1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/type.hpp"
  38 #include "runtime/atomic.hpp"
  39 #include "runtime/os.hpp"
  40 #ifdef TARGET_ARCH_MODEL_x86_32
  41 # include "adfiles/ad_x86_32.hpp"
  42 #endif
  43 #ifdef TARGET_ARCH_MODEL_x86_64
  44 # include "adfiles/ad_x86_64.hpp"
  45 #endif
  46 #ifdef TARGET_ARCH_MODEL_sparc
  47 # include "adfiles/ad_sparc.hpp"
  48 #endif
  49 #ifdef TARGET_ARCH_MODEL_zero
  50 # include "adfiles/ad_zero.hpp"
  51 #endif
  52 #ifdef TARGET_ARCH_MODEL_arm
  53 # include "adfiles/ad_arm.hpp"
  54 #endif
  55 #ifdef TARGET_ARCH_MODEL_ppc
  56 # include "adfiles/ad_ppc.hpp"
  57 #endif
  58 
  59 OptoReg::Name OptoReg::c_frame_pointer;
  60 
  61 
  62 
  63 const int Matcher::base2reg[Type::lastype] = {
  64   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  65   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  66   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  67   0, 0/*abio*/,
  68   Op_RegP /* Return address */, 0, /* the memories */
  69   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  70   0  /*bottom*/
  71 };
  72 
  73 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  74 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  75 RegMask Matcher::STACK_ONLY_mask;
  76 RegMask Matcher::c_frame_ptr_mask;
  77 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  78 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  79 
  80 //---------------------------Matcher-------------------------------------------
  81 Matcher::Matcher( Node_List &proj_list ) :
  82   PhaseTransform( Phase::Ins_Select ),
  83 #ifdef ASSERT
  84   _old2new_map(C->comp_arena()),
  85   _new2old_map(C->comp_arena()),
  86 #endif
  87   _shared_nodes(C->comp_arena()),
  88   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  89   _swallowed(swallowed),
  90   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  91   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  92   _must_clone(must_clone), _proj_list(proj_list),
  93   _register_save_policy(register_save_policy),
  94   _c_reg_save_policy(c_reg_save_policy),
  95   _register_save_type(register_save_type),
  96   _ruleName(ruleName),
  97   _allocation_started(false),
  98   _states_arena(Chunk::medium_size),
  99   _visited(&_states_arena),
 100   _shared(&_states_arena),
 101   _dontcare(&_states_arena) {
 102   C->set_matcher(this);
 103 
 104   idealreg2spillmask  [Op_RegI] = NULL;
 105   idealreg2spillmask  [Op_RegN] = NULL;
 106   idealreg2spillmask  [Op_RegL] = NULL;
 107   idealreg2spillmask  [Op_RegF] = NULL;
 108   idealreg2spillmask  [Op_RegD] = NULL;
 109   idealreg2spillmask  [Op_RegP] = NULL;
 110 
 111   idealreg2debugmask  [Op_RegI] = NULL;
 112   idealreg2debugmask  [Op_RegN] = NULL;
 113   idealreg2debugmask  [Op_RegL] = NULL;
 114   idealreg2debugmask  [Op_RegF] = NULL;
 115   idealreg2debugmask  [Op_RegD] = NULL;
 116   idealreg2debugmask  [Op_RegP] = NULL;
 117 
 118   idealreg2mhdebugmask[Op_RegI] = NULL;
 119   idealreg2mhdebugmask[Op_RegN] = NULL;
 120   idealreg2mhdebugmask[Op_RegL] = NULL;
 121   idealreg2mhdebugmask[Op_RegF] = NULL;
 122   idealreg2mhdebugmask[Op_RegD] = NULL;
 123   idealreg2mhdebugmask[Op_RegP] = NULL;
 124 
 125   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 126 }
 127 
 128 //------------------------------warp_incoming_stk_arg------------------------
 129 // This warps a VMReg into an OptoReg::Name
 130 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 131   OptoReg::Name warped;
 132   if( reg->is_stack() ) {  // Stack slot argument?
 133     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 134     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 135     if( warped >= _in_arg_limit )
 136       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 137     if (!RegMask::can_represent(warped)) {
 138       // the compiler cannot represent this method's calling sequence
 139       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 140       return OptoReg::Bad;
 141     }
 142     return warped;
 143   }
 144   return OptoReg::as_OptoReg(reg);
 145 }
 146 
 147 //---------------------------compute_old_SP------------------------------------
 148 OptoReg::Name Compile::compute_old_SP() {
 149   int fixed    = fixed_slots();
 150   int preserve = in_preserve_stack_slots();
 151   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 152 }
 153 
 154 
 155 
 156 #ifdef ASSERT
 157 void Matcher::verify_new_nodes_only(Node* xroot) {
 158   // Make sure that the new graph only references new nodes
 159   ResourceMark rm;
 160   Unique_Node_List worklist;
 161   VectorSet visited(Thread::current()->resource_area());
 162   worklist.push(xroot);
 163   while (worklist.size() > 0) {
 164     Node* n = worklist.pop();
 165     visited <<= n->_idx;
 166     assert(C->node_arena()->contains(n), "dead node");
 167     for (uint j = 0; j < n->req(); j++) {
 168       Node* in = n->in(j);
 169       if (in != NULL) {
 170         assert(C->node_arena()->contains(in), "dead node");
 171         if (!visited.test(in->_idx)) {
 172           worklist.push(in);
 173         }
 174       }
 175     }
 176   }
 177 }
 178 #endif
 179 
 180 
 181 //---------------------------match---------------------------------------------
 182 void Matcher::match( ) {
 183   if( MaxLabelRootDepth < 100 ) { // Too small?
 184     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 185     MaxLabelRootDepth = 100;
 186   }
 187   // One-time initialization of some register masks.
 188   init_spill_mask( C->root()->in(1) );
 189   _return_addr_mask = return_addr();
 190 #ifdef _LP64
 191   // Pointers take 2 slots in 64-bit land
 192   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 193 #endif
 194 
 195   // Map a Java-signature return type into return register-value
 196   // machine registers for 0, 1 and 2 returned values.
 197   const TypeTuple *range = C->tf()->range();
 198   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 199     // Get ideal-register return type
 200     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
 201     // Get machine return register
 202     uint sop = C->start()->Opcode();
 203     OptoRegPair regs = return_value(ireg, false);
 204 
 205     // And mask for same
 206     _return_value_mask = RegMask(regs.first());
 207     if( OptoReg::is_valid(regs.second()) )
 208       _return_value_mask.Insert(regs.second());
 209   }
 210 
 211   // ---------------
 212   // Frame Layout
 213 
 214   // Need the method signature to determine the incoming argument types,
 215   // because the types determine which registers the incoming arguments are
 216   // in, and this affects the matched code.
 217   const TypeTuple *domain = C->tf()->domain();
 218   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 219   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 220   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 221   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 222   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 223   uint i;
 224   for( i = 0; i<argcnt; i++ ) {
 225     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 226   }
 227 
 228   // Pass array of ideal registers and length to USER code (from the AD file)
 229   // that will convert this to an array of register numbers.
 230   const StartNode *start = C->start();
 231   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 232 #ifdef ASSERT
 233   // Sanity check users' calling convention.  Real handy while trying to
 234   // get the initial port correct.
 235   { for (uint i = 0; i<argcnt; i++) {
 236       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 237         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 238         _parm_regs[i].set_bad();
 239         continue;
 240       }
 241       VMReg parm_reg = vm_parm_regs[i].first();
 242       assert(parm_reg->is_valid(), "invalid arg?");
 243       if (parm_reg->is_reg()) {
 244         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 245         assert(can_be_java_arg(opto_parm_reg) ||
 246                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 247                opto_parm_reg == inline_cache_reg(),
 248                "parameters in register must be preserved by runtime stubs");
 249       }
 250       for (uint j = 0; j < i; j++) {
 251         assert(parm_reg != vm_parm_regs[j].first(),
 252                "calling conv. must produce distinct regs");
 253       }
 254     }
 255   }
 256 #endif
 257 
 258   // Do some initial frame layout.
 259 
 260   // Compute the old incoming SP (may be called FP) as
 261   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 262   _old_SP = C->compute_old_SP();
 263   assert( is_even(_old_SP), "must be even" );
 264 
 265   // Compute highest incoming stack argument as
 266   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 267   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 268   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 269   for( i = 0; i < argcnt; i++ ) {
 270     // Permit args to have no register
 271     _calling_convention_mask[i].Clear();
 272     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 273       continue;
 274     }
 275     // calling_convention returns stack arguments as a count of
 276     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 277     // the allocators point of view, taking into account all the
 278     // preserve area, locks & pad2.
 279 
 280     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 281     if( OptoReg::is_valid(reg1))
 282       _calling_convention_mask[i].Insert(reg1);
 283 
 284     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 285     if( OptoReg::is_valid(reg2))
 286       _calling_convention_mask[i].Insert(reg2);
 287 
 288     // Saved biased stack-slot register number
 289     _parm_regs[i].set_pair(reg2, reg1);
 290   }
 291 
 292   // Finally, make sure the incoming arguments take up an even number of
 293   // words, in case the arguments or locals need to contain doubleword stack
 294   // slots.  The rest of the system assumes that stack slot pairs (in
 295   // particular, in the spill area) which look aligned will in fact be
 296   // aligned relative to the stack pointer in the target machine.  Double
 297   // stack slots will always be allocated aligned.
 298   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 299 
 300   // Compute highest outgoing stack argument as
 301   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 302   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 303   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 304 
 305   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
 306     // the compiler cannot represent this method's calling sequence
 307     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 308   }
 309 
 310   if (C->failing())  return;  // bailed out on incoming arg failure
 311 
 312   // ---------------
 313   // Collect roots of matcher trees.  Every node for which
 314   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 315   // can be a valid interior of some tree.
 316   find_shared( C->root() );
 317   find_shared( C->top() );
 318 
 319   C->print_method("Before Matching");
 320 
 321   // Create new ideal node ConP #NULL even if it does exist in old space
 322   // to avoid false sharing if the corresponding mach node is not used.
 323   // The corresponding mach node is only used in rare cases for derived
 324   // pointers.
 325   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 326 
 327   // Swap out to old-space; emptying new-space
 328   Arena *old = C->node_arena()->move_contents(C->old_arena());
 329 
 330   // Save debug and profile information for nodes in old space:
 331   _old_node_note_array = C->node_note_array();
 332   if (_old_node_note_array != NULL) {
 333     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 334                            (C->comp_arena(), _old_node_note_array->length(),
 335                             0, NULL));
 336   }
 337 
 338   // Pre-size the new_node table to avoid the need for range checks.
 339   grow_new_node_array(C->unique());
 340 
 341   // Reset node counter so MachNodes start with _idx at 0
 342   int nodes = C->unique(); // save value
 343   C->set_unique(0);
 344 
 345   // Recursively match trees from old space into new space.
 346   // Correct leaves of new-space Nodes; they point to old-space.
 347   _visited.Clear();             // Clear visit bits for xform call
 348   C->set_cached_top_node(xform( C->top(), nodes ));
 349   if (!C->failing()) {
 350     Node* xroot =        xform( C->root(), 1 );
 351     if (xroot == NULL) {
 352       Matcher::soft_match_failure();  // recursive matching process failed
 353       C->record_method_not_compilable("instruction match failed");
 354     } else {
 355       // During matching shared constants were attached to C->root()
 356       // because xroot wasn't available yet, so transfer the uses to
 357       // the xroot.
 358       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 359         Node* n = C->root()->fast_out(j);
 360         if (C->node_arena()->contains(n)) {
 361           assert(n->in(0) == C->root(), "should be control user");
 362           n->set_req(0, xroot);
 363           --j;
 364           --jmax;
 365         }
 366       }
 367 
 368       // Generate new mach node for ConP #NULL
 369       assert(new_ideal_null != NULL, "sanity");
 370       _mach_null = match_tree(new_ideal_null);
 371       // Don't set control, it will confuse GCM since there are no uses.
 372       // The control will be set when this node is used first time
 373       // in find_base_for_derived().
 374       assert(_mach_null != NULL, "");
 375 
 376       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 377 
 378 #ifdef ASSERT
 379       verify_new_nodes_only(xroot);
 380 #endif
 381     }
 382   }
 383   if (C->top() == NULL || C->root() == NULL) {
 384     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 385   }
 386   if (C->failing()) {
 387     // delete old;
 388     old->destruct_contents();
 389     return;
 390   }
 391   assert( C->top(), "" );
 392   assert( C->root(), "" );
 393   validate_null_checks();
 394 
 395   // Now smoke old-space
 396   NOT_DEBUG( old->destruct_contents() );
 397 
 398   // ------------------------
 399   // Set up save-on-entry registers
 400   Fixup_Save_On_Entry( );
 401 }
 402 
 403 
 404 //------------------------------Fixup_Save_On_Entry----------------------------
 405 // The stated purpose of this routine is to take care of save-on-entry
 406 // registers.  However, the overall goal of the Match phase is to convert into
 407 // machine-specific instructions which have RegMasks to guide allocation.
 408 // So what this procedure really does is put a valid RegMask on each input
 409 // to the machine-specific variations of all Return, TailCall and Halt
 410 // instructions.  It also adds edgs to define the save-on-entry values (and of
 411 // course gives them a mask).
 412 
 413 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 414   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 415   // Do all the pre-defined register masks
 416   rms[TypeFunc::Control  ] = RegMask::Empty;
 417   rms[TypeFunc::I_O      ] = RegMask::Empty;
 418   rms[TypeFunc::Memory   ] = RegMask::Empty;
 419   rms[TypeFunc::ReturnAdr] = ret_adr;
 420   rms[TypeFunc::FramePtr ] = fp;
 421   return rms;
 422 }
 423 
 424 //---------------------------init_first_stack_mask-----------------------------
 425 // Create the initial stack mask used by values spilling to the stack.
 426 // Disallow any debug info in outgoing argument areas by setting the
 427 // initial mask accordingly.
 428 void Matcher::init_first_stack_mask() {
 429 
 430   // Allocate storage for spill masks as masks for the appropriate load type.
 431   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
 432 
 433   idealreg2spillmask  [Op_RegN] = &rms[0];
 434   idealreg2spillmask  [Op_RegI] = &rms[1];
 435   idealreg2spillmask  [Op_RegL] = &rms[2];
 436   idealreg2spillmask  [Op_RegF] = &rms[3];
 437   idealreg2spillmask  [Op_RegD] = &rms[4];
 438   idealreg2spillmask  [Op_RegP] = &rms[5];
 439 
 440   idealreg2debugmask  [Op_RegN] = &rms[6];
 441   idealreg2debugmask  [Op_RegI] = &rms[7];
 442   idealreg2debugmask  [Op_RegL] = &rms[8];
 443   idealreg2debugmask  [Op_RegF] = &rms[9];
 444   idealreg2debugmask  [Op_RegD] = &rms[10];
 445   idealreg2debugmask  [Op_RegP] = &rms[11];
 446 
 447   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 448   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 449   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 450   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 451   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 452   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 453 
 454   OptoReg::Name i;
 455 
 456   // At first, start with the empty mask
 457   C->FIRST_STACK_mask().Clear();
 458 
 459   // Add in the incoming argument area
 460   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 461   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 462     C->FIRST_STACK_mask().Insert(i);
 463 
 464   // Add in all bits past the outgoing argument area
 465   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
 466             "must be able to represent all call arguments in reg mask");
 467   init = _out_arg_limit;
 468   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 469     C->FIRST_STACK_mask().Insert(i);
 470 
 471   // Finally, set the "infinite stack" bit.
 472   C->FIRST_STACK_mask().set_AllStack();
 473 
 474   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 475 #ifdef _LP64
 476   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 477    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 478 #endif
 479   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 480    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 481   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 482    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
 483   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 484    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 485   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 486    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
 487   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 488    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 489 
 490    if (UseFPUForSpilling) {
 491      // This mask logic assumes that the spill operations are
 492      // symmetric and that the registers involved are the same size.
 493      // On sparc for instance we may have to use 64 bit moves will
 494      // kill 2 registers when used with F0-F31.
 495      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 496      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 497 #ifdef _LP64
 498      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 499      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 500      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 501      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 502 #else
 503      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 504 #endif
 505    }
 506 
 507   // Make up debug masks.  Any spill slot plus callee-save registers.
 508   // Caller-save registers are assumed to be trashable by the various
 509   // inline-cache fixup routines.
 510   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 511   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 512   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 513   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 514   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 515   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 516 
 517   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 518   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 519   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 520   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 521   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 522   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 523 
 524   // Prevent stub compilations from attempting to reference
 525   // callee-saved registers from debug info
 526   bool exclude_soe = !Compile::current()->is_method_compilation();
 527 
 528   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 529     // registers the caller has to save do not work
 530     if( _register_save_policy[i] == 'C' ||
 531         _register_save_policy[i] == 'A' ||
 532         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 533       idealreg2debugmask  [Op_RegN]->Remove(i);
 534       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 535       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 536       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 537       idealreg2debugmask  [Op_RegD]->Remove(i);
 538       idealreg2debugmask  [Op_RegP]->Remove(i);
 539 
 540       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 541       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 542       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 543       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 544       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 545       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 546     }
 547   }
 548 
 549   // Subtract the register we use to save the SP for MethodHandle
 550   // invokes to from the debug mask.
 551   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 552   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 553   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 554   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 555   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 556   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 557   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 558 }
 559 
 560 //---------------------------is_save_on_entry----------------------------------
 561 bool Matcher::is_save_on_entry( int reg ) {
 562   return
 563     _register_save_policy[reg] == 'E' ||
 564     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 565     // Also save argument registers in the trampolining stubs
 566     (C->save_argument_registers() && is_spillable_arg(reg));
 567 }
 568 
 569 //---------------------------Fixup_Save_On_Entry-------------------------------
 570 void Matcher::Fixup_Save_On_Entry( ) {
 571   init_first_stack_mask();
 572 
 573   Node *root = C->root();       // Short name for root
 574   // Count number of save-on-entry registers.
 575   uint soe_cnt = number_of_saved_registers();
 576   uint i;
 577 
 578   // Find the procedure Start Node
 579   StartNode *start = C->start();
 580   assert( start, "Expect a start node" );
 581 
 582   // Save argument registers in the trampolining stubs
 583   if( C->save_argument_registers() )
 584     for( i = 0; i < _last_Mach_Reg; i++ )
 585       if( is_spillable_arg(i) )
 586         soe_cnt++;
 587 
 588   // Input RegMask array shared by all Returns.
 589   // The type for doubles and longs has a count of 2, but
 590   // there is only 1 returned value
 591   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 592   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 593   // Returns have 0 or 1 returned values depending on call signature.
 594   // Return register is specified by return_value in the AD file.
 595   if (ret_edge_cnt > TypeFunc::Parms)
 596     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 597 
 598   // Input RegMask array shared by all Rethrows.
 599   uint reth_edge_cnt = TypeFunc::Parms+1;
 600   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 601   // Rethrow takes exception oop only, but in the argument 0 slot.
 602   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 603 #ifdef _LP64
 604   // Need two slots for ptrs in 64-bit land
 605   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 606 #endif
 607 
 608   // Input RegMask array shared by all TailCalls
 609   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 610   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 611 
 612   // Input RegMask array shared by all TailJumps
 613   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 614   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 615 
 616   // TailCalls have 2 returned values (target & moop), whose masks come
 617   // from the usual MachNode/MachOper mechanism.  Find a sample
 618   // TailCall to extract these masks and put the correct masks into
 619   // the tail_call_rms array.
 620   for( i=1; i < root->req(); i++ ) {
 621     MachReturnNode *m = root->in(i)->as_MachReturn();
 622     if( m->ideal_Opcode() == Op_TailCall ) {
 623       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 624       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 625       break;
 626     }
 627   }
 628 
 629   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 630   // from the usual MachNode/MachOper mechanism.  Find a sample
 631   // TailJump to extract these masks and put the correct masks into
 632   // the tail_jump_rms array.
 633   for( i=1; i < root->req(); i++ ) {
 634     MachReturnNode *m = root->in(i)->as_MachReturn();
 635     if( m->ideal_Opcode() == Op_TailJump ) {
 636       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 637       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 638       break;
 639     }
 640   }
 641 
 642   // Input RegMask array shared by all Halts
 643   uint halt_edge_cnt = TypeFunc::Parms;
 644   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 645 
 646   // Capture the return input masks into each exit flavor
 647   for( i=1; i < root->req(); i++ ) {
 648     MachReturnNode *exit = root->in(i)->as_MachReturn();
 649     switch( exit->ideal_Opcode() ) {
 650       case Op_Return   : exit->_in_rms = ret_rms;  break;
 651       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 652       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 653       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 654       case Op_Halt     : exit->_in_rms = halt_rms; break;
 655       default          : ShouldNotReachHere();
 656     }
 657   }
 658 
 659   // Next unused projection number from Start.
 660   int proj_cnt = C->tf()->domain()->cnt();
 661 
 662   // Do all the save-on-entry registers.  Make projections from Start for
 663   // them, and give them a use at the exit points.  To the allocator, they
 664   // look like incoming register arguments.
 665   for( i = 0; i < _last_Mach_Reg; i++ ) {
 666     if( is_save_on_entry(i) ) {
 667 
 668       // Add the save-on-entry to the mask array
 669       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 670       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 671       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 672       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 673       // Halts need the SOE registers, but only in the stack as debug info.
 674       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 675       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 676 
 677       Node *mproj;
 678 
 679       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 680       // into a single RegD.
 681       if( (i&1) == 0 &&
 682           _register_save_type[i  ] == Op_RegF &&
 683           _register_save_type[i+1] == Op_RegF &&
 684           is_save_on_entry(i+1) ) {
 685         // Add other bit for double
 686         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 687         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 688         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 689         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 690         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 691         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 692         proj_cnt += 2;          // Skip 2 for doubles
 693       }
 694       else if( (i&1) == 1 &&    // Else check for high half of double
 695                _register_save_type[i-1] == Op_RegF &&
 696                _register_save_type[i  ] == Op_RegF &&
 697                is_save_on_entry(i-1) ) {
 698         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 699         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 700         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 701         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 702         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 703         mproj = C->top();
 704       }
 705       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 706       // into a single RegL.
 707       else if( (i&1) == 0 &&
 708           _register_save_type[i  ] == Op_RegI &&
 709           _register_save_type[i+1] == Op_RegI &&
 710         is_save_on_entry(i+1) ) {
 711         // Add other bit for long
 712         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 713         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 714         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 715         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 716         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 717         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 718         proj_cnt += 2;          // Skip 2 for longs
 719       }
 720       else if( (i&1) == 1 &&    // Else check for high half of long
 721                _register_save_type[i-1] == Op_RegI &&
 722                _register_save_type[i  ] == Op_RegI &&
 723                is_save_on_entry(i-1) ) {
 724         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 725         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 726         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 727         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 728         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 729         mproj = C->top();
 730       } else {
 731         // Make a projection for it off the Start
 732         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 733       }
 734 
 735       ret_edge_cnt ++;
 736       reth_edge_cnt ++;
 737       tail_call_edge_cnt ++;
 738       tail_jump_edge_cnt ++;
 739       halt_edge_cnt ++;
 740 
 741       // Add a use of the SOE register to all exit paths
 742       for( uint j=1; j < root->req(); j++ )
 743         root->in(j)->add_req(mproj);
 744     } // End of if a save-on-entry register
 745   } // End of for all machine registers
 746 }
 747 
 748 //------------------------------init_spill_mask--------------------------------
 749 void Matcher::init_spill_mask( Node *ret ) {
 750   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 751 
 752   OptoReg::c_frame_pointer = c_frame_pointer();
 753   c_frame_ptr_mask = c_frame_pointer();
 754 #ifdef _LP64
 755   // pointers are twice as big
 756   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 757 #endif
 758 
 759   // Start at OptoReg::stack0()
 760   STACK_ONLY_mask.Clear();
 761   OptoReg::Name init = OptoReg::stack2reg(0);
 762   // STACK_ONLY_mask is all stack bits
 763   OptoReg::Name i;
 764   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 765     STACK_ONLY_mask.Insert(i);
 766   // Also set the "infinite stack" bit.
 767   STACK_ONLY_mask.set_AllStack();
 768 
 769   // Copy the register names over into the shared world
 770   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 771     // SharedInfo::regName[i] = regName[i];
 772     // Handy RegMasks per machine register
 773     mreg2regmask[i].Insert(i);
 774   }
 775 
 776   // Grab the Frame Pointer
 777   Node *fp  = ret->in(TypeFunc::FramePtr);
 778   Node *mem = ret->in(TypeFunc::Memory);
 779   const TypePtr* atp = TypePtr::BOTTOM;
 780   // Share frame pointer while making spill ops
 781   set_shared(fp);
 782 
 783   // Compute generic short-offset Loads
 784 #ifdef _LP64
 785   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 786 #endif
 787   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
 788   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
 789   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
 790   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
 791   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 792   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 793          spillD != NULL && spillP != NULL, "");
 794 
 795   // Get the ADLC notion of the right regmask, for each basic type.
 796 #ifdef _LP64
 797   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 798 #endif
 799   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 800   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 801   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 802   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 803   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 804 }
 805 
 806 #ifdef ASSERT
 807 static void match_alias_type(Compile* C, Node* n, Node* m) {
 808   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 809   const TypePtr* nat = n->adr_type();
 810   const TypePtr* mat = m->adr_type();
 811   int nidx = C->get_alias_index(nat);
 812   int midx = C->get_alias_index(mat);
 813   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 814   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 815     for (uint i = 1; i < n->req(); i++) {
 816       Node* n1 = n->in(i);
 817       const TypePtr* n1at = n1->adr_type();
 818       if (n1at != NULL) {
 819         nat = n1at;
 820         nidx = C->get_alias_index(n1at);
 821       }
 822     }
 823   }
 824   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 825   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 826     switch (n->Opcode()) {
 827     case Op_PrefetchRead:
 828     case Op_PrefetchWrite:
 829     case Op_PrefetchAllocation:
 830       nidx = Compile::AliasIdxRaw;
 831       nat = TypeRawPtr::BOTTOM;
 832       break;
 833     }
 834   }
 835   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 836     switch (n->Opcode()) {
 837     case Op_ClearArray:
 838       midx = Compile::AliasIdxRaw;
 839       mat = TypeRawPtr::BOTTOM;
 840       break;
 841     }
 842   }
 843   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 844     switch (n->Opcode()) {
 845     case Op_Return:
 846     case Op_Rethrow:
 847     case Op_Halt:
 848     case Op_TailCall:
 849     case Op_TailJump:
 850       nidx = Compile::AliasIdxBot;
 851       nat = TypePtr::BOTTOM;
 852       break;
 853     }
 854   }
 855   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 856     switch (n->Opcode()) {
 857     case Op_StrComp:
 858     case Op_StrEquals:
 859     case Op_StrIndexOf:
 860     case Op_AryEq:
 861     case Op_MemBarVolatile:
 862     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 863       nidx = Compile::AliasIdxTop;
 864       nat = NULL;
 865       break;
 866     }
 867   }
 868   if (nidx != midx) {
 869     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 870       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 871       n->dump();
 872       m->dump();
 873     }
 874     assert(C->subsume_loads() && C->must_alias(nat, midx),
 875            "must not lose alias info when matching");
 876   }
 877 }
 878 #endif
 879 
 880 
 881 //------------------------------MStack-----------------------------------------
 882 // State and MStack class used in xform() and find_shared() iterative methods.
 883 enum Node_State { Pre_Visit,  // node has to be pre-visited
 884                       Visit,  // visit node
 885                  Post_Visit,  // post-visit node
 886              Alt_Post_Visit   // alternative post-visit path
 887                 };
 888 
 889 class MStack: public Node_Stack {
 890   public:
 891     MStack(int size) : Node_Stack(size) { }
 892 
 893     void push(Node *n, Node_State ns) {
 894       Node_Stack::push(n, (uint)ns);
 895     }
 896     void push(Node *n, Node_State ns, Node *parent, int indx) {
 897       ++_inode_top;
 898       if ((_inode_top + 1) >= _inode_max) grow();
 899       _inode_top->node = parent;
 900       _inode_top->indx = (uint)indx;
 901       ++_inode_top;
 902       _inode_top->node = n;
 903       _inode_top->indx = (uint)ns;
 904     }
 905     Node *parent() {
 906       pop();
 907       return node();
 908     }
 909     Node_State state() const {
 910       return (Node_State)index();
 911     }
 912     void set_state(Node_State ns) {
 913       set_index((uint)ns);
 914     }
 915 };
 916 
 917 
 918 //------------------------------xform------------------------------------------
 919 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 920 // Node in new-space.  Given a new-space Node, recursively walk his children.
 921 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 922 Node *Matcher::xform( Node *n, int max_stack ) {
 923   // Use one stack to keep both: child's node/state and parent's node/index
 924   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 925   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 926 
 927   while (mstack.is_nonempty()) {
 928     n = mstack.node();          // Leave node on stack
 929     Node_State nstate = mstack.state();
 930     if (nstate == Visit) {
 931       mstack.set_state(Post_Visit);
 932       Node *oldn = n;
 933       // Old-space or new-space check
 934       if (!C->node_arena()->contains(n)) {
 935         // Old space!
 936         Node* m;
 937         if (has_new_node(n)) {  // Not yet Label/Reduced
 938           m = new_node(n);
 939         } else {
 940           if (!is_dontcare(n)) { // Matcher can match this guy
 941             // Calls match special.  They match alone with no children.
 942             // Their children, the incoming arguments, match normally.
 943             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
 944             if (C->failing())  return NULL;
 945             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
 946           } else {                  // Nothing the matcher cares about
 947             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
 948               // Convert to machine-dependent projection
 949               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
 950 #ifdef ASSERT
 951               _new2old_map.map(m->_idx, n);
 952 #endif
 953               if (m->in(0) != NULL) // m might be top
 954                 collect_null_checks(m, n);
 955             } else {                // Else just a regular 'ol guy
 956               m = n->clone();       // So just clone into new-space
 957 #ifdef ASSERT
 958               _new2old_map.map(m->_idx, n);
 959 #endif
 960               // Def-Use edges will be added incrementally as Uses
 961               // of this node are matched.
 962               assert(m->outcnt() == 0, "no Uses of this clone yet");
 963             }
 964           }
 965 
 966           set_new_node(n, m);       // Map old to new
 967           if (_old_node_note_array != NULL) {
 968             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
 969                                                   n->_idx);
 970             C->set_node_notes_at(m->_idx, nn);
 971           }
 972           debug_only(match_alias_type(C, n, m));
 973         }
 974         n = m;    // n is now a new-space node
 975         mstack.set_node(n);
 976       }
 977 
 978       // New space!
 979       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
 980 
 981       int i;
 982       // Put precedence edges on stack first (match them last).
 983       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
 984         Node *m = oldn->in(i);
 985         if (m == NULL) break;
 986         // set -1 to call add_prec() instead of set_req() during Step1
 987         mstack.push(m, Visit, n, -1);
 988       }
 989 
 990       // For constant debug info, I'd rather have unmatched constants.
 991       int cnt = n->req();
 992       JVMState* jvms = n->jvms();
 993       int debug_cnt = jvms ? jvms->debug_start() : cnt;
 994 
 995       // Now do only debug info.  Clone constants rather than matching.
 996       // Constants are represented directly in the debug info without
 997       // the need for executable machine instructions.
 998       // Monitor boxes are also represented directly.
 999       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1000         Node *m = n->in(i);          // Get input
1001         int op = m->Opcode();
1002         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1003         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
1004             op == Op_ConF || op == Op_ConD || op == Op_ConL
1005             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1006             ) {
1007           m = m->clone();
1008 #ifdef ASSERT
1009           _new2old_map.map(m->_idx, n);
1010 #endif
1011           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1012           mstack.push(m->in(0), Visit, m, 0);
1013         } else {
1014           mstack.push(m, Visit, n, i);
1015         }
1016       }
1017 
1018       // And now walk his children, and convert his inputs to new-space.
1019       for( ; i >= 0; --i ) { // For all normal inputs do
1020         Node *m = n->in(i);  // Get input
1021         if(m != NULL)
1022           mstack.push(m, Visit, n, i);
1023       }
1024 
1025     }
1026     else if (nstate == Post_Visit) {
1027       // Set xformed input
1028       Node *p = mstack.parent();
1029       if (p != NULL) { // root doesn't have parent
1030         int i = (int)mstack.index();
1031         if (i >= 0)
1032           p->set_req(i, n); // required input
1033         else if (i == -1)
1034           p->add_prec(n);   // precedence input
1035         else
1036           ShouldNotReachHere();
1037       }
1038       mstack.pop(); // remove processed node from stack
1039     }
1040     else {
1041       ShouldNotReachHere();
1042     }
1043   } // while (mstack.is_nonempty())
1044   return n; // Return new-space Node
1045 }
1046 
1047 //------------------------------warp_outgoing_stk_arg------------------------
1048 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1049   // Convert outgoing argument location to a pre-biased stack offset
1050   if (reg->is_stack()) {
1051     OptoReg::Name warped = reg->reg2stack();
1052     // Adjust the stack slot offset to be the register number used
1053     // by the allocator.
1054     warped = OptoReg::add(begin_out_arg_area, warped);
1055     // Keep track of the largest numbered stack slot used for an arg.
1056     // Largest used slot per call-site indicates the amount of stack
1057     // that is killed by the call.
1058     if( warped >= out_arg_limit_per_call )
1059       out_arg_limit_per_call = OptoReg::add(warped,1);
1060     if (!RegMask::can_represent(warped)) {
1061       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1062       return OptoReg::Bad;
1063     }
1064     return warped;
1065   }
1066   return OptoReg::as_OptoReg(reg);
1067 }
1068 
1069 
1070 //------------------------------match_sfpt-------------------------------------
1071 // Helper function to match call instructions.  Calls match special.
1072 // They match alone with no children.  Their children, the incoming
1073 // arguments, match normally.
1074 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1075   MachSafePointNode *msfpt = NULL;
1076   MachCallNode      *mcall = NULL;
1077   uint               cnt;
1078   // Split out case for SafePoint vs Call
1079   CallNode *call;
1080   const TypeTuple *domain;
1081   ciMethod*        method = NULL;
1082   bool             is_method_handle_invoke = false;  // for special kill effects
1083   if( sfpt->is_Call() ) {
1084     call = sfpt->as_Call();
1085     domain = call->tf()->domain();
1086     cnt = domain->cnt();
1087 
1088     // Match just the call, nothing else
1089     MachNode *m = match_tree(call);
1090     if (C->failing())  return NULL;
1091     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1092 
1093     // Copy data from the Ideal SafePoint to the machine version
1094     mcall = m->as_MachCall();
1095 
1096     mcall->set_tf(         call->tf());
1097     mcall->set_entry_point(call->entry_point());
1098     mcall->set_cnt(        call->cnt());
1099 
1100     if( mcall->is_MachCallJava() ) {
1101       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1102       const CallJavaNode *call_java =  call->as_CallJava();
1103       method = call_java->method();
1104       mcall_java->_method = method;
1105       mcall_java->_bci = call_java->_bci;
1106       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1107       is_method_handle_invoke = call_java->is_method_handle_invoke();
1108       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1109       if (is_method_handle_invoke) {
1110         C->set_has_method_handle_invokes(true);
1111       }
1112       if( mcall_java->is_MachCallStaticJava() )
1113         mcall_java->as_MachCallStaticJava()->_name =
1114          call_java->as_CallStaticJava()->_name;
1115       if( mcall_java->is_MachCallDynamicJava() )
1116         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1117          call_java->as_CallDynamicJava()->_vtable_index;
1118     }
1119     else if( mcall->is_MachCallRuntime() ) {
1120       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1121     }
1122     msfpt = mcall;
1123   }
1124   // This is a non-call safepoint
1125   else {
1126     call = NULL;
1127     domain = NULL;
1128     MachNode *mn = match_tree(sfpt);
1129     if (C->failing())  return NULL;
1130     msfpt = mn->as_MachSafePoint();
1131     cnt = TypeFunc::Parms;
1132   }
1133 
1134   // Advertise the correct memory effects (for anti-dependence computation).
1135   msfpt->set_adr_type(sfpt->adr_type());
1136 
1137   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1138   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1139   // Empty them all.
1140   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1141 
1142   // Do all the pre-defined non-Empty register masks
1143   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1144   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1145 
1146   // Place first outgoing argument can possibly be put.
1147   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1148   assert( is_even(begin_out_arg_area), "" );
1149   // Compute max outgoing register number per call site.
1150   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1151   // Calls to C may hammer extra stack slots above and beyond any arguments.
1152   // These are usually backing store for register arguments for varargs.
1153   if( call != NULL && call->is_CallRuntime() )
1154     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1155 
1156 
1157   // Do the normal argument list (parameters) register masks
1158   int argcnt = cnt - TypeFunc::Parms;
1159   if( argcnt > 0 ) {          // Skip it all if we have no args
1160     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1161     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1162     int i;
1163     for( i = 0; i < argcnt; i++ ) {
1164       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1165     }
1166     // V-call to pick proper calling convention
1167     call->calling_convention( sig_bt, parm_regs, argcnt );
1168 
1169 #ifdef ASSERT
1170     // Sanity check users' calling convention.  Really handy during
1171     // the initial porting effort.  Fairly expensive otherwise.
1172     { for (int i = 0; i<argcnt; i++) {
1173       if( !parm_regs[i].first()->is_valid() &&
1174           !parm_regs[i].second()->is_valid() ) continue;
1175       VMReg reg1 = parm_regs[i].first();
1176       VMReg reg2 = parm_regs[i].second();
1177       for (int j = 0; j < i; j++) {
1178         if( !parm_regs[j].first()->is_valid() &&
1179             !parm_regs[j].second()->is_valid() ) continue;
1180         VMReg reg3 = parm_regs[j].first();
1181         VMReg reg4 = parm_regs[j].second();
1182         if( !reg1->is_valid() ) {
1183           assert( !reg2->is_valid(), "valid halvsies" );
1184         } else if( !reg3->is_valid() ) {
1185           assert( !reg4->is_valid(), "valid halvsies" );
1186         } else {
1187           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1188           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1189           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1190           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1191           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1192           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1193         }
1194       }
1195     }
1196     }
1197 #endif
1198 
1199     // Visit each argument.  Compute its outgoing register mask.
1200     // Return results now can have 2 bits returned.
1201     // Compute max over all outgoing arguments both per call-site
1202     // and over the entire method.
1203     for( i = 0; i < argcnt; i++ ) {
1204       // Address of incoming argument mask to fill in
1205       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1206       if( !parm_regs[i].first()->is_valid() &&
1207           !parm_regs[i].second()->is_valid() ) {
1208         continue;               // Avoid Halves
1209       }
1210       // Grab first register, adjust stack slots and insert in mask.
1211       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1212       if (OptoReg::is_valid(reg1))
1213         rm->Insert( reg1 );
1214       // Grab second register (if any), adjust stack slots and insert in mask.
1215       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1216       if (OptoReg::is_valid(reg2))
1217         rm->Insert( reg2 );
1218     } // End of for all arguments
1219 
1220     // Compute number of stack slots needed to restore stack in case of
1221     // Pascal-style argument popping.
1222     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1223   }
1224 
1225   if (is_method_handle_invoke) {
1226     // Kill some extra stack space in case method handles want to do
1227     // a little in-place argument insertion.
1228     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1229     out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
1230     // Do not update mcall->_argsize because (a) the extra space is not
1231     // pushed as arguments and (b) _argsize is dead (not used anywhere).
1232   }
1233 
1234   // Compute the max stack slot killed by any call.  These will not be
1235   // available for debug info, and will be used to adjust FIRST_STACK_mask
1236   // after all call sites have been visited.
1237   if( _out_arg_limit < out_arg_limit_per_call)
1238     _out_arg_limit = out_arg_limit_per_call;
1239 
1240   if (mcall) {
1241     // Kill the outgoing argument area, including any non-argument holes and
1242     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1243     // Since the max-per-method covers the max-per-call-site and debug info
1244     // is excluded on the max-per-method basis, debug info cannot land in
1245     // this killed area.
1246     uint r_cnt = mcall->tf()->range()->cnt();
1247     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1248     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1249       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1250     } else {
1251       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1252         proj->_rout.Insert(OptoReg::Name(i));
1253     }
1254     if( proj->_rout.is_NotEmpty() )
1255       _proj_list.push(proj);
1256   }
1257   // Transfer the safepoint information from the call to the mcall
1258   // Move the JVMState list
1259   msfpt->set_jvms(sfpt->jvms());
1260   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1261     jvms->set_map(sfpt);
1262   }
1263 
1264   // Debug inputs begin just after the last incoming parameter
1265   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1266           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1267 
1268   // Move the OopMap
1269   msfpt->_oop_map = sfpt->_oop_map;
1270 
1271   // Registers killed by the call are set in the local scheduling pass
1272   // of Global Code Motion.
1273   return msfpt;
1274 }
1275 
1276 //---------------------------match_tree----------------------------------------
1277 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1278 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1279 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1280 // a Load's result RegMask for memoization in idealreg2regmask[]
1281 MachNode *Matcher::match_tree( const Node *n ) {
1282   assert( n->Opcode() != Op_Phi, "cannot match" );
1283   assert( !n->is_block_start(), "cannot match" );
1284   // Set the mark for all locally allocated State objects.
1285   // When this call returns, the _states_arena arena will be reset
1286   // freeing all State objects.
1287   ResourceMark rm( &_states_arena );
1288 
1289   LabelRootDepth = 0;
1290 
1291   // StoreNodes require their Memory input to match any LoadNodes
1292   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1293 #ifdef ASSERT
1294   Node* save_mem_node = _mem_node;
1295   _mem_node = n->is_Store() ? (Node*)n : NULL;
1296 #endif
1297   // State object for root node of match tree
1298   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1299   State *s = new (&_states_arena) State;
1300   s->_kids[0] = NULL;
1301   s->_kids[1] = NULL;
1302   s->_leaf = (Node*)n;
1303   // Label the input tree, allocating labels from top-level arena
1304   Label_Root( n, s, n->in(0), mem );
1305   if (C->failing())  return NULL;
1306 
1307   // The minimum cost match for the whole tree is found at the root State
1308   uint mincost = max_juint;
1309   uint cost = max_juint;
1310   uint i;
1311   for( i = 0; i < NUM_OPERANDS; i++ ) {
1312     if( s->valid(i) &&                // valid entry and
1313         s->_cost[i] < cost &&         // low cost and
1314         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1315       cost = s->_cost[mincost=i];
1316   }
1317   if (mincost == max_juint) {
1318 #ifndef PRODUCT
1319     tty->print("No matching rule for:");
1320     s->dump();
1321 #endif
1322     Matcher::soft_match_failure();
1323     return NULL;
1324   }
1325   // Reduce input tree based upon the state labels to machine Nodes
1326   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1327 #ifdef ASSERT
1328   _old2new_map.map(n->_idx, m);
1329   _new2old_map.map(m->_idx, (Node*)n);
1330 #endif
1331 
1332   // Add any Matcher-ignored edges
1333   uint cnt = n->req();
1334   uint start = 1;
1335   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1336   if( n->is_AddP() ) {
1337     assert( mem == (Node*)1, "" );
1338     start = AddPNode::Base+1;
1339   }
1340   for( i = start; i < cnt; i++ ) {
1341     if( !n->match_edge(i) ) {
1342       if( i < m->req() )
1343         m->ins_req( i, n->in(i) );
1344       else
1345         m->add_req( n->in(i) );
1346     }
1347   }
1348 
1349   debug_only( _mem_node = save_mem_node; )
1350   return m;
1351 }
1352 
1353 
1354 //------------------------------match_into_reg---------------------------------
1355 // Choose to either match this Node in a register or part of the current
1356 // match tree.  Return true for requiring a register and false for matching
1357 // as part of the current match tree.
1358 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1359 
1360   const Type *t = m->bottom_type();
1361 
1362   if( t->singleton() ) {
1363     // Never force constants into registers.  Allow them to match as
1364     // constants or registers.  Copies of the same value will share
1365     // the same register.  See find_shared_node.
1366     return false;
1367   } else {                      // Not a constant
1368     // Stop recursion if they have different Controls.
1369     // Slot 0 of constants is not really a Control.
1370     if( control && m->in(0) && control != m->in(0) ) {
1371 
1372       // Actually, we can live with the most conservative control we
1373       // find, if it post-dominates the others.  This allows us to
1374       // pick up load/op/store trees where the load can float a little
1375       // above the store.
1376       Node *x = control;
1377       const uint max_scan = 6;   // Arbitrary scan cutoff
1378       uint j;
1379       for( j=0; j<max_scan; j++ ) {
1380         if( x->is_Region() )    // Bail out at merge points
1381           return true;
1382         x = x->in(0);
1383         if( x == m->in(0) )     // Does 'control' post-dominate
1384           break;                // m->in(0)?  If so, we can use it
1385       }
1386       if( j == max_scan )       // No post-domination before scan end?
1387         return true;            // Then break the match tree up
1388     }
1389     if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
1390       // These are commonly used in address expressions and can
1391       // efficiently fold into them on X64 in some cases.
1392       return false;
1393     }
1394   }
1395 
1396   // Not forceable cloning.  If shared, put it into a register.
1397   return shared;
1398 }
1399 
1400 
1401 //------------------------------Instruction Selection--------------------------
1402 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1403 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1404 // things the Matcher does not match (e.g., Memory), and things with different
1405 // Controls (hence forced into different blocks).  We pass in the Control
1406 // selected for this entire State tree.
1407 
1408 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1409 // Store and the Load must have identical Memories (as well as identical
1410 // pointers).  Since the Matcher does not have anything for Memory (and
1411 // does not handle DAGs), I have to match the Memory input myself.  If the
1412 // Tree root is a Store, I require all Loads to have the identical memory.
1413 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1414   // Since Label_Root is a recursive function, its possible that we might run
1415   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1416   LabelRootDepth++;
1417   if (LabelRootDepth > MaxLabelRootDepth) {
1418     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1419     return NULL;
1420   }
1421   uint care = 0;                // Edges matcher cares about
1422   uint cnt = n->req();
1423   uint i = 0;
1424 
1425   // Examine children for memory state
1426   // Can only subsume a child into your match-tree if that child's memory state
1427   // is not modified along the path to another input.
1428   // It is unsafe even if the other inputs are separate roots.
1429   Node *input_mem = NULL;
1430   for( i = 1; i < cnt; i++ ) {
1431     if( !n->match_edge(i) ) continue;
1432     Node *m = n->in(i);         // Get ith input
1433     assert( m, "expect non-null children" );
1434     if( m->is_Load() ) {
1435       if( input_mem == NULL ) {
1436         input_mem = m->in(MemNode::Memory);
1437       } else if( input_mem != m->in(MemNode::Memory) ) {
1438         input_mem = NodeSentinel;
1439       }
1440     }
1441   }
1442 
1443   for( i = 1; i < cnt; i++ ){// For my children
1444     if( !n->match_edge(i) ) continue;
1445     Node *m = n->in(i);         // Get ith input
1446     // Allocate states out of a private arena
1447     State *s = new (&_states_arena) State;
1448     svec->_kids[care++] = s;
1449     assert( care <= 2, "binary only for now" );
1450 
1451     // Recursively label the State tree.
1452     s->_kids[0] = NULL;
1453     s->_kids[1] = NULL;
1454     s->_leaf = m;
1455 
1456     // Check for leaves of the State Tree; things that cannot be a part of
1457     // the current tree.  If it finds any, that value is matched as a
1458     // register operand.  If not, then the normal matching is used.
1459     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1460         //
1461         // Stop recursion if this is LoadNode and the root of this tree is a
1462         // StoreNode and the load & store have different memories.
1463         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1464         // Can NOT include the match of a subtree when its memory state
1465         // is used by any of the other subtrees
1466         (input_mem == NodeSentinel) ) {
1467 #ifndef PRODUCT
1468       // Print when we exclude matching due to different memory states at input-loads
1469       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1470         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1471         tty->print_cr("invalid input_mem");
1472       }
1473 #endif
1474       // Switch to a register-only opcode; this value must be in a register
1475       // and cannot be subsumed as part of a larger instruction.
1476       s->DFA( m->ideal_reg(), m );
1477 
1478     } else {
1479       // If match tree has no control and we do, adopt it for entire tree
1480       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1481         control = m->in(0);         // Pick up control
1482       // Else match as a normal part of the match tree.
1483       control = Label_Root(m,s,control,mem);
1484       if (C->failing()) return NULL;
1485     }
1486   }
1487 
1488 
1489   // Call DFA to match this node, and return
1490   svec->DFA( n->Opcode(), n );
1491 
1492 #ifdef ASSERT
1493   uint x;
1494   for( x = 0; x < _LAST_MACH_OPER; x++ )
1495     if( svec->valid(x) )
1496       break;
1497 
1498   if (x >= _LAST_MACH_OPER) {
1499     n->dump();
1500     svec->dump();
1501     assert( false, "bad AD file" );
1502   }
1503 #endif
1504   return control;
1505 }
1506 
1507 
1508 // Con nodes reduced using the same rule can share their MachNode
1509 // which reduces the number of copies of a constant in the final
1510 // program.  The register allocator is free to split uses later to
1511 // split live ranges.
1512 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1513   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1514 
1515   // See if this Con has already been reduced using this rule.
1516   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1517   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1518   if (last != NULL && rule == last->rule()) {
1519     // Don't expect control change for DecodeN
1520     if (leaf->is_DecodeN())
1521       return last;
1522     // Get the new space root.
1523     Node* xroot = new_node(C->root());
1524     if (xroot == NULL) {
1525       // This shouldn't happen give the order of matching.
1526       return NULL;
1527     }
1528 
1529     // Shared constants need to have their control be root so they
1530     // can be scheduled properly.
1531     Node* control = last->in(0);
1532     if (control != xroot) {
1533       if (control == NULL || control == C->root()) {
1534         last->set_req(0, xroot);
1535       } else {
1536         assert(false, "unexpected control");
1537         return NULL;
1538       }
1539     }
1540     return last;
1541   }
1542   return NULL;
1543 }
1544 
1545 
1546 //------------------------------ReduceInst-------------------------------------
1547 // Reduce a State tree (with given Control) into a tree of MachNodes.
1548 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1549 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1550 // Each MachNode has a number of complicated MachOper operands; each
1551 // MachOper also covers a further tree of Ideal Nodes.
1552 
1553 // The root of the Ideal match tree is always an instruction, so we enter
1554 // the recursion here.  After building the MachNode, we need to recurse
1555 // the tree checking for these cases:
1556 // (1) Child is an instruction -
1557 //     Build the instruction (recursively), add it as an edge.
1558 //     Build a simple operand (register) to hold the result of the instruction.
1559 // (2) Child is an interior part of an instruction -
1560 //     Skip over it (do nothing)
1561 // (3) Child is the start of a operand -
1562 //     Build the operand, place it inside the instruction
1563 //     Call ReduceOper.
1564 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1565   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1566 
1567   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1568   if (shared_node != NULL) {
1569     return shared_node;
1570   }
1571 
1572   // Build the object to represent this state & prepare for recursive calls
1573   MachNode *mach = s->MachNodeGenerator( rule, C );
1574   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1575   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1576   Node *leaf = s->_leaf;
1577   // Check for instruction or instruction chain rule
1578   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1579     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1580            "duplicating node that's already been matched");
1581     // Instruction
1582     mach->add_req( leaf->in(0) ); // Set initial control
1583     // Reduce interior of complex instruction
1584     ReduceInst_Interior( s, rule, mem, mach, 1 );
1585   } else {
1586     // Instruction chain rules are data-dependent on their inputs
1587     mach->add_req(0);             // Set initial control to none
1588     ReduceInst_Chain_Rule( s, rule, mem, mach );
1589   }
1590 
1591   // If a Memory was used, insert a Memory edge
1592   if( mem != (Node*)1 ) {
1593     mach->ins_req(MemNode::Memory,mem);
1594 #ifdef ASSERT
1595     // Verify adr type after matching memory operation
1596     const MachOper* oper = mach->memory_operand();
1597     if (oper != NULL && oper != (MachOper*)-1) {
1598       // It has a unique memory operand.  Find corresponding ideal mem node.
1599       Node* m = NULL;
1600       if (leaf->is_Mem()) {
1601         m = leaf;
1602       } else {
1603         m = _mem_node;
1604         assert(m != NULL && m->is_Mem(), "expecting memory node");
1605       }
1606       const Type* mach_at = mach->adr_type();
1607       // DecodeN node consumed by an address may have different type
1608       // then its input. Don't compare types for such case.
1609       if (m->adr_type() != mach_at &&
1610           (m->in(MemNode::Address)->is_DecodeN() ||
1611            m->in(MemNode::Address)->is_AddP() &&
1612            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1613            m->in(MemNode::Address)->is_AddP() &&
1614            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1615            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1616         mach_at = m->adr_type();
1617       }
1618       if (m->adr_type() != mach_at) {
1619         m->dump();
1620         tty->print_cr("mach:");
1621         mach->dump(1);
1622       }
1623       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1624     }
1625 #endif
1626   }
1627 
1628   // If the _leaf is an AddP, insert the base edge
1629   if( leaf->is_AddP() )
1630     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1631 
1632   uint num_proj = _proj_list.size();
1633 
1634   // Perform any 1-to-many expansions required
1635   MachNode *ex = mach->Expand(s,_proj_list, mem);
1636   if( ex != mach ) {
1637     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1638     if( ex->in(1)->is_Con() )
1639       ex->in(1)->set_req(0, C->root());
1640     // Remove old node from the graph
1641     for( uint i=0; i<mach->req(); i++ ) {
1642       mach->set_req(i,NULL);
1643     }
1644 #ifdef ASSERT
1645     _new2old_map.map(ex->_idx, s->_leaf);
1646 #endif
1647   }
1648 
1649   // PhaseChaitin::fixup_spills will sometimes generate spill code
1650   // via the matcher.  By the time, nodes have been wired into the CFG,
1651   // and any further nodes generated by expand rules will be left hanging
1652   // in space, and will not get emitted as output code.  Catch this.
1653   // Also, catch any new register allocation constraints ("projections")
1654   // generated belatedly during spill code generation.
1655   if (_allocation_started) {
1656     guarantee(ex == mach, "no expand rules during spill generation");
1657     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1658   }
1659 
1660   if (leaf->is_Con() || leaf->is_DecodeN()) {
1661     // Record the con for sharing
1662     _shared_nodes.map(leaf->_idx, ex);
1663   }
1664 
1665   return ex;
1666 }
1667 
1668 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1669   // 'op' is what I am expecting to receive
1670   int op = _leftOp[rule];
1671   // Operand type to catch childs result
1672   // This is what my child will give me.
1673   int opnd_class_instance = s->_rule[op];
1674   // Choose between operand class or not.
1675   // This is what I will receive.
1676   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1677   // New rule for child.  Chase operand classes to get the actual rule.
1678   int newrule = s->_rule[catch_op];
1679 
1680   if( newrule < NUM_OPERANDS ) {
1681     // Chain from operand or operand class, may be output of shared node
1682     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1683             "Bad AD file: Instruction chain rule must chain from operand");
1684     // Insert operand into array of operands for this instruction
1685     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1686 
1687     ReduceOper( s, newrule, mem, mach );
1688   } else {
1689     // Chain from the result of an instruction
1690     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1691     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1692     Node *mem1 = (Node*)1;
1693     debug_only(Node *save_mem_node = _mem_node;)
1694     mach->add_req( ReduceInst(s, newrule, mem1) );
1695     debug_only(_mem_node = save_mem_node;)
1696   }
1697   return;
1698 }
1699 
1700 
1701 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1702   if( s->_leaf->is_Load() ) {
1703     Node *mem2 = s->_leaf->in(MemNode::Memory);
1704     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1705     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1706     mem = mem2;
1707   }
1708   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1709     if( mach->in(0) == NULL )
1710       mach->set_req(0, s->_leaf->in(0));
1711   }
1712 
1713   // Now recursively walk the state tree & add operand list.
1714   for( uint i=0; i<2; i++ ) {   // binary tree
1715     State *newstate = s->_kids[i];
1716     if( newstate == NULL ) break;      // Might only have 1 child
1717     // 'op' is what I am expecting to receive
1718     int op;
1719     if( i == 0 ) {
1720       op = _leftOp[rule];
1721     } else {
1722       op = _rightOp[rule];
1723     }
1724     // Operand type to catch childs result
1725     // This is what my child will give me.
1726     int opnd_class_instance = newstate->_rule[op];
1727     // Choose between operand class or not.
1728     // This is what I will receive.
1729     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1730     // New rule for child.  Chase operand classes to get the actual rule.
1731     int newrule = newstate->_rule[catch_op];
1732 
1733     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1734       // Operand/operandClass
1735       // Insert operand into array of operands for this instruction
1736       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1737       ReduceOper( newstate, newrule, mem, mach );
1738 
1739     } else {                    // Child is internal operand or new instruction
1740       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1741         // internal operand --> call ReduceInst_Interior
1742         // Interior of complex instruction.  Do nothing but recurse.
1743         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1744       } else {
1745         // instruction --> call build operand(  ) to catch result
1746         //             --> ReduceInst( newrule )
1747         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1748         Node *mem1 = (Node*)1;
1749         debug_only(Node *save_mem_node = _mem_node;)
1750         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1751         debug_only(_mem_node = save_mem_node;)
1752       }
1753     }
1754     assert( mach->_opnds[num_opnds-1], "" );
1755   }
1756   return num_opnds;
1757 }
1758 
1759 // This routine walks the interior of possible complex operands.
1760 // At each point we check our children in the match tree:
1761 // (1) No children -
1762 //     We are a leaf; add _leaf field as an input to the MachNode
1763 // (2) Child is an internal operand -
1764 //     Skip over it ( do nothing )
1765 // (3) Child is an instruction -
1766 //     Call ReduceInst recursively and
1767 //     and instruction as an input to the MachNode
1768 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1769   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1770   State *kid = s->_kids[0];
1771   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1772 
1773   // Leaf?  And not subsumed?
1774   if( kid == NULL && !_swallowed[rule] ) {
1775     mach->add_req( s->_leaf );  // Add leaf pointer
1776     return;                     // Bail out
1777   }
1778 
1779   if( s->_leaf->is_Load() ) {
1780     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1781     mem = s->_leaf->in(MemNode::Memory);
1782     debug_only(_mem_node = s->_leaf;)
1783   }
1784   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1785     if( !mach->in(0) )
1786       mach->set_req(0,s->_leaf->in(0));
1787     else {
1788       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1789     }
1790   }
1791 
1792   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1793     int newrule;
1794     if( i == 0 )
1795       newrule = kid->_rule[_leftOp[rule]];
1796     else
1797       newrule = kid->_rule[_rightOp[rule]];
1798 
1799     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1800       // Internal operand; recurse but do nothing else
1801       ReduceOper( kid, newrule, mem, mach );
1802 
1803     } else {                    // Child is a new instruction
1804       // Reduce the instruction, and add a direct pointer from this
1805       // machine instruction to the newly reduced one.
1806       Node *mem1 = (Node*)1;
1807       debug_only(Node *save_mem_node = _mem_node;)
1808       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1809       debug_only(_mem_node = save_mem_node;)
1810     }
1811   }
1812 }
1813 
1814 
1815 // -------------------------------------------------------------------------
1816 // Java-Java calling convention
1817 // (what you use when Java calls Java)
1818 
1819 //------------------------------find_receiver----------------------------------
1820 // For a given signature, return the OptoReg for parameter 0.
1821 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1822   VMRegPair regs;
1823   BasicType sig_bt = T_OBJECT;
1824   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1825   // Return argument 0 register.  In the LP64 build pointers
1826   // take 2 registers, but the VM wants only the 'main' name.
1827   return OptoReg::as_OptoReg(regs.first());
1828 }
1829 
1830 // A method-klass-holder may be passed in the inline_cache_reg
1831 // and then expanded into the inline_cache_reg and a method_oop register
1832 //   defined in ad_<arch>.cpp
1833 
1834 
1835 //------------------------------find_shared------------------------------------
1836 // Set bits if Node is shared or otherwise a root
1837 void Matcher::find_shared( Node *n ) {
1838   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1839   MStack mstack(C->unique() * 2);
1840   // Mark nodes as address_visited if they are inputs to an address expression
1841   VectorSet address_visited(Thread::current()->resource_area());
1842   mstack.push(n, Visit);     // Don't need to pre-visit root node
1843   while (mstack.is_nonempty()) {
1844     n = mstack.node();       // Leave node on stack
1845     Node_State nstate = mstack.state();
1846     uint nop = n->Opcode();
1847     if (nstate == Pre_Visit) {
1848       if (address_visited.test(n->_idx)) { // Visited in address already?
1849         // Flag as visited and shared now.
1850         set_visited(n);
1851       }
1852       if (is_visited(n)) {   // Visited already?
1853         // Node is shared and has no reason to clone.  Flag it as shared.
1854         // This causes it to match into a register for the sharing.
1855         set_shared(n);       // Flag as shared and
1856         mstack.pop();        // remove node from stack
1857         continue;
1858       }
1859       nstate = Visit; // Not already visited; so visit now
1860     }
1861     if (nstate == Visit) {
1862       mstack.set_state(Post_Visit);
1863       set_visited(n);   // Flag as visited now
1864       bool mem_op = false;
1865 
1866       switch( nop ) {  // Handle some opcodes special
1867       case Op_Phi:             // Treat Phis as shared roots
1868       case Op_Parm:
1869       case Op_Proj:            // All handled specially during matching
1870       case Op_SafePointScalarObject:
1871         set_shared(n);
1872         set_dontcare(n);
1873         break;
1874       case Op_If:
1875       case Op_CountedLoopEnd:
1876         mstack.set_state(Alt_Post_Visit); // Alternative way
1877         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1878         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1879         // Bool and CmpX side-by-side, because it can only get at constants
1880         // that are at the leaves of Match trees, and the Bool's condition acts
1881         // as a constant here.
1882         mstack.push(n->in(1), Visit);         // Clone the Bool
1883         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1884         continue; // while (mstack.is_nonempty())
1885       case Op_ConvI2D:         // These forms efficiently match with a prior
1886       case Op_ConvI2F:         //   Load but not a following Store
1887         if( n->in(1)->is_Load() &&        // Prior load
1888             n->outcnt() == 1 &&           // Not already shared
1889             n->unique_out()->is_Store() ) // Following store
1890           set_shared(n);       // Force it to be a root
1891         break;
1892       case Op_ReverseBytesI:
1893       case Op_ReverseBytesL:
1894         if( n->in(1)->is_Load() &&        // Prior load
1895             n->outcnt() == 1 )            // Not already shared
1896           set_shared(n);                  // Force it to be a root
1897         break;
1898       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1899       case Op_IfFalse:
1900       case Op_IfTrue:
1901       case Op_MachProj:
1902       case Op_MergeMem:
1903       case Op_Catch:
1904       case Op_CatchProj:
1905       case Op_CProj:
1906       case Op_JumpProj:
1907       case Op_JProj:
1908       case Op_NeverBranch:
1909         set_dontcare(n);
1910         break;
1911       case Op_Jump:
1912         mstack.push(n->in(1), Visit);         // Switch Value
1913         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1914         continue;                             // while (mstack.is_nonempty())
1915       case Op_StrComp:
1916       case Op_StrEquals:
1917       case Op_StrIndexOf:
1918       case Op_AryEq:
1919         set_shared(n); // Force result into register (it will be anyways)
1920         break;
1921       case Op_ConP: {  // Convert pointers above the centerline to NUL
1922         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1923         const TypePtr* tp = tn->type()->is_ptr();
1924         if (tp->_ptr == TypePtr::AnyNull) {
1925           tn->set_type(TypePtr::NULL_PTR);
1926         }
1927         break;
1928       }
1929       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1930         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1931         const TypePtr* tp = tn->type()->make_ptr();
1932         if (tp && tp->_ptr == TypePtr::AnyNull) {
1933           tn->set_type(TypeNarrowOop::NULL_PTR);
1934         }
1935         break;
1936       }
1937       case Op_Binary:         // These are introduced in the Post_Visit state.
1938         ShouldNotReachHere();
1939         break;
1940       case Op_ClearArray:
1941       case Op_SafePoint:
1942         mem_op = true;
1943         break;
1944       default:
1945         if( n->is_Store() ) {
1946           // Do match stores, despite no ideal reg
1947           mem_op = true;
1948           break;
1949         }
1950         if( n->is_Mem() ) { // Loads and LoadStores
1951           mem_op = true;
1952           // Loads must be root of match tree due to prior load conflict
1953           if( C->subsume_loads() == false )
1954             set_shared(n);
1955         }
1956         // Fall into default case
1957         if( !n->ideal_reg() )
1958           set_dontcare(n);  // Unmatchable Nodes
1959       } // end_switch
1960 
1961       for(int i = n->req() - 1; i >= 0; --i) { // For my children
1962         Node *m = n->in(i); // Get ith input
1963         if (m == NULL) continue;  // Ignore NULLs
1964         uint mop = m->Opcode();
1965 
1966         // Must clone all producers of flags, or we will not match correctly.
1967         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1968         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1969         // are also there, so we may match a float-branch to int-flags and
1970         // expect the allocator to haul the flags from the int-side to the
1971         // fp-side.  No can do.
1972         if( _must_clone[mop] ) {
1973           mstack.push(m, Visit);
1974           continue; // for(int i = ...)
1975         }
1976 
1977         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
1978           // Bases used in addresses must be shared but since
1979           // they are shared through a DecodeN they may appear
1980           // to have a single use so force sharing here.
1981           set_shared(m->in(AddPNode::Base)->in(1));
1982         }
1983 
1984         // Clone addressing expressions as they are "free" in memory access instructions
1985         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1986           // Some inputs for address expression are not put on stack
1987           // to avoid marking them as shared and forcing them into register
1988           // if they are used only in address expressions.
1989           // But they should be marked as shared if there are other uses
1990           // besides address expressions.
1991 
1992           Node *off = m->in(AddPNode::Offset);
1993           if( off->is_Con() &&
1994               // When there are other uses besides address expressions
1995               // put it on stack and mark as shared.
1996               !is_visited(m) ) {
1997             address_visited.test_set(m->_idx); // Flag as address_visited
1998             Node *adr = m->in(AddPNode::Address);
1999 
2000             // Intel, ARM and friends can handle 2 adds in addressing mode
2001             if( clone_shift_expressions && adr->is_AddP() &&
2002                 // AtomicAdd is not an addressing expression.
2003                 // Cheap to find it by looking for screwy base.
2004                 !adr->in(AddPNode::Base)->is_top() &&
2005                 // Are there other uses besides address expressions?
2006                 !is_visited(adr) ) {
2007               address_visited.set(adr->_idx); // Flag as address_visited
2008               Node *shift = adr->in(AddPNode::Offset);
2009               // Check for shift by small constant as well
2010               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2011                   shift->in(2)->get_int() <= 3 &&
2012                   // Are there other uses besides address expressions?
2013                   !is_visited(shift) ) {
2014                 address_visited.set(shift->_idx); // Flag as address_visited
2015                 mstack.push(shift->in(2), Visit);
2016                 Node *conv = shift->in(1);
2017 #ifdef _LP64
2018                 // Allow Matcher to match the rule which bypass
2019                 // ConvI2L operation for an array index on LP64
2020                 // if the index value is positive.
2021                 if( conv->Opcode() == Op_ConvI2L &&
2022                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2023                     // Are there other uses besides address expressions?
2024                     !is_visited(conv) ) {
2025                   address_visited.set(conv->_idx); // Flag as address_visited
2026                   mstack.push(conv->in(1), Pre_Visit);
2027                 } else
2028 #endif
2029                 mstack.push(conv, Pre_Visit);
2030               } else {
2031                 mstack.push(shift, Pre_Visit);
2032               }
2033               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2034               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2035             } else {  // Sparc, Alpha, PPC and friends
2036               mstack.push(adr, Pre_Visit);
2037             }
2038 
2039             // Clone X+offset as it also folds into most addressing expressions
2040             mstack.push(off, Visit);
2041             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2042             continue; // for(int i = ...)
2043           } // if( off->is_Con() )
2044         }   // if( mem_op &&
2045         mstack.push(m, Pre_Visit);
2046       }     // for(int i = ...)
2047     }
2048     else if (nstate == Alt_Post_Visit) {
2049       mstack.pop(); // Remove node from stack
2050       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2051       // shared and all users of the Bool need to move the Cmp in parallel.
2052       // This leaves both the Bool and the If pointing at the Cmp.  To
2053       // prevent the Matcher from trying to Match the Cmp along both paths
2054       // BoolNode::match_edge always returns a zero.
2055 
2056       // We reorder the Op_If in a pre-order manner, so we can visit without
2057       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2058       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2059     }
2060     else if (nstate == Post_Visit) {
2061       mstack.pop(); // Remove node from stack
2062 
2063       // Now hack a few special opcodes
2064       switch( n->Opcode() ) {       // Handle some opcodes special
2065       case Op_StorePConditional:
2066       case Op_StoreIConditional:
2067       case Op_StoreLConditional:
2068       case Op_CompareAndSwapI:
2069       case Op_CompareAndSwapL:
2070       case Op_CompareAndSwapP:
2071       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2072         Node *newval = n->in(MemNode::ValueIn );
2073         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2074         Node *pair = new (C, 3) BinaryNode( oldval, newval );
2075         n->set_req(MemNode::ValueIn,pair);
2076         n->del_req(LoadStoreNode::ExpectedIn);
2077         break;
2078       }
2079       case Op_CMoveD:              // Convert trinary to binary-tree
2080       case Op_CMoveF:
2081       case Op_CMoveI:
2082       case Op_CMoveL:
2083       case Op_CMoveN:
2084       case Op_CMoveP: {
2085         // Restructure into a binary tree for Matching.  It's possible that
2086         // we could move this code up next to the graph reshaping for IfNodes
2087         // or vice-versa, but I do not want to debug this for Ladybird.
2088         // 10/2/2000 CNC.
2089         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2090         n->set_req(1,pair1);
2091         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2092         n->set_req(2,pair2);
2093         n->del_req(3);
2094         break;
2095       }
2096       case Op_LoopLimit: {
2097         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(2));
2098         n->set_req(1,pair1);
2099         n->set_req(2,n->in(3));
2100         n->del_req(3);
2101         break;
2102       }
2103       case Op_StrEquals: {
2104         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2105         n->set_req(2,pair1);
2106         n->set_req(3,n->in(4));
2107         n->del_req(4);
2108         break;
2109       }
2110       case Op_StrComp:
2111       case Op_StrIndexOf: {
2112         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2113         n->set_req(2,pair1);
2114         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
2115         n->set_req(3,pair2);
2116         n->del_req(5);
2117         n->del_req(4);
2118         break;
2119       }
2120       default:
2121         break;
2122       }
2123     }
2124     else {
2125       ShouldNotReachHere();
2126     }
2127   } // end of while (mstack.is_nonempty())
2128 }
2129 
2130 #ifdef ASSERT
2131 // machine-independent root to machine-dependent root
2132 void Matcher::dump_old2new_map() {
2133   _old2new_map.dump();
2134 }
2135 #endif
2136 
2137 //---------------------------collect_null_checks-------------------------------
2138 // Find null checks in the ideal graph; write a machine-specific node for
2139 // it.  Used by later implicit-null-check handling.  Actually collects
2140 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2141 // value being tested.
2142 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2143   Node *iff = proj->in(0);
2144   if( iff->Opcode() == Op_If ) {
2145     // During matching If's have Bool & Cmp side-by-side
2146     BoolNode *b = iff->in(1)->as_Bool();
2147     Node *cmp = iff->in(2);
2148     int opc = cmp->Opcode();
2149     if (opc != Op_CmpP && opc != Op_CmpN) return;
2150 
2151     const Type* ct = cmp->in(2)->bottom_type();
2152     if (ct == TypePtr::NULL_PTR ||
2153         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2154 
2155       bool push_it = false;
2156       if( proj->Opcode() == Op_IfTrue ) {
2157         extern int all_null_checks_found;
2158         all_null_checks_found++;
2159         if( b->_test._test == BoolTest::ne ) {
2160           push_it = true;
2161         }
2162       } else {
2163         assert( proj->Opcode() == Op_IfFalse, "" );
2164         if( b->_test._test == BoolTest::eq ) {
2165           push_it = true;
2166         }
2167       }
2168       if( push_it ) {
2169         _null_check_tests.push(proj);
2170         Node* val = cmp->in(1);
2171 #ifdef _LP64
2172         if (val->bottom_type()->isa_narrowoop() &&
2173             !Matcher::narrow_oop_use_complex_address()) {
2174           //
2175           // Look for DecodeN node which should be pinned to orig_proj.
2176           // On platforms (Sparc) which can not handle 2 adds
2177           // in addressing mode we have to keep a DecodeN node and
2178           // use it to do implicit NULL check in address.
2179           //
2180           // DecodeN node was pinned to non-null path (orig_proj) during
2181           // CastPP transformation in final_graph_reshaping_impl().
2182           //
2183           uint cnt = orig_proj->outcnt();
2184           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2185             Node* d = orig_proj->raw_out(i);
2186             if (d->is_DecodeN() && d->in(1) == val) {
2187               val = d;
2188               val->set_req(0, NULL); // Unpin now.
2189               // Mark this as special case to distinguish from
2190               // a regular case: CmpP(DecodeN, NULL).
2191               val = (Node*)(((intptr_t)val) | 1);
2192               break;
2193             }
2194           }
2195         }
2196 #endif
2197         _null_check_tests.push(val);
2198       }
2199     }
2200   }
2201 }
2202 
2203 //---------------------------validate_null_checks------------------------------
2204 // Its possible that the value being NULL checked is not the root of a match
2205 // tree.  If so, I cannot use the value in an implicit null check.
2206 void Matcher::validate_null_checks( ) {
2207   uint cnt = _null_check_tests.size();
2208   for( uint i=0; i < cnt; i+=2 ) {
2209     Node *test = _null_check_tests[i];
2210     Node *val = _null_check_tests[i+1];
2211     bool is_decoden = ((intptr_t)val) & 1;
2212     val = (Node*)(((intptr_t)val) & ~1);
2213     if (has_new_node(val)) {
2214       Node* new_val = new_node(val);
2215       if (is_decoden) {
2216         assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
2217         // Note: new_val may have a control edge if
2218         // the original ideal node DecodeN was matched before
2219         // it was unpinned in Matcher::collect_null_checks().
2220         // Unpin the mach node and mark it.
2221         new_val->set_req(0, NULL);
2222         new_val = (Node*)(((intptr_t)new_val) | 1);
2223       }
2224       // Is a match-tree root, so replace with the matched value
2225       _null_check_tests.map(i+1, new_val);
2226     } else {
2227       // Yank from candidate list
2228       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2229       _null_check_tests.map(i,_null_check_tests[--cnt]);
2230       _null_check_tests.pop();
2231       _null_check_tests.pop();
2232       i-=2;
2233     }
2234   }
2235 }
2236 
2237 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2238 // atomic instruction acting as a store_load barrier without any
2239 // intervening volatile load, and thus we don't need a barrier here.
2240 // We retain the Node to act as a compiler ordering barrier.
2241 bool Matcher::post_store_load_barrier(const Node *vmb) {
2242   Compile *C = Compile::current();
2243   assert( vmb->is_MemBar(), "" );
2244   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2245   const MemBarNode *mem = (const MemBarNode*)vmb;
2246 
2247   // Get the Proj node, ctrl, that can be used to iterate forward
2248   Node *ctrl = NULL;
2249   DUIterator_Fast imax, i = mem->fast_outs(imax);
2250   while( true ) {
2251     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2252     assert( ctrl->is_Proj(), "only projections here" );
2253     ProjNode *proj = (ProjNode*)ctrl;
2254     if( proj->_con == TypeFunc::Control &&
2255         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2256       break;
2257     i++;
2258   }
2259 
2260   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2261     Node *x = ctrl->fast_out(j);
2262     int xop = x->Opcode();
2263 
2264     // We don't need current barrier if we see another or a lock
2265     // before seeing volatile load.
2266     //
2267     // Op_Fastunlock previously appeared in the Op_* list below.
2268     // With the advent of 1-0 lock operations we're no longer guaranteed
2269     // that a monitor exit operation contains a serializing instruction.
2270 
2271     if (xop == Op_MemBarVolatile ||
2272         xop == Op_FastLock ||
2273         xop == Op_CompareAndSwapL ||
2274         xop == Op_CompareAndSwapP ||
2275         xop == Op_CompareAndSwapN ||
2276         xop == Op_CompareAndSwapI)
2277       return true;
2278 
2279     if (x->is_MemBar()) {
2280       // We must retain this membar if there is an upcoming volatile
2281       // load, which will be preceded by acquire membar.
2282       if (xop == Op_MemBarAcquire)
2283         return false;
2284       // For other kinds of barriers, check by pretending we
2285       // are them, and seeing if we can be removed.
2286       else
2287         return post_store_load_barrier((const MemBarNode*)x);
2288     }
2289 
2290     // Delicate code to detect case of an upcoming fastlock block
2291     if( x->is_If() && x->req() > 1 &&
2292         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2293       Node *iff = x;
2294       Node *bol = iff->in(1);
2295       // The iff might be some random subclass of If or bol might be Con-Top
2296       if (!bol->is_Bool())  return false;
2297       assert( bol->req() > 1, "" );
2298       return (bol->in(1)->Opcode() == Op_FastUnlock);
2299     }
2300     // probably not necessary to check for these
2301     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2302       return false;
2303   }
2304   return false;
2305 }
2306 
2307 //=============================================================================
2308 //---------------------------State---------------------------------------------
2309 State::State(void) {
2310 #ifdef ASSERT
2311   _id = 0;
2312   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2313   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2314   //memset(_cost, -1, sizeof(_cost));
2315   //memset(_rule, -1, sizeof(_rule));
2316 #endif
2317   memset(_valid, 0, sizeof(_valid));
2318 }
2319 
2320 #ifdef ASSERT
2321 State::~State() {
2322   _id = 99;
2323   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2324   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2325   memset(_cost, -3, sizeof(_cost));
2326   memset(_rule, -3, sizeof(_rule));
2327 }
2328 #endif
2329 
2330 #ifndef PRODUCT
2331 //---------------------------dump----------------------------------------------
2332 void State::dump() {
2333   tty->print("\n");
2334   dump(0);
2335 }
2336 
2337 void State::dump(int depth) {
2338   for( int j = 0; j < depth; j++ )
2339     tty->print("   ");
2340   tty->print("--N: ");
2341   _leaf->dump();
2342   uint i;
2343   for( i = 0; i < _LAST_MACH_OPER; i++ )
2344     // Check for valid entry
2345     if( valid(i) ) {
2346       for( int j = 0; j < depth; j++ )
2347         tty->print("   ");
2348         assert(_cost[i] != max_juint, "cost must be a valid value");
2349         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2350         tty->print_cr("%s  %d  %s",
2351                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2352       }
2353   tty->print_cr("");
2354 
2355   for( i=0; i<2; i++ )
2356     if( _kids[i] )
2357       _kids[i]->dump(depth+1);
2358 }
2359 #endif