1 //
   2 // Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Special Registers
  78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
  79 
  80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  81 // allocator, and only shows up in the encodings.
  82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  84 // Ok so here's the trick FPR1 is really st(0) except in the midst
  85 // of emission of assembly for a machnode. During the emission the fpu stack
  86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  87 // the stack will not have this element so FPR1 == st(0) from the
  88 // oopMap viewpoint. This same weirdness with numbering causes
  89 // instruction encoding to have to play games with the register
  90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  91 // where it does flt->flt moves to see an example
  92 //
  93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
 100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
 101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
 102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 107 
 108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
 109 // Word a in each register holds a Float, words ab hold a Double.
 110 // We currently do not use the SIMD capabilities, so registers cd
 111 // are unused at the moment.
 112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
 113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
 114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
 115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
 116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
 117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
 118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
 119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
 120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
 121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
 122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
 123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
 124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
 125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
 126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
 127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
 128 
 129 // Specify priority of register selection within phases of register
 130 // allocation.  Highest priority is first.  A useful heuristic is to
 131 // give registers a low priority when they are required by machine
 132 // instructions, like EAX and EDX.  Registers which are used as
 133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 134 // For the Intel integer registers, the equivalent Long pairs are
 135 // EDX:EAX, EBX:ECX, and EDI:EBP.
 136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 139                     FPR6L, FPR6H, FPR7L, FPR7H );
 140 
 141 alloc_class chunk1( XMM0a, XMM0b,
 142                     XMM1a, XMM1b,
 143                     XMM2a, XMM2b,
 144                     XMM3a, XMM3b,
 145                     XMM4a, XMM4b,
 146                     XMM5a, XMM5b,
 147                     XMM6a, XMM6b,
 148                     XMM7a, XMM7b, EFLAGS);
 149 
 150 
 151 //----------Architecture Description Register Classes--------------------------
 152 // Several register classes are automatically defined based upon information in
 153 // this architecture description.
 154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 158 //
 159 // Class for all registers
 160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 161 // Class for general registers
 162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 163 // Class for general registers which may be used for implicit null checks on win95
 164 // Also safe for use by tailjump. We don't want to allocate in rbp,
 165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 166 // Class of "X" registers
 167 reg_class x_reg(EBX, ECX, EDX, EAX);
 168 // Class of registers that can appear in an address with no offset.
 169 // EBP and ESP require an extra instruction byte for zero offset.
 170 // Used in fast-unlock
 171 reg_class p_reg(EDX, EDI, ESI, EBX);
 172 // Class for general registers not including ECX
 173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 174 // Class for general registers not including EAX
 175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 176 // Class for general registers not including EAX or EBX.
 177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 178 // Class of EAX (for multiply and divide operations)
 179 reg_class eax_reg(EAX);
 180 // Class of EBX (for atomic add)
 181 reg_class ebx_reg(EBX);
 182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 183 reg_class ecx_reg(ECX);
 184 // Class of EDX (for multiply and divide operations)
 185 reg_class edx_reg(EDX);
 186 // Class of EDI (for synchronization)
 187 reg_class edi_reg(EDI);
 188 // Class of ESI (for synchronization)
 189 reg_class esi_reg(ESI);
 190 // Singleton class for interpreter's stack pointer
 191 reg_class ebp_reg(EBP);
 192 // Singleton class for stack pointer
 193 reg_class sp_reg(ESP);
 194 // Singleton class for instruction pointer
 195 // reg_class ip_reg(EIP);
 196 // Singleton class for condition codes
 197 reg_class int_flags(EFLAGS);
 198 // Class of integer register pairs
 199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 200 // Class of integer register pairs that aligns with calling convention
 201 reg_class eadx_reg( EAX,EDX );
 202 reg_class ebcx_reg( ECX,EBX );
 203 // Not AX or DX, used in divides
 204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 205 
 206 // Floating point registers.  Notice FPR0 is not a choice.
 207 // FPR0 is not ever allocated; we use clever encodings to fake
 208 // a 2-address instructions out of Intels FP stack.
 209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 210 
 211 // make a register class for SSE registers
 212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
 213 
 214 // make a double register class for SSE2 registers
 215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
 216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
 217 
 218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 220                    FPR7L,FPR7H );
 221 
 222 reg_class flt_reg0( FPR1L );
 223 reg_class dbl_reg0( FPR1L,FPR1H );
 224 reg_class dbl_reg1( FPR2L,FPR2H );
 225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 227 
 228 // XMM6 and XMM7 could be used as temporary registers for long, float and
 229 // double values for SSE2.
 230 reg_class xdb_reg6( XMM6a,XMM6b );
 231 reg_class xdb_reg7( XMM7a,XMM7b );
 232 %}
 233 
 234 
 235 //----------SOURCE BLOCK-------------------------------------------------------
 236 // This is a block of C++ code which provides values, functions, and
 237 // definitions necessary in the rest of the architecture description
 238 source_hpp %{
 239 // Must be visible to the DFA in dfa_x86_32.cpp
 240 extern bool is_operand_hi32_zero(Node* n);
 241 %}
 242 
 243 source %{
 244 #define   RELOC_IMM32    Assembler::imm_operand
 245 #define   RELOC_DISP32   Assembler::disp32_operand
 246 
 247 #define __ _masm.
 248 
 249 // How to find the high register of a Long pair, given the low register
 250 #define   HIGH_FROM_LOW(x) ((x)+2)
 251 
 252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 254 // fast versions of NegF/NegD and AbsF/AbsD.
 255 
 256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 259   // of 128-bits operands for SSE instructions.
 260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 261   // Store the value to a 128-bits operand.
 262   operand[0] = lo;
 263   operand[1] = hi;
 264   return operand;
 265 }
 266 
 267 // Buffer for 128-bits masks used by SSE instructions.
 268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 269 
 270 // Static initialization during VM startup.
 271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 275 
 276 // Offset hacking within calls.
 277 static int pre_call_FPU_size() {
 278   if (Compile::current()->in_24_bit_fp_mode())
 279     return 6; // fldcw
 280   return 0;
 281 }
 282 
 283 static int preserve_SP_size() {
 284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
 285 }
 286 
 287 // !!!!! Special hack to get all type of calls to specify the byte offset
 288 //       from the start of the call to the point where the return address
 289 //       will point.
 290 int MachCallStaticJavaNode::ret_addr_offset() {
 291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
 292   if (_method_handle_invoke)
 293     offset += preserve_SP_size();
 294   return offset;
 295 }
 296 
 297 int MachCallDynamicJavaNode::ret_addr_offset() {
 298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
 299 }
 300 
 301 static int sizeof_FFree_Float_Stack_All = -1;
 302 
 303 int MachCallRuntimeNode::ret_addr_offset() {
 304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
 306 }
 307 
 308 // Indicate if the safepoint node needs the polling page as an input.
 309 // Since x86 does have absolute addressing, it doesn't.
 310 bool SafePointNode::needs_polling_address_input() {
 311   return false;
 312 }
 313 
 314 //
 315 // Compute padding required for nodes which need alignment
 316 //
 317 
 318 // The address of the call instruction needs to be 4-byte aligned to
 319 // ensure that it does not span a cache line so that it can be patched.
 320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 322   current_offset += 1;      // skip call opcode byte
 323   return round_to(current_offset, alignment_required()) - current_offset;
 324 }
 325 
 326 // The address of the call instruction needs to be 4-byte aligned to
 327 // ensure that it does not span a cache line so that it can be patched.
 328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 331   current_offset += 1;      // skip call opcode byte
 332   return round_to(current_offset, alignment_required()) - current_offset;
 333 }
 334 
 335 // The address of the call instruction needs to be 4-byte aligned to
 336 // ensure that it does not span a cache line so that it can be patched.
 337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 339   current_offset += 5;      // skip MOV instruction
 340   current_offset += 1;      // skip call opcode byte
 341   return round_to(current_offset, alignment_required()) - current_offset;
 342 }
 343 
 344 #ifndef PRODUCT
 345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
 346   st->print("INT3");
 347 }
 348 #endif
 349 
 350 // EMIT_RM()
 351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 353   cbuf.insts()->emit_int8(c);
 354 }
 355 
 356 // EMIT_CC()
 357 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 358   unsigned char c = (unsigned char)( f1 | f2 );
 359   cbuf.insts()->emit_int8(c);
 360 }
 361 
 362 // EMIT_OPCODE()
 363 void emit_opcode(CodeBuffer &cbuf, int code) {
 364   cbuf.insts()->emit_int8((unsigned char) code);
 365 }
 366 
 367 // EMIT_OPCODE() w/ relocation information
 368 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 369   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 370   emit_opcode(cbuf, code);
 371 }
 372 
 373 // EMIT_D8()
 374 void emit_d8(CodeBuffer &cbuf, int d8) {
 375   cbuf.insts()->emit_int8((unsigned char) d8);
 376 }
 377 
 378 // EMIT_D16()
 379 void emit_d16(CodeBuffer &cbuf, int d16) {
 380   cbuf.insts()->emit_int16(d16);
 381 }
 382 
 383 // EMIT_D32()
 384 void emit_d32(CodeBuffer &cbuf, int d32) {
 385   cbuf.insts()->emit_int32(d32);
 386 }
 387 
 388 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 389 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 390         int format) {
 391   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 392   cbuf.insts()->emit_int32(d32);
 393 }
 394 
 395 // emit 32 bit value and construct relocation entry from RelocationHolder
 396 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 397         int format) {
 398 #ifdef ASSERT
 399   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 400     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 401   }
 402 #endif
 403   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 404   cbuf.insts()->emit_int32(d32);
 405 }
 406 
 407 // Access stack slot for load or store
 408 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 409   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 410   if( -128 <= disp && disp <= 127 ) {
 411     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 412     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 413     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 414   } else {
 415     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 416     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 417     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 418   }
 419 }
 420 
 421    // eRegI ereg, memory mem) %{    // emit_reg_mem
 422 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
 423   // There is no index & no scale, use form without SIB byte
 424   if ((index == 0x4) &&
 425       (scale == 0) && (base != ESP_enc)) {
 426     // If no displacement, mode is 0x0; unless base is [EBP]
 427     if ( (displace == 0) && (base != EBP_enc) ) {
 428       emit_rm(cbuf, 0x0, reg_encoding, base);
 429     }
 430     else {                    // If 8-bit displacement, mode 0x1
 431       if ((displace >= -128) && (displace <= 127)
 432           && !(displace_is_oop) ) {
 433         emit_rm(cbuf, 0x1, reg_encoding, base);
 434         emit_d8(cbuf, displace);
 435       }
 436       else {                  // If 32-bit displacement
 437         if (base == -1) { // Special flag for absolute address
 438           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 439           // (manual lies; no SIB needed here)
 440           if ( displace_is_oop ) {
 441             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 442           } else {
 443             emit_d32      (cbuf, displace);
 444           }
 445         }
 446         else {                // Normal base + offset
 447           emit_rm(cbuf, 0x2, reg_encoding, base);
 448           if ( displace_is_oop ) {
 449             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 450           } else {
 451             emit_d32      (cbuf, displace);
 452           }
 453         }
 454       }
 455     }
 456   }
 457   else {                      // Else, encode with the SIB byte
 458     // If no displacement, mode is 0x0; unless base is [EBP]
 459     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 460       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 461       emit_rm(cbuf, scale, index, base);
 462     }
 463     else {                    // If 8-bit displacement, mode 0x1
 464       if ((displace >= -128) && (displace <= 127)
 465           && !(displace_is_oop) ) {
 466         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 467         emit_rm(cbuf, scale, index, base);
 468         emit_d8(cbuf, displace);
 469       }
 470       else {                  // If 32-bit displacement
 471         if (base == 0x04 ) {
 472           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 473           emit_rm(cbuf, scale, index, 0x04);
 474         } else {
 475           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 476           emit_rm(cbuf, scale, index, base);
 477         }
 478         if ( displace_is_oop ) {
 479           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 480         } else {
 481           emit_d32      (cbuf, displace);
 482         }
 483       }
 484     }
 485   }
 486 }
 487 
 488 
 489 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 490   if( dst_encoding == src_encoding ) {
 491     // reg-reg copy, use an empty encoding
 492   } else {
 493     emit_opcode( cbuf, 0x8B );
 494     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 495   }
 496 }
 497 
 498 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 499   if( dst_encoding == src_encoding ) {
 500     // reg-reg copy, use an empty encoding
 501   } else {
 502     MacroAssembler _masm(&cbuf);
 503 
 504     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
 505   }
 506 }
 507 
 508 
 509 //=============================================================================
 510 const bool Matcher::constant_table_absolute_addressing = true;
 511 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 512 
 513 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 514   // Empty encoding
 515 }
 516 
 517 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 518   return 0;
 519 }
 520 
 521 #ifndef PRODUCT
 522 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 523   st->print("# MachConstantBaseNode (empty encoding)");
 524 }
 525 #endif
 526 
 527 
 528 //=============================================================================
 529 #ifndef PRODUCT
 530 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 531   Compile* C = ra_->C;
 532   if( C->in_24_bit_fp_mode() ) {
 533     st->print("FLDCW  24 bit fpu control word");
 534     st->print_cr(""); st->print("\t");
 535   }
 536 
 537   int framesize = C->frame_slots() << LogBytesPerInt;
 538   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 539   // Remove two words for return addr and rbp,
 540   framesize -= 2*wordSize;
 541 
 542   // Calls to C2R adapters often do not accept exceptional returns.
 543   // We require that their callers must bang for them.  But be careful, because
 544   // some VM calls (such as call site linkage) can use several kilobytes of
 545   // stack.  But the stack safety zone should account for that.
 546   // See bugs 4446381, 4468289, 4497237.
 547   if (C->need_stack_bang(framesize)) {
 548     st->print_cr("# stack bang"); st->print("\t");
 549   }
 550   st->print_cr("PUSHL  EBP"); st->print("\t");
 551 
 552   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 553     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
 554     st->print_cr(""); st->print("\t");
 555     framesize -= wordSize;
 556   }
 557 
 558   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 559     if (framesize) {
 560       st->print("SUB    ESP,%d\t# Create frame",framesize);
 561     }
 562   } else {
 563     st->print("SUB    ESP,%d\t# Create frame",framesize);
 564   }
 565 }
 566 #endif
 567 
 568 
 569 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 570   Compile* C = ra_->C;
 571 
 572   if (UseSSE >= 2 && VerifyFPU) {
 573     MacroAssembler masm(&cbuf);
 574     masm.verify_FPU(0, "FPU stack must be clean on entry");
 575   }
 576 
 577   // WARNING: Initial instruction MUST be 5 bytes or longer so that
 578   // NativeJump::patch_verified_entry will be able to patch out the entry
 579   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
 580   // depth is ok at 5 bytes, the frame allocation can be either 3 or
 581   // 6 bytes. So if we don't do the fldcw or the push then we must
 582   // use the 6 byte frame allocation even if we have no frame. :-(
 583   // If method sets FPU control word do it now
 584   if( C->in_24_bit_fp_mode() ) {
 585     MacroAssembler masm(&cbuf);
 586     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 587   }
 588 
 589   int framesize = C->frame_slots() << LogBytesPerInt;
 590   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 591   // Remove two words for return addr and rbp,
 592   framesize -= 2*wordSize;
 593 
 594   // Calls to C2R adapters often do not accept exceptional returns.
 595   // We require that their callers must bang for them.  But be careful, because
 596   // some VM calls (such as call site linkage) can use several kilobytes of
 597   // stack.  But the stack safety zone should account for that.
 598   // See bugs 4446381, 4468289, 4497237.
 599   if (C->need_stack_bang(framesize)) {
 600     MacroAssembler masm(&cbuf);
 601     masm.generate_stack_overflow_check(framesize);
 602   }
 603 
 604   // We always push rbp, so that on return to interpreter rbp, will be
 605   // restored correctly and we can correct the stack.
 606   emit_opcode(cbuf, 0x50 | EBP_enc);
 607 
 608   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 609     emit_opcode(cbuf, 0x68); // push 0xbadb100d
 610     emit_d32(cbuf, 0xbadb100d);
 611     framesize -= wordSize;
 612   }
 613 
 614   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 615     if (framesize) {
 616       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
 617       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 618       emit_d8(cbuf, framesize);
 619     }
 620   } else {
 621     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
 622     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 623     emit_d32(cbuf, framesize);
 624   }
 625   C->set_frame_complete(cbuf.insts_size());
 626 
 627 #ifdef ASSERT
 628   if (VerifyStackAtCalls) {
 629     Label L;
 630     MacroAssembler masm(&cbuf);
 631     masm.push(rax);
 632     masm.mov(rax, rsp);
 633     masm.andptr(rax, StackAlignmentInBytes-1);
 634     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
 635     masm.pop(rax);
 636     masm.jcc(Assembler::equal, L);
 637     masm.stop("Stack is not properly aligned!");
 638     masm.bind(L);
 639   }
 640 #endif
 641 
 642 }
 643 
 644 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 645   return MachNode::size(ra_); // too many variables; just compute it the hard way
 646 }
 647 
 648 int MachPrologNode::reloc() const {
 649   return 0; // a large enough number
 650 }
 651 
 652 //=============================================================================
 653 #ifndef PRODUCT
 654 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 655   Compile *C = ra_->C;
 656   int framesize = C->frame_slots() << LogBytesPerInt;
 657   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 658   // Remove two words for return addr and rbp,
 659   framesize -= 2*wordSize;
 660 
 661   if( C->in_24_bit_fp_mode() ) {
 662     st->print("FLDCW  standard control word");
 663     st->cr(); st->print("\t");
 664   }
 665   if( framesize ) {
 666     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 667     st->cr(); st->print("\t");
 668   }
 669   st->print_cr("POPL   EBP"); st->print("\t");
 670   if( do_polling() && C->is_method_compilation() ) {
 671     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 672     st->cr(); st->print("\t");
 673   }
 674 }
 675 #endif
 676 
 677 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 678   Compile *C = ra_->C;
 679 
 680   // If method set FPU control word, restore to standard control word
 681   if( C->in_24_bit_fp_mode() ) {
 682     MacroAssembler masm(&cbuf);
 683     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 684   }
 685 
 686   int framesize = C->frame_slots() << LogBytesPerInt;
 687   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 688   // Remove two words for return addr and rbp,
 689   framesize -= 2*wordSize;
 690 
 691   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 692 
 693   if( framesize >= 128 ) {
 694     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 695     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 696     emit_d32(cbuf, framesize);
 697   }
 698   else if( framesize ) {
 699     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 700     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 701     emit_d8(cbuf, framesize);
 702   }
 703 
 704   emit_opcode(cbuf, 0x58 | EBP_enc);
 705 
 706   if( do_polling() && C->is_method_compilation() ) {
 707     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 708     emit_opcode(cbuf,0x85);
 709     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 710     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 711   }
 712 }
 713 
 714 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 715   Compile *C = ra_->C;
 716   // If method set FPU control word, restore to standard control word
 717   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 718   if( do_polling() && C->is_method_compilation() ) size += 6;
 719 
 720   int framesize = C->frame_slots() << LogBytesPerInt;
 721   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 722   // Remove two words for return addr and rbp,
 723   framesize -= 2*wordSize;
 724 
 725   size++; // popl rbp,
 726 
 727   if( framesize >= 128 ) {
 728     size += 6;
 729   } else {
 730     size += framesize ? 3 : 0;
 731   }
 732   return size;
 733 }
 734 
 735 int MachEpilogNode::reloc() const {
 736   return 0; // a large enough number
 737 }
 738 
 739 const Pipeline * MachEpilogNode::pipeline() const {
 740   return MachNode::pipeline_class();
 741 }
 742 
 743 int MachEpilogNode::safepoint_offset() const { return 0; }
 744 
 745 //=============================================================================
 746 
 747 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 748 static enum RC rc_class( OptoReg::Name reg ) {
 749 
 750   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 751   if (OptoReg::is_stack(reg)) return rc_stack;
 752 
 753   VMReg r = OptoReg::as_VMReg(reg);
 754   if (r->is_Register()) return rc_int;
 755   if (r->is_FloatRegister()) {
 756     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 757     return rc_float;
 758   }
 759   assert(r->is_XMMRegister(), "must be");
 760   return rc_xmm;
 761 }
 762 
 763 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 764                         int opcode, const char *op_str, int size, outputStream* st ) {
 765   if( cbuf ) {
 766     emit_opcode  (*cbuf, opcode );
 767     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
 768 #ifndef PRODUCT
 769   } else if( !do_size ) {
 770     if( size != 0 ) st->print("\n\t");
 771     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 772       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 773       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 774     } else { // FLD, FST, PUSH, POP
 775       st->print("%s [ESP + #%d]",op_str,offset);
 776     }
 777 #endif
 778   }
 779   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 780   return size+3+offset_size;
 781 }
 782 
 783 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 784 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 785                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 786   if( cbuf ) {
 787     if( reg_lo+1 == reg_hi ) { // double move?
 788       if( is_load && !UseXmmLoadAndClearUpper )
 789         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
 790       else
 791         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
 792     } else {
 793       emit_opcode(*cbuf, 0xF3 );
 794     }
 795     emit_opcode(*cbuf, 0x0F );
 796     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
 797       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
 798     else
 799       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
 800     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
 801 #ifndef PRODUCT
 802   } else if( !do_size ) {
 803     if( size != 0 ) st->print("\n\t");
 804     if( reg_lo+1 == reg_hi ) { // double move?
 805       if( is_load ) st->print("%s %s,[ESP + #%d]",
 806                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 807                                Matcher::regName[reg_lo], offset);
 808       else          st->print("MOVSD  [ESP + #%d],%s",
 809                                offset, Matcher::regName[reg_lo]);
 810     } else {
 811       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
 812                                Matcher::regName[reg_lo], offset);
 813       else          st->print("MOVSS  [ESP + #%d],%s",
 814                                offset, Matcher::regName[reg_lo]);
 815     }
 816 #endif
 817   }
 818   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 819   return size+5+offset_size;
 820 }
 821 
 822 
 823 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 824                             int src_hi, int dst_hi, int size, outputStream* st ) {
 825   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
 826     if( cbuf ) {
 827       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
 828         emit_opcode(*cbuf, 0x66 );
 829       }
 830       emit_opcode(*cbuf, 0x0F );
 831       emit_opcode(*cbuf, 0x28 );
 832       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 833 #ifndef PRODUCT
 834     } else if( !do_size ) {
 835       if( size != 0 ) st->print("\n\t");
 836       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 837         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 838       } else {
 839         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 840       }
 841 #endif
 842     }
 843     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
 844   } else {
 845     if( cbuf ) {
 846       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
 847       emit_opcode(*cbuf, 0x0F );
 848       emit_opcode(*cbuf, 0x10 );
 849       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 850 #ifndef PRODUCT
 851     } else if( !do_size ) {
 852       if( size != 0 ) st->print("\n\t");
 853       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 854         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 855       } else {
 856         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 857       }
 858 #endif
 859     }
 860     return size+4;
 861   }
 862 }
 863 
 864 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 865                             int src_hi, int dst_hi, int size, outputStream* st ) {
 866   // 32-bit
 867   if (cbuf) {
 868     emit_opcode(*cbuf, 0x66);
 869     emit_opcode(*cbuf, 0x0F);
 870     emit_opcode(*cbuf, 0x6E);
 871     emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7);
 872 #ifndef PRODUCT
 873   } else if (!do_size) {
 874     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 875 #endif
 876   }
 877   return 4;
 878 }
 879 
 880 
 881 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 882                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 883   // 32-bit
 884   if (cbuf) {
 885     emit_opcode(*cbuf, 0x66);
 886     emit_opcode(*cbuf, 0x0F);
 887     emit_opcode(*cbuf, 0x7E);
 888     emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7);
 889 #ifndef PRODUCT
 890   } else if (!do_size) {
 891     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 892 #endif
 893   }
 894   return 4;
 895 }
 896 
 897 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 898   if( cbuf ) {
 899     emit_opcode(*cbuf, 0x8B );
 900     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 901 #ifndef PRODUCT
 902   } else if( !do_size ) {
 903     if( size != 0 ) st->print("\n\t");
 904     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 905 #endif
 906   }
 907   return size+2;
 908 }
 909 
 910 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 911                                  int offset, int size, outputStream* st ) {
 912   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 913     if( cbuf ) {
 914       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 915       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 916 #ifndef PRODUCT
 917     } else if( !do_size ) {
 918       if( size != 0 ) st->print("\n\t");
 919       st->print("FLD    %s",Matcher::regName[src_lo]);
 920 #endif
 921     }
 922     size += 2;
 923   }
 924 
 925   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 926   const char *op_str;
 927   int op;
 928   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 929     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 930     op = 0xDD;
 931   } else {                   // 32-bit store
 932     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 933     op = 0xD9;
 934     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 935   }
 936 
 937   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 938 }
 939 
 940 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 941   // Get registers to move
 942   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 943   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 944   OptoReg::Name dst_second = ra_->get_reg_second(this );
 945   OptoReg::Name dst_first = ra_->get_reg_first(this );
 946 
 947   enum RC src_second_rc = rc_class(src_second);
 948   enum RC src_first_rc = rc_class(src_first);
 949   enum RC dst_second_rc = rc_class(dst_second);
 950   enum RC dst_first_rc = rc_class(dst_first);
 951 
 952   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 953 
 954   // Generate spill code!
 955   int size = 0;
 956 
 957   if( src_first == dst_first && src_second == dst_second )
 958     return size;            // Self copy, no move
 959 
 960   // --------------------------------------
 961   // Check for mem-mem move.  push/pop to move.
 962   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
 963     if( src_second == dst_first ) { // overlapping stack copy ranges
 964       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
 965       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 966       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 967       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
 968     }
 969     // move low bits
 970     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
 971     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
 972     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
 973       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 974       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 975     }
 976     return size;
 977   }
 978 
 979   // --------------------------------------
 980   // Check for integer reg-reg copy
 981   if( src_first_rc == rc_int && dst_first_rc == rc_int )
 982     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
 983 
 984   // Check for integer store
 985   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
 986     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
 987 
 988   // Check for integer load
 989   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
 990     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
 991 
 992   // Check for integer reg-xmm reg copy
 993   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
 994     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
 995             "no 64 bit integer-float reg moves" );
 996     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
 997   }
 998   // --------------------------------------
 999   // Check for float reg-reg copy
1000   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1001     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1002             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1003     if( cbuf ) {
1004 
1005       // Note the mucking with the register encode to compensate for the 0/1
1006       // indexing issue mentioned in a comment in the reg_def sections
1007       // for FPR registers many lines above here.
1008 
1009       if( src_first != FPR1L_num ) {
1010         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1011         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1012         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1013         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1014      } else {
1015         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1016         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1017      }
1018 #ifndef PRODUCT
1019     } else if( !do_size ) {
1020       if( size != 0 ) st->print("\n\t");
1021       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1022       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1023 #endif
1024     }
1025     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1026   }
1027 
1028   // Check for float store
1029   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1030     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1031   }
1032 
1033   // Check for float load
1034   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1035     int offset = ra_->reg2offset(src_first);
1036     const char *op_str;
1037     int op;
1038     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1039       op_str = "FLD_D";
1040       op = 0xDD;
1041     } else {                   // 32-bit load
1042       op_str = "FLD_S";
1043       op = 0xD9;
1044       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1045     }
1046     if( cbuf ) {
1047       emit_opcode  (*cbuf, op );
1048       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
1049       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1050       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1051 #ifndef PRODUCT
1052     } else if( !do_size ) {
1053       if( size != 0 ) st->print("\n\t");
1054       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1055 #endif
1056     }
1057     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1058     return size + 3+offset_size+2;
1059   }
1060 
1061   // Check for xmm reg-reg copy
1062   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1063     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1064             (src_first+1 == src_second && dst_first+1 == dst_second),
1065             "no non-adjacent float-moves" );
1066     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1067   }
1068 
1069   // Check for xmm reg-integer reg copy
1070   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1071     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1072             "no 64 bit float-integer reg moves" );
1073     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1074   }
1075 
1076   // Check for xmm store
1077   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1078     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1079   }
1080 
1081   // Check for float xmm load
1082   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1083     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1084   }
1085 
1086   // Copy from float reg to xmm reg
1087   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1088     // copy to the top of stack from floating point reg
1089     // and use LEA to preserve flags
1090     if( cbuf ) {
1091       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1092       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1093       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1094       emit_d8(*cbuf,0xF8);
1095 #ifndef PRODUCT
1096     } else if( !do_size ) {
1097       if( size != 0 ) st->print("\n\t");
1098       st->print("LEA    ESP,[ESP-8]");
1099 #endif
1100     }
1101     size += 4;
1102 
1103     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1104 
1105     // Copy from the temp memory to the xmm reg.
1106     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1107 
1108     if( cbuf ) {
1109       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1110       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1111       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1112       emit_d8(*cbuf,0x08);
1113 #ifndef PRODUCT
1114     } else if( !do_size ) {
1115       if( size != 0 ) st->print("\n\t");
1116       st->print("LEA    ESP,[ESP+8]");
1117 #endif
1118     }
1119     size += 4;
1120     return size;
1121   }
1122 
1123   assert( size > 0, "missed a case" );
1124 
1125   // --------------------------------------------------------------------
1126   // Check for second bits still needing moving.
1127   if( src_second == dst_second )
1128     return size;               // Self copy; no move
1129   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1130 
1131   // Check for second word int-int move
1132   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1133     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1134 
1135   // Check for second word integer store
1136   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1137     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1138 
1139   // Check for second word integer load
1140   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1141     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1142 
1143 
1144   Unimplemented();
1145 }
1146 
1147 #ifndef PRODUCT
1148 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1149   implementation( NULL, ra_, false, st );
1150 }
1151 #endif
1152 
1153 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1154   implementation( &cbuf, ra_, false, NULL );
1155 }
1156 
1157 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1158   return implementation( NULL, ra_, true, NULL );
1159 }
1160 
1161 //=============================================================================
1162 #ifndef PRODUCT
1163 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1164   st->print("NOP \t# %d bytes pad for loops and calls", _count);
1165 }
1166 #endif
1167 
1168 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1169   MacroAssembler _masm(&cbuf);
1170   __ nop(_count);
1171 }
1172 
1173 uint MachNopNode::size(PhaseRegAlloc *) const {
1174   return _count;
1175 }
1176 
1177 
1178 //=============================================================================
1179 #ifndef PRODUCT
1180 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1181   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1182   int reg = ra_->get_reg_first(this);
1183   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1184 }
1185 #endif
1186 
1187 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1188   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1189   int reg = ra_->get_encode(this);
1190   if( offset >= 128 ) {
1191     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1192     emit_rm(cbuf, 0x2, reg, 0x04);
1193     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1194     emit_d32(cbuf, offset);
1195   }
1196   else {
1197     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1198     emit_rm(cbuf, 0x1, reg, 0x04);
1199     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1200     emit_d8(cbuf, offset);
1201   }
1202 }
1203 
1204 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1205   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1206   if( offset >= 128 ) {
1207     return 7;
1208   }
1209   else {
1210     return 4;
1211   }
1212 }
1213 
1214 //=============================================================================
1215 
1216 // emit call stub, compiled java to interpreter
1217 void emit_java_to_interp(CodeBuffer &cbuf ) {
1218   // Stub is fixed up when the corresponding call is converted from calling
1219   // compiled code to calling interpreted code.
1220   // mov rbx,0
1221   // jmp -1
1222 
1223   address mark = cbuf.insts_mark();  // get mark within main instrs section
1224 
1225   // Note that the code buffer's insts_mark is always relative to insts.
1226   // That's why we must use the macroassembler to generate a stub.
1227   MacroAssembler _masm(&cbuf);
1228 
1229   address base =
1230   __ start_a_stub(Compile::MAX_stubs_size);
1231   if (base == NULL)  return;  // CodeBuffer::expand failed
1232   // static stub relocation stores the instruction address of the call
1233   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1234   // static stub relocation also tags the methodOop in the code-stream.
1235   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1236   // This is recognized as unresolved by relocs/nativeInst/ic code
1237   __ jump(RuntimeAddress(__ pc()));
1238 
1239   __ end_a_stub();
1240   // Update current stubs pointer and restore insts_end.
1241 }
1242 // size of call stub, compiled java to interpretor
1243 uint size_java_to_interp() {
1244   return 10;  // movl; jmp
1245 }
1246 // relocation entries for call stub, compiled java to interpretor
1247 uint reloc_java_to_interp() {
1248   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1249 }
1250 
1251 //=============================================================================
1252 #ifndef PRODUCT
1253 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1254   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1255   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1256   st->print_cr("\tNOP");
1257   st->print_cr("\tNOP");
1258   if( !OptoBreakpoint )
1259     st->print_cr("\tNOP");
1260 }
1261 #endif
1262 
1263 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1264   MacroAssembler masm(&cbuf);
1265 #ifdef ASSERT
1266   uint insts_size = cbuf.insts_size();
1267 #endif
1268   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1269   masm.jump_cc(Assembler::notEqual,
1270                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1271   /* WARNING these NOPs are critical so that verified entry point is properly
1272      aligned for patching by NativeJump::patch_verified_entry() */
1273   int nops_cnt = 2;
1274   if( !OptoBreakpoint ) // Leave space for int3
1275      nops_cnt += 1;
1276   masm.nop(nops_cnt);
1277 
1278   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1279 }
1280 
1281 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1282   return OptoBreakpoint ? 11 : 12;
1283 }
1284 
1285 
1286 //=============================================================================
1287 uint size_exception_handler() {
1288   // NativeCall instruction size is the same as NativeJump.
1289   // exception handler starts out as jump and can be patched to
1290   // a call be deoptimization.  (4932387)
1291   // Note that this value is also credited (in output.cpp) to
1292   // the size of the code section.
1293   return NativeJump::instruction_size;
1294 }
1295 
1296 // Emit exception handler code.  Stuff framesize into a register
1297 // and call a VM stub routine.
1298 int emit_exception_handler(CodeBuffer& cbuf) {
1299 
1300   // Note that the code buffer's insts_mark is always relative to insts.
1301   // That's why we must use the macroassembler to generate a handler.
1302   MacroAssembler _masm(&cbuf);
1303   address base =
1304   __ start_a_stub(size_exception_handler());
1305   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1306   int offset = __ offset();
1307   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1308   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1309   __ end_a_stub();
1310   return offset;
1311 }
1312 
1313 uint size_deopt_handler() {
1314   // NativeCall instruction size is the same as NativeJump.
1315   // exception handler starts out as jump and can be patched to
1316   // a call be deoptimization.  (4932387)
1317   // Note that this value is also credited (in output.cpp) to
1318   // the size of the code section.
1319   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1320 }
1321 
1322 // Emit deopt handler code.
1323 int emit_deopt_handler(CodeBuffer& cbuf) {
1324 
1325   // Note that the code buffer's insts_mark is always relative to insts.
1326   // That's why we must use the macroassembler to generate a handler.
1327   MacroAssembler _masm(&cbuf);
1328   address base =
1329   __ start_a_stub(size_exception_handler());
1330   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1331   int offset = __ offset();
1332   InternalAddress here(__ pc());
1333   __ pushptr(here.addr());
1334 
1335   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1336   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1337   __ end_a_stub();
1338   return offset;
1339 }
1340 
1341 
1342 const bool Matcher::match_rule_supported(int opcode) {
1343   if (!has_match_rule(opcode))
1344     return false;
1345 
1346   return true;  // Per default match rules are supported.
1347 }
1348 
1349 int Matcher::regnum_to_fpu_offset(int regnum) {
1350   return regnum - 32; // The FP registers are in the second chunk
1351 }
1352 
1353 // This is UltraSparc specific, true just means we have fast l2f conversion
1354 const bool Matcher::convL2FSupported(void) {
1355   return true;
1356 }
1357 
1358 // Vector width in bytes
1359 const uint Matcher::vector_width_in_bytes(void) {
1360   return UseSSE >= 2 ? 8 : 0;
1361 }
1362 
1363 // Vector ideal reg
1364 const uint Matcher::vector_ideal_reg(void) {
1365   return Op_RegD;
1366 }
1367 
1368 // Is this branch offset short enough that a short branch can be used?
1369 //
1370 // NOTE: If the platform does not provide any short branch variants, then
1371 //       this method should return false for offset 0.
1372 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1373   // The passed offset is relative to address of the branch.
1374   // On 86 a branch displacement is calculated relative to address
1375   // of a next instruction.
1376   offset -= br_size;
1377 
1378   // the short version of jmpConUCF2 contains multiple branches,
1379   // making the reach slightly less
1380   if (rule == jmpConUCF2_rule)
1381     return (-126 <= offset && offset <= 125);
1382   return (-128 <= offset && offset <= 127);
1383 }
1384 
1385 const bool Matcher::isSimpleConstant64(jlong value) {
1386   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1387   return false;
1388 }
1389 
1390 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1391 const bool Matcher::init_array_count_is_in_bytes = false;
1392 
1393 // Threshold size for cleararray.
1394 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1395 
1396 // Should the Matcher clone shifts on addressing modes, expecting them to
1397 // be subsumed into complex addressing expressions or compute them into
1398 // registers?  True for Intel but false for most RISCs
1399 const bool Matcher::clone_shift_expressions = true;
1400 
1401 // Do we need to mask the count passed to shift instructions or does
1402 // the cpu only look at the lower 5/6 bits anyway?
1403 const bool Matcher::need_masked_shift_count = false;
1404 
1405 bool Matcher::narrow_oop_use_complex_address() {
1406   ShouldNotCallThis();
1407   return true;
1408 }
1409 
1410 
1411 // Is it better to copy float constants, or load them directly from memory?
1412 // Intel can load a float constant from a direct address, requiring no
1413 // extra registers.  Most RISCs will have to materialize an address into a
1414 // register first, so they would do better to copy the constant from stack.
1415 const bool Matcher::rematerialize_float_constants = true;
1416 
1417 // If CPU can load and store mis-aligned doubles directly then no fixup is
1418 // needed.  Else we split the double into 2 integer pieces and move it
1419 // piece-by-piece.  Only happens when passing doubles into C code as the
1420 // Java calling convention forces doubles to be aligned.
1421 const bool Matcher::misaligned_doubles_ok = true;
1422 
1423 
1424 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1425   // Get the memory operand from the node
1426   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1427   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1428   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1429   uint opcnt     = 1;                 // First operand
1430   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1431   while( idx >= skipped+num_edges ) {
1432     skipped += num_edges;
1433     opcnt++;                          // Bump operand count
1434     assert( opcnt < numopnds, "Accessing non-existent operand" );
1435     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1436   }
1437 
1438   MachOper *memory = node->_opnds[opcnt];
1439   MachOper *new_memory = NULL;
1440   switch (memory->opcode()) {
1441   case DIRECT:
1442   case INDOFFSET32X:
1443     // No transformation necessary.
1444     return;
1445   case INDIRECT:
1446     new_memory = new (C) indirect_win95_safeOper( );
1447     break;
1448   case INDOFFSET8:
1449     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1450     break;
1451   case INDOFFSET32:
1452     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1453     break;
1454   case INDINDEXOFFSET:
1455     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1456     break;
1457   case INDINDEXSCALE:
1458     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1459     break;
1460   case INDINDEXSCALEOFFSET:
1461     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1462     break;
1463   case LOAD_LONG_INDIRECT:
1464   case LOAD_LONG_INDOFFSET32:
1465     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1466     return;
1467   default:
1468     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1469     return;
1470   }
1471   node->_opnds[opcnt] = new_memory;
1472 }
1473 
1474 // Advertise here if the CPU requires explicit rounding operations
1475 // to implement the UseStrictFP mode.
1476 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1477 
1478 // Are floats conerted to double when stored to stack during deoptimization?
1479 // On x32 it is stored with convertion only when FPU is used for floats.
1480 bool Matcher::float_in_double() { return (UseSSE == 0); }
1481 
1482 // Do ints take an entire long register or just half?
1483 const bool Matcher::int_in_long = false;
1484 
1485 // Return whether or not this register is ever used as an argument.  This
1486 // function is used on startup to build the trampoline stubs in generateOptoStub.
1487 // Registers not mentioned will be killed by the VM call in the trampoline, and
1488 // arguments in those registers not be available to the callee.
1489 bool Matcher::can_be_java_arg( int reg ) {
1490   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1491   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1492   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1493   return false;
1494 }
1495 
1496 bool Matcher::is_spillable_arg( int reg ) {
1497   return can_be_java_arg(reg);
1498 }
1499 
1500 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1501   // Use hardware integer DIV instruction when
1502   // it is faster than a code which use multiply.
1503   // Only when constant divisor fits into 32 bit
1504   // (min_jint is excluded to get only correct
1505   // positive 32 bit values from negative).
1506   return VM_Version::has_fast_idiv() &&
1507          (divisor == (int)divisor && divisor != min_jint);
1508 }
1509 
1510 // Register for DIVI projection of divmodI
1511 RegMask Matcher::divI_proj_mask() {
1512   return EAX_REG_mask;
1513 }
1514 
1515 // Register for MODI projection of divmodI
1516 RegMask Matcher::modI_proj_mask() {
1517   return EDX_REG_mask;
1518 }
1519 
1520 // Register for DIVL projection of divmodL
1521 RegMask Matcher::divL_proj_mask() {
1522   ShouldNotReachHere();
1523   return RegMask();
1524 }
1525 
1526 // Register for MODL projection of divmodL
1527 RegMask Matcher::modL_proj_mask() {
1528   ShouldNotReachHere();
1529   return RegMask();
1530 }
1531 
1532 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1533   return EBP_REG_mask;
1534 }
1535 
1536 // Returns true if the high 32 bits of the value is known to be zero.
1537 bool is_operand_hi32_zero(Node* n) {
1538   int opc = n->Opcode();
1539   if (opc == Op_LoadUI2L) {
1540     return true;
1541   }
1542   if (opc == Op_AndL) {
1543     Node* o2 = n->in(2);
1544     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1545       return true;
1546     }
1547   }
1548   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1549     return true;
1550   }
1551   return false;
1552 }
1553 
1554 %}
1555 
1556 //----------ENCODING BLOCK-----------------------------------------------------
1557 // This block specifies the encoding classes used by the compiler to output
1558 // byte streams.  Encoding classes generate functions which are called by
1559 // Machine Instruction Nodes in order to generate the bit encoding of the
1560 // instruction.  Operands specify their base encoding interface with the
1561 // interface keyword.  There are currently supported four interfaces,
1562 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1563 // operand to generate a function which returns its register number when
1564 // queried.   CONST_INTER causes an operand to generate a function which
1565 // returns the value of the constant when queried.  MEMORY_INTER causes an
1566 // operand to generate four functions which return the Base Register, the
1567 // Index Register, the Scale Value, and the Offset Value of the operand when
1568 // queried.  COND_INTER causes an operand to generate six functions which
1569 // return the encoding code (ie - encoding bits for the instruction)
1570 // associated with each basic boolean condition for a conditional instruction.
1571 // Instructions specify two basic values for encoding.  They use the
1572 // ins_encode keyword to specify their encoding class (which must be one of
1573 // the class names specified in the encoding block), and they use the
1574 // opcode keyword to specify, in order, their primary, secondary, and
1575 // tertiary opcode.  Only the opcode sections which a particular instruction
1576 // needs for encoding need to be specified.
1577 encode %{
1578   // Build emit functions for each basic byte or larger field in the intel
1579   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1580   // code in the enc_class source block.  Emit functions will live in the
1581   // main source block for now.  In future, we can generalize this by
1582   // adding a syntax that specifies the sizes of fields in an order,
1583   // so that the adlc can build the emit functions automagically
1584 
1585   // Emit primary opcode
1586   enc_class OpcP %{
1587     emit_opcode(cbuf, $primary);
1588   %}
1589 
1590   // Emit secondary opcode
1591   enc_class OpcS %{
1592     emit_opcode(cbuf, $secondary);
1593   %}
1594 
1595   // Emit opcode directly
1596   enc_class Opcode(immI d8) %{
1597     emit_opcode(cbuf, $d8$$constant);
1598   %}
1599 
1600   enc_class SizePrefix %{
1601     emit_opcode(cbuf,0x66);
1602   %}
1603 
1604   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1605     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1606   %}
1607 
1608   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1609     emit_opcode(cbuf,$opcode$$constant);
1610     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1611   %}
1612 
1613   enc_class mov_r32_imm0( eRegI dst ) %{
1614     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1615     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1616   %}
1617 
1618   enc_class cdq_enc %{
1619     // Full implementation of Java idiv and irem; checks for
1620     // special case as described in JVM spec., p.243 & p.271.
1621     //
1622     //         normal case                           special case
1623     //
1624     // input : rax,: dividend                         min_int
1625     //         reg: divisor                          -1
1626     //
1627     // output: rax,: quotient  (= rax, idiv reg)       min_int
1628     //         rdx: remainder (= rax, irem reg)       0
1629     //
1630     //  Code sequnce:
1631     //
1632     //  81 F8 00 00 00 80    cmp         rax,80000000h
1633     //  0F 85 0B 00 00 00    jne         normal_case
1634     //  33 D2                xor         rdx,edx
1635     //  83 F9 FF             cmp         rcx,0FFh
1636     //  0F 84 03 00 00 00    je          done
1637     //                  normal_case:
1638     //  99                   cdq
1639     //  F7 F9                idiv        rax,ecx
1640     //                  done:
1641     //
1642     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1643     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1644     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1645     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1646     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1647     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1648     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1649     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1650     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1651     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1652     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1653     // normal_case:
1654     emit_opcode(cbuf,0x99);                                         // cdq
1655     // idiv (note: must be emitted by the user of this rule)
1656     // normal:
1657   %}
1658 
1659   // Dense encoding for older common ops
1660   enc_class Opc_plus(immI opcode, eRegI reg) %{
1661     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1662   %}
1663 
1664 
1665   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1666   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1667     // Check for 8-bit immediate, and set sign extend bit in opcode
1668     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1669       emit_opcode(cbuf, $primary | 0x02);
1670     }
1671     else {                          // If 32-bit immediate
1672       emit_opcode(cbuf, $primary);
1673     }
1674   %}
1675 
1676   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1677     // Emit primary opcode and set sign-extend bit
1678     // Check for 8-bit immediate, and set sign extend bit in opcode
1679     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1680       emit_opcode(cbuf, $primary | 0x02);    }
1681     else {                          // If 32-bit immediate
1682       emit_opcode(cbuf, $primary);
1683     }
1684     // Emit r/m byte with secondary opcode, after primary opcode.
1685     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1686   %}
1687 
1688   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1689     // Check for 8-bit immediate, and set sign extend bit in opcode
1690     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1691       $$$emit8$imm$$constant;
1692     }
1693     else {                          // If 32-bit immediate
1694       // Output immediate
1695       $$$emit32$imm$$constant;
1696     }
1697   %}
1698 
1699   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1700     // Emit primary opcode and set sign-extend bit
1701     // Check for 8-bit immediate, and set sign extend bit in opcode
1702     int con = (int)$imm$$constant; // Throw away top bits
1703     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1704     // Emit r/m byte with secondary opcode, after primary opcode.
1705     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1706     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1707     else                               emit_d32(cbuf,con);
1708   %}
1709 
1710   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1711     // Emit primary opcode and set sign-extend bit
1712     // Check for 8-bit immediate, and set sign extend bit in opcode
1713     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1714     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1715     // Emit r/m byte with tertiary opcode, after primary opcode.
1716     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1717     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1718     else                               emit_d32(cbuf,con);
1719   %}
1720 
1721   enc_class OpcSReg (eRegI dst) %{    // BSWAP
1722     emit_cc(cbuf, $secondary, $dst$$reg );
1723   %}
1724 
1725   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1726     int destlo = $dst$$reg;
1727     int desthi = HIGH_FROM_LOW(destlo);
1728     // bswap lo
1729     emit_opcode(cbuf, 0x0F);
1730     emit_cc(cbuf, 0xC8, destlo);
1731     // bswap hi
1732     emit_opcode(cbuf, 0x0F);
1733     emit_cc(cbuf, 0xC8, desthi);
1734     // xchg lo and hi
1735     emit_opcode(cbuf, 0x87);
1736     emit_rm(cbuf, 0x3, destlo, desthi);
1737   %}
1738 
1739   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1740     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1741   %}
1742 
1743   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1744     $$$emit8$primary;
1745     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1746   %}
1747 
1748   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1749     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1750     emit_d8(cbuf, op >> 8 );
1751     emit_d8(cbuf, op & 255);
1752   %}
1753 
1754   // emulate a CMOV with a conditional branch around a MOV
1755   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1756     // Invert sense of branch from sense of CMOV
1757     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1758     emit_d8( cbuf, $brOffs$$constant );
1759   %}
1760 
1761   enc_class enc_PartialSubtypeCheck( ) %{
1762     Register Redi = as_Register(EDI_enc); // result register
1763     Register Reax = as_Register(EAX_enc); // super class
1764     Register Recx = as_Register(ECX_enc); // killed
1765     Register Resi = as_Register(ESI_enc); // sub class
1766     Label miss;
1767 
1768     MacroAssembler _masm(&cbuf);
1769     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1770                                      NULL, &miss,
1771                                      /*set_cond_codes:*/ true);
1772     if ($primary) {
1773       __ xorptr(Redi, Redi);
1774     }
1775     __ bind(miss);
1776   %}
1777 
1778   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1779     MacroAssembler masm(&cbuf);
1780     int start = masm.offset();
1781     if (UseSSE >= 2) {
1782       if (VerifyFPU) {
1783         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1784       }
1785     } else {
1786       // External c_calling_convention expects the FPU stack to be 'clean'.
1787       // Compiled code leaves it dirty.  Do cleanup now.
1788       masm.empty_FPU_stack();
1789     }
1790     if (sizeof_FFree_Float_Stack_All == -1) {
1791       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1792     } else {
1793       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1794     }
1795   %}
1796 
1797   enc_class Verify_FPU_For_Leaf %{
1798     if( VerifyFPU ) {
1799       MacroAssembler masm(&cbuf);
1800       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1801     }
1802   %}
1803 
1804   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1805     // This is the instruction starting address for relocation info.
1806     cbuf.set_insts_mark();
1807     $$$emit8$primary;
1808     // CALL directly to the runtime
1809     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1810                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1811 
1812     if (UseSSE >= 2) {
1813       MacroAssembler _masm(&cbuf);
1814       BasicType rt = tf()->return_type();
1815 
1816       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1817         // A C runtime call where the return value is unused.  In SSE2+
1818         // mode the result needs to be removed from the FPU stack.  It's
1819         // likely that this function call could be removed by the
1820         // optimizer if the C function is a pure function.
1821         __ ffree(0);
1822       } else if (rt == T_FLOAT) {
1823         __ lea(rsp, Address(rsp, -4));
1824         __ fstp_s(Address(rsp, 0));
1825         __ movflt(xmm0, Address(rsp, 0));
1826         __ lea(rsp, Address(rsp,  4));
1827       } else if (rt == T_DOUBLE) {
1828         __ lea(rsp, Address(rsp, -8));
1829         __ fstp_d(Address(rsp, 0));
1830         __ movdbl(xmm0, Address(rsp, 0));
1831         __ lea(rsp, Address(rsp,  8));
1832       }
1833     }
1834   %}
1835 
1836 
1837   enc_class pre_call_FPU %{
1838     // If method sets FPU control word restore it here
1839     debug_only(int off0 = cbuf.insts_size());
1840     if( Compile::current()->in_24_bit_fp_mode() ) {
1841       MacroAssembler masm(&cbuf);
1842       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1843     }
1844     debug_only(int off1 = cbuf.insts_size());
1845     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
1846   %}
1847 
1848   enc_class post_call_FPU %{
1849     // If method sets FPU control word do it here also
1850     if( Compile::current()->in_24_bit_fp_mode() ) {
1851       MacroAssembler masm(&cbuf);
1852       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1853     }
1854   %}
1855 
1856   enc_class preserve_SP %{
1857     debug_only(int off0 = cbuf.insts_size());
1858     MacroAssembler _masm(&cbuf);
1859     // RBP is preserved across all calls, even compiled calls.
1860     // Use it to preserve RSP in places where the callee might change the SP.
1861     __ movptr(rbp_mh_SP_save, rsp);
1862     debug_only(int off1 = cbuf.insts_size());
1863     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
1864   %}
1865 
1866   enc_class restore_SP %{
1867     MacroAssembler _masm(&cbuf);
1868     __ movptr(rsp, rbp_mh_SP_save);
1869   %}
1870 
1871   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1872     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1873     // who we intended to call.
1874     cbuf.set_insts_mark();
1875     $$$emit8$primary;
1876     if ( !_method ) {
1877       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1878                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1879     } else if(_optimized_virtual) {
1880       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1881                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1882     } else {
1883       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1884                      static_call_Relocation::spec(), RELOC_IMM32 );
1885     }
1886     if( _method ) {  // Emit stub for static call
1887       emit_java_to_interp(cbuf);
1888     }
1889   %}
1890 
1891   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1892     // !!!!!
1893     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1894     // emit_call_dynamic_prologue( cbuf );
1895     cbuf.set_insts_mark();
1896     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1897     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1898     address  virtual_call_oop_addr = cbuf.insts_mark();
1899     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1900     // who we intended to call.
1901     cbuf.set_insts_mark();
1902     $$$emit8$primary;
1903     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1904                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1905   %}
1906 
1907   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1908     int disp = in_bytes(methodOopDesc::from_compiled_offset());
1909     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1910 
1911     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1912     cbuf.set_insts_mark();
1913     $$$emit8$primary;
1914     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1915     emit_d8(cbuf, disp);             // Displacement
1916 
1917   %}
1918 
1919   enc_class Xor_Reg (eRegI dst) %{
1920     emit_opcode(cbuf, 0x33);
1921     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1922   %}
1923 
1924 //   Following encoding is no longer used, but may be restored if calling
1925 //   convention changes significantly.
1926 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1927 //
1928 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1929 //     // int ic_reg     = Matcher::inline_cache_reg();
1930 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1931 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1932 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1933 //
1934 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1935 //     // // so we load it immediately before the call
1936 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1937 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1938 //
1939 //     // xor rbp,ebp
1940 //     emit_opcode(cbuf, 0x33);
1941 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1942 //
1943 //     // CALL to interpreter.
1944 //     cbuf.set_insts_mark();
1945 //     $$$emit8$primary;
1946 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1947 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1948 //   %}
1949 
1950   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1951     $$$emit8$primary;
1952     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1953     $$$emit8$shift$$constant;
1954   %}
1955 
1956   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1957     // Load immediate does not have a zero or sign extended version
1958     // for 8-bit immediates
1959     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1960     $$$emit32$src$$constant;
1961   %}
1962 
1963   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1964     // Load immediate does not have a zero or sign extended version
1965     // for 8-bit immediates
1966     emit_opcode(cbuf, $primary + $dst$$reg);
1967     $$$emit32$src$$constant;
1968   %}
1969 
1970   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1971     // Load immediate does not have a zero or sign extended version
1972     // for 8-bit immediates
1973     int dst_enc = $dst$$reg;
1974     int src_con = $src$$constant & 0x0FFFFFFFFL;
1975     if (src_con == 0) {
1976       // xor dst, dst
1977       emit_opcode(cbuf, 0x33);
1978       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1979     } else {
1980       emit_opcode(cbuf, $primary + dst_enc);
1981       emit_d32(cbuf, src_con);
1982     }
1983   %}
1984 
1985   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1986     // Load immediate does not have a zero or sign extended version
1987     // for 8-bit immediates
1988     int dst_enc = $dst$$reg + 2;
1989     int src_con = ((julong)($src$$constant)) >> 32;
1990     if (src_con == 0) {
1991       // xor dst, dst
1992       emit_opcode(cbuf, 0x33);
1993       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1994     } else {
1995       emit_opcode(cbuf, $primary + dst_enc);
1996       emit_d32(cbuf, src_con);
1997     }
1998   %}
1999 
2000 
2001   enc_class MovI2X_reg(regX dst, eRegI src) %{
2002     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2003     emit_opcode(cbuf, 0x0F );
2004     emit_opcode(cbuf, 0x6E );
2005     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2006   %}
2007 
2008   enc_class MovX2I_reg(eRegI dst, regX src) %{
2009     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2010     emit_opcode(cbuf, 0x0F );
2011     emit_opcode(cbuf, 0x7E );
2012     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2013   %}
2014 
2015   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
2016     { // MOVD $dst,$src.lo
2017       emit_opcode(cbuf,0x66);
2018       emit_opcode(cbuf,0x0F);
2019       emit_opcode(cbuf,0x6E);
2020       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2021     }
2022     { // MOVD $tmp,$src.hi
2023       emit_opcode(cbuf,0x66);
2024       emit_opcode(cbuf,0x0F);
2025       emit_opcode(cbuf,0x6E);
2026       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2027     }
2028     { // PUNPCKLDQ $dst,$tmp
2029       emit_opcode(cbuf,0x66);
2030       emit_opcode(cbuf,0x0F);
2031       emit_opcode(cbuf,0x62);
2032       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2033      }
2034   %}
2035 
2036   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2037     { // MOVD $dst.lo,$src
2038       emit_opcode(cbuf,0x66);
2039       emit_opcode(cbuf,0x0F);
2040       emit_opcode(cbuf,0x7E);
2041       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2042     }
2043     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2044       emit_opcode(cbuf,0xF2);
2045       emit_opcode(cbuf,0x0F);
2046       emit_opcode(cbuf,0x70);
2047       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2048       emit_d8(cbuf, 0x4E);
2049     }
2050     { // MOVD $dst.hi,$tmp
2051       emit_opcode(cbuf,0x66);
2052       emit_opcode(cbuf,0x0F);
2053       emit_opcode(cbuf,0x7E);
2054       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2055     }
2056   %}
2057 
2058 
2059   // Encode a reg-reg copy.  If it is useless, then empty encoding.
2060   enc_class enc_Copy( eRegI dst, eRegI src ) %{
2061     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2062   %}
2063 
2064   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2065     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2066   %}
2067 
2068   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2069   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2070     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2071   %}
2072 
2073   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2074     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2075   %}
2076 
2077   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2078     $$$emit8$primary;
2079     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2080   %}
2081 
2082   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2083     $$$emit8$secondary;
2084     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2085   %}
2086 
2087   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2088     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2089   %}
2090 
2091   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2092     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2093   %}
2094 
2095   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2096     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2097   %}
2098 
2099   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2100     // Output immediate
2101     $$$emit32$src$$constant;
2102   %}
2103 
2104   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2105     // Output Float immediate bits
2106     jfloat jf = $src$$constant;
2107     int    jf_as_bits = jint_cast( jf );
2108     emit_d32(cbuf, jf_as_bits);
2109   %}
2110 
2111   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2112     // Output Float immediate bits
2113     jfloat jf = $src$$constant;
2114     int    jf_as_bits = jint_cast( jf );
2115     emit_d32(cbuf, jf_as_bits);
2116   %}
2117 
2118   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2119     // Output immediate
2120     $$$emit16$src$$constant;
2121   %}
2122 
2123   enc_class Con_d32(immI src) %{
2124     emit_d32(cbuf,$src$$constant);
2125   %}
2126 
2127   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2128     // Output immediate memory reference
2129     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2130     emit_d32(cbuf, 0x00);
2131   %}
2132 
2133   enc_class lock_prefix( ) %{
2134     if( os::is_MP() )
2135       emit_opcode(cbuf,0xF0);         // [Lock]
2136   %}
2137 
2138   // Cmp-xchg long value.
2139   // Note: we need to swap rbx, and rcx before and after the
2140   //       cmpxchg8 instruction because the instruction uses
2141   //       rcx as the high order word of the new value to store but
2142   //       our register encoding uses rbx,.
2143   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2144 
2145     // XCHG  rbx,ecx
2146     emit_opcode(cbuf,0x87);
2147     emit_opcode(cbuf,0xD9);
2148     // [Lock]
2149     if( os::is_MP() )
2150       emit_opcode(cbuf,0xF0);
2151     // CMPXCHG8 [Eptr]
2152     emit_opcode(cbuf,0x0F);
2153     emit_opcode(cbuf,0xC7);
2154     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2155     // XCHG  rbx,ecx
2156     emit_opcode(cbuf,0x87);
2157     emit_opcode(cbuf,0xD9);
2158   %}
2159 
2160   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2161     // [Lock]
2162     if( os::is_MP() )
2163       emit_opcode(cbuf,0xF0);
2164 
2165     // CMPXCHG [Eptr]
2166     emit_opcode(cbuf,0x0F);
2167     emit_opcode(cbuf,0xB1);
2168     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2169   %}
2170 
2171   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2172     int res_encoding = $res$$reg;
2173 
2174     // MOV  res,0
2175     emit_opcode( cbuf, 0xB8 + res_encoding);
2176     emit_d32( cbuf, 0 );
2177     // JNE,s  fail
2178     emit_opcode(cbuf,0x75);
2179     emit_d8(cbuf, 5 );
2180     // MOV  res,1
2181     emit_opcode( cbuf, 0xB8 + res_encoding);
2182     emit_d32( cbuf, 1 );
2183     // fail:
2184   %}
2185 
2186   enc_class set_instruction_start( ) %{
2187     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2188   %}
2189 
2190   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2191     int reg_encoding = $ereg$$reg;
2192     int base  = $mem$$base;
2193     int index = $mem$$index;
2194     int scale = $mem$$scale;
2195     int displace = $mem$$disp;
2196     bool disp_is_oop = $mem->disp_is_oop();
2197     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2198   %}
2199 
2200   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2201     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2202     int base  = $mem$$base;
2203     int index = $mem$$index;
2204     int scale = $mem$$scale;
2205     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2206     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2207     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2208   %}
2209 
2210   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2211     int r1, r2;
2212     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2213     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2214     emit_opcode(cbuf,0x0F);
2215     emit_opcode(cbuf,$tertiary);
2216     emit_rm(cbuf, 0x3, r1, r2);
2217     emit_d8(cbuf,$cnt$$constant);
2218     emit_d8(cbuf,$primary);
2219     emit_rm(cbuf, 0x3, $secondary, r1);
2220     emit_d8(cbuf,$cnt$$constant);
2221   %}
2222 
2223   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2224     emit_opcode( cbuf, 0x8B ); // Move
2225     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2226     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2227       emit_d8(cbuf,$primary);
2228       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2229       emit_d8(cbuf,$cnt$$constant-32);
2230     }
2231     emit_d8(cbuf,$primary);
2232     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2233     emit_d8(cbuf,31);
2234   %}
2235 
2236   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2237     int r1, r2;
2238     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2239     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2240 
2241     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2242     emit_rm(cbuf, 0x3, r1, r2);
2243     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2244       emit_opcode(cbuf,$primary);
2245       emit_rm(cbuf, 0x3, $secondary, r1);
2246       emit_d8(cbuf,$cnt$$constant-32);
2247     }
2248     emit_opcode(cbuf,0x33);  // XOR r2,r2
2249     emit_rm(cbuf, 0x3, r2, r2);
2250   %}
2251 
2252   // Clone of RegMem but accepts an extra parameter to access each
2253   // half of a double in memory; it never needs relocation info.
2254   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2255     emit_opcode(cbuf,$opcode$$constant);
2256     int reg_encoding = $rm_reg$$reg;
2257     int base     = $mem$$base;
2258     int index    = $mem$$index;
2259     int scale    = $mem$$scale;
2260     int displace = $mem$$disp + $disp_for_half$$constant;
2261     bool disp_is_oop = false;
2262     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2263   %}
2264 
2265   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2266   //
2267   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2268   // and it never needs relocation information.
2269   // Frequently used to move data between FPU's Stack Top and memory.
2270   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2271     int rm_byte_opcode = $rm_opcode$$constant;
2272     int base     = $mem$$base;
2273     int index    = $mem$$index;
2274     int scale    = $mem$$scale;
2275     int displace = $mem$$disp;
2276     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2277     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2278   %}
2279 
2280   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2281     int rm_byte_opcode = $rm_opcode$$constant;
2282     int base     = $mem$$base;
2283     int index    = $mem$$index;
2284     int scale    = $mem$$scale;
2285     int displace = $mem$$disp;
2286     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2287     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2288   %}
2289 
2290   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2291     int reg_encoding = $dst$$reg;
2292     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2293     int index        = 0x04;            // 0x04 indicates no index
2294     int scale        = 0x00;            // 0x00 indicates no scale
2295     int displace     = $src1$$constant; // 0x00 indicates no displacement
2296     bool disp_is_oop = false;
2297     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2298   %}
2299 
2300   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2301     // Compare dst,src
2302     emit_opcode(cbuf,0x3B);
2303     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2304     // jmp dst < src around move
2305     emit_opcode(cbuf,0x7C);
2306     emit_d8(cbuf,2);
2307     // move dst,src
2308     emit_opcode(cbuf,0x8B);
2309     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2310   %}
2311 
2312   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2313     // Compare dst,src
2314     emit_opcode(cbuf,0x3B);
2315     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2316     // jmp dst > src around move
2317     emit_opcode(cbuf,0x7F);
2318     emit_d8(cbuf,2);
2319     // move dst,src
2320     emit_opcode(cbuf,0x8B);
2321     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2322   %}
2323 
2324   enc_class enc_FP_store(memory mem, regD src) %{
2325     // If src is FPR1, we can just FST to store it.
2326     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2327     int reg_encoding = 0x2; // Just store
2328     int base  = $mem$$base;
2329     int index = $mem$$index;
2330     int scale = $mem$$scale;
2331     int displace = $mem$$disp;
2332     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2333     if( $src$$reg != FPR1L_enc ) {
2334       reg_encoding = 0x3;  // Store & pop
2335       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2336       emit_d8( cbuf, 0xC0-1+$src$$reg );
2337     }
2338     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2339     emit_opcode(cbuf,$primary);
2340     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2341   %}
2342 
2343   enc_class neg_reg(eRegI dst) %{
2344     // NEG $dst
2345     emit_opcode(cbuf,0xF7);
2346     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2347   %}
2348 
2349   enc_class setLT_reg(eCXRegI dst) %{
2350     // SETLT $dst
2351     emit_opcode(cbuf,0x0F);
2352     emit_opcode(cbuf,0x9C);
2353     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2354   %}
2355 
2356   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2357     int tmpReg = $tmp$$reg;
2358 
2359     // SUB $p,$q
2360     emit_opcode(cbuf,0x2B);
2361     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2362     // SBB $tmp,$tmp
2363     emit_opcode(cbuf,0x1B);
2364     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2365     // AND $tmp,$y
2366     emit_opcode(cbuf,0x23);
2367     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2368     // ADD $p,$tmp
2369     emit_opcode(cbuf,0x03);
2370     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2371   %}
2372 
2373   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2374     int tmpReg = $tmp$$reg;
2375 
2376     // SUB $p,$q
2377     emit_opcode(cbuf,0x2B);
2378     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2379     // SBB $tmp,$tmp
2380     emit_opcode(cbuf,0x1B);
2381     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2382     // AND $tmp,$y
2383     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2384     emit_opcode(cbuf,0x23);
2385     int reg_encoding = tmpReg;
2386     int base  = $mem$$base;
2387     int index = $mem$$index;
2388     int scale = $mem$$scale;
2389     int displace = $mem$$disp;
2390     bool disp_is_oop = $mem->disp_is_oop();
2391     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2392     // ADD $p,$tmp
2393     emit_opcode(cbuf,0x03);
2394     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2395   %}
2396 
2397   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2398     // TEST shift,32
2399     emit_opcode(cbuf,0xF7);
2400     emit_rm(cbuf, 0x3, 0, ECX_enc);
2401     emit_d32(cbuf,0x20);
2402     // JEQ,s small
2403     emit_opcode(cbuf, 0x74);
2404     emit_d8(cbuf, 0x04);
2405     // MOV    $dst.hi,$dst.lo
2406     emit_opcode( cbuf, 0x8B );
2407     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2408     // CLR    $dst.lo
2409     emit_opcode(cbuf, 0x33);
2410     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2411 // small:
2412     // SHLD   $dst.hi,$dst.lo,$shift
2413     emit_opcode(cbuf,0x0F);
2414     emit_opcode(cbuf,0xA5);
2415     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2416     // SHL    $dst.lo,$shift"
2417     emit_opcode(cbuf,0xD3);
2418     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2419   %}
2420 
2421   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2422     // TEST shift,32
2423     emit_opcode(cbuf,0xF7);
2424     emit_rm(cbuf, 0x3, 0, ECX_enc);
2425     emit_d32(cbuf,0x20);
2426     // JEQ,s small
2427     emit_opcode(cbuf, 0x74);
2428     emit_d8(cbuf, 0x04);
2429     // MOV    $dst.lo,$dst.hi
2430     emit_opcode( cbuf, 0x8B );
2431     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2432     // CLR    $dst.hi
2433     emit_opcode(cbuf, 0x33);
2434     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2435 // small:
2436     // SHRD   $dst.lo,$dst.hi,$shift
2437     emit_opcode(cbuf,0x0F);
2438     emit_opcode(cbuf,0xAD);
2439     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2440     // SHR    $dst.hi,$shift"
2441     emit_opcode(cbuf,0xD3);
2442     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2443   %}
2444 
2445   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2446     // TEST shift,32
2447     emit_opcode(cbuf,0xF7);
2448     emit_rm(cbuf, 0x3, 0, ECX_enc);
2449     emit_d32(cbuf,0x20);
2450     // JEQ,s small
2451     emit_opcode(cbuf, 0x74);
2452     emit_d8(cbuf, 0x05);
2453     // MOV    $dst.lo,$dst.hi
2454     emit_opcode( cbuf, 0x8B );
2455     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2456     // SAR    $dst.hi,31
2457     emit_opcode(cbuf, 0xC1);
2458     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2459     emit_d8(cbuf, 0x1F );
2460 // small:
2461     // SHRD   $dst.lo,$dst.hi,$shift
2462     emit_opcode(cbuf,0x0F);
2463     emit_opcode(cbuf,0xAD);
2464     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2465     // SAR    $dst.hi,$shift"
2466     emit_opcode(cbuf,0xD3);
2467     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2468   %}
2469 
2470 
2471   // ----------------- Encodings for floating point unit -----------------
2472   // May leave result in FPU-TOS or FPU reg depending on opcodes
2473   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2474     $$$emit8$primary;
2475     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2476   %}
2477 
2478   // Pop argument in FPR0 with FSTP ST(0)
2479   enc_class PopFPU() %{
2480     emit_opcode( cbuf, 0xDD );
2481     emit_d8( cbuf, 0xD8 );
2482   %}
2483 
2484   // !!!!! equivalent to Pop_Reg_F
2485   enc_class Pop_Reg_D( regD dst ) %{
2486     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2487     emit_d8( cbuf, 0xD8+$dst$$reg );
2488   %}
2489 
2490   enc_class Push_Reg_D( regD dst ) %{
2491     emit_opcode( cbuf, 0xD9 );
2492     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2493   %}
2494 
2495   enc_class strictfp_bias1( regD dst ) %{
2496     emit_opcode( cbuf, 0xDB );           // FLD m80real
2497     emit_opcode( cbuf, 0x2D );
2498     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2499     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2500     emit_opcode( cbuf, 0xC8+$dst$$reg );
2501   %}
2502 
2503   enc_class strictfp_bias2( regD dst ) %{
2504     emit_opcode( cbuf, 0xDB );           // FLD m80real
2505     emit_opcode( cbuf, 0x2D );
2506     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2507     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2508     emit_opcode( cbuf, 0xC8+$dst$$reg );
2509   %}
2510 
2511   // Special case for moving an integer register to a stack slot.
2512   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2513     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2514   %}
2515 
2516   // Special case for moving a register to a stack slot.
2517   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2518     // Opcode already emitted
2519     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2520     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2521     emit_d32(cbuf, $dst$$disp);   // Displacement
2522   %}
2523 
2524   // Push the integer in stackSlot 'src' onto FP-stack
2525   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2526     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2527   %}
2528 
2529   // Push the float in stackSlot 'src' onto FP-stack
2530   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2531     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2532   %}
2533 
2534   // Push the double in stackSlot 'src' onto FP-stack
2535   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2536     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2537   %}
2538 
2539   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2540   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2541     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2542   %}
2543 
2544   // Same as Pop_Mem_F except for opcode
2545   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2546   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2547     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2548   %}
2549 
2550   enc_class Pop_Reg_F( regF dst ) %{
2551     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2552     emit_d8( cbuf, 0xD8+$dst$$reg );
2553   %}
2554 
2555   enc_class Push_Reg_F( regF dst ) %{
2556     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2557     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2558   %}
2559 
2560   // Push FPU's float to a stack-slot, and pop FPU-stack
2561   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2562     int pop = 0x02;
2563     if ($src$$reg != FPR1L_enc) {
2564       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2565       emit_d8( cbuf, 0xC0-1+$src$$reg );
2566       pop = 0x03;
2567     }
2568     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2569   %}
2570 
2571   // Push FPU's double to a stack-slot, and pop FPU-stack
2572   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2573     int pop = 0x02;
2574     if ($src$$reg != FPR1L_enc) {
2575       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2576       emit_d8( cbuf, 0xC0-1+$src$$reg );
2577       pop = 0x03;
2578     }
2579     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2580   %}
2581 
2582   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2583   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2584     int pop = 0xD0 - 1; // -1 since we skip FLD
2585     if ($src$$reg != FPR1L_enc) {
2586       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2587       emit_d8( cbuf, 0xC0-1+$src$$reg );
2588       pop = 0xD8;
2589     }
2590     emit_opcode( cbuf, 0xDD );
2591     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2592   %}
2593 
2594 
2595   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2596     MacroAssembler masm(&cbuf);
2597     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2598     masm.fmul(   $src2$$reg+0);   // value at TOS
2599     masm.fadd(   $src$$reg+0);    // value at TOS
2600     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2601   %}
2602 
2603 
2604   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2605     // load dst in FPR0
2606     emit_opcode( cbuf, 0xD9 );
2607     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2608     if ($src$$reg != FPR1L_enc) {
2609       // fincstp
2610       emit_opcode (cbuf, 0xD9);
2611       emit_opcode (cbuf, 0xF7);
2612       // swap src with FPR1:
2613       // FXCH FPR1 with src
2614       emit_opcode(cbuf, 0xD9);
2615       emit_d8(cbuf, 0xC8-1+$src$$reg );
2616       // fdecstp
2617       emit_opcode (cbuf, 0xD9);
2618       emit_opcode (cbuf, 0xF6);
2619     }
2620   %}
2621 
2622   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2623     // Allocate a word
2624     emit_opcode(cbuf,0x83);            // SUB ESP,8
2625     emit_opcode(cbuf,0xEC);
2626     emit_d8(cbuf,0x08);
2627 
2628     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2629     emit_opcode  (cbuf, 0x0F );
2630     emit_opcode  (cbuf, 0x11 );
2631     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2632 
2633     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2634     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2635 
2636     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2637     emit_opcode  (cbuf, 0x0F );
2638     emit_opcode  (cbuf, 0x11 );
2639     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2640 
2641     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2642     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2643 
2644   %}
2645 
2646   enc_class Push_ModX_encoding( regX src0, regX src1) %{
2647     // Allocate a word
2648     emit_opcode(cbuf,0x83);            // SUB ESP,4
2649     emit_opcode(cbuf,0xEC);
2650     emit_d8(cbuf,0x04);
2651 
2652     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2653     emit_opcode  (cbuf, 0x0F );
2654     emit_opcode  (cbuf, 0x11 );
2655     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2656 
2657     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2658     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2659 
2660     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2661     emit_opcode  (cbuf, 0x0F );
2662     emit_opcode  (cbuf, 0x11 );
2663     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2664 
2665     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2666     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2667 
2668   %}
2669 
2670   enc_class Push_ResultXD(regXD dst) %{
2671     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2672 
2673     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2674     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2675     emit_opcode  (cbuf, 0x0F );
2676     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2677     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2678 
2679     emit_opcode(cbuf,0x83);    // ADD ESP,8
2680     emit_opcode(cbuf,0xC4);
2681     emit_d8(cbuf,0x08);
2682   %}
2683 
2684   enc_class Push_ResultX(regX dst, immI d8) %{
2685     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2686 
2687     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2688     emit_opcode  (cbuf, 0x0F );
2689     emit_opcode  (cbuf, 0x10 );
2690     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2691 
2692     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2693     emit_opcode(cbuf,0xC4);
2694     emit_d8(cbuf,$d8$$constant);
2695   %}
2696 
2697   enc_class Push_SrcXD(regXD src) %{
2698     // Allocate a word
2699     emit_opcode(cbuf,0x83);            // SUB ESP,8
2700     emit_opcode(cbuf,0xEC);
2701     emit_d8(cbuf,0x08);
2702 
2703     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2704     emit_opcode  (cbuf, 0x0F );
2705     emit_opcode  (cbuf, 0x11 );
2706     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2707 
2708     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2709     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2710   %}
2711 
2712   enc_class push_stack_temp_qword() %{
2713     emit_opcode(cbuf,0x83);     // SUB ESP,8
2714     emit_opcode(cbuf,0xEC);
2715     emit_d8    (cbuf,0x08);
2716   %}
2717 
2718   enc_class pop_stack_temp_qword() %{
2719     emit_opcode(cbuf,0x83);     // ADD ESP,8
2720     emit_opcode(cbuf,0xC4);
2721     emit_d8    (cbuf,0x08);
2722   %}
2723 
2724   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2725     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2726     emit_opcode  (cbuf, 0x0F );
2727     emit_opcode  (cbuf, 0x11 );
2728     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2729 
2730     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2731     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2732   %}
2733 
2734   // Compute X^Y using Intel's fast hardware instructions, if possible.
2735   // Otherwise return a NaN.
2736   enc_class pow_exp_core_encoding %{
2737     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2738     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2739     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2740     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2741     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2742     emit_opcode(cbuf,0x1C);
2743     emit_d8(cbuf,0x24);
2744     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2745     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2746     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2747     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2748     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2749     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2750     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2751     emit_d32(cbuf,0xFFFFF800);
2752     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2753     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2754     emit_d32(cbuf,1023);
2755     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2756     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2757     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2758     emit_rm(cbuf,0x3,0x4,EAX_enc);
2759     emit_d8(cbuf,20);
2760     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2761     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2762     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2763     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2764     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2765     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2766     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2767     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2768     emit_d32(cbuf,0);
2769     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2770     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2771   %}
2772 
2773 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2774 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2775 
2776   enc_class Push_Result_Mod_D( regD src) %{
2777     if ($src$$reg != FPR1L_enc) {
2778       // fincstp
2779       emit_opcode (cbuf, 0xD9);
2780       emit_opcode (cbuf, 0xF7);
2781       // FXCH FPR1 with src
2782       emit_opcode(cbuf, 0xD9);
2783       emit_d8(cbuf, 0xC8-1+$src$$reg );
2784       // fdecstp
2785       emit_opcode (cbuf, 0xD9);
2786       emit_opcode (cbuf, 0xF6);
2787     }
2788     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2789     // // FSTP   FPR$dst$$reg
2790     // emit_opcode( cbuf, 0xDD );
2791     // emit_d8( cbuf, 0xD8+$dst$$reg );
2792   %}
2793 
2794   enc_class fnstsw_sahf_skip_parity() %{
2795     // fnstsw ax
2796     emit_opcode( cbuf, 0xDF );
2797     emit_opcode( cbuf, 0xE0 );
2798     // sahf
2799     emit_opcode( cbuf, 0x9E );
2800     // jnp  ::skip
2801     emit_opcode( cbuf, 0x7B );
2802     emit_opcode( cbuf, 0x05 );
2803   %}
2804 
2805   enc_class emitModD() %{
2806     // fprem must be iterative
2807     // :: loop
2808     // fprem
2809     emit_opcode( cbuf, 0xD9 );
2810     emit_opcode( cbuf, 0xF8 );
2811     // wait
2812     emit_opcode( cbuf, 0x9b );
2813     // fnstsw ax
2814     emit_opcode( cbuf, 0xDF );
2815     emit_opcode( cbuf, 0xE0 );
2816     // sahf
2817     emit_opcode( cbuf, 0x9E );
2818     // jp  ::loop
2819     emit_opcode( cbuf, 0x0F );
2820     emit_opcode( cbuf, 0x8A );
2821     emit_opcode( cbuf, 0xF4 );
2822     emit_opcode( cbuf, 0xFF );
2823     emit_opcode( cbuf, 0xFF );
2824     emit_opcode( cbuf, 0xFF );
2825   %}
2826 
2827   enc_class fpu_flags() %{
2828     // fnstsw_ax
2829     emit_opcode( cbuf, 0xDF);
2830     emit_opcode( cbuf, 0xE0);
2831     // test ax,0x0400
2832     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2833     emit_opcode( cbuf, 0xA9 );
2834     emit_d16   ( cbuf, 0x0400 );
2835     // // // This sequence works, but stalls for 12-16 cycles on PPro
2836     // // test rax,0x0400
2837     // emit_opcode( cbuf, 0xA9 );
2838     // emit_d32   ( cbuf, 0x00000400 );
2839     //
2840     // jz exit (no unordered comparison)
2841     emit_opcode( cbuf, 0x74 );
2842     emit_d8    ( cbuf, 0x02 );
2843     // mov ah,1 - treat as LT case (set carry flag)
2844     emit_opcode( cbuf, 0xB4 );
2845     emit_d8    ( cbuf, 0x01 );
2846     // sahf
2847     emit_opcode( cbuf, 0x9E);
2848   %}
2849 
2850   enc_class cmpF_P6_fixup() %{
2851     // Fixup the integer flags in case comparison involved a NaN
2852     //
2853     // JNP exit (no unordered comparison, P-flag is set by NaN)
2854     emit_opcode( cbuf, 0x7B );
2855     emit_d8    ( cbuf, 0x03 );
2856     // MOV AH,1 - treat as LT case (set carry flag)
2857     emit_opcode( cbuf, 0xB4 );
2858     emit_d8    ( cbuf, 0x01 );
2859     // SAHF
2860     emit_opcode( cbuf, 0x9E);
2861     // NOP     // target for branch to avoid branch to branch
2862     emit_opcode( cbuf, 0x90);
2863   %}
2864 
2865 //     fnstsw_ax();
2866 //     sahf();
2867 //     movl(dst, nan_result);
2868 //     jcc(Assembler::parity, exit);
2869 //     movl(dst, less_result);
2870 //     jcc(Assembler::below, exit);
2871 //     movl(dst, equal_result);
2872 //     jcc(Assembler::equal, exit);
2873 //     movl(dst, greater_result);
2874 
2875 // less_result     =  1;
2876 // greater_result  = -1;
2877 // equal_result    = 0;
2878 // nan_result      = -1;
2879 
2880   enc_class CmpF_Result(eRegI dst) %{
2881     // fnstsw_ax();
2882     emit_opcode( cbuf, 0xDF);
2883     emit_opcode( cbuf, 0xE0);
2884     // sahf
2885     emit_opcode( cbuf, 0x9E);
2886     // movl(dst, nan_result);
2887     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2888     emit_d32( cbuf, -1 );
2889     // jcc(Assembler::parity, exit);
2890     emit_opcode( cbuf, 0x7A );
2891     emit_d8    ( cbuf, 0x13 );
2892     // movl(dst, less_result);
2893     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2894     emit_d32( cbuf, -1 );
2895     // jcc(Assembler::below, exit);
2896     emit_opcode( cbuf, 0x72 );
2897     emit_d8    ( cbuf, 0x0C );
2898     // movl(dst, equal_result);
2899     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2900     emit_d32( cbuf, 0 );
2901     // jcc(Assembler::equal, exit);
2902     emit_opcode( cbuf, 0x74 );
2903     emit_d8    ( cbuf, 0x05 );
2904     // movl(dst, greater_result);
2905     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2906     emit_d32( cbuf, 1 );
2907   %}
2908 
2909 
2910   // XMM version of CmpF_Result. Because the XMM compare
2911   // instructions set the EFLAGS directly. It becomes simpler than
2912   // the float version above.
2913   enc_class CmpX_Result(eRegI dst) %{
2914     MacroAssembler _masm(&cbuf);
2915     Label nan, inc, done;
2916 
2917     __ jccb(Assembler::parity, nan);
2918     __ jccb(Assembler::equal,  done);
2919     __ jccb(Assembler::above,  inc);
2920     __ bind(nan);
2921     __ decrement(as_Register($dst$$reg)); // NO L qqq
2922     __ jmpb(done);
2923     __ bind(inc);
2924     __ increment(as_Register($dst$$reg)); // NO L qqq
2925     __ bind(done);
2926   %}
2927 
2928   // Compare the longs and set flags
2929   // BROKEN!  Do Not use as-is
2930   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2931     // CMP    $src1.hi,$src2.hi
2932     emit_opcode( cbuf, 0x3B );
2933     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2934     // JNE,s  done
2935     emit_opcode(cbuf,0x75);
2936     emit_d8(cbuf, 2 );
2937     // CMP    $src1.lo,$src2.lo
2938     emit_opcode( cbuf, 0x3B );
2939     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2940 // done:
2941   %}
2942 
2943   enc_class convert_int_long( regL dst, eRegI src ) %{
2944     // mov $dst.lo,$src
2945     int dst_encoding = $dst$$reg;
2946     int src_encoding = $src$$reg;
2947     encode_Copy( cbuf, dst_encoding  , src_encoding );
2948     // mov $dst.hi,$src
2949     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2950     // sar $dst.hi,31
2951     emit_opcode( cbuf, 0xC1 );
2952     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2953     emit_d8(cbuf, 0x1F );
2954   %}
2955 
2956   enc_class convert_long_double( eRegL src ) %{
2957     // push $src.hi
2958     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2959     // push $src.lo
2960     emit_opcode(cbuf, 0x50+$src$$reg  );
2961     // fild 64-bits at [SP]
2962     emit_opcode(cbuf,0xdf);
2963     emit_d8(cbuf, 0x6C);
2964     emit_d8(cbuf, 0x24);
2965     emit_d8(cbuf, 0x00);
2966     // pop stack
2967     emit_opcode(cbuf, 0x83); // add  SP, #8
2968     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2969     emit_d8(cbuf, 0x8);
2970   %}
2971 
2972   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2973     // IMUL   EDX:EAX,$src1
2974     emit_opcode( cbuf, 0xF7 );
2975     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2976     // SAR    EDX,$cnt-32
2977     int shift_count = ((int)$cnt$$constant) - 32;
2978     if (shift_count > 0) {
2979       emit_opcode(cbuf, 0xC1);
2980       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2981       emit_d8(cbuf, shift_count);
2982     }
2983   %}
2984 
2985   // this version doesn't have add sp, 8
2986   enc_class convert_long_double2( eRegL src ) %{
2987     // push $src.hi
2988     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2989     // push $src.lo
2990     emit_opcode(cbuf, 0x50+$src$$reg  );
2991     // fild 64-bits at [SP]
2992     emit_opcode(cbuf,0xdf);
2993     emit_d8(cbuf, 0x6C);
2994     emit_d8(cbuf, 0x24);
2995     emit_d8(cbuf, 0x00);
2996   %}
2997 
2998   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2999     // Basic idea: long = (long)int * (long)int
3000     // IMUL EDX:EAX, src
3001     emit_opcode( cbuf, 0xF7 );
3002     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
3003   %}
3004 
3005   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
3006     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
3007     // MUL EDX:EAX, src
3008     emit_opcode( cbuf, 0xF7 );
3009     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
3010   %}
3011 
3012   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
3013     // Basic idea: lo(result) = lo(x_lo * y_lo)
3014     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
3015     // MOV    $tmp,$src.lo
3016     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
3017     // IMUL   $tmp,EDX
3018     emit_opcode( cbuf, 0x0F );
3019     emit_opcode( cbuf, 0xAF );
3020     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3021     // MOV    EDX,$src.hi
3022     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
3023     // IMUL   EDX,EAX
3024     emit_opcode( cbuf, 0x0F );
3025     emit_opcode( cbuf, 0xAF );
3026     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
3027     // ADD    $tmp,EDX
3028     emit_opcode( cbuf, 0x03 );
3029     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3030     // MUL   EDX:EAX,$src.lo
3031     emit_opcode( cbuf, 0xF7 );
3032     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3033     // ADD    EDX,ESI
3034     emit_opcode( cbuf, 0x03 );
3035     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3036   %}
3037 
3038   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3039     // Basic idea: lo(result) = lo(src * y_lo)
3040     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3041     // IMUL   $tmp,EDX,$src
3042     emit_opcode( cbuf, 0x6B );
3043     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3044     emit_d8( cbuf, (int)$src$$constant );
3045     // MOV    EDX,$src
3046     emit_opcode(cbuf, 0xB8 + EDX_enc);
3047     emit_d32( cbuf, (int)$src$$constant );
3048     // MUL   EDX:EAX,EDX
3049     emit_opcode( cbuf, 0xF7 );
3050     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3051     // ADD    EDX,ESI
3052     emit_opcode( cbuf, 0x03 );
3053     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3054   %}
3055 
3056   enc_class long_div( eRegL src1, eRegL src2 ) %{
3057     // PUSH src1.hi
3058     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3059     // PUSH src1.lo
3060     emit_opcode(cbuf,               0x50+$src1$$reg  );
3061     // PUSH src2.hi
3062     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3063     // PUSH src2.lo
3064     emit_opcode(cbuf,               0x50+$src2$$reg  );
3065     // CALL directly to the runtime
3066     cbuf.set_insts_mark();
3067     emit_opcode(cbuf,0xE8);       // Call into runtime
3068     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3069     // Restore stack
3070     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3071     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3072     emit_d8(cbuf, 4*4);
3073   %}
3074 
3075   enc_class long_mod( eRegL src1, eRegL src2 ) %{
3076     // PUSH src1.hi
3077     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3078     // PUSH src1.lo
3079     emit_opcode(cbuf,               0x50+$src1$$reg  );
3080     // PUSH src2.hi
3081     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3082     // PUSH src2.lo
3083     emit_opcode(cbuf,               0x50+$src2$$reg  );
3084     // CALL directly to the runtime
3085     cbuf.set_insts_mark();
3086     emit_opcode(cbuf,0xE8);       // Call into runtime
3087     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3088     // Restore stack
3089     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3090     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3091     emit_d8(cbuf, 4*4);
3092   %}
3093 
3094   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3095     // MOV   $tmp,$src.lo
3096     emit_opcode(cbuf, 0x8B);
3097     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3098     // OR    $tmp,$src.hi
3099     emit_opcode(cbuf, 0x0B);
3100     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3101   %}
3102 
3103   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3104     // CMP    $src1.lo,$src2.lo
3105     emit_opcode( cbuf, 0x3B );
3106     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3107     // JNE,s  skip
3108     emit_cc(cbuf, 0x70, 0x5);
3109     emit_d8(cbuf,2);
3110     // CMP    $src1.hi,$src2.hi
3111     emit_opcode( cbuf, 0x3B );
3112     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3113   %}
3114 
3115   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3116     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3117     emit_opcode( cbuf, 0x3B );
3118     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3119     // MOV    $tmp,$src1.hi
3120     emit_opcode( cbuf, 0x8B );
3121     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3122     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3123     emit_opcode( cbuf, 0x1B );
3124     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3125   %}
3126 
3127   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3128     // XOR    $tmp,$tmp
3129     emit_opcode(cbuf,0x33);  // XOR
3130     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3131     // CMP    $tmp,$src.lo
3132     emit_opcode( cbuf, 0x3B );
3133     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3134     // SBB    $tmp,$src.hi
3135     emit_opcode( cbuf, 0x1B );
3136     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3137   %}
3138 
3139  // Sniff, sniff... smells like Gnu Superoptimizer
3140   enc_class neg_long( eRegL dst ) %{
3141     emit_opcode(cbuf,0xF7);    // NEG hi
3142     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3143     emit_opcode(cbuf,0xF7);    // NEG lo
3144     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3145     emit_opcode(cbuf,0x83);    // SBB hi,0
3146     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3147     emit_d8    (cbuf,0 );
3148   %}
3149 
3150   enc_class movq_ld(regXD dst, memory mem) %{
3151     MacroAssembler _masm(&cbuf);
3152     __ movq($dst$$XMMRegister, $mem$$Address);
3153   %}
3154 
3155   enc_class movq_st(memory mem, regXD src) %{
3156     MacroAssembler _masm(&cbuf);
3157     __ movq($mem$$Address, $src$$XMMRegister);
3158   %}
3159 
3160   enc_class pshufd_8x8(regX dst, regX src) %{
3161     MacroAssembler _masm(&cbuf);
3162 
3163     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3164     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3165     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3166   %}
3167 
3168   enc_class pshufd_4x16(regX dst, regX src) %{
3169     MacroAssembler _masm(&cbuf);
3170 
3171     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3172   %}
3173 
3174   enc_class pshufd(regXD dst, regXD src, int mode) %{
3175     MacroAssembler _masm(&cbuf);
3176 
3177     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3178   %}
3179 
3180   enc_class pxor(regXD dst, regXD src) %{
3181     MacroAssembler _masm(&cbuf);
3182 
3183     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3184   %}
3185 
3186   enc_class mov_i2x(regXD dst, eRegI src) %{
3187     MacroAssembler _masm(&cbuf);
3188 
3189     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3190   %}
3191 
3192 
3193   // Because the transitions from emitted code to the runtime
3194   // monitorenter/exit helper stubs are so slow it's critical that
3195   // we inline both the stack-locking fast-path and the inflated fast path.
3196   //
3197   // See also: cmpFastLock and cmpFastUnlock.
3198   //
3199   // What follows is a specialized inline transliteration of the code
3200   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3201   // another option would be to emit TrySlowEnter and TrySlowExit methods
3202   // at startup-time.  These methods would accept arguments as
3203   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3204   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3205   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3206   // In practice, however, the # of lock sites is bounded and is usually small.
3207   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3208   // if the processor uses simple bimodal branch predictors keyed by EIP
3209   // Since the helper routines would be called from multiple synchronization
3210   // sites.
3211   //
3212   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3213   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3214   // to those specialized methods.  That'd give us a mostly platform-independent
3215   // implementation that the JITs could optimize and inline at their pleasure.
3216   // Done correctly, the only time we'd need to cross to native could would be
3217   // to park() or unpark() threads.  We'd also need a few more unsafe operators
3218   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3219   // (b) explicit barriers or fence operations.
3220   //
3221   // TODO:
3222   //
3223   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3224   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3225   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3226   //    the lock operators would typically be faster than reifying Self.
3227   //
3228   // *  Ideally I'd define the primitives as:
3229   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3230   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3231   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3232   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3233   //    Furthermore the register assignments are overconstrained, possibly resulting in
3234   //    sub-optimal code near the synchronization site.
3235   //
3236   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3237   //    Alternately, use a better sp-proximity test.
3238   //
3239   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3240   //    Either one is sufficient to uniquely identify a thread.
3241   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3242   //
3243   // *  Intrinsify notify() and notifyAll() for the common cases where the
3244   //    object is locked by the calling thread but the waitlist is empty.
3245   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3246   //
3247   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3248   //    But beware of excessive branch density on AMD Opterons.
3249   //
3250   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3251   //    or failure of the fast-path.  If the fast-path fails then we pass
3252   //    control to the slow-path, typically in C.  In Fast_Lock and
3253   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3254   //    will emit a conditional branch immediately after the node.
3255   //    So we have branches to branches and lots of ICC.ZF games.
3256   //    Instead, it might be better to have C2 pass a "FailureLabel"
3257   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3258   //    will drop through the node.  ICC.ZF is undefined at exit.
3259   //    In the case of failure, the node will branch directly to the
3260   //    FailureLabel
3261 
3262 
3263   // obj: object to lock
3264   // box: on-stack box address (displaced header location) - KILLED
3265   // rax,: tmp -- KILLED
3266   // scr: tmp -- KILLED
3267   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3268 
3269     Register objReg = as_Register($obj$$reg);
3270     Register boxReg = as_Register($box$$reg);
3271     Register tmpReg = as_Register($tmp$$reg);
3272     Register scrReg = as_Register($scr$$reg);
3273 
3274     // Ensure the register assignents are disjoint
3275     guarantee (objReg != boxReg, "") ;
3276     guarantee (objReg != tmpReg, "") ;
3277     guarantee (objReg != scrReg, "") ;
3278     guarantee (boxReg != tmpReg, "") ;
3279     guarantee (boxReg != scrReg, "") ;
3280     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3281 
3282     MacroAssembler masm(&cbuf);
3283 
3284     if (_counters != NULL) {
3285       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3286     }
3287     if (EmitSync & 1) {
3288         // set box->dhw = unused_mark (3)
3289         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3290         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3291         masm.cmpptr (rsp, (int32_t)0) ;                        
3292     } else 
3293     if (EmitSync & 2) { 
3294         Label DONE_LABEL ;           
3295         if (UseBiasedLocking) {
3296            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3297            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3298         }
3299 
3300         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3301         masm.orptr (tmpReg, 0x1);
3302         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3303         if (os::is_MP()) { masm.lock();  }
3304         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3305         masm.jcc(Assembler::equal, DONE_LABEL);
3306         // Recursive locking
3307         masm.subptr(tmpReg, rsp);
3308         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3309         masm.movptr(Address(boxReg, 0), tmpReg);
3310         masm.bind(DONE_LABEL) ; 
3311     } else {  
3312       // Possible cases that we'll encounter in fast_lock 
3313       // ------------------------------------------------
3314       // * Inflated
3315       //    -- unlocked
3316       //    -- Locked
3317       //       = by self
3318       //       = by other
3319       // * biased
3320       //    -- by Self
3321       //    -- by other
3322       // * neutral
3323       // * stack-locked
3324       //    -- by self
3325       //       = sp-proximity test hits
3326       //       = sp-proximity test generates false-negative
3327       //    -- by other
3328       //
3329 
3330       Label IsInflated, DONE_LABEL, PopDone ;
3331 
3332       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3333       // order to reduce the number of conditional branches in the most common cases.
3334       // Beware -- there's a subtle invariant that fetch of the markword
3335       // at [FETCH], below, will never observe a biased encoding (*101b).
3336       // If this invariant is not held we risk exclusion (safety) failure.
3337       if (UseBiasedLocking && !UseOptoBiasInlining) {
3338         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3339       }
3340 
3341       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3342       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3343       masm.jccb  (Assembler::notZero, IsInflated) ;
3344 
3345       // Attempt stack-locking ...
3346       masm.orptr (tmpReg, 0x1);
3347       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3348       if (os::is_MP()) { masm.lock();  }
3349       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3350       if (_counters != NULL) {
3351         masm.cond_inc32(Assembler::equal,
3352                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3353       }
3354       masm.jccb (Assembler::equal, DONE_LABEL);
3355 
3356       // Recursive locking
3357       masm.subptr(tmpReg, rsp);
3358       masm.andptr(tmpReg, 0xFFFFF003 );
3359       masm.movptr(Address(boxReg, 0), tmpReg);
3360       if (_counters != NULL) {
3361         masm.cond_inc32(Assembler::equal,
3362                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3363       }
3364       masm.jmp  (DONE_LABEL) ;
3365 
3366       masm.bind (IsInflated) ;
3367 
3368       // The object is inflated.
3369       //
3370       // TODO-FIXME: eliminate the ugly use of manifest constants:
3371       //   Use markOopDesc::monitor_value instead of "2".
3372       //   use markOop::unused_mark() instead of "3".
3373       // The tmpReg value is an objectMonitor reference ORed with
3374       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3375       // objectmonitor pointer by masking off the "2" bit or we can just
3376       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3377       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3378       //
3379       // I use the latter as it avoids AGI stalls.
3380       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3381       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3382       //
3383       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3384 
3385       // boxReg refers to the on-stack BasicLock in the current frame.
3386       // We'd like to write:
3387       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3388       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3389       // additional latency as we have another ST in the store buffer that must drain.
3390 
3391       if (EmitSync & 8192) { 
3392          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3393          masm.get_thread (scrReg) ; 
3394          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3395          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3396          if (os::is_MP()) { masm.lock(); } 
3397          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3398       } else 
3399       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3400          masm.movptr(scrReg, boxReg) ; 
3401          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3402 
3403          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3404          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3405             // prefetchw [eax + Offset(_owner)-2]
3406             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3407          }
3408 
3409          if ((EmitSync & 64) == 0) {
3410            // Optimistic form: consider XORL tmpReg,tmpReg
3411            masm.movptr(tmpReg, NULL_WORD) ; 
3412          } else { 
3413            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3414            // Test-And-CAS instead of CAS
3415            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3416            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3417            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3418          }
3419 
3420          // Appears unlocked - try to swing _owner from null to non-null.
3421          // Ideally, I'd manifest "Self" with get_thread and then attempt
3422          // to CAS the register containing Self into m->Owner.
3423          // But we don't have enough registers, so instead we can either try to CAS
3424          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3425          // we later store "Self" into m->Owner.  Transiently storing a stack address
3426          // (rsp or the address of the box) into  m->owner is harmless.
3427          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3428          if (os::is_MP()) { masm.lock();  }
3429          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3430          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3431          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3432          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3433          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3434          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3435                        
3436          // If the CAS fails we can either retry or pass control to the slow-path.  
3437          // We use the latter tactic.  
3438          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3439          // If the CAS was successful ...
3440          //   Self has acquired the lock
3441          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3442          // Intentional fall-through into DONE_LABEL ...
3443       } else {
3444          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3445          masm.movptr(boxReg, tmpReg) ; 
3446 
3447          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3448          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3449             // prefetchw [eax + Offset(_owner)-2]
3450             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3451          }
3452 
3453          if ((EmitSync & 64) == 0) {
3454            // Optimistic form
3455            masm.xorptr  (tmpReg, tmpReg) ; 
3456          } else { 
3457            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3458            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3459            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3460            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3461          }
3462 
3463          // Appears unlocked - try to swing _owner from null to non-null.
3464          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3465          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3466          masm.get_thread (scrReg) ;
3467          if (os::is_MP()) { masm.lock(); }
3468          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3469 
3470          // If the CAS fails we can either retry or pass control to the slow-path.
3471          // We use the latter tactic.
3472          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3473          // If the CAS was successful ...
3474          //   Self has acquired the lock
3475          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3476          // Intentional fall-through into DONE_LABEL ...
3477       }
3478 
3479       // DONE_LABEL is a hot target - we'd really like to place it at the
3480       // start of cache line by padding with NOPs.
3481       // See the AMD and Intel software optimization manuals for the
3482       // most efficient "long" NOP encodings.
3483       // Unfortunately none of our alignment mechanisms suffice.
3484       masm.bind(DONE_LABEL);
3485 
3486       // Avoid branch-to-branch on AMD processors
3487       // This appears to be superstition.
3488       if (EmitSync & 32) masm.nop() ;
3489 
3490 
3491       // At DONE_LABEL the icc ZFlag is set as follows ...
3492       // Fast_Unlock uses the same protocol.
3493       // ZFlag == 1 -> Success
3494       // ZFlag == 0 -> Failure - force control through the slow-path
3495     }
3496   %}
3497 
3498   // obj: object to unlock
3499   // box: box address (displaced header location), killed.  Must be EAX.
3500   // rbx,: killed tmp; cannot be obj nor box.
3501   //
3502   // Some commentary on balanced locking:
3503   //
3504   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3505   // Methods that don't have provably balanced locking are forced to run in the
3506   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3507   // The interpreter provides two properties:
3508   // I1:  At return-time the interpreter automatically and quietly unlocks any
3509   //      objects acquired the current activation (frame).  Recall that the
3510   //      interpreter maintains an on-stack list of locks currently held by
3511   //      a frame.
3512   // I2:  If a method attempts to unlock an object that is not held by the
3513   //      the frame the interpreter throws IMSX.
3514   //
3515   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3516   // B() doesn't have provably balanced locking so it runs in the interpreter.
3517   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3518   // is still locked by A().
3519   //
3520   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3521   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3522   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3523   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3524 
3525   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3526 
3527     Register objReg = as_Register($obj$$reg);
3528     Register boxReg = as_Register($box$$reg);
3529     Register tmpReg = as_Register($tmp$$reg);
3530 
3531     guarantee (objReg != boxReg, "") ;
3532     guarantee (objReg != tmpReg, "") ;
3533     guarantee (boxReg != tmpReg, "") ;
3534     guarantee (boxReg == as_Register(EAX_enc), "") ;
3535     MacroAssembler masm(&cbuf);
3536 
3537     if (EmitSync & 4) {
3538       // Disable - inhibit all inlining.  Force control through the slow-path
3539       masm.cmpptr (rsp, 0) ; 
3540     } else 
3541     if (EmitSync & 8) {
3542       Label DONE_LABEL ;
3543       if (UseBiasedLocking) {
3544          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3545       }
3546       // classic stack-locking code ...
3547       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3548       masm.testptr(tmpReg, tmpReg) ;
3549       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3550       if (os::is_MP()) { masm.lock(); }
3551       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3552       masm.bind(DONE_LABEL);
3553     } else {
3554       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3555 
3556       // Critically, the biased locking test must have precedence over
3557       // and appear before the (box->dhw == 0) recursive stack-lock test.
3558       if (UseBiasedLocking && !UseOptoBiasInlining) {
3559          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3560       }
3561       
3562       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3563       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3564       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3565 
3566       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3567       masm.jccb  (Assembler::zero, Stacked) ;
3568 
3569       masm.bind  (Inflated) ;
3570       // It's inflated.
3571       // Despite our balanced locking property we still check that m->_owner == Self
3572       // as java routines or native JNI code called by this thread might
3573       // have released the lock.
3574       // Refer to the comments in synchronizer.cpp for how we might encode extra
3575       // state in _succ so we can avoid fetching EntryList|cxq.
3576       //
3577       // I'd like to add more cases in fast_lock() and fast_unlock() --
3578       // such as recursive enter and exit -- but we have to be wary of
3579       // I$ bloat, T$ effects and BP$ effects.
3580       //
3581       // If there's no contention try a 1-0 exit.  That is, exit without
3582       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3583       // we detect and recover from the race that the 1-0 exit admits.
3584       //
3585       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3586       // before it STs null into _owner, releasing the lock.  Updates
3587       // to data protected by the critical section must be visible before
3588       // we drop the lock (and thus before any other thread could acquire
3589       // the lock and observe the fields protected by the lock).
3590       // IA32's memory-model is SPO, so STs are ordered with respect to
3591       // each other and there's no need for an explicit barrier (fence).
3592       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3593 
3594       masm.get_thread (boxReg) ;
3595       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3596         // prefetchw [ebx + Offset(_owner)-2]
3597         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3598       }
3599 
3600       // Note that we could employ various encoding schemes to reduce
3601       // the number of loads below (currently 4) to just 2 or 3.
3602       // Refer to the comments in synchronizer.cpp.
3603       // In practice the chain of fetches doesn't seem to impact performance, however.
3604       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3605          // Attempt to reduce branch density - AMD's branch predictor.
3606          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3607          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3608          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3609          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3610          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3611          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3612          masm.jmpb  (DONE_LABEL) ; 
3613       } else { 
3614          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3615          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3616          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3617          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3618          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3619          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3620          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3621          masm.jmpb  (DONE_LABEL) ; 
3622       }
3623 
3624       // The Following code fragment (EmitSync & 65536) improves the performance of
3625       // contended applications and contended synchronization microbenchmarks.
3626       // Unfortunately the emission of the code - even though not executed - causes regressions
3627       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3628       // with an equal number of never-executed NOPs results in the same regression.
3629       // We leave it off by default.
3630 
3631       if ((EmitSync & 65536) != 0) {
3632          Label LSuccess, LGoSlowPath ;
3633 
3634          masm.bind  (CheckSucc) ;
3635 
3636          // Optional pre-test ... it's safe to elide this
3637          if ((EmitSync & 16) == 0) { 
3638             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3639             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3640          }
3641 
3642          // We have a classic Dekker-style idiom:
3643          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3644          // There are a number of ways to implement the barrier:
3645          // (1) lock:andl &m->_owner, 0
3646          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3647          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3648          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3649          // (2) If supported, an explicit MFENCE is appealing.
3650          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3651          //     particularly if the write-buffer is full as might be the case if
3652          //     if stores closely precede the fence or fence-equivalent instruction.
3653          //     In more modern implementations MFENCE appears faster, however.
3654          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3655          //     The $lines underlying the top-of-stack should be in M-state.
3656          //     The locked add instruction is serializing, of course.
3657          // (4) Use xchg, which is serializing
3658          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3659          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3660          //     The integer condition codes will tell us if succ was 0.
3661          //     Since _succ and _owner should reside in the same $line and
3662          //     we just stored into _owner, it's likely that the $line
3663          //     remains in M-state for the lock:orl.
3664          //
3665          // We currently use (3), although it's likely that switching to (2)
3666          // is correct for the future.
3667             
3668          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3669          if (os::is_MP()) { 
3670             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3671               masm.mfence();
3672             } else { 
3673               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3674             }
3675          }
3676          // Ratify _succ remains non-null
3677          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3678          masm.jccb  (Assembler::notZero, LSuccess) ; 
3679 
3680          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3681          if (os::is_MP()) { masm.lock(); }
3682          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3683          masm.jccb  (Assembler::notEqual, LSuccess) ;
3684          // Since we're low on registers we installed rsp as a placeholding in _owner.
3685          // Now install Self over rsp.  This is safe as we're transitioning from
3686          // non-null to non=null
3687          masm.get_thread (boxReg) ;
3688          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3689          // Intentional fall-through into LGoSlowPath ...
3690 
3691          masm.bind  (LGoSlowPath) ; 
3692          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3693          masm.jmpb  (DONE_LABEL) ; 
3694 
3695          masm.bind  (LSuccess) ; 
3696          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3697          masm.jmpb  (DONE_LABEL) ; 
3698       }
3699 
3700       masm.bind (Stacked) ;
3701       // It's not inflated and it's not recursively stack-locked and it's not biased.
3702       // It must be stack-locked.
3703       // Try to reset the header to displaced header.
3704       // The "box" value on the stack is stable, so we can reload
3705       // and be assured we observe the same value as above.
3706       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3707       if (os::is_MP()) {   masm.lock();    }
3708       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3709       // Intention fall-thru into DONE_LABEL
3710 
3711 
3712       // DONE_LABEL is a hot target - we'd really like to place it at the
3713       // start of cache line by padding with NOPs.
3714       // See the AMD and Intel software optimization manuals for the
3715       // most efficient "long" NOP encodings.
3716       // Unfortunately none of our alignment mechanisms suffice.
3717       if ((EmitSync & 65536) == 0) {
3718          masm.bind (CheckSucc) ;
3719       }
3720       masm.bind(DONE_LABEL);
3721 
3722       // Avoid branch to branch on AMD processors
3723       if (EmitSync & 32768) { masm.nop() ; }
3724     }
3725   %}
3726 
3727 
3728   enc_class enc_pop_rdx() %{
3729     emit_opcode(cbuf,0x5A);
3730   %}
3731 
3732   enc_class enc_rethrow() %{
3733     cbuf.set_insts_mark();
3734     emit_opcode(cbuf, 0xE9);        // jmp    entry
3735     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3736                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3737   %}
3738 
3739 
3740   // Convert a double to an int.  Java semantics require we do complex
3741   // manglelations in the corner cases.  So we set the rounding mode to
3742   // 'zero', store the darned double down as an int, and reset the
3743   // rounding mode to 'nearest'.  The hardware throws an exception which
3744   // patches up the correct value directly to the stack.
3745   enc_class D2I_encoding( regD src ) %{
3746     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3747     // exceptions here, so that a NAN or other corner-case value will
3748     // thrown an exception (but normal values get converted at full speed).
3749     // However, I2C adapters and other float-stack manglers leave pending
3750     // invalid-op exceptions hanging.  We would have to clear them before
3751     // enabling them and that is more expensive than just testing for the
3752     // invalid value Intel stores down in the corner cases.
3753     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3754     emit_opcode(cbuf,0x2D);
3755     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3756     // Allocate a word
3757     emit_opcode(cbuf,0x83);            // SUB ESP,4
3758     emit_opcode(cbuf,0xEC);
3759     emit_d8(cbuf,0x04);
3760     // Encoding assumes a double has been pushed into FPR0.
3761     // Store down the double as an int, popping the FPU stack
3762     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3763     emit_opcode(cbuf,0x1C);
3764     emit_d8(cbuf,0x24);
3765     // Restore the rounding mode; mask the exception
3766     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3767     emit_opcode(cbuf,0x2D);
3768     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3769         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3770         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3771 
3772     // Load the converted int; adjust CPU stack
3773     emit_opcode(cbuf,0x58);       // POP EAX
3774     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3775     emit_d32   (cbuf,0x80000000); //         0x80000000
3776     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3777     emit_d8    (cbuf,0x07);       // Size of slow_call
3778     // Push src onto stack slow-path
3779     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3780     emit_d8    (cbuf,0xC0-1+$src$$reg );
3781     // CALL directly to the runtime
3782     cbuf.set_insts_mark();
3783     emit_opcode(cbuf,0xE8);       // Call into runtime
3784     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3785     // Carry on here...
3786   %}
3787 
3788   enc_class D2L_encoding( regD src ) %{
3789     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3790     emit_opcode(cbuf,0x2D);
3791     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3792     // Allocate a word
3793     emit_opcode(cbuf,0x83);            // SUB ESP,8
3794     emit_opcode(cbuf,0xEC);
3795     emit_d8(cbuf,0x08);
3796     // Encoding assumes a double has been pushed into FPR0.
3797     // Store down the double as a long, popping the FPU stack
3798     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3799     emit_opcode(cbuf,0x3C);
3800     emit_d8(cbuf,0x24);
3801     // Restore the rounding mode; mask the exception
3802     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3803     emit_opcode(cbuf,0x2D);
3804     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3805         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3806         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3807 
3808     // Load the converted int; adjust CPU stack
3809     emit_opcode(cbuf,0x58);       // POP EAX
3810     emit_opcode(cbuf,0x5A);       // POP EDX
3811     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3812     emit_d8    (cbuf,0xFA);       // rdx
3813     emit_d32   (cbuf,0x80000000); //         0x80000000
3814     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3815     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3816     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3817     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3818     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3819     emit_d8    (cbuf,0x07);       // Size of slow_call
3820     // Push src onto stack slow-path
3821     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3822     emit_d8    (cbuf,0xC0-1+$src$$reg );
3823     // CALL directly to the runtime
3824     cbuf.set_insts_mark();
3825     emit_opcode(cbuf,0xE8);       // Call into runtime
3826     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3827     // Carry on here...
3828   %}
3829 
3830   enc_class X2L_encoding( regX src ) %{
3831     // Allocate a word
3832     emit_opcode(cbuf,0x83);      // SUB ESP,8
3833     emit_opcode(cbuf,0xEC);
3834     emit_d8(cbuf,0x08);
3835 
3836     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3837     emit_opcode  (cbuf, 0x0F );
3838     emit_opcode  (cbuf, 0x11 );
3839     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3840 
3841     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3842     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3843 
3844     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3845     emit_opcode(cbuf,0x2D);
3846     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3847 
3848     // Encoding assumes a double has been pushed into FPR0.
3849     // Store down the double as a long, popping the FPU stack
3850     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3851     emit_opcode(cbuf,0x3C);
3852     emit_d8(cbuf,0x24);
3853 
3854     // Restore the rounding mode; mask the exception
3855     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3856     emit_opcode(cbuf,0x2D);
3857     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3858       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3859       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3860 
3861     // Load the converted int; adjust CPU stack
3862     emit_opcode(cbuf,0x58);      // POP EAX
3863 
3864     emit_opcode(cbuf,0x5A);      // POP EDX
3865 
3866     emit_opcode(cbuf,0x81);      // CMP EDX,imm
3867     emit_d8    (cbuf,0xFA);      // rdx
3868     emit_d32   (cbuf,0x80000000);//         0x80000000
3869 
3870     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3871     emit_d8    (cbuf,0x13+4);    // Size of slow_call
3872 
3873     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3874     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3875 
3876     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3877     emit_d8    (cbuf,0x13);      // Size of slow_call
3878 
3879     // Allocate a word
3880     emit_opcode(cbuf,0x83);      // SUB ESP,4
3881     emit_opcode(cbuf,0xEC);
3882     emit_d8(cbuf,0x04);
3883 
3884     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3885     emit_opcode  (cbuf, 0x0F );
3886     emit_opcode  (cbuf, 0x11 );
3887     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3888 
3889     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3890     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3891 
3892     emit_opcode(cbuf,0x83);      // ADD ESP,4
3893     emit_opcode(cbuf,0xC4);
3894     emit_d8(cbuf,0x04);
3895 
3896     // CALL directly to the runtime
3897     cbuf.set_insts_mark();
3898     emit_opcode(cbuf,0xE8);       // Call into runtime
3899     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3900     // Carry on here...
3901   %}
3902 
3903   enc_class XD2L_encoding( regXD src ) %{
3904     // Allocate a word
3905     emit_opcode(cbuf,0x83);      // SUB ESP,8
3906     emit_opcode(cbuf,0xEC);
3907     emit_d8(cbuf,0x08);
3908 
3909     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3910     emit_opcode  (cbuf, 0x0F );
3911     emit_opcode  (cbuf, 0x11 );
3912     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3913 
3914     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3915     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3916 
3917     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3918     emit_opcode(cbuf,0x2D);
3919     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3920 
3921     // Encoding assumes a double has been pushed into FPR0.
3922     // Store down the double as a long, popping the FPU stack
3923     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3924     emit_opcode(cbuf,0x3C);
3925     emit_d8(cbuf,0x24);
3926 
3927     // Restore the rounding mode; mask the exception
3928     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3929     emit_opcode(cbuf,0x2D);
3930     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3931       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3932       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3933 
3934     // Load the converted int; adjust CPU stack
3935     emit_opcode(cbuf,0x58);      // POP EAX
3936 
3937     emit_opcode(cbuf,0x5A);      // POP EDX
3938 
3939     emit_opcode(cbuf,0x81);      // CMP EDX,imm
3940     emit_d8    (cbuf,0xFA);      // rdx
3941     emit_d32   (cbuf,0x80000000); //         0x80000000
3942 
3943     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3944     emit_d8    (cbuf,0x13+4);    // Size of slow_call
3945 
3946     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3947     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3948 
3949     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3950     emit_d8    (cbuf,0x13);      // Size of slow_call
3951 
3952     // Push src onto stack slow-path
3953     // Allocate a word
3954     emit_opcode(cbuf,0x83);      // SUB ESP,8
3955     emit_opcode(cbuf,0xEC);
3956     emit_d8(cbuf,0x08);
3957 
3958     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3959     emit_opcode  (cbuf, 0x0F );
3960     emit_opcode  (cbuf, 0x11 );
3961     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3962 
3963     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3964     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3965 
3966     emit_opcode(cbuf,0x83);      // ADD ESP,8
3967     emit_opcode(cbuf,0xC4);
3968     emit_d8(cbuf,0x08);
3969 
3970     // CALL directly to the runtime
3971     cbuf.set_insts_mark();
3972     emit_opcode(cbuf,0xE8);      // Call into runtime
3973     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3974     // Carry on here...
3975   %}
3976 
3977   enc_class D2X_encoding( regX dst, regD src ) %{
3978     // Allocate a word
3979     emit_opcode(cbuf,0x83);            // SUB ESP,4
3980     emit_opcode(cbuf,0xEC);
3981     emit_d8(cbuf,0x04);
3982     int pop = 0x02;
3983     if ($src$$reg != FPR1L_enc) {
3984       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
3985       emit_d8( cbuf, 0xC0-1+$src$$reg );
3986       pop = 0x03;
3987     }
3988     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
3989 
3990     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
3991     emit_opcode  (cbuf, 0x0F );
3992     emit_opcode  (cbuf, 0x10 );
3993     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
3994 
3995     emit_opcode(cbuf,0x83);            // ADD ESP,4
3996     emit_opcode(cbuf,0xC4);
3997     emit_d8(cbuf,0x04);
3998     // Carry on here...
3999   %}
4000 
4001   enc_class FX2I_encoding( regX src, eRegI dst ) %{
4002     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
4003 
4004     // Compare the result to see if we need to go to the slow path
4005     emit_opcode(cbuf,0x81);       // CMP dst,imm
4006     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
4007     emit_d32   (cbuf,0x80000000); //         0x80000000
4008 
4009     emit_opcode(cbuf,0x75);       // JNE around_slow_call
4010     emit_d8    (cbuf,0x13);       // Size of slow_call
4011     // Store xmm to a temp memory
4012     // location and push it onto stack.
4013 
4014     emit_opcode(cbuf,0x83);  // SUB ESP,4
4015     emit_opcode(cbuf,0xEC);
4016     emit_d8(cbuf, $primary ? 0x8 : 0x4);
4017 
4018     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
4019     emit_opcode  (cbuf, 0x0F );
4020     emit_opcode  (cbuf, 0x11 );
4021     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4022 
4023     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4024     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4025 
4026     emit_opcode(cbuf,0x83);    // ADD ESP,4
4027     emit_opcode(cbuf,0xC4);
4028     emit_d8(cbuf, $primary ? 0x8 : 0x4);
4029 
4030     // CALL directly to the runtime
4031     cbuf.set_insts_mark();
4032     emit_opcode(cbuf,0xE8);       // Call into runtime
4033     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4034 
4035     // Carry on here...
4036   %}
4037 
4038   enc_class X2D_encoding( regD dst, regX src ) %{
4039     // Allocate a word
4040     emit_opcode(cbuf,0x83);     // SUB ESP,4
4041     emit_opcode(cbuf,0xEC);
4042     emit_d8(cbuf,0x04);
4043 
4044     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4045     emit_opcode  (cbuf, 0x0F );
4046     emit_opcode  (cbuf, 0x11 );
4047     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4048 
4049     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4050     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4051 
4052     emit_opcode(cbuf,0x83);     // ADD ESP,4
4053     emit_opcode(cbuf,0xC4);
4054     emit_d8(cbuf,0x04);
4055 
4056     // Carry on here...
4057   %}
4058 
4059   enc_class AbsXF_encoding(regX dst) %{
4060     address signmask_address=(address)float_signmask_pool;
4061     // andpd:\tANDPS  $dst,[signconst]
4062     emit_opcode(cbuf, 0x0F);
4063     emit_opcode(cbuf, 0x54);
4064     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4065     emit_d32(cbuf, (int)signmask_address);
4066   %}
4067 
4068   enc_class AbsXD_encoding(regXD dst) %{
4069     address signmask_address=(address)double_signmask_pool;
4070     // andpd:\tANDPD  $dst,[signconst]
4071     emit_opcode(cbuf, 0x66);
4072     emit_opcode(cbuf, 0x0F);
4073     emit_opcode(cbuf, 0x54);
4074     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4075     emit_d32(cbuf, (int)signmask_address);
4076   %}
4077 
4078   enc_class NegXF_encoding(regX dst) %{
4079     address signmask_address=(address)float_signflip_pool;
4080     // andpd:\tXORPS  $dst,[signconst]
4081     emit_opcode(cbuf, 0x0F);
4082     emit_opcode(cbuf, 0x57);
4083     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4084     emit_d32(cbuf, (int)signmask_address);
4085   %}
4086 
4087   enc_class NegXD_encoding(regXD dst) %{
4088     address signmask_address=(address)double_signflip_pool;
4089     // andpd:\tXORPD  $dst,[signconst]
4090     emit_opcode(cbuf, 0x66);
4091     emit_opcode(cbuf, 0x0F);
4092     emit_opcode(cbuf, 0x57);
4093     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4094     emit_d32(cbuf, (int)signmask_address);
4095   %}
4096 
4097   enc_class FMul_ST_reg( eRegF src1 ) %{
4098     // Operand was loaded from memory into fp ST (stack top)
4099     // FMUL   ST,$src  /* D8 C8+i */
4100     emit_opcode(cbuf, 0xD8);
4101     emit_opcode(cbuf, 0xC8 + $src1$$reg);
4102   %}
4103 
4104   enc_class FAdd_ST_reg( eRegF src2 ) %{
4105     // FADDP  ST,src2  /* D8 C0+i */
4106     emit_opcode(cbuf, 0xD8);
4107     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4108     //could use FADDP  src2,fpST  /* DE C0+i */
4109   %}
4110 
4111   enc_class FAddP_reg_ST( eRegF src2 ) %{
4112     // FADDP  src2,ST  /* DE C0+i */
4113     emit_opcode(cbuf, 0xDE);
4114     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4115   %}
4116 
4117   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4118     // Operand has been loaded into fp ST (stack top)
4119       // FSUB   ST,$src1
4120       emit_opcode(cbuf, 0xD8);
4121       emit_opcode(cbuf, 0xE0 + $src1$$reg);
4122 
4123       // FDIV
4124       emit_opcode(cbuf, 0xD8);
4125       emit_opcode(cbuf, 0xF0 + $src2$$reg);
4126   %}
4127 
4128   enc_class MulFAddF (eRegF src1, eRegF src2) %{
4129     // Operand was loaded from memory into fp ST (stack top)
4130     // FADD   ST,$src  /* D8 C0+i */
4131     emit_opcode(cbuf, 0xD8);
4132     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4133 
4134     // FMUL  ST,src2  /* D8 C*+i */
4135     emit_opcode(cbuf, 0xD8);
4136     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4137   %}
4138 
4139 
4140   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4141     // Operand was loaded from memory into fp ST (stack top)
4142     // FADD   ST,$src  /* D8 C0+i */
4143     emit_opcode(cbuf, 0xD8);
4144     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4145 
4146     // FMULP  src2,ST  /* DE C8+i */
4147     emit_opcode(cbuf, 0xDE);
4148     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4149   %}
4150 
4151   // Atomically load the volatile long
4152   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4153     emit_opcode(cbuf,0xDF);
4154     int rm_byte_opcode = 0x05;
4155     int base     = $mem$$base;
4156     int index    = $mem$$index;
4157     int scale    = $mem$$scale;
4158     int displace = $mem$$disp;
4159     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4160     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4161     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4162   %}
4163 
4164   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4165     { // Atomic long load
4166       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4167       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4168       emit_opcode(cbuf,0x0F);
4169       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4170       int base     = $mem$$base;
4171       int index    = $mem$$index;
4172       int scale    = $mem$$scale;
4173       int displace = $mem$$disp;
4174       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4175       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4176     }
4177     { // MOVSD $dst,$tmp ! atomic long store
4178       emit_opcode(cbuf,0xF2);
4179       emit_opcode(cbuf,0x0F);
4180       emit_opcode(cbuf,0x11);
4181       int base     = $dst$$base;
4182       int index    = $dst$$index;
4183       int scale    = $dst$$scale;
4184       int displace = $dst$$disp;
4185       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4186       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4187     }
4188   %}
4189 
4190   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4191     { // Atomic long load
4192       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4193       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4194       emit_opcode(cbuf,0x0F);
4195       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4196       int base     = $mem$$base;
4197       int index    = $mem$$index;
4198       int scale    = $mem$$scale;
4199       int displace = $mem$$disp;
4200       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4201       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4202     }
4203     { // MOVD $dst.lo,$tmp
4204       emit_opcode(cbuf,0x66);
4205       emit_opcode(cbuf,0x0F);
4206       emit_opcode(cbuf,0x7E);
4207       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4208     }
4209     { // PSRLQ $tmp,32
4210       emit_opcode(cbuf,0x66);
4211       emit_opcode(cbuf,0x0F);
4212       emit_opcode(cbuf,0x73);
4213       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4214       emit_d8(cbuf, 0x20);
4215     }
4216     { // MOVD $dst.hi,$tmp
4217       emit_opcode(cbuf,0x66);
4218       emit_opcode(cbuf,0x0F);
4219       emit_opcode(cbuf,0x7E);
4220       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4221     }
4222   %}
4223 
4224   // Volatile Store Long.  Must be atomic, so move it into
4225   // the FP TOS and then do a 64-bit FIST.  Has to probe the
4226   // target address before the store (for null-ptr checks)
4227   // so the memory operand is used twice in the encoding.
4228   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4229     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4230     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
4231     emit_opcode(cbuf,0xDF);
4232     int rm_byte_opcode = 0x07;
4233     int base     = $mem$$base;
4234     int index    = $mem$$index;
4235     int scale    = $mem$$scale;
4236     int displace = $mem$$disp;
4237     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4238     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4239   %}
4240 
4241   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4242     { // Atomic long load
4243       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4244       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4245       emit_opcode(cbuf,0x0F);
4246       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4247       int base     = $src$$base;
4248       int index    = $src$$index;
4249       int scale    = $src$$scale;
4250       int displace = $src$$disp;
4251       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4252       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4253     }
4254     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
4255     { // MOVSD $mem,$tmp ! atomic long store
4256       emit_opcode(cbuf,0xF2);
4257       emit_opcode(cbuf,0x0F);
4258       emit_opcode(cbuf,0x11);
4259       int base     = $mem$$base;
4260       int index    = $mem$$index;
4261       int scale    = $mem$$scale;
4262       int displace = $mem$$disp;
4263       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4264       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4265     }
4266   %}
4267 
4268   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4269     { // MOVD $tmp,$src.lo
4270       emit_opcode(cbuf,0x66);
4271       emit_opcode(cbuf,0x0F);
4272       emit_opcode(cbuf,0x6E);
4273       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4274     }
4275     { // MOVD $tmp2,$src.hi
4276       emit_opcode(cbuf,0x66);
4277       emit_opcode(cbuf,0x0F);
4278       emit_opcode(cbuf,0x6E);
4279       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4280     }
4281     { // PUNPCKLDQ $tmp,$tmp2
4282       emit_opcode(cbuf,0x66);
4283       emit_opcode(cbuf,0x0F);
4284       emit_opcode(cbuf,0x62);
4285       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4286     }
4287     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
4288     { // MOVSD $mem,$tmp ! atomic long store
4289       emit_opcode(cbuf,0xF2);
4290       emit_opcode(cbuf,0x0F);
4291       emit_opcode(cbuf,0x11);
4292       int base     = $mem$$base;
4293       int index    = $mem$$index;
4294       int scale    = $mem$$scale;
4295       int displace = $mem$$disp;
4296       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4297       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4298     }
4299   %}
4300 
4301   // Safepoint Poll.  This polls the safepoint page, and causes an
4302   // exception if it is not readable. Unfortunately, it kills the condition code
4303   // in the process
4304   // We current use TESTL [spp],EDI
4305   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4306 
4307   enc_class Safepoint_Poll() %{
4308     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
4309     emit_opcode(cbuf,0x85);
4310     emit_rm (cbuf, 0x0, 0x7, 0x5);
4311     emit_d32(cbuf, (intptr_t)os::get_polling_page());
4312   %}
4313 %}
4314 
4315 
4316 //----------FRAME--------------------------------------------------------------
4317 // Definition of frame structure and management information.
4318 //
4319 //  S T A C K   L A Y O U T    Allocators stack-slot number
4320 //                             |   (to get allocators register number
4321 //  G  Owned by    |        |  v    add OptoReg::stack0())
4322 //  r   CALLER     |        |
4323 //  o     |        +--------+      pad to even-align allocators stack-slot
4324 //  w     V        |  pad0  |        numbers; owned by CALLER
4325 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4326 //  h     ^        |   in   |  5
4327 //        |        |  args  |  4   Holes in incoming args owned by SELF
4328 //  |     |        |        |  3
4329 //  |     |        +--------+
4330 //  V     |        | old out|      Empty on Intel, window on Sparc
4331 //        |    old |preserve|      Must be even aligned.
4332 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
4333 //        |        |   in   |  3   area for Intel ret address
4334 //     Owned by    |preserve|      Empty on Sparc.
4335 //       SELF      +--------+
4336 //        |        |  pad2  |  2   pad to align old SP
4337 //        |        +--------+  1
4338 //        |        | locks  |  0
4339 //        |        +--------+----> OptoReg::stack0(), even aligned
4340 //        |        |  pad1  | 11   pad to align new SP
4341 //        |        +--------+
4342 //        |        |        | 10
4343 //        |        | spills |  9   spills
4344 //        V        |        |  8   (pad0 slot for callee)
4345 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4346 //        ^        |  out   |  7
4347 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4348 //     Owned by    +--------+
4349 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4350 //        |    new |preserve|      Must be even-aligned.
4351 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
4352 //        |        |        |
4353 //
4354 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4355 //         known from SELF's arguments and the Java calling convention.
4356 //         Region 6-7 is determined per call site.
4357 // Note 2: If the calling convention leaves holes in the incoming argument
4358 //         area, those holes are owned by SELF.  Holes in the outgoing area
4359 //         are owned by the CALLEE.  Holes should not be nessecary in the
4360 //         incoming area, as the Java calling convention is completely under
4361 //         the control of the AD file.  Doubles can be sorted and packed to
4362 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
4363 //         varargs C calling conventions.
4364 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4365 //         even aligned with pad0 as needed.
4366 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4367 //         region 6-11 is even aligned; it may be padded out more so that
4368 //         the region from SP to FP meets the minimum stack alignment.
4369 
4370 frame %{
4371   // What direction does stack grow in (assumed to be same for C & Java)
4372   stack_direction(TOWARDS_LOW);
4373 
4374   // These three registers define part of the calling convention
4375   // between compiled code and the interpreter.
4376   inline_cache_reg(EAX);                // Inline Cache Register
4377   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4378 
4379   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4380   cisc_spilling_operand_name(indOffset32);
4381 
4382   // Number of stack slots consumed by locking an object
4383   sync_stack_slots(1);
4384 
4385   // Compiled code's Frame Pointer
4386   frame_pointer(ESP);
4387   // Interpreter stores its frame pointer in a register which is
4388   // stored to the stack by I2CAdaptors.
4389   // I2CAdaptors convert from interpreted java to compiled java.
4390   interpreter_frame_pointer(EBP);
4391 
4392   // Stack alignment requirement
4393   // Alignment size in bytes (128-bit -> 16 bytes)
4394   stack_alignment(StackAlignmentInBytes);
4395 
4396   // Number of stack slots between incoming argument block and the start of
4397   // a new frame.  The PROLOG must add this many slots to the stack.  The
4398   // EPILOG must remove this many slots.  Intel needs one slot for
4399   // return address and one for rbp, (must save rbp)
4400   in_preserve_stack_slots(2+VerifyStackAtCalls);
4401 
4402   // Number of outgoing stack slots killed above the out_preserve_stack_slots
4403   // for calls to C.  Supports the var-args backing area for register parms.
4404   varargs_C_out_slots_killed(0);
4405 
4406   // The after-PROLOG location of the return address.  Location of
4407   // return address specifies a type (REG or STACK) and a number
4408   // representing the register number (i.e. - use a register name) or
4409   // stack slot.
4410   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4411   // Otherwise, it is above the locks and verification slot and alignment word
4412   return_addr(STACK - 1 +
4413               round_to(1+VerifyStackAtCalls+
4414               Compile::current()->fixed_slots(),
4415               (StackAlignmentInBytes/wordSize)));
4416 
4417   // Body of function which returns an integer array locating
4418   // arguments either in registers or in stack slots.  Passed an array
4419   // of ideal registers called "sig" and a "length" count.  Stack-slot
4420   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4421   // arguments for a CALLEE.  Incoming stack arguments are
4422   // automatically biased by the preserve_stack_slots field above.
4423   calling_convention %{
4424     // No difference between ingoing/outgoing just pass false
4425     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4426   %}
4427 
4428 
4429   // Body of function which returns an integer array locating
4430   // arguments either in registers or in stack slots.  Passed an array
4431   // of ideal registers called "sig" and a "length" count.  Stack-slot
4432   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4433   // arguments for a CALLEE.  Incoming stack arguments are
4434   // automatically biased by the preserve_stack_slots field above.
4435   c_calling_convention %{
4436     // This is obviously always outgoing
4437     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4438   %}
4439 
4440   // Location of C & interpreter return values
4441   c_return_value %{
4442     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4443     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4444     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4445 
4446     // in SSE2+ mode we want to keep the FPU stack clean so pretend
4447     // that C functions return float and double results in XMM0.
4448     if( ideal_reg == Op_RegD && UseSSE>=2 )
4449       return OptoRegPair(XMM0b_num,XMM0a_num);
4450     if( ideal_reg == Op_RegF && UseSSE>=2 )
4451       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4452 
4453     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4454   %}
4455 
4456   // Location of return values
4457   return_value %{
4458     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4459     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4460     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4461     if( ideal_reg == Op_RegD && UseSSE>=2 )
4462       return OptoRegPair(XMM0b_num,XMM0a_num);
4463     if( ideal_reg == Op_RegF && UseSSE>=1 )
4464       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4465     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4466   %}
4467 
4468 %}
4469 
4470 //----------ATTRIBUTES---------------------------------------------------------
4471 //----------Operand Attributes-------------------------------------------------
4472 op_attrib op_cost(0);        // Required cost attribute
4473 
4474 //----------Instruction Attributes---------------------------------------------
4475 ins_attrib ins_cost(100);       // Required cost attribute
4476 ins_attrib ins_size(8);         // Required size attribute (in bits)
4477 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4478                                 // non-matching short branch variant of some
4479                                                             // long branch?
4480 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4481                                 // specifies the alignment that some part of the instruction (not
4482                                 // necessarily the start) requires.  If > 1, a compute_padding()
4483                                 // function must be provided for the instruction
4484 
4485 //----------OPERANDS-----------------------------------------------------------
4486 // Operand definitions must precede instruction definitions for correct parsing
4487 // in the ADLC because operands constitute user defined types which are used in
4488 // instruction definitions.
4489 
4490 //----------Simple Operands----------------------------------------------------
4491 // Immediate Operands
4492 // Integer Immediate
4493 operand immI() %{
4494   match(ConI);
4495 
4496   op_cost(10);
4497   format %{ %}
4498   interface(CONST_INTER);
4499 %}
4500 
4501 // Constant for test vs zero
4502 operand immI0() %{
4503   predicate(n->get_int() == 0);
4504   match(ConI);
4505 
4506   op_cost(0);
4507   format %{ %}
4508   interface(CONST_INTER);
4509 %}
4510 
4511 // Constant for increment
4512 operand immI1() %{
4513   predicate(n->get_int() == 1);
4514   match(ConI);
4515 
4516   op_cost(0);
4517   format %{ %}
4518   interface(CONST_INTER);
4519 %}
4520 
4521 // Constant for decrement
4522 operand immI_M1() %{
4523   predicate(n->get_int() == -1);
4524   match(ConI);
4525 
4526   op_cost(0);
4527   format %{ %}
4528   interface(CONST_INTER);
4529 %}
4530 
4531 // Valid scale values for addressing modes
4532 operand immI2() %{
4533   predicate(0 <= n->get_int() && (n->get_int() <= 3));
4534   match(ConI);
4535 
4536   format %{ %}
4537   interface(CONST_INTER);
4538 %}
4539 
4540 operand immI8() %{
4541   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4542   match(ConI);
4543 
4544   op_cost(5);
4545   format %{ %}
4546   interface(CONST_INTER);
4547 %}
4548 
4549 operand immI16() %{
4550   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4551   match(ConI);
4552 
4553   op_cost(10);
4554   format %{ %}
4555   interface(CONST_INTER);
4556 %}
4557 
4558 // Constant for long shifts
4559 operand immI_32() %{
4560   predicate( n->get_int() == 32 );
4561   match(ConI);
4562 
4563   op_cost(0);
4564   format %{ %}
4565   interface(CONST_INTER);
4566 %}
4567 
4568 operand immI_1_31() %{
4569   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4570   match(ConI);
4571 
4572   op_cost(0);
4573   format %{ %}
4574   interface(CONST_INTER);
4575 %}
4576 
4577 operand immI_32_63() %{
4578   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4579   match(ConI);
4580   op_cost(0);
4581 
4582   format %{ %}
4583   interface(CONST_INTER);
4584 %}
4585 
4586 operand immI_1() %{
4587   predicate( n->get_int() == 1 );
4588   match(ConI);
4589 
4590   op_cost(0);
4591   format %{ %}
4592   interface(CONST_INTER);
4593 %}
4594 
4595 operand immI_2() %{
4596   predicate( n->get_int() == 2 );
4597   match(ConI);
4598 
4599   op_cost(0);
4600   format %{ %}
4601   interface(CONST_INTER);
4602 %}
4603 
4604 operand immI_3() %{
4605   predicate( n->get_int() == 3 );
4606   match(ConI);
4607 
4608   op_cost(0);
4609   format %{ %}
4610   interface(CONST_INTER);
4611 %}
4612 
4613 // Pointer Immediate
4614 operand immP() %{
4615   match(ConP);
4616 
4617   op_cost(10);
4618   format %{ %}
4619   interface(CONST_INTER);
4620 %}
4621 
4622 // NULL Pointer Immediate
4623 operand immP0() %{
4624   predicate( n->get_ptr() == 0 );
4625   match(ConP);
4626   op_cost(0);
4627 
4628   format %{ %}
4629   interface(CONST_INTER);
4630 %}
4631 
4632 // Long Immediate
4633 operand immL() %{
4634   match(ConL);
4635 
4636   op_cost(20);
4637   format %{ %}
4638   interface(CONST_INTER);
4639 %}
4640 
4641 // Long Immediate zero
4642 operand immL0() %{
4643   predicate( n->get_long() == 0L );
4644   match(ConL);
4645   op_cost(0);
4646 
4647   format %{ %}
4648   interface(CONST_INTER);
4649 %}
4650 
4651 // Long Immediate zero
4652 operand immL_M1() %{
4653   predicate( n->get_long() == -1L );
4654   match(ConL);
4655   op_cost(0);
4656 
4657   format %{ %}
4658   interface(CONST_INTER);
4659 %}
4660 
4661 // Long immediate from 0 to 127.
4662 // Used for a shorter form of long mul by 10.
4663 operand immL_127() %{
4664   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4665   match(ConL);
4666   op_cost(0);
4667 
4668   format %{ %}
4669   interface(CONST_INTER);
4670 %}
4671 
4672 // Long Immediate: low 32-bit mask
4673 operand immL_32bits() %{
4674   predicate(n->get_long() == 0xFFFFFFFFL);
4675   match(ConL);
4676   op_cost(0);
4677 
4678   format %{ %}
4679   interface(CONST_INTER);
4680 %}
4681 
4682 // Long Immediate: low 32-bit mask
4683 operand immL32() %{
4684   predicate(n->get_long() == (int)(n->get_long()));
4685   match(ConL);
4686   op_cost(20);
4687 
4688   format %{ %}
4689   interface(CONST_INTER);
4690 %}
4691 
4692 //Double Immediate zero
4693 operand immD0() %{
4694   // Do additional (and counter-intuitive) test against NaN to work around VC++
4695   // bug that generates code such that NaNs compare equal to 0.0
4696   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4697   match(ConD);
4698 
4699   op_cost(5);
4700   format %{ %}
4701   interface(CONST_INTER);
4702 %}
4703 
4704 // Double Immediate one
4705 operand immD1() %{
4706   predicate( UseSSE<=1 && n->getd() == 1.0 );
4707   match(ConD);
4708 
4709   op_cost(5);
4710   format %{ %}
4711   interface(CONST_INTER);
4712 %}
4713 
4714 // Double Immediate
4715 operand immD() %{
4716   predicate(UseSSE<=1);
4717   match(ConD);
4718 
4719   op_cost(5);
4720   format %{ %}
4721   interface(CONST_INTER);
4722 %}
4723 
4724 operand immXD() %{
4725   predicate(UseSSE>=2);
4726   match(ConD);
4727 
4728   op_cost(5);
4729   format %{ %}
4730   interface(CONST_INTER);
4731 %}
4732 
4733 // Double Immediate zero
4734 operand immXD0() %{
4735   // Do additional (and counter-intuitive) test against NaN to work around VC++
4736   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4737   // compare equal to -0.0.
4738   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4739   match(ConD);
4740 
4741   format %{ %}
4742   interface(CONST_INTER);
4743 %}
4744 
4745 // Float Immediate zero
4746 operand immF0() %{
4747   predicate(UseSSE == 0 && n->getf() == 0.0F);
4748   match(ConF);
4749 
4750   op_cost(5);
4751   format %{ %}
4752   interface(CONST_INTER);
4753 %}
4754 
4755 // Float Immediate one
4756 operand immF1() %{
4757   predicate(UseSSE == 0 && n->getf() == 1.0F);
4758   match(ConF);
4759 
4760   op_cost(5);
4761   format %{ %}
4762   interface(CONST_INTER);
4763 %}
4764 
4765 // Float Immediate
4766 operand immF() %{
4767   predicate( UseSSE == 0 );
4768   match(ConF);
4769 
4770   op_cost(5);
4771   format %{ %}
4772   interface(CONST_INTER);
4773 %}
4774 
4775 // Float Immediate
4776 operand immXF() %{
4777   predicate(UseSSE >= 1);
4778   match(ConF);
4779 
4780   op_cost(5);
4781   format %{ %}
4782   interface(CONST_INTER);
4783 %}
4784 
4785 // Float Immediate zero.  Zero and not -0.0
4786 operand immXF0() %{
4787   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4788   match(ConF);
4789 
4790   op_cost(5);
4791   format %{ %}
4792   interface(CONST_INTER);
4793 %}
4794 
4795 // Immediates for special shifts (sign extend)
4796 
4797 // Constants for increment
4798 operand immI_16() %{
4799   predicate( n->get_int() == 16 );
4800   match(ConI);
4801 
4802   format %{ %}
4803   interface(CONST_INTER);
4804 %}
4805 
4806 operand immI_24() %{
4807   predicate( n->get_int() == 24 );
4808   match(ConI);
4809 
4810   format %{ %}
4811   interface(CONST_INTER);
4812 %}
4813 
4814 // Constant for byte-wide masking
4815 operand immI_255() %{
4816   predicate( n->get_int() == 255 );
4817   match(ConI);
4818 
4819   format %{ %}
4820   interface(CONST_INTER);
4821 %}
4822 
4823 // Constant for short-wide masking
4824 operand immI_65535() %{
4825   predicate(n->get_int() == 65535);
4826   match(ConI);
4827 
4828   format %{ %}
4829   interface(CONST_INTER);
4830 %}
4831 
4832 // Register Operands
4833 // Integer Register
4834 operand eRegI() %{
4835   constraint(ALLOC_IN_RC(e_reg));
4836   match(RegI);
4837   match(xRegI);
4838   match(eAXRegI);
4839   match(eBXRegI);
4840   match(eCXRegI);
4841   match(eDXRegI);
4842   match(eDIRegI);
4843   match(eSIRegI);
4844 
4845   format %{ %}
4846   interface(REG_INTER);
4847 %}
4848 
4849 // Subset of Integer Register
4850 operand xRegI(eRegI reg) %{
4851   constraint(ALLOC_IN_RC(x_reg));
4852   match(reg);
4853   match(eAXRegI);
4854   match(eBXRegI);
4855   match(eCXRegI);
4856   match(eDXRegI);
4857 
4858   format %{ %}
4859   interface(REG_INTER);
4860 %}
4861 
4862 // Special Registers
4863 operand eAXRegI(xRegI reg) %{
4864   constraint(ALLOC_IN_RC(eax_reg));
4865   match(reg);
4866   match(eRegI);
4867 
4868   format %{ "EAX" %}
4869   interface(REG_INTER);
4870 %}
4871 
4872 // Special Registers
4873 operand eBXRegI(xRegI reg) %{
4874   constraint(ALLOC_IN_RC(ebx_reg));
4875   match(reg);
4876   match(eRegI);
4877 
4878   format %{ "EBX" %}
4879   interface(REG_INTER);
4880 %}
4881 
4882 operand eCXRegI(xRegI reg) %{
4883   constraint(ALLOC_IN_RC(ecx_reg));
4884   match(reg);
4885   match(eRegI);
4886 
4887   format %{ "ECX" %}
4888   interface(REG_INTER);
4889 %}
4890 
4891 operand eDXRegI(xRegI reg) %{
4892   constraint(ALLOC_IN_RC(edx_reg));
4893   match(reg);
4894   match(eRegI);
4895 
4896   format %{ "EDX" %}
4897   interface(REG_INTER);
4898 %}
4899 
4900 operand eDIRegI(xRegI reg) %{
4901   constraint(ALLOC_IN_RC(edi_reg));
4902   match(reg);
4903   match(eRegI);
4904 
4905   format %{ "EDI" %}
4906   interface(REG_INTER);
4907 %}
4908 
4909 operand naxRegI() %{
4910   constraint(ALLOC_IN_RC(nax_reg));
4911   match(RegI);
4912   match(eCXRegI);
4913   match(eDXRegI);
4914   match(eSIRegI);
4915   match(eDIRegI);
4916 
4917   format %{ %}
4918   interface(REG_INTER);
4919 %}
4920 
4921 operand nadxRegI() %{
4922   constraint(ALLOC_IN_RC(nadx_reg));
4923   match(RegI);
4924   match(eBXRegI);
4925   match(eCXRegI);
4926   match(eSIRegI);
4927   match(eDIRegI);
4928 
4929   format %{ %}
4930   interface(REG_INTER);
4931 %}
4932 
4933 operand ncxRegI() %{
4934   constraint(ALLOC_IN_RC(ncx_reg));
4935   match(RegI);
4936   match(eAXRegI);
4937   match(eDXRegI);
4938   match(eSIRegI);
4939   match(eDIRegI);
4940 
4941   format %{ %}
4942   interface(REG_INTER);
4943 %}
4944 
4945 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4946 // //
4947 operand eSIRegI(xRegI reg) %{
4948    constraint(ALLOC_IN_RC(esi_reg));
4949    match(reg);
4950    match(eRegI);
4951 
4952    format %{ "ESI" %}
4953    interface(REG_INTER);
4954 %}
4955 
4956 // Pointer Register
4957 operand anyRegP() %{
4958   constraint(ALLOC_IN_RC(any_reg));
4959   match(RegP);
4960   match(eAXRegP);
4961   match(eBXRegP);
4962   match(eCXRegP);
4963   match(eDIRegP);
4964   match(eRegP);
4965 
4966   format %{ %}
4967   interface(REG_INTER);
4968 %}
4969 
4970 operand eRegP() %{
4971   constraint(ALLOC_IN_RC(e_reg));
4972   match(RegP);
4973   match(eAXRegP);
4974   match(eBXRegP);
4975   match(eCXRegP);
4976   match(eDIRegP);
4977 
4978   format %{ %}
4979   interface(REG_INTER);
4980 %}
4981 
4982 // On windows95, EBP is not safe to use for implicit null tests.
4983 operand eRegP_no_EBP() %{
4984   constraint(ALLOC_IN_RC(e_reg_no_rbp));
4985   match(RegP);
4986   match(eAXRegP);
4987   match(eBXRegP);
4988   match(eCXRegP);
4989   match(eDIRegP);
4990 
4991   op_cost(100);
4992   format %{ %}
4993   interface(REG_INTER);
4994 %}
4995 
4996 operand naxRegP() %{
4997   constraint(ALLOC_IN_RC(nax_reg));
4998   match(RegP);
4999   match(eBXRegP);
5000   match(eDXRegP);
5001   match(eCXRegP);
5002   match(eSIRegP);
5003   match(eDIRegP);
5004 
5005   format %{ %}
5006   interface(REG_INTER);
5007 %}
5008 
5009 operand nabxRegP() %{
5010   constraint(ALLOC_IN_RC(nabx_reg));
5011   match(RegP);
5012   match(eCXRegP);
5013   match(eDXRegP);
5014   match(eSIRegP);
5015   match(eDIRegP);
5016 
5017   format %{ %}
5018   interface(REG_INTER);
5019 %}
5020 
5021 operand pRegP() %{
5022   constraint(ALLOC_IN_RC(p_reg));
5023   match(RegP);
5024   match(eBXRegP);
5025   match(eDXRegP);
5026   match(eSIRegP);
5027   match(eDIRegP);
5028 
5029   format %{ %}
5030   interface(REG_INTER);
5031 %}
5032 
5033 // Special Registers
5034 // Return a pointer value
5035 operand eAXRegP(eRegP reg) %{
5036   constraint(ALLOC_IN_RC(eax_reg));
5037   match(reg);
5038   format %{ "EAX" %}
5039   interface(REG_INTER);
5040 %}
5041 
5042 // Used in AtomicAdd
5043 operand eBXRegP(eRegP reg) %{
5044   constraint(ALLOC_IN_RC(ebx_reg));
5045   match(reg);
5046   format %{ "EBX" %}
5047   interface(REG_INTER);
5048 %}
5049 
5050 // Tail-call (interprocedural jump) to interpreter
5051 operand eCXRegP(eRegP reg) %{
5052   constraint(ALLOC_IN_RC(ecx_reg));
5053   match(reg);
5054   format %{ "ECX" %}
5055   interface(REG_INTER);
5056 %}
5057 
5058 operand eSIRegP(eRegP reg) %{
5059   constraint(ALLOC_IN_RC(esi_reg));
5060   match(reg);
5061   format %{ "ESI" %}
5062   interface(REG_INTER);
5063 %}
5064 
5065 // Used in rep stosw
5066 operand eDIRegP(eRegP reg) %{
5067   constraint(ALLOC_IN_RC(edi_reg));
5068   match(reg);
5069   format %{ "EDI" %}
5070   interface(REG_INTER);
5071 %}
5072 
5073 operand eBPRegP() %{
5074   constraint(ALLOC_IN_RC(ebp_reg));
5075   match(RegP);
5076   format %{ "EBP" %}
5077   interface(REG_INTER);
5078 %}
5079 
5080 operand eRegL() %{
5081   constraint(ALLOC_IN_RC(long_reg));
5082   match(RegL);
5083   match(eADXRegL);
5084 
5085   format %{ %}
5086   interface(REG_INTER);
5087 %}
5088 
5089 operand eADXRegL( eRegL reg ) %{
5090   constraint(ALLOC_IN_RC(eadx_reg));
5091   match(reg);
5092 
5093   format %{ "EDX:EAX" %}
5094   interface(REG_INTER);
5095 %}
5096 
5097 operand eBCXRegL( eRegL reg ) %{
5098   constraint(ALLOC_IN_RC(ebcx_reg));
5099   match(reg);
5100 
5101   format %{ "EBX:ECX" %}
5102   interface(REG_INTER);
5103 %}
5104 
5105 // Special case for integer high multiply
5106 operand eADXRegL_low_only() %{
5107   constraint(ALLOC_IN_RC(eadx_reg));
5108   match(RegL);
5109 
5110   format %{ "EAX" %}
5111   interface(REG_INTER);
5112 %}
5113 
5114 // Flags register, used as output of compare instructions
5115 operand eFlagsReg() %{
5116   constraint(ALLOC_IN_RC(int_flags));
5117   match(RegFlags);
5118 
5119   format %{ "EFLAGS" %}
5120   interface(REG_INTER);
5121 %}
5122 
5123 // Flags register, used as output of FLOATING POINT compare instructions
5124 operand eFlagsRegU() %{
5125   constraint(ALLOC_IN_RC(int_flags));
5126   match(RegFlags);
5127 
5128   format %{ "EFLAGS_U" %}
5129   interface(REG_INTER);
5130 %}
5131 
5132 operand eFlagsRegUCF() %{
5133   constraint(ALLOC_IN_RC(int_flags));
5134   match(RegFlags);
5135   predicate(false);
5136 
5137   format %{ "EFLAGS_U_CF" %}
5138   interface(REG_INTER);
5139 %}
5140 
5141 // Condition Code Register used by long compare
5142 operand flagsReg_long_LTGE() %{
5143   constraint(ALLOC_IN_RC(int_flags));
5144   match(RegFlags);
5145   format %{ "FLAGS_LTGE" %}
5146   interface(REG_INTER);
5147 %}
5148 operand flagsReg_long_EQNE() %{
5149   constraint(ALLOC_IN_RC(int_flags));
5150   match(RegFlags);
5151   format %{ "FLAGS_EQNE" %}
5152   interface(REG_INTER);
5153 %}
5154 operand flagsReg_long_LEGT() %{
5155   constraint(ALLOC_IN_RC(int_flags));
5156   match(RegFlags);
5157   format %{ "FLAGS_LEGT" %}
5158   interface(REG_INTER);
5159 %}
5160 
5161 // Float register operands
5162 operand regD() %{
5163   predicate( UseSSE < 2 );
5164   constraint(ALLOC_IN_RC(dbl_reg));
5165   match(RegD);
5166   match(regDPR1);
5167   match(regDPR2);
5168   format %{ %}
5169   interface(REG_INTER);
5170 %}
5171 
5172 operand regDPR1(regD reg) %{
5173   predicate( UseSSE < 2 );
5174   constraint(ALLOC_IN_RC(dbl_reg0));
5175   match(reg);
5176   format %{ "FPR1" %}
5177   interface(REG_INTER);
5178 %}
5179 
5180 operand regDPR2(regD reg) %{
5181   predicate( UseSSE < 2 );
5182   constraint(ALLOC_IN_RC(dbl_reg1));
5183   match(reg);
5184   format %{ "FPR2" %}
5185   interface(REG_INTER);
5186 %}
5187 
5188 operand regnotDPR1(regD reg) %{
5189   predicate( UseSSE < 2 );
5190   constraint(ALLOC_IN_RC(dbl_notreg0));
5191   match(reg);
5192   format %{ %}
5193   interface(REG_INTER);
5194 %}
5195 
5196 // XMM Double register operands
5197 operand regXD() %{
5198   predicate( UseSSE>=2 );
5199   constraint(ALLOC_IN_RC(xdb_reg));
5200   match(RegD);
5201   match(regXD6);
5202   match(regXD7);
5203   format %{ %}
5204   interface(REG_INTER);
5205 %}
5206 
5207 // XMM6 double register operands
5208 operand regXD6(regXD reg) %{
5209   predicate( UseSSE>=2 );
5210   constraint(ALLOC_IN_RC(xdb_reg6));
5211   match(reg);
5212   format %{ "XMM6" %}
5213   interface(REG_INTER);
5214 %}
5215 
5216 // XMM7 double register operands
5217 operand regXD7(regXD reg) %{
5218   predicate( UseSSE>=2 );
5219   constraint(ALLOC_IN_RC(xdb_reg7));
5220   match(reg);
5221   format %{ "XMM7" %}
5222   interface(REG_INTER);
5223 %}
5224 
5225 // Float register operands
5226 operand regF() %{
5227   predicate( UseSSE < 2 );
5228   constraint(ALLOC_IN_RC(flt_reg));
5229   match(RegF);
5230   match(regFPR1);
5231   format %{ %}
5232   interface(REG_INTER);
5233 %}
5234 
5235 // Float register operands
5236 operand regFPR1(regF reg) %{
5237   predicate( UseSSE < 2 );
5238   constraint(ALLOC_IN_RC(flt_reg0));
5239   match(reg);
5240   format %{ "FPR1" %}
5241   interface(REG_INTER);
5242 %}
5243 
5244 // XMM register operands
5245 operand regX() %{
5246   predicate( UseSSE>=1 );
5247   constraint(ALLOC_IN_RC(xmm_reg));
5248   match(RegF);
5249   format %{ %}
5250   interface(REG_INTER);
5251 %}
5252 
5253 
5254 //----------Memory Operands----------------------------------------------------
5255 // Direct Memory Operand
5256 operand direct(immP addr) %{
5257   match(addr);
5258 
5259   format %{ "[$addr]" %}
5260   interface(MEMORY_INTER) %{
5261     base(0xFFFFFFFF);
5262     index(0x4);
5263     scale(0x0);
5264     disp($addr);
5265   %}
5266 %}
5267 
5268 // Indirect Memory Operand
5269 operand indirect(eRegP reg) %{
5270   constraint(ALLOC_IN_RC(e_reg));
5271   match(reg);
5272 
5273   format %{ "[$reg]" %}
5274   interface(MEMORY_INTER) %{
5275     base($reg);
5276     index(0x4);
5277     scale(0x0);
5278     disp(0x0);
5279   %}
5280 %}
5281 
5282 // Indirect Memory Plus Short Offset Operand
5283 operand indOffset8(eRegP reg, immI8 off) %{
5284   match(AddP reg off);
5285 
5286   format %{ "[$reg + $off]" %}
5287   interface(MEMORY_INTER) %{
5288     base($reg);
5289     index(0x4);
5290     scale(0x0);
5291     disp($off);
5292   %}
5293 %}
5294 
5295 // Indirect Memory Plus Long Offset Operand
5296 operand indOffset32(eRegP reg, immI off) %{
5297   match(AddP reg off);
5298 
5299   format %{ "[$reg + $off]" %}
5300   interface(MEMORY_INTER) %{
5301     base($reg);
5302     index(0x4);
5303     scale(0x0);
5304     disp($off);
5305   %}
5306 %}
5307 
5308 // Indirect Memory Plus Long Offset Operand
5309 operand indOffset32X(eRegI reg, immP off) %{
5310   match(AddP off reg);
5311 
5312   format %{ "[$reg + $off]" %}
5313   interface(MEMORY_INTER) %{
5314     base($reg);
5315     index(0x4);
5316     scale(0x0);
5317     disp($off);
5318   %}
5319 %}
5320 
5321 // Indirect Memory Plus Index Register Plus Offset Operand
5322 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5323   match(AddP (AddP reg ireg) off);
5324 
5325   op_cost(10);
5326   format %{"[$reg + $off + $ireg]" %}
5327   interface(MEMORY_INTER) %{
5328     base($reg);
5329     index($ireg);
5330     scale(0x0);
5331     disp($off);
5332   %}
5333 %}
5334 
5335 // Indirect Memory Plus Index Register Plus Offset Operand
5336 operand indIndex(eRegP reg, eRegI ireg) %{
5337   match(AddP reg ireg);
5338 
5339   op_cost(10);
5340   format %{"[$reg + $ireg]" %}
5341   interface(MEMORY_INTER) %{
5342     base($reg);
5343     index($ireg);
5344     scale(0x0);
5345     disp(0x0);
5346   %}
5347 %}
5348 
5349 // // -------------------------------------------------------------------------
5350 // // 486 architecture doesn't support "scale * index + offset" with out a base
5351 // // -------------------------------------------------------------------------
5352 // // Scaled Memory Operands
5353 // // Indirect Memory Times Scale Plus Offset Operand
5354 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5355 //   match(AddP off (LShiftI ireg scale));
5356 //
5357 //   op_cost(10);
5358 //   format %{"[$off + $ireg << $scale]" %}
5359 //   interface(MEMORY_INTER) %{
5360 //     base(0x4);
5361 //     index($ireg);
5362 //     scale($scale);
5363 //     disp($off);
5364 //   %}
5365 // %}
5366 
5367 // Indirect Memory Times Scale Plus Index Register
5368 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5369   match(AddP reg (LShiftI ireg scale));
5370 
5371   op_cost(10);
5372   format %{"[$reg + $ireg << $scale]" %}
5373   interface(MEMORY_INTER) %{
5374     base($reg);
5375     index($ireg);
5376     scale($scale);
5377     disp(0x0);
5378   %}
5379 %}
5380 
5381 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5382 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5383   match(AddP (AddP reg (LShiftI ireg scale)) off);
5384 
5385   op_cost(10);
5386   format %{"[$reg + $off + $ireg << $scale]" %}
5387   interface(MEMORY_INTER) %{
5388     base($reg);
5389     index($ireg);
5390     scale($scale);
5391     disp($off);
5392   %}
5393 %}
5394 
5395 //----------Load Long Memory Operands------------------------------------------
5396 // The load-long idiom will use it's address expression again after loading
5397 // the first word of the long.  If the load-long destination overlaps with
5398 // registers used in the addressing expression, the 2nd half will be loaded
5399 // from a clobbered address.  Fix this by requiring that load-long use
5400 // address registers that do not overlap with the load-long target.
5401 
5402 // load-long support
5403 operand load_long_RegP() %{
5404   constraint(ALLOC_IN_RC(esi_reg));
5405   match(RegP);
5406   match(eSIRegP);
5407   op_cost(100);
5408   format %{  %}
5409   interface(REG_INTER);
5410 %}
5411 
5412 // Indirect Memory Operand Long
5413 operand load_long_indirect(load_long_RegP reg) %{
5414   constraint(ALLOC_IN_RC(esi_reg));
5415   match(reg);
5416 
5417   format %{ "[$reg]" %}
5418   interface(MEMORY_INTER) %{
5419     base($reg);
5420     index(0x4);
5421     scale(0x0);
5422     disp(0x0);
5423   %}
5424 %}
5425 
5426 // Indirect Memory Plus Long Offset Operand
5427 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5428   match(AddP reg off);
5429 
5430   format %{ "[$reg + $off]" %}
5431   interface(MEMORY_INTER) %{
5432     base($reg);
5433     index(0x4);
5434     scale(0x0);
5435     disp($off);
5436   %}
5437 %}
5438 
5439 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5440 
5441 
5442 //----------Special Memory Operands--------------------------------------------
5443 // Stack Slot Operand - This operand is used for loading and storing temporary
5444 //                      values on the stack where a match requires a value to
5445 //                      flow through memory.
5446 operand stackSlotP(sRegP reg) %{
5447   constraint(ALLOC_IN_RC(stack_slots));
5448   // No match rule because this operand is only generated in matching
5449   format %{ "[$reg]" %}
5450   interface(MEMORY_INTER) %{
5451     base(0x4);   // ESP
5452     index(0x4);  // No Index
5453     scale(0x0);  // No Scale
5454     disp($reg);  // Stack Offset
5455   %}
5456 %}
5457 
5458 operand stackSlotI(sRegI reg) %{
5459   constraint(ALLOC_IN_RC(stack_slots));
5460   // No match rule because this operand is only generated in matching
5461   format %{ "[$reg]" %}
5462   interface(MEMORY_INTER) %{
5463     base(0x4);   // ESP
5464     index(0x4);  // No Index
5465     scale(0x0);  // No Scale
5466     disp($reg);  // Stack Offset
5467   %}
5468 %}
5469 
5470 operand stackSlotF(sRegF reg) %{
5471   constraint(ALLOC_IN_RC(stack_slots));
5472   // No match rule because this operand is only generated in matching
5473   format %{ "[$reg]" %}
5474   interface(MEMORY_INTER) %{
5475     base(0x4);   // ESP
5476     index(0x4);  // No Index
5477     scale(0x0);  // No Scale
5478     disp($reg);  // Stack Offset
5479   %}
5480 %}
5481 
5482 operand stackSlotD(sRegD reg) %{
5483   constraint(ALLOC_IN_RC(stack_slots));
5484   // No match rule because this operand is only generated in matching
5485   format %{ "[$reg]" %}
5486   interface(MEMORY_INTER) %{
5487     base(0x4);   // ESP
5488     index(0x4);  // No Index
5489     scale(0x0);  // No Scale
5490     disp($reg);  // Stack Offset
5491   %}
5492 %}
5493 
5494 operand stackSlotL(sRegL reg) %{
5495   constraint(ALLOC_IN_RC(stack_slots));
5496   // No match rule because this operand is only generated in matching
5497   format %{ "[$reg]" %}
5498   interface(MEMORY_INTER) %{
5499     base(0x4);   // ESP
5500     index(0x4);  // No Index
5501     scale(0x0);  // No Scale
5502     disp($reg);  // Stack Offset
5503   %}
5504 %}
5505 
5506 //----------Memory Operands - Win95 Implicit Null Variants----------------
5507 // Indirect Memory Operand
5508 operand indirect_win95_safe(eRegP_no_EBP reg)
5509 %{
5510   constraint(ALLOC_IN_RC(e_reg));
5511   match(reg);
5512 
5513   op_cost(100);
5514   format %{ "[$reg]" %}
5515   interface(MEMORY_INTER) %{
5516     base($reg);
5517     index(0x4);
5518     scale(0x0);
5519     disp(0x0);
5520   %}
5521 %}
5522 
5523 // Indirect Memory Plus Short Offset Operand
5524 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5525 %{
5526   match(AddP reg off);
5527 
5528   op_cost(100);
5529   format %{ "[$reg + $off]" %}
5530   interface(MEMORY_INTER) %{
5531     base($reg);
5532     index(0x4);
5533     scale(0x0);
5534     disp($off);
5535   %}
5536 %}
5537 
5538 // Indirect Memory Plus Long Offset Operand
5539 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5540 %{
5541   match(AddP reg off);
5542 
5543   op_cost(100);
5544   format %{ "[$reg + $off]" %}
5545   interface(MEMORY_INTER) %{
5546     base($reg);
5547     index(0x4);
5548     scale(0x0);
5549     disp($off);
5550   %}
5551 %}
5552 
5553 // Indirect Memory Plus Index Register Plus Offset Operand
5554 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5555 %{
5556   match(AddP (AddP reg ireg) off);
5557 
5558   op_cost(100);
5559   format %{"[$reg + $off + $ireg]" %}
5560   interface(MEMORY_INTER) %{
5561     base($reg);
5562     index($ireg);
5563     scale(0x0);
5564     disp($off);
5565   %}
5566 %}
5567 
5568 // Indirect Memory Times Scale Plus Index Register
5569 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5570 %{
5571   match(AddP reg (LShiftI ireg scale));
5572 
5573   op_cost(100);
5574   format %{"[$reg + $ireg << $scale]" %}
5575   interface(MEMORY_INTER) %{
5576     base($reg);
5577     index($ireg);
5578     scale($scale);
5579     disp(0x0);
5580   %}
5581 %}
5582 
5583 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5584 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5585 %{
5586   match(AddP (AddP reg (LShiftI ireg scale)) off);
5587 
5588   op_cost(100);
5589   format %{"[$reg + $off + $ireg << $scale]" %}
5590   interface(MEMORY_INTER) %{
5591     base($reg);
5592     index($ireg);
5593     scale($scale);
5594     disp($off);
5595   %}
5596 %}
5597 
5598 //----------Conditional Branch Operands----------------------------------------
5599 // Comparison Op  - This is the operation of the comparison, and is limited to
5600 //                  the following set of codes:
5601 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5602 //
5603 // Other attributes of the comparison, such as unsignedness, are specified
5604 // by the comparison instruction that sets a condition code flags register.
5605 // That result is represented by a flags operand whose subtype is appropriate
5606 // to the unsignedness (etc.) of the comparison.
5607 //
5608 // Later, the instruction which matches both the Comparison Op (a Bool) and
5609 // the flags (produced by the Cmp) specifies the coding of the comparison op
5610 // by matching a specific subtype of Bool operand below, such as cmpOpU.
5611 
5612 // Comparision Code
5613 operand cmpOp() %{
5614   match(Bool);
5615 
5616   format %{ "" %}
5617   interface(COND_INTER) %{
5618     equal(0x4, "e");
5619     not_equal(0x5, "ne");
5620     less(0xC, "l");
5621     greater_equal(0xD, "ge");
5622     less_equal(0xE, "le");
5623     greater(0xF, "g");
5624   %}
5625 %}
5626 
5627 // Comparison Code, unsigned compare.  Used by FP also, with
5628 // C2 (unordered) turned into GT or LT already.  The other bits
5629 // C0 and C3 are turned into Carry & Zero flags.
5630 operand cmpOpU() %{
5631   match(Bool);
5632 
5633   format %{ "" %}
5634   interface(COND_INTER) %{
5635     equal(0x4, "e");
5636     not_equal(0x5, "ne");
5637     less(0x2, "b");
5638     greater_equal(0x3, "nb");
5639     less_equal(0x6, "be");
5640     greater(0x7, "nbe");
5641   %}
5642 %}
5643 
5644 // Floating comparisons that don't require any fixup for the unordered case
5645 operand cmpOpUCF() %{
5646   match(Bool);
5647   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
5648             n->as_Bool()->_test._test == BoolTest::ge ||
5649             n->as_Bool()->_test._test == BoolTest::le ||
5650             n->as_Bool()->_test._test == BoolTest::gt);
5651   format %{ "" %}
5652   interface(COND_INTER) %{
5653     equal(0x4, "e");
5654     not_equal(0x5, "ne");
5655     less(0x2, "b");
5656     greater_equal(0x3, "nb");
5657     less_equal(0x6, "be");
5658     greater(0x7, "nbe");
5659   %}
5660 %}
5661 
5662 
5663 // Floating comparisons that can be fixed up with extra conditional jumps
5664 operand cmpOpUCF2() %{
5665   match(Bool);
5666   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5667             n->as_Bool()->_test._test == BoolTest::eq);
5668   format %{ "" %}
5669   interface(COND_INTER) %{
5670     equal(0x4, "e");
5671     not_equal(0x5, "ne");
5672     less(0x2, "b");
5673     greater_equal(0x3, "nb");
5674     less_equal(0x6, "be");
5675     greater(0x7, "nbe");
5676   %}
5677 %}
5678 
5679 // Comparison Code for FP conditional move
5680 operand cmpOp_fcmov() %{
5681   match(Bool);
5682 
5683   format %{ "" %}
5684   interface(COND_INTER) %{
5685     equal        (0x0C8);
5686     not_equal    (0x1C8);
5687     less         (0x0C0);
5688     greater_equal(0x1C0);
5689     less_equal   (0x0D0);
5690     greater      (0x1D0);
5691   %}
5692 %}
5693 
5694 // Comparision Code used in long compares
5695 operand cmpOp_commute() %{
5696   match(Bool);
5697 
5698   format %{ "" %}
5699   interface(COND_INTER) %{
5700     equal(0x4, "e");
5701     not_equal(0x5, "ne");
5702     less(0xF, "g");
5703     greater_equal(0xE, "le");
5704     less_equal(0xD, "ge");
5705     greater(0xC, "l");
5706   %}
5707 %}
5708 
5709 //----------OPERAND CLASSES----------------------------------------------------
5710 // Operand Classes are groups of operands that are used as to simplify
5711 // instruction definitions by not requiring the AD writer to specify separate
5712 // instructions for every form of operand when the instruction accepts
5713 // multiple operand types with the same basic encoding and format.  The classic
5714 // case of this is memory operands.
5715 
5716 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5717                indIndex, indIndexScale, indIndexScaleOffset);
5718 
5719 // Long memory operations are encoded in 2 instructions and a +4 offset.
5720 // This means some kind of offset is always required and you cannot use
5721 // an oop as the offset (done when working on static globals).
5722 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5723                     indIndex, indIndexScale, indIndexScaleOffset);
5724 
5725 
5726 //----------PIPELINE-----------------------------------------------------------
5727 // Rules which define the behavior of the target architectures pipeline.
5728 pipeline %{
5729 
5730 //----------ATTRIBUTES---------------------------------------------------------
5731 attributes %{
5732   variable_size_instructions;        // Fixed size instructions
5733   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5734   instruction_unit_size = 1;         // An instruction is 1 bytes long
5735   instruction_fetch_unit_size = 16;  // The processor fetches one line
5736   instruction_fetch_units = 1;       // of 16 bytes
5737 
5738   // List of nop instructions
5739   nops( MachNop );
5740 %}
5741 
5742 //----------RESOURCES----------------------------------------------------------
5743 // Resources are the functional units available to the machine
5744 
5745 // Generic P2/P3 pipeline
5746 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5747 // 3 instructions decoded per cycle.
5748 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5749 // 2 ALU op, only ALU0 handles mul/div instructions.
5750 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5751            MS0, MS1, MEM = MS0 | MS1,
5752            BR, FPU,
5753            ALU0, ALU1, ALU = ALU0 | ALU1 );
5754 
5755 //----------PIPELINE DESCRIPTION-----------------------------------------------
5756 // Pipeline Description specifies the stages in the machine's pipeline
5757 
5758 // Generic P2/P3 pipeline
5759 pipe_desc(S0, S1, S2, S3, S4, S5);
5760 
5761 //----------PIPELINE CLASSES---------------------------------------------------
5762 // Pipeline Classes describe the stages in which input and output are
5763 // referenced by the hardware pipeline.
5764 
5765 // Naming convention: ialu or fpu
5766 // Then: _reg
5767 // Then: _reg if there is a 2nd register
5768 // Then: _long if it's a pair of instructions implementing a long
5769 // Then: _fat if it requires the big decoder
5770 //   Or: _mem if it requires the big decoder and a memory unit.
5771 
5772 // Integer ALU reg operation
5773 pipe_class ialu_reg(eRegI dst) %{
5774     single_instruction;
5775     dst    : S4(write);
5776     dst    : S3(read);
5777     DECODE : S0;        // any decoder
5778     ALU    : S3;        // any alu
5779 %}
5780 
5781 // Long ALU reg operation
5782 pipe_class ialu_reg_long(eRegL dst) %{
5783     instruction_count(2);
5784     dst    : S4(write);
5785     dst    : S3(read);
5786     DECODE : S0(2);     // any 2 decoders
5787     ALU    : S3(2);     // both alus
5788 %}
5789 
5790 // Integer ALU reg operation using big decoder
5791 pipe_class ialu_reg_fat(eRegI dst) %{
5792     single_instruction;
5793     dst    : S4(write);
5794     dst    : S3(read);
5795     D0     : S0;        // big decoder only
5796     ALU    : S3;        // any alu
5797 %}
5798 
5799 // Long ALU reg operation using big decoder
5800 pipe_class ialu_reg_long_fat(eRegL dst) %{
5801     instruction_count(2);
5802     dst    : S4(write);
5803     dst    : S3(read);
5804     D0     : S0(2);     // big decoder only; twice
5805     ALU    : S3(2);     // any 2 alus
5806 %}
5807 
5808 // Integer ALU reg-reg operation
5809 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5810     single_instruction;
5811     dst    : S4(write);
5812     src    : S3(read);
5813     DECODE : S0;        // any decoder
5814     ALU    : S3;        // any alu
5815 %}
5816 
5817 // Long ALU reg-reg operation
5818 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5819     instruction_count(2);
5820     dst    : S4(write);
5821     src    : S3(read);
5822     DECODE : S0(2);     // any 2 decoders
5823     ALU    : S3(2);     // both alus
5824 %}
5825 
5826 // Integer ALU reg-reg operation
5827 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5828     single_instruction;
5829     dst    : S4(write);
5830     src    : S3(read);
5831     D0     : S0;        // big decoder only
5832     ALU    : S3;        // any alu
5833 %}
5834 
5835 // Long ALU reg-reg operation
5836 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5837     instruction_count(2);
5838     dst    : S4(write);
5839     src    : S3(read);
5840     D0     : S0(2);     // big decoder only; twice
5841     ALU    : S3(2);     // both alus
5842 %}
5843 
5844 // Integer ALU reg-mem operation
5845 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5846     single_instruction;
5847     dst    : S5(write);
5848     mem    : S3(read);
5849     D0     : S0;        // big decoder only
5850     ALU    : S4;        // any alu
5851     MEM    : S3;        // any mem
5852 %}
5853 
5854 // Long ALU reg-mem operation
5855 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5856     instruction_count(2);
5857     dst    : S5(write);
5858     mem    : S3(read);
5859     D0     : S0(2);     // big decoder only; twice
5860     ALU    : S4(2);     // any 2 alus
5861     MEM    : S3(2);     // both mems
5862 %}
5863 
5864 // Integer mem operation (prefetch)
5865 pipe_class ialu_mem(memory mem)
5866 %{
5867     single_instruction;
5868     mem    : S3(read);
5869     D0     : S0;        // big decoder only
5870     MEM    : S3;        // any mem
5871 %}
5872 
5873 // Integer Store to Memory
5874 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
5875     single_instruction;
5876     mem    : S3(read);
5877     src    : S5(read);
5878     D0     : S0;        // big decoder only
5879     ALU    : S4;        // any alu
5880     MEM    : S3;
5881 %}
5882 
5883 // Long Store to Memory
5884 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5885     instruction_count(2);
5886     mem    : S3(read);
5887     src    : S5(read);
5888     D0     : S0(2);     // big decoder only; twice
5889     ALU    : S4(2);     // any 2 alus
5890     MEM    : S3(2);     // Both mems
5891 %}
5892 
5893 // Integer Store to Memory
5894 pipe_class ialu_mem_imm(memory mem) %{
5895     single_instruction;
5896     mem    : S3(read);
5897     D0     : S0;        // big decoder only
5898     ALU    : S4;        // any alu
5899     MEM    : S3;
5900 %}
5901 
5902 // Integer ALU0 reg-reg operation
5903 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
5904     single_instruction;
5905     dst    : S4(write);
5906     src    : S3(read);
5907     D0     : S0;        // Big decoder only
5908     ALU0   : S3;        // only alu0
5909 %}
5910 
5911 // Integer ALU0 reg-mem operation
5912 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
5913     single_instruction;
5914     dst    : S5(write);
5915     mem    : S3(read);
5916     D0     : S0;        // big decoder only
5917     ALU0   : S4;        // ALU0 only
5918     MEM    : S3;        // any mem
5919 %}
5920 
5921 // Integer ALU reg-reg operation
5922 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
5923     single_instruction;
5924     cr     : S4(write);
5925     src1   : S3(read);
5926     src2   : S3(read);
5927     DECODE : S0;        // any decoder
5928     ALU    : S3;        // any alu
5929 %}
5930 
5931 // Integer ALU reg-imm operation
5932 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
5933     single_instruction;
5934     cr     : S4(write);
5935     src1   : S3(read);
5936     DECODE : S0;        // any decoder
5937     ALU    : S3;        // any alu
5938 %}
5939 
5940 // Integer ALU reg-mem operation
5941 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
5942     single_instruction;
5943     cr     : S4(write);
5944     src1   : S3(read);
5945     src2   : S3(read);
5946     D0     : S0;        // big decoder only
5947     ALU    : S4;        // any alu
5948     MEM    : S3;
5949 %}
5950 
5951 // Conditional move reg-reg
5952 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
5953     instruction_count(4);
5954     y      : S4(read);
5955     q      : S3(read);
5956     p      : S3(read);
5957     DECODE : S0(4);     // any decoder
5958 %}
5959 
5960 // Conditional move reg-reg
5961 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
5962     single_instruction;
5963     dst    : S4(write);
5964     src    : S3(read);
5965     cr     : S3(read);
5966     DECODE : S0;        // any decoder
5967 %}
5968 
5969 // Conditional move reg-mem
5970 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
5971     single_instruction;
5972     dst    : S4(write);
5973     src    : S3(read);
5974     cr     : S3(read);
5975     DECODE : S0;        // any decoder
5976     MEM    : S3;
5977 %}
5978 
5979 // Conditional move reg-reg long
5980 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5981     single_instruction;
5982     dst    : S4(write);
5983     src    : S3(read);
5984     cr     : S3(read);
5985     DECODE : S0(2);     // any 2 decoders
5986 %}
5987 
5988 // Conditional move double reg-reg
5989 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
5990     single_instruction;
5991     dst    : S4(write);
5992     src    : S3(read);
5993     cr     : S3(read);
5994     DECODE : S0;        // any decoder
5995 %}
5996 
5997 // Float reg-reg operation
5998 pipe_class fpu_reg(regD dst) %{
5999     instruction_count(2);
6000     dst    : S3(read);
6001     DECODE : S0(2);     // any 2 decoders
6002     FPU    : S3;
6003 %}
6004 
6005 // Float reg-reg operation
6006 pipe_class fpu_reg_reg(regD dst, regD src) %{
6007     instruction_count(2);
6008     dst    : S4(write);
6009     src    : S3(read);
6010     DECODE : S0(2);     // any 2 decoders
6011     FPU    : S3;
6012 %}
6013 
6014 // Float reg-reg operation
6015 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
6016     instruction_count(3);
6017     dst    : S4(write);
6018     src1   : S3(read);
6019     src2   : S3(read);
6020     DECODE : S0(3);     // any 3 decoders
6021     FPU    : S3(2);
6022 %}
6023 
6024 // Float reg-reg operation
6025 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
6026     instruction_count(4);
6027     dst    : S4(write);
6028     src1   : S3(read);
6029     src2   : S3(read);
6030     src3   : S3(read);
6031     DECODE : S0(4);     // any 3 decoders
6032     FPU    : S3(2);
6033 %}
6034 
6035 // Float reg-reg operation
6036 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6037     instruction_count(4);
6038     dst    : S4(write);
6039     src1   : S3(read);
6040     src2   : S3(read);
6041     src3   : S3(read);
6042     DECODE : S1(3);     // any 3 decoders
6043     D0     : S0;        // Big decoder only
6044     FPU    : S3(2);
6045     MEM    : S3;
6046 %}
6047 
6048 // Float reg-mem operation
6049 pipe_class fpu_reg_mem(regD dst, memory mem) %{
6050     instruction_count(2);
6051     dst    : S5(write);
6052     mem    : S3(read);
6053     D0     : S0;        // big decoder only
6054     DECODE : S1;        // any decoder for FPU POP
6055     FPU    : S4;
6056     MEM    : S3;        // any mem
6057 %}
6058 
6059 // Float reg-mem operation
6060 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6061     instruction_count(3);
6062     dst    : S5(write);
6063     src1   : S3(read);
6064     mem    : S3(read);
6065     D0     : S0;        // big decoder only
6066     DECODE : S1(2);     // any decoder for FPU POP
6067     FPU    : S4;
6068     MEM    : S3;        // any mem
6069 %}
6070 
6071 // Float mem-reg operation
6072 pipe_class fpu_mem_reg(memory mem, regD src) %{
6073     instruction_count(2);
6074     src    : S5(read);
6075     mem    : S3(read);
6076     DECODE : S0;        // any decoder for FPU PUSH
6077     D0     : S1;        // big decoder only
6078     FPU    : S4;
6079     MEM    : S3;        // any mem
6080 %}
6081 
6082 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6083     instruction_count(3);
6084     src1   : S3(read);
6085     src2   : S3(read);
6086     mem    : S3(read);
6087     DECODE : S0(2);     // any decoder for FPU PUSH
6088     D0     : S1;        // big decoder only
6089     FPU    : S4;
6090     MEM    : S3;        // any mem
6091 %}
6092 
6093 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6094     instruction_count(3);
6095     src1   : S3(read);
6096     src2   : S3(read);
6097     mem    : S4(read);
6098     DECODE : S0;        // any decoder for FPU PUSH
6099     D0     : S0(2);     // big decoder only
6100     FPU    : S4;
6101     MEM    : S3(2);     // any mem
6102 %}
6103 
6104 pipe_class fpu_mem_mem(memory dst, memory src1) %{
6105     instruction_count(2);
6106     src1   : S3(read);
6107     dst    : S4(read);
6108     D0     : S0(2);     // big decoder only
6109     MEM    : S3(2);     // any mem
6110 %}
6111 
6112 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6113     instruction_count(3);
6114     src1   : S3(read);
6115     src2   : S3(read);
6116     dst    : S4(read);
6117     D0     : S0(3);     // big decoder only
6118     FPU    : S4;
6119     MEM    : S3(3);     // any mem
6120 %}
6121 
6122 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6123     instruction_count(3);
6124     src1   : S4(read);
6125     mem    : S4(read);
6126     DECODE : S0;        // any decoder for FPU PUSH
6127     D0     : S0(2);     // big decoder only
6128     FPU    : S4;
6129     MEM    : S3(2);     // any mem
6130 %}
6131 
6132 // Float load constant
6133 pipe_class fpu_reg_con(regD dst) %{
6134     instruction_count(2);
6135     dst    : S5(write);
6136     D0     : S0;        // big decoder only for the load
6137     DECODE : S1;        // any decoder for FPU POP
6138     FPU    : S4;
6139     MEM    : S3;        // any mem
6140 %}
6141 
6142 // Float load constant
6143 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6144     instruction_count(3);
6145     dst    : S5(write);
6146     src    : S3(read);
6147     D0     : S0;        // big decoder only for the load
6148     DECODE : S1(2);     // any decoder for FPU POP
6149     FPU    : S4;
6150     MEM    : S3;        // any mem
6151 %}
6152 
6153 // UnConditional branch
6154 pipe_class pipe_jmp( label labl ) %{
6155     single_instruction;
6156     BR   : S3;
6157 %}
6158 
6159 // Conditional branch
6160 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6161     single_instruction;
6162     cr    : S1(read);
6163     BR    : S3;
6164 %}
6165 
6166 // Allocation idiom
6167 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6168     instruction_count(1); force_serialization;
6169     fixed_latency(6);
6170     heap_ptr : S3(read);
6171     DECODE   : S0(3);
6172     D0       : S2;
6173     MEM      : S3;
6174     ALU      : S3(2);
6175     dst      : S5(write);
6176     BR       : S5;
6177 %}
6178 
6179 // Generic big/slow expanded idiom
6180 pipe_class pipe_slow(  ) %{
6181     instruction_count(10); multiple_bundles; force_serialization;
6182     fixed_latency(100);
6183     D0  : S0(2);
6184     MEM : S3(2);
6185 %}
6186 
6187 // The real do-nothing guy
6188 pipe_class empty( ) %{
6189     instruction_count(0);
6190 %}
6191 
6192 // Define the class for the Nop node
6193 define %{
6194    MachNop = empty;
6195 %}
6196 
6197 %}
6198 
6199 //----------INSTRUCTIONS-------------------------------------------------------
6200 //
6201 // match      -- States which machine-independent subtree may be replaced
6202 //               by this instruction.
6203 // ins_cost   -- The estimated cost of this instruction is used by instruction
6204 //               selection to identify a minimum cost tree of machine
6205 //               instructions that matches a tree of machine-independent
6206 //               instructions.
6207 // format     -- A string providing the disassembly for this instruction.
6208 //               The value of an instruction's operand may be inserted
6209 //               by referring to it with a '$' prefix.
6210 // opcode     -- Three instruction opcodes may be provided.  These are referred
6211 //               to within an encode class as $primary, $secondary, and $tertiary
6212 //               respectively.  The primary opcode is commonly used to
6213 //               indicate the type of machine instruction, while secondary
6214 //               and tertiary are often used for prefix options or addressing
6215 //               modes.
6216 // ins_encode -- A list of encode classes with parameters. The encode class
6217 //               name must have been defined in an 'enc_class' specification
6218 //               in the encode section of the architecture description.
6219 
6220 //----------BSWAP-Instruction--------------------------------------------------
6221 instruct bytes_reverse_int(eRegI dst) %{
6222   match(Set dst (ReverseBytesI dst));
6223 
6224   format %{ "BSWAP  $dst" %}
6225   opcode(0x0F, 0xC8);
6226   ins_encode( OpcP, OpcSReg(dst) );
6227   ins_pipe( ialu_reg );
6228 %}
6229 
6230 instruct bytes_reverse_long(eRegL dst) %{
6231   match(Set dst (ReverseBytesL dst));
6232 
6233   format %{ "BSWAP  $dst.lo\n\t"
6234             "BSWAP  $dst.hi\n\t"
6235             "XCHG   $dst.lo $dst.hi" %}
6236 
6237   ins_cost(125);
6238   ins_encode( bswap_long_bytes(dst) );
6239   ins_pipe( ialu_reg_reg);
6240 %}
6241 
6242 instruct bytes_reverse_unsigned_short(eRegI dst) %{
6243   match(Set dst (ReverseBytesUS dst));
6244 
6245   format %{ "BSWAP  $dst\n\t" 
6246             "SHR    $dst,16\n\t" %}
6247   ins_encode %{
6248     __ bswapl($dst$$Register);
6249     __ shrl($dst$$Register, 16); 
6250   %}
6251   ins_pipe( ialu_reg );
6252 %}
6253 
6254 instruct bytes_reverse_short(eRegI dst) %{
6255   match(Set dst (ReverseBytesS dst));
6256 
6257   format %{ "BSWAP  $dst\n\t" 
6258             "SAR    $dst,16\n\t" %}
6259   ins_encode %{
6260     __ bswapl($dst$$Register);
6261     __ sarl($dst$$Register, 16); 
6262   %}
6263   ins_pipe( ialu_reg );
6264 %}
6265 
6266 
6267 //---------- Zeros Count Instructions ------------------------------------------
6268 
6269 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6270   predicate(UseCountLeadingZerosInstruction);
6271   match(Set dst (CountLeadingZerosI src));
6272   effect(KILL cr);
6273 
6274   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
6275   ins_encode %{
6276     __ lzcntl($dst$$Register, $src$$Register);
6277   %}
6278   ins_pipe(ialu_reg);
6279 %}
6280 
6281 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
6282   predicate(!UseCountLeadingZerosInstruction);
6283   match(Set dst (CountLeadingZerosI src));
6284   effect(KILL cr);
6285 
6286   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
6287             "JNZ    skip\n\t"
6288             "MOV    $dst, -1\n"
6289       "skip:\n\t"
6290             "NEG    $dst\n\t"
6291             "ADD    $dst, 31" %}
6292   ins_encode %{
6293     Register Rdst = $dst$$Register;
6294     Register Rsrc = $src$$Register;
6295     Label skip;
6296     __ bsrl(Rdst, Rsrc);
6297     __ jccb(Assembler::notZero, skip);
6298     __ movl(Rdst, -1);
6299     __ bind(skip);
6300     __ negl(Rdst);
6301     __ addl(Rdst, BitsPerInt - 1);
6302   %}
6303   ins_pipe(ialu_reg);
6304 %}
6305 
6306 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6307   predicate(UseCountLeadingZerosInstruction);
6308   match(Set dst (CountLeadingZerosL src));
6309   effect(TEMP dst, KILL cr);
6310 
6311   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
6312             "JNC    done\n\t"
6313             "LZCNT  $dst, $src.lo\n\t"
6314             "ADD    $dst, 32\n"
6315       "done:" %}
6316   ins_encode %{
6317     Register Rdst = $dst$$Register;
6318     Register Rsrc = $src$$Register;
6319     Label done;
6320     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
6321     __ jccb(Assembler::carryClear, done);
6322     __ lzcntl(Rdst, Rsrc);
6323     __ addl(Rdst, BitsPerInt);
6324     __ bind(done);
6325   %}
6326   ins_pipe(ialu_reg);
6327 %}
6328 
6329 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
6330   predicate(!UseCountLeadingZerosInstruction);
6331   match(Set dst (CountLeadingZerosL src));
6332   effect(TEMP dst, KILL cr);
6333 
6334   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
6335             "JZ     msw_is_zero\n\t"
6336             "ADD    $dst, 32\n\t"
6337             "JMP    not_zero\n"
6338       "msw_is_zero:\n\t"
6339             "BSR    $dst, $src.lo\n\t"
6340             "JNZ    not_zero\n\t"
6341             "MOV    $dst, -1\n"
6342       "not_zero:\n\t"
6343             "NEG    $dst\n\t"
6344             "ADD    $dst, 63\n" %}
6345  ins_encode %{
6346     Register Rdst = $dst$$Register;
6347     Register Rsrc = $src$$Register;
6348     Label msw_is_zero;
6349     Label not_zero;
6350     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
6351     __ jccb(Assembler::zero, msw_is_zero);
6352     __ addl(Rdst, BitsPerInt);
6353     __ jmpb(not_zero);
6354     __ bind(msw_is_zero);
6355     __ bsrl(Rdst, Rsrc);
6356     __ jccb(Assembler::notZero, not_zero);
6357     __ movl(Rdst, -1);
6358     __ bind(not_zero);
6359     __ negl(Rdst);
6360     __ addl(Rdst, BitsPerLong - 1);
6361   %}
6362   ins_pipe(ialu_reg);
6363 %}
6364 
6365 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6366   match(Set dst (CountTrailingZerosI src));
6367   effect(KILL cr);
6368 
6369   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
6370             "JNZ    done\n\t"
6371             "MOV    $dst, 32\n"
6372       "done:" %}
6373   ins_encode %{
6374     Register Rdst = $dst$$Register;
6375     Label done;
6376     __ bsfl(Rdst, $src$$Register);
6377     __ jccb(Assembler::notZero, done);
6378     __ movl(Rdst, BitsPerInt);
6379     __ bind(done);
6380   %}
6381   ins_pipe(ialu_reg);
6382 %}
6383 
6384 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6385   match(Set dst (CountTrailingZerosL src));
6386   effect(TEMP dst, KILL cr);
6387 
6388   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
6389             "JNZ    done\n\t"
6390             "BSF    $dst, $src.hi\n\t"
6391             "JNZ    msw_not_zero\n\t"
6392             "MOV    $dst, 32\n"
6393       "msw_not_zero:\n\t"
6394             "ADD    $dst, 32\n"
6395       "done:" %}
6396   ins_encode %{
6397     Register Rdst = $dst$$Register;
6398     Register Rsrc = $src$$Register;
6399     Label msw_not_zero;
6400     Label done;
6401     __ bsfl(Rdst, Rsrc);
6402     __ jccb(Assembler::notZero, done);
6403     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
6404     __ jccb(Assembler::notZero, msw_not_zero);
6405     __ movl(Rdst, BitsPerInt);
6406     __ bind(msw_not_zero);
6407     __ addl(Rdst, BitsPerInt);
6408     __ bind(done);
6409   %}
6410   ins_pipe(ialu_reg);
6411 %}
6412 
6413 
6414 //---------- Population Count Instructions -------------------------------------
6415 
6416 instruct popCountI(eRegI dst, eRegI src) %{
6417   predicate(UsePopCountInstruction);
6418   match(Set dst (PopCountI src));
6419 
6420   format %{ "POPCNT $dst, $src" %}
6421   ins_encode %{
6422     __ popcntl($dst$$Register, $src$$Register);
6423   %}
6424   ins_pipe(ialu_reg);
6425 %}
6426 
6427 instruct popCountI_mem(eRegI dst, memory mem) %{
6428   predicate(UsePopCountInstruction);
6429   match(Set dst (PopCountI (LoadI mem)));
6430 
6431   format %{ "POPCNT $dst, $mem" %}
6432   ins_encode %{
6433     __ popcntl($dst$$Register, $mem$$Address);
6434   %}
6435   ins_pipe(ialu_reg);
6436 %}
6437 
6438 // Note: Long.bitCount(long) returns an int.
6439 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
6440   predicate(UsePopCountInstruction);
6441   match(Set dst (PopCountL src));
6442   effect(KILL cr, TEMP tmp, TEMP dst);
6443 
6444   format %{ "POPCNT $dst, $src.lo\n\t"
6445             "POPCNT $tmp, $src.hi\n\t"
6446             "ADD    $dst, $tmp" %}
6447   ins_encode %{
6448     __ popcntl($dst$$Register, $src$$Register);
6449     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
6450     __ addl($dst$$Register, $tmp$$Register);
6451   %}
6452   ins_pipe(ialu_reg);
6453 %}
6454 
6455 // Note: Long.bitCount(long) returns an int.
6456 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
6457   predicate(UsePopCountInstruction);
6458   match(Set dst (PopCountL (LoadL mem)));
6459   effect(KILL cr, TEMP tmp, TEMP dst);
6460 
6461   format %{ "POPCNT $dst, $mem\n\t"
6462             "POPCNT $tmp, $mem+4\n\t"
6463             "ADD    $dst, $tmp" %}
6464   ins_encode %{
6465     //__ popcntl($dst$$Register, $mem$$Address$$first);
6466     //__ popcntl($tmp$$Register, $mem$$Address$$second);
6467     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
6468     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
6469     __ addl($dst$$Register, $tmp$$Register);
6470   %}
6471   ins_pipe(ialu_reg);
6472 %}
6473 
6474 
6475 //----------Load/Store/Move Instructions---------------------------------------
6476 //----------Load Instructions--------------------------------------------------
6477 // Load Byte (8bit signed)
6478 instruct loadB(xRegI dst, memory mem) %{
6479   match(Set dst (LoadB mem));
6480 
6481   ins_cost(125);
6482   format %{ "MOVSX8 $dst,$mem\t# byte" %}
6483 
6484   ins_encode %{
6485     __ movsbl($dst$$Register, $mem$$Address);
6486   %}
6487 
6488   ins_pipe(ialu_reg_mem);
6489 %}
6490 
6491 // Load Byte (8bit signed) into Long Register
6492 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6493   match(Set dst (ConvI2L (LoadB mem)));
6494   effect(KILL cr);
6495 
6496   ins_cost(375);
6497   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
6498             "MOV    $dst.hi,$dst.lo\n\t"
6499             "SAR    $dst.hi,7" %}
6500 
6501   ins_encode %{
6502     __ movsbl($dst$$Register, $mem$$Address);
6503     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6504     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
6505   %}
6506 
6507   ins_pipe(ialu_reg_mem);
6508 %}
6509 
6510 // Load Unsigned Byte (8bit UNsigned)
6511 instruct loadUB(xRegI dst, memory mem) %{
6512   match(Set dst (LoadUB mem));
6513 
6514   ins_cost(125);
6515   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
6516 
6517   ins_encode %{
6518     __ movzbl($dst$$Register, $mem$$Address);
6519   %}
6520 
6521   ins_pipe(ialu_reg_mem);
6522 %}
6523 
6524 // Load Unsigned Byte (8 bit UNsigned) into Long Register
6525 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6526   match(Set dst (ConvI2L (LoadUB mem)));
6527   effect(KILL cr);
6528 
6529   ins_cost(250);
6530   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
6531             "XOR    $dst.hi,$dst.hi" %}
6532 
6533   ins_encode %{
6534     Register Rdst = $dst$$Register;
6535     __ movzbl(Rdst, $mem$$Address);
6536     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6537   %}
6538 
6539   ins_pipe(ialu_reg_mem);
6540 %}
6541 
6542 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
6543 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
6544   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
6545   effect(KILL cr);
6546 
6547   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
6548             "XOR    $dst.hi,$dst.hi\n\t"
6549             "AND    $dst.lo,$mask" %}
6550   ins_encode %{
6551     Register Rdst = $dst$$Register;
6552     __ movzbl(Rdst, $mem$$Address);
6553     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6554     __ andl(Rdst, $mask$$constant);
6555   %}
6556   ins_pipe(ialu_reg_mem);
6557 %}
6558 
6559 // Load Short (16bit signed)
6560 instruct loadS(eRegI dst, memory mem) %{
6561   match(Set dst (LoadS mem));
6562 
6563   ins_cost(125);
6564   format %{ "MOVSX  $dst,$mem\t# short" %}
6565 
6566   ins_encode %{
6567     __ movswl($dst$$Register, $mem$$Address);
6568   %}
6569 
6570   ins_pipe(ialu_reg_mem);
6571 %}
6572 
6573 // Load Short (16 bit signed) to Byte (8 bit signed)
6574 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6575   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
6576 
6577   ins_cost(125);
6578   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
6579   ins_encode %{
6580     __ movsbl($dst$$Register, $mem$$Address);
6581   %}
6582   ins_pipe(ialu_reg_mem);
6583 %}
6584 
6585 // Load Short (16bit signed) into Long Register
6586 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6587   match(Set dst (ConvI2L (LoadS mem)));
6588   effect(KILL cr);
6589 
6590   ins_cost(375);
6591   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
6592             "MOV    $dst.hi,$dst.lo\n\t"
6593             "SAR    $dst.hi,15" %}
6594 
6595   ins_encode %{
6596     __ movswl($dst$$Register, $mem$$Address);
6597     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6598     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
6599   %}
6600 
6601   ins_pipe(ialu_reg_mem);
6602 %}
6603 
6604 // Load Unsigned Short/Char (16bit unsigned)
6605 instruct loadUS(eRegI dst, memory mem) %{
6606   match(Set dst (LoadUS mem));
6607 
6608   ins_cost(125);
6609   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
6610 
6611   ins_encode %{
6612     __ movzwl($dst$$Register, $mem$$Address);
6613   %}
6614 
6615   ins_pipe(ialu_reg_mem);
6616 %}
6617 
6618 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
6619 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6620   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
6621 
6622   ins_cost(125);
6623   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
6624   ins_encode %{
6625     __ movsbl($dst$$Register, $mem$$Address);
6626   %}
6627   ins_pipe(ialu_reg_mem);
6628 %}
6629 
6630 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
6631 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6632   match(Set dst (ConvI2L (LoadUS mem)));
6633   effect(KILL cr);
6634 
6635   ins_cost(250);
6636   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
6637             "XOR    $dst.hi,$dst.hi" %}
6638 
6639   ins_encode %{
6640     __ movzwl($dst$$Register, $mem$$Address);
6641     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6642   %}
6643 
6644   ins_pipe(ialu_reg_mem);
6645 %}
6646 
6647 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6648 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6649   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6650   effect(KILL cr);
6651 
6652   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6653             "XOR    $dst.hi,$dst.hi" %}
6654   ins_encode %{
6655     Register Rdst = $dst$$Register;
6656     __ movzbl(Rdst, $mem$$Address);
6657     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6658   %}
6659   ins_pipe(ialu_reg_mem);
6660 %}
6661 
6662 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6663 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6664   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6665   effect(KILL cr);
6666 
6667   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6668             "XOR    $dst.hi,$dst.hi\n\t"
6669             "AND    $dst.lo,$mask" %}
6670   ins_encode %{
6671     Register Rdst = $dst$$Register;
6672     __ movzwl(Rdst, $mem$$Address);
6673     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6674     __ andl(Rdst, $mask$$constant);
6675   %}
6676   ins_pipe(ialu_reg_mem);
6677 %}
6678 
6679 // Load Integer
6680 instruct loadI(eRegI dst, memory mem) %{
6681   match(Set dst (LoadI mem));
6682 
6683   ins_cost(125);
6684   format %{ "MOV    $dst,$mem\t# int" %}
6685 
6686   ins_encode %{
6687     __ movl($dst$$Register, $mem$$Address);
6688   %}
6689 
6690   ins_pipe(ialu_reg_mem);
6691 %}
6692 
6693 // Load Integer (32 bit signed) to Byte (8 bit signed)
6694 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6695   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6696 
6697   ins_cost(125);
6698   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6699   ins_encode %{
6700     __ movsbl($dst$$Register, $mem$$Address);
6701   %}
6702   ins_pipe(ialu_reg_mem);
6703 %}
6704 
6705 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6706 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
6707   match(Set dst (AndI (LoadI mem) mask));
6708 
6709   ins_cost(125);
6710   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6711   ins_encode %{
6712     __ movzbl($dst$$Register, $mem$$Address);
6713   %}
6714   ins_pipe(ialu_reg_mem);
6715 %}
6716 
6717 // Load Integer (32 bit signed) to Short (16 bit signed)
6718 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
6719   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6720 
6721   ins_cost(125);
6722   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6723   ins_encode %{
6724     __ movswl($dst$$Register, $mem$$Address);
6725   %}
6726   ins_pipe(ialu_reg_mem);
6727 %}
6728 
6729 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6730 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
6731   match(Set dst (AndI (LoadI mem) mask));
6732 
6733   ins_cost(125);
6734   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6735   ins_encode %{
6736     __ movzwl($dst$$Register, $mem$$Address);
6737   %}
6738   ins_pipe(ialu_reg_mem);
6739 %}
6740 
6741 // Load Integer into Long Register
6742 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6743   match(Set dst (ConvI2L (LoadI mem)));
6744   effect(KILL cr);
6745 
6746   ins_cost(375);
6747   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6748             "MOV    $dst.hi,$dst.lo\n\t"
6749             "SAR    $dst.hi,31" %}
6750 
6751   ins_encode %{
6752     __ movl($dst$$Register, $mem$$Address);
6753     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6754     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6755   %}
6756 
6757   ins_pipe(ialu_reg_mem);
6758 %}
6759 
6760 // Load Integer with mask 0xFF into Long Register
6761 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6762   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6763   effect(KILL cr);
6764 
6765   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6766             "XOR    $dst.hi,$dst.hi" %}
6767   ins_encode %{
6768     Register Rdst = $dst$$Register;
6769     __ movzbl(Rdst, $mem$$Address);
6770     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6771   %}
6772   ins_pipe(ialu_reg_mem);
6773 %}
6774 
6775 // Load Integer with mask 0xFFFF into Long Register
6776 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6777   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6778   effect(KILL cr);
6779 
6780   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6781             "XOR    $dst.hi,$dst.hi" %}
6782   ins_encode %{
6783     Register Rdst = $dst$$Register;
6784     __ movzwl(Rdst, $mem$$Address);
6785     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6786   %}
6787   ins_pipe(ialu_reg_mem);
6788 %}
6789 
6790 // Load Integer with 32-bit mask into Long Register
6791 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6792   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6793   effect(KILL cr);
6794 
6795   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6796             "XOR    $dst.hi,$dst.hi\n\t"
6797             "AND    $dst.lo,$mask" %}
6798   ins_encode %{
6799     Register Rdst = $dst$$Register;
6800     __ movl(Rdst, $mem$$Address);
6801     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6802     __ andl(Rdst, $mask$$constant);
6803   %}
6804   ins_pipe(ialu_reg_mem);
6805 %}
6806 
6807 // Load Unsigned Integer into Long Register
6808 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6809   match(Set dst (LoadUI2L mem));
6810   effect(KILL cr);
6811 
6812   ins_cost(250);
6813   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6814             "XOR    $dst.hi,$dst.hi" %}
6815 
6816   ins_encode %{
6817     __ movl($dst$$Register, $mem$$Address);
6818     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6819   %}
6820 
6821   ins_pipe(ialu_reg_mem);
6822 %}
6823 
6824 // Load Long.  Cannot clobber address while loading, so restrict address
6825 // register to ESI
6826 instruct loadL(eRegL dst, load_long_memory mem) %{
6827   predicate(!((LoadLNode*)n)->require_atomic_access());
6828   match(Set dst (LoadL mem));
6829 
6830   ins_cost(250);
6831   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6832             "MOV    $dst.hi,$mem+4" %}
6833 
6834   ins_encode %{
6835     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
6836     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
6837     __ movl($dst$$Register, Amemlo);
6838     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6839   %}
6840 
6841   ins_pipe(ialu_reg_long_mem);
6842 %}
6843 
6844 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6845 // then store it down to the stack and reload on the int
6846 // side.
6847 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6848   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6849   match(Set dst (LoadL mem));
6850 
6851   ins_cost(200);
6852   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6853             "FISTp  $dst" %}
6854   ins_encode(enc_loadL_volatile(mem,dst));
6855   ins_pipe( fpu_reg_mem );
6856 %}
6857 
6858 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6859   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6860   match(Set dst (LoadL mem));
6861   effect(TEMP tmp);
6862   ins_cost(180);
6863   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6864             "MOVSD  $dst,$tmp" %}
6865   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6866   ins_pipe( pipe_slow );
6867 %}
6868 
6869 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6870   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6871   match(Set dst (LoadL mem));
6872   effect(TEMP tmp);
6873   ins_cost(160);
6874   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6875             "MOVD   $dst.lo,$tmp\n\t"
6876             "PSRLQ  $tmp,32\n\t"
6877             "MOVD   $dst.hi,$tmp" %}
6878   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6879   ins_pipe( pipe_slow );
6880 %}
6881 
6882 // Load Range
6883 instruct loadRange(eRegI dst, memory mem) %{
6884   match(Set dst (LoadRange mem));
6885 
6886   ins_cost(125);
6887   format %{ "MOV    $dst,$mem" %}
6888   opcode(0x8B);
6889   ins_encode( OpcP, RegMem(dst,mem));
6890   ins_pipe( ialu_reg_mem );
6891 %}
6892 
6893 
6894 // Load Pointer
6895 instruct loadP(eRegP dst, memory mem) %{
6896   match(Set dst (LoadP mem));
6897 
6898   ins_cost(125);
6899   format %{ "MOV    $dst,$mem" %}
6900   opcode(0x8B);
6901   ins_encode( OpcP, RegMem(dst,mem));
6902   ins_pipe( ialu_reg_mem );
6903 %}
6904 
6905 // Load Klass Pointer
6906 instruct loadKlass(eRegP dst, memory mem) %{
6907   match(Set dst (LoadKlass mem));
6908 
6909   ins_cost(125);
6910   format %{ "MOV    $dst,$mem" %}
6911   opcode(0x8B);
6912   ins_encode( OpcP, RegMem(dst,mem));
6913   ins_pipe( ialu_reg_mem );
6914 %}
6915 
6916 // Load Double
6917 instruct loadD(regD dst, memory mem) %{
6918   predicate(UseSSE<=1);
6919   match(Set dst (LoadD mem));
6920 
6921   ins_cost(150);
6922   format %{ "FLD_D  ST,$mem\n\t"
6923             "FSTP   $dst" %}
6924   opcode(0xDD);               /* DD /0 */
6925   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6926               Pop_Reg_D(dst) );
6927   ins_pipe( fpu_reg_mem );
6928 %}
6929 
6930 // Load Double to XMM
6931 instruct loadXD(regXD dst, memory mem) %{
6932   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6933   match(Set dst (LoadD mem));
6934   ins_cost(145);
6935   format %{ "MOVSD  $dst,$mem" %}
6936   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6937   ins_pipe( pipe_slow );
6938 %}
6939 
6940 instruct loadXD_partial(regXD dst, memory mem) %{
6941   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6942   match(Set dst (LoadD mem));
6943   ins_cost(145);
6944   format %{ "MOVLPD $dst,$mem" %}
6945   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
6946   ins_pipe( pipe_slow );
6947 %}
6948 
6949 // Load to XMM register (single-precision floating point)
6950 // MOVSS instruction
6951 instruct loadX(regX dst, memory mem) %{
6952   predicate(UseSSE>=1);
6953   match(Set dst (LoadF mem));
6954   ins_cost(145);
6955   format %{ "MOVSS  $dst,$mem" %}
6956   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6957   ins_pipe( pipe_slow );
6958 %}
6959 
6960 // Load Float
6961 instruct loadF(regF dst, memory mem) %{
6962   predicate(UseSSE==0);
6963   match(Set dst (LoadF mem));
6964 
6965   ins_cost(150);
6966   format %{ "FLD_S  ST,$mem\n\t"
6967             "FSTP   $dst" %}
6968   opcode(0xD9);               /* D9 /0 */
6969   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6970               Pop_Reg_F(dst) );
6971   ins_pipe( fpu_reg_mem );
6972 %}
6973 
6974 // Load Aligned Packed Byte to XMM register
6975 instruct loadA8B(regXD dst, memory mem) %{
6976   predicate(UseSSE>=1);
6977   match(Set dst (Load8B mem));
6978   ins_cost(125);
6979   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
6980   ins_encode( movq_ld(dst, mem));
6981   ins_pipe( pipe_slow );
6982 %}
6983 
6984 // Load Aligned Packed Short to XMM register
6985 instruct loadA4S(regXD dst, memory mem) %{
6986   predicate(UseSSE>=1);
6987   match(Set dst (Load4S mem));
6988   ins_cost(125);
6989   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
6990   ins_encode( movq_ld(dst, mem));
6991   ins_pipe( pipe_slow );
6992 %}
6993 
6994 // Load Aligned Packed Char to XMM register
6995 instruct loadA4C(regXD dst, memory mem) %{
6996   predicate(UseSSE>=1);
6997   match(Set dst (Load4C mem));
6998   ins_cost(125);
6999   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
7000   ins_encode( movq_ld(dst, mem));
7001   ins_pipe( pipe_slow );
7002 %}
7003 
7004 // Load Aligned Packed Integer to XMM register
7005 instruct load2IU(regXD dst, memory mem) %{
7006   predicate(UseSSE>=1);
7007   match(Set dst (Load2I mem));
7008   ins_cost(125);
7009   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
7010   ins_encode( movq_ld(dst, mem));
7011   ins_pipe( pipe_slow );
7012 %}
7013 
7014 // Load Aligned Packed Single to XMM
7015 instruct loadA2F(regXD dst, memory mem) %{
7016   predicate(UseSSE>=1);
7017   match(Set dst (Load2F mem));
7018   ins_cost(145);
7019   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
7020   ins_encode( movq_ld(dst, mem));
7021   ins_pipe( pipe_slow );
7022 %}
7023 
7024 // Load Effective Address
7025 instruct leaP8(eRegP dst, indOffset8 mem) %{
7026   match(Set dst mem);
7027 
7028   ins_cost(110);
7029   format %{ "LEA    $dst,$mem" %}
7030   opcode(0x8D);
7031   ins_encode( OpcP, RegMem(dst,mem));
7032   ins_pipe( ialu_reg_reg_fat );
7033 %}
7034 
7035 instruct leaP32(eRegP dst, indOffset32 mem) %{
7036   match(Set dst mem);
7037 
7038   ins_cost(110);
7039   format %{ "LEA    $dst,$mem" %}
7040   opcode(0x8D);
7041   ins_encode( OpcP, RegMem(dst,mem));
7042   ins_pipe( ialu_reg_reg_fat );
7043 %}
7044 
7045 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
7046   match(Set dst mem);
7047 
7048   ins_cost(110);
7049   format %{ "LEA    $dst,$mem" %}
7050   opcode(0x8D);
7051   ins_encode( OpcP, RegMem(dst,mem));
7052   ins_pipe( ialu_reg_reg_fat );
7053 %}
7054 
7055 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
7056   match(Set dst mem);
7057 
7058   ins_cost(110);
7059   format %{ "LEA    $dst,$mem" %}
7060   opcode(0x8D);
7061   ins_encode( OpcP, RegMem(dst,mem));
7062   ins_pipe( ialu_reg_reg_fat );
7063 %}
7064 
7065 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
7066   match(Set dst mem);
7067 
7068   ins_cost(110);
7069   format %{ "LEA    $dst,$mem" %}
7070   opcode(0x8D);
7071   ins_encode( OpcP, RegMem(dst,mem));
7072   ins_pipe( ialu_reg_reg_fat );
7073 %}
7074 
7075 // Load Constant
7076 instruct loadConI(eRegI dst, immI src) %{
7077   match(Set dst src);
7078 
7079   format %{ "MOV    $dst,$src" %}
7080   ins_encode( LdImmI(dst, src) );
7081   ins_pipe( ialu_reg_fat );
7082 %}
7083 
7084 // Load Constant zero
7085 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
7086   match(Set dst src);
7087   effect(KILL cr);
7088 
7089   ins_cost(50);
7090   format %{ "XOR    $dst,$dst" %}
7091   opcode(0x33);  /* + rd */
7092   ins_encode( OpcP, RegReg( dst, dst ) );
7093   ins_pipe( ialu_reg );
7094 %}
7095 
7096 instruct loadConP(eRegP dst, immP src) %{
7097   match(Set dst src);
7098 
7099   format %{ "MOV    $dst,$src" %}
7100   opcode(0xB8);  /* + rd */
7101   ins_encode( LdImmP(dst, src) );
7102   ins_pipe( ialu_reg_fat );
7103 %}
7104 
7105 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
7106   match(Set dst src);
7107   effect(KILL cr);
7108   ins_cost(200);
7109   format %{ "MOV    $dst.lo,$src.lo\n\t"
7110             "MOV    $dst.hi,$src.hi" %}
7111   opcode(0xB8);
7112   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
7113   ins_pipe( ialu_reg_long_fat );
7114 %}
7115 
7116 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
7117   match(Set dst src);
7118   effect(KILL cr);
7119   ins_cost(150);
7120   format %{ "XOR    $dst.lo,$dst.lo\n\t"
7121             "XOR    $dst.hi,$dst.hi" %}
7122   opcode(0x33,0x33);
7123   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
7124   ins_pipe( ialu_reg_long );
7125 %}
7126 
7127 // The instruction usage is guarded by predicate in operand immF().
7128 instruct loadConF(regF dst, immF con) %{
7129   match(Set dst con);
7130   ins_cost(125);
7131   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
7132             "FSTP   $dst" %}
7133   ins_encode %{
7134     __ fld_s($constantaddress($con));
7135     __ fstp_d($dst$$reg);
7136   %}
7137   ins_pipe(fpu_reg_con);
7138 %}
7139 
7140 // The instruction usage is guarded by predicate in operand immF0().
7141 instruct loadConF0(regF dst, immF0 con) %{
7142   match(Set dst con);
7143   ins_cost(125);
7144   format %{ "FLDZ   ST\n\t"
7145             "FSTP   $dst" %}
7146   ins_encode %{
7147     __ fldz();
7148     __ fstp_d($dst$$reg);
7149   %}
7150   ins_pipe(fpu_reg_con);
7151 %}
7152 
7153 // The instruction usage is guarded by predicate in operand immF1().
7154 instruct loadConF1(regF dst, immF1 con) %{
7155   match(Set dst con);
7156   ins_cost(125);
7157   format %{ "FLD1   ST\n\t"
7158             "FSTP   $dst" %}
7159   ins_encode %{
7160     __ fld1();
7161     __ fstp_d($dst$$reg);
7162   %}
7163   ins_pipe(fpu_reg_con);
7164 %}
7165 
7166 // The instruction usage is guarded by predicate in operand immXF().
7167 instruct loadConX(regX dst, immXF con) %{
7168   match(Set dst con);
7169   ins_cost(125);
7170   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
7171   ins_encode %{
7172     __ movflt($dst$$XMMRegister, $constantaddress($con));
7173   %}
7174   ins_pipe(pipe_slow);
7175 %}
7176 
7177 // The instruction usage is guarded by predicate in operand immXF0().
7178 instruct loadConX0(regX dst, immXF0 src) %{
7179   match(Set dst src);
7180   ins_cost(100);
7181   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
7182   ins_encode %{
7183     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
7184   %}
7185   ins_pipe(pipe_slow);
7186 %}
7187 
7188 // The instruction usage is guarded by predicate in operand immD().
7189 instruct loadConD(regD dst, immD con) %{
7190   match(Set dst con);
7191   ins_cost(125);
7192 
7193   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
7194             "FSTP   $dst" %}
7195   ins_encode %{
7196     __ fld_d($constantaddress($con));
7197     __ fstp_d($dst$$reg);
7198   %}
7199   ins_pipe(fpu_reg_con);
7200 %}
7201 
7202 // The instruction usage is guarded by predicate in operand immD0().
7203 instruct loadConD0(regD dst, immD0 con) %{
7204   match(Set dst con);
7205   ins_cost(125);
7206 
7207   format %{ "FLDZ   ST\n\t"
7208             "FSTP   $dst" %}
7209   ins_encode %{
7210     __ fldz();
7211     __ fstp_d($dst$$reg);
7212   %}
7213   ins_pipe(fpu_reg_con);
7214 %}
7215 
7216 // The instruction usage is guarded by predicate in operand immD1().
7217 instruct loadConD1(regD dst, immD1 con) %{
7218   match(Set dst con);
7219   ins_cost(125);
7220 
7221   format %{ "FLD1   ST\n\t"
7222             "FSTP   $dst" %}
7223   ins_encode %{
7224     __ fld1();
7225     __ fstp_d($dst$$reg);
7226   %}
7227   ins_pipe(fpu_reg_con);
7228 %}
7229 
7230 // The instruction usage is guarded by predicate in operand immXD().
7231 instruct loadConXD(regXD dst, immXD con) %{
7232   match(Set dst con);
7233   ins_cost(125);
7234   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
7235   ins_encode %{
7236     __ movdbl($dst$$XMMRegister, $constantaddress($con));
7237   %}
7238   ins_pipe(pipe_slow);
7239 %}
7240 
7241 // The instruction usage is guarded by predicate in operand immXD0().
7242 instruct loadConXD0(regXD dst, immXD0 src) %{
7243   match(Set dst src);
7244   ins_cost(100);
7245   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
7246   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7247   ins_pipe( pipe_slow );
7248 %}
7249 
7250 // Load Stack Slot
7251 instruct loadSSI(eRegI dst, stackSlotI src) %{
7252   match(Set dst src);
7253   ins_cost(125);
7254 
7255   format %{ "MOV    $dst,$src" %}
7256   opcode(0x8B);
7257   ins_encode( OpcP, RegMem(dst,src));
7258   ins_pipe( ialu_reg_mem );
7259 %}
7260 
7261 instruct loadSSL(eRegL dst, stackSlotL src) %{
7262   match(Set dst src);
7263 
7264   ins_cost(200);
7265   format %{ "MOV    $dst,$src.lo\n\t"
7266             "MOV    $dst+4,$src.hi" %}
7267   opcode(0x8B, 0x8B);
7268   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
7269   ins_pipe( ialu_mem_long_reg );
7270 %}
7271 
7272 // Load Stack Slot
7273 instruct loadSSP(eRegP dst, stackSlotP src) %{
7274   match(Set dst src);
7275   ins_cost(125);
7276 
7277   format %{ "MOV    $dst,$src" %}
7278   opcode(0x8B);
7279   ins_encode( OpcP, RegMem(dst,src));
7280   ins_pipe( ialu_reg_mem );
7281 %}
7282 
7283 // Load Stack Slot
7284 instruct loadSSF(regF dst, stackSlotF src) %{
7285   match(Set dst src);
7286   ins_cost(125);
7287 
7288   format %{ "FLD_S  $src\n\t"
7289             "FSTP   $dst" %}
7290   opcode(0xD9);               /* D9 /0, FLD m32real */
7291   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7292               Pop_Reg_F(dst) );
7293   ins_pipe( fpu_reg_mem );
7294 %}
7295 
7296 // Load Stack Slot
7297 instruct loadSSD(regD dst, stackSlotD src) %{
7298   match(Set dst src);
7299   ins_cost(125);
7300 
7301   format %{ "FLD_D  $src\n\t"
7302             "FSTP   $dst" %}
7303   opcode(0xDD);               /* DD /0, FLD m64real */
7304   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7305               Pop_Reg_D(dst) );
7306   ins_pipe( fpu_reg_mem );
7307 %}
7308 
7309 // Prefetch instructions.
7310 // Must be safe to execute with invalid address (cannot fault).
7311 
7312 instruct prefetchr0( memory mem ) %{
7313   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
7314   match(PrefetchRead mem);
7315   ins_cost(0);
7316   size(0);
7317   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
7318   ins_encode();
7319   ins_pipe(empty);
7320 %}
7321 
7322 instruct prefetchr( memory mem ) %{
7323   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
7324   match(PrefetchRead mem);
7325   ins_cost(100);
7326 
7327   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
7328   ins_encode %{
7329     __ prefetchr($mem$$Address);
7330   %}
7331   ins_pipe(ialu_mem);
7332 %}
7333 
7334 instruct prefetchrNTA( memory mem ) %{
7335   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
7336   match(PrefetchRead mem);
7337   ins_cost(100);
7338 
7339   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
7340   ins_encode %{
7341     __ prefetchnta($mem$$Address);
7342   %}
7343   ins_pipe(ialu_mem);
7344 %}
7345 
7346 instruct prefetchrT0( memory mem ) %{
7347   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
7348   match(PrefetchRead mem);
7349   ins_cost(100);
7350 
7351   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
7352   ins_encode %{
7353     __ prefetcht0($mem$$Address);
7354   %}
7355   ins_pipe(ialu_mem);
7356 %}
7357 
7358 instruct prefetchrT2( memory mem ) %{
7359   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
7360   match(PrefetchRead mem);
7361   ins_cost(100);
7362 
7363   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
7364   ins_encode %{
7365     __ prefetcht2($mem$$Address);
7366   %}
7367   ins_pipe(ialu_mem);
7368 %}
7369 
7370 instruct prefetchw0( memory mem ) %{
7371   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
7372   match(PrefetchWrite mem);
7373   ins_cost(0);
7374   size(0);
7375   format %{ "Prefetch (non-SSE is empty encoding)" %}
7376   ins_encode();
7377   ins_pipe(empty);
7378 %}
7379 
7380 instruct prefetchw( memory mem ) %{
7381   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
7382   match( PrefetchWrite mem );
7383   ins_cost(100);
7384 
7385   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
7386   ins_encode %{
7387     __ prefetchw($mem$$Address);
7388   %}
7389   ins_pipe(ialu_mem);
7390 %}
7391 
7392 instruct prefetchwNTA( memory mem ) %{
7393   predicate(UseSSE>=1);
7394   match(PrefetchWrite mem);
7395   ins_cost(100);
7396 
7397   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
7398   ins_encode %{
7399     __ prefetchnta($mem$$Address);
7400   %}
7401   ins_pipe(ialu_mem);
7402 %}
7403 
7404 // Prefetch instructions for allocation.
7405 
7406 instruct prefetchAlloc0( memory mem ) %{
7407   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
7408   match(PrefetchAllocation mem);
7409   ins_cost(0);
7410   size(0);
7411   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
7412   ins_encode();
7413   ins_pipe(empty);
7414 %}
7415 
7416 instruct prefetchAlloc( memory mem ) %{
7417   predicate(AllocatePrefetchInstr==3);
7418   match( PrefetchAllocation mem );
7419   ins_cost(100);
7420 
7421   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
7422   ins_encode %{
7423     __ prefetchw($mem$$Address);
7424   %}
7425   ins_pipe(ialu_mem);
7426 %}
7427 
7428 instruct prefetchAllocNTA( memory mem ) %{
7429   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
7430   match(PrefetchAllocation mem);
7431   ins_cost(100);
7432 
7433   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
7434   ins_encode %{
7435     __ prefetchnta($mem$$Address);
7436   %}
7437   ins_pipe(ialu_mem);
7438 %}
7439 
7440 instruct prefetchAllocT0( memory mem ) %{
7441   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
7442   match(PrefetchAllocation mem);
7443   ins_cost(100);
7444 
7445   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
7446   ins_encode %{
7447     __ prefetcht0($mem$$Address);
7448   %}
7449   ins_pipe(ialu_mem);
7450 %}
7451 
7452 instruct prefetchAllocT2( memory mem ) %{
7453   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
7454   match(PrefetchAllocation mem);
7455   ins_cost(100);
7456 
7457   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
7458   ins_encode %{
7459     __ prefetcht2($mem$$Address);
7460   %}
7461   ins_pipe(ialu_mem);
7462 %}
7463 
7464 //----------Store Instructions-------------------------------------------------
7465 
7466 // Store Byte
7467 instruct storeB(memory mem, xRegI src) %{
7468   match(Set mem (StoreB mem src));
7469 
7470   ins_cost(125);
7471   format %{ "MOV8   $mem,$src" %}
7472   opcode(0x88);
7473   ins_encode( OpcP, RegMem( src, mem ) );
7474   ins_pipe( ialu_mem_reg );
7475 %}
7476 
7477 // Store Char/Short
7478 instruct storeC(memory mem, eRegI src) %{
7479   match(Set mem (StoreC mem src));
7480 
7481   ins_cost(125);
7482   format %{ "MOV16  $mem,$src" %}
7483   opcode(0x89, 0x66);
7484   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
7485   ins_pipe( ialu_mem_reg );
7486 %}
7487 
7488 // Store Integer
7489 instruct storeI(memory mem, eRegI src) %{
7490   match(Set mem (StoreI mem src));
7491 
7492   ins_cost(125);
7493   format %{ "MOV    $mem,$src" %}
7494   opcode(0x89);
7495   ins_encode( OpcP, RegMem( src, mem ) );
7496   ins_pipe( ialu_mem_reg );
7497 %}
7498 
7499 // Store Long
7500 instruct storeL(long_memory mem, eRegL src) %{
7501   predicate(!((StoreLNode*)n)->require_atomic_access());
7502   match(Set mem (StoreL mem src));
7503 
7504   ins_cost(200);
7505   format %{ "MOV    $mem,$src.lo\n\t"
7506             "MOV    $mem+4,$src.hi" %}
7507   opcode(0x89, 0x89);
7508   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
7509   ins_pipe( ialu_mem_long_reg );
7510 %}
7511 
7512 // Store Long to Integer
7513 instruct storeL2I(memory mem, eRegL src) %{
7514   match(Set mem (StoreI mem (ConvL2I src)));
7515 
7516   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
7517   ins_encode %{
7518     __ movl($mem$$Address, $src$$Register);
7519   %}
7520   ins_pipe(ialu_mem_reg);
7521 %}
7522 
7523 // Volatile Store Long.  Must be atomic, so move it into
7524 // the FP TOS and then do a 64-bit FIST.  Has to probe the
7525 // target address before the store (for null-ptr checks)
7526 // so the memory operand is used twice in the encoding.
7527 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
7528   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
7529   match(Set mem (StoreL mem src));
7530   effect( KILL cr );
7531   ins_cost(400);
7532   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7533             "FILD   $src\n\t"
7534             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
7535   opcode(0x3B);
7536   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
7537   ins_pipe( fpu_reg_mem );
7538 %}
7539 
7540 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
7541   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7542   match(Set mem (StoreL mem src));
7543   effect( TEMP tmp, KILL cr );
7544   ins_cost(380);
7545   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7546             "MOVSD  $tmp,$src\n\t"
7547             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7548   opcode(0x3B);
7549   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
7550   ins_pipe( pipe_slow );
7551 %}
7552 
7553 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
7554   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7555   match(Set mem (StoreL mem src));
7556   effect( TEMP tmp2 , TEMP tmp, KILL cr );
7557   ins_cost(360);
7558   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7559             "MOVD   $tmp,$src.lo\n\t"
7560             "MOVD   $tmp2,$src.hi\n\t"
7561             "PUNPCKLDQ $tmp,$tmp2\n\t"
7562             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7563   opcode(0x3B);
7564   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
7565   ins_pipe( pipe_slow );
7566 %}
7567 
7568 // Store Pointer; for storing unknown oops and raw pointers
7569 instruct storeP(memory mem, anyRegP src) %{
7570   match(Set mem (StoreP mem src));
7571 
7572   ins_cost(125);
7573   format %{ "MOV    $mem,$src" %}
7574   opcode(0x89);
7575   ins_encode( OpcP, RegMem( src, mem ) );
7576   ins_pipe( ialu_mem_reg );
7577 %}
7578 
7579 // Store Integer Immediate
7580 instruct storeImmI(memory mem, immI src) %{
7581   match(Set mem (StoreI mem src));
7582 
7583   ins_cost(150);
7584   format %{ "MOV    $mem,$src" %}
7585   opcode(0xC7);               /* C7 /0 */
7586   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7587   ins_pipe( ialu_mem_imm );
7588 %}
7589 
7590 // Store Short/Char Immediate
7591 instruct storeImmI16(memory mem, immI16 src) %{
7592   predicate(UseStoreImmI16);
7593   match(Set mem (StoreC mem src));
7594 
7595   ins_cost(150);
7596   format %{ "MOV16  $mem,$src" %}
7597   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
7598   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
7599   ins_pipe( ialu_mem_imm );
7600 %}
7601 
7602 // Store Pointer Immediate; null pointers or constant oops that do not
7603 // need card-mark barriers.
7604 instruct storeImmP(memory mem, immP src) %{
7605   match(Set mem (StoreP mem src));
7606 
7607   ins_cost(150);
7608   format %{ "MOV    $mem,$src" %}
7609   opcode(0xC7);               /* C7 /0 */
7610   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7611   ins_pipe( ialu_mem_imm );
7612 %}
7613 
7614 // Store Byte Immediate
7615 instruct storeImmB(memory mem, immI8 src) %{
7616   match(Set mem (StoreB mem src));
7617 
7618   ins_cost(150);
7619   format %{ "MOV8   $mem,$src" %}
7620   opcode(0xC6);               /* C6 /0 */
7621   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7622   ins_pipe( ialu_mem_imm );
7623 %}
7624 
7625 // Store Aligned Packed Byte XMM register to memory
7626 instruct storeA8B(memory mem, regXD src) %{
7627   predicate(UseSSE>=1);
7628   match(Set mem (Store8B mem src));
7629   ins_cost(145);
7630   format %{ "MOVQ  $mem,$src\t! packed8B" %}
7631   ins_encode( movq_st(mem, src));
7632   ins_pipe( pipe_slow );
7633 %}
7634 
7635 // Store Aligned Packed Char/Short XMM register to memory
7636 instruct storeA4C(memory mem, regXD src) %{
7637   predicate(UseSSE>=1);
7638   match(Set mem (Store4C mem src));
7639   ins_cost(145);
7640   format %{ "MOVQ  $mem,$src\t! packed4C" %}
7641   ins_encode( movq_st(mem, src));
7642   ins_pipe( pipe_slow );
7643 %}
7644 
7645 // Store Aligned Packed Integer XMM register to memory
7646 instruct storeA2I(memory mem, regXD src) %{
7647   predicate(UseSSE>=1);
7648   match(Set mem (Store2I mem src));
7649   ins_cost(145);
7650   format %{ "MOVQ  $mem,$src\t! packed2I" %}
7651   ins_encode( movq_st(mem, src));
7652   ins_pipe( pipe_slow );
7653 %}
7654 
7655 // Store CMS card-mark Immediate
7656 instruct storeImmCM(memory mem, immI8 src) %{
7657   match(Set mem (StoreCM mem src));
7658 
7659   ins_cost(150);
7660   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7661   opcode(0xC6);               /* C6 /0 */
7662   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7663   ins_pipe( ialu_mem_imm );
7664 %}
7665 
7666 // Store Double
7667 instruct storeD( memory mem, regDPR1 src) %{
7668   predicate(UseSSE<=1);
7669   match(Set mem (StoreD mem src));
7670 
7671   ins_cost(100);
7672   format %{ "FST_D  $mem,$src" %}
7673   opcode(0xDD);       /* DD /2 */
7674   ins_encode( enc_FP_store(mem,src) );
7675   ins_pipe( fpu_mem_reg );
7676 %}
7677 
7678 // Store double does rounding on x86
7679 instruct storeD_rounded( memory mem, regDPR1 src) %{
7680   predicate(UseSSE<=1);
7681   match(Set mem (StoreD mem (RoundDouble src)));
7682 
7683   ins_cost(100);
7684   format %{ "FST_D  $mem,$src\t# round" %}
7685   opcode(0xDD);       /* DD /2 */
7686   ins_encode( enc_FP_store(mem,src) );
7687   ins_pipe( fpu_mem_reg );
7688 %}
7689 
7690 // Store XMM register to memory (double-precision floating points)
7691 // MOVSD instruction
7692 instruct storeXD(memory mem, regXD src) %{
7693   predicate(UseSSE>=2);
7694   match(Set mem (StoreD mem src));
7695   ins_cost(95);
7696   format %{ "MOVSD  $mem,$src" %}
7697   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7698   ins_pipe( pipe_slow );
7699 %}
7700 
7701 // Store XMM register to memory (single-precision floating point)
7702 // MOVSS instruction
7703 instruct storeX(memory mem, regX src) %{
7704   predicate(UseSSE>=1);
7705   match(Set mem (StoreF mem src));
7706   ins_cost(95);
7707   format %{ "MOVSS  $mem,$src" %}
7708   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7709   ins_pipe( pipe_slow );
7710 %}
7711 
7712 // Store Aligned Packed Single Float XMM register to memory
7713 instruct storeA2F(memory mem, regXD src) %{
7714   predicate(UseSSE>=1);
7715   match(Set mem (Store2F mem src));
7716   ins_cost(145);
7717   format %{ "MOVQ  $mem,$src\t! packed2F" %}
7718   ins_encode( movq_st(mem, src));
7719   ins_pipe( pipe_slow );
7720 %}
7721 
7722 // Store Float
7723 instruct storeF( memory mem, regFPR1 src) %{
7724   predicate(UseSSE==0);
7725   match(Set mem (StoreF mem src));
7726 
7727   ins_cost(100);
7728   format %{ "FST_S  $mem,$src" %}
7729   opcode(0xD9);       /* D9 /2 */
7730   ins_encode( enc_FP_store(mem,src) );
7731   ins_pipe( fpu_mem_reg );
7732 %}
7733 
7734 // Store Float does rounding on x86
7735 instruct storeF_rounded( memory mem, regFPR1 src) %{
7736   predicate(UseSSE==0);
7737   match(Set mem (StoreF mem (RoundFloat src)));
7738 
7739   ins_cost(100);
7740   format %{ "FST_S  $mem,$src\t# round" %}
7741   opcode(0xD9);       /* D9 /2 */
7742   ins_encode( enc_FP_store(mem,src) );
7743   ins_pipe( fpu_mem_reg );
7744 %}
7745 
7746 // Store Float does rounding on x86
7747 instruct storeF_Drounded( memory mem, regDPR1 src) %{
7748   predicate(UseSSE<=1);
7749   match(Set mem (StoreF mem (ConvD2F src)));
7750 
7751   ins_cost(100);
7752   format %{ "FST_S  $mem,$src\t# D-round" %}
7753   opcode(0xD9);       /* D9 /2 */
7754   ins_encode( enc_FP_store(mem,src) );
7755   ins_pipe( fpu_mem_reg );
7756 %}
7757 
7758 // Store immediate Float value (it is faster than store from FPU register)
7759 // The instruction usage is guarded by predicate in operand immF().
7760 instruct storeF_imm( memory mem, immF src) %{
7761   match(Set mem (StoreF mem src));
7762 
7763   ins_cost(50);
7764   format %{ "MOV    $mem,$src\t# store float" %}
7765   opcode(0xC7);               /* C7 /0 */
7766   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7767   ins_pipe( ialu_mem_imm );
7768 %}
7769 
7770 // Store immediate Float value (it is faster than store from XMM register)
7771 // The instruction usage is guarded by predicate in operand immXF().
7772 instruct storeX_imm( memory mem, immXF src) %{
7773   match(Set mem (StoreF mem src));
7774 
7775   ins_cost(50);
7776   format %{ "MOV    $mem,$src\t# store float" %}
7777   opcode(0xC7);               /* C7 /0 */
7778   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7779   ins_pipe( ialu_mem_imm );
7780 %}
7781 
7782 // Store Integer to stack slot
7783 instruct storeSSI(stackSlotI dst, eRegI src) %{
7784   match(Set dst src);
7785 
7786   ins_cost(100);
7787   format %{ "MOV    $dst,$src" %}
7788   opcode(0x89);
7789   ins_encode( OpcPRegSS( dst, src ) );
7790   ins_pipe( ialu_mem_reg );
7791 %}
7792 
7793 // Store Integer to stack slot
7794 instruct storeSSP(stackSlotP dst, eRegP src) %{
7795   match(Set dst src);
7796 
7797   ins_cost(100);
7798   format %{ "MOV    $dst,$src" %}
7799   opcode(0x89);
7800   ins_encode( OpcPRegSS( dst, src ) );
7801   ins_pipe( ialu_mem_reg );
7802 %}
7803 
7804 // Store Long to stack slot
7805 instruct storeSSL(stackSlotL dst, eRegL src) %{
7806   match(Set dst src);
7807 
7808   ins_cost(200);
7809   format %{ "MOV    $dst,$src.lo\n\t"
7810             "MOV    $dst+4,$src.hi" %}
7811   opcode(0x89, 0x89);
7812   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7813   ins_pipe( ialu_mem_long_reg );
7814 %}
7815 
7816 //----------MemBar Instructions-----------------------------------------------
7817 // Memory barrier flavors
7818 
7819 instruct membar_acquire() %{
7820   match(MemBarAcquire);
7821   ins_cost(400);
7822 
7823   size(0);
7824   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7825   ins_encode();
7826   ins_pipe(empty);
7827 %}
7828 
7829 instruct membar_acquire_lock() %{
7830   match(MemBarAcquireLock);
7831   ins_cost(0);
7832 
7833   size(0);
7834   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7835   ins_encode( );
7836   ins_pipe(empty);
7837 %}
7838 
7839 instruct membar_release() %{
7840   match(MemBarRelease);
7841   ins_cost(400);
7842 
7843   size(0);
7844   format %{ "MEMBAR-release ! (empty encoding)" %}
7845   ins_encode( );
7846   ins_pipe(empty);
7847 %}
7848 
7849 instruct membar_release_lock() %{
7850   match(MemBarReleaseLock);
7851   ins_cost(0);
7852 
7853   size(0);
7854   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7855   ins_encode( );
7856   ins_pipe(empty);
7857 %}
7858 
7859 instruct membar_volatile(eFlagsReg cr) %{
7860   match(MemBarVolatile);
7861   effect(KILL cr);
7862   ins_cost(400);
7863 
7864   format %{ 
7865     $$template
7866     if (os::is_MP()) {
7867       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7868     } else {
7869       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7870     }
7871   %}
7872   ins_encode %{
7873     __ membar(Assembler::StoreLoad);
7874   %}
7875   ins_pipe(pipe_slow);
7876 %}
7877 
7878 instruct unnecessary_membar_volatile() %{
7879   match(MemBarVolatile);
7880   predicate(Matcher::post_store_load_barrier(n));
7881   ins_cost(0);
7882 
7883   size(0);
7884   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7885   ins_encode( );
7886   ins_pipe(empty);
7887 %}
7888 
7889 //----------Move Instructions--------------------------------------------------
7890 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7891   match(Set dst (CastX2P src));
7892   format %{ "# X2P  $dst, $src" %}
7893   ins_encode( /*empty encoding*/ );
7894   ins_cost(0);
7895   ins_pipe(empty);
7896 %}
7897 
7898 instruct castP2X(eRegI dst, eRegP src ) %{
7899   match(Set dst (CastP2X src));
7900   ins_cost(50);
7901   format %{ "MOV    $dst, $src\t# CastP2X" %}
7902   ins_encode( enc_Copy( dst, src) );
7903   ins_pipe( ialu_reg_reg );
7904 %}
7905 
7906 //----------Conditional Move---------------------------------------------------
7907 // Conditional move
7908 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7909   predicate(VM_Version::supports_cmov() );
7910   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7911   ins_cost(200);
7912   format %{ "CMOV$cop $dst,$src" %}
7913   opcode(0x0F,0x40);
7914   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7915   ins_pipe( pipe_cmov_reg );
7916 %}
7917 
7918 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
7919   predicate(VM_Version::supports_cmov() );
7920   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7921   ins_cost(200);
7922   format %{ "CMOV$cop $dst,$src" %}
7923   opcode(0x0F,0x40);
7924   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7925   ins_pipe( pipe_cmov_reg );
7926 %}
7927 
7928 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
7929   predicate(VM_Version::supports_cmov() );
7930   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7931   ins_cost(200);
7932   expand %{
7933     cmovI_regU(cop, cr, dst, src);
7934   %}
7935 %}
7936 
7937 // Conditional move
7938 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7939   predicate(VM_Version::supports_cmov() );
7940   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7941   ins_cost(250);
7942   format %{ "CMOV$cop $dst,$src" %}
7943   opcode(0x0F,0x40);
7944   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7945   ins_pipe( pipe_cmov_mem );
7946 %}
7947 
7948 // Conditional move
7949 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7950   predicate(VM_Version::supports_cmov() );
7951   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7952   ins_cost(250);
7953   format %{ "CMOV$cop $dst,$src" %}
7954   opcode(0x0F,0x40);
7955   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7956   ins_pipe( pipe_cmov_mem );
7957 %}
7958 
7959 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
7960   predicate(VM_Version::supports_cmov() );
7961   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7962   ins_cost(250);
7963   expand %{
7964     cmovI_memU(cop, cr, dst, src);
7965   %}
7966 %}
7967 
7968 // Conditional move
7969 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7970   predicate(VM_Version::supports_cmov() );
7971   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7972   ins_cost(200);
7973   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7974   opcode(0x0F,0x40);
7975   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7976   ins_pipe( pipe_cmov_reg );
7977 %}
7978 
7979 // Conditional move (non-P6 version)
7980 // Note:  a CMoveP is generated for  stubs and native wrappers
7981 //        regardless of whether we are on a P6, so we
7982 //        emulate a cmov here
7983 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7984   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7985   ins_cost(300);
7986   format %{ "Jn$cop   skip\n\t"
7987           "MOV    $dst,$src\t# pointer\n"
7988       "skip:" %}
7989   opcode(0x8b);
7990   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7991   ins_pipe( pipe_cmov_reg );
7992 %}
7993 
7994 // Conditional move
7995 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7996   predicate(VM_Version::supports_cmov() );
7997   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7998   ins_cost(200);
7999   format %{ "CMOV$cop $dst,$src\t# ptr" %}
8000   opcode(0x0F,0x40);
8001   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
8002   ins_pipe( pipe_cmov_reg );
8003 %}
8004 
8005 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
8006   predicate(VM_Version::supports_cmov() );
8007   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
8008   ins_cost(200);
8009   expand %{
8010     cmovP_regU(cop, cr, dst, src);
8011   %}
8012 %}
8013 
8014 // DISABLED: Requires the ADLC to emit a bottom_type call that
8015 // correctly meets the two pointer arguments; one is an incoming
8016 // register but the other is a memory operand.  ALSO appears to
8017 // be buggy with implicit null checks.
8018 //
8019 //// Conditional move
8020 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
8021 //  predicate(VM_Version::supports_cmov() );
8022 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
8023 //  ins_cost(250);
8024 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
8025 //  opcode(0x0F,0x40);
8026 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
8027 //  ins_pipe( pipe_cmov_mem );
8028 //%}
8029 //
8030 //// Conditional move
8031 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
8032 //  predicate(VM_Version::supports_cmov() );
8033 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
8034 //  ins_cost(250);
8035 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
8036 //  opcode(0x0F,0x40);
8037 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
8038 //  ins_pipe( pipe_cmov_mem );
8039 //%}
8040 
8041 // Conditional move
8042 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
8043   predicate(UseSSE<=1);
8044   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8045   ins_cost(200);
8046   format %{ "FCMOV$cop $dst,$src\t# double" %}
8047   opcode(0xDA);
8048   ins_encode( enc_cmov_d(cop,src) );
8049   ins_pipe( pipe_cmovD_reg );
8050 %}
8051 
8052 // Conditional move
8053 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
8054   predicate(UseSSE==0);
8055   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8056   ins_cost(200);
8057   format %{ "FCMOV$cop $dst,$src\t# float" %}
8058   opcode(0xDA);
8059   ins_encode( enc_cmov_d(cop,src) );
8060   ins_pipe( pipe_cmovD_reg );
8061 %}
8062 
8063 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8064 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
8065   predicate(UseSSE<=1);
8066   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8067   ins_cost(200);
8068   format %{ "Jn$cop   skip\n\t"
8069             "MOV    $dst,$src\t# double\n"
8070       "skip:" %}
8071   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8072   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
8073   ins_pipe( pipe_cmovD_reg );
8074 %}
8075 
8076 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8077 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
8078   predicate(UseSSE==0);
8079   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8080   ins_cost(200);
8081   format %{ "Jn$cop    skip\n\t"
8082             "MOV    $dst,$src\t# float\n"
8083       "skip:" %}
8084   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8085   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
8086   ins_pipe( pipe_cmovD_reg );
8087 %}
8088 
8089 // No CMOVE with SSE/SSE2
8090 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
8091   predicate (UseSSE>=1);
8092   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8093   ins_cost(200);
8094   format %{ "Jn$cop   skip\n\t"
8095             "MOVSS  $dst,$src\t# float\n"
8096       "skip:" %}
8097   ins_encode %{
8098     Label skip;
8099     // Invert sense of branch from sense of CMOV
8100     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8101     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8102     __ bind(skip);
8103   %}
8104   ins_pipe( pipe_slow );
8105 %}
8106 
8107 // No CMOVE with SSE/SSE2
8108 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
8109   predicate (UseSSE>=2);
8110   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8111   ins_cost(200);
8112   format %{ "Jn$cop   skip\n\t"
8113             "MOVSD  $dst,$src\t# float\n"
8114       "skip:" %}
8115   ins_encode %{
8116     Label skip;
8117     // Invert sense of branch from sense of CMOV
8118     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8119     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8120     __ bind(skip);
8121   %}
8122   ins_pipe( pipe_slow );
8123 %}
8124 
8125 // unsigned version
8126 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
8127   predicate (UseSSE>=1);
8128   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8129   ins_cost(200);
8130   format %{ "Jn$cop   skip\n\t"
8131             "MOVSS  $dst,$src\t# float\n"
8132       "skip:" %}
8133   ins_encode %{
8134     Label skip;
8135     // Invert sense of branch from sense of CMOV
8136     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8137     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8138     __ bind(skip);
8139   %}
8140   ins_pipe( pipe_slow );
8141 %}
8142 
8143 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
8144   predicate (UseSSE>=1);
8145   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8146   ins_cost(200);
8147   expand %{
8148     fcmovX_regU(cop, cr, dst, src);
8149   %}
8150 %}
8151 
8152 // unsigned version
8153 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
8154   predicate (UseSSE>=2);
8155   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8156   ins_cost(200);
8157   format %{ "Jn$cop   skip\n\t"
8158             "MOVSD  $dst,$src\t# float\n"
8159       "skip:" %}
8160   ins_encode %{
8161     Label skip;
8162     // Invert sense of branch from sense of CMOV
8163     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8164     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8165     __ bind(skip);
8166   %}
8167   ins_pipe( pipe_slow );
8168 %}
8169 
8170 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
8171   predicate (UseSSE>=2);
8172   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8173   ins_cost(200);
8174   expand %{
8175     fcmovXD_regU(cop, cr, dst, src);
8176   %}
8177 %}
8178 
8179 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
8180   predicate(VM_Version::supports_cmov() );
8181   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8182   ins_cost(200);
8183   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8184             "CMOV$cop $dst.hi,$src.hi" %}
8185   opcode(0x0F,0x40);
8186   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8187   ins_pipe( pipe_cmov_reg_long );
8188 %}
8189 
8190 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
8191   predicate(VM_Version::supports_cmov() );
8192   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8193   ins_cost(200);
8194   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8195             "CMOV$cop $dst.hi,$src.hi" %}
8196   opcode(0x0F,0x40);
8197   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8198   ins_pipe( pipe_cmov_reg_long );
8199 %}
8200 
8201 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
8202   predicate(VM_Version::supports_cmov() );
8203   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8204   ins_cost(200);
8205   expand %{
8206     cmovL_regU(cop, cr, dst, src);
8207   %}
8208 %}
8209 
8210 //----------Arithmetic Instructions--------------------------------------------
8211 //----------Addition Instructions----------------------------------------------
8212 // Integer Addition Instructions
8213 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8214   match(Set dst (AddI dst src));
8215   effect(KILL cr);
8216 
8217   size(2);
8218   format %{ "ADD    $dst,$src" %}
8219   opcode(0x03);
8220   ins_encode( OpcP, RegReg( dst, src) );
8221   ins_pipe( ialu_reg_reg );
8222 %}
8223 
8224 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8225   match(Set dst (AddI dst src));
8226   effect(KILL cr);
8227 
8228   format %{ "ADD    $dst,$src" %}
8229   opcode(0x81, 0x00); /* /0 id */
8230   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8231   ins_pipe( ialu_reg );
8232 %}
8233 
8234 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
8235   predicate(UseIncDec);
8236   match(Set dst (AddI dst src));
8237   effect(KILL cr);
8238 
8239   size(1);
8240   format %{ "INC    $dst" %}
8241   opcode(0x40); /*  */
8242   ins_encode( Opc_plus( primary, dst ) );
8243   ins_pipe( ialu_reg );
8244 %}
8245 
8246 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
8247   match(Set dst (AddI src0 src1));
8248   ins_cost(110);
8249 
8250   format %{ "LEA    $dst,[$src0 + $src1]" %}
8251   opcode(0x8D); /* 0x8D /r */
8252   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8253   ins_pipe( ialu_reg_reg );
8254 %}
8255 
8256 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
8257   match(Set dst (AddP src0 src1));
8258   ins_cost(110);
8259 
8260   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
8261   opcode(0x8D); /* 0x8D /r */
8262   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8263   ins_pipe( ialu_reg_reg );
8264 %}
8265 
8266 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
8267   predicate(UseIncDec);
8268   match(Set dst (AddI dst src));
8269   effect(KILL cr);
8270 
8271   size(1);
8272   format %{ "DEC    $dst" %}
8273   opcode(0x48); /*  */
8274   ins_encode( Opc_plus( primary, dst ) );
8275   ins_pipe( ialu_reg );
8276 %}
8277 
8278 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
8279   match(Set dst (AddP dst src));
8280   effect(KILL cr);
8281 
8282   size(2);
8283   format %{ "ADD    $dst,$src" %}
8284   opcode(0x03);
8285   ins_encode( OpcP, RegReg( dst, src) );
8286   ins_pipe( ialu_reg_reg );
8287 %}
8288 
8289 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
8290   match(Set dst (AddP dst src));
8291   effect(KILL cr);
8292 
8293   format %{ "ADD    $dst,$src" %}
8294   opcode(0x81,0x00); /* Opcode 81 /0 id */
8295   // ins_encode( RegImm( dst, src) );
8296   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8297   ins_pipe( ialu_reg );
8298 %}
8299 
8300 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8301   match(Set dst (AddI dst (LoadI src)));
8302   effect(KILL cr);
8303 
8304   ins_cost(125);
8305   format %{ "ADD    $dst,$src" %}
8306   opcode(0x03);
8307   ins_encode( OpcP, RegMem( dst, src) );
8308   ins_pipe( ialu_reg_mem );
8309 %}
8310 
8311 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8312   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8313   effect(KILL cr);
8314 
8315   ins_cost(150);
8316   format %{ "ADD    $dst,$src" %}
8317   opcode(0x01);  /* Opcode 01 /r */
8318   ins_encode( OpcP, RegMem( src, dst ) );
8319   ins_pipe( ialu_mem_reg );
8320 %}
8321 
8322 // Add Memory with Immediate
8323 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8324   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8325   effect(KILL cr);
8326 
8327   ins_cost(125);
8328   format %{ "ADD    $dst,$src" %}
8329   opcode(0x81);               /* Opcode 81 /0 id */
8330   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
8331   ins_pipe( ialu_mem_imm );
8332 %}
8333 
8334 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
8335   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8336   effect(KILL cr);
8337 
8338   ins_cost(125);
8339   format %{ "INC    $dst" %}
8340   opcode(0xFF);               /* Opcode FF /0 */
8341   ins_encode( OpcP, RMopc_Mem(0x00,dst));
8342   ins_pipe( ialu_mem_imm );
8343 %}
8344 
8345 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
8346   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8347   effect(KILL cr);
8348 
8349   ins_cost(125);
8350   format %{ "DEC    $dst" %}
8351   opcode(0xFF);               /* Opcode FF /1 */
8352   ins_encode( OpcP, RMopc_Mem(0x01,dst));
8353   ins_pipe( ialu_mem_imm );
8354 %}
8355 
8356 
8357 instruct checkCastPP( eRegP dst ) %{
8358   match(Set dst (CheckCastPP dst));
8359 
8360   size(0);
8361   format %{ "#checkcastPP of $dst" %}
8362   ins_encode( /*empty encoding*/ );
8363   ins_pipe( empty );
8364 %}
8365 
8366 instruct castPP( eRegP dst ) %{
8367   match(Set dst (CastPP dst));
8368   format %{ "#castPP of $dst" %}
8369   ins_encode( /*empty encoding*/ );
8370   ins_pipe( empty );
8371 %}
8372 
8373 instruct castII( eRegI dst ) %{
8374   match(Set dst (CastII dst));
8375   format %{ "#castII of $dst" %}
8376   ins_encode( /*empty encoding*/ );
8377   ins_cost(0);
8378   ins_pipe( empty );
8379 %}
8380 
8381 
8382 // Load-locked - same as a regular pointer load when used with compare-swap
8383 instruct loadPLocked(eRegP dst, memory mem) %{
8384   match(Set dst (LoadPLocked mem));
8385 
8386   ins_cost(125);
8387   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
8388   opcode(0x8B);
8389   ins_encode( OpcP, RegMem(dst,mem));
8390   ins_pipe( ialu_reg_mem );
8391 %}
8392 
8393 // LoadLong-locked - same as a volatile long load when used with compare-swap
8394 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
8395   predicate(UseSSE<=1);
8396   match(Set dst (LoadLLocked mem));
8397 
8398   ins_cost(200);
8399   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
8400             "FISTp  $dst" %}
8401   ins_encode(enc_loadL_volatile(mem,dst));
8402   ins_pipe( fpu_reg_mem );
8403 %}
8404 
8405 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
8406   predicate(UseSSE>=2);
8407   match(Set dst (LoadLLocked mem));
8408   effect(TEMP tmp);
8409   ins_cost(180);
8410   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8411             "MOVSD  $dst,$tmp" %}
8412   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
8413   ins_pipe( pipe_slow );
8414 %}
8415 
8416 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
8417   predicate(UseSSE>=2);
8418   match(Set dst (LoadLLocked mem));
8419   effect(TEMP tmp);
8420   ins_cost(160);
8421   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8422             "MOVD   $dst.lo,$tmp\n\t"
8423             "PSRLQ  $tmp,32\n\t"
8424             "MOVD   $dst.hi,$tmp" %}
8425   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
8426   ins_pipe( pipe_slow );
8427 %}
8428 
8429 // Conditional-store of the updated heap-top.
8430 // Used during allocation of the shared heap.
8431 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
8432 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
8433   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
8434   // EAX is killed if there is contention, but then it's also unused.
8435   // In the common case of no contention, EAX holds the new oop address.
8436   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
8437   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
8438   ins_pipe( pipe_cmpxchg );
8439 %}
8440 
8441 // Conditional-store of an int value.
8442 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
8443 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
8444   match(Set cr (StoreIConditional mem (Binary oldval newval)));
8445   effect(KILL oldval);
8446   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
8447   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
8448   ins_pipe( pipe_cmpxchg );
8449 %}
8450 
8451 // Conditional-store of a long value.
8452 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
8453 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8454   match(Set cr (StoreLConditional mem (Binary oldval newval)));
8455   effect(KILL oldval);
8456   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
8457             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
8458             "XCHG   EBX,ECX"
8459   %}
8460   ins_encode %{
8461     // Note: we need to swap rbx, and rcx before and after the
8462     //       cmpxchg8 instruction because the instruction uses
8463     //       rcx as the high order word of the new value to store but
8464     //       our register encoding uses rbx.
8465     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8466     if( os::is_MP() )
8467       __ lock();
8468     __ cmpxchg8($mem$$Address);
8469     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8470   %}
8471   ins_pipe( pipe_cmpxchg );
8472 %}
8473 
8474 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
8475 
8476 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8477   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
8478   effect(KILL cr, KILL oldval);
8479   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8480             "MOV    $res,0\n\t"
8481             "JNE,s  fail\n\t"
8482             "MOV    $res,1\n"
8483           "fail:" %}
8484   ins_encode( enc_cmpxchg8(mem_ptr),
8485               enc_flags_ne_to_boolean(res) );
8486   ins_pipe( pipe_cmpxchg );
8487 %}
8488 
8489 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
8490   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
8491   effect(KILL cr, KILL oldval);
8492   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8493             "MOV    $res,0\n\t"
8494             "JNE,s  fail\n\t"
8495             "MOV    $res,1\n"
8496           "fail:" %}
8497   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8498   ins_pipe( pipe_cmpxchg );
8499 %}
8500 
8501 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
8502   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
8503   effect(KILL cr, KILL oldval);
8504   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8505             "MOV    $res,0\n\t"
8506             "JNE,s  fail\n\t"
8507             "MOV    $res,1\n"
8508           "fail:" %}
8509   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8510   ins_pipe( pipe_cmpxchg );
8511 %}
8512 
8513 //----------Subtraction Instructions-------------------------------------------
8514 // Integer Subtraction Instructions
8515 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8516   match(Set dst (SubI dst src));
8517   effect(KILL cr);
8518 
8519   size(2);
8520   format %{ "SUB    $dst,$src" %}
8521   opcode(0x2B);
8522   ins_encode( OpcP, RegReg( dst, src) );
8523   ins_pipe( ialu_reg_reg );
8524 %}
8525 
8526 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8527   match(Set dst (SubI dst src));
8528   effect(KILL cr);
8529 
8530   format %{ "SUB    $dst,$src" %}
8531   opcode(0x81,0x05);  /* Opcode 81 /5 */
8532   // ins_encode( RegImm( dst, src) );
8533   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8534   ins_pipe( ialu_reg );
8535 %}
8536 
8537 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8538   match(Set dst (SubI dst (LoadI src)));
8539   effect(KILL cr);
8540 
8541   ins_cost(125);
8542   format %{ "SUB    $dst,$src" %}
8543   opcode(0x2B);
8544   ins_encode( OpcP, RegMem( dst, src) );
8545   ins_pipe( ialu_reg_mem );
8546 %}
8547 
8548 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8549   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8550   effect(KILL cr);
8551 
8552   ins_cost(150);
8553   format %{ "SUB    $dst,$src" %}
8554   opcode(0x29);  /* Opcode 29 /r */
8555   ins_encode( OpcP, RegMem( src, dst ) );
8556   ins_pipe( ialu_mem_reg );
8557 %}
8558 
8559 // Subtract from a pointer
8560 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
8561   match(Set dst (AddP dst (SubI zero src)));
8562   effect(KILL cr);
8563 
8564   size(2);
8565   format %{ "SUB    $dst,$src" %}
8566   opcode(0x2B);
8567   ins_encode( OpcP, RegReg( dst, src) );
8568   ins_pipe( ialu_reg_reg );
8569 %}
8570 
8571 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
8572   match(Set dst (SubI zero dst));
8573   effect(KILL cr);
8574 
8575   size(2);
8576   format %{ "NEG    $dst" %}
8577   opcode(0xF7,0x03);  // Opcode F7 /3
8578   ins_encode( OpcP, RegOpc( dst ) );
8579   ins_pipe( ialu_reg );
8580 %}
8581 
8582 
8583 //----------Multiplication/Division Instructions-------------------------------
8584 // Integer Multiplication Instructions
8585 // Multiply Register
8586 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8587   match(Set dst (MulI dst src));
8588   effect(KILL cr);
8589 
8590   size(3);
8591   ins_cost(300);
8592   format %{ "IMUL   $dst,$src" %}
8593   opcode(0xAF, 0x0F);
8594   ins_encode( OpcS, OpcP, RegReg( dst, src) );
8595   ins_pipe( ialu_reg_reg_alu0 );
8596 %}
8597 
8598 // Multiply 32-bit Immediate
8599 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
8600   match(Set dst (MulI src imm));
8601   effect(KILL cr);
8602 
8603   ins_cost(300);
8604   format %{ "IMUL   $dst,$src,$imm" %}
8605   opcode(0x69);  /* 69 /r id */
8606   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8607   ins_pipe( ialu_reg_reg_alu0 );
8608 %}
8609 
8610 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8611   match(Set dst src);
8612   effect(KILL cr);
8613 
8614   // Note that this is artificially increased to make it more expensive than loadConL
8615   ins_cost(250);
8616   format %{ "MOV    EAX,$src\t// low word only" %}
8617   opcode(0xB8);
8618   ins_encode( LdImmL_Lo(dst, src) );
8619   ins_pipe( ialu_reg_fat );
8620 %}
8621 
8622 // Multiply by 32-bit Immediate, taking the shifted high order results
8623 //  (special case for shift by 32)
8624 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8625   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8626   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8627              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8628              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8629   effect(USE src1, KILL cr);
8630 
8631   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8632   ins_cost(0*100 + 1*400 - 150);
8633   format %{ "IMUL   EDX:EAX,$src1" %}
8634   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8635   ins_pipe( pipe_slow );
8636 %}
8637 
8638 // Multiply by 32-bit Immediate, taking the shifted high order results
8639 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8640   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8641   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8642              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8643              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8644   effect(USE src1, KILL cr);
8645 
8646   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8647   ins_cost(1*100 + 1*400 - 150);
8648   format %{ "IMUL   EDX:EAX,$src1\n\t"
8649             "SAR    EDX,$cnt-32" %}
8650   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8651   ins_pipe( pipe_slow );
8652 %}
8653 
8654 // Multiply Memory 32-bit Immediate
8655 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
8656   match(Set dst (MulI (LoadI src) imm));
8657   effect(KILL cr);
8658 
8659   ins_cost(300);
8660   format %{ "IMUL   $dst,$src,$imm" %}
8661   opcode(0x69);  /* 69 /r id */
8662   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8663   ins_pipe( ialu_reg_mem_alu0 );
8664 %}
8665 
8666 // Multiply Memory
8667 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
8668   match(Set dst (MulI dst (LoadI src)));
8669   effect(KILL cr);
8670 
8671   ins_cost(350);
8672   format %{ "IMUL   $dst,$src" %}
8673   opcode(0xAF, 0x0F);
8674   ins_encode( OpcS, OpcP, RegMem( dst, src) );
8675   ins_pipe( ialu_reg_mem_alu0 );
8676 %}
8677 
8678 // Multiply Register Int to Long
8679 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8680   // Basic Idea: long = (long)int * (long)int
8681   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8682   effect(DEF dst, USE src, USE src1, KILL flags);
8683 
8684   ins_cost(300);
8685   format %{ "IMUL   $dst,$src1" %}
8686 
8687   ins_encode( long_int_multiply( dst, src1 ) );
8688   ins_pipe( ialu_reg_reg_alu0 );
8689 %}
8690 
8691 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8692   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8693   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8694   effect(KILL flags);
8695 
8696   ins_cost(300);
8697   format %{ "MUL    $dst,$src1" %}
8698 
8699   ins_encode( long_uint_multiply(dst, src1) );
8700   ins_pipe( ialu_reg_reg_alu0 );
8701 %}
8702 
8703 // Multiply Register Long
8704 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8705   match(Set dst (MulL dst src));
8706   effect(KILL cr, TEMP tmp);
8707   ins_cost(4*100+3*400);
8708 // Basic idea: lo(result) = lo(x_lo * y_lo)
8709 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8710   format %{ "MOV    $tmp,$src.lo\n\t"
8711             "IMUL   $tmp,EDX\n\t"
8712             "MOV    EDX,$src.hi\n\t"
8713             "IMUL   EDX,EAX\n\t"
8714             "ADD    $tmp,EDX\n\t"
8715             "MUL    EDX:EAX,$src.lo\n\t"
8716             "ADD    EDX,$tmp" %}
8717   ins_encode( long_multiply( dst, src, tmp ) );
8718   ins_pipe( pipe_slow );
8719 %}
8720 
8721 // Multiply Register Long where the left operand's high 32 bits are zero
8722 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8723   predicate(is_operand_hi32_zero(n->in(1)));
8724   match(Set dst (MulL dst src));
8725   effect(KILL cr, TEMP tmp);
8726   ins_cost(2*100+2*400);
8727 // Basic idea: lo(result) = lo(x_lo * y_lo)
8728 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8729   format %{ "MOV    $tmp,$src.hi\n\t"
8730             "IMUL   $tmp,EAX\n\t"
8731             "MUL    EDX:EAX,$src.lo\n\t"
8732             "ADD    EDX,$tmp" %}
8733   ins_encode %{
8734     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8735     __ imull($tmp$$Register, rax);
8736     __ mull($src$$Register);
8737     __ addl(rdx, $tmp$$Register);
8738   %}
8739   ins_pipe( pipe_slow );
8740 %}
8741 
8742 // Multiply Register Long where the right operand's high 32 bits are zero
8743 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8744   predicate(is_operand_hi32_zero(n->in(2)));
8745   match(Set dst (MulL dst src));
8746   effect(KILL cr, TEMP tmp);
8747   ins_cost(2*100+2*400);
8748 // Basic idea: lo(result) = lo(x_lo * y_lo)
8749 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8750   format %{ "MOV    $tmp,$src.lo\n\t"
8751             "IMUL   $tmp,EDX\n\t"
8752             "MUL    EDX:EAX,$src.lo\n\t"
8753             "ADD    EDX,$tmp" %}
8754   ins_encode %{
8755     __ movl($tmp$$Register, $src$$Register);
8756     __ imull($tmp$$Register, rdx);
8757     __ mull($src$$Register);
8758     __ addl(rdx, $tmp$$Register);
8759   %}
8760   ins_pipe( pipe_slow );
8761 %}
8762 
8763 // Multiply Register Long where the left and the right operands' high 32 bits are zero
8764 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8765   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8766   match(Set dst (MulL dst src));
8767   effect(KILL cr);
8768   ins_cost(1*400);
8769 // Basic idea: lo(result) = lo(x_lo * y_lo)
8770 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8771   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8772   ins_encode %{
8773     __ mull($src$$Register);
8774   %}
8775   ins_pipe( pipe_slow );
8776 %}
8777 
8778 // Multiply Register Long by small constant
8779 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8780   match(Set dst (MulL dst src));
8781   effect(KILL cr, TEMP tmp);
8782   ins_cost(2*100+2*400);
8783   size(12);
8784 // Basic idea: lo(result) = lo(src * EAX)
8785 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8786   format %{ "IMUL   $tmp,EDX,$src\n\t"
8787             "MOV    EDX,$src\n\t"
8788             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8789             "ADD    EDX,$tmp" %}
8790   ins_encode( long_multiply_con( dst, src, tmp ) );
8791   ins_pipe( pipe_slow );
8792 %}
8793 
8794 // Integer DIV with Register
8795 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8796   match(Set rax (DivI rax div));
8797   effect(KILL rdx, KILL cr);
8798   size(26);
8799   ins_cost(30*100+10*100);
8800   format %{ "CMP    EAX,0x80000000\n\t"
8801             "JNE,s  normal\n\t"
8802             "XOR    EDX,EDX\n\t"
8803             "CMP    ECX,-1\n\t"
8804             "JE,s   done\n"
8805     "normal: CDQ\n\t"
8806             "IDIV   $div\n\t"
8807     "done:"        %}
8808   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8809   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8810   ins_pipe( ialu_reg_reg_alu0 );
8811 %}
8812 
8813 // Divide Register Long
8814 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8815   match(Set dst (DivL src1 src2));
8816   effect( KILL cr, KILL cx, KILL bx );
8817   ins_cost(10000);
8818   format %{ "PUSH   $src1.hi\n\t"
8819             "PUSH   $src1.lo\n\t"
8820             "PUSH   $src2.hi\n\t"
8821             "PUSH   $src2.lo\n\t"
8822             "CALL   SharedRuntime::ldiv\n\t"
8823             "ADD    ESP,16" %}
8824   ins_encode( long_div(src1,src2) );
8825   ins_pipe( pipe_slow );
8826 %}
8827 
8828 // Integer DIVMOD with Register, both quotient and mod results
8829 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8830   match(DivModI rax div);
8831   effect(KILL cr);
8832   size(26);
8833   ins_cost(30*100+10*100);
8834   format %{ "CMP    EAX,0x80000000\n\t"
8835             "JNE,s  normal\n\t"
8836             "XOR    EDX,EDX\n\t"
8837             "CMP    ECX,-1\n\t"
8838             "JE,s   done\n"
8839     "normal: CDQ\n\t"
8840             "IDIV   $div\n\t"
8841     "done:"        %}
8842   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8843   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8844   ins_pipe( pipe_slow );
8845 %}
8846 
8847 // Integer MOD with Register
8848 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8849   match(Set rdx (ModI rax div));
8850   effect(KILL rax, KILL cr);
8851 
8852   size(26);
8853   ins_cost(300);
8854   format %{ "CDQ\n\t"
8855             "IDIV   $div" %}
8856   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8857   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8858   ins_pipe( ialu_reg_reg_alu0 );
8859 %}
8860 
8861 // Remainder Register Long
8862 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8863   match(Set dst (ModL src1 src2));
8864   effect( KILL cr, KILL cx, KILL bx );
8865   ins_cost(10000);
8866   format %{ "PUSH   $src1.hi\n\t"
8867             "PUSH   $src1.lo\n\t"
8868             "PUSH   $src2.hi\n\t"
8869             "PUSH   $src2.lo\n\t"
8870             "CALL   SharedRuntime::lrem\n\t"
8871             "ADD    ESP,16" %}
8872   ins_encode( long_mod(src1,src2) );
8873   ins_pipe( pipe_slow );
8874 %}
8875 
8876 // Divide Register Long (no special case since divisor != -1)
8877 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
8878   match(Set dst (DivL dst imm));
8879   effect( TEMP tmp, TEMP tmp2, KILL cr );
8880   ins_cost(1000);
8881   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8882             "XOR    $tmp2,$tmp2\n\t"
8883             "CMP    $tmp,EDX\n\t"
8884             "JA,s   fast\n\t"
8885             "MOV    $tmp2,EAX\n\t"
8886             "MOV    EAX,EDX\n\t"
8887             "MOV    EDX,0\n\t"
8888             "JLE,s  pos\n\t"
8889             "LNEG   EAX : $tmp2\n\t"
8890             "DIV    $tmp # unsigned division\n\t"
8891             "XCHG   EAX,$tmp2\n\t"
8892             "DIV    $tmp\n\t"
8893             "LNEG   $tmp2 : EAX\n\t"
8894             "JMP,s  done\n"
8895     "pos:\n\t"
8896             "DIV    $tmp\n\t"
8897             "XCHG   EAX,$tmp2\n"
8898     "fast:\n\t"
8899             "DIV    $tmp\n"
8900     "done:\n\t"
8901             "MOV    EDX,$tmp2\n\t"
8902             "NEG    EDX:EAX # if $imm < 0" %}
8903   ins_encode %{
8904     int con = (int)$imm$$constant;
8905     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8906     int pcon = (con > 0) ? con : -con;
8907     Label Lfast, Lpos, Ldone;
8908 
8909     __ movl($tmp$$Register, pcon);
8910     __ xorl($tmp2$$Register,$tmp2$$Register);
8911     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8912     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8913 
8914     __ movl($tmp2$$Register, $dst$$Register); // save
8915     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8916     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8917     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8918 
8919     // Negative dividend.
8920     // convert value to positive to use unsigned division
8921     __ lneg($dst$$Register, $tmp2$$Register);
8922     __ divl($tmp$$Register);
8923     __ xchgl($dst$$Register, $tmp2$$Register);
8924     __ divl($tmp$$Register);
8925     // revert result back to negative
8926     __ lneg($tmp2$$Register, $dst$$Register);
8927     __ jmpb(Ldone);
8928 
8929     __ bind(Lpos);
8930     __ divl($tmp$$Register); // Use unsigned division
8931     __ xchgl($dst$$Register, $tmp2$$Register);
8932     // Fallthrow for final divide, tmp2 has 32 bit hi result
8933 
8934     __ bind(Lfast);
8935     // fast path: src is positive
8936     __ divl($tmp$$Register); // Use unsigned division
8937 
8938     __ bind(Ldone);
8939     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8940     if (con < 0) {
8941       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8942     }
8943   %}
8944   ins_pipe( pipe_slow );
8945 %}
8946 
8947 // Remainder Register Long (remainder fit into 32 bits)
8948 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
8949   match(Set dst (ModL dst imm));
8950   effect( TEMP tmp, TEMP tmp2, KILL cr );
8951   ins_cost(1000);
8952   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8953             "CMP    $tmp,EDX\n\t"
8954             "JA,s   fast\n\t"
8955             "MOV    $tmp2,EAX\n\t"
8956             "MOV    EAX,EDX\n\t"
8957             "MOV    EDX,0\n\t"
8958             "JLE,s  pos\n\t"
8959             "LNEG   EAX : $tmp2\n\t"
8960             "DIV    $tmp # unsigned division\n\t"
8961             "MOV    EAX,$tmp2\n\t"
8962             "DIV    $tmp\n\t"
8963             "NEG    EDX\n\t"
8964             "JMP,s  done\n"
8965     "pos:\n\t"
8966             "DIV    $tmp\n\t"
8967             "MOV    EAX,$tmp2\n"
8968     "fast:\n\t"
8969             "DIV    $tmp\n"
8970     "done:\n\t"
8971             "MOV    EAX,EDX\n\t"
8972             "SAR    EDX,31\n\t" %}
8973   ins_encode %{
8974     int con = (int)$imm$$constant;
8975     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8976     int pcon = (con > 0) ? con : -con;
8977     Label  Lfast, Lpos, Ldone;
8978 
8979     __ movl($tmp$$Register, pcon);
8980     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8981     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8982 
8983     __ movl($tmp2$$Register, $dst$$Register); // save
8984     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8985     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8986     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8987 
8988     // Negative dividend.
8989     // convert value to positive to use unsigned division
8990     __ lneg($dst$$Register, $tmp2$$Register);
8991     __ divl($tmp$$Register);
8992     __ movl($dst$$Register, $tmp2$$Register);
8993     __ divl($tmp$$Register);
8994     // revert remainder back to negative
8995     __ negl(HIGH_FROM_LOW($dst$$Register));
8996     __ jmpb(Ldone);
8997 
8998     __ bind(Lpos);
8999     __ divl($tmp$$Register);
9000     __ movl($dst$$Register, $tmp2$$Register);
9001 
9002     __ bind(Lfast);
9003     // fast path: src is positive
9004     __ divl($tmp$$Register);
9005 
9006     __ bind(Ldone);
9007     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
9008     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
9009 
9010   %}
9011   ins_pipe( pipe_slow );
9012 %}
9013 
9014 // Integer Shift Instructions
9015 // Shift Left by one
9016 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9017   match(Set dst (LShiftI dst shift));
9018   effect(KILL cr);
9019 
9020   size(2);
9021   format %{ "SHL    $dst,$shift" %}
9022   opcode(0xD1, 0x4);  /* D1 /4 */
9023   ins_encode( OpcP, RegOpc( dst ) );
9024   ins_pipe( ialu_reg );
9025 %}
9026 
9027 // Shift Left by 8-bit immediate
9028 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
9029   match(Set dst (LShiftI dst shift));
9030   effect(KILL cr);
9031 
9032   size(3);
9033   format %{ "SHL    $dst,$shift" %}
9034   opcode(0xC1, 0x4);  /* C1 /4 ib */
9035   ins_encode( RegOpcImm( dst, shift) );
9036   ins_pipe( ialu_reg );
9037 %}
9038 
9039 // Shift Left by variable
9040 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
9041   match(Set dst (LShiftI dst shift));
9042   effect(KILL cr);
9043 
9044   size(2);
9045   format %{ "SHL    $dst,$shift" %}
9046   opcode(0xD3, 0x4);  /* D3 /4 */
9047   ins_encode( OpcP, RegOpc( dst ) );
9048   ins_pipe( ialu_reg_reg );
9049 %}
9050 
9051 // Arithmetic shift right by one
9052 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9053   match(Set dst (RShiftI dst shift));
9054   effect(KILL cr);
9055 
9056   size(2);
9057   format %{ "SAR    $dst,$shift" %}
9058   opcode(0xD1, 0x7);  /* D1 /7 */
9059   ins_encode( OpcP, RegOpc( dst ) );
9060   ins_pipe( ialu_reg );
9061 %}
9062 
9063 // Arithmetic shift right by one
9064 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
9065   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
9066   effect(KILL cr);
9067   format %{ "SAR    $dst,$shift" %}
9068   opcode(0xD1, 0x7);  /* D1 /7 */
9069   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
9070   ins_pipe( ialu_mem_imm );
9071 %}
9072 
9073 // Arithmetic Shift Right by 8-bit immediate
9074 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
9075   match(Set dst (RShiftI dst shift));
9076   effect(KILL cr);
9077 
9078   size(3);
9079   format %{ "SAR    $dst,$shift" %}
9080   opcode(0xC1, 0x7);  /* C1 /7 ib */
9081   ins_encode( RegOpcImm( dst, shift ) );
9082   ins_pipe( ialu_mem_imm );
9083 %}
9084 
9085 // Arithmetic Shift Right by 8-bit immediate
9086 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
9087   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
9088   effect(KILL cr);
9089 
9090   format %{ "SAR    $dst,$shift" %}
9091   opcode(0xC1, 0x7);  /* C1 /7 ib */
9092   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
9093   ins_pipe( ialu_mem_imm );
9094 %}
9095 
9096 // Arithmetic Shift Right by variable
9097 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
9098   match(Set dst (RShiftI dst shift));
9099   effect(KILL cr);
9100 
9101   size(2);
9102   format %{ "SAR    $dst,$shift" %}
9103   opcode(0xD3, 0x7);  /* D3 /7 */
9104   ins_encode( OpcP, RegOpc( dst ) );
9105   ins_pipe( ialu_reg_reg );
9106 %}
9107 
9108 // Logical shift right by one
9109 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9110   match(Set dst (URShiftI dst shift));
9111   effect(KILL cr);
9112 
9113   size(2);
9114   format %{ "SHR    $dst,$shift" %}
9115   opcode(0xD1, 0x5);  /* D1 /5 */
9116   ins_encode( OpcP, RegOpc( dst ) );
9117   ins_pipe( ialu_reg );
9118 %}
9119 
9120 // Logical Shift Right by 8-bit immediate
9121 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
9122   match(Set dst (URShiftI dst shift));
9123   effect(KILL cr);
9124 
9125   size(3);
9126   format %{ "SHR    $dst,$shift" %}
9127   opcode(0xC1, 0x5);  /* C1 /5 ib */
9128   ins_encode( RegOpcImm( dst, shift) );
9129   ins_pipe( ialu_reg );
9130 %}
9131 
9132 
9133 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
9134 // This idiom is used by the compiler for the i2b bytecode.
9135 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
9136   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
9137 
9138   size(3);
9139   format %{ "MOVSX  $dst,$src :8" %}
9140   ins_encode %{
9141     __ movsbl($dst$$Register, $src$$Register);
9142   %}
9143   ins_pipe(ialu_reg_reg);
9144 %}
9145 
9146 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
9147 // This idiom is used by the compiler the i2s bytecode.
9148 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
9149   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
9150 
9151   size(3);
9152   format %{ "MOVSX  $dst,$src :16" %}
9153   ins_encode %{
9154     __ movswl($dst$$Register, $src$$Register);
9155   %}
9156   ins_pipe(ialu_reg_reg);
9157 %}
9158 
9159 
9160 // Logical Shift Right by variable
9161 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
9162   match(Set dst (URShiftI dst shift));
9163   effect(KILL cr);
9164 
9165   size(2);
9166   format %{ "SHR    $dst,$shift" %}
9167   opcode(0xD3, 0x5);  /* D3 /5 */
9168   ins_encode( OpcP, RegOpc( dst ) );
9169   ins_pipe( ialu_reg_reg );
9170 %}
9171 
9172 
9173 //----------Logical Instructions-----------------------------------------------
9174 //----------Integer Logical Instructions---------------------------------------
9175 // And Instructions
9176 // And Register with Register
9177 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9178   match(Set dst (AndI dst src));
9179   effect(KILL cr);
9180 
9181   size(2);
9182   format %{ "AND    $dst,$src" %}
9183   opcode(0x23);
9184   ins_encode( OpcP, RegReg( dst, src) );
9185   ins_pipe( ialu_reg_reg );
9186 %}
9187 
9188 // And Register with Immediate
9189 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9190   match(Set dst (AndI dst src));
9191   effect(KILL cr);
9192 
9193   format %{ "AND    $dst,$src" %}
9194   opcode(0x81,0x04);  /* Opcode 81 /4 */
9195   // ins_encode( RegImm( dst, src) );
9196   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9197   ins_pipe( ialu_reg );
9198 %}
9199 
9200 // And Register with Memory
9201 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9202   match(Set dst (AndI dst (LoadI src)));
9203   effect(KILL cr);
9204 
9205   ins_cost(125);
9206   format %{ "AND    $dst,$src" %}
9207   opcode(0x23);
9208   ins_encode( OpcP, RegMem( dst, src) );
9209   ins_pipe( ialu_reg_mem );
9210 %}
9211 
9212 // And Memory with Register
9213 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9214   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9215   effect(KILL cr);
9216 
9217   ins_cost(150);
9218   format %{ "AND    $dst,$src" %}
9219   opcode(0x21);  /* Opcode 21 /r */
9220   ins_encode( OpcP, RegMem( src, dst ) );
9221   ins_pipe( ialu_mem_reg );
9222 %}
9223 
9224 // And Memory with Immediate
9225 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9226   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9227   effect(KILL cr);
9228 
9229   ins_cost(125);
9230   format %{ "AND    $dst,$src" %}
9231   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
9232   // ins_encode( MemImm( dst, src) );
9233   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9234   ins_pipe( ialu_mem_imm );
9235 %}
9236 
9237 // Or Instructions
9238 // Or Register with Register
9239 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9240   match(Set dst (OrI dst src));
9241   effect(KILL cr);
9242 
9243   size(2);
9244   format %{ "OR     $dst,$src" %}
9245   opcode(0x0B);
9246   ins_encode( OpcP, RegReg( dst, src) );
9247   ins_pipe( ialu_reg_reg );
9248 %}
9249 
9250 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
9251   match(Set dst (OrI dst (CastP2X src)));
9252   effect(KILL cr);
9253 
9254   size(2);
9255   format %{ "OR     $dst,$src" %}
9256   opcode(0x0B);
9257   ins_encode( OpcP, RegReg( dst, src) );
9258   ins_pipe( ialu_reg_reg );
9259 %}
9260 
9261 
9262 // Or Register with Immediate
9263 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9264   match(Set dst (OrI dst src));
9265   effect(KILL cr);
9266 
9267   format %{ "OR     $dst,$src" %}
9268   opcode(0x81,0x01);  /* Opcode 81 /1 id */
9269   // ins_encode( RegImm( dst, src) );
9270   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9271   ins_pipe( ialu_reg );
9272 %}
9273 
9274 // Or Register with Memory
9275 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9276   match(Set dst (OrI dst (LoadI src)));
9277   effect(KILL cr);
9278 
9279   ins_cost(125);
9280   format %{ "OR     $dst,$src" %}
9281   opcode(0x0B);
9282   ins_encode( OpcP, RegMem( dst, src) );
9283   ins_pipe( ialu_reg_mem );
9284 %}
9285 
9286 // Or Memory with Register
9287 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9288   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9289   effect(KILL cr);
9290 
9291   ins_cost(150);
9292   format %{ "OR     $dst,$src" %}
9293   opcode(0x09);  /* Opcode 09 /r */
9294   ins_encode( OpcP, RegMem( src, dst ) );
9295   ins_pipe( ialu_mem_reg );
9296 %}
9297 
9298 // Or Memory with Immediate
9299 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9300   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9301   effect(KILL cr);
9302 
9303   ins_cost(125);
9304   format %{ "OR     $dst,$src" %}
9305   opcode(0x81,0x1);  /* Opcode 81 /1 id */
9306   // ins_encode( MemImm( dst, src) );
9307   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9308   ins_pipe( ialu_mem_imm );
9309 %}
9310 
9311 // ROL/ROR
9312 // ROL expand
9313 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9314   effect(USE_DEF dst, USE shift, KILL cr);
9315 
9316   format %{ "ROL    $dst, $shift" %}
9317   opcode(0xD1, 0x0); /* Opcode D1 /0 */
9318   ins_encode( OpcP, RegOpc( dst ));
9319   ins_pipe( ialu_reg );
9320 %}
9321 
9322 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9323   effect(USE_DEF dst, USE shift, KILL cr);
9324 
9325   format %{ "ROL    $dst, $shift" %}
9326   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
9327   ins_encode( RegOpcImm(dst, shift) );
9328   ins_pipe(ialu_reg);
9329 %}
9330 
9331 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
9332   effect(USE_DEF dst, USE shift, KILL cr);
9333 
9334   format %{ "ROL    $dst, $shift" %}
9335   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
9336   ins_encode(OpcP, RegOpc(dst));
9337   ins_pipe( ialu_reg_reg );
9338 %}
9339 // end of ROL expand
9340 
9341 // ROL 32bit by one once
9342 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
9343   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9344 
9345   expand %{
9346     rolI_eReg_imm1(dst, lshift, cr);
9347   %}
9348 %}
9349 
9350 // ROL 32bit var by imm8 once
9351 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
9352   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9353   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9354 
9355   expand %{
9356     rolI_eReg_imm8(dst, lshift, cr);
9357   %}
9358 %}
9359 
9360 // ROL 32bit var by var once
9361 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9362   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9363 
9364   expand %{
9365     rolI_eReg_CL(dst, shift, cr);
9366   %}
9367 %}
9368 
9369 // ROL 32bit var by var once
9370 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9371   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9372 
9373   expand %{
9374     rolI_eReg_CL(dst, shift, cr);
9375   %}
9376 %}
9377 
9378 // ROR expand
9379 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9380   effect(USE_DEF dst, USE shift, KILL cr);
9381 
9382   format %{ "ROR    $dst, $shift" %}
9383   opcode(0xD1,0x1);  /* Opcode D1 /1 */
9384   ins_encode( OpcP, RegOpc( dst ) );
9385   ins_pipe( ialu_reg );
9386 %}
9387 
9388 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9389   effect (USE_DEF dst, USE shift, KILL cr);
9390 
9391   format %{ "ROR    $dst, $shift" %}
9392   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
9393   ins_encode( RegOpcImm(dst, shift) );
9394   ins_pipe( ialu_reg );
9395 %}
9396 
9397 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
9398   effect(USE_DEF dst, USE shift, KILL cr);
9399 
9400   format %{ "ROR    $dst, $shift" %}
9401   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
9402   ins_encode(OpcP, RegOpc(dst));
9403   ins_pipe( ialu_reg_reg );
9404 %}
9405 // end of ROR expand
9406 
9407 // ROR right once
9408 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
9409   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9410 
9411   expand %{
9412     rorI_eReg_imm1(dst, rshift, cr);
9413   %}
9414 %}
9415 
9416 // ROR 32bit by immI8 once
9417 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
9418   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9419   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9420 
9421   expand %{
9422     rorI_eReg_imm8(dst, rshift, cr);
9423   %}
9424 %}
9425 
9426 // ROR 32bit var by var once
9427 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9428   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9429 
9430   expand %{
9431     rorI_eReg_CL(dst, shift, cr);
9432   %}
9433 %}
9434 
9435 // ROR 32bit var by var once
9436 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9437   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9438 
9439   expand %{
9440     rorI_eReg_CL(dst, shift, cr);
9441   %}
9442 %}
9443 
9444 // Xor Instructions
9445 // Xor Register with Register
9446 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9447   match(Set dst (XorI dst src));
9448   effect(KILL cr);
9449 
9450   size(2);
9451   format %{ "XOR    $dst,$src" %}
9452   opcode(0x33);
9453   ins_encode( OpcP, RegReg( dst, src) );
9454   ins_pipe( ialu_reg_reg );
9455 %}
9456 
9457 // Xor Register with Immediate -1
9458 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
9459   match(Set dst (XorI dst imm));  
9460 
9461   size(2);
9462   format %{ "NOT    $dst" %}  
9463   ins_encode %{
9464      __ notl($dst$$Register);
9465   %}
9466   ins_pipe( ialu_reg );
9467 %}
9468 
9469 // Xor Register with Immediate
9470 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9471   match(Set dst (XorI dst src));
9472   effect(KILL cr);
9473 
9474   format %{ "XOR    $dst,$src" %}
9475   opcode(0x81,0x06);  /* Opcode 81 /6 id */
9476   // ins_encode( RegImm( dst, src) );
9477   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9478   ins_pipe( ialu_reg );
9479 %}
9480 
9481 // Xor Register with Memory
9482 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9483   match(Set dst (XorI dst (LoadI src)));
9484   effect(KILL cr);
9485 
9486   ins_cost(125);
9487   format %{ "XOR    $dst,$src" %}
9488   opcode(0x33);
9489   ins_encode( OpcP, RegMem(dst, src) );
9490   ins_pipe( ialu_reg_mem );
9491 %}
9492 
9493 // Xor Memory with Register
9494 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9495   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9496   effect(KILL cr);
9497 
9498   ins_cost(150);
9499   format %{ "XOR    $dst,$src" %}
9500   opcode(0x31);  /* Opcode 31 /r */
9501   ins_encode( OpcP, RegMem( src, dst ) );
9502   ins_pipe( ialu_mem_reg );
9503 %}
9504 
9505 // Xor Memory with Immediate
9506 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9507   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9508   effect(KILL cr);
9509 
9510   ins_cost(125);
9511   format %{ "XOR    $dst,$src" %}
9512   opcode(0x81,0x6);  /* Opcode 81 /6 id */
9513   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9514   ins_pipe( ialu_mem_imm );
9515 %}
9516 
9517 //----------Convert Int to Boolean---------------------------------------------
9518 
9519 instruct movI_nocopy(eRegI dst, eRegI src) %{
9520   effect( DEF dst, USE src );
9521   format %{ "MOV    $dst,$src" %}
9522   ins_encode( enc_Copy( dst, src) );
9523   ins_pipe( ialu_reg_reg );
9524 %}
9525 
9526 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
9527   effect( USE_DEF dst, USE src, KILL cr );
9528 
9529   size(4);
9530   format %{ "NEG    $dst\n\t"
9531             "ADC    $dst,$src" %}
9532   ins_encode( neg_reg(dst),
9533               OpcRegReg(0x13,dst,src) );
9534   ins_pipe( ialu_reg_reg_long );
9535 %}
9536 
9537 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
9538   match(Set dst (Conv2B src));
9539 
9540   expand %{
9541     movI_nocopy(dst,src);
9542     ci2b(dst,src,cr);
9543   %}
9544 %}
9545 
9546 instruct movP_nocopy(eRegI dst, eRegP src) %{
9547   effect( DEF dst, USE src );
9548   format %{ "MOV    $dst,$src" %}
9549   ins_encode( enc_Copy( dst, src) );
9550   ins_pipe( ialu_reg_reg );
9551 %}
9552 
9553 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
9554   effect( USE_DEF dst, USE src, KILL cr );
9555   format %{ "NEG    $dst\n\t"
9556             "ADC    $dst,$src" %}
9557   ins_encode( neg_reg(dst),
9558               OpcRegReg(0x13,dst,src) );
9559   ins_pipe( ialu_reg_reg_long );
9560 %}
9561 
9562 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
9563   match(Set dst (Conv2B src));
9564 
9565   expand %{
9566     movP_nocopy(dst,src);
9567     cp2b(dst,src,cr);
9568   %}
9569 %}
9570 
9571 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
9572   match(Set dst (CmpLTMask p q));
9573   effect( KILL cr );
9574   ins_cost(400);
9575 
9576   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
9577   format %{ "XOR    $dst,$dst\n\t"
9578             "CMP    $p,$q\n\t"
9579             "SETlt  $dst\n\t"
9580             "NEG    $dst" %}
9581   ins_encode( OpcRegReg(0x33,dst,dst),
9582               OpcRegReg(0x3B,p,q),
9583               setLT_reg(dst), neg_reg(dst) );
9584   ins_pipe( pipe_slow );
9585 %}
9586 
9587 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
9588   match(Set dst (CmpLTMask dst zero));
9589   effect( DEF dst, KILL cr );
9590   ins_cost(100);
9591 
9592   format %{ "SAR    $dst,31" %}
9593   opcode(0xC1, 0x7);  /* C1 /7 ib */
9594   ins_encode( RegOpcImm( dst, 0x1F ) );
9595   ins_pipe( ialu_reg );
9596 %}
9597 
9598 
9599 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
9600   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9601   effect( KILL tmp, KILL cr );
9602   ins_cost(400);
9603   // annoyingly, $tmp has no edges so you cant ask for it in
9604   // any format or encoding
9605   format %{ "SUB    $p,$q\n\t"
9606             "SBB    ECX,ECX\n\t"
9607             "AND    ECX,$y\n\t"
9608             "ADD    $p,ECX" %}
9609   ins_encode( enc_cmpLTP(p,q,y,tmp) );
9610   ins_pipe( pipe_cmplt );
9611 %}
9612 
9613 /* If I enable this, I encourage spilling in the inner loop of compress.
9614 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
9615   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9616   effect( USE_KILL tmp, KILL cr );
9617   ins_cost(400);
9618 
9619   format %{ "SUB    $p,$q\n\t"
9620             "SBB    ECX,ECX\n\t"
9621             "AND    ECX,$y\n\t"
9622             "ADD    $p,ECX" %}
9623   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
9624 %}
9625 */
9626 
9627 //----------Long Instructions------------------------------------------------
9628 // Add Long Register with Register
9629 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9630   match(Set dst (AddL dst src));
9631   effect(KILL cr);
9632   ins_cost(200);
9633   format %{ "ADD    $dst.lo,$src.lo\n\t"
9634             "ADC    $dst.hi,$src.hi" %}
9635   opcode(0x03, 0x13);
9636   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9637   ins_pipe( ialu_reg_reg_long );
9638 %}
9639 
9640 // Add Long Register with Immediate
9641 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9642   match(Set dst (AddL dst src));
9643   effect(KILL cr);
9644   format %{ "ADD    $dst.lo,$src.lo\n\t"
9645             "ADC    $dst.hi,$src.hi" %}
9646   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9647   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9648   ins_pipe( ialu_reg_long );
9649 %}
9650 
9651 // Add Long Register with Memory
9652 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9653   match(Set dst (AddL dst (LoadL mem)));
9654   effect(KILL cr);
9655   ins_cost(125);
9656   format %{ "ADD    $dst.lo,$mem\n\t"
9657             "ADC    $dst.hi,$mem+4" %}
9658   opcode(0x03, 0x13);
9659   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9660   ins_pipe( ialu_reg_long_mem );
9661 %}
9662 
9663 // Subtract Long Register with Register.
9664 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9665   match(Set dst (SubL dst src));
9666   effect(KILL cr);
9667   ins_cost(200);
9668   format %{ "SUB    $dst.lo,$src.lo\n\t"
9669             "SBB    $dst.hi,$src.hi" %}
9670   opcode(0x2B, 0x1B);
9671   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9672   ins_pipe( ialu_reg_reg_long );
9673 %}
9674 
9675 // Subtract Long Register with Immediate
9676 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9677   match(Set dst (SubL dst src));
9678   effect(KILL cr);
9679   format %{ "SUB    $dst.lo,$src.lo\n\t"
9680             "SBB    $dst.hi,$src.hi" %}
9681   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9682   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9683   ins_pipe( ialu_reg_long );
9684 %}
9685 
9686 // Subtract Long Register with Memory
9687 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9688   match(Set dst (SubL dst (LoadL mem)));
9689   effect(KILL cr);
9690   ins_cost(125);
9691   format %{ "SUB    $dst.lo,$mem\n\t"
9692             "SBB    $dst.hi,$mem+4" %}
9693   opcode(0x2B, 0x1B);
9694   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9695   ins_pipe( ialu_reg_long_mem );
9696 %}
9697 
9698 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9699   match(Set dst (SubL zero dst));
9700   effect(KILL cr);
9701   ins_cost(300);
9702   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9703   ins_encode( neg_long(dst) );
9704   ins_pipe( ialu_reg_reg_long );
9705 %}
9706 
9707 // And Long Register with Register
9708 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9709   match(Set dst (AndL dst src));
9710   effect(KILL cr);
9711   format %{ "AND    $dst.lo,$src.lo\n\t"
9712             "AND    $dst.hi,$src.hi" %}
9713   opcode(0x23,0x23);
9714   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9715   ins_pipe( ialu_reg_reg_long );
9716 %}
9717 
9718 // And Long Register with Immediate
9719 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9720   match(Set dst (AndL dst src));
9721   effect(KILL cr);
9722   format %{ "AND    $dst.lo,$src.lo\n\t"
9723             "AND    $dst.hi,$src.hi" %}
9724   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9725   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9726   ins_pipe( ialu_reg_long );
9727 %}
9728 
9729 // And Long Register with Memory
9730 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9731   match(Set dst (AndL dst (LoadL mem)));
9732   effect(KILL cr);
9733   ins_cost(125);
9734   format %{ "AND    $dst.lo,$mem\n\t"
9735             "AND    $dst.hi,$mem+4" %}
9736   opcode(0x23, 0x23);
9737   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9738   ins_pipe( ialu_reg_long_mem );
9739 %}
9740 
9741 // Or Long Register with Register
9742 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9743   match(Set dst (OrL dst src));
9744   effect(KILL cr);
9745   format %{ "OR     $dst.lo,$src.lo\n\t"
9746             "OR     $dst.hi,$src.hi" %}
9747   opcode(0x0B,0x0B);
9748   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9749   ins_pipe( ialu_reg_reg_long );
9750 %}
9751 
9752 // Or Long Register with Immediate
9753 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9754   match(Set dst (OrL dst src));
9755   effect(KILL cr);
9756   format %{ "OR     $dst.lo,$src.lo\n\t"
9757             "OR     $dst.hi,$src.hi" %}
9758   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9759   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9760   ins_pipe( ialu_reg_long );
9761 %}
9762 
9763 // Or Long Register with Memory
9764 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9765   match(Set dst (OrL dst (LoadL mem)));
9766   effect(KILL cr);
9767   ins_cost(125);
9768   format %{ "OR     $dst.lo,$mem\n\t"
9769             "OR     $dst.hi,$mem+4" %}
9770   opcode(0x0B,0x0B);
9771   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9772   ins_pipe( ialu_reg_long_mem );
9773 %}
9774 
9775 // Xor Long Register with Register
9776 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9777   match(Set dst (XorL dst src));
9778   effect(KILL cr);
9779   format %{ "XOR    $dst.lo,$src.lo\n\t"
9780             "XOR    $dst.hi,$src.hi" %}
9781   opcode(0x33,0x33);
9782   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9783   ins_pipe( ialu_reg_reg_long );
9784 %}
9785 
9786 // Xor Long Register with Immediate -1
9787 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9788   match(Set dst (XorL dst imm));  
9789   format %{ "NOT    $dst.lo\n\t"
9790             "NOT    $dst.hi" %}
9791   ins_encode %{
9792      __ notl($dst$$Register);
9793      __ notl(HIGH_FROM_LOW($dst$$Register));
9794   %}
9795   ins_pipe( ialu_reg_long );
9796 %}
9797 
9798 // Xor Long Register with Immediate
9799 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9800   match(Set dst (XorL dst src));
9801   effect(KILL cr);
9802   format %{ "XOR    $dst.lo,$src.lo\n\t"
9803             "XOR    $dst.hi,$src.hi" %}
9804   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9805   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9806   ins_pipe( ialu_reg_long );
9807 %}
9808 
9809 // Xor Long Register with Memory
9810 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9811   match(Set dst (XorL dst (LoadL mem)));
9812   effect(KILL cr);
9813   ins_cost(125);
9814   format %{ "XOR    $dst.lo,$mem\n\t"
9815             "XOR    $dst.hi,$mem+4" %}
9816   opcode(0x33,0x33);
9817   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9818   ins_pipe( ialu_reg_long_mem );
9819 %}
9820 
9821 // Shift Left Long by 1
9822 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9823   predicate(UseNewLongLShift);
9824   match(Set dst (LShiftL dst cnt));
9825   effect(KILL cr);
9826   ins_cost(100);
9827   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9828             "ADC    $dst.hi,$dst.hi" %}
9829   ins_encode %{
9830     __ addl($dst$$Register,$dst$$Register);
9831     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9832   %}
9833   ins_pipe( ialu_reg_long );
9834 %}
9835 
9836 // Shift Left Long by 2
9837 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9838   predicate(UseNewLongLShift);
9839   match(Set dst (LShiftL dst cnt));
9840   effect(KILL cr);
9841   ins_cost(100);
9842   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9843             "ADC    $dst.hi,$dst.hi\n\t" 
9844             "ADD    $dst.lo,$dst.lo\n\t"
9845             "ADC    $dst.hi,$dst.hi" %}
9846   ins_encode %{
9847     __ addl($dst$$Register,$dst$$Register);
9848     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9849     __ addl($dst$$Register,$dst$$Register);
9850     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9851   %}
9852   ins_pipe( ialu_reg_long );
9853 %}
9854 
9855 // Shift Left Long by 3
9856 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9857   predicate(UseNewLongLShift);
9858   match(Set dst (LShiftL dst cnt));
9859   effect(KILL cr);
9860   ins_cost(100);
9861   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9862             "ADC    $dst.hi,$dst.hi\n\t" 
9863             "ADD    $dst.lo,$dst.lo\n\t"
9864             "ADC    $dst.hi,$dst.hi\n\t" 
9865             "ADD    $dst.lo,$dst.lo\n\t"
9866             "ADC    $dst.hi,$dst.hi" %}
9867   ins_encode %{
9868     __ addl($dst$$Register,$dst$$Register);
9869     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9870     __ addl($dst$$Register,$dst$$Register);
9871     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9872     __ addl($dst$$Register,$dst$$Register);
9873     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9874   %}
9875   ins_pipe( ialu_reg_long );
9876 %}
9877 
9878 // Shift Left Long by 1-31
9879 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9880   match(Set dst (LShiftL dst cnt));
9881   effect(KILL cr);
9882   ins_cost(200);
9883   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9884             "SHL    $dst.lo,$cnt" %}
9885   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9886   ins_encode( move_long_small_shift(dst,cnt) );
9887   ins_pipe( ialu_reg_long );
9888 %}
9889 
9890 // Shift Left Long by 32-63
9891 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9892   match(Set dst (LShiftL dst cnt));
9893   effect(KILL cr);
9894   ins_cost(300);
9895   format %{ "MOV    $dst.hi,$dst.lo\n"
9896           "\tSHL    $dst.hi,$cnt-32\n"
9897           "\tXOR    $dst.lo,$dst.lo" %}
9898   opcode(0xC1, 0x4);  /* C1 /4 ib */
9899   ins_encode( move_long_big_shift_clr(dst,cnt) );
9900   ins_pipe( ialu_reg_long );
9901 %}
9902 
9903 // Shift Left Long by variable
9904 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9905   match(Set dst (LShiftL dst shift));
9906   effect(KILL cr);
9907   ins_cost(500+200);
9908   size(17);
9909   format %{ "TEST   $shift,32\n\t"
9910             "JEQ,s  small\n\t"
9911             "MOV    $dst.hi,$dst.lo\n\t"
9912             "XOR    $dst.lo,$dst.lo\n"
9913     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9914             "SHL    $dst.lo,$shift" %}
9915   ins_encode( shift_left_long( dst, shift ) );
9916   ins_pipe( pipe_slow );
9917 %}
9918 
9919 // Shift Right Long by 1-31
9920 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9921   match(Set dst (URShiftL dst cnt));
9922   effect(KILL cr);
9923   ins_cost(200);
9924   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9925             "SHR    $dst.hi,$cnt" %}
9926   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9927   ins_encode( move_long_small_shift(dst,cnt) );
9928   ins_pipe( ialu_reg_long );
9929 %}
9930 
9931 // Shift Right Long by 32-63
9932 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9933   match(Set dst (URShiftL dst cnt));
9934   effect(KILL cr);
9935   ins_cost(300);
9936   format %{ "MOV    $dst.lo,$dst.hi\n"
9937           "\tSHR    $dst.lo,$cnt-32\n"
9938           "\tXOR    $dst.hi,$dst.hi" %}
9939   opcode(0xC1, 0x5);  /* C1 /5 ib */
9940   ins_encode( move_long_big_shift_clr(dst,cnt) );
9941   ins_pipe( ialu_reg_long );
9942 %}
9943 
9944 // Shift Right Long by variable
9945 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9946   match(Set dst (URShiftL dst shift));
9947   effect(KILL cr);
9948   ins_cost(600);
9949   size(17);
9950   format %{ "TEST   $shift,32\n\t"
9951             "JEQ,s  small\n\t"
9952             "MOV    $dst.lo,$dst.hi\n\t"
9953             "XOR    $dst.hi,$dst.hi\n"
9954     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9955             "SHR    $dst.hi,$shift" %}
9956   ins_encode( shift_right_long( dst, shift ) );
9957   ins_pipe( pipe_slow );
9958 %}
9959 
9960 // Shift Right Long by 1-31
9961 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9962   match(Set dst (RShiftL dst cnt));
9963   effect(KILL cr);
9964   ins_cost(200);
9965   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9966             "SAR    $dst.hi,$cnt" %}
9967   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9968   ins_encode( move_long_small_shift(dst,cnt) );
9969   ins_pipe( ialu_reg_long );
9970 %}
9971 
9972 // Shift Right Long by 32-63
9973 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9974   match(Set dst (RShiftL dst cnt));
9975   effect(KILL cr);
9976   ins_cost(300);
9977   format %{ "MOV    $dst.lo,$dst.hi\n"
9978           "\tSAR    $dst.lo,$cnt-32\n"
9979           "\tSAR    $dst.hi,31" %}
9980   opcode(0xC1, 0x7);  /* C1 /7 ib */
9981   ins_encode( move_long_big_shift_sign(dst,cnt) );
9982   ins_pipe( ialu_reg_long );
9983 %}
9984 
9985 // Shift Right arithmetic Long by variable
9986 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9987   match(Set dst (RShiftL dst shift));
9988   effect(KILL cr);
9989   ins_cost(600);
9990   size(18);
9991   format %{ "TEST   $shift,32\n\t"
9992             "JEQ,s  small\n\t"
9993             "MOV    $dst.lo,$dst.hi\n\t"
9994             "SAR    $dst.hi,31\n"
9995     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9996             "SAR    $dst.hi,$shift" %}
9997   ins_encode( shift_right_arith_long( dst, shift ) );
9998   ins_pipe( pipe_slow );
9999 %}
10000 
10001 
10002 //----------Double Instructions------------------------------------------------
10003 // Double Math
10004 
10005 // Compare & branch
10006 
10007 // P6 version of float compare, sets condition codes in EFLAGS
10008 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
10009   predicate(VM_Version::supports_cmov() && UseSSE <=1);
10010   match(Set cr (CmpD src1 src2));
10011   effect(KILL rax);
10012   ins_cost(150);
10013   format %{ "FLD    $src1\n\t"
10014             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10015             "JNP    exit\n\t"
10016             "MOV    ah,1       // saw a NaN, set CF\n\t"
10017             "SAHF\n"
10018      "exit:\tNOP               // avoid branch to branch" %}
10019   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10020   ins_encode( Push_Reg_D(src1),
10021               OpcP, RegOpc(src2),
10022               cmpF_P6_fixup );
10023   ins_pipe( pipe_slow );
10024 %}
10025 
10026 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
10027   predicate(VM_Version::supports_cmov() && UseSSE <=1);
10028   match(Set cr (CmpD src1 src2));
10029   ins_cost(150);
10030   format %{ "FLD    $src1\n\t"
10031             "FUCOMIP ST,$src2  // P6 instruction" %}
10032   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10033   ins_encode( Push_Reg_D(src1),
10034               OpcP, RegOpc(src2));
10035   ins_pipe( pipe_slow );
10036 %}
10037 
10038 // Compare & branch
10039 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
10040   predicate(UseSSE<=1);
10041   match(Set cr (CmpD src1 src2));
10042   effect(KILL rax);
10043   ins_cost(200);
10044   format %{ "FLD    $src1\n\t"
10045             "FCOMp  $src2\n\t"
10046             "FNSTSW AX\n\t"
10047             "TEST   AX,0x400\n\t"
10048             "JZ,s   flags\n\t"
10049             "MOV    AH,1\t# unordered treat as LT\n"
10050     "flags:\tSAHF" %}
10051   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10052   ins_encode( Push_Reg_D(src1),
10053               OpcP, RegOpc(src2),
10054               fpu_flags);
10055   ins_pipe( pipe_slow );
10056 %}
10057 
10058 // Compare vs zero into -1,0,1
10059 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
10060   predicate(UseSSE<=1);
10061   match(Set dst (CmpD3 src1 zero));
10062   effect(KILL cr, KILL rax);
10063   ins_cost(280);
10064   format %{ "FTSTD  $dst,$src1" %}
10065   opcode(0xE4, 0xD9);
10066   ins_encode( Push_Reg_D(src1),
10067               OpcS, OpcP, PopFPU,
10068               CmpF_Result(dst));
10069   ins_pipe( pipe_slow );
10070 %}
10071 
10072 // Compare into -1,0,1
10073 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
10074   predicate(UseSSE<=1);
10075   match(Set dst (CmpD3 src1 src2));
10076   effect(KILL cr, KILL rax);
10077   ins_cost(300);
10078   format %{ "FCMPD  $dst,$src1,$src2" %}
10079   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10080   ins_encode( Push_Reg_D(src1),
10081               OpcP, RegOpc(src2),
10082               CmpF_Result(dst));
10083   ins_pipe( pipe_slow );
10084 %}
10085 
10086 // float compare and set condition codes in EFLAGS by XMM regs
10087 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
10088   predicate(UseSSE>=2);
10089   match(Set cr (CmpD dst src));
10090   effect(KILL rax);
10091   ins_cost(125);
10092   format %{ "COMISD $dst,$src\n"
10093           "\tJNP    exit\n"
10094           "\tMOV    ah,1       // saw a NaN, set CF\n"
10095           "\tSAHF\n"
10096      "exit:\tNOP               // avoid branch to branch" %}
10097   opcode(0x66, 0x0F, 0x2F);
10098   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
10099   ins_pipe( pipe_slow );
10100 %}
10101 
10102 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
10103   predicate(UseSSE>=2);
10104   match(Set cr (CmpD dst src));
10105   ins_cost(100);
10106   format %{ "COMISD $dst,$src" %}
10107   opcode(0x66, 0x0F, 0x2F);
10108   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
10109   ins_pipe( pipe_slow );
10110 %}
10111 
10112 // float compare and set condition codes in EFLAGS by XMM regs
10113 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
10114   predicate(UseSSE>=2);
10115   match(Set cr (CmpD dst (LoadD src)));
10116   effect(KILL rax);
10117   ins_cost(145);
10118   format %{ "COMISD $dst,$src\n"
10119           "\tJNP    exit\n"
10120           "\tMOV    ah,1       // saw a NaN, set CF\n"
10121           "\tSAHF\n"
10122      "exit:\tNOP               // avoid branch to branch" %}
10123   opcode(0x66, 0x0F, 0x2F);
10124   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
10125   ins_pipe( pipe_slow );
10126 %}
10127 
10128 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
10129   predicate(UseSSE>=2);
10130   match(Set cr (CmpD dst (LoadD src)));
10131   ins_cost(100);
10132   format %{ "COMISD $dst,$src" %}
10133   opcode(0x66, 0x0F, 0x2F);
10134   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
10135   ins_pipe( pipe_slow );
10136 %}
10137 
10138 // Compare into -1,0,1 in XMM
10139 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
10140   predicate(UseSSE>=2);
10141   match(Set dst (CmpD3 src1 src2));
10142   effect(KILL cr);
10143   ins_cost(255);
10144   format %{ "XOR    $dst,$dst\n"
10145           "\tCOMISD $src1,$src2\n"
10146           "\tJP,s   nan\n"
10147           "\tJEQ,s  exit\n"
10148           "\tJA,s   inc\n"
10149       "nan:\tDEC    $dst\n"
10150           "\tJMP,s  exit\n"
10151       "inc:\tINC    $dst\n"
10152       "exit:"
10153                 %}
10154   opcode(0x66, 0x0F, 0x2F);
10155   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
10156              CmpX_Result(dst));
10157   ins_pipe( pipe_slow );
10158 %}
10159 
10160 // Compare into -1,0,1 in XMM and memory
10161 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
10162   predicate(UseSSE>=2);
10163   match(Set dst (CmpD3 src1 (LoadD mem)));
10164   effect(KILL cr);
10165   ins_cost(275);
10166   format %{ "COMISD $src1,$mem\n"
10167           "\tMOV    $dst,0\t\t# do not blow flags\n"
10168           "\tJP,s   nan\n"
10169           "\tJEQ,s  exit\n"
10170           "\tJA,s   inc\n"
10171       "nan:\tDEC    $dst\n"
10172           "\tJMP,s  exit\n"
10173       "inc:\tINC    $dst\n"
10174       "exit:"
10175                 %}
10176   opcode(0x66, 0x0F, 0x2F);
10177   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
10178              LdImmI(dst,0x0), CmpX_Result(dst));
10179   ins_pipe( pipe_slow );
10180 %}
10181 
10182 
10183 instruct subD_reg(regD dst, regD src) %{
10184   predicate (UseSSE <=1);
10185   match(Set dst (SubD dst src));
10186 
10187   format %{ "FLD    $src\n\t"
10188             "DSUBp  $dst,ST" %}
10189   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10190   ins_cost(150);
10191   ins_encode( Push_Reg_D(src),
10192               OpcP, RegOpc(dst) );
10193   ins_pipe( fpu_reg_reg );
10194 %}
10195 
10196 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10197   predicate (UseSSE <=1);
10198   match(Set dst (RoundDouble (SubD src1 src2)));
10199   ins_cost(250);
10200 
10201   format %{ "FLD    $src2\n\t"
10202             "DSUB   ST,$src1\n\t"
10203             "FSTP_D $dst\t# D-round" %}
10204   opcode(0xD8, 0x5);
10205   ins_encode( Push_Reg_D(src2),
10206               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10207   ins_pipe( fpu_mem_reg_reg );
10208 %}
10209 
10210 
10211 instruct subD_reg_mem(regD dst, memory src) %{
10212   predicate (UseSSE <=1);
10213   match(Set dst (SubD dst (LoadD src)));
10214   ins_cost(150);
10215 
10216   format %{ "FLD    $src\n\t"
10217             "DSUBp  $dst,ST" %}
10218   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10219   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10220               OpcP, RegOpc(dst) );
10221   ins_pipe( fpu_reg_mem );
10222 %}
10223 
10224 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
10225   predicate (UseSSE<=1);
10226   match(Set dst (AbsD src));
10227   ins_cost(100);
10228   format %{ "FABS" %}
10229   opcode(0xE1, 0xD9);
10230   ins_encode( OpcS, OpcP );
10231   ins_pipe( fpu_reg_reg );
10232 %}
10233 
10234 instruct absXD_reg( regXD dst ) %{
10235   predicate(UseSSE>=2);
10236   match(Set dst (AbsD dst));
10237   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
10238   ins_encode( AbsXD_encoding(dst));
10239   ins_pipe( pipe_slow );
10240 %}
10241 
10242 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
10243   predicate(UseSSE<=1);
10244   match(Set dst (NegD src));
10245   ins_cost(100);
10246   format %{ "FCHS" %}
10247   opcode(0xE0, 0xD9);
10248   ins_encode( OpcS, OpcP );
10249   ins_pipe( fpu_reg_reg );
10250 %}
10251 
10252 instruct negXD_reg( regXD dst ) %{
10253   predicate(UseSSE>=2);
10254   match(Set dst (NegD dst));
10255   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
10256   ins_encode %{
10257      __ xorpd($dst$$XMMRegister,
10258               ExternalAddress((address)double_signflip_pool));
10259   %}
10260   ins_pipe( pipe_slow );
10261 %}
10262 
10263 instruct addD_reg(regD dst, regD src) %{
10264   predicate(UseSSE<=1);
10265   match(Set dst (AddD dst src));
10266   format %{ "FLD    $src\n\t"
10267             "DADD   $dst,ST" %}
10268   size(4);
10269   ins_cost(150);
10270   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10271   ins_encode( Push_Reg_D(src),
10272               OpcP, RegOpc(dst) );
10273   ins_pipe( fpu_reg_reg );
10274 %}
10275 
10276 
10277 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10278   predicate(UseSSE<=1);
10279   match(Set dst (RoundDouble (AddD src1 src2)));
10280   ins_cost(250);
10281 
10282   format %{ "FLD    $src2\n\t"
10283             "DADD   ST,$src1\n\t"
10284             "FSTP_D $dst\t# D-round" %}
10285   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
10286   ins_encode( Push_Reg_D(src2),
10287               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10288   ins_pipe( fpu_mem_reg_reg );
10289 %}
10290 
10291 
10292 instruct addD_reg_mem(regD dst, memory src) %{
10293   predicate(UseSSE<=1);
10294   match(Set dst (AddD dst (LoadD src)));
10295   ins_cost(150);
10296 
10297   format %{ "FLD    $src\n\t"
10298             "DADDp  $dst,ST" %}
10299   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10300   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10301               OpcP, RegOpc(dst) );
10302   ins_pipe( fpu_reg_mem );
10303 %}
10304 
10305 // add-to-memory
10306 instruct addD_mem_reg(memory dst, regD src) %{
10307   predicate(UseSSE<=1);
10308   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
10309   ins_cost(150);
10310 
10311   format %{ "FLD_D  $dst\n\t"
10312             "DADD   ST,$src\n\t"
10313             "FST_D  $dst" %}
10314   opcode(0xDD, 0x0);
10315   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
10316               Opcode(0xD8), RegOpc(src),
10317               set_instruction_start,
10318               Opcode(0xDD), RMopc_Mem(0x03,dst) );
10319   ins_pipe( fpu_reg_mem );
10320 %}
10321 
10322 instruct addD_reg_imm1(regD dst, immD1 con) %{
10323   predicate(UseSSE<=1);
10324   match(Set dst (AddD dst con));
10325   ins_cost(125);
10326   format %{ "FLD1\n\t"
10327             "DADDp  $dst,ST" %}
10328   ins_encode %{
10329     __ fld1();
10330     __ faddp($dst$$reg);
10331   %}
10332   ins_pipe(fpu_reg);
10333 %}
10334 
10335 instruct addD_reg_imm(regD dst, immD con) %{
10336   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10337   match(Set dst (AddD dst con));
10338   ins_cost(200);
10339   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10340             "DADDp  $dst,ST" %}
10341   ins_encode %{
10342     __ fld_d($constantaddress($con));
10343     __ faddp($dst$$reg);
10344   %}
10345   ins_pipe(fpu_reg_mem);
10346 %}
10347 
10348 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
10349   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
10350   match(Set dst (RoundDouble (AddD src con)));
10351   ins_cost(200);
10352   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10353             "DADD   ST,$src\n\t"
10354             "FSTP_D $dst\t# D-round" %}
10355   ins_encode %{
10356     __ fld_d($constantaddress($con));
10357     __ fadd($src$$reg);
10358     __ fstp_d(Address(rsp, $dst$$disp));
10359   %}
10360   ins_pipe(fpu_mem_reg_con);
10361 %}
10362 
10363 // Add two double precision floating point values in xmm
10364 instruct addXD_reg(regXD dst, regXD src) %{
10365   predicate(UseSSE>=2);
10366   match(Set dst (AddD dst src));
10367   format %{ "ADDSD  $dst,$src" %}
10368   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10369   ins_pipe( pipe_slow );
10370 %}
10371 
10372 instruct addXD_imm(regXD dst, immXD con) %{
10373   predicate(UseSSE>=2);
10374   match(Set dst (AddD dst con));
10375   format %{ "ADDSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10376   ins_encode %{
10377     __ addsd($dst$$XMMRegister, $constantaddress($con));
10378   %}
10379   ins_pipe(pipe_slow);
10380 %}
10381 
10382 instruct addXD_mem(regXD dst, memory mem) %{
10383   predicate(UseSSE>=2);
10384   match(Set dst (AddD dst (LoadD mem)));
10385   format %{ "ADDSD  $dst,$mem" %}
10386   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
10387   ins_pipe( pipe_slow );
10388 %}
10389 
10390 // Sub two double precision floating point values in xmm
10391 instruct subXD_reg(regXD dst, regXD src) %{
10392   predicate(UseSSE>=2);
10393   match(Set dst (SubD dst src));
10394   format %{ "SUBSD  $dst,$src" %}
10395   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10396   ins_pipe( pipe_slow );
10397 %}
10398 
10399 instruct subXD_imm(regXD dst, immXD con) %{
10400   predicate(UseSSE>=2);
10401   match(Set dst (SubD dst con));
10402   format %{ "SUBSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10403   ins_encode %{
10404     __ subsd($dst$$XMMRegister, $constantaddress($con));
10405   %}
10406   ins_pipe(pipe_slow);
10407 %}
10408 
10409 instruct subXD_mem(regXD dst, memory mem) %{
10410   predicate(UseSSE>=2);
10411   match(Set dst (SubD dst (LoadD mem)));
10412   format %{ "SUBSD  $dst,$mem" %}
10413   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10414   ins_pipe( pipe_slow );
10415 %}
10416 
10417 // Mul two double precision floating point values in xmm
10418 instruct mulXD_reg(regXD dst, regXD src) %{
10419   predicate(UseSSE>=2);
10420   match(Set dst (MulD dst src));
10421   format %{ "MULSD  $dst,$src" %}
10422   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10423   ins_pipe( pipe_slow );
10424 %}
10425 
10426 instruct mulXD_imm(regXD dst, immXD con) %{
10427   predicate(UseSSE>=2);
10428   match(Set dst (MulD dst con));
10429   format %{ "MULSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10430   ins_encode %{
10431     __ mulsd($dst$$XMMRegister, $constantaddress($con));
10432   %}
10433   ins_pipe(pipe_slow);
10434 %}
10435 
10436 instruct mulXD_mem(regXD dst, memory mem) %{
10437   predicate(UseSSE>=2);
10438   match(Set dst (MulD dst (LoadD mem)));
10439   format %{ "MULSD  $dst,$mem" %}
10440   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10441   ins_pipe( pipe_slow );
10442 %}
10443 
10444 // Div two double precision floating point values in xmm
10445 instruct divXD_reg(regXD dst, regXD src) %{
10446   predicate(UseSSE>=2);
10447   match(Set dst (DivD dst src));
10448   format %{ "DIVSD  $dst,$src" %}
10449   opcode(0xF2, 0x0F, 0x5E);
10450   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10451   ins_pipe( pipe_slow );
10452 %}
10453 
10454 instruct divXD_imm(regXD dst, immXD con) %{
10455   predicate(UseSSE>=2);
10456   match(Set dst (DivD dst con));
10457   format %{ "DIVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10458   ins_encode %{
10459     __ divsd($dst$$XMMRegister, $constantaddress($con));
10460   %}
10461   ins_pipe(pipe_slow);
10462 %}
10463 
10464 instruct divXD_mem(regXD dst, memory mem) %{
10465   predicate(UseSSE>=2);
10466   match(Set dst (DivD dst (LoadD mem)));
10467   format %{ "DIVSD  $dst,$mem" %}
10468   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10469   ins_pipe( pipe_slow );
10470 %}
10471 
10472 
10473 instruct mulD_reg(regD dst, regD src) %{
10474   predicate(UseSSE<=1);
10475   match(Set dst (MulD dst src));
10476   format %{ "FLD    $src\n\t"
10477             "DMULp  $dst,ST" %}
10478   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10479   ins_cost(150);
10480   ins_encode( Push_Reg_D(src),
10481               OpcP, RegOpc(dst) );
10482   ins_pipe( fpu_reg_reg );
10483 %}
10484 
10485 // Strict FP instruction biases argument before multiply then
10486 // biases result to avoid double rounding of subnormals.
10487 //
10488 // scale arg1 by multiplying arg1 by 2^(-15360)
10489 // load arg2
10490 // multiply scaled arg1 by arg2
10491 // rescale product by 2^(15360)
10492 //
10493 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
10494   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10495   match(Set dst (MulD dst src));
10496   ins_cost(1);   // Select this instruction for all strict FP double multiplies
10497 
10498   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10499             "DMULp  $dst,ST\n\t"
10500             "FLD    $src\n\t"
10501             "DMULp  $dst,ST\n\t"
10502             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10503             "DMULp  $dst,ST\n\t" %}
10504   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10505   ins_encode( strictfp_bias1(dst),
10506               Push_Reg_D(src),
10507               OpcP, RegOpc(dst),
10508               strictfp_bias2(dst) );
10509   ins_pipe( fpu_reg_reg );
10510 %}
10511 
10512 instruct mulD_reg_imm(regD dst, immD con) %{
10513   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10514   match(Set dst (MulD dst con));
10515   ins_cost(200);
10516   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10517             "DMULp  $dst,ST" %}
10518   ins_encode %{
10519     __ fld_d($constantaddress($con));
10520     __ fmulp($dst$$reg);
10521   %}
10522   ins_pipe(fpu_reg_mem);
10523 %}
10524 
10525 
10526 instruct mulD_reg_mem(regD dst, memory src) %{
10527   predicate( UseSSE<=1 );
10528   match(Set dst (MulD dst (LoadD src)));
10529   ins_cost(200);
10530   format %{ "FLD_D  $src\n\t"
10531             "DMULp  $dst,ST" %}
10532   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
10533   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10534               OpcP, RegOpc(dst) );
10535   ins_pipe( fpu_reg_mem );
10536 %}
10537 
10538 //
10539 // Cisc-alternate to reg-reg multiply
10540 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
10541   predicate( UseSSE<=1 );
10542   match(Set dst (MulD src (LoadD mem)));
10543   ins_cost(250);
10544   format %{ "FLD_D  $mem\n\t"
10545             "DMUL   ST,$src\n\t"
10546             "FSTP_D $dst" %}
10547   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
10548   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
10549               OpcReg_F(src),
10550               Pop_Reg_D(dst) );
10551   ins_pipe( fpu_reg_reg_mem );
10552 %}
10553 
10554 
10555 // MACRO3 -- addD a mulD
10556 // This instruction is a '2-address' instruction in that the result goes
10557 // back to src2.  This eliminates a move from the macro; possibly the
10558 // register allocator will have to add it back (and maybe not).
10559 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
10560   predicate( UseSSE<=1 );
10561   match(Set src2 (AddD (MulD src0 src1) src2));
10562   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10563             "DMUL   ST,$src1\n\t"
10564             "DADDp  $src2,ST" %}
10565   ins_cost(250);
10566   opcode(0xDD); /* LoadD DD /0 */
10567   ins_encode( Push_Reg_F(src0),
10568               FMul_ST_reg(src1),
10569               FAddP_reg_ST(src2) );
10570   ins_pipe( fpu_reg_reg_reg );
10571 %}
10572 
10573 
10574 // MACRO3 -- subD a mulD
10575 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
10576   predicate( UseSSE<=1 );
10577   match(Set src2 (SubD (MulD src0 src1) src2));
10578   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10579             "DMUL   ST,$src1\n\t"
10580             "DSUBRp $src2,ST" %}
10581   ins_cost(250);
10582   ins_encode( Push_Reg_F(src0),
10583               FMul_ST_reg(src1),
10584               Opcode(0xDE), Opc_plus(0xE0,src2));
10585   ins_pipe( fpu_reg_reg_reg );
10586 %}
10587 
10588 
10589 instruct divD_reg(regD dst, regD src) %{
10590   predicate( UseSSE<=1 );
10591   match(Set dst (DivD dst src));
10592 
10593   format %{ "FLD    $src\n\t"
10594             "FDIVp  $dst,ST" %}
10595   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10596   ins_cost(150);
10597   ins_encode( Push_Reg_D(src),
10598               OpcP, RegOpc(dst) );
10599   ins_pipe( fpu_reg_reg );
10600 %}
10601 
10602 // Strict FP instruction biases argument before division then
10603 // biases result, to avoid double rounding of subnormals.
10604 //
10605 // scale dividend by multiplying dividend by 2^(-15360)
10606 // load divisor
10607 // divide scaled dividend by divisor
10608 // rescale quotient by 2^(15360)
10609 //
10610 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
10611   predicate (UseSSE<=1);
10612   match(Set dst (DivD dst src));
10613   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10614   ins_cost(01);
10615 
10616   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10617             "DMULp  $dst,ST\n\t"
10618             "FLD    $src\n\t"
10619             "FDIVp  $dst,ST\n\t"
10620             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10621             "DMULp  $dst,ST\n\t" %}
10622   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10623   ins_encode( strictfp_bias1(dst),
10624               Push_Reg_D(src),
10625               OpcP, RegOpc(dst),
10626               strictfp_bias2(dst) );
10627   ins_pipe( fpu_reg_reg );
10628 %}
10629 
10630 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10631   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
10632   match(Set dst (RoundDouble (DivD src1 src2)));
10633 
10634   format %{ "FLD    $src1\n\t"
10635             "FDIV   ST,$src2\n\t"
10636             "FSTP_D $dst\t# D-round" %}
10637   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
10638   ins_encode( Push_Reg_D(src1),
10639               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
10640   ins_pipe( fpu_mem_reg_reg );
10641 %}
10642 
10643 
10644 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
10645   predicate(UseSSE<=1);
10646   match(Set dst (ModD dst src));
10647   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10648 
10649   format %{ "DMOD   $dst,$src" %}
10650   ins_cost(250);
10651   ins_encode(Push_Reg_Mod_D(dst, src),
10652               emitModD(),
10653               Push_Result_Mod_D(src),
10654               Pop_Reg_D(dst));
10655   ins_pipe( pipe_slow );
10656 %}
10657 
10658 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
10659   predicate(UseSSE>=2);
10660   match(Set dst (ModD src0 src1));
10661   effect(KILL rax, KILL cr);
10662 
10663   format %{ "SUB    ESP,8\t # DMOD\n"
10664           "\tMOVSD  [ESP+0],$src1\n"
10665           "\tFLD_D  [ESP+0]\n"
10666           "\tMOVSD  [ESP+0],$src0\n"
10667           "\tFLD_D  [ESP+0]\n"
10668      "loop:\tFPREM\n"
10669           "\tFWAIT\n"
10670           "\tFNSTSW AX\n"
10671           "\tSAHF\n"
10672           "\tJP     loop\n"
10673           "\tFSTP_D [ESP+0]\n"
10674           "\tMOVSD  $dst,[ESP+0]\n"
10675           "\tADD    ESP,8\n"
10676           "\tFSTP   ST0\t # Restore FPU Stack"
10677     %}
10678   ins_cost(250);
10679   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
10680   ins_pipe( pipe_slow );
10681 %}
10682 
10683 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
10684   predicate (UseSSE<=1);
10685   match(Set dst (SinD src));
10686   ins_cost(1800);
10687   format %{ "DSIN   $dst" %}
10688   opcode(0xD9, 0xFE);
10689   ins_encode( OpcP, OpcS );
10690   ins_pipe( pipe_slow );
10691 %}
10692 
10693 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
10694   predicate (UseSSE>=2);
10695   match(Set dst (SinD dst));
10696   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10697   ins_cost(1800);
10698   format %{ "DSIN   $dst" %}
10699   opcode(0xD9, 0xFE);
10700   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10701   ins_pipe( pipe_slow );
10702 %}
10703 
10704 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
10705   predicate (UseSSE<=1);
10706   match(Set dst (CosD src));
10707   ins_cost(1800);
10708   format %{ "DCOS   $dst" %}
10709   opcode(0xD9, 0xFF);
10710   ins_encode( OpcP, OpcS );
10711   ins_pipe( pipe_slow );
10712 %}
10713 
10714 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
10715   predicate (UseSSE>=2);
10716   match(Set dst (CosD dst));
10717   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10718   ins_cost(1800);
10719   format %{ "DCOS   $dst" %}
10720   opcode(0xD9, 0xFF);
10721   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10722   ins_pipe( pipe_slow );
10723 %}
10724 
10725 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
10726   predicate (UseSSE<=1);
10727   match(Set dst(TanD src));
10728   format %{ "DTAN   $dst" %}
10729   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10730               Opcode(0xDD), Opcode(0xD8));   // fstp st
10731   ins_pipe( pipe_slow );
10732 %}
10733 
10734 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
10735   predicate (UseSSE>=2);
10736   match(Set dst(TanD dst));
10737   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10738   format %{ "DTAN   $dst" %}
10739   ins_encode( Push_SrcXD(dst),
10740               Opcode(0xD9), Opcode(0xF2),    // fptan
10741               Opcode(0xDD), Opcode(0xD8),   // fstp st
10742               Push_ResultXD(dst) );
10743   ins_pipe( pipe_slow );
10744 %}
10745 
10746 instruct atanD_reg(regD dst, regD src) %{
10747   predicate (UseSSE<=1);
10748   match(Set dst(AtanD dst src));
10749   format %{ "DATA   $dst,$src" %}
10750   opcode(0xD9, 0xF3);
10751   ins_encode( Push_Reg_D(src),
10752               OpcP, OpcS, RegOpc(dst) );
10753   ins_pipe( pipe_slow );
10754 %}
10755 
10756 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10757   predicate (UseSSE>=2);
10758   match(Set dst(AtanD dst src));
10759   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10760   format %{ "DATA   $dst,$src" %}
10761   opcode(0xD9, 0xF3);
10762   ins_encode( Push_SrcXD(src),
10763               OpcP, OpcS, Push_ResultXD(dst) );
10764   ins_pipe( pipe_slow );
10765 %}
10766 
10767 instruct sqrtD_reg(regD dst, regD src) %{
10768   predicate (UseSSE<=1);
10769   match(Set dst (SqrtD src));
10770   format %{ "DSQRT  $dst,$src" %}
10771   opcode(0xFA, 0xD9);
10772   ins_encode( Push_Reg_D(src),
10773               OpcS, OpcP, Pop_Reg_D(dst) );
10774   ins_pipe( pipe_slow );
10775 %}
10776 
10777 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10778   predicate (UseSSE<=1);
10779   match(Set Y (PowD X Y));  // Raise X to the Yth power
10780   effect(KILL rax, KILL rbx, KILL rcx);
10781   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10782             "FLD_D  $X\n\t"
10783             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10784 
10785             "FDUP   \t\t\t# Q Q\n\t"
10786             "FRNDINT\t\t\t# int(Q) Q\n\t"
10787             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10788             "FISTP  dword [ESP]\n\t"
10789             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10790             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10791             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10792             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10793             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10794             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10795             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10796             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10797             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10798             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10799             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10800             "MOV    [ESP+0],0\n\t"
10801             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10802 
10803             "ADD    ESP,8"
10804              %}
10805   ins_encode( push_stack_temp_qword,
10806               Push_Reg_D(X),
10807               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10808               pow_exp_core_encoding,
10809               pop_stack_temp_qword);
10810   ins_pipe( pipe_slow );
10811 %}
10812 
10813 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
10814   predicate (UseSSE>=2);
10815   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10816   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
10817   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10818             "MOVSD  [ESP],$src1\n\t"
10819             "FLD    FPR1,$src1\n\t"
10820             "MOVSD  [ESP],$src0\n\t"
10821             "FLD    FPR1,$src0\n\t"
10822             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10823 
10824             "FDUP   \t\t\t# Q Q\n\t"
10825             "FRNDINT\t\t\t# int(Q) Q\n\t"
10826             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10827             "FISTP  dword [ESP]\n\t"
10828             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10829             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10830             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10831             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10832             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10833             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10834             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10835             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10836             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10837             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10838             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10839             "MOV    [ESP+0],0\n\t"
10840             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10841 
10842             "FST_D  [ESP]\n\t"
10843             "MOVSD  $dst,[ESP]\n\t"
10844             "ADD    ESP,8"
10845              %}
10846   ins_encode( push_stack_temp_qword,
10847               push_xmm_to_fpr1(src1),
10848               push_xmm_to_fpr1(src0),
10849               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10850               pow_exp_core_encoding,
10851               Push_ResultXD(dst) );
10852   ins_pipe( pipe_slow );
10853 %}
10854 
10855 
10856 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10857   predicate (UseSSE<=1);
10858   match(Set dpr1 (ExpD dpr1));
10859   effect(KILL rax, KILL rbx, KILL rcx);
10860   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
10861             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10862             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
10863 
10864             "FDUP   \t\t\t# Q Q\n\t"
10865             "FRNDINT\t\t\t# int(Q) Q\n\t"
10866             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10867             "FISTP  dword [ESP]\n\t"
10868             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10869             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10870             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10871             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10872             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10873             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10874             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10875             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10876             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10877             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10878             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10879             "MOV    [ESP+0],0\n\t"
10880             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10881 
10882             "ADD    ESP,8"
10883              %}
10884   ins_encode( push_stack_temp_qword,
10885               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10886               Opcode(0xDE), Opcode(0xC9),   // fmulp
10887               pow_exp_core_encoding,
10888               pop_stack_temp_qword);
10889   ins_pipe( pipe_slow );
10890 %}
10891 
10892 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10893   predicate (UseSSE>=2);
10894   match(Set dst (ExpD src));
10895   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
10896   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
10897             "MOVSD  [ESP],$src\n\t"
10898             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10899             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
10900 
10901             "FDUP   \t\t\t# Q Q\n\t"
10902             "FRNDINT\t\t\t# int(Q) Q\n\t"
10903             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10904             "FISTP  dword [ESP]\n\t"
10905             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10906             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10907             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10908             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10909             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10910             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10911             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10912             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10913             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10914             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10915             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10916             "MOV    [ESP+0],0\n\t"
10917             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10918 
10919             "FST_D  [ESP]\n\t"
10920             "MOVSD  $dst,[ESP]\n\t"
10921             "ADD    ESP,8"
10922              %}
10923   ins_encode( Push_SrcXD(src),
10924               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10925               Opcode(0xDE), Opcode(0xC9),   // fmulp
10926               pow_exp_core_encoding,
10927               Push_ResultXD(dst) );
10928   ins_pipe( pipe_slow );
10929 %}
10930 
10931 
10932 
10933 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
10934   predicate (UseSSE<=1);
10935   // The source Double operand on FPU stack
10936   match(Set dst (Log10D src));
10937   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10938   // fxch         ; swap ST(0) with ST(1)
10939   // fyl2x        ; compute log_10(2) * log_2(x)
10940   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10941             "FXCH   \n\t"
10942             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10943          %}
10944   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10945               Opcode(0xD9), Opcode(0xC9),   // fxch
10946               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10947 
10948   ins_pipe( pipe_slow );
10949 %}
10950 
10951 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10952   predicate (UseSSE>=2);
10953   effect(KILL cr);
10954   match(Set dst (Log10D src));
10955   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10956   // fyl2x        ; compute log_10(2) * log_2(x)
10957   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10958             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10959          %}
10960   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10961               Push_SrcXD(src),
10962               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10963               Push_ResultXD(dst));
10964 
10965   ins_pipe( pipe_slow );
10966 %}
10967 
10968 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
10969   predicate (UseSSE<=1);
10970   // The source Double operand on FPU stack
10971   match(Set dst (LogD src));
10972   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10973   // fxch         ; swap ST(0) with ST(1)
10974   // fyl2x        ; compute log_e(2) * log_2(x)
10975   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10976             "FXCH   \n\t"
10977             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10978          %}
10979   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10980               Opcode(0xD9), Opcode(0xC9),   // fxch
10981               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10982 
10983   ins_pipe( pipe_slow );
10984 %}
10985 
10986 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10987   predicate (UseSSE>=2);
10988   effect(KILL cr);
10989   // The source and result Double operands in XMM registers
10990   match(Set dst (LogD src));
10991   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10992   // fyl2x        ; compute log_e(2) * log_2(x)
10993   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10994             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10995          %}
10996   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10997               Push_SrcXD(src),
10998               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10999               Push_ResultXD(dst));
11000   ins_pipe( pipe_slow );
11001 %}
11002 
11003 //-------------Float Instructions-------------------------------
11004 // Float Math
11005 
11006 // Code for float compare:
11007 //     fcompp();
11008 //     fwait(); fnstsw_ax();
11009 //     sahf();
11010 //     movl(dst, unordered_result);
11011 //     jcc(Assembler::parity, exit);
11012 //     movl(dst, less_result);
11013 //     jcc(Assembler::below, exit);
11014 //     movl(dst, equal_result);
11015 //     jcc(Assembler::equal, exit);
11016 //     movl(dst, greater_result);
11017 //   exit:
11018 
11019 // P6 version of float compare, sets condition codes in EFLAGS
11020 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
11021   predicate(VM_Version::supports_cmov() && UseSSE == 0);
11022   match(Set cr (CmpF src1 src2));
11023   effect(KILL rax);
11024   ins_cost(150);
11025   format %{ "FLD    $src1\n\t"
11026             "FUCOMIP ST,$src2  // P6 instruction\n\t"
11027             "JNP    exit\n\t"
11028             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
11029             "SAHF\n"
11030      "exit:\tNOP               // avoid branch to branch" %}
11031   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
11032   ins_encode( Push_Reg_D(src1),
11033               OpcP, RegOpc(src2),
11034               cmpF_P6_fixup );
11035   ins_pipe( pipe_slow );
11036 %}
11037 
11038 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
11039   predicate(VM_Version::supports_cmov() && UseSSE == 0);
11040   match(Set cr (CmpF src1 src2));
11041   ins_cost(100);
11042   format %{ "FLD    $src1\n\t"
11043             "FUCOMIP ST,$src2  // P6 instruction" %}
11044   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
11045   ins_encode( Push_Reg_D(src1),
11046               OpcP, RegOpc(src2));
11047   ins_pipe( pipe_slow );
11048 %}
11049 
11050 
11051 // Compare & branch
11052 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
11053   predicate(UseSSE == 0);
11054   match(Set cr (CmpF src1 src2));
11055   effect(KILL rax);
11056   ins_cost(200);
11057   format %{ "FLD    $src1\n\t"
11058             "FCOMp  $src2\n\t"
11059             "FNSTSW AX\n\t"
11060             "TEST   AX,0x400\n\t"
11061             "JZ,s   flags\n\t"
11062             "MOV    AH,1\t# unordered treat as LT\n"
11063     "flags:\tSAHF" %}
11064   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
11065   ins_encode( Push_Reg_D(src1),
11066               OpcP, RegOpc(src2),
11067               fpu_flags);
11068   ins_pipe( pipe_slow );
11069 %}
11070 
11071 // Compare vs zero into -1,0,1
11072 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
11073   predicate(UseSSE == 0);
11074   match(Set dst (CmpF3 src1 zero));
11075   effect(KILL cr, KILL rax);
11076   ins_cost(280);
11077   format %{ "FTSTF  $dst,$src1" %}
11078   opcode(0xE4, 0xD9);
11079   ins_encode( Push_Reg_D(src1),
11080               OpcS, OpcP, PopFPU,
11081               CmpF_Result(dst));
11082   ins_pipe( pipe_slow );
11083 %}
11084 
11085 // Compare into -1,0,1
11086 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11087   predicate(UseSSE == 0);
11088   match(Set dst (CmpF3 src1 src2));
11089   effect(KILL cr, KILL rax);
11090   ins_cost(300);
11091   format %{ "FCMPF  $dst,$src1,$src2" %}
11092   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
11093   ins_encode( Push_Reg_D(src1),
11094               OpcP, RegOpc(src2),
11095               CmpF_Result(dst));
11096   ins_pipe( pipe_slow );
11097 %}
11098 
11099 // float compare and set condition codes in EFLAGS by XMM regs
11100 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
11101   predicate(UseSSE>=1);
11102   match(Set cr (CmpF dst src));
11103   effect(KILL rax);
11104   ins_cost(145);
11105   format %{ "COMISS $dst,$src\n"
11106           "\tJNP    exit\n"
11107           "\tMOV    ah,1       // saw a NaN, set CF\n"
11108           "\tSAHF\n"
11109      "exit:\tNOP               // avoid branch to branch" %}
11110   opcode(0x0F, 0x2F);
11111   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
11112   ins_pipe( pipe_slow );
11113 %}
11114 
11115 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
11116   predicate(UseSSE>=1);
11117   match(Set cr (CmpF dst src));
11118   ins_cost(100);
11119   format %{ "COMISS $dst,$src" %}
11120   opcode(0x0F, 0x2F);
11121   ins_encode(OpcP, OpcS, RegReg(dst, src));
11122   ins_pipe( pipe_slow );
11123 %}
11124 
11125 // float compare and set condition codes in EFLAGS by XMM regs
11126 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
11127   predicate(UseSSE>=1);
11128   match(Set cr (CmpF dst (LoadF src)));
11129   effect(KILL rax);
11130   ins_cost(165);
11131   format %{ "COMISS $dst,$src\n"
11132           "\tJNP    exit\n"
11133           "\tMOV    ah,1       // saw a NaN, set CF\n"
11134           "\tSAHF\n"
11135      "exit:\tNOP               // avoid branch to branch" %}
11136   opcode(0x0F, 0x2F);
11137   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
11138   ins_pipe( pipe_slow );
11139 %}
11140 
11141 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
11142   predicate(UseSSE>=1);
11143   match(Set cr (CmpF dst (LoadF src)));
11144   ins_cost(100);
11145   format %{ "COMISS $dst,$src" %}
11146   opcode(0x0F, 0x2F);
11147   ins_encode(OpcP, OpcS, RegMem(dst, src));
11148   ins_pipe( pipe_slow );
11149 %}
11150 
11151 // Compare into -1,0,1 in XMM
11152 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
11153   predicate(UseSSE>=1);
11154   match(Set dst (CmpF3 src1 src2));
11155   effect(KILL cr);
11156   ins_cost(255);
11157   format %{ "XOR    $dst,$dst\n"
11158           "\tCOMISS $src1,$src2\n"
11159           "\tJP,s   nan\n"
11160           "\tJEQ,s  exit\n"
11161           "\tJA,s   inc\n"
11162       "nan:\tDEC    $dst\n"
11163           "\tJMP,s  exit\n"
11164       "inc:\tINC    $dst\n"
11165       "exit:"
11166                 %}
11167   opcode(0x0F, 0x2F);
11168   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
11169   ins_pipe( pipe_slow );
11170 %}
11171 
11172 // Compare into -1,0,1 in XMM and memory
11173 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
11174   predicate(UseSSE>=1);
11175   match(Set dst (CmpF3 src1 (LoadF mem)));
11176   effect(KILL cr);
11177   ins_cost(275);
11178   format %{ "COMISS $src1,$mem\n"
11179           "\tMOV    $dst,0\t\t# do not blow flags\n"
11180           "\tJP,s   nan\n"
11181           "\tJEQ,s  exit\n"
11182           "\tJA,s   inc\n"
11183       "nan:\tDEC    $dst\n"
11184           "\tJMP,s  exit\n"
11185       "inc:\tINC    $dst\n"
11186       "exit:"
11187                 %}
11188   opcode(0x0F, 0x2F);
11189   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
11190   ins_pipe( pipe_slow );
11191 %}
11192 
11193 // Spill to obtain 24-bit precision
11194 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
11195   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11196   match(Set dst (SubF src1 src2));
11197 
11198   format %{ "FSUB   $dst,$src1 - $src2" %}
11199   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
11200   ins_encode( Push_Reg_F(src1),
11201               OpcReg_F(src2),
11202               Pop_Mem_F(dst) );
11203   ins_pipe( fpu_mem_reg_reg );
11204 %}
11205 //
11206 // This instruction does not round to 24-bits
11207 instruct subF_reg(regF dst, regF src) %{
11208   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11209   match(Set dst (SubF dst src));
11210 
11211   format %{ "FSUB   $dst,$src" %}
11212   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
11213   ins_encode( Push_Reg_F(src),
11214               OpcP, RegOpc(dst) );
11215   ins_pipe( fpu_reg_reg );
11216 %}
11217 
11218 // Spill to obtain 24-bit precision
11219 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
11220   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11221   match(Set dst (AddF src1 src2));
11222 
11223   format %{ "FADD   $dst,$src1,$src2" %}
11224   opcode(0xD8, 0x0); /* D8 C0+i */
11225   ins_encode( Push_Reg_F(src2),
11226               OpcReg_F(src1),
11227               Pop_Mem_F(dst) );
11228   ins_pipe( fpu_mem_reg_reg );
11229 %}
11230 //
11231 // This instruction does not round to 24-bits
11232 instruct addF_reg(regF dst, regF src) %{
11233   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11234   match(Set dst (AddF dst src));
11235 
11236   format %{ "FLD    $src\n\t"
11237             "FADDp  $dst,ST" %}
11238   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
11239   ins_encode( Push_Reg_F(src),
11240               OpcP, RegOpc(dst) );
11241   ins_pipe( fpu_reg_reg );
11242 %}
11243 
11244 // Add two single precision floating point values in xmm
11245 instruct addX_reg(regX dst, regX src) %{
11246   predicate(UseSSE>=1);
11247   match(Set dst (AddF dst src));
11248   format %{ "ADDSS  $dst,$src" %}
11249   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
11250   ins_pipe( pipe_slow );
11251 %}
11252 
11253 instruct addX_imm(regX dst, immXF con) %{
11254   predicate(UseSSE>=1);
11255   match(Set dst (AddF dst con));
11256   format %{ "ADDSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11257   ins_encode %{
11258     __ addss($dst$$XMMRegister, $constantaddress($con));
11259   %}
11260   ins_pipe(pipe_slow);
11261 %}
11262 
11263 instruct addX_mem(regX dst, memory mem) %{
11264   predicate(UseSSE>=1);
11265   match(Set dst (AddF dst (LoadF mem)));
11266   format %{ "ADDSS  $dst,$mem" %}
11267   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
11268   ins_pipe( pipe_slow );
11269 %}
11270 
11271 // Subtract two single precision floating point values in xmm
11272 instruct subX_reg(regX dst, regX src) %{
11273   predicate(UseSSE>=1);
11274   match(Set dst (SubF dst src));
11275   format %{ "SUBSS  $dst,$src" %}
11276   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
11277   ins_pipe( pipe_slow );
11278 %}
11279 
11280 instruct subX_imm(regX dst, immXF con) %{
11281   predicate(UseSSE>=1);
11282   match(Set dst (SubF dst con));
11283   format %{ "SUBSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11284   ins_encode %{
11285     __ subss($dst$$XMMRegister, $constantaddress($con));
11286   %}
11287   ins_pipe(pipe_slow);
11288 %}
11289 
11290 instruct subX_mem(regX dst, memory mem) %{
11291   predicate(UseSSE>=1);
11292   match(Set dst (SubF dst (LoadF mem)));
11293   format %{ "SUBSS  $dst,$mem" %}
11294   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
11295   ins_pipe( pipe_slow );
11296 %}
11297 
11298 // Multiply two single precision floating point values in xmm
11299 instruct mulX_reg(regX dst, regX src) %{
11300   predicate(UseSSE>=1);
11301   match(Set dst (MulF dst src));
11302   format %{ "MULSS  $dst,$src" %}
11303   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
11304   ins_pipe( pipe_slow );
11305 %}
11306 
11307 instruct mulX_imm(regX dst, immXF con) %{
11308   predicate(UseSSE>=1);
11309   match(Set dst (MulF dst con));
11310   format %{ "MULSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11311   ins_encode %{
11312     __ mulss($dst$$XMMRegister, $constantaddress($con));
11313   %}
11314   ins_pipe(pipe_slow);
11315 %}
11316 
11317 instruct mulX_mem(regX dst, memory mem) %{
11318   predicate(UseSSE>=1);
11319   match(Set dst (MulF dst (LoadF mem)));
11320   format %{ "MULSS  $dst,$mem" %}
11321   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
11322   ins_pipe( pipe_slow );
11323 %}
11324 
11325 // Divide two single precision floating point values in xmm
11326 instruct divX_reg(regX dst, regX src) %{
11327   predicate(UseSSE>=1);
11328   match(Set dst (DivF dst src));
11329   format %{ "DIVSS  $dst,$src" %}
11330   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
11331   ins_pipe( pipe_slow );
11332 %}
11333 
11334 instruct divX_imm(regX dst, immXF con) %{
11335   predicate(UseSSE>=1);
11336   match(Set dst (DivF dst con));
11337   format %{ "DIVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11338   ins_encode %{
11339     __ divss($dst$$XMMRegister, $constantaddress($con));
11340   %}
11341   ins_pipe(pipe_slow);
11342 %}
11343 
11344 instruct divX_mem(regX dst, memory mem) %{
11345   predicate(UseSSE>=1);
11346   match(Set dst (DivF dst (LoadF mem)));
11347   format %{ "DIVSS  $dst,$mem" %}
11348   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
11349   ins_pipe( pipe_slow );
11350 %}
11351 
11352 // Get the square root of a single precision floating point values in xmm
11353 instruct sqrtX_reg(regX dst, regX src) %{
11354   predicate(UseSSE>=1);
11355   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
11356   format %{ "SQRTSS $dst,$src" %}
11357   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11358   ins_pipe( pipe_slow );
11359 %}
11360 
11361 instruct sqrtX_mem(regX dst, memory mem) %{
11362   predicate(UseSSE>=1);
11363   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
11364   format %{ "SQRTSS $dst,$mem" %}
11365   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11366   ins_pipe( pipe_slow );
11367 %}
11368 
11369 // Get the square root of a double precision floating point values in xmm
11370 instruct sqrtXD_reg(regXD dst, regXD src) %{
11371   predicate(UseSSE>=2);
11372   match(Set dst (SqrtD src));
11373   format %{ "SQRTSD $dst,$src" %}
11374   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11375   ins_pipe( pipe_slow );
11376 %}
11377 
11378 instruct sqrtXD_mem(regXD dst, memory mem) %{
11379   predicate(UseSSE>=2);
11380   match(Set dst (SqrtD (LoadD mem)));
11381   format %{ "SQRTSD $dst,$mem" %}
11382   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11383   ins_pipe( pipe_slow );
11384 %}
11385 
11386 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
11387   predicate(UseSSE==0);
11388   match(Set dst (AbsF src));
11389   ins_cost(100);
11390   format %{ "FABS" %}
11391   opcode(0xE1, 0xD9);
11392   ins_encode( OpcS, OpcP );
11393   ins_pipe( fpu_reg_reg );
11394 %}
11395 
11396 instruct absX_reg(regX dst ) %{
11397   predicate(UseSSE>=1);
11398   match(Set dst (AbsF dst));
11399   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
11400   ins_encode( AbsXF_encoding(dst));
11401   ins_pipe( pipe_slow );
11402 %}
11403 
11404 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
11405   predicate(UseSSE==0);
11406   match(Set dst (NegF src));
11407   ins_cost(100);
11408   format %{ "FCHS" %}
11409   opcode(0xE0, 0xD9);
11410   ins_encode( OpcS, OpcP );
11411   ins_pipe( fpu_reg_reg );
11412 %}
11413 
11414 instruct negX_reg( regX dst ) %{
11415   predicate(UseSSE>=1);
11416   match(Set dst (NegF dst));
11417   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
11418   ins_encode( NegXF_encoding(dst));
11419   ins_pipe( pipe_slow );
11420 %}
11421 
11422 // Cisc-alternate to addF_reg
11423 // Spill to obtain 24-bit precision
11424 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11425   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11426   match(Set dst (AddF src1 (LoadF src2)));
11427 
11428   format %{ "FLD    $src2\n\t"
11429             "FADD   ST,$src1\n\t"
11430             "FSTP_S $dst" %}
11431   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11432   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11433               OpcReg_F(src1),
11434               Pop_Mem_F(dst) );
11435   ins_pipe( fpu_mem_reg_mem );
11436 %}
11437 //
11438 // Cisc-alternate to addF_reg
11439 // This instruction does not round to 24-bits
11440 instruct addF_reg_mem(regF dst, memory src) %{
11441   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11442   match(Set dst (AddF dst (LoadF src)));
11443 
11444   format %{ "FADD   $dst,$src" %}
11445   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
11446   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
11447               OpcP, RegOpc(dst) );
11448   ins_pipe( fpu_reg_mem );
11449 %}
11450 
11451 // // Following two instructions for _222_mpegaudio
11452 // Spill to obtain 24-bit precision
11453 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
11454   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11455   match(Set dst (AddF src1 src2));
11456 
11457   format %{ "FADD   $dst,$src1,$src2" %}
11458   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11459   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
11460               OpcReg_F(src2),
11461               Pop_Mem_F(dst) );
11462   ins_pipe( fpu_mem_reg_mem );
11463 %}
11464 
11465 // Cisc-spill variant
11466 // Spill to obtain 24-bit precision
11467 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
11468   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11469   match(Set dst (AddF src1 (LoadF src2)));
11470 
11471   format %{ "FADD   $dst,$src1,$src2 cisc" %}
11472   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11473   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11474               set_instruction_start,
11475               OpcP, RMopc_Mem(secondary,src1),
11476               Pop_Mem_F(dst) );
11477   ins_pipe( fpu_mem_mem_mem );
11478 %}
11479 
11480 // Spill to obtain 24-bit precision
11481 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11482   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11483   match(Set dst (AddF src1 src2));
11484 
11485   format %{ "FADD   $dst,$src1,$src2" %}
11486   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
11487   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11488               set_instruction_start,
11489               OpcP, RMopc_Mem(secondary,src1),
11490               Pop_Mem_F(dst) );
11491   ins_pipe( fpu_mem_mem_mem );
11492 %}
11493 
11494 
11495 // Spill to obtain 24-bit precision
11496 instruct addF24_reg_imm(stackSlotF dst, regF src, immF con) %{
11497   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11498   match(Set dst (AddF src con));
11499   format %{ "FLD    $src\n\t"
11500             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11501             "FSTP_S $dst"  %}
11502   ins_encode %{
11503     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11504     __ fadd_s($constantaddress($con));
11505     __ fstp_s(Address(rsp, $dst$$disp));
11506   %}
11507   ins_pipe(fpu_mem_reg_con);
11508 %}
11509 //
11510 // This instruction does not round to 24-bits
11511 instruct addF_reg_imm(regF dst, regF src, immF con) %{
11512   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11513   match(Set dst (AddF src con));
11514   format %{ "FLD    $src\n\t"
11515             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11516             "FSTP   $dst"  %}
11517   ins_encode %{
11518     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11519     __ fadd_s($constantaddress($con));
11520     __ fstp_d($dst$$reg);
11521   %}
11522   ins_pipe(fpu_reg_reg_con);
11523 %}
11524 
11525 // Spill to obtain 24-bit precision
11526 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
11527   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11528   match(Set dst (MulF src1 src2));
11529 
11530   format %{ "FLD    $src1\n\t"
11531             "FMUL   $src2\n\t"
11532             "FSTP_S $dst"  %}
11533   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
11534   ins_encode( Push_Reg_F(src1),
11535               OpcReg_F(src2),
11536               Pop_Mem_F(dst) );
11537   ins_pipe( fpu_mem_reg_reg );
11538 %}
11539 //
11540 // This instruction does not round to 24-bits
11541 instruct mulF_reg(regF dst, regF src1, regF src2) %{
11542   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11543   match(Set dst (MulF src1 src2));
11544 
11545   format %{ "FLD    $src1\n\t"
11546             "FMUL   $src2\n\t"
11547             "FSTP_S $dst"  %}
11548   opcode(0xD8, 0x1); /* D8 C8+i */
11549   ins_encode( Push_Reg_F(src2),
11550               OpcReg_F(src1),
11551               Pop_Reg_F(dst) );
11552   ins_pipe( fpu_reg_reg_reg );
11553 %}
11554 
11555 
11556 // Spill to obtain 24-bit precision
11557 // Cisc-alternate to reg-reg multiply
11558 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11559   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11560   match(Set dst (MulF src1 (LoadF src2)));
11561 
11562   format %{ "FLD_S  $src2\n\t"
11563             "FMUL   $src1\n\t"
11564             "FSTP_S $dst"  %}
11565   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
11566   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11567               OpcReg_F(src1),
11568               Pop_Mem_F(dst) );
11569   ins_pipe( fpu_mem_reg_mem );
11570 %}
11571 //
11572 // This instruction does not round to 24-bits
11573 // Cisc-alternate to reg-reg multiply
11574 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
11575   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11576   match(Set dst (MulF src1 (LoadF src2)));
11577 
11578   format %{ "FMUL   $dst,$src1,$src2" %}
11579   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
11580   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11581               OpcReg_F(src1),
11582               Pop_Reg_F(dst) );
11583   ins_pipe( fpu_reg_reg_mem );
11584 %}
11585 
11586 // Spill to obtain 24-bit precision
11587 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11588   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11589   match(Set dst (MulF src1 src2));
11590 
11591   format %{ "FMUL   $dst,$src1,$src2" %}
11592   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
11593   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11594               set_instruction_start,
11595               OpcP, RMopc_Mem(secondary,src1),
11596               Pop_Mem_F(dst) );
11597   ins_pipe( fpu_mem_mem_mem );
11598 %}
11599 
11600 // Spill to obtain 24-bit precision
11601 instruct mulF24_reg_imm(stackSlotF dst, regF src, immF con) %{
11602   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11603   match(Set dst (MulF src con));
11604 
11605   format %{ "FLD    $src\n\t"
11606             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11607             "FSTP_S $dst"  %}
11608   ins_encode %{
11609     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11610     __ fmul_s($constantaddress($con));
11611     __ fstp_s(Address(rsp, $dst$$disp));
11612   %}
11613   ins_pipe(fpu_mem_reg_con);
11614 %}
11615 //
11616 // This instruction does not round to 24-bits
11617 instruct mulF_reg_imm(regF dst, regF src, immF con) %{
11618   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11619   match(Set dst (MulF src con));
11620 
11621   format %{ "FLD    $src\n\t"
11622             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11623             "FSTP   $dst"  %}
11624   ins_encode %{
11625     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11626     __ fmul_s($constantaddress($con));
11627     __ fstp_d($dst$$reg);
11628   %}
11629   ins_pipe(fpu_reg_reg_con);
11630 %}
11631 
11632 
11633 //
11634 // MACRO1 -- subsume unshared load into mulF
11635 // This instruction does not round to 24-bits
11636 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
11637   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11638   match(Set dst (MulF (LoadF mem1) src));
11639 
11640   format %{ "FLD    $mem1    ===MACRO1===\n\t"
11641             "FMUL   ST,$src\n\t"
11642             "FSTP   $dst" %}
11643   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
11644   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
11645               OpcReg_F(src),
11646               Pop_Reg_F(dst) );
11647   ins_pipe( fpu_reg_reg_mem );
11648 %}
11649 //
11650 // MACRO2 -- addF a mulF which subsumed an unshared load
11651 // This instruction does not round to 24-bits
11652 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
11653   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11654   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
11655   ins_cost(95);
11656 
11657   format %{ "FLD    $mem1     ===MACRO2===\n\t"
11658             "FMUL   ST,$src1  subsume mulF left load\n\t"
11659             "FADD   ST,$src2\n\t"
11660             "FSTP   $dst" %}
11661   opcode(0xD9); /* LoadF D9 /0 */
11662   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
11663               FMul_ST_reg(src1),
11664               FAdd_ST_reg(src2),
11665               Pop_Reg_F(dst) );
11666   ins_pipe( fpu_reg_mem_reg_reg );
11667 %}
11668 
11669 // MACRO3 -- addF a mulF
11670 // This instruction does not round to 24-bits.  It is a '2-address'
11671 // instruction in that the result goes back to src2.  This eliminates
11672 // a move from the macro; possibly the register allocator will have
11673 // to add it back (and maybe not).
11674 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
11675   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11676   match(Set src2 (AddF (MulF src0 src1) src2));
11677 
11678   format %{ "FLD    $src0     ===MACRO3===\n\t"
11679             "FMUL   ST,$src1\n\t"
11680             "FADDP  $src2,ST" %}
11681   opcode(0xD9); /* LoadF D9 /0 */
11682   ins_encode( Push_Reg_F(src0),
11683               FMul_ST_reg(src1),
11684               FAddP_reg_ST(src2) );
11685   ins_pipe( fpu_reg_reg_reg );
11686 %}
11687 
11688 // MACRO4 -- divF subF
11689 // This instruction does not round to 24-bits
11690 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
11691   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11692   match(Set dst (DivF (SubF src2 src1) src3));
11693 
11694   format %{ "FLD    $src2   ===MACRO4===\n\t"
11695             "FSUB   ST,$src1\n\t"
11696             "FDIV   ST,$src3\n\t"
11697             "FSTP  $dst" %}
11698   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11699   ins_encode( Push_Reg_F(src2),
11700               subF_divF_encode(src1,src3),
11701               Pop_Reg_F(dst) );
11702   ins_pipe( fpu_reg_reg_reg_reg );
11703 %}
11704 
11705 // Spill to obtain 24-bit precision
11706 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
11707   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11708   match(Set dst (DivF src1 src2));
11709 
11710   format %{ "FDIV   $dst,$src1,$src2" %}
11711   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
11712   ins_encode( Push_Reg_F(src1),
11713               OpcReg_F(src2),
11714               Pop_Mem_F(dst) );
11715   ins_pipe( fpu_mem_reg_reg );
11716 %}
11717 //
11718 // This instruction does not round to 24-bits
11719 instruct divF_reg(regF dst, regF src) %{
11720   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11721   match(Set dst (DivF dst src));
11722 
11723   format %{ "FDIV   $dst,$src" %}
11724   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11725   ins_encode( Push_Reg_F(src),
11726               OpcP, RegOpc(dst) );
11727   ins_pipe( fpu_reg_reg );
11728 %}
11729 
11730 
11731 // Spill to obtain 24-bit precision
11732 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11733   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11734   match(Set dst (ModF src1 src2));
11735   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11736 
11737   format %{ "FMOD   $dst,$src1,$src2" %}
11738   ins_encode( Push_Reg_Mod_D(src1, src2),
11739               emitModD(),
11740               Push_Result_Mod_D(src2),
11741               Pop_Mem_F(dst));
11742   ins_pipe( pipe_slow );
11743 %}
11744 //
11745 // This instruction does not round to 24-bits
11746 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
11747   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11748   match(Set dst (ModF dst src));
11749   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11750 
11751   format %{ "FMOD   $dst,$src" %}
11752   ins_encode(Push_Reg_Mod_D(dst, src),
11753               emitModD(),
11754               Push_Result_Mod_D(src),
11755               Pop_Reg_F(dst));
11756   ins_pipe( pipe_slow );
11757 %}
11758 
11759 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
11760   predicate(UseSSE>=1);
11761   match(Set dst (ModF src0 src1));
11762   effect(KILL rax, KILL cr);
11763   format %{ "SUB    ESP,4\t # FMOD\n"
11764           "\tMOVSS  [ESP+0],$src1\n"
11765           "\tFLD_S  [ESP+0]\n"
11766           "\tMOVSS  [ESP+0],$src0\n"
11767           "\tFLD_S  [ESP+0]\n"
11768      "loop:\tFPREM\n"
11769           "\tFWAIT\n"
11770           "\tFNSTSW AX\n"
11771           "\tSAHF\n"
11772           "\tJP     loop\n"
11773           "\tFSTP_S [ESP+0]\n"
11774           "\tMOVSS  $dst,[ESP+0]\n"
11775           "\tADD    ESP,4\n"
11776           "\tFSTP   ST0\t # Restore FPU Stack"
11777     %}
11778   ins_cost(250);
11779   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
11780   ins_pipe( pipe_slow );
11781 %}
11782 
11783 
11784 //----------Arithmetic Conversion Instructions---------------------------------
11785 // The conversions operations are all Alpha sorted.  Please keep it that way!
11786 
11787 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
11788   predicate(UseSSE==0);
11789   match(Set dst (RoundFloat src));
11790   ins_cost(125);
11791   format %{ "FST_S  $dst,$src\t# F-round" %}
11792   ins_encode( Pop_Mem_Reg_F(dst, src) );
11793   ins_pipe( fpu_mem_reg );
11794 %}
11795 
11796 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
11797   predicate(UseSSE<=1);
11798   match(Set dst (RoundDouble src));
11799   ins_cost(125);
11800   format %{ "FST_D  $dst,$src\t# D-round" %}
11801   ins_encode( Pop_Mem_Reg_D(dst, src) );
11802   ins_pipe( fpu_mem_reg );
11803 %}
11804 
11805 // Force rounding to 24-bit precision and 6-bit exponent
11806 instruct convD2F_reg(stackSlotF dst, regD src) %{
11807   predicate(UseSSE==0);
11808   match(Set dst (ConvD2F src));
11809   format %{ "FST_S  $dst,$src\t# F-round" %}
11810   expand %{
11811     roundFloat_mem_reg(dst,src);
11812   %}
11813 %}
11814 
11815 // Force rounding to 24-bit precision and 6-bit exponent
11816 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
11817   predicate(UseSSE==1);
11818   match(Set dst (ConvD2F src));
11819   effect( KILL cr );
11820   format %{ "SUB    ESP,4\n\t"
11821             "FST_S  [ESP],$src\t# F-round\n\t"
11822             "MOVSS  $dst,[ESP]\n\t"
11823             "ADD ESP,4" %}
11824   ins_encode( D2X_encoding(dst, src) );
11825   ins_pipe( pipe_slow );
11826 %}
11827 
11828 // Force rounding double precision to single precision
11829 instruct convXD2X_reg(regX dst, regXD src) %{
11830   predicate(UseSSE>=2);
11831   match(Set dst (ConvD2F src));
11832   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
11833   opcode(0xF2, 0x0F, 0x5A);
11834   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11835   ins_pipe( pipe_slow );
11836 %}
11837 
11838 instruct convF2D_reg_reg(regD dst, regF src) %{
11839   predicate(UseSSE==0);
11840   match(Set dst (ConvF2D src));
11841   format %{ "FST_S  $dst,$src\t# D-round" %}
11842   ins_encode( Pop_Reg_Reg_D(dst, src));
11843   ins_pipe( fpu_reg_reg );
11844 %}
11845 
11846 instruct convF2D_reg(stackSlotD dst, regF src) %{
11847   predicate(UseSSE==1);
11848   match(Set dst (ConvF2D src));
11849   format %{ "FST_D  $dst,$src\t# D-round" %}
11850   expand %{
11851     roundDouble_mem_reg(dst,src);
11852   %}
11853 %}
11854 
11855 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
11856   predicate(UseSSE==1);
11857   match(Set dst (ConvF2D src));
11858   effect( KILL cr );
11859   format %{ "SUB    ESP,4\n\t"
11860             "MOVSS  [ESP] $src\n\t"
11861             "FLD_S  [ESP]\n\t"
11862             "ADD    ESP,4\n\t"
11863             "FSTP   $dst\t# D-round" %}
11864   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
11865   ins_pipe( pipe_slow );
11866 %}
11867 
11868 instruct convX2XD_reg(regXD dst, regX src) %{
11869   predicate(UseSSE>=2);
11870   match(Set dst (ConvF2D src));
11871   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11872   opcode(0xF3, 0x0F, 0x5A);
11873   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11874   ins_pipe( pipe_slow );
11875 %}
11876 
11877 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11878 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11879   predicate(UseSSE<=1);
11880   match(Set dst (ConvD2I src));
11881   effect( KILL tmp, KILL cr );
11882   format %{ "FLD    $src\t# Convert double to int \n\t"
11883             "FLDCW  trunc mode\n\t"
11884             "SUB    ESP,4\n\t"
11885             "FISTp  [ESP + #0]\n\t"
11886             "FLDCW  std/24-bit mode\n\t"
11887             "POP    EAX\n\t"
11888             "CMP    EAX,0x80000000\n\t"
11889             "JNE,s  fast\n\t"
11890             "FLD_D  $src\n\t"
11891             "CALL   d2i_wrapper\n"
11892       "fast:" %}
11893   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
11894   ins_pipe( pipe_slow );
11895 %}
11896 
11897 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11898 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
11899   predicate(UseSSE>=2);
11900   match(Set dst (ConvD2I src));
11901   effect( KILL tmp, KILL cr );
11902   format %{ "CVTTSD2SI $dst, $src\n\t"
11903             "CMP    $dst,0x80000000\n\t"
11904             "JNE,s  fast\n\t"
11905             "SUB    ESP, 8\n\t"
11906             "MOVSD  [ESP], $src\n\t"
11907             "FLD_D  [ESP]\n\t"
11908             "ADD    ESP, 8\n\t"
11909             "CALL   d2i_wrapper\n"
11910       "fast:" %}
11911   opcode(0x1); // double-precision conversion
11912   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11913   ins_pipe( pipe_slow );
11914 %}
11915 
11916 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11917   predicate(UseSSE<=1);
11918   match(Set dst (ConvD2L src));
11919   effect( KILL cr );
11920   format %{ "FLD    $src\t# Convert double to long\n\t"
11921             "FLDCW  trunc mode\n\t"
11922             "SUB    ESP,8\n\t"
11923             "FISTp  [ESP + #0]\n\t"
11924             "FLDCW  std/24-bit mode\n\t"
11925             "POP    EAX\n\t"
11926             "POP    EDX\n\t"
11927             "CMP    EDX,0x80000000\n\t"
11928             "JNE,s  fast\n\t"
11929             "TEST   EAX,EAX\n\t"
11930             "JNE,s  fast\n\t"
11931             "FLD    $src\n\t"
11932             "CALL   d2l_wrapper\n"
11933       "fast:" %}
11934   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
11935   ins_pipe( pipe_slow );
11936 %}
11937 
11938 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11939 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
11940   predicate (UseSSE>=2);
11941   match(Set dst (ConvD2L src));
11942   effect( KILL cr );
11943   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11944             "MOVSD  [ESP],$src\n\t"
11945             "FLD_D  [ESP]\n\t"
11946             "FLDCW  trunc mode\n\t"
11947             "FISTp  [ESP + #0]\n\t"
11948             "FLDCW  std/24-bit mode\n\t"
11949             "POP    EAX\n\t"
11950             "POP    EDX\n\t"
11951             "CMP    EDX,0x80000000\n\t"
11952             "JNE,s  fast\n\t"
11953             "TEST   EAX,EAX\n\t"
11954             "JNE,s  fast\n\t"
11955             "SUB    ESP,8\n\t"
11956             "MOVSD  [ESP],$src\n\t"
11957             "FLD_D  [ESP]\n\t"
11958             "CALL   d2l_wrapper\n"
11959       "fast:" %}
11960   ins_encode( XD2L_encoding(src) );
11961   ins_pipe( pipe_slow );
11962 %}
11963 
11964 // Convert a double to an int.  Java semantics require we do complex
11965 // manglations in the corner cases.  So we set the rounding mode to
11966 // 'zero', store the darned double down as an int, and reset the
11967 // rounding mode to 'nearest'.  The hardware stores a flag value down
11968 // if we would overflow or converted a NAN; we check for this and
11969 // and go the slow path if needed.
11970 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11971   predicate(UseSSE==0);
11972   match(Set dst (ConvF2I src));
11973   effect( KILL tmp, KILL cr );
11974   format %{ "FLD    $src\t# Convert float to int \n\t"
11975             "FLDCW  trunc mode\n\t"
11976             "SUB    ESP,4\n\t"
11977             "FISTp  [ESP + #0]\n\t"
11978             "FLDCW  std/24-bit mode\n\t"
11979             "POP    EAX\n\t"
11980             "CMP    EAX,0x80000000\n\t"
11981             "JNE,s  fast\n\t"
11982             "FLD    $src\n\t"
11983             "CALL   d2i_wrapper\n"
11984       "fast:" %}
11985   // D2I_encoding works for F2I
11986   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
11987   ins_pipe( pipe_slow );
11988 %}
11989 
11990 // Convert a float in xmm to an int reg.
11991 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
11992   predicate(UseSSE>=1);
11993   match(Set dst (ConvF2I src));
11994   effect( KILL tmp, KILL cr );
11995   format %{ "CVTTSS2SI $dst, $src\n\t"
11996             "CMP    $dst,0x80000000\n\t"
11997             "JNE,s  fast\n\t"
11998             "SUB    ESP, 4\n\t"
11999             "MOVSS  [ESP], $src\n\t"
12000             "FLD    [ESP]\n\t"
12001             "ADD    ESP, 4\n\t"
12002             "CALL   d2i_wrapper\n"
12003       "fast:" %}
12004   opcode(0x0); // single-precision conversion
12005   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
12006   ins_pipe( pipe_slow );
12007 %}
12008 
12009 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
12010   predicate(UseSSE==0);
12011   match(Set dst (ConvF2L src));
12012   effect( KILL cr );
12013   format %{ "FLD    $src\t# Convert float to long\n\t"
12014             "FLDCW  trunc mode\n\t"
12015             "SUB    ESP,8\n\t"
12016             "FISTp  [ESP + #0]\n\t"
12017             "FLDCW  std/24-bit mode\n\t"
12018             "POP    EAX\n\t"
12019             "POP    EDX\n\t"
12020             "CMP    EDX,0x80000000\n\t"
12021             "JNE,s  fast\n\t"
12022             "TEST   EAX,EAX\n\t"
12023             "JNE,s  fast\n\t"
12024             "FLD    $src\n\t"
12025             "CALL   d2l_wrapper\n"
12026       "fast:" %}
12027   // D2L_encoding works for F2L
12028   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
12029   ins_pipe( pipe_slow );
12030 %}
12031 
12032 // XMM lacks a float/double->long conversion, so use the old FPU stack.
12033 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
12034   predicate (UseSSE>=1);
12035   match(Set dst (ConvF2L src));
12036   effect( KILL cr );
12037   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
12038             "MOVSS  [ESP],$src\n\t"
12039             "FLD_S  [ESP]\n\t"
12040             "FLDCW  trunc mode\n\t"
12041             "FISTp  [ESP + #0]\n\t"
12042             "FLDCW  std/24-bit mode\n\t"
12043             "POP    EAX\n\t"
12044             "POP    EDX\n\t"
12045             "CMP    EDX,0x80000000\n\t"
12046             "JNE,s  fast\n\t"
12047             "TEST   EAX,EAX\n\t"
12048             "JNE,s  fast\n\t"
12049             "SUB    ESP,4\t# Convert float to long\n\t"
12050             "MOVSS  [ESP],$src\n\t"
12051             "FLD_S  [ESP]\n\t"
12052             "ADD    ESP,4\n\t"
12053             "CALL   d2l_wrapper\n"
12054       "fast:" %}
12055   ins_encode( X2L_encoding(src) );
12056   ins_pipe( pipe_slow );
12057 %}
12058 
12059 instruct convI2D_reg(regD dst, stackSlotI src) %{
12060   predicate( UseSSE<=1 );
12061   match(Set dst (ConvI2D src));
12062   format %{ "FILD   $src\n\t"
12063             "FSTP   $dst" %}
12064   opcode(0xDB, 0x0);  /* DB /0 */
12065   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
12066   ins_pipe( fpu_reg_mem );
12067 %}
12068 
12069 instruct convI2XD_reg(regXD dst, eRegI src) %{
12070   predicate( UseSSE>=2 && !UseXmmI2D );
12071   match(Set dst (ConvI2D src));
12072   format %{ "CVTSI2SD $dst,$src" %}
12073   opcode(0xF2, 0x0F, 0x2A);
12074   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
12075   ins_pipe( pipe_slow );
12076 %}
12077 
12078 instruct convI2XD_mem(regXD dst, memory mem) %{
12079   predicate( UseSSE>=2 );
12080   match(Set dst (ConvI2D (LoadI mem)));
12081   format %{ "CVTSI2SD $dst,$mem" %}
12082   opcode(0xF2, 0x0F, 0x2A);
12083   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
12084   ins_pipe( pipe_slow );
12085 %}
12086 
12087 instruct convXI2XD_reg(regXD dst, eRegI src)
12088 %{
12089   predicate( UseSSE>=2 && UseXmmI2D );
12090   match(Set dst (ConvI2D src));
12091 
12092   format %{ "MOVD  $dst,$src\n\t"
12093             "CVTDQ2PD $dst,$dst\t# i2d" %}
12094   ins_encode %{
12095     __ movdl($dst$$XMMRegister, $src$$Register);
12096     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
12097   %}
12098   ins_pipe(pipe_slow); // XXX
12099 %}
12100 
12101 instruct convI2D_mem(regD dst, memory mem) %{
12102   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
12103   match(Set dst (ConvI2D (LoadI mem)));
12104   format %{ "FILD   $mem\n\t"
12105             "FSTP   $dst" %}
12106   opcode(0xDB);      /* DB /0 */
12107   ins_encode( OpcP, RMopc_Mem(0x00,mem),
12108               Pop_Reg_D(dst));
12109   ins_pipe( fpu_reg_mem );
12110 %}
12111 
12112 // Convert a byte to a float; no rounding step needed.
12113 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
12114   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
12115   match(Set dst (ConvI2F src));
12116   format %{ "FILD   $src\n\t"
12117             "FSTP   $dst" %}
12118 
12119   opcode(0xDB, 0x0);  /* DB /0 */
12120   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
12121   ins_pipe( fpu_reg_mem );
12122 %}
12123 
12124 // In 24-bit mode, force exponent rounding by storing back out
12125 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
12126   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
12127   match(Set dst (ConvI2F src));
12128   ins_cost(200);
12129   format %{ "FILD   $src\n\t"
12130             "FSTP_S $dst" %}
12131   opcode(0xDB, 0x0);  /* DB /0 */
12132   ins_encode( Push_Mem_I(src),
12133               Pop_Mem_F(dst));
12134   ins_pipe( fpu_mem_mem );
12135 %}
12136 
12137 // In 24-bit mode, force exponent rounding by storing back out
12138 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
12139   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
12140   match(Set dst (ConvI2F (LoadI mem)));
12141   ins_cost(200);
12142   format %{ "FILD   $mem\n\t"
12143             "FSTP_S $dst" %}
12144   opcode(0xDB);  /* DB /0 */
12145   ins_encode( OpcP, RMopc_Mem(0x00,mem),
12146               Pop_Mem_F(dst));
12147   ins_pipe( fpu_mem_mem );
12148 %}
12149 
12150 // This instruction does not round to 24-bits
12151 instruct convI2F_reg(regF dst, stackSlotI src) %{
12152   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
12153   match(Set dst (ConvI2F src));
12154   format %{ "FILD   $src\n\t"
12155             "FSTP   $dst" %}
12156   opcode(0xDB, 0x0);  /* DB /0 */
12157   ins_encode( Push_Mem_I(src),
12158               Pop_Reg_F(dst));
12159   ins_pipe( fpu_reg_mem );
12160 %}
12161 
12162 // This instruction does not round to 24-bits
12163 instruct convI2F_mem(regF dst, memory mem) %{
12164   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
12165   match(Set dst (ConvI2F (LoadI mem)));
12166   format %{ "FILD   $mem\n\t"
12167             "FSTP   $dst" %}
12168   opcode(0xDB);      /* DB /0 */
12169   ins_encode( OpcP, RMopc_Mem(0x00,mem),
12170               Pop_Reg_F(dst));
12171   ins_pipe( fpu_reg_mem );
12172 %}
12173 
12174 // Convert an int to a float in xmm; no rounding step needed.
12175 instruct convI2X_reg(regX dst, eRegI src) %{
12176   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
12177   match(Set dst (ConvI2F src));
12178   format %{ "CVTSI2SS $dst, $src" %}
12179 
12180   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
12181   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
12182   ins_pipe( pipe_slow );
12183 %}
12184 
12185  instruct convXI2X_reg(regX dst, eRegI src)
12186 %{
12187   predicate( UseSSE>=2 && UseXmmI2F );
12188   match(Set dst (ConvI2F src));
12189 
12190   format %{ "MOVD  $dst,$src\n\t"
12191             "CVTDQ2PS $dst,$dst\t# i2f" %}
12192   ins_encode %{
12193     __ movdl($dst$$XMMRegister, $src$$Register);
12194     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
12195   %}
12196   ins_pipe(pipe_slow); // XXX
12197 %}
12198 
12199 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
12200   match(Set dst (ConvI2L src));
12201   effect(KILL cr);
12202   ins_cost(375);
12203   format %{ "MOV    $dst.lo,$src\n\t"
12204             "MOV    $dst.hi,$src\n\t"
12205             "SAR    $dst.hi,31" %}
12206   ins_encode(convert_int_long(dst,src));
12207   ins_pipe( ialu_reg_reg_long );
12208 %}
12209 
12210 // Zero-extend convert int to long
12211 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
12212   match(Set dst (AndL (ConvI2L src) mask) );
12213   effect( KILL flags );
12214   ins_cost(250);
12215   format %{ "MOV    $dst.lo,$src\n\t"
12216             "XOR    $dst.hi,$dst.hi" %}
12217   opcode(0x33); // XOR
12218   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
12219   ins_pipe( ialu_reg_reg_long );
12220 %}
12221 
12222 // Zero-extend long
12223 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
12224   match(Set dst (AndL src mask) );
12225   effect( KILL flags );
12226   ins_cost(250);
12227   format %{ "MOV    $dst.lo,$src.lo\n\t"
12228             "XOR    $dst.hi,$dst.hi\n\t" %}
12229   opcode(0x33); // XOR
12230   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
12231   ins_pipe( ialu_reg_reg_long );
12232 %}
12233 
12234 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
12235   predicate (UseSSE<=1);
12236   match(Set dst (ConvL2D src));
12237   effect( KILL cr );
12238   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12239             "PUSH   $src.lo\n\t"
12240             "FILD   ST,[ESP + #0]\n\t"
12241             "ADD    ESP,8\n\t"
12242             "FSTP_D $dst\t# D-round" %}
12243   opcode(0xDF, 0x5);  /* DF /5 */
12244   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
12245   ins_pipe( pipe_slow );
12246 %}
12247 
12248 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
12249   predicate (UseSSE>=2);
12250   match(Set dst (ConvL2D src));
12251   effect( KILL cr );
12252   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12253             "PUSH   $src.lo\n\t"
12254             "FILD_D [ESP]\n\t"
12255             "FSTP_D [ESP]\n\t"
12256             "MOVSD  $dst,[ESP]\n\t"
12257             "ADD    ESP,8" %}
12258   opcode(0xDF, 0x5);  /* DF /5 */
12259   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
12260   ins_pipe( pipe_slow );
12261 %}
12262 
12263 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
12264   predicate (UseSSE>=1);
12265   match(Set dst (ConvL2F src));
12266   effect( KILL cr );
12267   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12268             "PUSH   $src.lo\n\t"
12269             "FILD_D [ESP]\n\t"
12270             "FSTP_S [ESP]\n\t"
12271             "MOVSS  $dst,[ESP]\n\t"
12272             "ADD    ESP,8" %}
12273   opcode(0xDF, 0x5);  /* DF /5 */
12274   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
12275   ins_pipe( pipe_slow );
12276 %}
12277 
12278 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
12279   match(Set dst (ConvL2F src));
12280   effect( KILL cr );
12281   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12282             "PUSH   $src.lo\n\t"
12283             "FILD   ST,[ESP + #0]\n\t"
12284             "ADD    ESP,8\n\t"
12285             "FSTP_S $dst\t# F-round" %}
12286   opcode(0xDF, 0x5);  /* DF /5 */
12287   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
12288   ins_pipe( pipe_slow );
12289 %}
12290 
12291 instruct convL2I_reg( eRegI dst, eRegL src ) %{
12292   match(Set dst (ConvL2I src));
12293   effect( DEF dst, USE src );
12294   format %{ "MOV    $dst,$src.lo" %}
12295   ins_encode(enc_CopyL_Lo(dst,src));
12296   ins_pipe( ialu_reg_reg );
12297 %}
12298 
12299 
12300 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
12301   match(Set dst (MoveF2I src));
12302   effect( DEF dst, USE src );
12303   ins_cost(100);
12304   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
12305   opcode(0x8B);
12306   ins_encode( OpcP, RegMem(dst,src));
12307   ins_pipe( ialu_reg_mem );
12308 %}
12309 
12310 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
12311   predicate(UseSSE==0);
12312   match(Set dst (MoveF2I src));
12313   effect( DEF dst, USE src );
12314 
12315   ins_cost(125);
12316   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
12317   ins_encode( Pop_Mem_Reg_F(dst, src) );
12318   ins_pipe( fpu_mem_reg );
12319 %}
12320 
12321 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
12322   predicate(UseSSE>=1);
12323   match(Set dst (MoveF2I src));
12324   effect( DEF dst, USE src );
12325 
12326   ins_cost(95);
12327   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
12328   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
12329   ins_pipe( pipe_slow );
12330 %}
12331 
12332 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
12333   predicate(UseSSE>=2);
12334   match(Set dst (MoveF2I src));
12335   effect( DEF dst, USE src );
12336   ins_cost(85);
12337   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
12338   ins_encode( MovX2I_reg(dst, src));
12339   ins_pipe( pipe_slow );
12340 %}
12341 
12342 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
12343   match(Set dst (MoveI2F src));
12344   effect( DEF dst, USE src );
12345 
12346   ins_cost(100);
12347   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
12348   opcode(0x89);
12349   ins_encode( OpcPRegSS( dst, src ) );
12350   ins_pipe( ialu_mem_reg );
12351 %}
12352 
12353 
12354 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
12355   predicate(UseSSE==0);
12356   match(Set dst (MoveI2F src));
12357   effect(DEF dst, USE src);
12358 
12359   ins_cost(125);
12360   format %{ "FLD_S  $src\n\t"
12361             "FSTP   $dst\t# MoveI2F_stack_reg" %}
12362   opcode(0xD9);               /* D9 /0, FLD m32real */
12363   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12364               Pop_Reg_F(dst) );
12365   ins_pipe( fpu_reg_mem );
12366 %}
12367 
12368 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
12369   predicate(UseSSE>=1);
12370   match(Set dst (MoveI2F src));
12371   effect( DEF dst, USE src );
12372 
12373   ins_cost(95);
12374   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
12375   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12376   ins_pipe( pipe_slow );
12377 %}
12378 
12379 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
12380   predicate(UseSSE>=2);
12381   match(Set dst (MoveI2F src));
12382   effect( DEF dst, USE src );
12383 
12384   ins_cost(85);
12385   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
12386   ins_encode( MovI2X_reg(dst, src) );
12387   ins_pipe( pipe_slow );
12388 %}
12389 
12390 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
12391   match(Set dst (MoveD2L src));
12392   effect(DEF dst, USE src);
12393 
12394   ins_cost(250);
12395   format %{ "MOV    $dst.lo,$src\n\t"
12396             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
12397   opcode(0x8B, 0x8B);
12398   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
12399   ins_pipe( ialu_mem_long_reg );
12400 %}
12401 
12402 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
12403   predicate(UseSSE<=1);
12404   match(Set dst (MoveD2L src));
12405   effect(DEF dst, USE src);
12406 
12407   ins_cost(125);
12408   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
12409   ins_encode( Pop_Mem_Reg_D(dst, src) );
12410   ins_pipe( fpu_mem_reg );
12411 %}
12412 
12413 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
12414   predicate(UseSSE>=2);
12415   match(Set dst (MoveD2L src));
12416   effect(DEF dst, USE src);
12417   ins_cost(95);
12418 
12419   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
12420   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
12421   ins_pipe( pipe_slow );
12422 %}
12423 
12424 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
12425   predicate(UseSSE>=2);
12426   match(Set dst (MoveD2L src));
12427   effect(DEF dst, USE src, TEMP tmp);
12428   ins_cost(85);
12429   format %{ "MOVD   $dst.lo,$src\n\t"
12430             "PSHUFLW $tmp,$src,0x4E\n\t"
12431             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
12432   ins_encode( MovXD2L_reg(dst, src, tmp) );
12433   ins_pipe( pipe_slow );
12434 %}
12435 
12436 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
12437   match(Set dst (MoveL2D src));
12438   effect(DEF dst, USE src);
12439 
12440   ins_cost(200);
12441   format %{ "MOV    $dst,$src.lo\n\t"
12442             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
12443   opcode(0x89, 0x89);
12444   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
12445   ins_pipe( ialu_mem_long_reg );
12446 %}
12447 
12448 
12449 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
12450   predicate(UseSSE<=1);
12451   match(Set dst (MoveL2D src));
12452   effect(DEF dst, USE src);
12453   ins_cost(125);
12454 
12455   format %{ "FLD_D  $src\n\t"
12456             "FSTP   $dst\t# MoveL2D_stack_reg" %}
12457   opcode(0xDD);               /* DD /0, FLD m64real */
12458   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12459               Pop_Reg_D(dst) );
12460   ins_pipe( fpu_reg_mem );
12461 %}
12462 
12463 
12464 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
12465   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
12466   match(Set dst (MoveL2D src));
12467   effect(DEF dst, USE src);
12468 
12469   ins_cost(95);
12470   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
12471   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12472   ins_pipe( pipe_slow );
12473 %}
12474 
12475 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
12476   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
12477   match(Set dst (MoveL2D src));
12478   effect(DEF dst, USE src);
12479 
12480   ins_cost(95);
12481   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
12482   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
12483   ins_pipe( pipe_slow );
12484 %}
12485 
12486 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
12487   predicate(UseSSE>=2);
12488   match(Set dst (MoveL2D src));
12489   effect(TEMP dst, USE src, TEMP tmp);
12490   ins_cost(85);
12491   format %{ "MOVD   $dst,$src.lo\n\t"
12492             "MOVD   $tmp,$src.hi\n\t"
12493             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
12494   ins_encode( MovL2XD_reg(dst, src, tmp) );
12495   ins_pipe( pipe_slow );
12496 %}
12497 
12498 // Replicate scalar to packed byte (1 byte) values in xmm
12499 instruct Repl8B_reg(regXD dst, regXD src) %{
12500   predicate(UseSSE>=2);
12501   match(Set dst (Replicate8B src));
12502   format %{ "MOVDQA  $dst,$src\n\t"
12503             "PUNPCKLBW $dst,$dst\n\t"
12504             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12505   ins_encode( pshufd_8x8(dst, src));
12506   ins_pipe( pipe_slow );
12507 %}
12508 
12509 // Replicate scalar to packed byte (1 byte) values in xmm
12510 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
12511   predicate(UseSSE>=2);
12512   match(Set dst (Replicate8B src));
12513   format %{ "MOVD    $dst,$src\n\t"
12514             "PUNPCKLBW $dst,$dst\n\t"
12515             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12516   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
12517   ins_pipe( pipe_slow );
12518 %}
12519 
12520 // Replicate scalar zero to packed byte (1 byte) values in xmm
12521 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
12522   predicate(UseSSE>=2);
12523   match(Set dst (Replicate8B zero));
12524   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
12525   ins_encode( pxor(dst, dst));
12526   ins_pipe( fpu_reg_reg );
12527 %}
12528 
12529 // Replicate scalar to packed shore (2 byte) values in xmm
12530 instruct Repl4S_reg(regXD dst, regXD src) %{
12531   predicate(UseSSE>=2);
12532   match(Set dst (Replicate4S src));
12533   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
12534   ins_encode( pshufd_4x16(dst, src));
12535   ins_pipe( fpu_reg_reg );
12536 %}
12537 
12538 // Replicate scalar to packed shore (2 byte) values in xmm
12539 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
12540   predicate(UseSSE>=2);
12541   match(Set dst (Replicate4S src));
12542   format %{ "MOVD    $dst,$src\n\t"
12543             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
12544   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12545   ins_pipe( fpu_reg_reg );
12546 %}
12547 
12548 // Replicate scalar zero to packed short (2 byte) values in xmm
12549 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
12550   predicate(UseSSE>=2);
12551   match(Set dst (Replicate4S zero));
12552   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
12553   ins_encode( pxor(dst, dst));
12554   ins_pipe( fpu_reg_reg );
12555 %}
12556 
12557 // Replicate scalar to packed char (2 byte) values in xmm
12558 instruct Repl4C_reg(regXD dst, regXD src) %{
12559   predicate(UseSSE>=2);
12560   match(Set dst (Replicate4C src));
12561   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
12562   ins_encode( pshufd_4x16(dst, src));
12563   ins_pipe( fpu_reg_reg );
12564 %}
12565 
12566 // Replicate scalar to packed char (2 byte) values in xmm
12567 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
12568   predicate(UseSSE>=2);
12569   match(Set dst (Replicate4C src));
12570   format %{ "MOVD    $dst,$src\n\t"
12571             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
12572   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12573   ins_pipe( fpu_reg_reg );
12574 %}
12575 
12576 // Replicate scalar zero to packed char (2 byte) values in xmm
12577 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
12578   predicate(UseSSE>=2);
12579   match(Set dst (Replicate4C zero));
12580   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
12581   ins_encode( pxor(dst, dst));
12582   ins_pipe( fpu_reg_reg );
12583 %}
12584 
12585 // Replicate scalar to packed integer (4 byte) values in xmm
12586 instruct Repl2I_reg(regXD dst, regXD src) %{
12587   predicate(UseSSE>=2);
12588   match(Set dst (Replicate2I src));
12589   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
12590   ins_encode( pshufd(dst, src, 0x00));
12591   ins_pipe( fpu_reg_reg );
12592 %}
12593 
12594 // Replicate scalar to packed integer (4 byte) values in xmm
12595 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
12596   predicate(UseSSE>=2);
12597   match(Set dst (Replicate2I src));
12598   format %{ "MOVD   $dst,$src\n\t"
12599             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
12600   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
12601   ins_pipe( fpu_reg_reg );
12602 %}
12603 
12604 // Replicate scalar zero to packed integer (2 byte) values in xmm
12605 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
12606   predicate(UseSSE>=2);
12607   match(Set dst (Replicate2I zero));
12608   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
12609   ins_encode( pxor(dst, dst));
12610   ins_pipe( fpu_reg_reg );
12611 %}
12612 
12613 // Replicate scalar to packed single precision floating point values in xmm
12614 instruct Repl2F_reg(regXD dst, regXD src) %{
12615   predicate(UseSSE>=2);
12616   match(Set dst (Replicate2F src));
12617   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12618   ins_encode( pshufd(dst, src, 0xe0));
12619   ins_pipe( fpu_reg_reg );
12620 %}
12621 
12622 // Replicate scalar to packed single precision floating point values in xmm
12623 instruct Repl2F_regX(regXD dst, regX src) %{
12624   predicate(UseSSE>=2);
12625   match(Set dst (Replicate2F src));
12626   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12627   ins_encode( pshufd(dst, src, 0xe0));
12628   ins_pipe( fpu_reg_reg );
12629 %}
12630 
12631 // Replicate scalar to packed single precision floating point values in xmm
12632 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
12633   predicate(UseSSE>=2);
12634   match(Set dst (Replicate2F zero));
12635   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
12636   ins_encode( pxor(dst, dst));
12637   ins_pipe( fpu_reg_reg );
12638 %}
12639 
12640 // =======================================================================
12641 // fast clearing of an array
12642 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
12643   match(Set dummy (ClearArray cnt base));
12644   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
12645   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
12646             "XOR    EAX,EAX\n\t"
12647             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
12648   opcode(0,0x4);
12649   ins_encode( Opcode(0xD1), RegOpc(ECX),
12650               OpcRegReg(0x33,EAX,EAX),
12651               Opcode(0xF3), Opcode(0xAB) );
12652   ins_pipe( pipe_slow );
12653 %}
12654 
12655 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
12656                         eAXRegI result, regXD tmp1, eFlagsReg cr) %{
12657   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
12658   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
12659 
12660   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
12661   ins_encode %{
12662     __ string_compare($str1$$Register, $str2$$Register,
12663                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
12664                       $tmp1$$XMMRegister);
12665   %}
12666   ins_pipe( pipe_slow );
12667 %}
12668 
12669 // fast string equals
12670 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
12671                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
12672   match(Set result (StrEquals (Binary str1 str2) cnt));
12673   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
12674 
12675   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
12676   ins_encode %{
12677     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
12678                           $cnt$$Register, $result$$Register, $tmp3$$Register,
12679                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12680   %}
12681   ins_pipe( pipe_slow );
12682 %}
12683 
12684 // fast search of substring with known size.
12685 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
12686                             eBXRegI result, regXD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
12687   predicate(UseSSE42Intrinsics);
12688   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
12689   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
12690 
12691   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
12692   ins_encode %{
12693     int icnt2 = (int)$int_cnt2$$constant;
12694     if (icnt2 >= 8) {
12695       // IndexOf for constant substrings with size >= 8 elements
12696       // which don't need to be loaded through stack.
12697       __ string_indexofC8($str1$$Register, $str2$$Register,
12698                           $cnt1$$Register, $cnt2$$Register,
12699                           icnt2, $result$$Register,
12700                           $vec$$XMMRegister, $tmp$$Register);
12701     } else {
12702       // Small strings are loaded through stack if they cross page boundary.
12703       __ string_indexof($str1$$Register, $str2$$Register,
12704                         $cnt1$$Register, $cnt2$$Register,
12705                         icnt2, $result$$Register,
12706                         $vec$$XMMRegister, $tmp$$Register);
12707     }
12708   %}
12709   ins_pipe( pipe_slow );
12710 %}
12711 
12712 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
12713                         eBXRegI result, regXD vec, eCXRegI tmp, eFlagsReg cr) %{
12714   predicate(UseSSE42Intrinsics);
12715   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
12716   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
12717 
12718   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
12719   ins_encode %{
12720     __ string_indexof($str1$$Register, $str2$$Register,
12721                       $cnt1$$Register, $cnt2$$Register,
12722                       (-1), $result$$Register,
12723                       $vec$$XMMRegister, $tmp$$Register);
12724   %}
12725   ins_pipe( pipe_slow );
12726 %}
12727 
12728 // fast array equals
12729 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
12730                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
12731 %{
12732   match(Set result (AryEq ary1 ary2));
12733   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
12734   //ins_cost(300);
12735 
12736   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
12737   ins_encode %{
12738     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
12739                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
12740                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12741   %}
12742   ins_pipe( pipe_slow );
12743 %}
12744 
12745 //----------Control Flow Instructions------------------------------------------
12746 // Signed compare Instructions
12747 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
12748   match(Set cr (CmpI op1 op2));
12749   effect( DEF cr, USE op1, USE op2 );
12750   format %{ "CMP    $op1,$op2" %}
12751   opcode(0x3B);  /* Opcode 3B /r */
12752   ins_encode( OpcP, RegReg( op1, op2) );
12753   ins_pipe( ialu_cr_reg_reg );
12754 %}
12755 
12756 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
12757   match(Set cr (CmpI op1 op2));
12758   effect( DEF cr, USE op1 );
12759   format %{ "CMP    $op1,$op2" %}
12760   opcode(0x81,0x07);  /* Opcode 81 /7 */
12761   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
12762   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12763   ins_pipe( ialu_cr_reg_imm );
12764 %}
12765 
12766 // Cisc-spilled version of cmpI_eReg
12767 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
12768   match(Set cr (CmpI op1 (LoadI op2)));
12769 
12770   format %{ "CMP    $op1,$op2" %}
12771   ins_cost(500);
12772   opcode(0x3B);  /* Opcode 3B /r */
12773   ins_encode( OpcP, RegMem( op1, op2) );
12774   ins_pipe( ialu_cr_reg_mem );
12775 %}
12776 
12777 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
12778   match(Set cr (CmpI src zero));
12779   effect( DEF cr, USE src );
12780 
12781   format %{ "TEST   $src,$src" %}
12782   opcode(0x85);
12783   ins_encode( OpcP, RegReg( src, src ) );
12784   ins_pipe( ialu_cr_reg_imm );
12785 %}
12786 
12787 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
12788   match(Set cr (CmpI (AndI src con) zero));
12789 
12790   format %{ "TEST   $src,$con" %}
12791   opcode(0xF7,0x00);
12792   ins_encode( OpcP, RegOpc(src), Con32(con) );
12793   ins_pipe( ialu_cr_reg_imm );
12794 %}
12795 
12796 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
12797   match(Set cr (CmpI (AndI src mem) zero));
12798 
12799   format %{ "TEST   $src,$mem" %}
12800   opcode(0x85);
12801   ins_encode( OpcP, RegMem( src, mem ) );
12802   ins_pipe( ialu_cr_reg_mem );
12803 %}
12804 
12805 // Unsigned compare Instructions; really, same as signed except they
12806 // produce an eFlagsRegU instead of eFlagsReg.
12807 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
12808   match(Set cr (CmpU op1 op2));
12809 
12810   format %{ "CMPu   $op1,$op2" %}
12811   opcode(0x3B);  /* Opcode 3B /r */
12812   ins_encode( OpcP, RegReg( op1, op2) );
12813   ins_pipe( ialu_cr_reg_reg );
12814 %}
12815 
12816 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
12817   match(Set cr (CmpU op1 op2));
12818 
12819   format %{ "CMPu   $op1,$op2" %}
12820   opcode(0x81,0x07);  /* Opcode 81 /7 */
12821   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12822   ins_pipe( ialu_cr_reg_imm );
12823 %}
12824 
12825 // // Cisc-spilled version of cmpU_eReg
12826 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
12827   match(Set cr (CmpU op1 (LoadI op2)));
12828 
12829   format %{ "CMPu   $op1,$op2" %}
12830   ins_cost(500);
12831   opcode(0x3B);  /* Opcode 3B /r */
12832   ins_encode( OpcP, RegMem( op1, op2) );
12833   ins_pipe( ialu_cr_reg_mem );
12834 %}
12835 
12836 // // Cisc-spilled version of cmpU_eReg
12837 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
12838 //  match(Set cr (CmpU (LoadI op1) op2));
12839 //
12840 //  format %{ "CMPu   $op1,$op2" %}
12841 //  ins_cost(500);
12842 //  opcode(0x39);  /* Opcode 39 /r */
12843 //  ins_encode( OpcP, RegMem( op1, op2) );
12844 //%}
12845 
12846 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
12847   match(Set cr (CmpU src zero));
12848 
12849   format %{ "TESTu  $src,$src" %}
12850   opcode(0x85);
12851   ins_encode( OpcP, RegReg( src, src ) );
12852   ins_pipe( ialu_cr_reg_imm );
12853 %}
12854 
12855 // Unsigned pointer compare Instructions
12856 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
12857   match(Set cr (CmpP op1 op2));
12858 
12859   format %{ "CMPu   $op1,$op2" %}
12860   opcode(0x3B);  /* Opcode 3B /r */
12861   ins_encode( OpcP, RegReg( op1, op2) );
12862   ins_pipe( ialu_cr_reg_reg );
12863 %}
12864 
12865 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
12866   match(Set cr (CmpP op1 op2));
12867 
12868   format %{ "CMPu   $op1,$op2" %}
12869   opcode(0x81,0x07);  /* Opcode 81 /7 */
12870   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12871   ins_pipe( ialu_cr_reg_imm );
12872 %}
12873 
12874 // // Cisc-spilled version of cmpP_eReg
12875 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
12876   match(Set cr (CmpP op1 (LoadP op2)));
12877 
12878   format %{ "CMPu   $op1,$op2" %}
12879   ins_cost(500);
12880   opcode(0x3B);  /* Opcode 3B /r */
12881   ins_encode( OpcP, RegMem( op1, op2) );
12882   ins_pipe( ialu_cr_reg_mem );
12883 %}
12884 
12885 // // Cisc-spilled version of cmpP_eReg
12886 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12887 //  match(Set cr (CmpP (LoadP op1) op2));
12888 //
12889 //  format %{ "CMPu   $op1,$op2" %}
12890 //  ins_cost(500);
12891 //  opcode(0x39);  /* Opcode 39 /r */
12892 //  ins_encode( OpcP, RegMem( op1, op2) );
12893 //%}
12894 
12895 // Compare raw pointer (used in out-of-heap check).
12896 // Only works because non-oop pointers must be raw pointers
12897 // and raw pointers have no anti-dependencies.
12898 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12899   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
12900   match(Set cr (CmpP op1 (LoadP op2)));
12901 
12902   format %{ "CMPu   $op1,$op2" %}
12903   opcode(0x3B);  /* Opcode 3B /r */
12904   ins_encode( OpcP, RegMem( op1, op2) );
12905   ins_pipe( ialu_cr_reg_mem );
12906 %}
12907 
12908 //
12909 // This will generate a signed flags result. This should be ok
12910 // since any compare to a zero should be eq/neq.
12911 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12912   match(Set cr (CmpP src zero));
12913 
12914   format %{ "TEST   $src,$src" %}
12915   opcode(0x85);
12916   ins_encode( OpcP, RegReg( src, src ) );
12917   ins_pipe( ialu_cr_reg_imm );
12918 %}
12919 
12920 // Cisc-spilled version of testP_reg
12921 // This will generate a signed flags result. This should be ok
12922 // since any compare to a zero should be eq/neq.
12923 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12924   match(Set cr (CmpP (LoadP op) zero));
12925 
12926   format %{ "TEST   $op,0xFFFFFFFF" %}
12927   ins_cost(500);
12928   opcode(0xF7);               /* Opcode F7 /0 */
12929   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12930   ins_pipe( ialu_cr_reg_imm );
12931 %}
12932 
12933 // Yanked all unsigned pointer compare operations.
12934 // Pointer compares are done with CmpP which is already unsigned.
12935 
12936 //----------Max and Min--------------------------------------------------------
12937 // Min Instructions
12938 ////
12939 //   *** Min and Max using the conditional move are slower than the
12940 //   *** branch version on a Pentium III.
12941 // // Conditional move for min
12942 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12943 //  effect( USE_DEF op2, USE op1, USE cr );
12944 //  format %{ "CMOVlt $op2,$op1\t! min" %}
12945 //  opcode(0x4C,0x0F);
12946 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12947 //  ins_pipe( pipe_cmov_reg );
12948 //%}
12949 //
12950 //// Min Register with Register (P6 version)
12951 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
12952 //  predicate(VM_Version::supports_cmov() );
12953 //  match(Set op2 (MinI op1 op2));
12954 //  ins_cost(200);
12955 //  expand %{
12956 //    eFlagsReg cr;
12957 //    compI_eReg(cr,op1,op2);
12958 //    cmovI_reg_lt(op2,op1,cr);
12959 //  %}
12960 //%}
12961 
12962 // Min Register with Register (generic version)
12963 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12964   match(Set dst (MinI dst src));
12965   effect(KILL flags);
12966   ins_cost(300);
12967 
12968   format %{ "MIN    $dst,$src" %}
12969   opcode(0xCC);
12970   ins_encode( min_enc(dst,src) );
12971   ins_pipe( pipe_slow );
12972 %}
12973 
12974 // Max Register with Register
12975 //   *** Min and Max using the conditional move are slower than the
12976 //   *** branch version on a Pentium III.
12977 // // Conditional move for max
12978 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12979 //  effect( USE_DEF op2, USE op1, USE cr );
12980 //  format %{ "CMOVgt $op2,$op1\t! max" %}
12981 //  opcode(0x4F,0x0F);
12982 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12983 //  ins_pipe( pipe_cmov_reg );
12984 //%}
12985 //
12986 // // Max Register with Register (P6 version)
12987 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
12988 //  predicate(VM_Version::supports_cmov() );
12989 //  match(Set op2 (MaxI op1 op2));
12990 //  ins_cost(200);
12991 //  expand %{
12992 //    eFlagsReg cr;
12993 //    compI_eReg(cr,op1,op2);
12994 //    cmovI_reg_gt(op2,op1,cr);
12995 //  %}
12996 //%}
12997 
12998 // Max Register with Register (generic version)
12999 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
13000   match(Set dst (MaxI dst src));
13001   effect(KILL flags);
13002   ins_cost(300);
13003 
13004   format %{ "MAX    $dst,$src" %}
13005   opcode(0xCC);
13006   ins_encode( max_enc(dst,src) );
13007   ins_pipe( pipe_slow );
13008 %}
13009 
13010 // ============================================================================
13011 // Counted Loop limit node which represents exact final iterator value.
13012 // Note: the resulting value should fit into integer range since
13013 // counted loops have limit check on overflow.
13014 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
13015   match(Set limit (LoopLimit (Binary init limit) stride));
13016   effect(TEMP limit_hi, TEMP tmp, KILL flags);
13017   ins_cost(300);
13018 
13019   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
13020   ins_encode %{
13021     int strd = (int)$stride$$constant;
13022     assert(strd != 1 && strd != -1, "sanity");
13023     int m1 = (strd > 0) ? 1 : -1;
13024     // Convert limit to long (EAX:EDX)
13025     __ cdql();
13026     // Convert init to long (init:tmp)
13027     __ movl($tmp$$Register, $init$$Register);
13028     __ sarl($tmp$$Register, 31);
13029     // $limit - $init
13030     __ subl($limit$$Register, $init$$Register);
13031     __ sbbl($limit_hi$$Register, $tmp$$Register);
13032     // + ($stride - 1)
13033     if (strd > 0) {
13034       __ addl($limit$$Register, (strd - 1));
13035       __ adcl($limit_hi$$Register, 0);
13036       __ movl($tmp$$Register, strd);
13037     } else {
13038       __ addl($limit$$Register, (strd + 1));
13039       __ adcl($limit_hi$$Register, -1);
13040       __ lneg($limit_hi$$Register, $limit$$Register);
13041       __ movl($tmp$$Register, -strd);
13042     }
13043     // signed devision: (EAX:EDX) / pos_stride
13044     __ idivl($tmp$$Register);
13045     if (strd < 0) {
13046       // restore sign
13047       __ negl($tmp$$Register);
13048     }
13049     // (EAX) * stride
13050     __ mull($tmp$$Register);
13051     // + init (ignore upper bits)
13052     __ addl($limit$$Register, $init$$Register);
13053   %}
13054   ins_pipe( pipe_slow );
13055 %}
13056 
13057 // ============================================================================
13058 // Branch Instructions
13059 // Jump Table
13060 instruct jumpXtnd(eRegI switch_val) %{
13061   match(Jump switch_val);
13062   ins_cost(350);
13063   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
13064   ins_encode %{
13065     // Jump to Address(table_base + switch_reg)
13066     Address index(noreg, $switch_val$$Register, Address::times_1);
13067     __ jump(ArrayAddress($constantaddress, index));
13068   %}
13069   ins_pipe(pipe_jmp);
13070 %}
13071 
13072 // Jump Direct - Label defines a relative address from JMP+1
13073 instruct jmpDir(label labl) %{
13074   match(Goto);
13075   effect(USE labl);
13076 
13077   ins_cost(300);
13078   format %{ "JMP    $labl" %}
13079   size(5);
13080   ins_encode %{
13081     Label* L = $labl$$label;
13082     __ jmp(*L, false); // Always long jump
13083   %}
13084   ins_pipe( pipe_jmp );
13085 %}
13086 
13087 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13088 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
13089   match(If cop cr);
13090   effect(USE labl);
13091 
13092   ins_cost(300);
13093   format %{ "J$cop    $labl" %}
13094   size(6);
13095   ins_encode %{
13096     Label* L = $labl$$label;
13097     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13098   %}
13099   ins_pipe( pipe_jcc );
13100 %}
13101 
13102 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13103 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
13104   match(CountedLoopEnd cop cr);
13105   effect(USE labl);
13106 
13107   ins_cost(300);
13108   format %{ "J$cop    $labl\t# Loop end" %}
13109   size(6);
13110   ins_encode %{
13111     Label* L = $labl$$label;
13112     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13113   %}
13114   ins_pipe( pipe_jcc );
13115 %}
13116 
13117 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13118 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13119   match(CountedLoopEnd cop cmp);
13120   effect(USE labl);
13121 
13122   ins_cost(300);
13123   format %{ "J$cop,u  $labl\t# Loop end" %}
13124   size(6);
13125   ins_encode %{
13126     Label* L = $labl$$label;
13127     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13128   %}
13129   ins_pipe( pipe_jcc );
13130 %}
13131 
13132 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13133   match(CountedLoopEnd cop cmp);
13134   effect(USE labl);
13135 
13136   ins_cost(200);
13137   format %{ "J$cop,u  $labl\t# Loop end" %}
13138   size(6);
13139   ins_encode %{
13140     Label* L = $labl$$label;
13141     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13142   %}
13143   ins_pipe( pipe_jcc );
13144 %}
13145 
13146 // Jump Direct Conditional - using unsigned comparison
13147 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13148   match(If cop cmp);
13149   effect(USE labl);
13150 
13151   ins_cost(300);
13152   format %{ "J$cop,u  $labl" %}
13153   size(6);
13154   ins_encode %{
13155     Label* L = $labl$$label;
13156     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13157   %}
13158   ins_pipe(pipe_jcc);
13159 %}
13160 
13161 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13162   match(If cop cmp);
13163   effect(USE labl);
13164 
13165   ins_cost(200);
13166   format %{ "J$cop,u  $labl" %}
13167   size(6);
13168   ins_encode %{
13169     Label* L = $labl$$label;
13170     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13171   %}
13172   ins_pipe(pipe_jcc);
13173 %}
13174 
13175 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
13176   match(If cop cmp);
13177   effect(USE labl);
13178 
13179   ins_cost(200);
13180   format %{ $$template
13181     if ($cop$$cmpcode == Assembler::notEqual) {
13182       $$emit$$"JP,u   $labl\n\t"
13183       $$emit$$"J$cop,u   $labl"
13184     } else {
13185       $$emit$$"JP,u   done\n\t"
13186       $$emit$$"J$cop,u   $labl\n\t"
13187       $$emit$$"done:"
13188     }
13189   %}
13190   ins_encode %{
13191     Label* l = $labl$$label;
13192     if ($cop$$cmpcode == Assembler::notEqual) {
13193       __ jcc(Assembler::parity, *l, false);
13194       __ jcc(Assembler::notEqual, *l, false);
13195     } else if ($cop$$cmpcode == Assembler::equal) {
13196       Label done;
13197       __ jccb(Assembler::parity, done);
13198       __ jcc(Assembler::equal, *l, false);
13199       __ bind(done);
13200     } else {
13201        ShouldNotReachHere();
13202     }
13203   %}
13204   ins_pipe(pipe_jcc);
13205 %}
13206 
13207 // ============================================================================
13208 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
13209 // array for an instance of the superklass.  Set a hidden internal cache on a
13210 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
13211 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
13212 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
13213   match(Set result (PartialSubtypeCheck sub super));
13214   effect( KILL rcx, KILL cr );
13215 
13216   ins_cost(1100);  // slightly larger than the next version
13217   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
13218             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
13219             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
13220             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
13221             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
13222             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
13223             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
13224      "miss:\t" %}
13225 
13226   opcode(0x1); // Force a XOR of EDI
13227   ins_encode( enc_PartialSubtypeCheck() );
13228   ins_pipe( pipe_slow );
13229 %}
13230 
13231 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
13232   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
13233   effect( KILL rcx, KILL result );
13234 
13235   ins_cost(1000);
13236   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
13237             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
13238             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
13239             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
13240             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
13241             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
13242      "miss:\t" %}
13243 
13244   opcode(0x0);  // No need to XOR EDI
13245   ins_encode( enc_PartialSubtypeCheck() );
13246   ins_pipe( pipe_slow );
13247 %}
13248 
13249 // ============================================================================
13250 // Branch Instructions -- short offset versions
13251 //
13252 // These instructions are used to replace jumps of a long offset (the default
13253 // match) with jumps of a shorter offset.  These instructions are all tagged
13254 // with the ins_short_branch attribute, which causes the ADLC to suppress the
13255 // match rules in general matching.  Instead, the ADLC generates a conversion
13256 // method in the MachNode which can be used to do in-place replacement of the
13257 // long variant with the shorter variant.  The compiler will determine if a
13258 // branch can be taken by the is_short_branch_offset() predicate in the machine
13259 // specific code section of the file.
13260 
13261 // Jump Direct - Label defines a relative address from JMP+1
13262 instruct jmpDir_short(label labl) %{
13263   match(Goto);
13264   effect(USE labl);
13265 
13266   ins_cost(300);
13267   format %{ "JMP,s  $labl" %}
13268   size(2);
13269   ins_encode %{
13270     Label* L = $labl$$label;
13271     __ jmpb(*L);
13272   %}
13273   ins_pipe( pipe_jmp );
13274   ins_short_branch(1);
13275 %}
13276 
13277 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13278 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
13279   match(If cop cr);
13280   effect(USE labl);
13281 
13282   ins_cost(300);
13283   format %{ "J$cop,s  $labl" %}
13284   size(2);
13285   ins_encode %{
13286     Label* L = $labl$$label;
13287     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13288   %}
13289   ins_pipe( pipe_jcc );
13290   ins_short_branch(1);
13291 %}
13292 
13293 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13294 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
13295   match(CountedLoopEnd cop cr);
13296   effect(USE labl);
13297 
13298   ins_cost(300);
13299   format %{ "J$cop,s  $labl\t# Loop end" %}
13300   size(2);
13301   ins_encode %{
13302     Label* L = $labl$$label;
13303     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13304   %}
13305   ins_pipe( pipe_jcc );
13306   ins_short_branch(1);
13307 %}
13308 
13309 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13310 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13311   match(CountedLoopEnd cop cmp);
13312   effect(USE labl);
13313 
13314   ins_cost(300);
13315   format %{ "J$cop,us $labl\t# Loop end" %}
13316   size(2);
13317   ins_encode %{
13318     Label* L = $labl$$label;
13319     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13320   %}
13321   ins_pipe( pipe_jcc );
13322   ins_short_branch(1);
13323 %}
13324 
13325 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13326   match(CountedLoopEnd cop cmp);
13327   effect(USE labl);
13328 
13329   ins_cost(300);
13330   format %{ "J$cop,us $labl\t# Loop end" %}
13331   size(2);
13332   ins_encode %{
13333     Label* L = $labl$$label;
13334     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13335   %}
13336   ins_pipe( pipe_jcc );
13337   ins_short_branch(1);
13338 %}
13339 
13340 // Jump Direct Conditional - using unsigned comparison
13341 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13342   match(If cop cmp);
13343   effect(USE labl);
13344 
13345   ins_cost(300);
13346   format %{ "J$cop,us $labl" %}
13347   size(2);
13348   ins_encode %{
13349     Label* L = $labl$$label;
13350     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13351   %}
13352   ins_pipe( pipe_jcc );
13353   ins_short_branch(1);
13354 %}
13355 
13356 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13357   match(If cop cmp);
13358   effect(USE labl);
13359 
13360   ins_cost(300);
13361   format %{ "J$cop,us $labl" %}
13362   size(2);
13363   ins_encode %{
13364     Label* L = $labl$$label;
13365     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13366   %}
13367   ins_pipe( pipe_jcc );
13368   ins_short_branch(1);
13369 %}
13370 
13371 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
13372   match(If cop cmp);
13373   effect(USE labl);
13374 
13375   ins_cost(300);
13376   format %{ $$template
13377     if ($cop$$cmpcode == Assembler::notEqual) {
13378       $$emit$$"JP,u,s   $labl\n\t"
13379       $$emit$$"J$cop,u,s   $labl"
13380     } else {
13381       $$emit$$"JP,u,s   done\n\t"
13382       $$emit$$"J$cop,u,s  $labl\n\t"
13383       $$emit$$"done:"
13384     }
13385   %}
13386   size(4);
13387   ins_encode %{
13388     Label* l = $labl$$label;
13389     if ($cop$$cmpcode == Assembler::notEqual) {
13390       __ jccb(Assembler::parity, *l);
13391       __ jccb(Assembler::notEqual, *l);
13392     } else if ($cop$$cmpcode == Assembler::equal) {
13393       Label done;
13394       __ jccb(Assembler::parity, done);
13395       __ jccb(Assembler::equal, *l);
13396       __ bind(done);
13397     } else {
13398        ShouldNotReachHere();
13399     }
13400   %}
13401   ins_pipe(pipe_jcc);
13402   ins_short_branch(1);
13403 %}
13404 
13405 // ============================================================================
13406 // Long Compare
13407 //
13408 // Currently we hold longs in 2 registers.  Comparing such values efficiently
13409 // is tricky.  The flavor of compare used depends on whether we are testing
13410 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
13411 // The GE test is the negated LT test.  The LE test can be had by commuting
13412 // the operands (yielding a GE test) and then negating; negate again for the
13413 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
13414 // NE test is negated from that.
13415 
13416 // Due to a shortcoming in the ADLC, it mixes up expressions like:
13417 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
13418 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
13419 // are collapsed internally in the ADLC's dfa-gen code.  The match for
13420 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
13421 // foo match ends up with the wrong leaf.  One fix is to not match both
13422 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
13423 // both forms beat the trinary form of long-compare and both are very useful
13424 // on Intel which has so few registers.
13425 
13426 // Manifest a CmpL result in an integer register.  Very painful.
13427 // This is the test to avoid.
13428 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
13429   match(Set dst (CmpL3 src1 src2));
13430   effect( KILL flags );
13431   ins_cost(1000);
13432   format %{ "XOR    $dst,$dst\n\t"
13433             "CMP    $src1.hi,$src2.hi\n\t"
13434             "JLT,s  m_one\n\t"
13435             "JGT,s  p_one\n\t"
13436             "CMP    $src1.lo,$src2.lo\n\t"
13437             "JB,s   m_one\n\t"
13438             "JEQ,s  done\n"
13439     "p_one:\tINC    $dst\n\t"
13440             "JMP,s  done\n"
13441     "m_one:\tDEC    $dst\n"
13442      "done:" %}
13443   ins_encode %{
13444     Label p_one, m_one, done;
13445     __ xorptr($dst$$Register, $dst$$Register);
13446     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
13447     __ jccb(Assembler::less,    m_one);
13448     __ jccb(Assembler::greater, p_one);
13449     __ cmpl($src1$$Register, $src2$$Register);
13450     __ jccb(Assembler::below,   m_one);
13451     __ jccb(Assembler::equal,   done);
13452     __ bind(p_one);
13453     __ incrementl($dst$$Register);
13454     __ jmpb(done);
13455     __ bind(m_one);
13456     __ decrementl($dst$$Register);
13457     __ bind(done);
13458   %}
13459   ins_pipe( pipe_slow );
13460 %}
13461 
13462 //======
13463 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
13464 // compares.  Can be used for LE or GT compares by reversing arguments.
13465 // NOT GOOD FOR EQ/NE tests.
13466 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
13467   match( Set flags (CmpL src zero ));
13468   ins_cost(100);
13469   format %{ "TEST   $src.hi,$src.hi" %}
13470   opcode(0x85);
13471   ins_encode( OpcP, RegReg_Hi2( src, src ) );
13472   ins_pipe( ialu_cr_reg_reg );
13473 %}
13474 
13475 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
13476 // compares.  Can be used for LE or GT compares by reversing arguments.
13477 // NOT GOOD FOR EQ/NE tests.
13478 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13479   match( Set flags (CmpL src1 src2 ));
13480   effect( TEMP tmp );
13481   ins_cost(300);
13482   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13483             "MOV    $tmp,$src1.hi\n\t"
13484             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
13485   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
13486   ins_pipe( ialu_cr_reg_reg );
13487 %}
13488 
13489 // Long compares reg < zero/req OR reg >= zero/req.
13490 // Just a wrapper for a normal branch, plus the predicate test.
13491 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
13492   match(If cmp flags);
13493   effect(USE labl);
13494   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13495   expand %{
13496     jmpCon(cmp,flags,labl);    // JLT or JGE...
13497   %}
13498 %}
13499 
13500 // Compare 2 longs and CMOVE longs.
13501 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
13502   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13503   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13504   ins_cost(400);
13505   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13506             "CMOV$cmp $dst.hi,$src.hi" %}
13507   opcode(0x0F,0x40);
13508   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13509   ins_pipe( pipe_cmov_reg_long );
13510 %}
13511 
13512 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
13513   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13514   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13515   ins_cost(500);
13516   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13517             "CMOV$cmp $dst.hi,$src.hi" %}
13518   opcode(0x0F,0x40);
13519   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13520   ins_pipe( pipe_cmov_reg_long );
13521 %}
13522 
13523 // Compare 2 longs and CMOVE ints.
13524 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
13525   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13526   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13527   ins_cost(200);
13528   format %{ "CMOV$cmp $dst,$src" %}
13529   opcode(0x0F,0x40);
13530   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13531   ins_pipe( pipe_cmov_reg );
13532 %}
13533 
13534 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
13535   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13536   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13537   ins_cost(250);
13538   format %{ "CMOV$cmp $dst,$src" %}
13539   opcode(0x0F,0x40);
13540   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13541   ins_pipe( pipe_cmov_mem );
13542 %}
13543 
13544 // Compare 2 longs and CMOVE ints.
13545 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
13546   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13547   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13548   ins_cost(200);
13549   format %{ "CMOV$cmp $dst,$src" %}
13550   opcode(0x0F,0x40);
13551   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13552   ins_pipe( pipe_cmov_reg );
13553 %}
13554 
13555 // Compare 2 longs and CMOVE doubles
13556 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
13557   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13558   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13559   ins_cost(200);
13560   expand %{
13561     fcmovD_regS(cmp,flags,dst,src);
13562   %}
13563 %}
13564 
13565 // Compare 2 longs and CMOVE doubles
13566 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
13567   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13568   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13569   ins_cost(200);
13570   expand %{
13571     fcmovXD_regS(cmp,flags,dst,src);
13572   %}
13573 %}
13574 
13575 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
13576   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13577   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13578   ins_cost(200);
13579   expand %{
13580     fcmovF_regS(cmp,flags,dst,src);
13581   %}
13582 %}
13583 
13584 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
13585   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13586   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13587   ins_cost(200);
13588   expand %{
13589     fcmovX_regS(cmp,flags,dst,src);
13590   %}
13591 %}
13592 
13593 //======
13594 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13595 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
13596   match( Set flags (CmpL src zero ));
13597   effect(TEMP tmp);
13598   ins_cost(200);
13599   format %{ "MOV    $tmp,$src.lo\n\t"
13600             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
13601   ins_encode( long_cmp_flags0( src, tmp ) );
13602   ins_pipe( ialu_reg_reg_long );
13603 %}
13604 
13605 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13606 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
13607   match( Set flags (CmpL src1 src2 ));
13608   ins_cost(200+300);
13609   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13610             "JNE,s  skip\n\t"
13611             "CMP    $src1.hi,$src2.hi\n\t"
13612      "skip:\t" %}
13613   ins_encode( long_cmp_flags1( src1, src2 ) );
13614   ins_pipe( ialu_cr_reg_reg );
13615 %}
13616 
13617 // Long compare reg == zero/reg OR reg != zero/reg
13618 // Just a wrapper for a normal branch, plus the predicate test.
13619 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
13620   match(If cmp flags);
13621   effect(USE labl);
13622   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13623   expand %{
13624     jmpCon(cmp,flags,labl);    // JEQ or JNE...
13625   %}
13626 %}
13627 
13628 // Compare 2 longs and CMOVE longs.
13629 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
13630   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13631   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13632   ins_cost(400);
13633   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13634             "CMOV$cmp $dst.hi,$src.hi" %}
13635   opcode(0x0F,0x40);
13636   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13637   ins_pipe( pipe_cmov_reg_long );
13638 %}
13639 
13640 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
13641   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13642   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13643   ins_cost(500);
13644   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13645             "CMOV$cmp $dst.hi,$src.hi" %}
13646   opcode(0x0F,0x40);
13647   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13648   ins_pipe( pipe_cmov_reg_long );
13649 %}
13650 
13651 // Compare 2 longs and CMOVE ints.
13652 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
13653   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13654   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13655   ins_cost(200);
13656   format %{ "CMOV$cmp $dst,$src" %}
13657   opcode(0x0F,0x40);
13658   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13659   ins_pipe( pipe_cmov_reg );
13660 %}
13661 
13662 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
13663   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13664   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13665   ins_cost(250);
13666   format %{ "CMOV$cmp $dst,$src" %}
13667   opcode(0x0F,0x40);
13668   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13669   ins_pipe( pipe_cmov_mem );
13670 %}
13671 
13672 // Compare 2 longs and CMOVE ints.
13673 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
13674   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13675   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13676   ins_cost(200);
13677   format %{ "CMOV$cmp $dst,$src" %}
13678   opcode(0x0F,0x40);
13679   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13680   ins_pipe( pipe_cmov_reg );
13681 %}
13682 
13683 // Compare 2 longs and CMOVE doubles
13684 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
13685   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13686   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13687   ins_cost(200);
13688   expand %{
13689     fcmovD_regS(cmp,flags,dst,src);
13690   %}
13691 %}
13692 
13693 // Compare 2 longs and CMOVE doubles
13694 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
13695   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13696   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13697   ins_cost(200);
13698   expand %{
13699     fcmovXD_regS(cmp,flags,dst,src);
13700   %}
13701 %}
13702 
13703 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
13704   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13705   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13706   ins_cost(200);
13707   expand %{
13708     fcmovF_regS(cmp,flags,dst,src);
13709   %}
13710 %}
13711 
13712 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
13713   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13714   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13715   ins_cost(200);
13716   expand %{
13717     fcmovX_regS(cmp,flags,dst,src);
13718   %}
13719 %}
13720 
13721 //======
13722 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13723 // Same as cmpL_reg_flags_LEGT except must negate src
13724 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
13725   match( Set flags (CmpL src zero ));
13726   effect( TEMP tmp );
13727   ins_cost(300);
13728   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
13729             "CMP    $tmp,$src.lo\n\t"
13730             "SBB    $tmp,$src.hi\n\t" %}
13731   ins_encode( long_cmp_flags3(src, tmp) );
13732   ins_pipe( ialu_reg_reg_long );
13733 %}
13734 
13735 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13736 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
13737 // requires a commuted test to get the same result.
13738 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13739   match( Set flags (CmpL src1 src2 ));
13740   effect( TEMP tmp );
13741   ins_cost(300);
13742   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
13743             "MOV    $tmp,$src2.hi\n\t"
13744             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
13745   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
13746   ins_pipe( ialu_cr_reg_reg );
13747 %}
13748 
13749 // Long compares reg < zero/req OR reg >= zero/req.
13750 // Just a wrapper for a normal branch, plus the predicate test
13751 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
13752   match(If cmp flags);
13753   effect(USE labl);
13754   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
13755   ins_cost(300);
13756   expand %{
13757     jmpCon(cmp,flags,labl);    // JGT or JLE...
13758   %}
13759 %}
13760 
13761 // Compare 2 longs and CMOVE longs.
13762 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
13763   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13764   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13765   ins_cost(400);
13766   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13767             "CMOV$cmp $dst.hi,$src.hi" %}
13768   opcode(0x0F,0x40);
13769   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13770   ins_pipe( pipe_cmov_reg_long );
13771 %}
13772 
13773 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
13774   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13775   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13776   ins_cost(500);
13777   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13778             "CMOV$cmp $dst.hi,$src.hi+4" %}
13779   opcode(0x0F,0x40);
13780   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13781   ins_pipe( pipe_cmov_reg_long );
13782 %}
13783 
13784 // Compare 2 longs and CMOVE ints.
13785 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
13786   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13787   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13788   ins_cost(200);
13789   format %{ "CMOV$cmp $dst,$src" %}
13790   opcode(0x0F,0x40);
13791   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13792   ins_pipe( pipe_cmov_reg );
13793 %}
13794 
13795 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
13796   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13797   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13798   ins_cost(250);
13799   format %{ "CMOV$cmp $dst,$src" %}
13800   opcode(0x0F,0x40);
13801   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13802   ins_pipe( pipe_cmov_mem );
13803 %}
13804 
13805 // Compare 2 longs and CMOVE ptrs.
13806 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
13807   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13808   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13809   ins_cost(200);
13810   format %{ "CMOV$cmp $dst,$src" %}
13811   opcode(0x0F,0x40);
13812   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13813   ins_pipe( pipe_cmov_reg );
13814 %}
13815 
13816 // Compare 2 longs and CMOVE doubles
13817 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
13818   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13819   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13820   ins_cost(200);
13821   expand %{
13822     fcmovD_regS(cmp,flags,dst,src);
13823   %}
13824 %}
13825 
13826 // Compare 2 longs and CMOVE doubles
13827 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
13828   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13829   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13830   ins_cost(200);
13831   expand %{
13832     fcmovXD_regS(cmp,flags,dst,src);
13833   %}
13834 %}
13835 
13836 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
13837   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13838   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13839   ins_cost(200);
13840   expand %{
13841     fcmovF_regS(cmp,flags,dst,src);
13842   %}
13843 %}
13844 
13845 
13846 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
13847   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13848   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13849   ins_cost(200);
13850   expand %{
13851     fcmovX_regS(cmp,flags,dst,src);
13852   %}
13853 %}
13854 
13855 
13856 // ============================================================================
13857 // Procedure Call/Return Instructions
13858 // Call Java Static Instruction
13859 // Note: If this code changes, the corresponding ret_addr_offset() and
13860 //       compute_padding() functions will have to be adjusted.
13861 instruct CallStaticJavaDirect(method meth) %{
13862   match(CallStaticJava);
13863   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
13864   effect(USE meth);
13865 
13866   ins_cost(300);
13867   format %{ "CALL,static " %}
13868   opcode(0xE8); /* E8 cd */
13869   ins_encode( pre_call_FPU,
13870               Java_Static_Call( meth ),
13871               call_epilog,
13872               post_call_FPU );
13873   ins_pipe( pipe_slow );
13874   ins_alignment(4);
13875 %}
13876 
13877 // Call Java Static Instruction (method handle version)
13878 // Note: If this code changes, the corresponding ret_addr_offset() and
13879 //       compute_padding() functions will have to be adjusted.
13880 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
13881   match(CallStaticJava);
13882   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
13883   effect(USE meth);
13884   // EBP is saved by all callees (for interpreter stack correction).
13885   // We use it here for a similar purpose, in {preserve,restore}_SP.
13886 
13887   ins_cost(300);
13888   format %{ "CALL,static/MethodHandle " %}
13889   opcode(0xE8); /* E8 cd */
13890   ins_encode( pre_call_FPU,
13891               preserve_SP,
13892               Java_Static_Call( meth ),
13893               restore_SP,
13894               call_epilog,
13895               post_call_FPU );
13896   ins_pipe( pipe_slow );
13897   ins_alignment(4);
13898 %}
13899 
13900 // Call Java Dynamic Instruction
13901 // Note: If this code changes, the corresponding ret_addr_offset() and
13902 //       compute_padding() functions will have to be adjusted.
13903 instruct CallDynamicJavaDirect(method meth) %{
13904   match(CallDynamicJava);
13905   effect(USE meth);
13906 
13907   ins_cost(300);
13908   format %{ "MOV    EAX,(oop)-1\n\t"
13909             "CALL,dynamic" %}
13910   opcode(0xE8); /* E8 cd */
13911   ins_encode( pre_call_FPU,
13912               Java_Dynamic_Call( meth ),
13913               call_epilog,
13914               post_call_FPU );
13915   ins_pipe( pipe_slow );
13916   ins_alignment(4);
13917 %}
13918 
13919 // Call Runtime Instruction
13920 instruct CallRuntimeDirect(method meth) %{
13921   match(CallRuntime );
13922   effect(USE meth);
13923 
13924   ins_cost(300);
13925   format %{ "CALL,runtime " %}
13926   opcode(0xE8); /* E8 cd */
13927   // Use FFREEs to clear entries in float stack
13928   ins_encode( pre_call_FPU,
13929               FFree_Float_Stack_All,
13930               Java_To_Runtime( meth ),
13931               post_call_FPU );
13932   ins_pipe( pipe_slow );
13933 %}
13934 
13935 // Call runtime without safepoint
13936 instruct CallLeafDirect(method meth) %{
13937   match(CallLeaf);
13938   effect(USE meth);
13939 
13940   ins_cost(300);
13941   format %{ "CALL_LEAF,runtime " %}
13942   opcode(0xE8); /* E8 cd */
13943   ins_encode( pre_call_FPU,
13944               FFree_Float_Stack_All,
13945               Java_To_Runtime( meth ),
13946               Verify_FPU_For_Leaf, post_call_FPU );
13947   ins_pipe( pipe_slow );
13948 %}
13949 
13950 instruct CallLeafNoFPDirect(method meth) %{
13951   match(CallLeafNoFP);
13952   effect(USE meth);
13953 
13954   ins_cost(300);
13955   format %{ "CALL_LEAF_NOFP,runtime " %}
13956   opcode(0xE8); /* E8 cd */
13957   ins_encode(Java_To_Runtime(meth));
13958   ins_pipe( pipe_slow );
13959 %}
13960 
13961 
13962 // Return Instruction
13963 // Remove the return address & jump to it.
13964 instruct Ret() %{
13965   match(Return);
13966   format %{ "RET" %}
13967   opcode(0xC3);
13968   ins_encode(OpcP);
13969   ins_pipe( pipe_jmp );
13970 %}
13971 
13972 // Tail Call; Jump from runtime stub to Java code.
13973 // Also known as an 'interprocedural jump'.
13974 // Target of jump will eventually return to caller.
13975 // TailJump below removes the return address.
13976 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13977   match(TailCall jump_target method_oop );
13978   ins_cost(300);
13979   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13980   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13981   ins_encode( OpcP, RegOpc(jump_target) );
13982   ins_pipe( pipe_jmp );
13983 %}
13984 
13985 
13986 // Tail Jump; remove the return address; jump to target.
13987 // TailCall above leaves the return address around.
13988 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13989   match( TailJump jump_target ex_oop );
13990   ins_cost(300);
13991   format %{ "POP    EDX\t# pop return address into dummy\n\t"
13992             "JMP    $jump_target " %}
13993   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13994   ins_encode( enc_pop_rdx,
13995               OpcP, RegOpc(jump_target) );
13996   ins_pipe( pipe_jmp );
13997 %}
13998 
13999 // Create exception oop: created by stack-crawling runtime code.
14000 // Created exception is now available to this handler, and is setup
14001 // just prior to jumping to this handler.  No code emitted.
14002 instruct CreateException( eAXRegP ex_oop )
14003 %{
14004   match(Set ex_oop (CreateEx));
14005 
14006   size(0);
14007   // use the following format syntax
14008   format %{ "# exception oop is in EAX; no code emitted" %}
14009   ins_encode();
14010   ins_pipe( empty );
14011 %}
14012 
14013 
14014 // Rethrow exception:
14015 // The exception oop will come in the first argument position.
14016 // Then JUMP (not call) to the rethrow stub code.
14017 instruct RethrowException()
14018 %{
14019   match(Rethrow);
14020 
14021   // use the following format syntax
14022   format %{ "JMP    rethrow_stub" %}
14023   ins_encode(enc_rethrow);
14024   ins_pipe( pipe_jmp );
14025 %}
14026 
14027 // inlined locking and unlocking
14028 
14029 
14030 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
14031   match( Set cr (FastLock object box) );
14032   effect( TEMP tmp, TEMP scr );
14033   ins_cost(300);
14034   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
14035   ins_encode( Fast_Lock(object,box,tmp,scr) );
14036   ins_pipe( pipe_slow );
14037 %}
14038 
14039 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
14040   match( Set cr (FastUnlock object box) );
14041   effect( TEMP tmp );
14042   ins_cost(300);
14043   format %{ "FASTUNLOCK $object, $box, $tmp" %}
14044   ins_encode( Fast_Unlock(object,box,tmp) );
14045   ins_pipe( pipe_slow );
14046 %}
14047 
14048 
14049 
14050 // ============================================================================
14051 // Safepoint Instruction
14052 instruct safePoint_poll(eFlagsReg cr) %{
14053   match(SafePoint);
14054   effect(KILL cr);
14055 
14056   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
14057   // On SPARC that might be acceptable as we can generate the address with
14058   // just a sethi, saving an or.  By polling at offset 0 we can end up
14059   // putting additional pressure on the index-0 in the D$.  Because of
14060   // alignment (just like the situation at hand) the lower indices tend
14061   // to see more traffic.  It'd be better to change the polling address
14062   // to offset 0 of the last $line in the polling page.
14063 
14064   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
14065   ins_cost(125);
14066   size(6) ;
14067   ins_encode( Safepoint_Poll() );
14068   ins_pipe( ialu_reg_mem );
14069 %}
14070 
14071 //----------PEEPHOLE RULES-----------------------------------------------------
14072 // These must follow all instruction definitions as they use the names
14073 // defined in the instructions definitions.
14074 //
14075 // peepmatch ( root_instr_name [preceding_instruction]* );
14076 //
14077 // peepconstraint %{
14078 // (instruction_number.operand_name relational_op instruction_number.operand_name
14079 //  [, ...] );
14080 // // instruction numbers are zero-based using left to right order in peepmatch
14081 //
14082 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
14083 // // provide an instruction_number.operand_name for each operand that appears
14084 // // in the replacement instruction's match rule
14085 //
14086 // ---------VM FLAGS---------------------------------------------------------
14087 //
14088 // All peephole optimizations can be turned off using -XX:-OptoPeephole
14089 //
14090 // Each peephole rule is given an identifying number starting with zero and
14091 // increasing by one in the order seen by the parser.  An individual peephole
14092 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
14093 // on the command-line.
14094 //
14095 // ---------CURRENT LIMITATIONS----------------------------------------------
14096 //
14097 // Only match adjacent instructions in same basic block
14098 // Only equality constraints
14099 // Only constraints between operands, not (0.dest_reg == EAX_enc)
14100 // Only one replacement instruction
14101 //
14102 // ---------EXAMPLE----------------------------------------------------------
14103 //
14104 // // pertinent parts of existing instructions in architecture description
14105 // instruct movI(eRegI dst, eRegI src) %{
14106 //   match(Set dst (CopyI src));
14107 // %}
14108 //
14109 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
14110 //   match(Set dst (AddI dst src));
14111 //   effect(KILL cr);
14112 // %}
14113 //
14114 // // Change (inc mov) to lea
14115 // peephole %{
14116 //   // increment preceeded by register-register move
14117 //   peepmatch ( incI_eReg movI );
14118 //   // require that the destination register of the increment
14119 //   // match the destination register of the move
14120 //   peepconstraint ( 0.dst == 1.dst );
14121 //   // construct a replacement instruction that sets
14122 //   // the destination to ( move's source register + one )
14123 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14124 // %}
14125 //
14126 // Implementation no longer uses movX instructions since
14127 // machine-independent system no longer uses CopyX nodes.
14128 //
14129 // peephole %{
14130 //   peepmatch ( incI_eReg movI );
14131 //   peepconstraint ( 0.dst == 1.dst );
14132 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14133 // %}
14134 //
14135 // peephole %{
14136 //   peepmatch ( decI_eReg movI );
14137 //   peepconstraint ( 0.dst == 1.dst );
14138 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14139 // %}
14140 //
14141 // peephole %{
14142 //   peepmatch ( addI_eReg_imm movI );
14143 //   peepconstraint ( 0.dst == 1.dst );
14144 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14145 // %}
14146 //
14147 // peephole %{
14148 //   peepmatch ( addP_eReg_imm movP );
14149 //   peepconstraint ( 0.dst == 1.dst );
14150 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
14151 // %}
14152 
14153 // // Change load of spilled value to only a spill
14154 // instruct storeI(memory mem, eRegI src) %{
14155 //   match(Set mem (StoreI mem src));
14156 // %}
14157 //
14158 // instruct loadI(eRegI dst, memory mem) %{
14159 //   match(Set dst (LoadI mem));
14160 // %}
14161 //
14162 peephole %{
14163   peepmatch ( loadI storeI );
14164   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
14165   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
14166 %}
14167 
14168 //----------SMARTSPILL RULES---------------------------------------------------
14169 // These must follow all instruction definitions as they use the names
14170 // defined in the instructions definitions.