1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 static bool is_use(int usedef) {
  39   switch(usedef) {
  40   case Component::USE:
  41   case Component::USE_DEF:
  42   case Component::USE_KILL: return true; break;
  43   }
  44   return false;
  45 }
  46 
  47 static bool is_kill(int usedef) {
  48   switch(usedef) {
  49   case Component::KILL:
  50   case Component::USE_KILL: return true; break;
  51   }
  52   return false;
  53 }
  54 
  55 // Define  an array containing the machine register names, strings.
  56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  57   if (registers) {
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  61 
  62     // Output the register name for each register in the allocation classes
  63     RegDef *reg_def = NULL;
  64     RegDef *next = NULL;
  65     registers->reset_RegDefs();
  66     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
  67       next = registers->iter_RegDefs();
  68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  69       fprintf(fp,"  \"%s\"%s\n",
  70                  reg_def->_regname, comma );
  71     }
  72 
  73     // Finish defining enumeration
  74     fprintf(fp,"};\n");
  75 
  76     fprintf(fp,"\n");
  77     fprintf(fp,"// An array of character pointers to machine register names.\n");
  78     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  79     reg_def = NULL;
  80     next = NULL;
  81     registers->reset_RegDefs();
  82     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
  83       next = registers->iter_RegDefs();
  84       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  85       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma );
  86     }
  87     // Finish defining array
  88     fprintf(fp,"\t};\n");
  89     fprintf(fp,"\n");
  90 
  91     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  92 
  93   }
  94 }
  95 
  96 // Define an array containing the machine register encoding values
  97 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  98   if (registers) {
  99     fprintf(fp,"\n");
 100     fprintf(fp,"// An array of the machine register encode values\n");
 101     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
 102 
 103     // Output the register encoding for each register in the allocation classes
 104     RegDef *reg_def = NULL;
 105     RegDef *next    = NULL;
 106     registers->reset_RegDefs();
 107     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
 108       next = registers->iter_RegDefs();
 109       const char* register_encode = reg_def->register_encode();
 110       const char *comma = (next != NULL) ? "," : " // no trailing comma";
 111       int encval;
 112       if (!ADLParser::is_int_token(register_encode, encval)) {
 113         fprintf(fp,"  %s%s  // %s\n",
 114                 register_encode, comma, reg_def->_regname );
 115       } else {
 116         // Output known constants in hex char format (backward compatibility).
 117         assert(encval < 256, "Exceeded supported width for register encoding");
 118         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n",
 119                 encval,          comma, reg_def->_regname );
 120       }
 121     }
 122     // Finish defining enumeration
 123     fprintf(fp,"};\n");
 124 
 125   } // Done defining array
 126 }
 127 
 128 // Output an enumeration of register class names
 129 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 130   if (registers) {
 131     // Output an enumeration of register class names
 132     fprintf(fp,"\n");
 133     fprintf(fp,"// Enumeration of register class names\n");
 134     fprintf(fp, "enum machRegisterClass {\n");
 135     registers->_rclasses.reset();
 136     for( const char *class_name = NULL;
 137          (class_name = registers->_rclasses.iter()) != NULL; ) {
 138       fprintf(fp,"  %s,\n", toUpper( class_name ));
 139     }
 140     // Finish defining enumeration
 141     fprintf(fp, "  _last_Mach_Reg_Class\n");
 142     fprintf(fp, "};\n");
 143   }
 144 }
 145 
 146 // Declare an enumeration of user-defined register classes
 147 // and a list of register masks, one for each class.
 148 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 149   const char  *rc_name;
 150 
 151   if( _register ) {
 152     // Build enumeration of user-defined register classes.
 153     defineRegClassEnum(fp_hpp, _register);
 154 
 155     // Generate a list of register masks, one for each class.
 156     fprintf(fp_hpp,"\n");
 157     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 158     _register->_rclasses.reset();
 159     for( rc_name = NULL;
 160          (rc_name = _register->_rclasses.iter()) != NULL; ) {
 161       const char *prefix    = "";
 162       RegClass   *reg_class = _register->getRegClass(rc_name);
 163       assert( reg_class, "Using an undefined register class");
 164 
 165       if (reg_class->_user_defined == NULL) {
 166         fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix, toUpper( rc_name ) );
 167         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, toUpper( rc_name ), prefix, toUpper( rc_name ));
 168       } else {
 169         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, toUpper( rc_name ), reg_class->_user_defined);
 170       }
 171 
 172       if( reg_class->_stack_or_reg ) {
 173         assert(reg_class->_user_defined == NULL, "no user defined reg class here");
 174         fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, toUpper( rc_name ) );
 175         fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, toUpper( rc_name ), prefix, toUpper( rc_name ) );
 176       }
 177     }
 178   }
 179 }
 180 
 181 // Generate an enumeration of user-defined register classes
 182 // and a list of register masks, one for each class.
 183 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 184   const char  *rc_name;
 185 
 186   if( _register ) {
 187     // Generate a list of register masks, one for each class.
 188     fprintf(fp_cpp,"\n");
 189     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 190     _register->_rclasses.reset();
 191     for( rc_name = NULL;
 192          (rc_name = _register->_rclasses.iter()) != NULL; ) {
 193       const char *prefix    = "";
 194       RegClass   *reg_class = _register->getRegClass(rc_name);
 195       assert( reg_class, "Using an undefined register class");
 196 
 197       if (reg_class->_user_defined != NULL) continue;
 198 
 199       int len = RegisterForm::RegMask_Size();
 200       fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, toUpper( rc_name ) );
 201       { int i;
 202         for( i = 0; i < len-1; i++ )
 203           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,false));
 204         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,false));
 205       }
 206 
 207       if( reg_class->_stack_or_reg ) {
 208         int i;
 209         fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, toUpper( rc_name ) );
 210         for( i = 0; i < len-1; i++ )
 211           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,true));
 212         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,true));
 213       }
 214     }
 215   }
 216 }
 217 
 218 // Compute an index for an array in the pipeline_reads_NNN arrays
 219 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 220 {
 221   int templen = 1;
 222   int paramcount = 0;
 223   const char *paramname;
 224 
 225   if (pipeclass->_parameters.count() == 0)
 226     return -1;
 227 
 228   pipeclass->_parameters.reset();
 229   paramname = pipeclass->_parameters.iter();
 230   const PipeClassOperandForm *pipeopnd =
 231     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 232   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 233     pipeclass->_parameters.reset();
 234 
 235   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 236     const PipeClassOperandForm *tmppipeopnd =
 237         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 238 
 239     if (tmppipeopnd)
 240       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 241     else
 242       templen += 19;
 243 
 244     paramcount++;
 245   }
 246 
 247   // See if the count is zero
 248   if (paramcount == 0) {
 249     return -1;
 250   }
 251 
 252   char *operand_stages = new char [templen];
 253   operand_stages[0] = 0;
 254   int i = 0;
 255   templen = 0;
 256 
 257   pipeclass->_parameters.reset();
 258   paramname = pipeclass->_parameters.iter();
 259   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 260   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 261     pipeclass->_parameters.reset();
 262 
 263   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 264     const PipeClassOperandForm *tmppipeopnd =
 265         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 266     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 267       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 268       (++i < paramcount ? ',' : ' ') );
 269   }
 270 
 271   // See if the same string is in the table
 272   int ndx = pipeline_reads.index(operand_stages);
 273 
 274   // No, add it to the table
 275   if (ndx < 0) {
 276     pipeline_reads.addName(operand_stages);
 277     ndx = pipeline_reads.index(operand_stages);
 278 
 279     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 280       ndx+1, paramcount, operand_stages);
 281   }
 282   else
 283     delete [] operand_stages;
 284 
 285   return (ndx);
 286 }
 287 
 288 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 289 static int pipeline_res_stages_initializer(
 290   FILE *fp_cpp,
 291   PipelineForm *pipeline,
 292   NameList &pipeline_res_stages,
 293   PipeClassForm *pipeclass)
 294 {
 295   const PipeClassResourceForm *piperesource;
 296   int * res_stages = new int [pipeline->_rescount];
 297   int i;
 298 
 299   for (i = 0; i < pipeline->_rescount; i++)
 300      res_stages[i] = 0;
 301 
 302   for (pipeclass->_resUsage.reset();
 303        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 304     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 305     for (i = 0; i < pipeline->_rescount; i++)
 306       if ((1 << i) & used_mask) {
 307         int stage = pipeline->_stages.index(piperesource->_stage);
 308         if (res_stages[i] < stage+1)
 309           res_stages[i] = stage+1;
 310       }
 311   }
 312 
 313   // Compute the length needed for the resource list
 314   int commentlen = 0;
 315   int max_stage = 0;
 316   for (i = 0; i < pipeline->_rescount; i++) {
 317     if (res_stages[i] == 0) {
 318       if (max_stage < 9)
 319         max_stage = 9;
 320     }
 321     else {
 322       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 323       if (max_stage < stagelen)
 324         max_stage = stagelen;
 325     }
 326 
 327     commentlen += (int)strlen(pipeline->_reslist.name(i));
 328   }
 329 
 330   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 331 
 332   // Allocate space for the resource list
 333   char * resource_stages = new char [templen];
 334 
 335   templen = 0;
 336   for (i = 0; i < pipeline->_rescount; i++) {
 337     const char * const resname =
 338       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 339 
 340     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 341       resname, max_stage - (int)strlen(resname) + 1,
 342       (i < pipeline->_rescount-1) ? "," : "",
 343       pipeline->_reslist.name(i));
 344   }
 345 
 346   // See if the same string is in the table
 347   int ndx = pipeline_res_stages.index(resource_stages);
 348 
 349   // No, add it to the table
 350   if (ndx < 0) {
 351     pipeline_res_stages.addName(resource_stages);
 352     ndx = pipeline_res_stages.index(resource_stages);
 353 
 354     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 355       ndx+1, pipeline->_rescount, resource_stages);
 356   }
 357   else
 358     delete [] resource_stages;
 359 
 360   delete [] res_stages;
 361 
 362   return (ndx);
 363 }
 364 
 365 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 366 static int pipeline_res_cycles_initializer(
 367   FILE *fp_cpp,
 368   PipelineForm *pipeline,
 369   NameList &pipeline_res_cycles,
 370   PipeClassForm *pipeclass)
 371 {
 372   const PipeClassResourceForm *piperesource;
 373   int * res_cycles = new int [pipeline->_rescount];
 374   int i;
 375 
 376   for (i = 0; i < pipeline->_rescount; i++)
 377      res_cycles[i] = 0;
 378 
 379   for (pipeclass->_resUsage.reset();
 380        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 381     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 382     for (i = 0; i < pipeline->_rescount; i++)
 383       if ((1 << i) & used_mask) {
 384         int cycles = piperesource->_cycles;
 385         if (res_cycles[i] < cycles)
 386           res_cycles[i] = cycles;
 387       }
 388   }
 389 
 390   // Pre-compute the string length
 391   int templen;
 392   int cyclelen = 0, commentlen = 0;
 393   int max_cycles = 0;
 394   char temp[32];
 395 
 396   for (i = 0; i < pipeline->_rescount; i++) {
 397     if (max_cycles < res_cycles[i])
 398       max_cycles = res_cycles[i];
 399     templen = sprintf(temp, "%d", res_cycles[i]);
 400     if (cyclelen < templen)
 401       cyclelen = templen;
 402     commentlen += (int)strlen(pipeline->_reslist.name(i));
 403   }
 404 
 405   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 406 
 407   // Allocate space for the resource list
 408   char * resource_cycles = new char [templen];
 409 
 410   templen = 0;
 411 
 412   for (i = 0; i < pipeline->_rescount; i++) {
 413     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 414       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 415   }
 416 
 417   // See if the same string is in the table
 418   int ndx = pipeline_res_cycles.index(resource_cycles);
 419 
 420   // No, add it to the table
 421   if (ndx < 0) {
 422     pipeline_res_cycles.addName(resource_cycles);
 423     ndx = pipeline_res_cycles.index(resource_cycles);
 424 
 425     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 426       ndx+1, pipeline->_rescount, resource_cycles);
 427   }
 428   else
 429     delete [] resource_cycles;
 430 
 431   delete [] res_cycles;
 432 
 433   return (ndx);
 434 }
 435 
 436 //typedef unsigned long long uint64_t;
 437 
 438 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 439 static int pipeline_res_mask_initializer(
 440   FILE *fp_cpp,
 441   PipelineForm *pipeline,
 442   NameList &pipeline_res_mask,
 443   NameList &pipeline_res_args,
 444   PipeClassForm *pipeclass)
 445 {
 446   const PipeClassResourceForm *piperesource;
 447   const uint rescount      = pipeline->_rescount;
 448   const uint maxcycleused  = pipeline->_maxcycleused;
 449   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 450 
 451   int i, j;
 452   int element_count = 0;
 453   uint *res_mask = new uint [cyclemasksize];
 454   uint resources_used             = 0;
 455   uint resources_used_exclusively = 0;
 456 
 457   for (pipeclass->_resUsage.reset();
 458        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; )
 459     element_count++;
 460 
 461   // Pre-compute the string length
 462   int templen;
 463   int commentlen = 0;
 464   int max_cycles = 0;
 465 
 466   int cyclelen = ((maxcycleused + 3) >> 2);
 467   int masklen = (rescount + 3) >> 2;
 468 
 469   int cycledigit = 0;
 470   for (i = maxcycleused; i > 0; i /= 10)
 471     cycledigit++;
 472 
 473   int maskdigit = 0;
 474   for (i = rescount; i > 0; i /= 10)
 475     maskdigit++;
 476 
 477   static const char * pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 478   static const char * pipeline_use_element    = "Pipeline_Use_Element";
 479 
 480   templen = 1 +
 481     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 482      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 483 
 484   // Allocate space for the resource list
 485   char * resource_mask = new char [templen];
 486   char * last_comma = NULL;
 487 
 488   templen = 0;
 489 
 490   for (pipeclass->_resUsage.reset();
 491        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 492     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 493 
 494     if (!used_mask)
 495       fprintf(stderr, "*** used_mask is 0 ***\n");
 496 
 497     resources_used |= used_mask;
 498 
 499     uint lb, ub;
 500 
 501     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 502     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 503 
 504     if (lb == ub)
 505       resources_used_exclusively |= used_mask;
 506 
 507     int formatlen =
 508       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 509         pipeline_use_element,
 510         masklen, used_mask,
 511         cycledigit, lb, cycledigit, ub,
 512         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 513         pipeline_use_cycle_mask);
 514 
 515     templen += formatlen;
 516 
 517     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 518 
 519     int cycles = piperesource->_cycles;
 520     uint stage          = pipeline->_stages.index(piperesource->_stage);
 521     uint upper_limit    = stage+cycles-1;
 522     uint lower_limit    = stage-1;
 523     uint upper_idx      = upper_limit >> 5;
 524     uint lower_idx      = lower_limit >> 5;
 525     uint upper_position = upper_limit & 0x1f;
 526     uint lower_position = lower_limit & 0x1f;
 527 
 528     uint mask = (((uint)1) << upper_position) - 1;
 529 
 530     while ( upper_idx > lower_idx ) {
 531       res_mask[upper_idx--] |= mask;
 532       mask = (uint)-1;
 533     }
 534 
 535     mask -= (((uint)1) << lower_position) - 1;
 536     res_mask[upper_idx] |= mask;
 537 
 538     for (j = cyclemasksize-1; j >= 0; j--) {
 539       formatlen =
 540         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 541       templen += formatlen;
 542     }
 543 
 544     resource_mask[templen++] = ')';
 545     resource_mask[templen++] = ')';
 546     last_comma = &resource_mask[templen];
 547     resource_mask[templen++] = ',';
 548     resource_mask[templen++] = '\n';
 549   }
 550 
 551   resource_mask[templen] = 0;
 552   if (last_comma)
 553     last_comma[0] = ' ';
 554 
 555   // See if the same string is in the table
 556   int ndx = pipeline_res_mask.index(resource_mask);
 557 
 558   // No, add it to the table
 559   if (ndx < 0) {
 560     pipeline_res_mask.addName(resource_mask);
 561     ndx = pipeline_res_mask.index(resource_mask);
 562 
 563     if (strlen(resource_mask) > 0)
 564       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 565         ndx+1, element_count, resource_mask);
 566 
 567     char * args = new char [9 + 2*masklen + maskdigit];
 568 
 569     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 570       masklen, resources_used,
 571       masklen, resources_used_exclusively,
 572       maskdigit, element_count);
 573 
 574     pipeline_res_args.addName(args);
 575   }
 576   else
 577     delete [] resource_mask;
 578 
 579   delete [] res_mask;
 580 //delete [] res_masks;
 581 
 582   return (ndx);
 583 }
 584 
 585 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 586   const char *classname;
 587   const char *resourcename;
 588   int resourcenamelen = 0;
 589   NameList pipeline_reads;
 590   NameList pipeline_res_stages;
 591   NameList pipeline_res_cycles;
 592   NameList pipeline_res_masks;
 593   NameList pipeline_res_args;
 594   const int default_latency = 1;
 595   const int non_operand_latency = 0;
 596   const int node_latency = 0;
 597 
 598   if (!_pipeline) {
 599     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 600     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 601     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 602     fprintf(fp_cpp, "}\n");
 603     return;
 604   }
 605 
 606   fprintf(fp_cpp, "\n");
 607   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 608   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 609   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 610   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 611   fprintf(fp_cpp, "    \"undefined\"");
 612 
 613   for (int s = 0; s < _pipeline->_stagecnt; s++)
 614     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 615 
 616   fprintf(fp_cpp, "\n  };\n\n");
 617   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 618     _pipeline->_stagecnt);
 619   fprintf(fp_cpp, "}\n");
 620   fprintf(fp_cpp, "#endif\n\n");
 621 
 622   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 623   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 624 #if 0
 625   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 626   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 627   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 628   fprintf(fp_cpp, "  }\n");
 629   fprintf(fp_cpp, "#endif\n\n");
 630 #endif
 631   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 632   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 633 #if 0
 634   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 635   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 636   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 637   fprintf(fp_cpp, "  }\n");
 638   fprintf(fp_cpp, "#endif\n\n");
 639 #endif
 640   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 641   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 642   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 643   fprintf(fp_cpp, "      continue;\n\n");
 644   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 645   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 646   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 647   fprintf(fp_cpp, "        continue;\n\n");
 648   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 649   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 650   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 651   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 652   fprintf(fp_cpp, "          y <<= 1;\n");
 653   fprintf(fp_cpp, "      }\n");
 654   fprintf(fp_cpp, "    }\n");
 655   fprintf(fp_cpp, "  }\n\n");
 656   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 657   fprintf(fp_cpp, "  return (start);\n");
 658   fprintf(fp_cpp, "}\n\n");
 659   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 660   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 661   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 662   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 663   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 664   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 665   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 666   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 667     _pipeline->_maxcycleused+1);
 668   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 669   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 670   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 671   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 672   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 673   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 674   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 675   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 676   fprintf(fp_cpp, "            y <<= 1;\n");
 677   fprintf(fp_cpp, "        }\n");
 678   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 679   fprintf(fp_cpp, "      }\n");
 680   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 681   fprintf(fp_cpp, "    }\n");
 682   fprintf(fp_cpp, "    else {\n");
 683   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 684   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 685   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 686   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 687   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 688   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 689   fprintf(fp_cpp, "            y <<= 1;\n");
 690   fprintf(fp_cpp, "        }\n");
 691   fprintf(fp_cpp, "      }\n");
 692   fprintf(fp_cpp, "    }\n");
 693   fprintf(fp_cpp, "  }\n\n");
 694   fprintf(fp_cpp, "  return (delay);\n");
 695   fprintf(fp_cpp, "}\n\n");
 696   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 697   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 698   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 699   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 700   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 701   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 702   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 703   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 704   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 705   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 706   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 707   fprintf(fp_cpp, "          break;\n");
 708   fprintf(fp_cpp, "        }\n");
 709   fprintf(fp_cpp, "      }\n");
 710   fprintf(fp_cpp, "    }\n");
 711   fprintf(fp_cpp, "    else {\n");
 712   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 713   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 714   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 715   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 716   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 717   fprintf(fp_cpp, "      }\n");
 718   fprintf(fp_cpp, "    }\n");
 719   fprintf(fp_cpp, "  }\n");
 720   fprintf(fp_cpp, "}\n\n");
 721 
 722   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 723   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 724   fprintf(fp_cpp, "\n");
 725 #if 0
 726   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 727   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 728   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 729   fprintf(fp_cpp, "  }\n");
 730   fprintf(fp_cpp, "#endif\n\n");
 731 #endif
 732   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 733   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 734   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 735   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 736   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 737   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 738   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 739 #if 0
 740   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 741   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 742   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 743   fprintf(fp_cpp, "  }\n");
 744   fprintf(fp_cpp, "#endif\n\n");
 745 #endif
 746   fprintf(fp_cpp, "\n");
 747   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 748   fprintf(fp_cpp, "    return (default_latency);\n");
 749   fprintf(fp_cpp, "\n");
 750   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 751   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 752 #if 0
 753   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 754   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 755   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 756   fprintf(fp_cpp, "  }\n");
 757   fprintf(fp_cpp, "#endif\n\n");
 758 #endif
 759   fprintf(fp_cpp, "  return (delta);\n");
 760   fprintf(fp_cpp, "}\n\n");
 761 
 762   if (!_pipeline)
 763     /* Do Nothing */;
 764 
 765   else if (_pipeline->_maxcycleused <=
 766 #ifdef SPARC
 767     64
 768 #else
 769     32
 770 #endif
 771       ) {
 772     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 773     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 774     fprintf(fp_cpp, "}\n\n");
 775     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 776     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 777     fprintf(fp_cpp, "}\n\n");
 778   }
 779   else {
 780     uint l;
 781     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 782     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 783     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 784     for (l = 1; l <= masklen; l++)
 785       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 786     fprintf(fp_cpp, ");\n");
 787     fprintf(fp_cpp, "}\n\n");
 788     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 789     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 790     for (l = 1; l <= masklen; l++)
 791       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 792     fprintf(fp_cpp, ");\n");
 793     fprintf(fp_cpp, "}\n\n");
 794     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 795     for (l = 1; l <= masklen; l++)
 796       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 797     fprintf(fp_cpp, "\n}\n\n");
 798   }
 799 
 800   /* Get the length of all the resource names */
 801   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 802        (resourcename = _pipeline->_reslist.iter()) != NULL;
 803        resourcenamelen += (int)strlen(resourcename));
 804 
 805   // Create the pipeline class description
 806 
 807   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 808   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 809 
 810   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 811   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 812     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 813     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 814     for (int i2 = masklen-1; i2 >= 0; i2--)
 815       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 816     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 817   }
 818   fprintf(fp_cpp, "};\n\n");
 819 
 820   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 821     _pipeline->_rescount);
 822 
 823   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 824     fprintf(fp_cpp, "\n");
 825     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 826     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 827     int maxWriteStage = -1;
 828     int maxMoreInstrs = 0;
 829     int paramcount = 0;
 830     int i = 0;
 831     const char *paramname;
 832     int resource_count = (_pipeline->_rescount + 3) >> 2;
 833 
 834     // Scan the operands, looking for last output stage and number of inputs
 835     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 836       const PipeClassOperandForm *pipeopnd =
 837           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 838       if (pipeopnd) {
 839         if (pipeopnd->_iswrite) {
 840            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 841            int moreinsts = pipeopnd->_more_instrs;
 842           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 843             maxWriteStage = stagenum;
 844             maxMoreInstrs = moreinsts;
 845           }
 846         }
 847       }
 848 
 849       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 850         paramcount++;
 851     }
 852 
 853     // Create the list of stages for the operands that are read
 854     // Note that we will build a NameList to reduce the number of copies
 855 
 856     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 857 
 858     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 859       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 860 
 861     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 862       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 863 
 864     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 865       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 866 
 867 #if 0
 868     // Process the Resources
 869     const PipeClassResourceForm *piperesource;
 870 
 871     unsigned resources_used = 0;
 872     unsigned exclusive_resources_used = 0;
 873     unsigned resource_groups = 0;
 874     for (pipeclass->_resUsage.reset();
 875          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 876       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 877       if (used_mask)
 878         resource_groups++;
 879       resources_used |= used_mask;
 880       if ((used_mask & (used_mask-1)) == 0)
 881         exclusive_resources_used |= used_mask;
 882     }
 883 
 884     if (resource_groups > 0) {
 885       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 886         pipeclass->_num, resource_groups);
 887       for (pipeclass->_resUsage.reset(), i = 1;
 888            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 889            i++ ) {
 890         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 891         if (used_mask) {
 892           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 893         }
 894       }
 895       fprintf(fp_cpp, "};\n\n");
 896     }
 897 #endif
 898 
 899     // Create the pipeline class description
 900     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 901       pipeclass->_num);
 902     if (maxWriteStage < 0)
 903       fprintf(fp_cpp, "(uint)stage_undefined");
 904     else if (maxMoreInstrs == 0)
 905       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 906     else
 907       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 908     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 909       paramcount,
 910       pipeclass->hasFixedLatency() ? "true" : "false",
 911       pipeclass->fixedLatency(),
 912       pipeclass->InstructionCount(),
 913       pipeclass->hasBranchDelay() ? "true" : "false",
 914       pipeclass->hasMultipleBundles() ? "true" : "false",
 915       pipeclass->forceSerialization() ? "true" : "false",
 916       pipeclass->mayHaveNoCode() ? "true" : "false" );
 917     if (paramcount > 0) {
 918       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 919         pipeline_reads_index+1);
 920     }
 921     else
 922       fprintf(fp_cpp, " NULL,");
 923     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 924       pipeline_res_stages_index+1);
 925     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 926       pipeline_res_cycles_index+1);
 927     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 928       pipeline_res_args.name(pipeline_res_mask_index));
 929     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 930       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 931         pipeline_res_mask_index+1);
 932     else
 933       fprintf(fp_cpp, "NULL");
 934     fprintf(fp_cpp, "));\n");
 935   }
 936 
 937   // Generate the Node::latency method if _pipeline defined
 938   fprintf(fp_cpp, "\n");
 939   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 940   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 941   if (_pipeline) {
 942 #if 0
 943     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 944     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 945     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 946     fprintf(fp_cpp, " }\n");
 947     fprintf(fp_cpp, "#endif\n");
 948 #endif
 949     fprintf(fp_cpp, "  uint j;\n");
 950     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 951     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 952     fprintf(fp_cpp, "  // verify input is not null\n");
 953     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 954     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 955       non_operand_latency);
 956     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 957     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 958     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 959     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 960     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 961     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 962     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 963     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 964       node_latency);
 965     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 966     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 967     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 968       non_operand_latency);
 969     fprintf(fp_cpp, "  // determine which operand this is in\n");
 970     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 971     fprintf(fp_cpp, "  int delta = %d;\n\n",
 972       non_operand_latency);
 973     fprintf(fp_cpp, "  uint k;\n");
 974     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 975     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 976     fprintf(fp_cpp, "    if (i < j)\n");
 977     fprintf(fp_cpp, "      break;\n");
 978     fprintf(fp_cpp, "  }\n");
 979     fprintf(fp_cpp, "  if (k < n)\n");
 980     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
 981     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
 982   }
 983   else {
 984     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 985     fprintf(fp_cpp, "  return %d;\n",
 986       non_operand_latency);
 987   }
 988   fprintf(fp_cpp, "}\n\n");
 989 
 990   // Output the list of nop nodes
 991   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
 992   const char *nop;
 993   int nopcnt = 0;
 994   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
 995 
 996   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
 997   int i = 0;
 998   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
 999     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
1000   }
1001   fprintf(fp_cpp, "};\n\n");
1002   fprintf(fp_cpp, "#ifndef PRODUCT\n");
1003   fprintf(fp_cpp, "void Bundle::dump() const {\n");
1004   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
1005   fprintf(fp_cpp, "    \"\",\n");
1006   fprintf(fp_cpp, "    \"use nop delay\",\n");
1007   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
1008   fprintf(fp_cpp, "    \"use conditional delay\",\n");
1009   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
1010   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
1011   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
1012   fprintf(fp_cpp, "  };\n\n");
1013 
1014   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
1015   for (i = 0; i < _pipeline->_rescount; i++)
1016     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
1017   fprintf(fp_cpp, "};\n\n");
1018 
1019   // See if the same string is in the table
1020   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
1021   fprintf(fp_cpp, "  if (_flags) {\n");
1022   fprintf(fp_cpp, "    tty->print(\"%%s\", bundle_flags[_flags]);\n");
1023   fprintf(fp_cpp, "    needs_comma = true;\n");
1024   fprintf(fp_cpp, "  };\n");
1025   fprintf(fp_cpp, "  if (instr_count()) {\n");
1026   fprintf(fp_cpp, "    tty->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
1027   fprintf(fp_cpp, "    needs_comma = true;\n");
1028   fprintf(fp_cpp, "  };\n");
1029   fprintf(fp_cpp, "  uint r = resources_used();\n");
1030   fprintf(fp_cpp, "  if (r) {\n");
1031   fprintf(fp_cpp, "    tty->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
1032   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
1033   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
1034   fprintf(fp_cpp, "        tty->print(\" %%s\", resource_names[i]);\n");
1035   fprintf(fp_cpp, "    needs_comma = true;\n");
1036   fprintf(fp_cpp, "  };\n");
1037   fprintf(fp_cpp, "  tty->print(\"\\n\");\n");
1038   fprintf(fp_cpp, "}\n");
1039   fprintf(fp_cpp, "#endif\n");
1040 }
1041 
1042 // ---------------------------------------------------------------------------
1043 //------------------------------Utilities to build Instruction Classes--------
1044 // ---------------------------------------------------------------------------
1045 
1046 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1047   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1048           node, regMask);
1049 }
1050 
1051 // Scan the peepmatch and output a test for each instruction
1052 static void check_peepmatch_instruction_tree(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1053   int         parent        = -1;
1054   int         inst_position = 0;
1055   const char* inst_name     = NULL;
1056   int         input         = 0;
1057   fprintf(fp, "      // Check instruction sub-tree\n");
1058   pmatch->reset();
1059   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1060        inst_name != NULL;
1061        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1062     // If this is not a placeholder
1063     if( ! pmatch->is_placeholder() ) {
1064       // Define temporaries 'inst#', based on parent and parent's input index
1065       if( parent != -1 ) {                // root was initialized
1066         fprintf(fp, "  inst%d = inst%d->in(%d);\n",
1067                 inst_position, parent, input);
1068       }
1069 
1070       // When not the root
1071       // Test we have the correct instruction by comparing the rule
1072       if( parent != -1 ) {
1073         fprintf(fp, "  matches = matches &&  ( inst%d->rule() == %s_rule );",
1074                 inst_position, inst_name);
1075       }
1076     } else {
1077       // Check that user did not try to constrain a placeholder
1078       assert( ! pconstraint->constrains_instruction(inst_position),
1079               "fatal(): Can not constrain a placeholder instruction");
1080     }
1081   }
1082 }
1083 
1084 static void print_block_index(FILE *fp, int inst_position) {
1085   assert( inst_position >= 0, "Instruction number less than zero");
1086   fprintf(fp, "block_index");
1087   if( inst_position != 0 ) {
1088     fprintf(fp, " - %d", inst_position);
1089   }
1090 }
1091 
1092 // Scan the peepmatch and output a test for each instruction
1093 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1094   int         parent        = -1;
1095   int         inst_position = 0;
1096   const char* inst_name     = NULL;
1097   int         input         = 0;
1098   fprintf(fp, "  // Check instruction sub-tree\n");
1099   pmatch->reset();
1100   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1101        inst_name != NULL;
1102        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1103     // If this is not a placeholder
1104     if( ! pmatch->is_placeholder() ) {
1105       // Define temporaries 'inst#', based on parent and parent's input index
1106       if( parent != -1 ) {                // root was initialized
1107         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1108         fprintf(fp, "  if( ");
1109         print_block_index(fp, inst_position);
1110         fprintf(fp, " > 0 ) {\n    Node *n = block->_nodes.at(");
1111         print_block_index(fp, inst_position);
1112         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1113         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1114       }
1115 
1116       // When not the root
1117       // Test we have the correct instruction by comparing the rule.
1118       if( parent != -1 ) {
1119         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1120                 inst_position, inst_position, inst_name);
1121       }
1122     } else {
1123       // Check that user did not try to constrain a placeholder
1124       assert( ! pconstraint->constrains_instruction(inst_position),
1125               "fatal(): Can not constrain a placeholder instruction");
1126     }
1127   }
1128 }
1129 
1130 // Build mapping for register indices, num_edges to input
1131 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1132   int         parent        = -1;
1133   int         inst_position = 0;
1134   const char* inst_name     = NULL;
1135   int         input         = 0;
1136   fprintf(fp, "      // Build map to register info\n");
1137   pmatch->reset();
1138   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1139        inst_name != NULL;
1140        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1141     // If this is not a placeholder
1142     if( ! pmatch->is_placeholder() ) {
1143       // Define temporaries 'inst#', based on self's inst_position
1144       InstructForm *inst = globals[inst_name]->is_instruction();
1145       if( inst != NULL ) {
1146         char inst_prefix[]  = "instXXXX_";
1147         sprintf(inst_prefix, "inst%d_",   inst_position);
1148         char receiver[]     = "instXXXX->";
1149         sprintf(receiver,    "inst%d->", inst_position);
1150         inst->index_temps( fp, globals, inst_prefix, receiver );
1151       }
1152     }
1153   }
1154 }
1155 
1156 // Generate tests for the constraints
1157 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1158   fprintf(fp, "\n");
1159   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1160 
1161   // Build mapping from num_edges to local variables
1162   build_instruction_index_mapping( fp, globals, pmatch );
1163 
1164   // Build constraint tests
1165   if( pconstraint != NULL ) {
1166     fprintf(fp, "      matches = matches &&");
1167     bool   first_constraint = true;
1168     while( pconstraint != NULL ) {
1169       // indentation and connecting '&&'
1170       const char *indentation = "      ";
1171       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1172 
1173       // Only have '==' relation implemented
1174       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1175         assert( false, "Unimplemented()" );
1176       }
1177 
1178       // LEFT
1179       int left_index       = pconstraint->_left_inst;
1180       const char *left_op  = pconstraint->_left_op;
1181       // Access info on the instructions whose operands are compared
1182       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1183       assert( inst_left, "Parser should guaranty this is an instruction");
1184       int left_op_base  = inst_left->oper_input_base(globals);
1185       // Access info on the operands being compared
1186       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1187       if( left_op_index == -1 ) {
1188         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1189         if( left_op_index == -1 ) {
1190           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1191         }
1192       }
1193       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1194       ComponentList components_left = inst_left->_components;
1195       const char *left_comp_type = components_left.at(left_op_index)->_type;
1196       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1197       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1198 
1199 
1200       // RIGHT
1201       int right_op_index = -1;
1202       int right_index      = pconstraint->_right_inst;
1203       const char *right_op = pconstraint->_right_op;
1204       if( right_index != -1 ) { // Match operand
1205         // Access info on the instructions whose operands are compared
1206         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1207         assert( inst_right, "Parser should guaranty this is an instruction");
1208         int right_op_base = inst_right->oper_input_base(globals);
1209         // Access info on the operands being compared
1210         right_op_index = inst_right->operand_position(right_op, Component::USE);
1211         if( right_op_index == -1 ) {
1212           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1213           if( right_op_index == -1 ) {
1214             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1215           }
1216         }
1217         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1218         ComponentList components_right = inst_right->_components;
1219         const char *right_comp_type = components_right.at(right_op_index)->_type;
1220         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1221         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1222         assert( right_interface_type == left_interface_type, "Both must be same interface");
1223 
1224       } else {                  // Else match register
1225         // assert( false, "should be a register" );
1226       }
1227 
1228       //
1229       // Check for equivalence
1230       //
1231       // fprintf(fp, "phase->eqv( ");
1232       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1233       //         left_index,  left_op_base,  left_op_index,  left_op,
1234       //         right_index, right_op_base, right_op_index, right_op );
1235       // fprintf(fp, ")");
1236       //
1237       switch( left_interface_type ) {
1238       case Form::register_interface: {
1239         // Check that they are allocated to the same register
1240         // Need parameter for index position if not result operand
1241         char left_reg_index[] = ",instXXXX_idxXXXX";
1242         if( left_op_index != 0 ) {
1243           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1244           // Must have index into operands
1245           sprintf(left_reg_index,",inst%d_idx%d", left_index, left_op_index);
1246         } else {
1247           strcpy(left_reg_index, "");
1248         }
1249         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1250                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1251         fprintf(fp, " == ");
1252 
1253         if( right_index != -1 ) {
1254           char right_reg_index[18] = ",instXXXX_idxXXXX";
1255           if( right_op_index != 0 ) {
1256             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1257             // Must have index into operands
1258             sprintf(right_reg_index,",inst%d_idx%d", right_index, right_op_index);
1259           } else {
1260             strcpy(right_reg_index, "");
1261           }
1262           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1263                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1264         } else {
1265           fprintf(fp, "%s_enc", right_op );
1266         }
1267         fprintf(fp,")");
1268         break;
1269       }
1270       case Form::constant_interface: {
1271         // Compare the '->constant()' values
1272         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1273                 left_index,  left_op_index,  left_index, left_op );
1274         fprintf(fp, " == ");
1275         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1276                 right_index, right_op, right_index, right_op_index );
1277         break;
1278       }
1279       case Form::memory_interface: {
1280         // Compare 'base', 'index', 'scale', and 'disp'
1281         // base
1282         fprintf(fp, "( \n");
1283         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1284           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1285         fprintf(fp, " == ");
1286         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1287                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1288         // index
1289         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1290                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1291         fprintf(fp, " == ");
1292         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1293                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1294         // scale
1295         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1296                 left_index,  left_op_index,  left_index, left_op );
1297         fprintf(fp, " == ");
1298         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1299                 right_index, right_op, right_index, right_op_index );
1300         // disp
1301         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1302                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1303         fprintf(fp, " == ");
1304         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1305                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1306         fprintf(fp, ") \n");
1307         break;
1308       }
1309       case Form::conditional_interface: {
1310         // Compare the condition code being tested
1311         assert( false, "Unimplemented()" );
1312         break;
1313       }
1314       default: {
1315         assert( false, "ShouldNotReachHere()" );
1316         break;
1317       }
1318       }
1319 
1320       // Advance to next constraint
1321       pconstraint = pconstraint->next();
1322       first_constraint = false;
1323     }
1324 
1325     fprintf(fp, ";\n");
1326   }
1327 }
1328 
1329 // // EXPERIMENTAL -- TEMPORARY code
1330 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1331 //   int op_index = instr->operand_position(op_name, Component::USE);
1332 //   if( op_index == -1 ) {
1333 //     op_index = instr->operand_position(op_name, Component::DEF);
1334 //     if( op_index == -1 ) {
1335 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1336 //     }
1337 //   }
1338 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1339 //
1340 //   ComponentList components_right = instr->_components;
1341 //   char *right_comp_type = components_right.at(op_index)->_type;
1342 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1343 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1344 //
1345 //   return;
1346 // }
1347 
1348 // Construct the new sub-tree
1349 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1350   fprintf(fp, "      // IF instructions and constraints matched\n");
1351   fprintf(fp, "      if( matches ) {\n");
1352   fprintf(fp, "        // generate the new sub-tree\n");
1353   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1354   if( preplace != NULL ) {
1355     // Get the root of the new sub-tree
1356     const char *root_inst = NULL;
1357     preplace->next_instruction(root_inst);
1358     InstructForm *root_form = globals[root_inst]->is_instruction();
1359     assert( root_form != NULL, "Replacement instruction was not previously defined");
1360     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
1361 
1362     int         inst_num;
1363     const char *op_name;
1364     int         opnds_index = 0;            // define result operand
1365     // Then install the use-operands for the new sub-tree
1366     // preplace->reset();             // reset breaks iteration
1367     for( preplace->next_operand( inst_num, op_name );
1368          op_name != NULL;
1369          preplace->next_operand( inst_num, op_name ) ) {
1370       InstructForm *inst_form;
1371       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1372       assert( inst_form, "Parser should guaranty this is an instruction");
1373       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1374       if( inst_op_num == NameList::Not_in_list )
1375         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1376       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1377       // find the name of the OperandForm from the local name
1378       const Form *form   = inst_form->_localNames[op_name];
1379       OperandForm  *op_form = form->is_operand();
1380       if( opnds_index == 0 ) {
1381         // Initial setup of new instruction
1382         fprintf(fp, "        // ----- Initial setup -----\n");
1383         //
1384         // Add control edge for this node
1385         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1386         // Add unmatched edges from root of match tree
1387         int op_base = root_form->oper_input_base(globals);
1388         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1389           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1390                                           inst_num, unmatched_edge);
1391         }
1392         // If new instruction captures bottom type
1393         if( root_form->captures_bottom_type(globals) ) {
1394           // Get bottom type from instruction whose result we are replacing
1395           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1396         }
1397         // Define result register and result operand
1398         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1399         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1400         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1401         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
1402         fprintf(fp, "        // ----- Done with initial setup -----\n");
1403       } else {
1404         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1405           // Do not have ideal edges for constants after matching
1406           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1407                   inst_op_num, inst_num, inst_op_num,
1408                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1409           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1410                   inst_num, inst_op_num );
1411         } else {
1412           fprintf(fp, "        // no ideal edge for constants after matching\n");
1413         }
1414         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
1415                 opnds_index, inst_num, inst_op_num );
1416       }
1417       ++opnds_index;
1418     }
1419   }else {
1420     // Replacing subtree with empty-tree
1421     assert( false, "ShouldNotReachHere();");
1422   }
1423 
1424   // Return the new sub-tree
1425   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1426   fprintf(fp, "        return root;  // return new root;\n");
1427   fprintf(fp, "      }\n");
1428 }
1429 
1430 
1431 // Define the Peephole method for an instruction node
1432 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1433   // Generate Peephole function header
1434   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
1435   fprintf(fp, "  bool  matches = true;\n");
1436 
1437   // Identify the maximum instruction position,
1438   // generate temporaries that hold current instruction
1439   //
1440   //   MachNode  *inst0 = NULL;
1441   //   ...
1442   //   MachNode  *instMAX = NULL;
1443   //
1444   int max_position = 0;
1445   Peephole *peep;
1446   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1447     PeepMatch *pmatch = peep->match();
1448     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1449     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1450   }
1451   for( int i = 0; i <= max_position; ++i ) {
1452     if( i == 0 ) {
1453       fprintf(fp, "  MachNode *inst0 = this;\n");
1454     } else {
1455       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1456     }
1457   }
1458 
1459   // For each peephole rule in architecture description
1460   //   Construct a test for the desired instruction sub-tree
1461   //   then check the constraints
1462   //   If these match, Generate the new subtree
1463   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1464     int         peephole_number = peep->peephole_number();
1465     PeepMatch      *pmatch      = peep->match();
1466     PeepConstraint *pconstraint = peep->constraints();
1467     PeepReplace    *preplace    = peep->replacement();
1468 
1469     // Root of this peephole is the current MachNode
1470     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1471             "root of PeepMatch does not match instruction");
1472 
1473     // Make each peephole rule individually selectable
1474     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1475     fprintf(fp, "    matches = true;\n");
1476     // Scan the peepmatch and output a test for each instruction
1477     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1478 
1479     // Check constraints and build replacement inside scope
1480     fprintf(fp, "    // If instruction subtree matches\n");
1481     fprintf(fp, "    if( matches ) {\n");
1482 
1483     // Generate tests for the constraints
1484     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1485 
1486     // Construct the new sub-tree
1487     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1488 
1489     // End of scope for this peephole's constraints
1490     fprintf(fp, "    }\n");
1491     // Closing brace '}' to make each peephole rule individually selectable
1492     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1493     fprintf(fp, "\n");
1494   }
1495 
1496   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1497   fprintf(fp, "}\n");
1498   fprintf(fp, "\n");
1499 }
1500 
1501 // Define the Expand method for an instruction node
1502 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1503   unsigned      cnt  = 0;          // Count nodes we have expand into
1504   unsigned      i;
1505 
1506   // Generate Expand function header
1507   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1508   fprintf(fp, "  Compile* C = Compile::current();\n");
1509   // Generate expand code
1510   if( node->expands() ) {
1511     const char   *opid;
1512     int           new_pos, exp_pos;
1513     const char   *new_id   = NULL;
1514     const Form   *frm      = NULL;
1515     InstructForm *new_inst = NULL;
1516     OperandForm  *new_oper = NULL;
1517     unsigned      numo     = node->num_opnds() +
1518                                 node->_exprule->_newopers.count();
1519 
1520     // If necessary, generate any operands created in expand rule
1521     if (node->_exprule->_newopers.count()) {
1522       for(node->_exprule->_newopers.reset();
1523           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1524         frm = node->_localNames[new_id];
1525         assert(frm, "Invalid entry in new operands list of expand rule");
1526         new_oper = frm->is_operand();
1527         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1528         if (tmp == NULL) {
1529           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
1530                   cnt, new_oper->_ident);
1531         }
1532         else {
1533           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
1534                   cnt, new_oper->_ident, tmp);
1535         }
1536       }
1537     }
1538     cnt = 0;
1539     // Generate the temps to use for DAG building
1540     for(i = 0; i < numo; i++) {
1541       if (i < node->num_opnds()) {
1542         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1543       }
1544       else {
1545         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1546       }
1547     }
1548     // Build mapping from num_edges to local variables
1549     fprintf(fp,"  unsigned num0 = 0;\n");
1550     for( i = 1; i < node->num_opnds(); i++ ) {
1551       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1552     }
1553 
1554     // Build a mapping from operand index to input edges
1555     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1556 
1557     // The order in which the memory input is added to a node is very
1558     // strange.  Store nodes get a memory input before Expand is
1559     // called and other nodes get it afterwards or before depending on
1560     // match order so oper_input_base is wrong during expansion.  This
1561     // code adjusts it so that expansion will work correctly.
1562     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1563     if (has_memory_edge) {
1564       fprintf(fp,"  if (mem == (Node*)1) {\n");
1565       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1566       fprintf(fp,"  }\n");
1567     }
1568 
1569     for( i = 0; i < node->num_opnds(); i++ ) {
1570       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1571               i+1,i,i);
1572     }
1573 
1574     // Declare variable to hold root of expansion
1575     fprintf(fp,"  MachNode *result = NULL;\n");
1576 
1577     // Iterate over the instructions 'node' expands into
1578     ExpandRule  *expand       = node->_exprule;
1579     NameAndList *expand_instr = NULL;
1580     for(expand->reset_instructions();
1581         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1582       new_id = expand_instr->name();
1583 
1584       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1585       if (expand_instruction->has_temps()) {
1586         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1587                              node->_ident, new_id);
1588       }
1589 
1590       // Build the node for the instruction
1591       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
1592       // Add control edge for this node
1593       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1594       // Build the operand for the value this node defines.
1595       Form *form = (Form*)_globalNames[new_id];
1596       assert( form, "'new_id' must be a defined form name");
1597       // Grab the InstructForm for the new instruction
1598       new_inst = form->is_instruction();
1599       assert( new_inst, "'new_id' must be an instruction name");
1600       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1601         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1602         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1603       }
1604 
1605       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1606         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1607       }
1608 
1609       // Fill in the bottom_type where requested
1610       if (node->captures_bottom_type(_globalNames) &&
1611           new_inst->captures_bottom_type(_globalNames)) {
1612         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1613       }
1614 
1615       const char *resultOper = new_inst->reduce_result();
1616       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
1617               cnt, machOperEnum(resultOper));
1618 
1619       // get the formal operand NameList
1620       NameList *formal_lst = &new_inst->_parameters;
1621       formal_lst->reset();
1622 
1623       // Handle any memory operand
1624       int memory_operand = new_inst->memory_operand(_globalNames);
1625       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1626         int node_mem_op = node->memory_operand(_globalNames);
1627         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1628                 "expand rule member needs memory but top-level inst doesn't have any" );
1629         if (has_memory_edge) {
1630           // Copy memory edge
1631           fprintf(fp,"  if (mem != (Node*)1) {\n");
1632           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1633           fprintf(fp,"  }\n");
1634         }
1635       }
1636 
1637       // Iterate over the new instruction's operands
1638       int prev_pos = -1;
1639       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1640         // Use 'parameter' at current position in list of new instruction's formals
1641         // instead of 'opid' when looking up info internal to new_inst
1642         const char *parameter = formal_lst->iter();
1643         // Check for an operand which is created in the expand rule
1644         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1645           new_pos = new_inst->operand_position(parameter,Component::USE);
1646           exp_pos += node->num_opnds();
1647           // If there is no use of the created operand, just skip it
1648           if (new_pos != -1) {
1649             //Copy the operand from the original made above
1650             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
1651                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1652             // Check for who defines this operand & add edge if needed
1653             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1654             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1655           }
1656         }
1657         else {
1658           // Use operand name to get an index into instruction component list
1659           // ins = (InstructForm *) _globalNames[new_id];
1660           exp_pos = node->operand_position_format(opid);
1661           assert(exp_pos != -1, "Bad expand rule");
1662           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1663             // For the add_req calls below to work correctly they need
1664             // to added in the same order that a match would add them.
1665             // This means that they would need to be in the order of
1666             // the components list instead of the formal parameters.
1667             // This is a sort of hidden invariant that previously
1668             // wasn't checked and could lead to incorrectly
1669             // constructed nodes.
1670             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1671                        node->_ident, new_inst->_ident);
1672           }
1673           prev_pos = exp_pos;
1674 
1675           new_pos = new_inst->operand_position(parameter,Component::USE);
1676           if (new_pos != -1) {
1677             // Copy the operand from the ExpandNode to the new node
1678             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1679                     cnt, new_pos, exp_pos, opid);
1680             // For each operand add appropriate input edges by looking at tmp's
1681             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1682             // Grab corresponding edges from ExpandNode and insert them here
1683             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1684             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1685             fprintf(fp,"    }\n");
1686             fprintf(fp,"  }\n");
1687             // This value is generated by one of the new instructions
1688             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1689           }
1690         }
1691 
1692         // Update the DAG tmp's for values defined by this instruction
1693         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1694         Effect *eform = (Effect *)new_inst->_effects[parameter];
1695         // If this operand is a definition in either an effects rule
1696         // or a match rule
1697         if((eform) && (is_def(eform->_use_def))) {
1698           // Update the temp associated with this operand
1699           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1700         }
1701         else if( new_def_pos != -1 ) {
1702           // Instruction defines a value but user did not declare it
1703           // in the 'effect' clause
1704           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1705         }
1706       } // done iterating over a new instruction's operands
1707 
1708       // Invoke Expand() for the newly created instruction.
1709       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1710       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1711     } // done iterating over new instructions
1712     fprintf(fp,"\n");
1713   } // done generating expand rule
1714 
1715   // Generate projections for instruction's additional DEFs and KILLs
1716   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1717     // Get string representing the MachNode that projections point at
1718     const char *machNode = "this";
1719     // Generate the projections
1720     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1721 
1722     // Examine each component to see if it is a DEF or KILL
1723     node->_components.reset();
1724     // Skip the first component, if already handled as (SET dst (...))
1725     Component *comp = NULL;
1726     // For kills, the choice of projection numbers is arbitrary
1727     int proj_no = 1;
1728     bool declared_def  = false;
1729     bool declared_kill = false;
1730 
1731     while( (comp = node->_components.iter()) != NULL ) {
1732       // Lookup register class associated with operand type
1733       Form        *form = (Form*)_globalNames[comp->_type];
1734       assert( form, "component type must be a defined form");
1735       OperandForm *op   = form->is_operand();
1736 
1737       if (comp->is(Component::TEMP)) {
1738         fprintf(fp, "  // TEMP %s\n", comp->_name);
1739         if (!declared_def) {
1740           // Define the variable "def" to hold new MachProjNodes
1741           fprintf(fp, "  MachTempNode *def;\n");
1742           declared_def = true;
1743         }
1744         if (op && op->_interface && op->_interface->is_RegInterface()) {
1745           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
1746                   machOperEnum(op->_ident));
1747           fprintf(fp,"  add_req(def);\n");
1748           // The operand for TEMP is already constructed during
1749           // this mach node construction, see buildMachNode().
1750           //
1751           // int idx  = node->operand_position_format(comp->_name);
1752           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
1753           //         idx, machOperEnum(op->_ident));
1754         } else {
1755           assert(false, "can't have temps which aren't registers");
1756         }
1757       } else if (comp->isa(Component::KILL)) {
1758         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1759 
1760         if (!declared_kill) {
1761           // Define the variable "kill" to hold new MachProjNodes
1762           fprintf(fp, "  MachProjNode *kill;\n");
1763           declared_kill = true;
1764         }
1765 
1766         assert( op, "Support additional KILLS for base operands");
1767         const char *regmask    = reg_mask(*op);
1768         const char *ideal_type = op->ideal_type(_globalNames, _register);
1769 
1770         if (!op->is_bound_register()) {
1771           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1772                      node->_ident, comp->_type, comp->_name);
1773         }
1774 
1775         fprintf(fp,"  kill = ");
1776         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
1777                 machNode, proj_no++, regmask, ideal_type);
1778         fprintf(fp,"  proj_list.push(kill);\n");
1779       }
1780     }
1781   }
1782 
1783   if( !node->expands() && node->_matrule != NULL ) {
1784     // Remove duplicated operands and inputs which use the same name.
1785     // Seach through match operands for the same name usage.
1786     uint cur_num_opnds = node->num_opnds();
1787     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1788       Component *comp = NULL;
1789       // Build mapping from num_edges to local variables
1790       fprintf(fp,"  unsigned num0 = 0;\n");
1791       for( i = 1; i < cur_num_opnds; i++ ) {
1792         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1793       }
1794       // Build a mapping from operand index to input edges
1795       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1796       for( i = 0; i < cur_num_opnds; i++ ) {
1797         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1798                 i+1,i,i);
1799       }
1800 
1801       uint new_num_opnds = 1;
1802       node->_components.reset();
1803       // Skip first unique operands.
1804       for( i = 1; i < cur_num_opnds; i++ ) {
1805         comp = node->_components.iter();
1806         if( (int)i != node->unique_opnds_idx(i) ) {
1807           break;
1808         }
1809         new_num_opnds++;
1810       }
1811       // Replace not unique operands with next unique operands.
1812       for( ; i < cur_num_opnds; i++ ) {
1813         comp = node->_components.iter();
1814         int j = node->unique_opnds_idx(i);
1815         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1816         if( j != node->unique_opnds_idx(j) ) {
1817           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1818                   new_num_opnds, i, comp->_name);
1819           // delete not unique edges here
1820           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
1821           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1822           fprintf(fp,"  }\n");
1823           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
1824           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1825           new_num_opnds++;
1826         }
1827       }
1828       // delete the rest of edges
1829       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1830       fprintf(fp,"    del_req(i);\n");
1831       fprintf(fp,"  }\n");
1832       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
1833       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1834     }
1835   }
1836 
1837   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1838   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1839   if (node->is_mach_constant()) {
1840     fprintf(fp,"  add_req(C->mach_constant_base_node());\n");
1841   }
1842 
1843   fprintf(fp,"\n");
1844   if( node->expands() ) {
1845     fprintf(fp,"  return result;\n");
1846   } else {
1847     fprintf(fp,"  return this;\n");
1848   }
1849   fprintf(fp,"}\n");
1850   fprintf(fp,"\n");
1851 }
1852 
1853 
1854 //------------------------------Emit Routines----------------------------------
1855 // Special classes and routines for defining node emit routines which output
1856 // target specific instruction object encodings.
1857 // Define the ___Node::emit() routine
1858 //
1859 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1860 // (2)   // ...  encoding defined by user
1861 // (3)
1862 // (4) }
1863 //
1864 
1865 class DefineEmitState {
1866 private:
1867   enum reloc_format { RELOC_NONE        = -1,
1868                       RELOC_IMMEDIATE   =  0,
1869                       RELOC_DISP        =  1,
1870                       RELOC_CALL_DISP   =  2 };
1871   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1872                        LITERAL_SEEN      = 1,
1873                        LITERAL_ACCESSED  = 2,
1874                        LITERAL_OUTPUT    = 3 };
1875   // Temporaries that describe current operand
1876   bool          _cleared;
1877   OpClassForm  *_opclass;
1878   OperandForm  *_operand;
1879   int           _operand_idx;
1880   const char   *_local_name;
1881   const char   *_operand_name;
1882   bool          _doing_disp;
1883   bool          _doing_constant;
1884   Form::DataType _constant_type;
1885   DefineEmitState::literal_status _constant_status;
1886   DefineEmitState::literal_status _reg_status;
1887   bool          _doing_emit8;
1888   bool          _doing_emit_d32;
1889   bool          _doing_emit_d16;
1890   bool          _doing_emit_hi;
1891   bool          _doing_emit_lo;
1892   bool          _may_reloc;
1893   reloc_format  _reloc_form;
1894   const char *  _reloc_type;
1895   bool          _processing_noninput;
1896 
1897   NameList      _strings_to_emit;
1898 
1899   // Stable state, set by constructor
1900   ArchDesc     &_AD;
1901   FILE         *_fp;
1902   EncClass     &_encoding;
1903   InsEncode    &_ins_encode;
1904   InstructForm &_inst;
1905 
1906 public:
1907   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1908                   InsEncode &ins_encode, InstructForm &inst)
1909     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1910       clear();
1911   }
1912 
1913   void clear() {
1914     _cleared       = true;
1915     _opclass       = NULL;
1916     _operand       = NULL;
1917     _operand_idx   = 0;
1918     _local_name    = "";
1919     _operand_name  = "";
1920     _doing_disp    = false;
1921     _doing_constant= false;
1922     _constant_type = Form::none;
1923     _constant_status = LITERAL_NOT_SEEN;
1924     _reg_status      = LITERAL_NOT_SEEN;
1925     _doing_emit8   = false;
1926     _doing_emit_d32= false;
1927     _doing_emit_d16= false;
1928     _doing_emit_hi = false;
1929     _doing_emit_lo = false;
1930     _may_reloc     = false;
1931     _reloc_form    = RELOC_NONE;
1932     _reloc_type    = AdlcVMDeps::none_reloc_type();
1933     _strings_to_emit.clear();
1934   }
1935 
1936   // Track necessary state when identifying a replacement variable
1937   void update_state(const char *rep_var) {
1938     // A replacement variable or one of its subfields
1939     // Obtain replacement variable from list
1940     if ( (*rep_var) != '$' ) {
1941       // A replacement variable, '$' prefix
1942       // check_rep_var( rep_var );
1943       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1944         // No state needed.
1945         assert( _opclass == NULL,
1946                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1947       }
1948       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1949                (strcmp(rep_var, "constantoffset")    == 0) ||
1950                (strcmp(rep_var, "constantaddress")   == 0)) {
1951         if (!_inst.is_mach_constant()) {
1952           _AD.syntax_err(_encoding._linenum,
1953                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode).\n",
1954                          rep_var, _encoding._name);
1955         }
1956       }
1957       else {
1958         // Lookup its position in parameter list
1959         int   param_no  = _encoding.rep_var_index(rep_var);
1960         if ( param_no == -1 ) {
1961           _AD.syntax_err( _encoding._linenum,
1962                           "Replacement variable %s not found in enc_class %s.\n",
1963                           rep_var, _encoding._name);
1964         }
1965 
1966         // Lookup the corresponding ins_encode parameter
1967         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1968         if (inst_rep_var == NULL) {
1969           _AD.syntax_err( _ins_encode._linenum,
1970                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1971                           rep_var, _encoding._name, _inst._ident);
1972         }
1973 
1974         // Check if instruction's actual parameter is a local name in the instruction
1975         const Form  *local     = _inst._localNames[inst_rep_var];
1976         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1977         // Note: assert removed to allow constant and symbolic parameters
1978         // assert( opc, "replacement variable was not found in local names");
1979         // Lookup the index position iff the replacement variable is a localName
1980         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1981 
1982         if ( idx != -1 ) {
1983           // This is a local in the instruction
1984           // Update local state info.
1985           _opclass        = opc;
1986           _operand_idx    = idx;
1987           _local_name     = rep_var;
1988           _operand_name   = inst_rep_var;
1989 
1990           // !!!!!
1991           // Do not support consecutive operands.
1992           assert( _operand == NULL, "Unimplemented()");
1993           _operand = opc->is_operand();
1994         }
1995         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1996           // Instruction provided a constant expression
1997           // Check later that encoding specifies $$$constant to resolve as constant
1998           _constant_status   = LITERAL_SEEN;
1999         }
2000         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2001           // Instruction provided an opcode: "primary", "secondary", "tertiary"
2002           // Check later that encoding specifies $$$constant to resolve as constant
2003           _constant_status   = LITERAL_SEEN;
2004         }
2005         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2006           // Instruction provided a literal register name for this parameter
2007           // Check that encoding specifies $$$reg to resolve.as register.
2008           _reg_status        = LITERAL_SEEN;
2009         }
2010         else {
2011           // Check for unimplemented functionality before hard failure
2012           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2013           assert( false, "ShouldNotReachHere()");
2014         }
2015       } // done checking which operand this is.
2016     } else {
2017       //
2018       // A subfield variable, '$$' prefix
2019       // Check for fields that may require relocation information.
2020       // Then check that literal register parameters are accessed with 'reg' or 'constant'
2021       //
2022       if ( strcmp(rep_var,"$disp") == 0 ) {
2023         _doing_disp = true;
2024         assert( _opclass, "Must use operand or operand class before '$disp'");
2025         if( _operand == NULL ) {
2026           // Only have an operand class, generate run-time check for relocation
2027           _may_reloc    = true;
2028           _reloc_form   = RELOC_DISP;
2029           _reloc_type   = AdlcVMDeps::oop_reloc_type();
2030         } else {
2031           // Do precise check on operand: is it a ConP or not
2032           //
2033           // Check interface for value of displacement
2034           assert( ( _operand->_interface != NULL ),
2035                   "$disp can only follow memory interface operand");
2036           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2037           assert( mem_interface != NULL,
2038                   "$disp can only follow memory interface operand");
2039           const char *disp = mem_interface->_disp;
2040 
2041           if( disp != NULL && (*disp == '$') ) {
2042             // MemInterface::disp contains a replacement variable,
2043             // Check if this matches a ConP
2044             //
2045             // Lookup replacement variable, in operand's component list
2046             const char *rep_var_name = disp + 1; // Skip '$'
2047             const Component *comp = _operand->_components.search(rep_var_name);
2048             assert( comp != NULL,"Replacement variable not found in components");
2049             const char      *type = comp->_type;
2050             // Lookup operand form for replacement variable's type
2051             const Form *form = _AD.globalNames()[type];
2052             assert( form != NULL, "Replacement variable's type not found");
2053             OperandForm *op = form->is_operand();
2054             assert( op, "Attempting to emit a non-register or non-constant");
2055             // Check if this is a constant
2056             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2057               // Check which constant this name maps to: _c0, _c1, ..., _cn
2058               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2059               // assert( idx != -1, "Constant component not found in operand");
2060               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2061               if ( dtype == Form::idealP ) {
2062                 _may_reloc    = true;
2063                 // No longer true that idealP is always an oop
2064                 _reloc_form   = RELOC_DISP;
2065                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2066               }
2067             }
2068 
2069             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2070               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2071               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2072               _may_reloc   = false;
2073             } else {
2074               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2075             }
2076           }
2077         } // finished with precise check of operand for relocation.
2078       } // finished with subfield variable
2079       else if ( strcmp(rep_var,"$constant") == 0 ) {
2080         _doing_constant = true;
2081         if ( _constant_status == LITERAL_NOT_SEEN ) {
2082           // Check operand for type of constant
2083           assert( _operand, "Must use operand before '$$constant'");
2084           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2085           _constant_type = dtype;
2086           if ( dtype == Form::idealP ) {
2087             _may_reloc    = true;
2088             // No longer true that idealP is always an oop
2089             // // _must_reloc   = true;
2090             _reloc_form   = RELOC_IMMEDIATE;
2091             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2092           } else {
2093             // No relocation information needed
2094           }
2095         } else {
2096           // User-provided literals may not require relocation information !!!!!
2097           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2098         }
2099       }
2100       else if ( strcmp(rep_var,"$label") == 0 ) {
2101         // Calls containing labels require relocation
2102         if ( _inst.is_ideal_call() )  {
2103           _may_reloc    = true;
2104           // !!!!! !!!!!
2105           _reloc_type   = AdlcVMDeps::none_reloc_type();
2106         }
2107       }
2108 
2109       // literal register parameter must be accessed as a 'reg' field.
2110       if ( _reg_status != LITERAL_NOT_SEEN ) {
2111         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2112         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2113           _reg_status  = LITERAL_ACCESSED;
2114         } else {
2115           assert( false, "invalid access to literal register parameter");
2116         }
2117       }
2118       // literal constant parameters must be accessed as a 'constant' field
2119       if ( _constant_status != LITERAL_NOT_SEEN ) {
2120         assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2121         if( strcmp(rep_var,"$constant") == 0 ) {
2122           _constant_status  = LITERAL_ACCESSED;
2123         } else {
2124           assert( false, "invalid access to literal constant parameter");
2125         }
2126       }
2127     } // end replacement and/or subfield
2128 
2129   }
2130 
2131   void add_rep_var(const char *rep_var) {
2132     // Handle subfield and replacement variables.
2133     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2134       // Check for emit prefix, '$$emit32'
2135       assert( _cleared, "Can not nest $$$emit32");
2136       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2137         _doing_emit_d32 = true;
2138       }
2139       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2140         _doing_emit_d16 = true;
2141       }
2142       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2143         _doing_emit_hi  = true;
2144       }
2145       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2146         _doing_emit_lo  = true;
2147       }
2148       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2149         _doing_emit8    = true;
2150       }
2151       else {
2152         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2153         assert( false, "fatal();");
2154       }
2155     }
2156     else {
2157       // Update state for replacement variables
2158       update_state( rep_var );
2159       _strings_to_emit.addName(rep_var);
2160     }
2161     _cleared  = false;
2162   }
2163 
2164   void emit_replacement() {
2165     // A replacement variable or one of its subfields
2166     // Obtain replacement variable from list
2167     // const char *ec_rep_var = encoding->_rep_vars.iter();
2168     const char *rep_var;
2169     _strings_to_emit.reset();
2170     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2171 
2172       if ( (*rep_var) == '$' ) {
2173         // A subfield variable, '$$' prefix
2174         emit_field( rep_var );
2175       } else {
2176         if (_strings_to_emit.peek() != NULL &&
2177             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2178           fprintf(_fp, "Address::make_raw(");
2179 
2180           emit_rep_var( rep_var );
2181           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2182 
2183           _reg_status = LITERAL_ACCESSED;
2184           emit_rep_var( rep_var );
2185           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2186 
2187           _reg_status = LITERAL_ACCESSED;
2188           emit_rep_var( rep_var );
2189           fprintf(_fp,"->scale(), ");
2190 
2191           _reg_status = LITERAL_ACCESSED;
2192           emit_rep_var( rep_var );
2193           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2194           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2195             fprintf(_fp,"->disp(ra_,this,0), ");
2196           } else {
2197             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2198           }
2199 
2200           _reg_status = LITERAL_ACCESSED;
2201           emit_rep_var( rep_var );
2202           fprintf(_fp,"->disp_reloc())");
2203 
2204           // skip trailing $Address
2205           _strings_to_emit.iter();
2206         } else {
2207           // A replacement variable, '$' prefix
2208           const char* next = _strings_to_emit.peek();
2209           const char* next2 = _strings_to_emit.peek(2);
2210           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2211               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2212             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2213             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2214             fprintf(_fp, "as_Register(");
2215             // emit the operand reference
2216             emit_rep_var( rep_var );
2217             rep_var = _strings_to_emit.iter();
2218             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2219             // handle base or index
2220             emit_field(rep_var);
2221             rep_var = _strings_to_emit.iter();
2222             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2223             // close up the parens
2224             fprintf(_fp, ")");
2225           } else {
2226             emit_rep_var( rep_var );
2227           }
2228         }
2229       } // end replacement and/or subfield
2230     }
2231   }
2232 
2233   void emit_reloc_type(const char* type) {
2234     fprintf(_fp, "%s", type)
2235       ;
2236   }
2237 
2238 
2239   void emit() {
2240     //
2241     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2242     //
2243     // Emit the function name when generating an emit function
2244     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2245       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2246       // In general, relocatable isn't known at compiler compile time.
2247       // Check results of prior scan
2248       if ( ! _may_reloc ) {
2249         // Definitely don't need relocation information
2250         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2251         emit_replacement(); fprintf(_fp, ")");
2252       }
2253       else {
2254         // Emit RUNTIME CHECK to see if value needs relocation info
2255         // If emitting a relocatable address, use 'emit_d32_reloc'
2256         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2257         assert( (_doing_disp || _doing_constant)
2258                 && !(_doing_disp && _doing_constant),
2259                 "Must be emitting either a displacement or a constant");
2260         fprintf(_fp,"\n");
2261         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2262                 _operand_idx, disp_constant);
2263         fprintf(_fp,"  ");
2264         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2265         emit_replacement();             fprintf(_fp,", ");
2266         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2267                 _operand_idx, disp_constant);
2268         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2269         fprintf(_fp,"\n");
2270         fprintf(_fp,"} else {\n");
2271         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2272         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2273       }
2274     }
2275     else if ( _doing_emit_d16 ) {
2276       // Relocation of 16-bit values is not supported
2277       fprintf(_fp,"emit_d16(cbuf, ");
2278       emit_replacement(); fprintf(_fp, ")");
2279       // No relocation done for 16-bit values
2280     }
2281     else if ( _doing_emit8 ) {
2282       // Relocation of 8-bit values is not supported
2283       fprintf(_fp,"emit_d8(cbuf, ");
2284       emit_replacement(); fprintf(_fp, ")");
2285       // No relocation done for 8-bit values
2286     }
2287     else {
2288       // Not an emit# command, just output the replacement string.
2289       emit_replacement();
2290     }
2291 
2292     // Get ready for next state collection.
2293     clear();
2294   }
2295 
2296 private:
2297 
2298   // recognizes names which represent MacroAssembler register types
2299   // and return the conversion function to build them from OptoReg
2300   const char* reg_conversion(const char* rep_var) {
2301     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2302     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2303 #if defined(IA32) || defined(AMD64)
2304     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2305 #endif
2306     return NULL;
2307   }
2308 
2309   void emit_field(const char *rep_var) {
2310     const char* reg_convert = reg_conversion(rep_var);
2311 
2312     // A subfield variable, '$$subfield'
2313     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2314       // $reg form or the $Register MacroAssembler type conversions
2315       assert( _operand_idx != -1,
2316               "Must use this subfield after operand");
2317       if( _reg_status == LITERAL_NOT_SEEN ) {
2318         if (_processing_noninput) {
2319           const Form  *local     = _inst._localNames[_operand_name];
2320           OperandForm *oper      = local->is_operand();
2321           const RegDef* first = oper->get_RegClass()->find_first_elem();
2322           if (reg_convert != NULL) {
2323             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2324           } else {
2325             fprintf(_fp, "%s_enc", first->_regname);
2326           }
2327         } else {
2328           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2329           // Add parameter for index position, if not result operand
2330           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2331           fprintf(_fp,")");
2332         }
2333       } else {
2334         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2335         // Register literal has already been sent to output file, nothing more needed
2336       }
2337     }
2338     else if ( strcmp(rep_var,"$base") == 0 ) {
2339       assert( _operand_idx != -1,
2340               "Must use this subfield after operand");
2341       assert( ! _may_reloc, "UnImplemented()");
2342       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2343     }
2344     else if ( strcmp(rep_var,"$index") == 0 ) {
2345       assert( _operand_idx != -1,
2346               "Must use this subfield after operand");
2347       assert( ! _may_reloc, "UnImplemented()");
2348       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2349     }
2350     else if ( strcmp(rep_var,"$scale") == 0 ) {
2351       assert( ! _may_reloc, "UnImplemented()");
2352       fprintf(_fp,"->scale()");
2353     }
2354     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2355       assert( ! _may_reloc, "UnImplemented()");
2356       fprintf(_fp,"->ccode()");
2357     }
2358     else if ( strcmp(rep_var,"$constant") == 0 ) {
2359       if( _constant_status == LITERAL_NOT_SEEN ) {
2360         if ( _constant_type == Form::idealD ) {
2361           fprintf(_fp,"->constantD()");
2362         } else if ( _constant_type == Form::idealF ) {
2363           fprintf(_fp,"->constantF()");
2364         } else if ( _constant_type == Form::idealL ) {
2365           fprintf(_fp,"->constantL()");
2366         } else {
2367           fprintf(_fp,"->constant()");
2368         }
2369       } else {
2370         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2371         // Cosntant literal has already been sent to output file, nothing more needed
2372       }
2373     }
2374     else if ( strcmp(rep_var,"$disp") == 0 ) {
2375       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2376       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2377         fprintf(_fp,"->disp(ra_,this,0)");
2378       } else {
2379         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2380       }
2381     }
2382     else if ( strcmp(rep_var,"$label") == 0 ) {
2383       fprintf(_fp,"->label()");
2384     }
2385     else if ( strcmp(rep_var,"$method") == 0 ) {
2386       fprintf(_fp,"->method()");
2387     }
2388     else {
2389       printf("emit_field: %s\n",rep_var);
2390       assert( false, "UnImplemented()");
2391     }
2392   }
2393 
2394 
2395   void emit_rep_var(const char *rep_var) {
2396     _processing_noninput = false;
2397     // A replacement variable, originally '$'
2398     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2399       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2400         // Missing opcode
2401         _AD.syntax_err( _inst._linenum,
2402                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2403                         rep_var, _inst._ident, _encoding._name);
2404       }
2405     }
2406     else if (strcmp(rep_var, "constanttablebase") == 0) {
2407       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2408     }
2409     else if (strcmp(rep_var, "constantoffset") == 0) {
2410       fprintf(_fp, "constant_offset()");
2411     }
2412     else if (strcmp(rep_var, "constantaddress") == 0) {
2413       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2414     }
2415     else {
2416       // Lookup its position in parameter list
2417       int   param_no  = _encoding.rep_var_index(rep_var);
2418       if ( param_no == -1 ) {
2419         _AD.syntax_err( _encoding._linenum,
2420                         "Replacement variable %s not found in enc_class %s.\n",
2421                         rep_var, _encoding._name);
2422       }
2423       // Lookup the corresponding ins_encode parameter
2424       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2425 
2426       // Check if instruction's actual parameter is a local name in the instruction
2427       const Form  *local     = _inst._localNames[inst_rep_var];
2428       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2429       // Note: assert removed to allow constant and symbolic parameters
2430       // assert( opc, "replacement variable was not found in local names");
2431       // Lookup the index position iff the replacement variable is a localName
2432       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2433       if( idx != -1 ) {
2434         if (_inst.is_noninput_operand(idx)) {
2435           // This operand isn't a normal input so printing it is done
2436           // specially.
2437           _processing_noninput = true;
2438         } else {
2439           // Output the emit code for this operand
2440           fprintf(_fp,"opnd_array(%d)",idx);
2441         }
2442         assert( _operand == opc->is_operand(),
2443                 "Previous emit $operand does not match current");
2444       }
2445       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2446         // else check if it is a constant expression
2447         // Removed following assert to allow primitive C types as arguments to encodings
2448         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2449         fprintf(_fp,"(%s)", inst_rep_var);
2450         _constant_status = LITERAL_OUTPUT;
2451       }
2452       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2453         // else check if "primary", "secondary", "tertiary"
2454         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2455         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2456           // Missing opcode
2457           _AD.syntax_err( _inst._linenum,
2458                           "Missing $%s opcode definition in %s\n",
2459                           rep_var, _inst._ident);
2460 
2461         }
2462         _constant_status = LITERAL_OUTPUT;
2463       }
2464       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2465         // Instruction provided a literal register name for this parameter
2466         // Check that encoding specifies $$$reg to resolve.as register.
2467         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2468         fprintf(_fp,"(%s_enc)", inst_rep_var);
2469         _reg_status = LITERAL_OUTPUT;
2470       }
2471       else {
2472         // Check for unimplemented functionality before hard failure
2473         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2474         assert( false, "ShouldNotReachHere()");
2475       }
2476       // all done
2477     }
2478   }
2479 
2480 };  // end class DefineEmitState
2481 
2482 
2483 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2484 
2485   //(1)
2486   // Output instruction's emit prototype
2487   fprintf(fp,"uint  %sNode::size(PhaseRegAlloc *ra_) const {\n",
2488           inst._ident);
2489 
2490   fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2491 
2492   //(2)
2493   // Print the size
2494   fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2495 
2496   // (3) and (4)
2497   fprintf(fp,"}\n");
2498 }
2499 
2500 // defineEmit -----------------------------------------------------------------
2501 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2502   InsEncode* encode = inst._insencode;
2503 
2504   // (1)
2505   // Output instruction's emit prototype
2506   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2507 
2508   // If user did not define an encode section,
2509   // provide stub that does not generate any machine code.
2510   if( (_encode == NULL) || (encode == NULL) ) {
2511     fprintf(fp, "  // User did not define an encode section.\n");
2512     fprintf(fp, "}\n");
2513     return;
2514   }
2515 
2516   // Save current instruction's starting address (helps with relocation).
2517   fprintf(fp, "  cbuf.set_insts_mark();\n");
2518 
2519   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2520   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2521     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2522   }
2523 
2524   // Output each operand's offset into the array of registers.
2525   inst.index_temps(fp, _globalNames);
2526 
2527   // Output this instruction's encodings
2528   const char *ec_name;
2529   bool        user_defined = false;
2530   encode->reset();
2531   while ((ec_name = encode->encode_class_iter()) != NULL) {
2532     fprintf(fp, "  {\n");
2533     // Output user-defined encoding
2534     user_defined           = true;
2535 
2536     const char *ec_code    = NULL;
2537     const char *ec_rep_var = NULL;
2538     EncClass   *encoding   = _encode->encClass(ec_name);
2539     if (encoding == NULL) {
2540       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2541       abort();
2542     }
2543 
2544     if (encode->current_encoding_num_args() != encoding->num_args()) {
2545       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2546                            inst._ident, encode->current_encoding_num_args(),
2547                            ec_name, encoding->num_args());
2548     }
2549 
2550     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2551     encoding->_code.reset();
2552     encoding->_rep_vars.reset();
2553     // Process list of user-defined strings,
2554     // and occurrences of replacement variables.
2555     // Replacement Vars are pushed into a list and then output
2556     while ((ec_code = encoding->_code.iter()) != NULL) {
2557       if (!encoding->_code.is_signal(ec_code)) {
2558         // Emit pending code
2559         pending.emit();
2560         pending.clear();
2561         // Emit this code section
2562         fprintf(fp, "%s", ec_code);
2563       } else {
2564         // A replacement variable or one of its subfields
2565         // Obtain replacement variable from list
2566         ec_rep_var  = encoding->_rep_vars.iter();
2567         pending.add_rep_var(ec_rep_var);
2568       }
2569     }
2570     // Emit pending code
2571     pending.emit();
2572     pending.clear();
2573     fprintf(fp, "  }\n");
2574   } // end while instruction's encodings
2575 
2576   // Check if user stated which encoding to user
2577   if ( user_defined == false ) {
2578     fprintf(fp, "  // User did not define which encode class to use.\n");
2579   }
2580 
2581   // (3) and (4)
2582   fprintf(fp, "}\n");
2583 }
2584 
2585 // defineEvalConstant ---------------------------------------------------------
2586 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2587   InsEncode* encode = inst._constant;
2588 
2589   // (1)
2590   // Output instruction's emit prototype
2591   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2592 
2593   // For ideal jump nodes, add a jump-table entry.
2594   if (inst.is_ideal_jump()) {
2595     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
2596   }
2597 
2598   // If user did not define an encode section,
2599   // provide stub that does not generate any machine code.
2600   if ((_encode == NULL) || (encode == NULL)) {
2601     fprintf(fp, "  // User did not define an encode section.\n");
2602     fprintf(fp, "}\n");
2603     return;
2604   }
2605 
2606   // Output this instruction's encodings
2607   const char *ec_name;
2608   bool        user_defined = false;
2609   encode->reset();
2610   while ((ec_name = encode->encode_class_iter()) != NULL) {
2611     fprintf(fp, "  {\n");
2612     // Output user-defined encoding
2613     user_defined           = true;
2614 
2615     const char *ec_code    = NULL;
2616     const char *ec_rep_var = NULL;
2617     EncClass   *encoding   = _encode->encClass(ec_name);
2618     if (encoding == NULL) {
2619       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2620       abort();
2621     }
2622 
2623     if (encode->current_encoding_num_args() != encoding->num_args()) {
2624       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2625                            inst._ident, encode->current_encoding_num_args(),
2626                            ec_name, encoding->num_args());
2627     }
2628 
2629     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2630     encoding->_code.reset();
2631     encoding->_rep_vars.reset();
2632     // Process list of user-defined strings,
2633     // and occurrences of replacement variables.
2634     // Replacement Vars are pushed into a list and then output
2635     while ((ec_code = encoding->_code.iter()) != NULL) {
2636       if (!encoding->_code.is_signal(ec_code)) {
2637         // Emit pending code
2638         pending.emit();
2639         pending.clear();
2640         // Emit this code section
2641         fprintf(fp, "%s", ec_code);
2642       } else {
2643         // A replacement variable or one of its subfields
2644         // Obtain replacement variable from list
2645         ec_rep_var  = encoding->_rep_vars.iter();
2646         pending.add_rep_var(ec_rep_var);
2647       }
2648     }
2649     // Emit pending code
2650     pending.emit();
2651     pending.clear();
2652     fprintf(fp, "  }\n");
2653   } // end while instruction's encodings
2654 
2655   // Check if user stated which encoding to user
2656   if (user_defined == false) {
2657     fprintf(fp, "  // User did not define which encode class to use.\n");
2658   }
2659 
2660   // (3) and (4)
2661   fprintf(fp, "}\n");
2662 }
2663 
2664 // ---------------------------------------------------------------------------
2665 //--------Utilities to build MachOper and MachNode derived Classes------------
2666 // ---------------------------------------------------------------------------
2667 
2668 //------------------------------Utilities to build Operand Classes------------
2669 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2670   uint num_edges = oper.num_edges(globals);
2671   if( num_edges != 0 ) {
2672     // Method header
2673     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2674             oper._ident);
2675 
2676     // Assert that the index is in range.
2677     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2678             num_edges);
2679 
2680     // Figure out if all RegMasks are the same.
2681     const char* first_reg_class = oper.in_reg_class(0, globals);
2682     bool all_same = true;
2683     assert(first_reg_class != NULL, "did not find register mask");
2684 
2685     for (uint index = 1; all_same && index < num_edges; index++) {
2686       const char* some_reg_class = oper.in_reg_class(index, globals);
2687       assert(some_reg_class != NULL, "did not find register mask");
2688       if (strcmp(first_reg_class, some_reg_class) != 0) {
2689         all_same = false;
2690       }
2691     }
2692 
2693     if (all_same) {
2694       // Return the sole RegMask.
2695       if (strcmp(first_reg_class, "stack_slots") == 0) {
2696         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2697       } else {
2698         fprintf(fp,"  return &%s_mask();\n", toUpper(first_reg_class));
2699       }
2700     } else {
2701       // Build a switch statement to return the desired mask.
2702       fprintf(fp,"  switch (index) {\n");
2703 
2704       for (uint index = 0; index < num_edges; index++) {
2705         const char *reg_class = oper.in_reg_class(index, globals);
2706         assert(reg_class != NULL, "did not find register mask");
2707         if( !strcmp(reg_class, "stack_slots") ) {
2708           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2709         } else {
2710           fprintf(fp, "  case %d: return &%s_mask();\n", index, toUpper(reg_class));
2711         }
2712       }
2713       fprintf(fp,"  }\n");
2714       fprintf(fp,"  ShouldNotReachHere();\n");
2715       fprintf(fp,"  return NULL;\n");
2716     }
2717 
2718     // Method close
2719     fprintf(fp, "}\n\n");
2720   }
2721 }
2722 
2723 // generate code to create a clone for a class derived from MachOper
2724 //
2725 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
2726 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
2727 // (2)  }
2728 //
2729 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2730   fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper._ident);
2731   // Check for constants that need to be copied over
2732   const int  num_consts    = oper.num_consts(globalNames);
2733   const bool is_ideal_bool = oper.is_ideal_bool();
2734   if( (num_consts > 0) ) {
2735     fprintf(fp,"  return  new (C) %sOper(", oper._ident);
2736     // generate parameters for constants
2737     int i = 0;
2738     fprintf(fp,"_c%d", i);
2739     for( i = 1; i < num_consts; ++i) {
2740       fprintf(fp,", _c%d", i);
2741     }
2742     // finish line (1)
2743     fprintf(fp,");\n");
2744   }
2745   else {
2746     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2747     fprintf(fp,"  return  new (C) %sOper();\n", oper._ident);
2748   }
2749   // finish method
2750   fprintf(fp,"}\n");
2751 }
2752 
2753 static void define_hash(FILE *fp, char *operand) {
2754   fprintf(fp,"uint %sOper::hash() const { return 5; }\n", operand);
2755 }
2756 
2757 static void define_cmp(FILE *fp, char *operand) {
2758   fprintf(fp,"uint %sOper::cmp( const MachOper &oper ) const { return opcode() == oper.opcode(); }\n", operand);
2759 }
2760 
2761 
2762 // Helper functions for bug 4796752, abstracted with minimal modification
2763 // from define_oper_interface()
2764 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2765   OperandForm *op = NULL;
2766   // Check for replacement variable
2767   if( *encoding == '$' ) {
2768     // Replacement variable
2769     const char *rep_var = encoding + 1;
2770     // Lookup replacement variable, rep_var, in operand's component list
2771     const Component *comp = oper._components.search(rep_var);
2772     assert( comp != NULL, "Replacement variable not found in components");
2773     // Lookup operand form for replacement variable's type
2774     const char      *type = comp->_type;
2775     Form            *form = (Form*)globals[type];
2776     assert( form != NULL, "Replacement variable's type not found");
2777     op = form->is_operand();
2778     assert( op, "Attempting to emit a non-register or non-constant");
2779   }
2780 
2781   return op;
2782 }
2783 
2784 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2785   int idx = -1;
2786   // Check for replacement variable
2787   if( *encoding == '$' ) {
2788     // Replacement variable
2789     const char *rep_var = encoding + 1;
2790     // Lookup replacement variable, rep_var, in operand's component list
2791     const Component *comp = oper._components.search(rep_var);
2792     assert( comp != NULL, "Replacement variable not found in components");
2793     // Lookup operand form for replacement variable's type
2794     const char      *type = comp->_type;
2795     Form            *form = (Form*)globals[type];
2796     assert( form != NULL, "Replacement variable's type not found");
2797     OperandForm *op = form->is_operand();
2798     assert( op, "Attempting to emit a non-register or non-constant");
2799     // Check that this is a constant and find constant's index:
2800     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2801       idx  = oper.constant_position(globals, comp);
2802     }
2803   }
2804 
2805   return idx;
2806 }
2807 
2808 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2809   bool is_regI = false;
2810 
2811   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2812   if( op != NULL ) {
2813     // Check that this is a register
2814     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2815       // Register
2816       const char* ideal  = op->ideal_type(globals);
2817       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2818     }
2819   }
2820 
2821   return is_regI;
2822 }
2823 
2824 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2825   bool is_conP = false;
2826 
2827   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2828   if( op != NULL ) {
2829     // Check that this is a constant pointer
2830     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2831       // Constant
2832       Form::DataType dtype = op->is_base_constant(globals);
2833       is_conP = (dtype == Form::idealP);
2834     }
2835   }
2836 
2837   return is_conP;
2838 }
2839 
2840 
2841 // Define a MachOper interface methods
2842 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2843                                      const char *name, const char *encoding) {
2844   bool emit_position = false;
2845   int position = -1;
2846 
2847   fprintf(fp,"  virtual int            %s", name);
2848   // Generate access method for base, index, scale, disp, ...
2849   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2850     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2851     emit_position = true;
2852   } else if ( (strcmp(name,"disp") == 0) ) {
2853     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2854   } else {
2855     fprintf(fp,"() const { ");
2856   }
2857 
2858   // Check for hexadecimal value OR replacement variable
2859   if( *encoding == '$' ) {
2860     // Replacement variable
2861     const char *rep_var = encoding + 1;
2862     fprintf(fp,"// Replacement variable: %s\n", encoding+1);
2863     // Lookup replacement variable, rep_var, in operand's component list
2864     const Component *comp = oper._components.search(rep_var);
2865     assert( comp != NULL, "Replacement variable not found in components");
2866     // Lookup operand form for replacement variable's type
2867     const char      *type = comp->_type;
2868     Form            *form = (Form*)globals[type];
2869     assert( form != NULL, "Replacement variable's type not found");
2870     OperandForm *op = form->is_operand();
2871     assert( op, "Attempting to emit a non-register or non-constant");
2872     // Check that this is a register or a constant and generate code:
2873     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2874       // Register
2875       int idx_offset = oper.register_position( globals, rep_var);
2876       position = idx_offset;
2877       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2878       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2879       fprintf(fp,"));\n");
2880     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2881       // StackSlot for an sReg comes either from input node or from self, when idx==0
2882       fprintf(fp,"    if( idx != 0 ) {\n");
2883       fprintf(fp,"      // Access register number for input operand\n");
2884       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2885       fprintf(fp,"    }\n");
2886       fprintf(fp,"    // Access register number from myself\n");
2887       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2888     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2889       // Constant
2890       // Check which constant this name maps to: _c0, _c1, ..., _cn
2891       const int idx = oper.constant_position(globals, comp);
2892       assert( idx != -1, "Constant component not found in operand");
2893       // Output code for this constant, type dependent.
2894       fprintf(fp,"    return (int)" );
2895       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2896       fprintf(fp,";\n");
2897     } else {
2898       assert( false, "Attempting to emit a non-register or non-constant");
2899     }
2900   }
2901   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2902     // Hex value
2903     fprintf(fp,"return %s;", encoding);
2904   } else {
2905     assert( false, "Do not support octal or decimal encode constants");
2906   }
2907   fprintf(fp,"  }\n");
2908 
2909   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2910     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2911     MemInterface *mem_interface = oper._interface->is_MemInterface();
2912     const char *base = mem_interface->_base;
2913     const char *disp = mem_interface->_disp;
2914     if( emit_position && (strcmp(name,"base") == 0)
2915         && base != NULL && is_regI(base, oper, globals)
2916         && disp != NULL && is_conP(disp, oper, globals) ) {
2917       // Found a memory access using a constant pointer for a displacement
2918       // and a base register containing an integer offset.
2919       // In this case the base and disp are reversed with respect to what
2920       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
2921       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
2922       // to correctly compute the access type for alias analysis.
2923       //
2924       // See BugId 4796752, operand indOffset32X in i486.ad
2925       int idx = rep_var_to_constant_index(disp, oper, globals);
2926       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
2927     }
2928   }
2929 }
2930 
2931 //
2932 // Construct the method to copy _idx, inputs and operands to new node.
2933 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
2934   fprintf(fp_cpp, "\n");
2935   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
2936   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
2937   if( !used ) {
2938     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
2939     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
2940     fprintf(fp_cpp, "}\n");
2941   } else {
2942     // New node must use same node index for access through allocator's tables
2943     fprintf(fp_cpp, "  // New node must use same node index\n");
2944     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
2945     // Copy machine-independent inputs
2946     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
2947     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
2948     fprintf(fp_cpp, "    node->add_req(in(j));\n");
2949     fprintf(fp_cpp, "  }\n");
2950     // Copy machine operands to new MachNode
2951     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
2952     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
2953     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
2954     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
2955     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
2956     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
2957     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
2958     fprintf(fp_cpp, "  }\n");
2959     fprintf(fp_cpp, "}\n");
2960   }
2961   fprintf(fp_cpp, "\n");
2962 }
2963 
2964 //------------------------------defineClasses----------------------------------
2965 // Define members of MachNode and MachOper classes based on
2966 // operand and instruction lists
2967 void ArchDesc::defineClasses(FILE *fp) {
2968 
2969   // Define the contents of an array containing the machine register names
2970   defineRegNames(fp, _register);
2971   // Define an array containing the machine register encoding values
2972   defineRegEncodes(fp, _register);
2973   // Generate an enumeration of user-defined register classes
2974   // and a list of register masks, one for each class.
2975   // Only define the RegMask value objects in the expand file.
2976   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
2977   declare_register_masks(_HPP_file._fp);
2978   // build_register_masks(fp);
2979   build_register_masks(_CPP_EXPAND_file._fp);
2980   // Define the pipe_classes
2981   build_pipe_classes(_CPP_PIPELINE_file._fp);
2982 
2983   // Generate Machine Classes for each operand defined in AD file
2984   fprintf(fp,"\n");
2985   fprintf(fp,"\n");
2986   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
2987   // Iterate through all operands
2988   _operands.reset();
2989   OperandForm *oper;
2990   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
2991     // Ensure this is a machine-world instruction
2992     if ( oper->ideal_only() ) continue;
2993     // !!!!!
2994     // The declaration of labelOper is in machine-independent file: machnode
2995     if ( strcmp(oper->_ident,"label") == 0 ) {
2996       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
2997 
2998       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
2999       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
3000       fprintf(fp,"}\n");
3001 
3002       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3003               oper->_ident, machOperEnum(oper->_ident));
3004       // // Currently all XXXOper::Hash() methods are identical (990820)
3005       // define_hash(fp, oper->_ident);
3006       // // Currently all XXXOper::Cmp() methods are identical (990820)
3007       // define_cmp(fp, oper->_ident);
3008       fprintf(fp,"\n");
3009 
3010       continue;
3011     }
3012 
3013     // The declaration of methodOper is in machine-independent file: machnode
3014     if ( strcmp(oper->_ident,"method") == 0 ) {
3015       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3016 
3017       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
3018       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
3019       fprintf(fp,"}\n");
3020 
3021       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3022               oper->_ident, machOperEnum(oper->_ident));
3023       // // Currently all XXXOper::Hash() methods are identical (990820)
3024       // define_hash(fp, oper->_ident);
3025       // // Currently all XXXOper::Cmp() methods are identical (990820)
3026       // define_cmp(fp, oper->_ident);
3027       fprintf(fp,"\n");
3028 
3029       continue;
3030     }
3031 
3032     defineIn_RegMask(fp, _globalNames, *oper);
3033     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3034     // // Currently all XXXOper::Hash() methods are identical (990820)
3035     // define_hash(fp, oper->_ident);
3036     // // Currently all XXXOper::Cmp() methods are identical (990820)
3037     // define_cmp(fp, oper->_ident);
3038 
3039     // side-call to generate output that used to be in the header file:
3040     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3041     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3042 
3043   }
3044 
3045 
3046   // Generate Machine Classes for each instruction defined in AD file
3047   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3048   // Output the definitions for out_RegMask() // & kill_RegMask()
3049   _instructions.reset();
3050   InstructForm *instr;
3051   MachNodeForm *machnode;
3052   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3053     // Ensure this is a machine-world instruction
3054     if ( instr->ideal_only() ) continue;
3055 
3056     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3057   }
3058 
3059   bool used = false;
3060   // Output the definitions for expand rules & peephole rules
3061   _instructions.reset();
3062   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3063     // Ensure this is a machine-world instruction
3064     if ( instr->ideal_only() ) continue;
3065     // If there are multiple defs/kills, or an explicit expand rule, build rule
3066     if( instr->expands() || instr->needs_projections() ||
3067         instr->has_temps() ||
3068         instr->is_mach_constant() ||
3069         instr->_matrule != NULL &&
3070         instr->num_opnds() != instr->num_unique_opnds() )
3071       defineExpand(_CPP_EXPAND_file._fp, instr);
3072     // If there is an explicit peephole rule, build it
3073     if ( instr->peepholes() )
3074       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3075 
3076     // Output code to convert to the cisc version, if applicable
3077     used |= instr->define_cisc_version(*this, fp);
3078 
3079     // Output code to convert to the short branch version, if applicable
3080     used |= instr->define_short_branch_methods(*this, fp);
3081   }
3082 
3083   // Construct the method called by cisc_version() to copy inputs and operands.
3084   define_fill_new_machnode(used, fp);
3085 
3086   // Output the definitions for labels
3087   _instructions.reset();
3088   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3089     // Ensure this is a machine-world instruction
3090     if ( instr->ideal_only() ) continue;
3091 
3092     // Access the fields for operand Label
3093     int label_position = instr->label_position();
3094     if( label_position != -1 ) {
3095       // Set the label
3096       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3097       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3098               label_position );
3099       fprintf(fp,"  oper->_label     = label;\n");
3100       fprintf(fp,"  oper->_block_num = block_num;\n");
3101       fprintf(fp,"}\n");
3102       // Save the label
3103       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3104       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3105               label_position );
3106       fprintf(fp,"  *label = oper->_label;\n");
3107       fprintf(fp,"  *block_num = oper->_block_num;\n");
3108       fprintf(fp,"}\n");
3109     }
3110   }
3111 
3112   // Output the definitions for methods
3113   _instructions.reset();
3114   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3115     // Ensure this is a machine-world instruction
3116     if ( instr->ideal_only() ) continue;
3117 
3118     // Access the fields for operand Label
3119     int method_position = instr->method_position();
3120     if( method_position != -1 ) {
3121       // Access the method's address
3122       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3123       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3124               method_position );
3125       fprintf(fp,"}\n");
3126       fprintf(fp,"\n");
3127     }
3128   }
3129 
3130   // Define this instruction's number of relocation entries, base is '0'
3131   _instructions.reset();
3132   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3133     // Output the definition for number of relocation entries
3134     uint reloc_size = instr->reloc(_globalNames);
3135     if ( reloc_size != 0 ) {
3136       fprintf(fp,"int  %sNode::reloc()   const {\n", instr->_ident);
3137       fprintf(fp,  "  return  %d;\n", reloc_size );
3138       fprintf(fp,"}\n");
3139       fprintf(fp,"\n");
3140     }
3141   }
3142   fprintf(fp,"\n");
3143 
3144   // Output the definitions for code generation
3145   //
3146   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3147   //   // ...  encoding defined by user
3148   //   return ptr;
3149   // }
3150   //
3151   _instructions.reset();
3152   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3153     // Ensure this is a machine-world instruction
3154     if ( instr->ideal_only() ) continue;
3155 
3156     if (instr->_insencode)         defineEmit        (fp, *instr);
3157     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3158     if (instr->_size)              defineSize        (fp, *instr);
3159 
3160     // side-call to generate output that used to be in the header file:
3161     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3162     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3163   }
3164 
3165   // Output the definitions for alias analysis
3166   _instructions.reset();
3167   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3168     // Ensure this is a machine-world instruction
3169     if ( instr->ideal_only() ) continue;
3170 
3171     // Analyze machine instructions that either USE or DEF memory.
3172     int memory_operand = instr->memory_operand(_globalNames);
3173     // Some guys kill all of memory
3174     if ( instr->is_wide_memory_kill(_globalNames) ) {
3175       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3176     }
3177 
3178     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3179       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3180         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3181         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3182       } else {
3183         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3184   }
3185     }
3186   }
3187 
3188   // Get the length of the longest identifier
3189   int max_ident_len = 0;
3190   _instructions.reset();
3191 
3192   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3193     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3194       int ident_len = (int)strlen(instr->_ident);
3195       if( max_ident_len < ident_len )
3196         max_ident_len = ident_len;
3197     }
3198   }
3199 
3200   // Emit specifically for Node(s)
3201   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3202     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3203   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3204     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3205   fprintf(_CPP_PIPELINE_file._fp, "\n");
3206 
3207   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3208     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3209   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3210     max_ident_len, "MachNode");
3211   fprintf(_CPP_PIPELINE_file._fp, "\n");
3212 
3213   // Output the definitions for machine node specific pipeline data
3214   _machnodes.reset();
3215 
3216   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3217     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3218       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3219   }
3220 
3221   fprintf(_CPP_PIPELINE_file._fp, "\n");
3222 
3223   // Output the definitions for instruction pipeline static data references
3224   _instructions.reset();
3225 
3226   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3227     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3228       fprintf(_CPP_PIPELINE_file._fp, "\n");
3229       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3230         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3231       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3232         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3233     }
3234   }
3235 }
3236 
3237 
3238 // -------------------------------- maps ------------------------------------
3239 
3240 // Information needed to generate the ReduceOp mapping for the DFA
3241 class OutputReduceOp : public OutputMap {
3242 public:
3243   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3244     : OutputMap(hpp, cpp, globals, AD) {};
3245 
3246   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3247   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3248   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3249                        OutputMap::closing();
3250   }
3251   void map(OpClassForm &opc)  {
3252     const char *reduce = opc._ident;
3253     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3254     else          fprintf(_cpp, "  0");
3255   }
3256   void map(OperandForm &oper) {
3257     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3258     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3259     // operand stackSlot does not have a match rule, but produces a stackSlot
3260     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3261     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3262     else          fprintf(_cpp, "  0");
3263   }
3264   void map(InstructForm &inst) {
3265     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3266     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3267     else          fprintf(_cpp, "  0");
3268   }
3269   void map(char         *reduce) {
3270     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3271     else          fprintf(_cpp, "  0");
3272   }
3273 };
3274 
3275 // Information needed to generate the LeftOp mapping for the DFA
3276 class OutputLeftOp : public OutputMap {
3277 public:
3278   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3279     : OutputMap(hpp, cpp, globals, AD) {};
3280 
3281   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3282   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3283   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3284                        OutputMap::closing();
3285   }
3286   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3287   void map(OperandForm &oper) {
3288     const char *reduce = oper.reduce_left(_globals);
3289     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3290     else          fprintf(_cpp, "  0");
3291   }
3292   void map(char        *name) {
3293     const char *reduce = _AD.reduceLeft(name);
3294     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3295     else          fprintf(_cpp, "  0");
3296   }
3297   void map(InstructForm &inst) {
3298     const char *reduce = inst.reduce_left(_globals);
3299     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3300     else          fprintf(_cpp, "  0");
3301   }
3302 };
3303 
3304 
3305 // Information needed to generate the RightOp mapping for the DFA
3306 class OutputRightOp : public OutputMap {
3307 public:
3308   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3309     : OutputMap(hpp, cpp, globals, AD) {};
3310 
3311   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3312   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3313   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3314                        OutputMap::closing();
3315   }
3316   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3317   void map(OperandForm &oper) {
3318     const char *reduce = oper.reduce_right(_globals);
3319     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3320     else          fprintf(_cpp, "  0");
3321   }
3322   void map(char        *name) {
3323     const char *reduce = _AD.reduceRight(name);
3324     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3325     else          fprintf(_cpp, "  0");
3326   }
3327   void map(InstructForm &inst) {
3328     const char *reduce = inst.reduce_right(_globals);
3329     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3330     else          fprintf(_cpp, "  0");
3331   }
3332 };
3333 
3334 
3335 // Information needed to generate the Rule names for the DFA
3336 class OutputRuleName : public OutputMap {
3337 public:
3338   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3339     : OutputMap(hpp, cpp, globals, AD) {};
3340 
3341   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3342   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3343   void closing()     { fprintf(_cpp, "  \"no trailing comma\"\n");
3344                        OutputMap::closing();
3345   }
3346   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3347   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3348   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3349   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3350 };
3351 
3352 
3353 // Information needed to generate the swallowed mapping for the DFA
3354 class OutputSwallowed : public OutputMap {
3355 public:
3356   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3357     : OutputMap(hpp, cpp, globals, AD) {};
3358 
3359   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3360   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3361   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3362                        OutputMap::closing();
3363   }
3364   void map(OperandForm &oper) { // Generate the entry for this opcode
3365     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3366     fprintf(_cpp, "  %s", swallowed);
3367   }
3368   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3369   void map(char        *name) { fprintf(_cpp, "  false"); }
3370   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3371 };
3372 
3373 
3374 // Information needed to generate the decision array for instruction chain rule
3375 class OutputInstChainRule : public OutputMap {
3376 public:
3377   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3378     : OutputMap(hpp, cpp, globals, AD) {};
3379 
3380   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3381   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3382   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3383                        OutputMap::closing();
3384   }
3385   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3386   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3387   void map(char        *name)  { fprintf(_cpp, "  false"); }
3388   void map(InstructForm &inst) { // Check for simple chain rule
3389     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3390     fprintf(_cpp, "  %s", chain);
3391   }
3392 };
3393 
3394 
3395 //---------------------------build_map------------------------------------
3396 // Build  mapping from enumeration for densely packed operands
3397 // TO result and child types.
3398 void ArchDesc::build_map(OutputMap &map) {
3399   FILE         *fp_hpp = map.decl_file();
3400   FILE         *fp_cpp = map.def_file();
3401   int           idx    = 0;
3402   OperandForm  *op;
3403   OpClassForm  *opc;
3404   InstructForm *inst;
3405 
3406   // Construct this mapping
3407   map.declaration();
3408   fprintf(fp_cpp,"\n");
3409   map.definition();
3410 
3411   // Output the mapping for operands
3412   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3413   _operands.reset();
3414   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3415     // Ensure this is a machine-world instruction
3416     if ( op->ideal_only() )  continue;
3417 
3418     // Generate the entry for this opcode
3419     map.map(*op);    fprintf(fp_cpp, ", // %d\n", idx);
3420     ++idx;
3421   };
3422   fprintf(fp_cpp, "  // last operand\n");
3423 
3424   // Place all user-defined operand classes into the mapping
3425   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3426   _opclass.reset();
3427   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3428     map.map(*opc);    fprintf(fp_cpp, ", // %d\n", idx);
3429     ++idx;
3430   };
3431   fprintf(fp_cpp, "  // last operand class\n");
3432 
3433   // Place all internally defined operands into the mapping
3434   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3435   _internalOpNames.reset();
3436   char *name = NULL;
3437   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3438     map.map(name);    fprintf(fp_cpp, ", // %d\n", idx);
3439     ++idx;
3440   };
3441   fprintf(fp_cpp, "  // last internally defined operand\n");
3442 
3443   // Place all user-defined instructions into the mapping
3444   if( map.do_instructions() ) {
3445     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3446     // Output all simple instruction chain rules first
3447     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3448     {
3449       _instructions.reset();
3450       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3451         // Ensure this is a machine-world instruction
3452         if ( inst->ideal_only() )  continue;
3453         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3454         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3455 
3456         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3457         ++idx;
3458       };
3459       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3460       _instructions.reset();
3461       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3462         // Ensure this is a machine-world instruction
3463         if ( inst->ideal_only() )  continue;
3464         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3465         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3466 
3467         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3468         ++idx;
3469       };
3470       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3471     }
3472     // Output all instructions that are NOT simple chain rules
3473     {
3474       _instructions.reset();
3475       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3476         // Ensure this is a machine-world instruction
3477         if ( inst->ideal_only() )  continue;
3478         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3479         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3480 
3481         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3482         ++idx;
3483       };
3484       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3485       _instructions.reset();
3486       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3487         // Ensure this is a machine-world instruction
3488         if ( inst->ideal_only() )  continue;
3489         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3490         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3491 
3492         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
3493         ++idx;
3494       };
3495     }
3496     fprintf(fp_cpp, "  // last instruction\n");
3497     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3498   }
3499   // Finish defining table
3500   map.closing();
3501 };
3502 
3503 
3504 // Helper function for buildReduceMaps
3505 char reg_save_policy(const char *calling_convention) {
3506   char callconv;
3507 
3508   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3509   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3510   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3511   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3512   else                                         callconv = 'Z';
3513 
3514   return callconv;
3515 }
3516 
3517 //---------------------------generate_assertion_checks-------------------
3518 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3519   fprintf(fp_cpp, "\n");
3520 
3521   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3522   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3523   globalDefs().print_asserts(fp_cpp);
3524   fprintf(fp_cpp, "}\n");
3525   fprintf(fp_cpp, "#endif\n");
3526   fprintf(fp_cpp, "\n");
3527 }
3528 
3529 //---------------------------addSourceBlocks-----------------------------
3530 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3531   if (_source.count() > 0)
3532     _source.output(fp_cpp);
3533 
3534   generate_adlc_verification(fp_cpp);
3535 }
3536 //---------------------------addHeaderBlocks-----------------------------
3537 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3538   if (_header.count() > 0)
3539     _header.output(fp_hpp);
3540 }
3541 //-------------------------addPreHeaderBlocks----------------------------
3542 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3543   // Output #defines from definition block
3544   globalDefs().print_defines(fp_hpp);
3545 
3546   if (_pre_header.count() > 0)
3547     _pre_header.output(fp_hpp);
3548 }
3549 
3550 //---------------------------buildReduceMaps-----------------------------
3551 // Build  mapping from enumeration for densely packed operands
3552 // TO result and child types.
3553 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3554   RegDef       *rdef;
3555   RegDef       *next;
3556 
3557   // The emit bodies currently require functions defined in the source block.
3558 
3559   // Build external declarations for mappings
3560   fprintf(fp_hpp, "\n");
3561   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3562   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3563   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3564   fprintf(fp_hpp, "\n");
3565 
3566   // Construct Save-Policy array
3567   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3568   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3569   _register->reset_RegDefs();
3570   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3571     next              = _register->iter_RegDefs();
3572     char policy       = reg_save_policy(rdef->_callconv);
3573     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3574     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
3575   }
3576   fprintf(fp_cpp, "};\n\n");
3577 
3578   // Construct Native Save-Policy array
3579   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3580   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3581   _register->reset_RegDefs();
3582   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3583     next        = _register->iter_RegDefs();
3584     char policy = reg_save_policy(rdef->_c_conv);
3585     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3586     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
3587   }
3588   fprintf(fp_cpp, "};\n\n");
3589 
3590   // Construct Register Save Type array
3591   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3592   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3593   _register->reset_RegDefs();
3594   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3595     next = _register->iter_RegDefs();
3596     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3597     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3598   }
3599   fprintf(fp_cpp, "};\n\n");
3600 
3601   // Construct the table for reduceOp
3602   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3603   build_map(output_reduce_op);
3604   // Construct the table for leftOp
3605   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3606   build_map(output_left_op);
3607   // Construct the table for rightOp
3608   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3609   build_map(output_right_op);
3610   // Construct the table of rule names
3611   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3612   build_map(output_rule_name);
3613   // Construct the boolean table for subsumed operands
3614   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3615   build_map(output_swallowed);
3616   // // // Preserve in case we decide to use this table instead of another
3617   //// Construct the boolean table for instruction chain rules
3618   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3619   //build_map(output_inst_chain);
3620 
3621 }
3622 
3623 
3624 //---------------------------buildMachOperGenerator---------------------------
3625 
3626 // Recurse through match tree, building path through corresponding state tree,
3627 // Until we reach the constant we are looking for.
3628 static void path_to_constant(FILE *fp, FormDict &globals,
3629                              MatchNode *mnode, uint idx) {
3630   if ( ! mnode) return;
3631 
3632   unsigned    position = 0;
3633   const char *result   = NULL;
3634   const char *name     = NULL;
3635   const char *optype   = NULL;
3636 
3637   // Base Case: access constant in ideal node linked to current state node
3638   // Each type of constant has its own access function
3639   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3640        && mnode->base_operand(position, globals, result, name, optype) ) {
3641     if (         strcmp(optype,"ConI") == 0 ) {
3642       fprintf(fp, "_leaf->get_int()");
3643     } else if ( (strcmp(optype,"ConP") == 0) ) {
3644       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3645     } else if ( (strcmp(optype,"ConN") == 0) ) {
3646       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3647     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3648       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3649     } else if ( (strcmp(optype,"ConF") == 0) ) {
3650       fprintf(fp, "_leaf->getf()");
3651     } else if ( (strcmp(optype,"ConD") == 0) ) {
3652       fprintf(fp, "_leaf->getd()");
3653     } else if ( (strcmp(optype,"ConL") == 0) ) {
3654       fprintf(fp, "_leaf->get_long()");
3655     } else if ( (strcmp(optype,"Con")==0) ) {
3656       // !!!!! - Update if adding a machine-independent constant type
3657       fprintf(fp, "_leaf->get_int()");
3658       assert( false, "Unsupported constant type, pointer or indefinite");
3659     } else if ( (strcmp(optype,"Bool") == 0) ) {
3660       fprintf(fp, "_leaf->as_Bool()->_test._test");
3661     } else {
3662       assert( false, "Unsupported constant type");
3663     }
3664     return;
3665   }
3666 
3667   // If constant is in left child, build path and recurse
3668   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3669   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3670   if ( (mnode->_lChild) && (lConsts > idx) ) {
3671     fprintf(fp, "_kids[0]->");
3672     path_to_constant(fp, globals, mnode->_lChild, idx);
3673     return;
3674   }
3675   // If constant is in right child, build path and recurse
3676   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3677     idx = idx - lConsts;
3678     fprintf(fp, "_kids[1]->");
3679     path_to_constant(fp, globals, mnode->_rChild, idx);
3680     return;
3681   }
3682   assert( false, "ShouldNotReachHere()");
3683 }
3684 
3685 // Generate code that is executed when generating a specific Machine Operand
3686 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3687                             OperandForm &op) {
3688   const char *opName         = op._ident;
3689   const char *opEnumName     = AD.machOperEnum(opName);
3690   uint        num_consts     = op.num_consts(globalNames);
3691 
3692   // Generate the case statement for this opcode
3693   fprintf(fp, "  case %s:", opEnumName);
3694   fprintf(fp, "\n    return new (C) %sOper(", opName);
3695   // Access parameters for constructor from the stat object
3696   //
3697   // Build access to condition code value
3698   if ( (num_consts > 0) ) {
3699     uint i = 0;
3700     path_to_constant(fp, globalNames, op._matrule, i);
3701     for ( i = 1; i < num_consts; ++i ) {
3702       fprintf(fp, ", ");
3703       path_to_constant(fp, globalNames, op._matrule, i);
3704     }
3705   }
3706   fprintf(fp, " );\n");
3707 }
3708 
3709 
3710 // Build switch to invoke "new" MachNode or MachOper
3711 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3712   int idx = 0;
3713 
3714   // Build switch to invoke 'new' for a specific MachOper
3715   fprintf(fp_cpp, "\n");
3716   fprintf(fp_cpp, "\n");
3717   fprintf(fp_cpp,
3718           "//------------------------- MachOper Generator ---------------\n");
3719   fprintf(fp_cpp,
3720           "// A switch statement on the dense-packed user-defined type system\n"
3721           "// that invokes 'new' on the corresponding class constructor.\n");
3722   fprintf(fp_cpp, "\n");
3723   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3724   fprintf(fp_cpp, "(int opcode, Compile* C)");
3725   fprintf(fp_cpp, "{\n");
3726   fprintf(fp_cpp, "\n");
3727   fprintf(fp_cpp, "  switch(opcode) {\n");
3728 
3729   // Place all user-defined operands into the mapping
3730   _operands.reset();
3731   int  opIndex = 0;
3732   OperandForm *op;
3733   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3734     // Ensure this is a machine-world instruction
3735     if ( op->ideal_only() )  continue;
3736 
3737     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3738   };
3739 
3740   // Do not iterate over operand classes for the  operand generator!!!
3741 
3742   // Place all internal operands into the mapping
3743   _internalOpNames.reset();
3744   const char *iopn;
3745   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3746     const char *opEnumName = machOperEnum(iopn);
3747     // Generate the case statement for this opcode
3748     fprintf(fp_cpp, "  case %s:", opEnumName);
3749     fprintf(fp_cpp, "    return NULL;\n");
3750   };
3751 
3752   // Generate the default case for switch(opcode)
3753   fprintf(fp_cpp, "  \n");
3754   fprintf(fp_cpp, "  default:\n");
3755   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3756   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3757   fprintf(fp_cpp, "    break;\n");
3758   fprintf(fp_cpp, "  }\n");
3759 
3760   // Generate the closing for method Matcher::MachOperGenerator
3761   fprintf(fp_cpp, "  return NULL;\n");
3762   fprintf(fp_cpp, "};\n");
3763 }
3764 
3765 
3766 //---------------------------buildMachNode-------------------------------------
3767 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3768 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3769   const char *opType  = NULL;
3770   const char *opClass = inst->_ident;
3771 
3772   // Create the MachNode object
3773   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
3774 
3775   if ( (inst->num_post_match_opnds() != 0) ) {
3776     // Instruction that contains operands which are not in match rule.
3777     //
3778     // Check if the first post-match component may be an interesting def
3779     bool           dont_care = false;
3780     ComponentList &comp_list = inst->_components;
3781     Component     *comp      = NULL;
3782     comp_list.reset();
3783     if ( comp_list.match_iter() != NULL )    dont_care = true;
3784 
3785     // Insert operands that are not in match-rule.
3786     // Only insert a DEF if the do_care flag is set
3787     comp_list.reset();
3788     while ( comp = comp_list.post_match_iter() ) {
3789       // Check if we don't care about DEFs or KILLs that are not USEs
3790       if ( dont_care && (! comp->isa(Component::USE)) ) {
3791         continue;
3792       }
3793       dont_care = true;
3794       // For each operand not in the match rule, call MachOperGenerator
3795       // with the enum for the opcode that needs to be built.
3796       ComponentList clist = inst->_components;
3797       int         index  = clist.operand_position(comp->_name, comp->_usedef);
3798       const char *opcode = machOperEnum(comp->_type);
3799       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3800       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
3801       }
3802   }
3803   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3804     // An instruction that chains from a constant!
3805     // In this case, we need to subsume the constant into the node
3806     // at operand position, oper_input_base().
3807     //
3808     // Fill in the constant
3809     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3810             inst->oper_input_base(_globalNames));
3811     // #####
3812     // Check for multiple constants and then fill them in.
3813     // Just like MachOperGenerator
3814     const char *opName = inst->_matrule->_rChild->_opType;
3815     fprintf(fp_cpp, "new (C) %sOper(", opName);
3816     // Grab operand form
3817     OperandForm *op = (_globalNames[opName])->is_operand();
3818     // Look up the number of constants
3819     uint num_consts = op->num_consts(_globalNames);
3820     if ( (num_consts > 0) ) {
3821       uint i = 0;
3822       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3823       for ( i = 1; i < num_consts; ++i ) {
3824         fprintf(fp_cpp, ", ");
3825         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3826       }
3827     }
3828     fprintf(fp_cpp, " );\n");
3829     // #####
3830   }
3831 
3832   // Fill in the bottom_type where requested
3833   if ( inst->captures_bottom_type(_globalNames) ) {
3834     fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3835   }
3836   if( inst->is_ideal_if() ) {
3837     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3838     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3839   }
3840   if( inst->is_ideal_fastlock() ) {
3841     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3842   }
3843 
3844 }
3845 
3846 //---------------------------declare_cisc_version------------------------------
3847 // Build CISC version of this instruction
3848 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3849   if( AD.can_cisc_spill() ) {
3850     InstructForm *inst_cisc = cisc_spill_alternate();
3851     if (inst_cisc != NULL) {
3852       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3853       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
3854       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3855       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3856     }
3857   }
3858 }
3859 
3860 //---------------------------define_cisc_version-------------------------------
3861 // Build CISC version of this instruction
3862 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3863   InstructForm *inst_cisc = this->cisc_spill_alternate();
3864   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3865     const char   *name      = inst_cisc->_ident;
3866     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3867     OperandForm *cisc_oper = AD.cisc_spill_operand();
3868     assert( cisc_oper != NULL, "insanity check");
3869     const char *cisc_oper_name  = cisc_oper->_ident;
3870     assert( cisc_oper_name != NULL, "insanity check");
3871     //
3872     // Set the correct reg_mask_or_stack for the cisc operand
3873     fprintf(fp_cpp, "\n");
3874     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3875     // Lookup the correct reg_mask_or_stack
3876     const char *reg_mask_name = cisc_reg_mask_name();
3877     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3878     fprintf(fp_cpp, "}\n");
3879     //
3880     // Construct CISC version of this instruction
3881     fprintf(fp_cpp, "\n");
3882     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3883     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
3884     // Create the MachNode object
3885     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3886     // Fill in the bottom_type where requested
3887     if ( this->captures_bottom_type(AD.globalNames()) ) {
3888       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3889     }
3890 
3891     uint cur_num_opnds = num_opnds();
3892     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3893       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
3894     }
3895 
3896     fprintf(fp_cpp, "\n");
3897     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3898     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3899     // Construct operand to access [stack_pointer + offset]
3900     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
3901     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
3902     fprintf(fp_cpp, "\n");
3903 
3904     // Return result and exit scope
3905     fprintf(fp_cpp, "  return node;\n");
3906     fprintf(fp_cpp, "}\n");
3907     fprintf(fp_cpp, "\n");
3908     return true;
3909   }
3910   return false;
3911 }
3912 
3913 //---------------------------declare_short_branch_methods----------------------
3914 // Build prototypes for short branch methods
3915 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
3916   if (has_short_branch_form()) {
3917     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
3918   }
3919 }
3920 
3921 //---------------------------define_short_branch_methods-----------------------
3922 // Build definitions for short branch methods
3923 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
3924   if (has_short_branch_form()) {
3925     InstructForm *short_branch = short_branch_form();
3926     const char   *name         = short_branch->_ident;
3927 
3928     // Construct short_branch_version() method.
3929     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
3930     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
3931     // Create the MachNode object
3932     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3933     if( is_ideal_if() ) {
3934       fprintf(fp_cpp, "  node->_prob = _prob;\n");
3935       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
3936     }
3937     // Fill in the bottom_type where requested
3938     if ( this->captures_bottom_type(AD.globalNames()) ) {
3939       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3940     }
3941 
3942     fprintf(fp_cpp, "\n");
3943     // Short branch version must use same node index for access
3944     // through allocator's tables
3945     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3946     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3947 
3948     // Return result and exit scope
3949     fprintf(fp_cpp, "  return node;\n");
3950     fprintf(fp_cpp, "}\n");
3951     fprintf(fp_cpp,"\n");
3952     return true;
3953   }
3954   return false;
3955 }
3956 
3957 
3958 //---------------------------buildMachNodeGenerator----------------------------
3959 // Build switch to invoke appropriate "new" MachNode for an opcode
3960 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
3961 
3962   // Build switch to invoke 'new' for a specific MachNode
3963   fprintf(fp_cpp, "\n");
3964   fprintf(fp_cpp, "\n");
3965   fprintf(fp_cpp,
3966           "//------------------------- MachNode Generator ---------------\n");
3967   fprintf(fp_cpp,
3968           "// A switch statement on the dense-packed user-defined type system\n"
3969           "// that invokes 'new' on the corresponding class constructor.\n");
3970   fprintf(fp_cpp, "\n");
3971   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
3972   fprintf(fp_cpp, "(int opcode, Compile* C)");
3973   fprintf(fp_cpp, "{\n");
3974   fprintf(fp_cpp, "  switch(opcode) {\n");
3975 
3976   // Provide constructor for all user-defined instructions
3977   _instructions.reset();
3978   int  opIndex = operandFormCount();
3979   InstructForm *inst;
3980   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3981     // Ensure that matrule is defined.
3982     if ( inst->_matrule == NULL ) continue;
3983 
3984     int         opcode  = opIndex++;
3985     const char *opClass = inst->_ident;
3986     char       *opType  = NULL;
3987 
3988     // Generate the case statement for this instruction
3989     fprintf(fp_cpp, "  case %s_rule:", opClass);
3990 
3991     // Start local scope
3992     fprintf(fp_cpp, "  {\n");
3993     // Generate code to construct the new MachNode
3994     buildMachNode(fp_cpp, inst, "     ");
3995     // Return result and exit scope
3996     fprintf(fp_cpp, "      return node;\n");
3997     fprintf(fp_cpp, "    }\n");
3998   }
3999 
4000   // Generate the default case for switch(opcode)
4001   fprintf(fp_cpp, "  \n");
4002   fprintf(fp_cpp, "  default:\n");
4003   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4004   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
4005   fprintf(fp_cpp, "    break;\n");
4006   fprintf(fp_cpp, "  };\n");
4007 
4008   // Generate the closing for method Matcher::MachNodeGenerator
4009   fprintf(fp_cpp, "  return NULL;\n");
4010   fprintf(fp_cpp, "}\n");
4011 }
4012 
4013 
4014 //---------------------------buildInstructMatchCheck--------------------------
4015 // Output the method to Matcher which checks whether or not a specific
4016 // instruction has a matching rule for the host architecture.
4017 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4018   fprintf(fp_cpp, "\n\n");
4019   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4020   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4021   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4022   fprintf(fp_cpp, "}\n\n");
4023 
4024   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4025   int i;
4026   for (i = 0; i < _last_opcode - 1; i++) {
4027     fprintf(fp_cpp, "    %-5s,  // %s\n",
4028             _has_match_rule[i] ? "true" : "false",
4029             NodeClassNames[i]);
4030   }
4031   fprintf(fp_cpp, "    %-5s   // %s\n",
4032           _has_match_rule[i] ? "true" : "false",
4033           NodeClassNames[i]);
4034   fprintf(fp_cpp, "};\n");
4035 }
4036 
4037 //---------------------------buildFrameMethods---------------------------------
4038 // Output the methods to Matcher which specify frame behavior
4039 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4040   fprintf(fp_cpp,"\n\n");
4041   // Stack Direction
4042   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4043           _frame->_direction ? "true" : "false");
4044   // Sync Stack Slots
4045   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4046           _frame->_sync_stack_slots);
4047   // Java Stack Alignment
4048   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4049           _frame->_alignment);
4050   // Java Return Address Location
4051   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4052   if (_frame->_return_addr_loc) {
4053     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4054             _frame->_return_addr);
4055   }
4056   else {
4057     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4058             _frame->_return_addr);
4059   }
4060   // Java Stack Slot Preservation
4061   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4062   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4063   // Top Of Stack Slot Preservation, for both Java and C
4064   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4065   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4066   // varargs C out slots killed
4067   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4068   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4069   // Java Argument Position
4070   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4071   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4072   fprintf(fp_cpp,"}\n\n");
4073   // Native Argument Position
4074   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4075   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4076   fprintf(fp_cpp,"}\n\n");
4077   // Java Return Value Location
4078   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
4079   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4080   fprintf(fp_cpp,"}\n\n");
4081   // Native Return Value Location
4082   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
4083   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4084   fprintf(fp_cpp,"}\n\n");
4085 
4086   // Inline Cache Register, mask definition, and encoding
4087   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4088   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4089           _frame->_inline_cache_reg);
4090   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4091   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4092 
4093   // Interpreter's Method Oop Register, mask definition, and encoding
4094   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4095   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4096           _frame->_interpreter_method_oop_reg);
4097   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4098   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4099 
4100   // Interpreter's Frame Pointer Register, mask definition, and encoding
4101   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4102   if (_frame->_interpreter_frame_pointer_reg == NULL)
4103     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4104   else
4105     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4106             _frame->_interpreter_frame_pointer_reg);
4107 
4108   // Frame Pointer definition
4109   /* CNC - I can not contemplate having a different frame pointer between
4110      Java and native code; makes my head hurt to think about it.
4111   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4112   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4113           _frame->_frame_pointer);
4114   */
4115   // (Native) Frame Pointer definition
4116   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4117   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4118           _frame->_frame_pointer);
4119 
4120   // Number of callee-save + always-save registers for calling convention
4121   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4122   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4123   RegDef *rdef;
4124   int nof_saved_registers = 0;
4125   _register->reset_RegDefs();
4126   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4127     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4128       ++nof_saved_registers;
4129   }
4130   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4131   fprintf(fp_cpp, "};\n\n");
4132 }
4133 
4134 
4135 
4136 
4137 static int PrintAdlcCisc = 0;
4138 //---------------------------identify_cisc_spilling----------------------------
4139 // Get info for the CISC_oracle and MachNode::cisc_version()
4140 void ArchDesc::identify_cisc_spill_instructions() {
4141 
4142   // Find the user-defined operand for cisc-spilling
4143   if( _frame->_cisc_spilling_operand_name != NULL ) {
4144     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4145     OperandForm *oper = form ? form->is_operand() : NULL;
4146     // Verify the user's suggestion
4147     if( oper != NULL ) {
4148       // Ensure that match field is defined.
4149       if ( oper->_matrule != NULL )  {
4150         MatchRule &mrule = *oper->_matrule;
4151         if( strcmp(mrule._opType,"AddP") == 0 ) {
4152           MatchNode *left = mrule._lChild;
4153           MatchNode *right= mrule._rChild;
4154           if( left != NULL && right != NULL ) {
4155             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4156             const Form *right_op = _globalNames[right->_opType]->is_operand();
4157             if(  (left_op != NULL && right_op != NULL)
4158               && (left_op->interface_type(_globalNames) == Form::register_interface)
4159               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4160               // Successfully verified operand
4161               set_cisc_spill_operand( oper );
4162               if( _cisc_spill_debug ) {
4163                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4164              }
4165             }
4166           }
4167         }
4168       }
4169     }
4170   }
4171 
4172   if( cisc_spill_operand() != NULL ) {
4173     // N^2 comparison of instructions looking for a cisc-spilling version
4174     _instructions.reset();
4175     InstructForm *instr;
4176     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4177       // Ensure that match field is defined.
4178       if ( instr->_matrule == NULL )  continue;
4179 
4180       MatchRule &mrule = *instr->_matrule;
4181       Predicate *pred  =  instr->build_predicate();
4182 
4183       // Grab the machine type of the operand
4184       const char *rootOp = instr->_ident;
4185       mrule._machType    = rootOp;
4186 
4187       // Find result type for match
4188       const char *result = instr->reduce_result();
4189 
4190       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4191       bool  found_cisc_alternate = false;
4192       _instructions.reset2();
4193       InstructForm *instr2;
4194       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4195         // Ensure that match field is defined.
4196         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4197         if ( instr2->_matrule != NULL
4198             && (instr != instr2 )                // Skip self
4199             && (instr2->reduce_result() != NULL) // want same result
4200             && (strcmp(result, instr2->reduce_result()) == 0)) {
4201           MatchRule &mrule2 = *instr2->_matrule;
4202           Predicate *pred2  =  instr2->build_predicate();
4203           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4204         }
4205       }
4206     }
4207   }
4208 }
4209 
4210 //---------------------------build_cisc_spilling-------------------------------
4211 // Get info for the CISC_oracle and MachNode::cisc_version()
4212 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4213   // Output the table for cisc spilling
4214   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4215   _instructions.reset();
4216   InstructForm *inst = NULL;
4217   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4218     // Ensure this is a machine-world instruction
4219     if ( inst->ideal_only() )  continue;
4220     const char *inst_name = inst->_ident;
4221     int   operand   = inst->cisc_spill_operand();
4222     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4223       InstructForm *inst2 = inst->cisc_spill_alternate();
4224       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4225     }
4226   }
4227   fprintf(fp_cpp, "\n\n");
4228 }
4229 
4230 //---------------------------identify_short_branches----------------------------
4231 // Get info for our short branch replacement oracle.
4232 void ArchDesc::identify_short_branches() {
4233   // Walk over all instructions, checking to see if they match a short
4234   // branching alternate.
4235   _instructions.reset();
4236   InstructForm *instr;
4237   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4238     // The instruction must have a match rule.
4239     if (instr->_matrule != NULL &&
4240         instr->is_short_branch()) {
4241 
4242       _instructions.reset2();
4243       InstructForm *instr2;
4244       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4245         instr2->check_branch_variant(*this, instr);
4246       }
4247     }
4248   }
4249 }
4250 
4251 
4252 //---------------------------identify_unique_operands---------------------------
4253 // Identify unique operands.
4254 void ArchDesc::identify_unique_operands() {
4255   // Walk over all instructions.
4256   _instructions.reset();
4257   InstructForm *instr;
4258   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4259     // Ensure this is a machine-world instruction
4260     if (!instr->ideal_only()) {
4261       instr->set_unique_opnds();
4262     }
4263   }
4264 }