( KILL cr );
10931   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
10932             "MOVSD  [ESP],$src\n\t"
10933             "FLD_D  [ESP]\n\t"
10934             "FLDCW  trunc mode\n\t"
10935             "FISTp  [ESP + #0]\n\t"
10936             "FLDCW  std/24-bit mode\n\t"
10937             "POP    EAX\n\t"
10938             "POP    EDX\n\t"
10939             "CMP    EDX,0x80000000\n\t"
10940             "JNE,s  fast\n\t"
10941             "TEST   EAX,EAX\n\t"
10942             "JNE,s  fast\n\t"
10943             "SUB    ESP,8\n\t"
10944             "MOVSD  [ESP],$src\n\t"
10945             "FLD_D  [ESP]\n\t"
10946             "ADD    ESP,8\n\t"
10947             "CALL   d2l_wrapper\n"
10948       "fast:" %}
10949   ins_encode %{
10950     Label fast;
10951     __ subptr(rsp, 8);
10952     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10953     __ fld_d(Address(rsp, 0));
10954     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
10955     __ fistp_d(Address(rsp, 0));
10956     // Restore the rounding mode, mask the exception
10957     if (Compile::current()->in_24_bit_fp_mode()) {
10958       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
10959     } else {
10960       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
10961     }
10962     // Load the converted long, adjust CPU stack
10963     __ pop(rax);
10964     __ pop(rdx);
10965     __ cmpl(rdx, 0x80000000);
10966     __ jccb(Assembler::notEqual, fast);
10967     __ testl(rax, rax);
10968     __ jccb(Assembler::notEqual, fast);
10969     __ subptr(rsp, 8);
10970     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10971     __ fld_d(Address(rsp, 0));
10972     __ addptr(rsp, 8);
10973     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
10974     __ bind(fast);
10975   %}
10976   ins_pipe( pipe_slow );
10977 %}
10978 
10979 // Convert a double to an int.  Java semantics require we do complex
10980 // manglations in the corner cases.  So we set the rounding mode to
10981 // 'zero', store the darned double down as an int, and reset the
10982 // rounding mode to 'nearest'.  The hardware stores a flag value down
10983 // if we would overflow or converted a NAN; we check for this and
10984 // and go the slow path if needed.
10985 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
10986   predicate(UseSSE==0);
10987   match(Set dst (ConvF2I src));
10988   effect( KILL tmp, KILL cr );
10989   format %{ "FLD    $src\t# Convert float to int \n\t"
10990             "FLDCW  trunc mode\n\t"
10991             "SUB    ESP,4\n\t"
10992             "FISTp  [ESP + #0]\n\t"
10993             "FLDCW  std/24-bit mode\n\t"
10994             "POP    EAX\n\t"
10995             "CMP    EAX,0x80000000\n\t"
10996             "JNE,s  fast\n\t"
10997             "FLD    $src\n\t"
10998             "CALL   d2i_wrapper\n"
10999       "fast:" %}
11000   // DPR2I_encoding works for FPR2I
11001   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
11002   ins_pipe( pipe_slow );
11003 %}
11004 
11005 // Convert a float in xmm to an int reg.
11006 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11007   predicate(UseSSE>=1);
11008   match(Set dst (ConvF2I src));
11009   effect( KILL tmp, KILL cr );
11010   format %{ "CVTTSS2SI $dst, $src\n\t"
11011             "CMP    $dst,0x80000000\n\t"
11012             "JNE,s  fast\n\t"
11013             "SUB    ESP, 4\n\t"
11014             "MOVSS  [ESP], $src\n\t"
11015             "FLD    [ESP]\n\t"
11016             "ADD    ESP, 4\n\t"
11017             "CALL   d2i_wrapper\n"
11018       "fast:" %}
11019   ins_encode %{
11020     Label fast;
11021     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
11022     __ cmpl($dst$$Register, 0x80000000);
11023     __ jccb(Assembler::notEqual, fast);
11024     __ subptr(rsp, 4);
11025     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11026     __ fld_s(Address(rsp, 0));
11027     __ addptr(rsp, 4);
11028     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
11029     __ bind(fast);
11030   %}
11031   ins_pipe( pipe_slow );
11032 %}
11033 
11034 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
11035   predicate(UseSSE==0);
11036   match(Set dst (ConvF2L src));
11037   effect( KILL cr );
11038   format %{ "FLD    $src\t# Convert float to long\n\t"
11039             "FLDCW  trunc mode\n\t"
11040             "SUB    ESP,8\n\t"
11041             "FISTp  [ESP + #0]\n\t"
11042             "FLDCW  std/24-bit mode\n\t"
11043             "POP    EAX\n\t"
11044             "POP    EDX\n\t"
11045             "CMP    EDX,0x80000000\n\t"
11046             "JNE,s  fast\n\t"
11047             "TEST   EAX,EAX\n\t"
11048             "JNE,s  fast\n\t"
11049             "FLD    $src\n\t"
11050             "CALL   d2l_wrapper\n"
11051       "fast:" %}
11052   // DPR2L_encoding works for FPR2L
11053   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
11054   ins_pipe( pipe_slow );
11055 %}
11056 
11057 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11058 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11059   predicate (UseSSE>=1);
11060   match(Set dst (ConvF2L src));
11061   effect( KILL cr );
11062   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11063             "MOVSS  [ESP],$src\n\t"
11064             "FLD_S  [ESP]\n\t"
11065             "FLDCW  trunc mode\n\t"
11066             "FISTp  [ESP + #0]\n\t"
11067             "FLDCW  std/24-bit mode\n\t"
11068             "POP    EAX\n\t"
11069             "POP    EDX\n\t"
11070             "CMP    EDX,0x80000000\n\t"
11071             "JNE,s  fast\n\t"
11072             "TEST   EAX,EAX\n\t"
11073             "JNE,s  fast\n\t"
11074             "SUB    ESP,4\t# Convert float to long\n\t"
11075             "MOVSS  [ESP],$src\n\t"
11076             "FLD_S  [ESP]\n\t"
11077             "ADD    ESP,4\n\t"
11078             "CALL   d2l_wrapper\n"
11079       "fast:" %}
11080   ins_encode %{
11081     Label fast;
11082     __ subptr(rsp, 8);
11083     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11084     __ fld_s(Address(rsp, 0));
11085     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11086     __ fistp_d(Address(rsp, 0));
11087     // Restore the rounding mode, mask the exception
11088     if (Compile::current()->in_24_bit_fp_mode()) {
11089       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11090     } else {
11091       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11092     }
11093     // Load the converted long, adjust CPU stack
11094     __ pop(rax);
11095     __ pop(rdx);
11096     __ cmpl(rdx, 0x80000000);
11097     __ jccb(Assembler::notEqual, fast);
11098     __ testl(rax, rax);
11099     __ jccb(Assembler::notEqual, fast);
11100     __ subptr(rsp, 4);
11101     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11102     __ fld_s(Address(rsp, 0));
11103     __ addptr(rsp, 4);
11104     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11105     __ bind(fast);
11106   %}
11107   ins_pipe( pipe_slow );
11108 %}
11109 
11110 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
11111   predicate( UseSSE<=1 );
11112   match(Set dst (ConvI2D src));
11113   format %{ "FILD   $src\n\t"
11114             "FSTP   $dst" %}
11115   opcode(0xDB, 0x0);  /* DB /0 */
11116   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
11117   ins_pipe( fpu_reg_mem );
11118 %}
11119 
11120 instruct convI2D_reg(regD dst, rRegI src) %{
11121   predicate( UseSSE>=2 && !UseXmmI2D );
11122   match(Set dst (ConvI2D src));
11123   format %{ "CVTSI2SD $dst,$src" %}
11124   ins_encode %{
11125     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
11126   %}
11127   ins_pipe( pipe_slow );
11128 %}
11129 
11130 instruct convI2D_mem(regD dst, memory mem) %{
11131   predicate( UseSSE>=2 );
11132   match(Set dst (ConvI2D (LoadI mem)));
11133   format %{ "CVTSI2SD $dst,$mem" %}
11134   ins_encode %{
11135     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
11136   %}
11137   ins_pipe( pipe_slow );
11138 %}
11139 
11140 instruct convXI2D_reg(regD dst, rRegI src)
11141 %{
11142   predicate( UseSSE>=2 && UseXmmI2D );
11143   match(Set dst (ConvI2D src));
11144 
11145   format %{ "MOVD  $dst,$src\n\t"
11146             "CVTDQ2PD $dst,$dst\t# i2d" %}
11147   ins_encode %{
11148     __ movdl($dst$$XMMRegister, $src$$Register);
11149     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11150   %}
11151   ins_pipe(pipe_slow); // XXX
11152 %}
11153 
11154 instruct convI2DPR_mem(regDPR dst, memory mem) %{
11155   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11156   match(Set dst (ConvI2D (LoadI mem)));
11157   format %{ "FILD   $mem\n\t"
11158             "FSTP   $dst" %}
11159   opcode(0xDB);      /* DB /0 */
11160   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11161               Pop_Reg_DPR(dst));
11162   ins_pipe( fpu_reg_mem );
11163 %}
11164 
11165 // Convert a byte to a float; no rounding step needed.
11166 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
11167   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11168   match(Set dst (ConvI2F src));
11169   format %{ "FILD   $src\n\t"
11170             "FSTP   $dst" %}
11171 
11172   opcode(0xDB, 0x0);  /* DB /0 */
11173   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
11174   ins_pipe( fpu_reg_mem );
11175 %}
11176 
11177 // In 24-bit mode, force exponent rounding by storing back out
11178 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
11179   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11180   match(Set dst (ConvI2F src));
11181   ins_cost(200);
11182   format %{ "FILD   $src\n\t"
11183             "FSTP_S $dst" %}
11184   opcode(0xDB, 0x0);  /* DB /0 */
11185   ins_encode( Push_Mem_I(src),
11186               Pop_Mem_FPR(dst));
11187   ins_pipe( fpu_mem_mem );
11188 %}
11189 
11190 // In 24-bit mode, force exponent rounding by storing back out
11191 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
11192   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11193   match(Set dst (ConvI2F (LoadI mem)));
11194   ins_cost(200);
11195   format %{ "FILD   $mem\n\t"
11196             "FSTP_S $dst" %}
11197   opcode(0xDB);  /* DB /0 */
11198   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11199               Pop_Mem_FPR(dst));
11200   ins_pipe( fpu_mem_mem );
11201 %}
11202 
11203 // This instruction does not round to 24-bits
11204 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
11205   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11206   match(Set dst (ConvI2F src));
11207   format %{ "FILD   $src\n\t"
11208             "FSTP   $dst" %}
11209   opcode(0xDB, 0x0);  /* DB /0 */
11210   ins_encode( Push_Mem_I(src),
11211               Pop_Reg_FPR(dst));
11212   ins_pipe( fpu_reg_mem );
11213 %}
11214 
11215 // This instruction does not round to 24-bits
11216 instruct convI2FPR_mem(regFPR dst, memory mem) %{
11217   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11218   match(Set dst (ConvI2F (LoadI mem)));
11219   format %{ "FILD   $mem\n\t"
11220             "FSTP   $dst" %}
11221   opcode(0xDB);      /* DB /0 */
11222   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11223               Pop_Reg_FPR(dst));
11224   ins_pipe( fpu_reg_mem );
11225 %}
11226 
11227 // Convert an int to a float in xmm; no rounding step needed.
11228 instruct convI2F_reg(regF dst, rRegI src) %{
11229   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11230   match(Set dst (ConvI2F src));
11231   format %{ "CVTSI2SS $dst, $src" %}
11232   ins_encode %{
11233     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11234   %}
11235   ins_pipe( pipe_slow );
11236 %}
11237 
11238  instruct convXI2F_reg(regF dst, rRegI src)
11239 %{
11240   predicate( UseSSE>=2 && UseXmmI2F );
11241   match(Set dst (ConvI2F src));
11242 
11243   format %{ "MOVD  $dst,$src\n\t"
11244             "CVTDQ2PS $dst,$dst\t# i2f" %}
11245   ins_encode %{
11246     __ movdl($dst$$XMMRegister, $src$$Register);
11247     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11248   %}
11249   ins_pipe(pipe_slow); // XXX
11250 %}
11251 
11252 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11253   match(Set dst (ConvI2L src));
11254   effect(KILL cr);
11255   ins_cost(375);
11256   format %{ "MOV    $dst.lo,$src\n\t"
11257             "MOV    $dst.hi,$src\n\t"
11258             "SAR    $dst.hi,31" %}
11259   ins_encode(convert_int_long(dst,src));
11260   ins_pipe( ialu_reg_reg_long );
11261 %}
11262 
11263 // Zero-extend convert int to long
11264 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11265   match(Set dst (AndL (ConvI2L src) mask) );
11266   effect( KILL flags );
11267   ins_cost(250);
11268   format %{ "MOV    $dst.lo,$src\n\t"
11269             "XOR    $dst.hi,$dst.hi" %}
11270   opcode(0x33); // XOR
11271   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11272   ins_pipe( ialu_reg_reg_long );
11273 %}
11274 
11275 // Zero-extend long
11276 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11277   match(Set dst (AndL src mask) );
11278   effect( KILL flags );
11279   ins_cost(250);
11280   format %{ "MOV    $dst.lo,$src.lo\n\t"
11281             "XOR    $dst.hi,$dst.hi\n\t" %}
11282   opcode(0x33); // XOR
11283   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11284   ins_pipe( ialu_reg_reg_long );
11285 %}
11286 
11287 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11288   predicate (UseSSE<=1);
11289   match(Set dst (ConvL2D src));
11290   effect( KILL cr );
11291   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11292             "PUSH   $src.lo\n\t"
11293             "FILD   ST,[ESP + #0]\n\t"
11294             "ADD    ESP,8\n\t"
11295             "FSTP_D $dst\t# D-round" %}
11296   opcode(0xDF, 0x5);  /* DF /5 */
11297   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11298   ins_pipe( pipe_slow );
11299 %}
11300 
11301 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11302   predicate (UseSSE>=2);
11303   match(Set dst (ConvL2D src));
11304   effect( KILL cr );
11305   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11306             "PUSH   $src.lo\n\t"
11307             "FILD_D [ESP]\n\t"
11308             "FSTP_D [ESP]\n\t"
11309             "MOVSD  $dst,[ESP]\n\t"
11310             "ADD    ESP,8" %}
11311   opcode(0xDF, 0x5);  /* DF /5 */
11312   ins_encode(convert_long_double2(src), Push_ResultD(dst));
11313   ins_pipe( pipe_slow );
11314 %}
11315 
11316 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11317   predicate (UseSSE>=1);
11318   match(Set dst (ConvL2F src));
11319   effect( KILL cr );
11320   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11321             "PUSH   $src.lo\n\t"
11322             "FILD_D [ESP]\n\t"
11323             "FSTP_S [ESP]\n\t"
11324             "MOVSS  $dst,[ESP]\n\t"
11325             "ADD    ESP,8" %}
11326   opcode(0xDF, 0x5);  /* DF /5 */
11327   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11328   ins_pipe( pipe_slow );
11329 %}
11330 
11331 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11332   match(Set dst (ConvL2F src));
11333   effect( KILL cr );
11334   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11335             "PUSH   $src.lo\n\t"
11336             "FILD   ST,[ESP + #0]\n\t"
11337             "ADD    ESP,8\n\t"
11338             "FSTP_S $dst\t# F-round" %}
11339   opcode(0xDF, 0x5);  /* DF /5 */
11340   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11341   ins_pipe( pipe_slow );
11342 %}
11343 
11344 instruct convL2I_reg( rRegI dst, eRegL src ) %{
11345   match(Set dst (ConvL2I src));
11346   effect( DEF dst, USE src );
11347   format %{ "MOV    $dst,$src.lo" %}
11348   ins_encode(enc_CopyL_Lo(dst,src));
11349   ins_pipe( ialu_reg_reg );
11350 %}
11351 
11352 
11353 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11354   match(Set dst (MoveF2I src));
11355   effect( DEF dst, USE src );
11356   ins_cost(100);
11357   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11358   ins_encode %{
11359     __ movl($dst$$Register, Address(rsp, $src$$disp));
11360   %}
11361   ins_pipe( ialu_reg_mem );
11362 %}
11363 
11364 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11365   predicate(UseSSE==0);
11366   match(Set dst (MoveF2I src));
11367   effect( DEF dst, USE src );
11368 
11369   ins_cost(125);
11370   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11371   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11372   ins_pipe( fpu_mem_reg );
11373 %}
11374 
11375 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11376   predicate(UseSSE>=1);
11377   match(Set dst (MoveF2I src));
11378   effect( DEF dst, USE src );
11379 
11380   ins_cost(95);
11381   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11382   ins_encode %{
11383     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11384   %}
11385   ins_pipe( pipe_slow );
11386 %}
11387 
11388 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11389   predicate(UseSSE>=2);
11390   match(Set dst (MoveF2I src));
11391   effect( DEF dst, USE src );
11392   ins_cost(85);
11393   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11394   ins_encode %{
11395     __ movdl($dst$$Register, $src$$XMMRegister);
11396   %}
11397   ins_pipe( pipe_slow );
11398 %}
11399 
11400 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11401   match(Set dst (MoveI2F src));
11402   effect( DEF dst, USE src );
11403 
11404   ins_cost(100);
11405   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11406   ins_encode %{
11407     __ movl(Address(rsp, $dst$$disp), $src$$Register);
11408   %}
11409   ins_pipe( ialu_mem_reg );
11410 %}
11411 
11412 
11413 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11414   predicate(UseSSE==0);
11415   match(Set dst (MoveI2F src));
11416   effect(DEF dst, USE src);
11417 
11418   ins_cost(125);
11419   format %{ "FLD_S  $src\n\t"
11420             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11421   opcode(0xD9);               /* D9 /0, FLD m32real */
11422   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11423               Pop_Reg_FPR(dst) );
11424   ins_pipe( fpu_reg_mem );
11425 %}
11426 
11427 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11428   predicate(UseSSE>=1);
11429   match(Set dst (MoveI2F src));
11430   effect( DEF dst, USE src );
11431 
11432   ins_cost(95);
11433   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11434   ins_encode %{
11435     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11436   %}
11437   ins_pipe( pipe_slow );
11438 %}
11439 
11440 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11441   predicate(UseSSE>=2);
11442   match(Set dst (MoveI2F src));
11443   effect( DEF dst, USE src );
11444 
11445   ins_cost(85);
11446   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11447   ins_encode %{
11448     __ movdl($dst$$XMMRegister, $src$$Register);
11449   %}
11450   ins_pipe( pipe_slow );
11451 %}
11452 
11453 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11454   match(Set dst (MoveD2L src));
11455   effect(DEF dst, USE src);
11456 
11457   ins_cost(250);
11458   format %{ "MOV    $dst.lo,$src\n\t"
11459             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11460   opcode(0x8B, 0x8B);
11461   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11462   ins_pipe( ialu_mem_long_reg );
11463 %}
11464 
11465 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11466   predicate(UseSSE<=1);
11467   match(Set dst (MoveD2L src));
11468   effect(DEF dst, USE src);
11469 
11470   ins_cost(125);
11471   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11472   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11473   ins_pipe( fpu_mem_reg );
11474 %}
11475 
11476 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
11477   predicate(UseSSE>=2);
11478   match(Set dst (MoveD2L src));
11479   effect(DEF dst, USE src);
11480   ins_cost(95);
11481   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11482   ins_encode %{
11483     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
11484   %}
11485   ins_pipe( pipe_slow );
11486 %}
11487 
11488 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
11489   predicate(UseSSE>=2);
11490   match(Set dst (MoveD2L src));
11491   effect(DEF dst, USE src, TEMP tmp);
11492   ins_cost(85);
11493   format %{ "MOVD   $dst.lo,$src\n\t"
11494             "PSHUFLW $tmp,$src,0x4E\n\t"
11495             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11496   ins_encode %{
11497     __ movdl($dst$$Register, $src$$XMMRegister);
11498     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
11499     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
11500   %}
11501   ins_pipe( pipe_slow );
11502 %}
11503 
11504 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11505   match(Set dst (MoveL2D src));
11506   effect(DEF dst, USE src);
11507 
11508   ins_cost(200);
11509   format %{ "MOV    $dst,$src.lo\n\t"
11510             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11511   opcode(0x89, 0x89);
11512   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11513   ins_pipe( ialu_mem_long_reg );
11514 %}
11515 
11516 
11517 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
11518   predicate(UseSSE<=1);
11519   match(Set dst (MoveL2D src));
11520   effect(DEF dst, USE src);
11521   ins_cost(125);
11522 
11523   format %{ "FLD_D  $src\n\t"
11524             "FSTP   $dst\t# MoveL2D_stack_reg" %}
11525   opcode(0xDD);               /* DD /0, FLD m64real */
11526   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11527               Pop_Reg_DPR(dst) );
11528   ins_pipe( fpu_reg_mem );
11529 %}
11530 
11531 
11532 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
11533   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11534   match(Set dst (MoveL2D src));
11535   effect(DEF dst, USE src);
11536 
11537   ins_cost(95);
11538   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11539   ins_encode %{
11540     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11541   %}
11542   ins_pipe( pipe_slow );
11543 %}
11544 
11545 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
11546   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11547   match(Set dst (MoveL2D src));
11548   effect(DEF dst, USE src);
11549 
11550   ins_cost(95);
11551   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11552   ins_encode %{
11553     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11554   %}
11555   ins_pipe( pipe_slow );
11556 %}
11557 
11558 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
11559   predicate(UseSSE>=2);
11560   match(Set dst (MoveL2D src));
11561   effect(TEMP dst, USE src, TEMP tmp);
11562   ins_cost(85);
11563   format %{ "MOVD   $dst,$src.lo\n\t"
11564             "MOVD   $tmp,$src.hi\n\t"
11565             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11566   ins_encode %{
11567     __ movdl($dst$$XMMRegister, $src$$Register);
11568     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
11569     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
11570   %}
11571   ins_pipe( pipe_slow );
11572 %}
11573 
11574 
11575 // =======================================================================
11576 // fast clearing of an array
11577 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11578   match(Set dummy (ClearArray cnt base));
11579   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11580   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
11581             "XOR    EAX,EAX\n\t"
11582             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11583   opcode(0,0x4);
11584   ins_encode( Opcode(0xD1), RegOpc(ECX),
11585               OpcRegReg(0x33,EAX,EAX),
11586               Opcode(0xF3), Opcode(0xAB) );
11587   ins_pipe( pipe_slow );
11588 %}
11589 
11590 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
11591                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
11592   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11593   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11594 
11595   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11596   ins_encode %{
11597     __ string_compare($str1$$Register, $str2$$Register,
11598                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11599                       $tmp1$$XMMRegister);
11600   %}
11601   ins_pipe( pipe_slow );
11602 %}
11603 
11604 // fast string equals
11605 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
11606                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
11607   match(Set result (StrEquals (Binary str1 str2) cnt));
11608   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11609 
11610   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11611   ins_encode %{
11612     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
11613                           $cnt$$Register, $result$$Register, $tmp3$$Register,
11614                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11615   %}
11616   ins_pipe( pipe_slow );
11617 %}
11618 
11619 // fast search of substring with known size.
11620 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
11621                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
11622   predicate(UseSSE42Intrinsics);
11623   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11624   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11625 
11626   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11627   ins_encode %{
11628     int icnt2 = (int)$int_cnt2$$constant;
11629     if (icnt2 >= 8) {
11630       // IndexOf for constant substrings with size >= 8 elements
11631       // which don't need to be loaded through stack.
11632       __ string_indexofC8($str1$$Register, $str2$$Register,
11633                           $cnt1$$Register, $cnt2$$Register,
11634                           icnt2, $result$$Register,
11635                           $vec$$XMMRegister, $tmp$$Register);
11636     } else {
11637       // Small strings are loaded through stack if they cross page boundary.
11638       __ string_indexof($str1$$Register, $str2$$Register,
11639                         $cnt1$$Register, $cnt2$$Register,
11640                         icnt2, $result$$Register,
11641                         $vec$$XMMRegister, $tmp$$Register);
11642     }
11643   %}
11644   ins_pipe( pipe_slow );
11645 %}
11646 
11647 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
11648                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
11649   predicate(UseSSE42Intrinsics);
11650   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11651   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11652 
11653   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11654   ins_encode %{
11655     __ string_indexof($str1$$Register, $str2$$Register,
11656                       $cnt1$$Register, $cnt2$$Register,
11657                       (-1), $result$$Register,
11658                       $vec$$XMMRegister, $tmp$$Register);
11659   %}
11660   ins_pipe( pipe_slow );
11661 %}
11662 
11663 // fast array equals
11664 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
11665                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
11666 %{
11667   match(Set result (AryEq ary1 ary2));
11668   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11669   //ins_cost(300);
11670 
11671   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11672   ins_encode %{
11673     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
11674                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
11675                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11676   %}
11677   ins_pipe( pipe_slow );
11678 %}
11679 
11680 //----------Control Flow Instructions------------------------------------------
11681 // Signed compare Instructions
11682 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
11683   match(Set cr (CmpI op1 op2));
11684   effect( DEF cr, USE op1, USE op2 );
11685   format %{ "CMP    $op1,$op2" %}
11686   opcode(0x3B);  /* Opcode 3B /r */
11687   ins_encode( OpcP, RegReg( op1, op2) );
11688   ins_pipe( ialu_cr_reg_reg );
11689 %}
11690 
11691 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
11692   match(Set cr (CmpI op1 op2));
11693   effect( DEF cr, USE op1 );
11694   format %{ "CMP    $op1,$op2" %}
11695   opcode(0x81,0x07);  /* Opcode 81 /7 */
11696   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11697   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11698   ins_pipe( ialu_cr_reg_imm );
11699 %}
11700 
11701 // Cisc-spilled version of cmpI_eReg
11702 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
11703   match(Set cr (CmpI op1 (LoadI op2)));
11704 
11705   format %{ "CMP    $op1,$op2" %}
11706   ins_cost(500);
11707   opcode(0x3B);  /* Opcode 3B /r */
11708   ins_encode( OpcP, RegMem( op1, op2) );
11709   ins_pipe( ialu_cr_reg_mem );
11710 %}
11711 
11712 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
11713   match(Set cr (CmpI src zero));
11714   effect( DEF cr, USE src );
11715 
11716   format %{ "TEST   $src,$src" %}
11717   opcode(0x85);
11718   ins_encode( OpcP, RegReg( src, src ) );
11719   ins_pipe( ialu_cr_reg_imm );
11720 %}
11721 
11722 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
11723   match(Set cr (CmpI (AndI src con) zero));
11724 
11725   format %{ "TEST   $src,$con" %}
11726   opcode(0xF7,0x00);
11727   ins_encode( OpcP, RegOpc(src), Con32(con) );
11728   ins_pipe( ialu_cr_reg_imm );
11729 %}
11730 
11731 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
11732   match(Set cr (CmpI (AndI src mem) zero));
11733 
11734   format %{ "TEST   $src,$mem" %}
11735   opcode(0x85);
11736   ins_encode( OpcP, RegMem( src, mem ) );
11737   ins_pipe( ialu_cr_reg_mem );
11738 %}
11739 
11740 // Unsigned compare Instructions; really, same as signed except they
11741 // produce an eFlagsRegU instead of eFlagsReg.
11742 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
11743   match(Set cr (CmpU op1 op2));
11744 
11745   format %{ "CMPu   $op1,$op2" %}
11746   opcode(0x3B);  /* Opcode 3B /r */
11747   ins_encode( OpcP, RegReg( op1, op2) );
11748   ins_pipe( ialu_cr_reg_reg );
11749 %}
11750 
11751 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
11752   match(Set cr (CmpU op1 op2));
11753 
11754   format %{ "CMPu   $op1,$op2" %}
11755   opcode(0x81,0x07);  /* Opcode 81 /7 */
11756   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11757   ins_pipe( ialu_cr_reg_imm );
11758 %}
11759 
11760 // // Cisc-spilled version of cmpU_eReg
11761 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
11762   match(Set cr (CmpU op1 (LoadI op2)));
11763 
11764   format %{ "CMPu   $op1,$op2" %}
11765   ins_cost(500);
11766   opcode(0x3B);  /* Opcode 3B /r */
11767   ins_encode( OpcP, RegMem( op1, op2) );
11768   ins_pipe( ialu_cr_reg_mem );
11769 %}
11770 
11771 // // Cisc-spilled version of cmpU_eReg
11772 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
11773 //  match(Set cr (CmpU (LoadI op1) op2));
11774 //
11775 //  format %{ "CMPu   $op1,$op2" %}
11776 //  ins_cost(500);
11777 //  opcode(0x39);  /* Opcode 39 /r */
11778 //  ins_encode( OpcP, RegMem( op1, op2) );
11779 //%}
11780 
11781 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
11782   match(Set cr (CmpU src zero));
11783 
11784   format %{ "TESTu  $src,$src" %}
11785   opcode(0x85);
11786   ins_encode( OpcP, RegReg( src, src ) );
11787   ins_pipe( ialu_cr_reg_imm );
11788 %}
11789 
11790 // Unsigned pointer compare Instructions
11791 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11792   match(Set cr (CmpP op1 op2));
11793 
11794   format %{ "CMPu   $op1,$op2" %}
11795   opcode(0x3B);  /* Opcode 3B /r */
11796   ins_encode( OpcP, RegReg( op1, op2) );
11797   ins_pipe( ialu_cr_reg_reg );
11798 %}
11799 
11800 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11801   match(Set cr (CmpP op1 op2));
11802 
11803   format %{ "CMPu   $op1,$op2" %}
11804   opcode(0x81,0x07);  /* Opcode 81 /7 */
11805   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11806   ins_pipe( ialu_cr_reg_imm );
11807 %}
11808 
11809 // // Cisc-spilled version of cmpP_eReg
11810 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11811   match(Set cr (CmpP op1 (LoadP op2)));
11812 
11813   format %{ "CMPu   $op1,$op2" %}
11814   ins_cost(500);
11815   opcode(0x3B);  /* Opcode 3B /r */
11816   ins_encode( OpcP, RegMem( op1, op2) );
11817   ins_pipe( ialu_cr_reg_mem );
11818 %}
11819 
11820 // // Cisc-spilled version of cmpP_eReg
11821 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11822 //  match(Set cr (CmpP (LoadP op1) op2));
11823 //
11824 //  format %{ "CMPu   $op1,$op2" %}
11825 //  ins_cost(500);
11826 //  opcode(0x39);  /* Opcode 39 /r */
11827 //  ins_encode( OpcP, RegMem( op1, op2) );
11828 //%}
11829 
11830 // Compare raw pointer (used in out-of-heap check).
11831 // Only works because non-oop pointers must be raw pointers
11832 // and raw pointers have no anti-dependencies.
11833 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11834   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
11835   match(Set cr (CmpP op1 (LoadP op2)));
11836 
11837   format %{ "CMPu   $op1,$op2" %}
11838   opcode(0x3B);  /* Opcode 3B /r */
11839   ins_encode( OpcP, RegMem( op1, op2) );
11840   ins_pipe( ialu_cr_reg_mem );
11841 %}
11842 
11843 //
11844 // This will generate a signed flags result. This should be ok
11845 // since any compare to a zero should be eq/neq.
11846 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11847   match(Set cr (CmpP src zero));
11848 
11849   format %{ "TEST   $src,$src" %}
11850   opcode(0x85);
11851   ins_encode( OpcP, RegReg( src, src ) );
11852   ins_pipe( ialu_cr_reg_imm );
11853 %}
11854 
11855 // Cisc-spilled version of testP_reg
11856 // This will generate a signed flags result. This should be ok
11857 // since any compare to a zero should be eq/neq.
11858 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11859   match(Set cr (CmpP (LoadP op) zero));
11860 
11861   format %{ "TEST   $op,0xFFFFFFFF" %}
11862   ins_cost(500);
11863   opcode(0xF7);               /* Opcode F7 /0 */
11864   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11865   ins_pipe( ialu_cr_reg_imm );
11866 %}
11867 
11868 // Yanked all unsigned pointer compare operations.
11869 // Pointer compares are done with CmpP which is already unsigned.
11870 
11871 //----------Max and Min--------------------------------------------------------
11872 // Min Instructions
11873 ////
11874 //   *** Min and Max using the conditional move are slower than the
11875 //   *** branch version on a Pentium III.
11876 // // Conditional move for min
11877 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11878 //  effect( USE_DEF op2, USE op1, USE cr );
11879 //  format %{ "CMOVlt $op2,$op1\t! min" %}
11880 //  opcode(0x4C,0x0F);
11881 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11882 //  ins_pipe( pipe_cmov_reg );
11883 //%}
11884 //
11885 //// Min Register with Register (P6 version)
11886 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
11887 //  predicate(VM_Version::supports_cmov() );
11888 //  match(Set op2 (MinI op1 op2));
11889 //  ins_cost(200);
11890 //  expand %{
11891 //    eFlagsReg cr;
11892 //    compI_eReg(cr,op1,op2);
11893 //    cmovI_reg_lt(op2,op1,cr);
11894 //  %}
11895 //%}
11896 
11897 // Min Register with Register (generic version)
11898 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11899   match(Set dst (MinI dst src));
11900   effect(KILL flags);
11901   ins_cost(300);
11902 
11903   format %{ "MIN    $dst,$src" %}
11904   opcode(0xCC);
11905   ins_encode( min_enc(dst,src) );
11906   ins_pipe( pipe_slow );
11907 %}
11908 
11909 // Max Register with Register
11910 //   *** Min and Max using the conditional move are slower than the
11911 //   *** branch version on a Pentium III.
11912 // // Conditional move for max
11913 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11914 //  effect( USE_DEF op2, USE op1, USE cr );
11915 //  format %{ "CMOVgt $op2,$op1\t! max" %}
11916 //  opcode(0x4F,0x0F);
11917 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11918 //  ins_pipe( pipe_cmov_reg );
11919 //%}
11920 //
11921 // // Max Register with Register (P6 version)
11922 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
11923 //  predicate(VM_Version::supports_cmov() );
11924 //  match(Set op2 (MaxI op1 op2));
11925 //  ins_cost(200);
11926 //  expand %{
11927 //    eFlagsReg cr;
11928 //    compI_eReg(cr,op1,op2);
11929 //    cmovI_reg_gt(op2,op1,cr);
11930 //  %}
11931 //%}
11932 
11933 // Max Register with Register (generic version)
11934 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11935   match(Set dst (MaxI dst src));
11936   effect(KILL flags);
11937   ins_cost(300);
11938 
11939   format %{ "MAX    $dst,$src" %}
11940   opcode(0xCC);
11941   ins_encode( max_enc(dst,src) );
11942   ins_pipe( pipe_slow );
11943 %}
11944 
11945 // ============================================================================
11946 // Counted Loop limit node which represents exact final iterator value.
11947 // Note: the resulting value should fit into integer range since
11948 // counted loops have limit check on overflow.
11949 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
11950   match(Set limit (LoopLimit (Binary init limit) stride));
11951   effect(TEMP limit_hi, TEMP tmp, KILL flags);
11952   ins_cost(300);
11953 
11954   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
11955   ins_encode %{
11956     int strd = (int)$stride$$constant;
11957     assert(strd != 1 && strd != -1, "sanity");
11958     int m1 = (strd > 0) ? 1 : -1;
11959     // Convert limit to long (EAX:EDX)
11960     __ cdql();
11961     // Convert init to long (init:tmp)
11962     __ movl($tmp$$Register, $init$$Register);
11963     __ sarl($tmp$$Register, 31);
11964     // $limit - $init
11965     __ subl($limit$$Register, $init$$Register);
11966     __ sbbl($limit_hi$$Register, $tmp$$Register);
11967     // + ($stride - 1)
11968     if (strd > 0) {
11969       __ addl($limit$$Register, (strd - 1));
11970       __ adcl($limit_hi$$Register, 0);
11971       __ movl($tmp$$Register, strd);
11972     } else {
11973       __ addl($limit$$Register, (strd + 1));
11974       __ adcl($limit_hi$$Register, -1);
11975       __ lneg($limit_hi$$Register, $limit$$Register);
11976       __ movl($tmp$$Register, -strd);
11977     }
11978     // signed devision: (EAX:EDX) / pos_stride
11979     __ idivl($tmp$$Register);
11980     if (strd < 0) {
11981       // restore sign
11982       __ negl($tmp$$Register);
11983     }
11984     // (EAX) * stride
11985     __ mull($tmp$$Register);
11986     // + init (ignore upper bits)
11987     __ addl($limit$$Register, $init$$Register);
11988   %}
11989   ins_pipe( pipe_slow );
11990 %}
11991 
11992 // ============================================================================
11993 // Branch Instructions
11994 // Jump Table
11995 instruct jumpXtnd(rRegI switch_val) %{
11996   match(Jump switch_val);
11997   ins_cost(350);
11998   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
11999   ins_encode %{
12000     // Jump to Address(table_base + switch_reg)
12001     Address index(noreg, $switch_val$$Register, Address::times_1);
12002     __ jump(ArrayAddress($constantaddress, index));
12003   %}
12004   ins_pipe(pipe_jmp);
12005 %}
12006 
12007 // Jump Direct - Label defines a relative address from JMP+1
12008 instruct jmpDir(label labl) %{
12009   match(Goto);
12010   effect(USE labl);
12011 
12012   ins_cost(300);
12013   format %{ "JMP    $labl" %}
12014   size(5);
12015   ins_encode %{
12016     Label* L = $labl$$label;
12017     __ jmp(*L, false); // Always long jump
12018   %}
12019   ins_pipe( pipe_jmp );
12020 %}
12021 
12022 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12023 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12024   match(If cop cr);
12025   effect(USE labl);
12026 
12027   ins_cost(300);
12028   format %{ "J$cop    $labl" %}
12029   size(6);
12030   ins_encode %{
12031     Label* L = $labl$$label;
12032     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12033   %}
12034   ins_pipe( pipe_jcc );
12035 %}
12036 
12037 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12038 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12039   match(CountedLoopEnd cop cr);
12040   effect(USE labl);
12041 
12042   ins_cost(300);
12043   format %{ "J$cop    $labl\t# Loop end" %}
12044   size(6);
12045   ins_encode %{
12046     Label* L = $labl$$label;
12047     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12048   %}
12049   ins_pipe( pipe_jcc );
12050 %}
12051 
12052 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12053 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12054   match(CountedLoopEnd cop cmp);
12055   effect(USE labl);
12056 
12057   ins_cost(300);
12058   format %{ "J$cop,u  $labl\t# Loop end" %}
12059   size(6);
12060   ins_encode %{
12061     Label* L = $labl$$label;
12062     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12063   %}
12064   ins_pipe( pipe_jcc );
12065 %}
12066 
12067 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12068   match(CountedLoopEnd cop cmp);
12069   effect(USE labl);
12070 
12071   ins_cost(200);
12072   format %{ "J$cop,u  $labl\t# Loop end" %}
12073   size(6);
12074   ins_encode %{
12075     Label* L = $labl$$label;
12076     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12077   %}
12078   ins_pipe( pipe_jcc );
12079 %}
12080 
12081 // Jump Direct Conditional - using unsigned comparison
12082 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12083   match(If cop cmp);
12084   effect(USE labl);
12085 
12086   ins_cost(300);
12087   format %{ "J$cop,u  $labl" %}
12088   size(6);
12089   ins_encode %{
12090     Label* L = $labl$$label;
12091     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12092   %}
12093   ins_pipe(pipe_jcc);
12094 %}
12095 
12096 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12097   match(If cop cmp);
12098   effect(USE labl);
12099 
12100   ins_cost(200);
12101   format %{ "J$cop,u  $labl" %}
12102   size(6);
12103   ins_encode %{
12104     Label* L = $labl$$label;
12105     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12106   %}
12107   ins_pipe(pipe_jcc);
12108 %}
12109 
12110 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12111   match(If cop cmp);
12112   effect(USE labl);
12113 
12114   ins_cost(200);
12115   format %{ $$template
12116     if ($cop$$cmpcode == Assembler::notEqual) {
12117       $$emit$$"JP,u   $labl\n\t"
12118       $$emit$$"J$cop,u   $labl"
12119     } else {
12120       $$emit$$"JP,u   done\n\t"
12121       $$emit$$"J$cop,u   $labl\n\t"
12122       $$emit$$"done:"
12123     }
12124   %}
12125   ins_encode %{
12126     Label* l = $labl$$label;
12127     if ($cop$$cmpcode == Assembler::notEqual) {
12128       __ jcc(Assembler::parity, *l, false);
12129       __ jcc(Assembler::notEqual, *l, false);
12130     } else if ($cop$$cmpcode == Assembler::equal) {
12131       Label done;
12132       __ jccb(Assembler::parity, done);
12133       __ jcc(Assembler::equal, *l, false);
12134       __ bind(done);
12135     } else {
12136        ShouldNotReachHere();
12137     }
12138   %}
12139   ins_pipe(pipe_jcc);
12140 %}
12141 
12142 // ============================================================================
12143 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12144 // array for an instance of the superklass.  Set a hidden internal cache on a
12145 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12146 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12147 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12148   match(Set result (PartialSubtypeCheck sub super));
12149   effect( KILL rcx, KILL cr );
12150 
12151   ins_cost(1100);  // slightly larger than the next version
12152   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12153             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12154             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12155             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12156             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12157             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12158             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12159      "miss:\t" %}
12160 
12161   opcode(0x1); // Force a XOR of EDI
12162   ins_encode( enc_PartialSubtypeCheck() );
12163   ins_pipe( pipe_slow );
12164 %}
12165 
12166 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12167   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12168   effect( KILL rcx, KILL result );
12169 
12170   ins_cost(1000);
12171   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12172             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12173             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12174             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12175             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12176             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12177      "miss:\t" %}
12178 
12179   opcode(0x0);  // No need to XOR EDI
12180   ins_encode( enc_PartialSubtypeCheck() );
12181   ins_pipe( pipe_slow );
12182 %}
12183 
12184 // ============================================================================
12185 // Branch Instructions -- short offset versions
12186 //
12187 // These instructions are used to replace jumps of a long offset (the default
12188 // match) with jumps of a shorter offset.  These instructions are all tagged
12189 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12190 // match rules in general matching.  Instead, the ADLC generates a conversion
12191 // method in the MachNode which can be used to do in-place replacement of the
12192 // long variant with the shorter variant.  The compiler will determine if a
12193 // branch can be taken by the is_short_branch_offset() predicate in the machine
12194 // specific code section of the file.
12195 
12196 // Jump Direct - Label defines a relative address from JMP+1
12197 instruct jmpDir_short(label labl) %{
12198   match(Goto);
12199   effect(USE labl);
12200 
12201   ins_cost(300);
12202   format %{ "JMP,s  $labl" %}
12203   size(2);
12204   ins_encode %{
12205     Label* L = $labl$$label;
12206     __ jmpb(*L);
12207   %}
12208   ins_pipe( pipe_jmp );
12209   ins_short_branch(1);
12210 %}
12211 
12212 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12213 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12214   match(If cop cr);
12215   effect(USE labl);
12216 
12217   ins_cost(300);
12218   format %{ "J$cop,s  $labl" %}
12219   size(2);
12220   ins_encode %{
12221     Label* L = $labl$$label;
12222     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12223   %}
12224   ins_pipe( pipe_jcc );
12225   ins_short_branch(1);
12226 %}
12227 
12228 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12229 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12230   match(CountedLoopEnd cop cr);
12231   effect(USE labl);
12232 
12233   ins_cost(300);
12234   format %{ "J$cop,s  $labl\t# Loop end" %}
12235   size(2);
12236   ins_encode %{
12237     Label* L = $labl$$label;
12238     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12239   %}
12240   ins_pipe( pipe_jcc );
12241   ins_short_branch(1);
12242 %}
12243 
12244 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12245 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12246   match(CountedLoopEnd cop cmp);
12247   effect(USE labl);
12248 
12249   ins_cost(300);
12250   format %{ "J$cop,us $labl\t# Loop end" %}
12251   size(2);
12252   ins_encode %{
12253     Label* L = $labl$$label;
12254     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12255   %}
12256   ins_pipe( pipe_jcc );
12257   ins_short_branch(1);
12258 %}
12259 
12260 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12261   match(CountedLoopEnd cop cmp);
12262   effect(USE labl);
12263 
12264   ins_cost(300);
12265   format %{ "J$cop,us $labl\t# Loop end" %}
12266   size(2);
12267   ins_encode %{
12268     Label* L = $labl$$label;
12269     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12270   %}
12271   ins_pipe( pipe_jcc );
12272   ins_short_branch(1);
12273 %}
12274 
12275 // Jump Direct Conditional - using unsigned comparison
12276 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12277   match(If cop cmp);
12278   effect(USE labl);
12279 
12280   ins_cost(300);
12281   format %{ "J$cop,us $labl" %}
12282   size(2);
12283   ins_encode %{
12284     Label* L = $labl$$label;
12285     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12286   %}
12287   ins_pipe( pipe_jcc );
12288   ins_short_branch(1);
12289 %}
12290 
12291 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12292   match(If cop cmp);
12293   effect(USE labl);
12294 
12295   ins_cost(300);
12296   format %{ "J$cop,us $labl" %}
12297   size(2);
12298   ins_encode %{
12299     Label* L = $labl$$label;
12300     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12301   %}
12302   ins_pipe( pipe_jcc );
12303   ins_short_branch(1);
12304 %}
12305 
12306 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12307   match(If cop cmp);
12308   effect(USE labl);
12309 
12310   ins_cost(300);
12311   format %{ $$template
12312     if ($cop$$cmpcode == Assembler::notEqual) {
12313       $$emit$$"JP,u,s   $labl\n\t"
12314       $$emit$$"J$cop,u,s   $labl"
12315     } else {
12316       $$emit$$"JP,u,s   done\n\t"
12317       $$emit$$"J$cop,u,s  $labl\n\t"
12318       $$emit$$"done:"
12319     }
12320   %}
12321   size(4);
12322   ins_encode %{
12323     Label* l = $labl$$label;
12324     if ($cop$$cmpcode == Assembler::notEqual) {
12325       __ jccb(Assembler::parity, *l);
12326       __ jccb(Assembler::notEqual, *l);
12327     } else if ($cop$$cmpcode == Assembler::equal) {
12328       Label done;
12329       __ jccb(Assembler::parity, done);
12330       __ jccb(Assembler::equal, *l);
12331       __ bind(done);
12332     } else {
12333        ShouldNotReachHere();
12334     }
12335   %}
12336   ins_pipe(pipe_jcc);
12337   ins_short_branch(1);
12338 %}
12339 
12340 // ============================================================================
12341 // Long Compare
12342 //
12343 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12344 // is tricky.  The flavor of compare used depends on whether we are testing
12345 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12346 // The GE test is the negated LT test.  The LE test can be had by commuting
12347 // the operands (yielding a GE test) and then negating; negate again for the
12348 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12349 // NE test is negated from that.
12350 
12351 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12352 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12353 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12354 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12355 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12356 // foo match ends up with the wrong leaf.  One fix is to not match both
12357 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12358 // both forms beat the trinary form of long-compare and both are very useful
12359 // on Intel which has so few registers.
12360 
12361 // Manifest a CmpL result in an integer register.  Very painful.
12362 // This is the test to avoid.
12363 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12364   match(Set dst (CmpL3 src1 src2));
12365   effect( KILL flags );
12366   ins_cost(1000);
12367   format %{ "XOR    $dst,$dst\n\t"
12368             "CMP    $src1.hi,$src2.hi\n\t"
12369             "JLT,s  m_one\n\t"
12370             "JGT,s  p_one\n\t"
12371             "CMP    $src1.lo,$src2.lo\n\t"
12372             "JB,s   m_one\n\t"
12373             "JEQ,s  done\n"
12374     "p_one:\tINC    $dst\n\t"
12375             "JMP,s  done\n"
12376     "m_one:\tDEC    $dst\n"
12377      "done:" %}
12378   ins_encode %{
12379     Label p_one, m_one, done;
12380     __ xorptr($dst$$Register, $dst$$Register);
12381     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12382     __ jccb(Assembler::less,    m_one);
12383     __ jccb(Assembler::greater, p_one);
12384     __ cmpl($src1$$Register, $src2$$Register);
12385     __ jccb(Assembler::below,   m_one);
12386     __ jccb(Assembler::equal,   done);
12387     __ bind(p_one);
12388     __ incrementl($dst$$Register);
12389     __ jmpb(done);
12390     __ bind(m_one);
12391     __ decrementl($dst$$Register);
12392     __ bind(done);
12393   %}
12394   ins_pipe( pipe_slow );
12395 %}
12396 
12397 //======
12398 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12399 // compares.  Can be used for LE or GT compares by reversing arguments.
12400 // NOT GOOD FOR EQ/NE tests.
12401 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12402   match( Set flags (CmpL src zero ));
12403   ins_cost(100);
12404   format %{ "TEST   $src.hi,$src.hi" %}
12405   opcode(0x85);
12406   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12407   ins_pipe( ialu_cr_reg_reg );
12408 %}
12409 
12410 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12411 // compares.  Can be used for LE or GT compares by reversing arguments.
12412 // NOT GOOD FOR EQ/NE tests.
12413 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12414   match( Set flags (CmpL src1 src2 ));
12415   effect( TEMP tmp );
12416   ins_cost(300);
12417   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12418             "MOV    $tmp,$src1.hi\n\t"
12419             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12420   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12421   ins_pipe( ialu_cr_reg_reg );
12422 %}
12423 
12424 // Long compares reg < zero/req OR reg >= zero/req.
12425 // Just a wrapper for a normal branch, plus the predicate test.
12426 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12427   match(If cmp flags);
12428   effect(USE labl);
12429   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12430   expand %{
12431     jmpCon(cmp,flags,labl);    // JLT or JGE...
12432   %}
12433 %}
12434 
12435 // Compare 2 longs and CMOVE longs.
12436 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12437   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12438   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12439   ins_cost(400);
12440   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12441             "CMOV$cmp $dst.hi,$src.hi" %}
12442   opcode(0x0F,0x40);
12443   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12444   ins_pipe( pipe_cmov_reg_long );
12445 %}
12446 
12447 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12448   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12449   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12450   ins_cost(500);
12451   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12452             "CMOV$cmp $dst.hi,$src.hi" %}
12453   opcode(0x0F,0x40);
12454   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12455   ins_pipe( pipe_cmov_reg_long );
12456 %}
12457 
12458 // Compare 2 longs and CMOVE ints.
12459 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
12460   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12461   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12462   ins_cost(200);
12463   format %{ "CMOV$cmp $dst,$src" %}
12464   opcode(0x0F,0x40);
12465   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12466   ins_pipe( pipe_cmov_reg );
12467 %}
12468 
12469 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
12470   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12471   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12472   ins_cost(250);
12473   format %{ "CMOV$cmp $dst,$src" %}
12474   opcode(0x0F,0x40);
12475   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12476   ins_pipe( pipe_cmov_mem );
12477 %}
12478 
12479 // Compare 2 longs and CMOVE ints.
12480 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12481   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12482   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12483   ins_cost(200);
12484   format %{ "CMOV$cmp $dst,$src" %}
12485   opcode(0x0F,0x40);
12486   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12487   ins_pipe( pipe_cmov_reg );
12488 %}
12489 
12490 // Compare 2 longs and CMOVE doubles
12491 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
12492   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12493   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12494   ins_cost(200);
12495   expand %{
12496     fcmovDPR_regS(cmp,flags,dst,src);
12497   %}
12498 %}
12499 
12500 // Compare 2 longs and CMOVE doubles
12501 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12502   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12503   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12504   ins_cost(200);
12505   expand %{
12506     fcmovD_regS(cmp,flags,dst,src);
12507   %}
12508 %}
12509 
12510 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
12511   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12512   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12513   ins_cost(200);
12514   expand %{
12515     fcmovFPR_regS(cmp,flags,dst,src);
12516   %}
12517 %}
12518 
12519 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12520   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12521   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12522   ins_cost(200);
12523   expand %{
12524     fcmovF_regS(cmp,flags,dst,src);
12525   %}
12526 %}
12527 
12528 //======
12529 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12530 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
12531   match( Set flags (CmpL src zero ));
12532   effect(TEMP tmp);
12533   ins_cost(200);
12534   format %{ "MOV    $tmp,$src.lo\n\t"
12535             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12536   ins_encode( long_cmp_flags0( src, tmp ) );
12537   ins_pipe( ialu_reg_reg_long );
12538 %}
12539 
12540 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12541 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12542   match( Set flags (CmpL src1 src2 ));
12543   ins_cost(200+300);
12544   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12545             "JNE,s  skip\n\t"
12546             "CMP    $src1.hi,$src2.hi\n\t"
12547      "skip:\t" %}
12548   ins_encode( long_cmp_flags1( src1, src2 ) );
12549   ins_pipe( ialu_cr_reg_reg );
12550 %}
12551 
12552 // Long compare reg == zero/reg OR reg != zero/reg
12553 // Just a wrapper for a normal branch, plus the predicate test.
12554 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12555   match(If cmp flags);
12556   effect(USE labl);
12557   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12558   expand %{
12559     jmpCon(cmp,flags,labl);    // JEQ or JNE...
12560   %}
12561 %}
12562 
12563 // Compare 2 longs and CMOVE longs.
12564 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12565   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12566   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12567   ins_cost(400);
12568   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12569             "CMOV$cmp $dst.hi,$src.hi" %}
12570   opcode(0x0F,0x40);
12571   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12572   ins_pipe( pipe_cmov_reg_long );
12573 %}
12574 
12575 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12576   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12577   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12578   ins_cost(500);
12579   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12580             "CMOV$cmp $dst.hi,$src.hi" %}
12581   opcode(0x0F,0x40);
12582   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12583   ins_pipe( pipe_cmov_reg_long );
12584 %}
12585 
12586 // Compare 2 longs and CMOVE ints.
12587 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
12588   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12589   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12590   ins_cost(200);
12591   format %{ "CMOV$cmp $dst,$src" %}
12592   opcode(0x0F,0x40);
12593   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12594   ins_pipe( pipe_cmov_reg );
12595 %}
12596 
12597 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
12598   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12599   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12600   ins_cost(250);
12601   format %{ "CMOV$cmp $dst,$src" %}
12602   opcode(0x0F,0x40);
12603   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12604   ins_pipe( pipe_cmov_mem );
12605 %}
12606 
12607 // Compare 2 longs and CMOVE ints.
12608 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12609   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12610   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12611   ins_cost(200);
12612   format %{ "CMOV$cmp $dst,$src" %}
12613   opcode(0x0F,0x40);
12614   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12615   ins_pipe( pipe_cmov_reg );
12616 %}
12617 
12618 // Compare 2 longs and CMOVE doubles
12619 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
12620   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12621   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12622   ins_cost(200);
12623   expand %{
12624     fcmovDPR_regS(cmp,flags,dst,src);
12625   %}
12626 %}
12627 
12628 // Compare 2 longs and CMOVE doubles
12629 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12630   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12631   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12632   ins_cost(200);
12633   expand %{
12634     fcmovD_regS(cmp,flags,dst,src);
12635   %}
12636 %}
12637 
12638 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
12639   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12640   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12641   ins_cost(200);
12642   expand %{
12643     fcmovFPR_regS(cmp,flags,dst,src);
12644   %}
12645 %}
12646 
12647 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12648   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12649   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12650   ins_cost(200);
12651   expand %{
12652     fcmovF_regS(cmp,flags,dst,src);
12653   %}
12654 %}
12655 
12656 //======
12657 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12658 // Same as cmpL_reg_flags_LEGT except must negate src
12659 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
12660   match( Set flags (CmpL src zero ));
12661   effect( TEMP tmp );
12662   ins_cost(300);
12663   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12664             "CMP    $tmp,$src.lo\n\t"
12665             "SBB    $tmp,$src.hi\n\t" %}
12666   ins_encode( long_cmp_flags3(src, tmp) );
12667   ins_pipe( ialu_reg_reg_long );
12668 %}
12669 
12670 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12671 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12672 // requires a commuted test to get the same result.
12673 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12674   match( Set flags (CmpL src1 src2 ));
12675   effect( TEMP tmp );
12676   ins_cost(300);
12677   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12678             "MOV    $tmp,$src2.hi\n\t"
12679             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12680   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12681   ins_pipe( ialu_cr_reg_reg );
12682 %}
12683 
12684 // Long compares reg < zero/req OR reg >= zero/req.
12685 // Just a wrapper for a normal branch, plus the predicate test
12686 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12687   match(If cmp flags);
12688   effect(USE labl);
12689   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12690   ins_cost(300);
12691   expand %{
12692     jmpCon(cmp,flags,labl);    // JGT or JLE...
12693   %}
12694 %}
12695 
12696 // Compare 2 longs and CMOVE longs.
12697 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12698   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12699   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12700   ins_cost(400);
12701   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12702             "CMOV$cmp $dst.hi,$src.hi" %}
12703   opcode(0x0F,0x40);
12704   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12705   ins_pipe( pipe_cmov_reg_long );
12706 %}
12707 
12708 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12709   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12710   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12711   ins_cost(500);
12712   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12713             "CMOV$cmp $dst.hi,$src.hi+4" %}
12714   opcode(0x0F,0x40);
12715   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12716   ins_pipe( pipe_cmov_reg_long );
12717 %}
12718 
12719 // Compare 2 longs and CMOVE ints.
12720 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
12721   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12722   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12723   ins_cost(200);
12724   format %{ "CMOV$cmp $dst,$src" %}
12725   opcode(0x0F,0x40);
12726   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12727   ins_pipe( pipe_cmov_reg );
12728 %}
12729 
12730 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
12731   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12732   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12733   ins_cost(250);
12734   format %{ "CMOV$cmp $dst,$src" %}
12735   opcode(0x0F,0x40);
12736   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12737   ins_pipe( pipe_cmov_mem );
12738 %}
12739 
12740 // Compare 2 longs and CMOVE ptrs.
12741 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12742   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12743   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12744   ins_cost(200);
12745   format %{ "CMOV$cmp $dst,$src" %}
12746   opcode(0x0F,0x40);
12747   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12748   ins_pipe( pipe_cmov_reg );
12749 %}
12750 
12751 // Compare 2 longs and CMOVE doubles
12752 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
12753   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12754   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12755   ins_cost(200);
12756   expand %{
12757     fcmovDPR_regS(cmp,flags,dst,src);
12758   %}
12759 %}
12760 
12761 // Compare 2 longs and CMOVE doubles
12762 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12763   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12764   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12765   ins_cost(200);
12766   expand %{
12767     fcmovD_regS(cmp,flags,dst,src);
12768   %}
12769 %}
12770 
12771 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
12772   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12773   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12774   ins_cost(200);
12775   expand %{
12776     fcmovFPR_regS(cmp,flags,dst,src);
12777   %}
12778 %}
12779 
12780 
12781 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12782   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12783   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12784   ins_cost(200);
12785   expand %{
12786     fcmovF_regS(cmp,flags,dst,src);
12787   %}
12788 %}
12789 
12790 
12791 // ============================================================================
12792 // Procedure Call/Return Instructions
12793 // Call Java Static Instruction
12794 // Note: If this code changes, the corresponding ret_addr_offset() and
12795 //       compute_padding() functions will have to be adjusted.
12796 instruct CallStaticJavaDirect(method meth) %{
12797   match(CallStaticJava);
12798   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
12799   effect(USE meth);
12800 
12801   ins_cost(300);
12802   format %{ "CALL,static " %}
12803   opcode(0xE8); /* E8 cd */
12804   ins_encode( pre_call_FPU,
12805               Java_Static_Call( meth ),
12806               call_epilog,
12807               post_call_FPU );
12808   ins_pipe( pipe_slow );
12809   ins_alignment(4);
12810 %}
12811 
12812 // Call Java Static Instruction (method handle version)
12813 // Note: If this code changes, the corresponding ret_addr_offset() and
12814 //       compute_padding() functions will have to be adjusted.
12815 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
12816   match(CallStaticJava);
12817   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
12818   effect(USE meth);
12819   // EBP is saved by all callees (for interpreter stack correction).
12820   // We use it here for a similar purpose, in {preserve,restore}_SP.
12821 
12822   ins_cost(300);
12823   format %{ "CALL,static/MethodHandle " %}
12824   opcode(0xE8); /* E8 cd */
12825   ins_encode( pre_call_FPU,
12826               preserve_SP,
12827               Java_Static_Call( meth ),
12828               restore_SP,
12829               call_epilog,
12830               post_call_FPU );
12831   ins_pipe( pipe_slow );
12832   ins_alignment(4);
12833 %}
12834 
12835 // Call Java Dynamic Instruction
12836 // Note: If this code changes, the corresponding ret_addr_offset() and
12837 //       compute_padding() functions will have to be adjusted.
12838 instruct CallDynamicJavaDirect(method meth) %{
12839   match(CallDynamicJava);
12840   effect(USE meth);
12841 
12842   ins_cost(300);
12843   format %{ "MOV    EAX,(oop)-1\n\t"
12844             "CALL,dynamic" %}
12845   opcode(0xE8); /* E8 cd */
12846   ins_encode( pre_call_FPU,
12847               Java_Dynamic_Call( meth ),
12848               call_epilog,
12849               post_call_FPU );
12850   ins_pipe( pipe_slow );
12851   ins_alignment(4);
12852 %}
12853 
12854 // Call Runtime Instruction
12855 instruct CallRuntimeDirect(method meth) %{
12856   match(CallRuntime );
12857   effect(USE meth);
12858 
12859   ins_cost(300);
12860   format %{ "CALL,runtime " %}
12861   opcode(0xE8); /* E8 cd */
12862   // Use FFREEs to clear entries in float stack
12863   ins_encode( pre_call_FPU,
12864               FFree_Float_Stack_All,
12865               Java_To_Runtime( meth ),
12866               post_call_FPU );
12867   ins_pipe( pipe_slow );
12868 %}
12869 
12870 // Call runtime without safepoint
12871 instruct CallLeafDirect(method meth) %{
12872   match(CallLeaf);
12873   effect(USE meth);
12874 
12875   ins_cost(300);
12876   format %{ "CALL_LEAF,runtime " %}
12877   opcode(0xE8); /* E8 cd */
12878   ins_encode( pre_call_FPU,
12879               FFree_Float_Stack_All,
12880               Java_To_Runtime( meth ),
12881               Verify_FPU_For_Leaf, post_call_FPU );
12882   ins_pipe( pipe_slow );
12883 %}
12884 
12885 instruct CallLeafNoFPDirect(method meth) %{
12886   match(CallLeafNoFP);
12887   effect(USE meth);
12888 
12889   ins_cost(300);
12890   format %{ "CALL_LEAF_NOFP,runtime " %}
12891   opcode(0xE8); /* E8 cd */
12892   ins_encode(Java_To_Runtime(meth));
12893   ins_pipe( pipe_slow );
12894 %}
12895 
12896 
12897 // Return Instruction
12898 // Remove the return address & jump to it.
12899 instruct Ret() %{
12900   match(Return);
12901   format %{ "RET" %}
12902   opcode(0xC3);
12903   ins_encode(OpcP);
12904   ins_pipe( pipe_jmp );
12905 %}
12906 
12907 // Tail Call; Jump from runtime stub to Java code.
12908 // Also known as an 'interprocedural jump'.
12909 // Target of jump will eventually return to caller.
12910 // TailJump below removes the return address.
12911 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
12912   match(TailCall jump_target method_oop );
12913   ins_cost(300);
12914   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
12915   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12916   ins_encode( OpcP, RegOpc(jump_target) );
12917   ins_pipe( pipe_jmp );
12918 %}
12919 
12920 
12921 // Tail Jump; remove the return address; jump to target.
12922 // TailCall above leaves the return address around.
12923 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
12924   match( TailJump jump_target ex_oop );
12925   ins_cost(300);
12926   format %{ "POP    EDX\t# pop return address into dummy\n\t"
12927             "JMP    $jump_target " %}
12928   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12929   ins_encode( enc_pop_rdx,
12930               OpcP, RegOpc(jump_target) );
12931   ins_pipe( pipe_jmp );
12932 %}
12933 
12934 // Create exception oop: created by stack-crawling runtime code.
12935 // Created exception is now available to this handler, and is setup
12936 // just prior to jumping to this handler.  No code emitted.
12937 instruct CreateException( eAXRegP ex_oop )
12938 %{
12939   match(Set ex_oop (CreateEx));
12940 
12941   size(0);
12942   // use the following format syntax
12943   format %{ "# exception oop is in EAX; no code emitted" %}
12944   ins_encode();
12945   ins_pipe( empty );
12946 %}
12947 
12948 
12949 // Rethrow exception:
12950 // The exception oop will come in the first argument position.
12951 // Then JUMP (not call) to the rethrow stub code.
12952 instruct RethrowException()
12953 %{
12954   match(Rethrow);
12955 
12956   // use the following format syntax
12957   format %{ "JMP    rethrow_stub" %}
12958   ins_encode(enc_rethrow);
12959   ins_pipe( pipe_jmp );
12960 %}
12961 
12962 // inlined locking and unlocking
12963 
12964 
12965 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
12966   match( Set cr (FastLock object box) );
12967   effect( TEMP tmp, TEMP scr, USE_KILL box );
12968   ins_cost(300);
12969   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
12970   ins_encode( Fast_Lock(object,box,tmp,scr) );
12971   ins_pipe( pipe_slow );
12972 %}
12973 
12974 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
12975   match( Set cr (FastUnlock object box) );
12976   effect( TEMP tmp, USE_KILL box );
12977   ins_cost(300);
12978   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
12979   ins_encode( Fast_Unlock(object,box,tmp) );
12980   ins_pipe( pipe_slow );
12981 %}
12982 
12983 
12984 
12985 // ============================================================================
12986 // Safepoint Instruction
12987 instruct safePoint_poll(eFlagsReg cr) %{
12988   match(SafePoint);
12989   effect(KILL cr);
12990 
12991   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
12992   // On SPARC that might be acceptable as we can generate the address with
12993   // just a sethi, saving an or.  By polling at offset 0 we can end up
12994   // putting additional pressure on the index-0 in the D$.  Because of
12995   // alignment (just like the situation at hand) the lower indices tend
12996   // to see more traffic.  It'd be better to change the polling address
12997   // to offset 0 of the last $line in the polling page.
12998 
12999   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13000   ins_cost(125);
13001   size(6) ;
13002   ins_encode( Safepoint_Poll() );
13003   ins_pipe( ialu_reg_mem );
13004 %}
13005 
13006 
13007 // ============================================================================
13008 // This name is KNOWN by the ADLC and cannot be changed.
13009 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
13010 // for this guy.
13011 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
13012   match(Set dst (ThreadLocal));
13013   effect(DEF dst, KILL cr);
13014 
13015   format %{ "MOV    $dst, Thread::current()" %}
13016   ins_encode %{
13017     Register dstReg = as_Register($dst$$reg);
13018     __ get_thread(dstReg);
13019   %}
13020   ins_pipe( ialu_reg_fat );
13021 %}
13022 
13023 
13024 
13025 //----------PEEPHOLE RULES-----------------------------------------------------
13026 // These must follow all instruction definitions as they use the names
13027 // defined in the instructions definitions.
13028 //
13029 // peepmatch ( root_instr_name [preceding_instruction]* );
13030 //
13031 // peepconstraint %{
13032 // (instruction_number.operand_name relational_op instruction_number.operand_name
13033 //  [, ...] );
13034 // // instruction numbers are zero-based using left to right order in peepmatch
13035 //
13036 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13037 // // provide an instruction_number.operand_name for each operand that appears
13038 // // in the replacement instruction's match rule
13039 //
13040 // ---------VM FLAGS---------------------------------------------------------
13041 //
13042 // All peephole optimizations can be turned off using -XX:-OptoPeephole
13043 //
13044 // Each peephole rule is given an identifying number starting with zero and
13045 // increasing by one in the order seen by the parser.  An individual peephole
13046 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13047 // on the command-line.
13048 //
13049 // ---------CURRENT LIMITATIONS----------------------------------------------
13050 //
13051 // Only match adjacent instructions in same basic block
13052 // Only equality constraints
13053 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13054 // Only one replacement instruction
13055 //
13056 // ---------EXAMPLE----------------------------------------------------------
13057 //
13058 // // pertinent parts of existing instructions in architecture description
13059 // instruct movI(rRegI dst, rRegI src) %{
13060 //   match(Set dst (CopyI src));
13061 // %}
13062 //
13063 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
13064 //   match(Set dst (AddI dst src));
13065 //   effect(KILL cr);
13066 // %}
13067 //
13068 // // Change (inc mov) to lea
13069 // peephole %{
13070 //   // increment preceeded by register-register move
13071 //   peepmatch ( incI_eReg movI );
13072 //   // require that the destination register of the increment
13073 //   // match the destination register of the move
13074 //   peepconstraint ( 0.dst == 1.dst );
13075 //   // construct a replacement instruction that sets
13076 //   // the destination to ( move's source register + one )
13077 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13078 // %}
13079 //
13080 // Implementation no longer uses movX instructions since
13081 // machine-independent system no longer uses CopyX nodes.
13082 //
13083 // peephole %{
13084 //   peepmatch ( incI_eReg movI );
13085 //   peepconstraint ( 0.dst == 1.dst );
13086 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13087 // %}
13088 //
13089 // peephole %{
13090 //   peepmatch ( decI_eReg movI );
13091 //   peepconstraint ( 0.dst == 1.dst );
13092 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13093 // %}
13094 //
13095 // peephole %{
13096 //   peepmatch ( addI_eReg_imm movI );
13097 //   peepconstraint ( 0.dst == 1.dst );
13098 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13099 // %}
13100 //
13101 // peephole %{
13102 //   peepmatch ( addP_eReg_imm movP );
13103 //   peepconstraint ( 0.dst == 1.dst );
13104 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13105 // %}
13106 
13107 // // Change load of spilled value to only a spill
13108 // instruct storeI(memory mem, rRegI src) %{
13109 //   match(Set mem (StoreI mem src));
13110 // %}
13111 //
13112 // instruct loadI(rRegI dst, memory mem) %{
13113 //   match(Set dst (LoadI mem));
13114 // %}
13115 //
13116 peephole %{
13117   peepmatch ( loadI storeI );
13118   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13119   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13120 %}
13121 
13122 //----------SMARTSPILL RULES---------------------------------------------------
13123 // These must follow all instruction definitions as they use the names
13124 // defined in the instructions definitions.