1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/c2compiler.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/runtime.hpp"
  33 #ifdef TARGET_ARCH_MODEL_x86_32
  34 # include "adfiles/ad_x86_32.hpp"
  35 #endif
  36 #ifdef TARGET_ARCH_MODEL_x86_64
  37 # include "adfiles/ad_x86_64.hpp"
  38 #endif
  39 #ifdef TARGET_ARCH_MODEL_sparc
  40 # include "adfiles/ad_sparc.hpp"
  41 #endif
  42 #ifdef TARGET_ARCH_MODEL_zero
  43 # include "adfiles/ad_zero.hpp"
  44 #endif
  45 #ifdef TARGET_ARCH_MODEL_arm
  46 # include "adfiles/ad_arm.hpp"
  47 #endif
  48 #ifdef TARGET_ARCH_MODEL_ppc
  49 # include "adfiles/ad_ppc.hpp"
  50 #endif
  51 
  52 // Optimization - Graph Style
  53 
  54 //------------------------------implicit_null_check----------------------------
  55 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  56 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  57 // I can generate a memory op if there is not one nearby.
  58 // The proj is the control projection for the not-null case.
  59 // The val is the pointer being checked for nullness or
  60 // decodeHeapOop_not_null node if it did not fold into address.
  61 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
  62   // Assume if null check need for 0 offset then always needed
  63   // Intel solaris doesn't support any null checks yet and no
  64   // mechanism exists (yet) to set the switches at an os_cpu level
  65   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  66 
  67   // Make sure the ptr-is-null path appears to be uncommon!
  68   float f = end()->as_MachIf()->_prob;
  69   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  70   if( f > PROB_UNLIKELY_MAG(4) ) return;
  71 
  72   uint bidx = 0;                // Capture index of value into memop
  73   bool was_store;               // Memory op is a store op
  74 
  75   // Get the successor block for if the test ptr is non-null
  76   Block* not_null_block;  // this one goes with the proj
  77   Block* null_block;
  78   if (_nodes[_nodes.size()-1] == proj) {
  79     null_block     = _succs[0];
  80     not_null_block = _succs[1];
  81   } else {
  82     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
  83     not_null_block = _succs[0];
  84     null_block     = _succs[1];
  85   }
  86   while (null_block->is_Empty() == Block::empty_with_goto) {
  87     null_block     = null_block->_succs[0];
  88   }
  89 
  90   // Search the exception block for an uncommon trap.
  91   // (See Parse::do_if and Parse::do_ifnull for the reason
  92   // we need an uncommon trap.  Briefly, we need a way to
  93   // detect failure of this optimization, as in 6366351.)
  94   {
  95     bool found_trap = false;
  96     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
  97       Node* nn = null_block->_nodes[i1];
  98       if (nn->is_MachCall() &&
  99           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 100         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 101         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 102           jint tr_con = trtype->is_int()->get_con();
 103           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 104           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 105           assert((int)reason < (int)BitsPerInt, "recode bit map");
 106           if (is_set_nth_bit(allowed_reasons, (int) reason)
 107               && action != Deoptimization::Action_none) {
 108             // This uncommon trap is sure to recompile, eventually.
 109             // When that happens, C->too_many_traps will prevent
 110             // this transformation from happening again.
 111             found_trap = true;
 112           }
 113         }
 114         break;
 115       }
 116     }
 117     if (!found_trap) {
 118       // We did not find an uncommon trap.
 119       return;
 120     }
 121   }
 122 
 123   // Check for decodeHeapOop_not_null node which did not fold into address
 124   bool is_decoden = ((intptr_t)val) & 1;
 125   val = (Node*)(((intptr_t)val) & ~1);
 126 
 127   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 128          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 129 
 130   // Search the successor block for a load or store who's base value is also
 131   // the tested value.  There may be several.
 132   Node_List *out = new Node_List(Thread::current()->resource_area());
 133   MachNode *best = NULL;        // Best found so far
 134   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 135     Node *m = val->out(i);
 136     if( !m->is_Mach() ) continue;
 137     MachNode *mach = m->as_Mach();
 138     was_store = false;
 139     int iop = mach->ideal_Opcode();
 140     switch( iop ) {
 141     case Op_LoadB:
 142     case Op_LoadUB:
 143     case Op_LoadUS:
 144     case Op_LoadD:
 145     case Op_LoadF:
 146     case Op_LoadI:
 147     case Op_LoadL:
 148     case Op_LoadP:
 149     case Op_LoadN:
 150     case Op_LoadS:
 151     case Op_LoadKlass:
 152     case Op_LoadNKlass:
 153     case Op_LoadRange:
 154     case Op_LoadD_unaligned:
 155     case Op_LoadL_unaligned:
 156       assert(mach->in(2) == val, "should be address");
 157       break;
 158     case Op_StoreB:
 159     case Op_StoreC:
 160     case Op_StoreCM:
 161     case Op_StoreD:
 162     case Op_StoreF:
 163     case Op_StoreI:
 164     case Op_StoreL:
 165     case Op_StoreP:
 166     case Op_StoreN:
 167     case Op_StoreNKlass:
 168       was_store = true;         // Memory op is a store op
 169       // Stores will have their address in slot 2 (memory in slot 1).
 170       // If the value being nul-checked is in another slot, it means we
 171       // are storing the checked value, which does NOT check the value!
 172       if( mach->in(2) != val ) continue;
 173       break;                    // Found a memory op?
 174     case Op_StrComp:
 175     case Op_StrEquals:
 176     case Op_StrIndexOf:
 177     case Op_AryEq:
 178       // Not a legit memory op for implicit null check regardless of
 179       // embedded loads
 180       continue;
 181     default:                    // Also check for embedded loads
 182       if( !mach->needs_anti_dependence_check() )
 183         continue;               // Not an memory op; skip it
 184       if( must_clone[iop] ) {
 185         // Do not move nodes which produce flags because
 186         // RA will try to clone it to place near branch and
 187         // it will cause recompilation, see clone_node().
 188         continue;
 189       }
 190       {
 191         // Check that value is used in memory address in
 192         // instructions with embedded load (CmpP val1,(val2+off)).
 193         Node* base;
 194         Node* index;
 195         const MachOper* oper = mach->memory_inputs(base, index);
 196         if (oper == NULL || oper == (MachOper*)-1) {
 197           continue;             // Not an memory op; skip it
 198         }
 199         if (val == base ||
 200             val == index && val->bottom_type()->isa_narrowoop()) {
 201           break;                // Found it
 202         } else {
 203           continue;             // Skip it
 204         }
 205       }
 206       break;
 207     }
 208     // check if the offset is not too high for implicit exception
 209     {
 210       intptr_t offset = 0;
 211       const TypePtr *adr_type = NULL;  // Do not need this return value here
 212       const Node* base = mach->get_base_and_disp(offset, adr_type);
 213       if (base == NULL || base == NodeSentinel) {
 214         // Narrow oop address doesn't have base, only index
 215         if( val->bottom_type()->isa_narrowoop() &&
 216             MacroAssembler::needs_explicit_null_check(offset) )
 217           continue;             // Give up if offset is beyond page size
 218         // cannot reason about it; is probably not implicit null exception
 219       } else {
 220         const TypePtr* tptr;
 221         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
 222           // 32-bits narrow oop can be the base of address expressions
 223           tptr = base->bottom_type()->make_ptr();
 224         } else {
 225           // only regular oops are expected here
 226           tptr = base->bottom_type()->is_ptr();
 227         }
 228         // Give up if offset is not a compile-time constant
 229         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 230           continue;
 231         offset += tptr->_offset; // correct if base is offseted
 232         if( MacroAssembler::needs_explicit_null_check(offset) )
 233           continue;             // Give up is reference is beyond 4K page size
 234       }
 235     }
 236 
 237     // Check ctrl input to see if the null-check dominates the memory op
 238     Block *cb = cfg->_bbs[mach->_idx];
 239     cb = cb->_idom;             // Always hoist at least 1 block
 240     if( !was_store ) {          // Stores can be hoisted only one block
 241       while( cb->_dom_depth > (_dom_depth + 1))
 242         cb = cb->_idom;         // Hoist loads as far as we want
 243       // The non-null-block should dominate the memory op, too. Live
 244       // range spilling will insert a spill in the non-null-block if it is
 245       // needs to spill the memory op for an implicit null check.
 246       if (cb->_dom_depth == (_dom_depth + 1)) {
 247         if (cb != not_null_block) continue;
 248         cb = cb->_idom;
 249       }
 250     }
 251     if( cb != this ) continue;
 252 
 253     // Found a memory user; see if it can be hoisted to check-block
 254     uint vidx = 0;              // Capture index of value into memop
 255     uint j;
 256     for( j = mach->req()-1; j > 0; j-- ) {
 257       if( mach->in(j) == val ) {
 258         vidx = j;
 259         // Ignore DecodeN val which could be hoisted to where needed.
 260         if( is_decoden ) continue;
 261       }
 262       // Block of memory-op input
 263       Block *inb = cfg->_bbs[mach->in(j)->_idx];
 264       Block *b = this;          // Start from nul check
 265       while( b != inb && b->_dom_depth > inb->_dom_depth )
 266         b = b->_idom;           // search upwards for input
 267       // See if input dominates null check
 268       if( b != inb )
 269         break;
 270     }
 271     if( j > 0 )
 272       continue;
 273     Block *mb = cfg->_bbs[mach->_idx];
 274     // Hoisting stores requires more checks for the anti-dependence case.
 275     // Give up hoisting if we have to move the store past any load.
 276     if( was_store ) {
 277       Block *b = mb;            // Start searching here for a local load
 278       // mach use (faulting) trying to hoist
 279       // n might be blocker to hoisting
 280       while( b != this ) {
 281         uint k;
 282         for( k = 1; k < b->_nodes.size(); k++ ) {
 283           Node *n = b->_nodes[k];
 284           if( n->needs_anti_dependence_check() &&
 285               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 286             break;              // Found anti-dependent load
 287         }
 288         if( k < b->_nodes.size() )
 289           break;                // Found anti-dependent load
 290         // Make sure control does not do a merge (would have to check allpaths)
 291         if( b->num_preds() != 2 ) break;
 292         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
 293       }
 294       if( b != this ) continue;
 295     }
 296 
 297     // Make sure this memory op is not already being used for a NullCheck
 298     Node *e = mb->end();
 299     if( e->is_MachNullCheck() && e->in(1) == mach )
 300       continue;                 // Already being used as a NULL check
 301 
 302     // Found a candidate!  Pick one with least dom depth - the highest
 303     // in the dom tree should be closest to the null check.
 304     if( !best ||
 305         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
 306       best = mach;
 307       bidx = vidx;
 308 
 309     }
 310   }
 311   // No candidate!
 312   if( !best ) return;
 313 
 314   // ---- Found an implicit null check
 315   extern int implicit_null_checks;
 316   implicit_null_checks++;
 317 
 318   if( is_decoden ) {
 319     // Check if we need to hoist decodeHeapOop_not_null first.
 320     Block *valb = cfg->_bbs[val->_idx];
 321     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
 322       // Hoist it up to the end of the test block.
 323       valb->find_remove(val);
 324       this->add_inst(val);
 325       cfg->_bbs.map(val->_idx,this);
 326       // DecodeN on x86 may kill flags. Check for flag-killing projections
 327       // that also need to be hoisted.
 328       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 329         Node* n = val->fast_out(j);
 330         if( n->is_MachProj() ) {
 331           cfg->_bbs[n->_idx]->find_remove(n);
 332           this->add_inst(n);
 333           cfg->_bbs.map(n->_idx,this);
 334         }
 335       }
 336     }
 337   }
 338   // Hoist the memory candidate up to the end of the test block.
 339   Block *old_block = cfg->_bbs[best->_idx];
 340   old_block->find_remove(best);
 341   add_inst(best);
 342   cfg->_bbs.map(best->_idx,this);
 343 
 344   // Move the control dependence
 345   if (best->in(0) && best->in(0) == old_block->_nodes[0])
 346     best->set_req(0, _nodes[0]);
 347 
 348   // Check for flag-killing projections that also need to be hoisted
 349   // Should be DU safe because no edge updates.
 350   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 351     Node* n = best->fast_out(j);
 352     if( n->is_MachProj() ) {
 353       cfg->_bbs[n->_idx]->find_remove(n);
 354       add_inst(n);
 355       cfg->_bbs.map(n->_idx,this);
 356     }
 357   }
 358 
 359   Compile *C = cfg->C;
 360   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 361   // One of two graph shapes got matched:
 362   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 363   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 364   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 365   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 366   // We need to flip the projections to keep the same semantics.
 367   if( proj->Opcode() == Op_IfTrue ) {
 368     // Swap order of projections in basic block to swap branch targets
 369     Node *tmp1 = _nodes[end_idx()+1];
 370     Node *tmp2 = _nodes[end_idx()+2];
 371     _nodes.map(end_idx()+1, tmp2);
 372     _nodes.map(end_idx()+2, tmp1);
 373     Node *tmp = new (C) Node(C->top()); // Use not NULL input
 374     tmp1->replace_by(tmp);
 375     tmp2->replace_by(tmp1);
 376     tmp->replace_by(tmp2);
 377     tmp->destruct();
 378   }
 379 
 380   // Remove the existing null check; use a new implicit null check instead.
 381   // Since schedule-local needs precise def-use info, we need to correct
 382   // it as well.
 383   Node *old_tst = proj->in(0);
 384   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 385   _nodes.map(end_idx(),nul_chk);
 386   cfg->_bbs.map(nul_chk->_idx,this);
 387   // Redirect users of old_test to nul_chk
 388   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 389     old_tst->last_out(i2)->set_req(0, nul_chk);
 390   // Clean-up any dead code
 391   for (uint i3 = 0; i3 < old_tst->req(); i3++)
 392     old_tst->set_req(i3, NULL);
 393 
 394   cfg->latency_from_uses(nul_chk);
 395   cfg->latency_from_uses(best);
 396 }
 397 
 398 
 399 //------------------------------select-----------------------------------------
 400 // Select a nice fellow from the worklist to schedule next. If there is only
 401 // one choice, then use it. Projections take top priority for correctness
 402 // reasons - if I see a projection, then it is next.  There are a number of
 403 // other special cases, for instructions that consume condition codes, et al.
 404 // These are chosen immediately. Some instructions are required to immediately
 405 // precede the last instruction in the block, and these are taken last. Of the
 406 // remaining cases (most), choose the instruction with the greatest latency
 407 // (that is, the most number of pseudo-cycles required to the end of the
 408 // routine). If there is a tie, choose the instruction with the most inputs.
 409 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
 410 
 411   // If only a single entry on the stack, use it
 412   uint cnt = worklist.size();
 413   if (cnt == 1) {
 414     Node *n = worklist[0];
 415     worklist.map(0,worklist.pop());
 416     return n;
 417   }
 418 
 419   uint choice  = 0; // Bigger is most important
 420   uint latency = 0; // Bigger is scheduled first
 421   uint score   = 0; // Bigger is better
 422   int idx = -1;     // Index in worklist
 423 
 424   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 425     // Order in worklist is used to break ties.
 426     // See caller for how this is used to delay scheduling
 427     // of induction variable increments to after the other
 428     // uses of the phi are scheduled.
 429     Node *n = worklist[i];      // Get Node on worklist
 430 
 431     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 432     if( n->is_Proj() ||         // Projections always win
 433         n->Opcode()== Op_Con || // So does constant 'Top'
 434         iop == Op_CreateEx ||   // Create-exception must start block
 435         iop == Op_CheckCastPP
 436         ) {
 437       worklist.map(i,worklist.pop());
 438       return n;
 439     }
 440 
 441     // Final call in a block must be adjacent to 'catch'
 442     Node *e = end();
 443     if( e->is_Catch() && e->in(0)->in(0) == n )
 444       continue;
 445 
 446     // Memory op for an implicit null check has to be at the end of the block
 447     if( e->is_MachNullCheck() && e->in(1) == n )
 448       continue;
 449 
 450     // Schedule IV increment last.
 451     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
 452         e->in(1)->in(1) == n && n->is_iteratively_computed())
 453       continue;
 454 
 455     uint n_choice  = 2;
 456 
 457     // See if this instruction is consumed by a branch. If so, then (as the
 458     // branch is the last instruction in the basic block) force it to the
 459     // end of the basic block
 460     if ( must_clone[iop] ) {
 461       // See if any use is a branch
 462       bool found_machif = false;
 463 
 464       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 465         Node* use = n->fast_out(j);
 466 
 467         // The use is a conditional branch, make them adjacent
 468         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
 469           found_machif = true;
 470           break;
 471         }
 472 
 473         // More than this instruction pending for successor to be ready,
 474         // don't choose this if other opportunities are ready
 475         if (ready_cnt.at(use->_idx) > 1)
 476           n_choice = 1;
 477       }
 478 
 479       // loop terminated, prefer not to use this instruction
 480       if (found_machif)
 481         continue;
 482     }
 483 
 484     // See if this has a predecessor that is "must_clone", i.e. sets the
 485     // condition code. If so, choose this first
 486     for (uint j = 0; j < n->req() ; j++) {
 487       Node *inn = n->in(j);
 488       if (inn) {
 489         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 490           n_choice = 3;
 491           break;
 492         }
 493       }
 494     }
 495 
 496     // MachTemps should be scheduled last so they are near their uses
 497     if (n->is_MachTemp()) {
 498       n_choice = 1;
 499     }
 500 
 501     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
 502     uint n_score   = n->req();   // Many inputs get high score to break ties
 503 
 504     // Keep best latency found
 505     if( choice < n_choice ||
 506         ( choice == n_choice &&
 507           ( latency < n_latency ||
 508             ( latency == n_latency &&
 509               ( score < n_score ))))) {
 510       choice  = n_choice;
 511       latency = n_latency;
 512       score   = n_score;
 513       idx     = i;               // Also keep index in worklist
 514     }
 515   } // End of for all ready nodes in worklist
 516 
 517   assert(idx >= 0, "index should be set");
 518   Node *n = worklist[(uint)idx];      // Get the winner
 519 
 520   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 521   return n;
 522 }
 523 
 524 
 525 //------------------------------set_next_call----------------------------------
 526 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
 527   if( next_call.test_set(n->_idx) ) return;
 528   for( uint i=0; i<n->len(); i++ ) {
 529     Node *m = n->in(i);
 530     if( !m ) continue;  // must see all nodes in block that precede call
 531     if( bbs[m->_idx] == this )
 532       set_next_call( m, next_call, bbs );
 533   }
 534 }
 535 
 536 //------------------------------needed_for_next_call---------------------------
 537 // Set the flag 'next_call' for each Node that is needed for the next call to
 538 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 539 // next subroutine call get priority - basically it moves things NOT needed
 540 // for the next call till after the call.  This prevents me from trying to
 541 // carry lots of stuff live across a call.
 542 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
 543   // Find the next control-defining Node in this block
 544   Node* call = NULL;
 545   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 546     Node* m = this_call->fast_out(i);
 547     if( bbs[m->_idx] == this && // Local-block user
 548         m != this_call &&       // Not self-start node
 549         m->is_MachCall() )
 550       call = m;
 551       break;
 552   }
 553   if (call == NULL)  return;    // No next call (e.g., block end is near)
 554   // Set next-call for all inputs to this call
 555   set_next_call(call, next_call, bbs);
 556 }
 557 
 558 //------------------------------add_call_kills-------------------------------------
 559 void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 560   // Fill in the kill mask for the call
 561   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 562     if( !regs.Member(r) ) {     // Not already defined by the call
 563       // Save-on-call register?
 564       if ((save_policy[r] == 'C') ||
 565           (save_policy[r] == 'A') ||
 566           ((save_policy[r] == 'E') && exclude_soe)) {
 567         proj->_rout.Insert(r);
 568       }
 569     }
 570   }
 571 }
 572 
 573 
 574 //------------------------------sched_call-------------------------------------
 575 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
 576   RegMask regs;
 577 
 578   // Schedule all the users of the call right now.  All the users are
 579   // projection Nodes, so they must be scheduled next to the call.
 580   // Collect all the defined registers.
 581   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 582     Node* n = mcall->fast_out(i);
 583     assert( n->is_MachProj(), "" );
 584     int n_cnt = ready_cnt.at(n->_idx)-1;
 585     ready_cnt.at_put(n->_idx, n_cnt);
 586     assert( n_cnt == 0, "" );
 587     // Schedule next to call
 588     _nodes.map(node_cnt++, n);
 589     // Collect defined registers
 590     regs.OR(n->out_RegMask());
 591     // Check for scheduling the next control-definer
 592     if( n->bottom_type() == Type::CONTROL )
 593       // Warm up next pile of heuristic bits
 594       needed_for_next_call(n, next_call, bbs);
 595 
 596     // Children of projections are now all ready
 597     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 598       Node* m = n->fast_out(j); // Get user
 599       if( bbs[m->_idx] != this ) continue;
 600       if( m->is_Phi() ) continue;
 601       int m_cnt = ready_cnt.at(m->_idx)-1;
 602       ready_cnt.at_put(m->_idx, m_cnt);
 603       if( m_cnt == 0 )
 604         worklist.push(m);
 605     }
 606 
 607   }
 608 
 609   // Act as if the call defines the Frame Pointer.
 610   // Certainly the FP is alive and well after the call.
 611   regs.Insert(matcher.c_frame_pointer());
 612 
 613   // Set all registers killed and not already defined by the call.
 614   uint r_cnt = mcall->tf()->range()->cnt();
 615   int op = mcall->ideal_Opcode();
 616   MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 617   bbs.map(proj->_idx,this);
 618   _nodes.insert(node_cnt++, proj);
 619 
 620   // Select the right register save policy.
 621   const char * save_policy;
 622   switch (op) {
 623     case Op_CallRuntime:
 624     case Op_CallLeaf:
 625     case Op_CallLeafNoFP:
 626       // Calling C code so use C calling convention
 627       save_policy = matcher._c_reg_save_policy;
 628       break;
 629 
 630     case Op_CallStaticJava:
 631     case Op_CallDynamicJava:
 632       // Calling Java code so use Java calling convention
 633       save_policy = matcher._register_save_policy;
 634       break;
 635 
 636     default:
 637       ShouldNotReachHere();
 638   }
 639 
 640   // When using CallRuntime mark SOE registers as killed by the call
 641   // so values that could show up in the RegisterMap aren't live in a
 642   // callee saved register since the register wouldn't know where to
 643   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 644   // have debug info on them.  Strictly speaking this only needs to be
 645   // done for oops since idealreg2debugmask takes care of debug info
 646   // references but there no way to handle oops differently than other
 647   // pointers as far as the kill mask goes.
 648   bool exclude_soe = op == Op_CallRuntime;
 649 
 650   // If the call is a MethodHandle invoke, we need to exclude the
 651   // register which is used to save the SP value over MH invokes from
 652   // the mask.  Otherwise this register could be used for
 653   // deoptimization information.
 654   if (op == Op_CallStaticJava) {
 655     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 656     if (mcallstaticjava->_method_handle_invoke)
 657       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 658   }
 659 
 660   add_call_kills(proj, regs, save_policy, exclude_soe);
 661 
 662   return node_cnt;
 663 }
 664 
 665 
 666 //------------------------------schedule_local---------------------------------
 667 // Topological sort within a block.  Someday become a real scheduler.
 668 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
 669   // Already "sorted" are the block start Node (as the first entry), and
 670   // the block-ending Node and any trailing control projections.  We leave
 671   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 672   // Node.  Everything else gets topo-sorted.
 673 
 674 #ifndef PRODUCT
 675     if (cfg->trace_opto_pipelining()) {
 676       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
 677       for (uint i = 0;i < _nodes.size();i++) {
 678         tty->print("# ");
 679         _nodes[i]->fast_dump();
 680       }
 681       tty->print_cr("#");
 682     }
 683 #endif
 684 
 685   // RootNode is already sorted
 686   if( _nodes.size() == 1 ) return true;
 687 
 688   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 689   uint node_cnt = end_idx();
 690   uint phi_cnt = 1;
 691   uint i;
 692   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 693     Node *n = _nodes[i];
 694     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 695         (n->is_Proj()  && n->in(0) == head()) ) {
 696       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 697       _nodes.map(i,_nodes[phi_cnt]);
 698       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
 699     } else {                    // All others
 700       // Count block-local inputs to 'n'
 701       uint cnt = n->len();      // Input count
 702       uint local = 0;
 703       for( uint j=0; j<cnt; j++ ) {
 704         Node *m = n->in(j);
 705         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
 706           local++;              // One more block-local input
 707       }
 708       ready_cnt.at_put(n->_idx, local); // Count em up
 709 
 710 #ifdef ASSERT
 711       if( UseConcMarkSweepGC || UseG1GC ) {
 712         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 713           // Check the precedence edges
 714           for (uint prec = n->req(); prec < n->len(); prec++) {
 715             Node* oop_store = n->in(prec);
 716             if (oop_store != NULL) {
 717               assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
 718             }
 719           }
 720         }
 721       }
 722 #endif
 723 
 724       // A few node types require changing a required edge to a precedence edge
 725       // before allocation.
 726       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 727           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 728            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 729         // MemBarAcquire could be created without Precedent edge.
 730         // del_req() replaces the specified edge with the last input edge
 731         // and then removes the last edge. If the specified edge > number of
 732         // edges the last edge will be moved outside of the input edges array
 733         // and the edge will be lost. This is why this code should be
 734         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 735         Node *x = n->in(TypeFunc::Parms);
 736         n->del_req(TypeFunc::Parms);
 737         n->add_prec(x);
 738       }
 739     }
 740   }
 741   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
 742     ready_cnt.at_put(_nodes[i2]->_idx, 0);
 743 
 744   // All the prescheduled guys do not hold back internal nodes
 745   uint i3;
 746   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 747     Node *n = _nodes[i3];       // Get pre-scheduled
 748     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 749       Node* m = n->fast_out(j);
 750       if( cfg->_bbs[m->_idx] ==this ) { // Local-block user
 751         int m_cnt = ready_cnt.at(m->_idx)-1;
 752         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 753       }
 754     }
 755   }
 756 
 757   Node_List delay;
 758   // Make a worklist
 759   Node_List worklist;
 760   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 761     Node *m = _nodes[i4];
 762     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 763       if (m->is_iteratively_computed()) {
 764         // Push induction variable increments last to allow other uses
 765         // of the phi to be scheduled first. The select() method breaks
 766         // ties in scheduling by worklist order.
 767         delay.push(m);
 768       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 769         // Force the CreateEx to the top of the list so it's processed
 770         // first and ends up at the start of the block.
 771         worklist.insert(0, m);
 772       } else {
 773         worklist.push(m);         // Then on to worklist!
 774       }
 775     }
 776   }
 777   while (delay.size()) {
 778     Node* d = delay.pop();
 779     worklist.push(d);
 780   }
 781 
 782   // Warm up the 'next_call' heuristic bits
 783   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
 784 
 785 #ifndef PRODUCT
 786     if (cfg->trace_opto_pipelining()) {
 787       for (uint j=0; j<_nodes.size(); j++) {
 788         Node     *n = _nodes[j];
 789         int     idx = n->_idx;
 790         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
 791         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
 792         tty->print("%4d: %s\n", idx, n->Name());
 793       }
 794     }
 795 #endif
 796 
 797   uint max_idx = (uint)ready_cnt.length();
 798   // Pull from worklist and schedule
 799   while( worklist.size() ) {    // Worklist is not ready
 800 
 801 #ifndef PRODUCT
 802     if (cfg->trace_opto_pipelining()) {
 803       tty->print("#   ready list:");
 804       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 805         Node *n = worklist[i];      // Get Node on worklist
 806         tty->print(" %d", n->_idx);
 807       }
 808       tty->cr();
 809     }
 810 #endif
 811 
 812     // Select and pop a ready guy from worklist
 813     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
 814     _nodes.map(phi_cnt++,n);    // Schedule him next
 815 
 816 #ifndef PRODUCT
 817     if (cfg->trace_opto_pipelining()) {
 818       tty->print("#    select %d: %s", n->_idx, n->Name());
 819       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
 820       n->dump();
 821       if (Verbose) {
 822         tty->print("#   ready list:");
 823         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 824           Node *n = worklist[i];      // Get Node on worklist
 825           tty->print(" %d", n->_idx);
 826         }
 827         tty->cr();
 828       }
 829     }
 830 
 831 #endif
 832     if( n->is_MachCall() ) {
 833       MachCallNode *mcall = n->as_MachCall();
 834       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
 835       continue;
 836     }
 837 
 838     if (n->is_Mach() && n->as_Mach()->has_call()) {
 839       RegMask regs;
 840       regs.Insert(matcher.c_frame_pointer());
 841       regs.OR(n->out_RegMask());
 842 
 843       MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
 844       cfg->_bbs.map(proj->_idx,this);
 845       _nodes.insert(phi_cnt++, proj);
 846 
 847       add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
 848     }
 849 
 850     // Children are now all ready
 851     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 852       Node* m = n->fast_out(i5); // Get user
 853       if( cfg->_bbs[m->_idx] != this ) continue;
 854       if( m->is_Phi() ) continue;
 855       if (m->_idx >= max_idx) { // new node, skip it
 856         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 857         continue;
 858       }
 859       int m_cnt = ready_cnt.at(m->_idx)-1;
 860       ready_cnt.at_put(m->_idx, m_cnt);
 861       if( m_cnt == 0 )
 862         worklist.push(m);
 863     }
 864   }
 865 
 866   if( phi_cnt != end_idx() ) {
 867     // did not schedule all.  Retry, Bailout, or Die
 868     Compile* C = matcher.C;
 869     if (C->subsume_loads() == true && !C->failing()) {
 870       // Retry with subsume_loads == false
 871       // If this is the first failure, the sentinel string will "stick"
 872       // to the Compile object, and the C2Compiler will see it and retry.
 873       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 874     }
 875     // assert( phi_cnt == end_idx(), "did not schedule all" );
 876     return false;
 877   }
 878 
 879 #ifndef PRODUCT
 880   if (cfg->trace_opto_pipelining()) {
 881     tty->print_cr("#");
 882     tty->print_cr("# after schedule_local");
 883     for (uint i = 0;i < _nodes.size();i++) {
 884       tty->print("# ");
 885       _nodes[i]->fast_dump();
 886     }
 887     tty->cr();
 888   }
 889 #endif
 890 
 891 
 892   return true;
 893 }
 894 
 895 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 896 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 897   for (uint l = 0; l < use->len(); l++) {
 898     if (use->in(l) == old_def) {
 899       if (l < use->req()) {
 900         use->set_req(l, new_def);
 901       } else {
 902         use->rm_prec(l);
 903         use->add_prec(new_def);
 904         l--;
 905       }
 906     }
 907   }
 908 }
 909 
 910 //------------------------------catch_cleanup_find_cloned_def------------------
 911 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
 912   assert( use_blk != def_blk, "Inter-block cleanup only");
 913 
 914   // The use is some block below the Catch.  Find and return the clone of the def
 915   // that dominates the use. If there is no clone in a dominating block, then
 916   // create a phi for the def in a dominating block.
 917 
 918   // Find which successor block dominates this use.  The successor
 919   // blocks must all be single-entry (from the Catch only; I will have
 920   // split blocks to make this so), hence they all dominate.
 921   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 922     use_blk = use_blk->_idom;
 923 
 924   // Find the successor
 925   Node *fixup = NULL;
 926 
 927   uint j;
 928   for( j = 0; j < def_blk->_num_succs; j++ )
 929     if( use_blk == def_blk->_succs[j] )
 930       break;
 931 
 932   if( j == def_blk->_num_succs ) {
 933     // Block at same level in dom-tree is not a successor.  It needs a
 934     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 935     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 936     for(uint k = 1; k < use_blk->num_preds(); k++) {
 937       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
 938     }
 939 
 940     // Check to see if the use_blk already has an identical phi inserted.
 941     // If it exists, it will be at the first position since all uses of a
 942     // def are processed together.
 943     Node *phi = use_blk->_nodes[1];
 944     if( phi->is_Phi() ) {
 945       fixup = phi;
 946       for (uint k = 1; k < use_blk->num_preds(); k++) {
 947         if (phi->in(k) != inputs[k]) {
 948           // Not a match
 949           fixup = NULL;
 950           break;
 951         }
 952       }
 953     }
 954 
 955     // If an existing PhiNode was not found, make a new one.
 956     if (fixup == NULL) {
 957       Node *new_phi = PhiNode::make(use_blk->head(), def);
 958       use_blk->_nodes.insert(1, new_phi);
 959       bbs.map(new_phi->_idx, use_blk);
 960       for (uint k = 1; k < use_blk->num_preds(); k++) {
 961         new_phi->set_req(k, inputs[k]);
 962       }
 963       fixup = new_phi;
 964     }
 965 
 966   } else {
 967     // Found the use just below the Catch.  Make it use the clone.
 968     fixup = use_blk->_nodes[n_clone_idx];
 969   }
 970 
 971   return fixup;
 972 }
 973 
 974 //--------------------------catch_cleanup_intra_block--------------------------
 975 // Fix all input edges in use that reference "def".  The use is in the same
 976 // block as the def and both have been cloned in each successor block.
 977 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
 978 
 979   // Both the use and def have been cloned. For each successor block,
 980   // get the clone of the use, and make its input the clone of the def
 981   // found in that block.
 982 
 983   uint use_idx = blk->find_node(use);
 984   uint offset_idx = use_idx - beg;
 985   for( uint k = 0; k < blk->_num_succs; k++ ) {
 986     // Get clone in each successor block
 987     Block *sb = blk->_succs[k];
 988     Node *clone = sb->_nodes[offset_idx+1];
 989     assert( clone->Opcode() == use->Opcode(), "" );
 990 
 991     // Make use-clone reference the def-clone
 992     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
 993   }
 994 }
 995 
 996 //------------------------------catch_cleanup_inter_block---------------------
 997 // Fix all input edges in use that reference "def".  The use is in a different
 998 // block than the def.
 999 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
1000   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1001 
1002   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
1003   catch_cleanup_fix_all_inputs(use, def, new_def);
1004 }
1005 
1006 //------------------------------call_catch_cleanup-----------------------------
1007 // If we inserted any instructions between a Call and his CatchNode,
1008 // clone the instructions on all paths below the Catch.
1009 void Block::call_catch_cleanup(Block_Array &bbs) {
1010 
1011   // End of region to clone
1012   uint end = end_idx();
1013   if( !_nodes[end]->is_Catch() ) return;
1014   // Start of region to clone
1015   uint beg = end;
1016   while(!_nodes[beg-1]->is_MachProj() ||
1017         !_nodes[beg-1]->in(0)->is_MachCall() ) {
1018     beg--;
1019     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1020   }
1021   // Range of inserted instructions is [beg, end)
1022   if( beg == end ) return;
1023 
1024   // Clone along all Catch output paths.  Clone area between the 'beg' and
1025   // 'end' indices.
1026   for( uint i = 0; i < _num_succs; i++ ) {
1027     Block *sb = _succs[i];
1028     // Clone the entire area; ignoring the edge fixup for now.
1029     for( uint j = end; j > beg; j-- ) {
1030       // It is safe here to clone a node with anti_dependence
1031       // since clones dominate on each path.
1032       Node *clone = _nodes[j-1]->clone();
1033       sb->_nodes.insert( 1, clone );
1034       bbs.map(clone->_idx,sb);
1035     }
1036   }
1037 
1038 
1039   // Fixup edges.  Check the def-use info per cloned Node
1040   for(uint i2 = beg; i2 < end; i2++ ) {
1041     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1042     Node *n = _nodes[i2];        // Node that got cloned
1043     // Need DU safe iterator because of edge manipulation in calls.
1044     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1045     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1046       out->push(n->fast_out(j1));
1047     }
1048     uint max = out->size();
1049     for (uint j = 0; j < max; j++) {// For all users
1050       Node *use = out->pop();
1051       Block *buse = bbs[use->_idx];
1052       if( use->is_Phi() ) {
1053         for( uint k = 1; k < use->req(); k++ )
1054           if( use->in(k) == n ) {
1055             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
1056             use->set_req(k, fixup);
1057           }
1058       } else {
1059         if (this == buse) {
1060           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
1061         } else {
1062           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
1063         }
1064       }
1065     } // End for all users
1066 
1067   } // End of for all Nodes in cloned area
1068 
1069   // Remove the now-dead cloned ops
1070   for(uint i3 = beg; i3 < end; i3++ ) {
1071     _nodes[beg]->disconnect_inputs(NULL);
1072     _nodes.remove(beg);
1073   }
1074 
1075   // If the successor blocks have a CreateEx node, move it back to the top
1076   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
1077     Block *sb = _succs[i4];
1078     uint new_cnt = end - beg;
1079     // Remove any newly created, but dead, nodes.
1080     for( uint j = new_cnt; j > 0; j-- ) {
1081       Node *n = sb->_nodes[j];
1082       if (n->outcnt() == 0 &&
1083           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1084         n->disconnect_inputs(NULL);
1085         sb->_nodes.remove(j);
1086         new_cnt--;
1087       }
1088     }
1089     // If any newly created nodes remain, move the CreateEx node to the top
1090     if (new_cnt > 0) {
1091       Node *cex = sb->_nodes[1+new_cnt];
1092       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1093         sb->_nodes.remove(1+new_cnt);
1094         sb->_nodes.insert(1,cex);
1095       }
1096     }
1097   }
1098 }