1 //
   2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedOops) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       if (Universe::narrow_oop_base() == NULL)
 563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 564       else
 565         klass_load_size = 3*BytesPerInstWord;
 566     } else {
 567       klass_load_size = 1*BytesPerInstWord;
 568     }
 569     if (Assembler::is_simm13(v_off)) {
 570       return klass_load_size +
 571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 572              NativeCall::instruction_size);  // call; delay slot
 573     } else {
 574       return klass_load_size +
 575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 576              NativeCall::instruction_size);  // call; delay slot
 577     }
 578   }
 579 }
 580 
 581 int MachCallRuntimeNode::ret_addr_offset() {
 582 #ifdef _LP64
 583   if (MacroAssembler::is_far_target(entry_point())) {
 584     return NativeFarCall::instruction_size;
 585   } else {
 586     return NativeCall::instruction_size;
 587   }
 588 #else
 589   return NativeCall::instruction_size;  // call; delay slot
 590 #endif
 591 }
 592 
 593 // Indicate if the safepoint node needs the polling page as an input.
 594 // Since Sparc does not have absolute addressing, it does.
 595 bool SafePointNode::needs_polling_address_input() {
 596   return true;
 597 }
 598 
 599 // emit an interrupt that is caught by the debugger (for debugging compiler)
 600 void emit_break(CodeBuffer &cbuf) {
 601   MacroAssembler _masm(&cbuf);
 602   __ breakpoint_trap();
 603 }
 604 
 605 #ifndef PRODUCT
 606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 607   st->print("TA");
 608 }
 609 #endif
 610 
 611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 612   emit_break(cbuf);
 613 }
 614 
 615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 616   return MachNode::size(ra_);
 617 }
 618 
 619 // Traceable jump
 620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 621   MacroAssembler _masm(&cbuf);
 622   Register rdest = reg_to_register_object(jump_target);
 623   __ JMP(rdest, 0);
 624   __ delayed()->nop();
 625 }
 626 
 627 // Traceable jump and set exception pc
 628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 629   MacroAssembler _masm(&cbuf);
 630   Register rdest = reg_to_register_object(jump_target);
 631   __ JMP(rdest, 0);
 632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 633 }
 634 
 635 void emit_nop(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ nop();
 638 }
 639 
 640 void emit_illtrap(CodeBuffer &cbuf) {
 641   MacroAssembler _masm(&cbuf);
 642   __ illtrap(0);
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 651   const Node* addr = n->get_base_and_disp(offset, adr_type);
 652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 655   atype = atype->add_offset(offset);
 656   assert(disp32 == offset, "wrong disp32");
 657   return atype->_offset;
 658 }
 659 
 660 
 661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 662   assert(n->rule() != loadUB_rule, "");
 663 
 664   intptr_t offset = 0;
 665   Node* addr = n->in(2);
 666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 668     Node* a = addr->in(2/*AddPNode::Address*/);
 669     Node* o = addr->in(3/*AddPNode::Offset*/);
 670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 672     assert(atype->isa_oop_ptr(), "still an oop");
 673   }
 674   offset = atype->is_ptr()->_offset;
 675   if (offset != Type::OffsetBot)  offset += disp32;
 676   return offset;
 677 }
 678 
 679 static inline jdouble replicate_immI(int con, int count, int width) {
 680   // Load a constant replicated "count" times with width "width"
 681   int bit_width = width * 8;
 682   jlong elt_val = con;
 683   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 684   jlong val = elt_val;
 685   for (int i = 0; i < count - 1; i++) {
 686     val <<= bit_width;
 687     val |= elt_val;
 688   }
 689   jdouble dval = *((jdouble*) &val);  // coerce to double type
 690   return dval;
 691 }
 692 
 693 // Standard Sparc opcode form2 field breakdown
 694 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 695   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 696   int op = (f30 << 30) |
 697            (f29 << 29) |
 698            (f25 << 25) |
 699            (f22 << 22) |
 700            (f20 << 20) |
 701            (f19 << 19) |
 702            (f0  <<  0);
 703   cbuf.insts()->emit_int32(op);
 704 }
 705 
 706 // Standard Sparc opcode form2 field breakdown
 707 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 708   f0 >>= 10;           // Drop 10 bits
 709   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 710   int op = (f30 << 30) |
 711            (f25 << 25) |
 712            (f22 << 22) |
 713            (f0  <<  0);
 714   cbuf.insts()->emit_int32(op);
 715 }
 716 
 717 // Standard Sparc opcode form3 field breakdown
 718 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 719   int op = (f30 << 30) |
 720            (f25 << 25) |
 721            (f19 << 19) |
 722            (f14 << 14) |
 723            (f5  <<  5) |
 724            (f0  <<  0);
 725   cbuf.insts()->emit_int32(op);
 726 }
 727 
 728 // Standard Sparc opcode form3 field breakdown
 729 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 730   simm13 &= (1<<13)-1; // Mask to 13 bits
 731   int op = (f30 << 30) |
 732            (f25 << 25) |
 733            (f19 << 19) |
 734            (f14 << 14) |
 735            (1   << 13) | // bit to indicate immediate-mode
 736            (simm13<<0);
 737   cbuf.insts()->emit_int32(op);
 738 }
 739 
 740 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 741   simm10 &= (1<<10)-1; // Mask to 10 bits
 742   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 743 }
 744 
 745 #ifdef ASSERT
 746 // Helper function for VerifyOops in emit_form3_mem_reg
 747 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 748   warning("VerifyOops encountered unexpected instruction:");
 749   n->dump(2);
 750   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 751 }
 752 #endif
 753 
 754 
 755 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 756                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 757 
 758 #ifdef ASSERT
 759   // The following code implements the +VerifyOops feature.
 760   // It verifies oop values which are loaded into or stored out of
 761   // the current method activation.  +VerifyOops complements techniques
 762   // like ScavengeALot, because it eagerly inspects oops in transit,
 763   // as they enter or leave the stack, as opposed to ScavengeALot,
 764   // which inspects oops "at rest", in the stack or heap, at safepoints.
 765   // For this reason, +VerifyOops can sometimes detect bugs very close
 766   // to their point of creation.  It can also serve as a cross-check
 767   // on the validity of oop maps, when used toegether with ScavengeALot.
 768 
 769   // It would be good to verify oops at other points, especially
 770   // when an oop is used as a base pointer for a load or store.
 771   // This is presently difficult, because it is hard to know when
 772   // a base address is biased or not.  (If we had such information,
 773   // it would be easy and useful to make a two-argument version of
 774   // verify_oop which unbiases the base, and performs verification.)
 775 
 776   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 777   bool is_verified_oop_base  = false;
 778   bool is_verified_oop_load  = false;
 779   bool is_verified_oop_store = false;
 780   int tmp_enc = -1;
 781   if (VerifyOops && src1_enc != R_SP_enc) {
 782     // classify the op, mainly for an assert check
 783     int st_op = 0, ld_op = 0;
 784     switch (primary) {
 785     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 786     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 787     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 788     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 789     case Assembler::std_op3:  st_op = Op_StoreL; break;
 790     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 791     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 792 
 793     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 794     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 795     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 796     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 797     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 798     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 799     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 800     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 801     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 802     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 803     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 804 
 805     default: ShouldNotReachHere();
 806     }
 807     if (tertiary == REGP_OP) {
 808       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 809       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 810       else                          ShouldNotReachHere();
 811       if (st_op) {
 812         // a store
 813         // inputs are (0:control, 1:memory, 2:address, 3:value)
 814         Node* n2 = n->in(3);
 815         if (n2 != NULL) {
 816           const Type* t = n2->bottom_type();
 817           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 818         }
 819       } else {
 820         // a load
 821         const Type* t = n->bottom_type();
 822         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 823       }
 824     }
 825 
 826     if (ld_op) {
 827       // a Load
 828       // inputs are (0:control, 1:memory, 2:address)
 829       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 830           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 831           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 832           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 833           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 834           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 835           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 836           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 837           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 839           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 840           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 841           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 843           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 844           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
 845           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
 846           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
 847           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
 848           !(n->rule() == loadUB_rule)) {
 849         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 850       }
 851     } else if (st_op) {
 852       // a Store
 853       // inputs are (0:control, 1:memory, 2:address, 3:value)
 854       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 855           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 856           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 857           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 858           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 859           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
 860           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
 861           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
 862           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 863         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 864       }
 865     }
 866 
 867     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 868       Node* addr = n->in(2);
 869       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 870         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 871         if (atype != NULL) {
 872           intptr_t offset = get_offset_from_base(n, atype, disp32);
 873           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 874           if (offset != offset_2) {
 875             get_offset_from_base(n, atype, disp32);
 876             get_offset_from_base_2(n, atype, disp32);
 877           }
 878           assert(offset == offset_2, "different offsets");
 879           if (offset == disp32) {
 880             // we now know that src1 is a true oop pointer
 881             is_verified_oop_base = true;
 882             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 883               if( primary == Assembler::ldd_op3 ) {
 884                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 885               } else {
 886                 tmp_enc = dst_enc;
 887                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 888                 assert(src1_enc != dst_enc, "");
 889               }
 890             }
 891           }
 892           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 893                        || offset == oopDesc::mark_offset_in_bytes())) {
 894                       // loading the mark should not be allowed either, but
 895                       // we don't check this since it conflicts with InlineObjectHash
 896                       // usage of LoadINode to get the mark. We could keep the
 897                       // check if we create a new LoadMarkNode
 898             // but do not verify the object before its header is initialized
 899             ShouldNotReachHere();
 900           }
 901         }
 902       }
 903     }
 904   }
 905 #endif
 906 
 907   uint instr;
 908   instr = (Assembler::ldst_op << 30)
 909         | (dst_enc        << 25)
 910         | (primary        << 19)
 911         | (src1_enc       << 14);
 912 
 913   uint index = src2_enc;
 914   int disp = disp32;
 915 
 916   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 917     disp += STACK_BIAS;
 918 
 919   // We should have a compiler bailout here rather than a guarantee.
 920   // Better yet would be some mechanism to handle variable-size matches correctly.
 921   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 922 
 923   if( disp == 0 ) {
 924     // use reg-reg form
 925     // bit 13 is already zero
 926     instr |= index;
 927   } else {
 928     // use reg-imm form
 929     instr |= 0x00002000;          // set bit 13 to one
 930     instr |= disp & 0x1FFF;
 931   }
 932 
 933   cbuf.insts()->emit_int32(instr);
 934 
 935 #ifdef ASSERT
 936   {
 937     MacroAssembler _masm(&cbuf);
 938     if (is_verified_oop_base) {
 939       __ verify_oop(reg_to_register_object(src1_enc));
 940     }
 941     if (is_verified_oop_store) {
 942       __ verify_oop(reg_to_register_object(dst_enc));
 943     }
 944     if (tmp_enc != -1) {
 945       __ mov(O7, reg_to_register_object(tmp_enc));
 946     }
 947     if (is_verified_oop_load) {
 948       __ verify_oop(reg_to_register_object(dst_enc));
 949     }
 950   }
 951 #endif
 952 }
 953 
 954 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 955   // The method which records debug information at every safepoint
 956   // expects the call to be the first instruction in the snippet as
 957   // it creates a PcDesc structure which tracks the offset of a call
 958   // from the start of the codeBlob. This offset is computed as
 959   // code_end() - code_begin() of the code which has been emitted
 960   // so far.
 961   // In this particular case we have skirted around the problem by
 962   // putting the "mov" instruction in the delay slot but the problem
 963   // may bite us again at some other point and a cleaner/generic
 964   // solution using relocations would be needed.
 965   MacroAssembler _masm(&cbuf);
 966   __ set_inst_mark();
 967 
 968   // We flush the current window just so that there is a valid stack copy
 969   // the fact that the current window becomes active again instantly is
 970   // not a problem there is nothing live in it.
 971 
 972 #ifdef ASSERT
 973   int startpos = __ offset();
 974 #endif /* ASSERT */
 975 
 976   __ call((address)entry_point, rtype);
 977 
 978   if (preserve_g2)   __ delayed()->mov(G2, L7);
 979   else __ delayed()->nop();
 980 
 981   if (preserve_g2)   __ mov(L7, G2);
 982 
 983 #ifdef ASSERT
 984   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 985 #ifdef _LP64
 986     // Trash argument dump slots.
 987     __ set(0xb0b8ac0db0b8ac0d, G1);
 988     __ mov(G1, G5);
 989     __ stx(G1, SP, STACK_BIAS + 0x80);
 990     __ stx(G1, SP, STACK_BIAS + 0x88);
 991     __ stx(G1, SP, STACK_BIAS + 0x90);
 992     __ stx(G1, SP, STACK_BIAS + 0x98);
 993     __ stx(G1, SP, STACK_BIAS + 0xA0);
 994     __ stx(G1, SP, STACK_BIAS + 0xA8);
 995 #else // _LP64
 996     // this is also a native call, so smash the first 7 stack locations,
 997     // and the various registers
 998 
 999     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1000     // while [SP+0x44..0x58] are the argument dump slots.
1001     __ set((intptr_t)0xbaadf00d, G1);
1002     __ mov(G1, G5);
1003     __ sllx(G1, 32, G1);
1004     __ or3(G1, G5, G1);
1005     __ mov(G1, G5);
1006     __ stx(G1, SP, 0x40);
1007     __ stx(G1, SP, 0x48);
1008     __ stx(G1, SP, 0x50);
1009     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1010 #endif // _LP64
1011   }
1012 #endif /*ASSERT*/
1013 }
1014 
1015 //=============================================================================
1016 // REQUIRED FUNCTIONALITY for encoding
1017 void emit_lo(CodeBuffer &cbuf, int val) {  }
1018 void emit_hi(CodeBuffer &cbuf, int val) {  }
1019 
1020 
1021 //=============================================================================
1022 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1023 
1024 int Compile::ConstantTable::calculate_table_base_offset() const {
1025   if (UseRDPCForConstantTableBase) {
1026     // The table base offset might be less but then it fits into
1027     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1028     return Assembler::min_simm13();
1029   } else {
1030     int offset = -(size() / 2);
1031     if (!Assembler::is_simm13(offset)) {
1032       offset = Assembler::min_simm13();
1033     }
1034     return offset;
1035   }
1036 }
1037 
1038 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1039   Compile* C = ra_->C;
1040   Compile::ConstantTable& constant_table = C->constant_table();
1041   MacroAssembler _masm(&cbuf);
1042 
1043   Register r = as_Register(ra_->get_encode(this));
1044   CodeSection* consts_section = __ code()->consts();
1045   int consts_size = consts_section->align_at_start(consts_section->size());
1046   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1047 
1048   if (UseRDPCForConstantTableBase) {
1049     // For the following RDPC logic to work correctly the consts
1050     // section must be allocated right before the insts section.  This
1051     // assert checks for that.  The layout and the SECT_* constants
1052     // are defined in src/share/vm/asm/codeBuffer.hpp.
1053     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1054     int insts_offset = __ offset();
1055 
1056     // Layout:
1057     //
1058     // |----------- consts section ------------|----------- insts section -----------...
1059     // |------ constant table -----|- padding -|------------------x----
1060     //                                                            \ current PC (RDPC instruction)
1061     // |<------------- consts_size ----------->|<- insts_offset ->|
1062     //                                                            \ table base
1063     // The table base offset is later added to the load displacement
1064     // so it has to be negative.
1065     int table_base_offset = -(consts_size + insts_offset);
1066     int disp;
1067 
1068     // If the displacement from the current PC to the constant table
1069     // base fits into simm13 we set the constant table base to the
1070     // current PC.
1071     if (Assembler::is_simm13(table_base_offset)) {
1072       constant_table.set_table_base_offset(table_base_offset);
1073       disp = 0;
1074     } else {
1075       // Otherwise we set the constant table base offset to the
1076       // maximum negative displacement of load instructions to keep
1077       // the disp as small as possible:
1078       //
1079       // |<------------- consts_size ----------->|<- insts_offset ->|
1080       // |<--------- min_simm13 --------->|<-------- disp --------->|
1081       //                                  \ table base
1082       table_base_offset = Assembler::min_simm13();
1083       constant_table.set_table_base_offset(table_base_offset);
1084       disp = (consts_size + insts_offset) + table_base_offset;
1085     }
1086 
1087     __ rdpc(r);
1088 
1089     if (disp != 0) {
1090       assert(r != O7, "need temporary");
1091       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1092     }
1093   }
1094   else {
1095     // Materialize the constant table base.
1096     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1097     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1098     AddressLiteral base(baseaddr, rspec);
1099     __ set(base, r);
1100   }
1101 }
1102 
1103 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1104   if (UseRDPCForConstantTableBase) {
1105     // This is really the worst case but generally it's only 1 instruction.
1106     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1107   } else {
1108     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1109   }
1110 }
1111 
1112 #ifndef PRODUCT
1113 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1114   char reg[128];
1115   ra_->dump_register(this, reg);
1116   if (UseRDPCForConstantTableBase) {
1117     st->print("RDPC   %s\t! constant table base", reg);
1118   } else {
1119     st->print("SET    &constanttable,%s\t! constant table base", reg);
1120   }
1121 }
1122 #endif
1123 
1124 
1125 //=============================================================================
1126 
1127 #ifndef PRODUCT
1128 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1129   Compile* C = ra_->C;
1130 
1131   for (int i = 0; i < OptoPrologueNops; i++) {
1132     st->print_cr("NOP"); st->print("\t");
1133   }
1134 
1135   if( VerifyThread ) {
1136     st->print_cr("Verify_Thread"); st->print("\t");
1137   }
1138 
1139   size_t framesize = C->frame_slots() << LogBytesPerInt;
1140 
1141   // Calls to C2R adapters often do not accept exceptional returns.
1142   // We require that their callers must bang for them.  But be careful, because
1143   // some VM calls (such as call site linkage) can use several kilobytes of
1144   // stack.  But the stack safety zone should account for that.
1145   // See bugs 4446381, 4468289, 4497237.
1146   if (C->need_stack_bang(framesize)) {
1147     st->print_cr("! stack bang"); st->print("\t");
1148   }
1149 
1150   if (Assembler::is_simm13(-framesize)) {
1151     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1152   } else {
1153     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1154     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1155     st->print   ("SAVE   R_SP,R_G3,R_SP");
1156   }
1157 
1158 }
1159 #endif
1160 
1161 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1162   Compile* C = ra_->C;
1163   MacroAssembler _masm(&cbuf);
1164 
1165   for (int i = 0; i < OptoPrologueNops; i++) {
1166     __ nop();
1167   }
1168 
1169   __ verify_thread();
1170 
1171   size_t framesize = C->frame_slots() << LogBytesPerInt;
1172   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1173   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1174 
1175   // Calls to C2R adapters often do not accept exceptional returns.
1176   // We require that their callers must bang for them.  But be careful, because
1177   // some VM calls (such as call site linkage) can use several kilobytes of
1178   // stack.  But the stack safety zone should account for that.
1179   // See bugs 4446381, 4468289, 4497237.
1180   if (C->need_stack_bang(framesize)) {
1181     __ generate_stack_overflow_check(framesize);
1182   }
1183 
1184   if (Assembler::is_simm13(-framesize)) {
1185     __ save(SP, -framesize, SP);
1186   } else {
1187     __ sethi(-framesize & ~0x3ff, G3);
1188     __ add(G3, -framesize & 0x3ff, G3);
1189     __ save(SP, G3, SP);
1190   }
1191   C->set_frame_complete( __ offset() );
1192 
1193   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1194     // NOTE: We set the table base offset here because users might be
1195     // emitted before MachConstantBaseNode.
1196     Compile::ConstantTable& constant_table = C->constant_table();
1197     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1198   }
1199 }
1200 
1201 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1202   return MachNode::size(ra_);
1203 }
1204 
1205 int MachPrologNode::reloc() const {
1206   return 10; // a large enough number
1207 }
1208 
1209 //=============================================================================
1210 #ifndef PRODUCT
1211 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1212   Compile* C = ra_->C;
1213 
1214   if( do_polling() && ra_->C->is_method_compilation() ) {
1215     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1216 #ifdef _LP64
1217     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1218 #else
1219     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1220 #endif
1221   }
1222 
1223   if( do_polling() )
1224     st->print("RET\n\t");
1225 
1226   st->print("RESTORE");
1227 }
1228 #endif
1229 
1230 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1231   MacroAssembler _masm(&cbuf);
1232   Compile* C = ra_->C;
1233 
1234   __ verify_thread();
1235 
1236   // If this does safepoint polling, then do it here
1237   if( do_polling() && ra_->C->is_method_compilation() ) {
1238     AddressLiteral polling_page(os::get_polling_page());
1239     __ sethi(polling_page, L0);
1240     __ relocate(relocInfo::poll_return_type);
1241     __ ld_ptr( L0, 0, G0 );
1242   }
1243 
1244   // If this is a return, then stuff the restore in the delay slot
1245   if( do_polling() ) {
1246     __ ret();
1247     __ delayed()->restore();
1248   } else {
1249     __ restore();
1250   }
1251 }
1252 
1253 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1254   return MachNode::size(ra_);
1255 }
1256 
1257 int MachEpilogNode::reloc() const {
1258   return 16; // a large enough number
1259 }
1260 
1261 const Pipeline * MachEpilogNode::pipeline() const {
1262   return MachNode::pipeline_class();
1263 }
1264 
1265 int MachEpilogNode::safepoint_offset() const {
1266   assert( do_polling(), "no return for this epilog node");
1267   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1268 }
1269 
1270 //=============================================================================
1271 
1272 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1273 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1274 static enum RC rc_class( OptoReg::Name reg ) {
1275   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1276   if (OptoReg::is_stack(reg)) return rc_stack;
1277   VMReg r = OptoReg::as_VMReg(reg);
1278   if (r->is_Register()) return rc_int;
1279   assert(r->is_FloatRegister(), "must be");
1280   return rc_float;
1281 }
1282 
1283 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1284   if( cbuf ) {
1285     // Better yet would be some mechanism to handle variable-size matches correctly
1286     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1287       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1288     } else {
1289       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1290     }
1291   }
1292 #ifndef PRODUCT
1293   else if( !do_size ) {
1294     if( size != 0 ) st->print("\n\t");
1295     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1296     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1297   }
1298 #endif
1299   return size+4;
1300 }
1301 
1302 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1303   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1304 #ifndef PRODUCT
1305   else if( !do_size ) {
1306     if( size != 0 ) st->print("\n\t");
1307     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1308   }
1309 #endif
1310   return size+4;
1311 }
1312 
1313 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1314                                         PhaseRegAlloc *ra_,
1315                                         bool do_size,
1316                                         outputStream* st ) const {
1317   // Get registers to move
1318   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1319   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1320   OptoReg::Name dst_second = ra_->get_reg_second(this );
1321   OptoReg::Name dst_first = ra_->get_reg_first(this );
1322 
1323   enum RC src_second_rc = rc_class(src_second);
1324   enum RC src_first_rc = rc_class(src_first);
1325   enum RC dst_second_rc = rc_class(dst_second);
1326   enum RC dst_first_rc = rc_class(dst_first);
1327 
1328   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1329 
1330   // Generate spill code!
1331   int size = 0;
1332 
1333   if( src_first == dst_first && src_second == dst_second )
1334     return size;            // Self copy, no move
1335 
1336   // --------------------------------------
1337   // Check for mem-mem move.  Load into unused float registers and fall into
1338   // the float-store case.
1339   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1340     int offset = ra_->reg2offset(src_first);
1341     // Further check for aligned-adjacent pair, so we can use a double load
1342     if( (src_first&1)==0 && src_first+1 == src_second ) {
1343       src_second    = OptoReg::Name(R_F31_num);
1344       src_second_rc = rc_float;
1345       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1346     } else {
1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1348     }
1349     src_first    = OptoReg::Name(R_F30_num);
1350     src_first_rc = rc_float;
1351   }
1352 
1353   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1354     int offset = ra_->reg2offset(src_second);
1355     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1356     src_second    = OptoReg::Name(R_F31_num);
1357     src_second_rc = rc_float;
1358   }
1359 
1360   // --------------------------------------
1361   // Check for float->int copy; requires a trip through memory
1362   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1363     int offset = frame::register_save_words*wordSize;
1364     if (cbuf) {
1365       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1366       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1367       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1368       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1369     }
1370 #ifndef PRODUCT
1371     else if (!do_size) {
1372       if (size != 0) st->print("\n\t");
1373       st->print(  "SUB    R_SP,16,R_SP\n");
1374       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1375       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1376       st->print("\tADD    R_SP,16,R_SP\n");
1377     }
1378 #endif
1379     size += 16;
1380   }
1381 
1382   // Check for float->int copy on T4
1383   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1384     // Further check for aligned-adjacent pair, so we can use a double move
1385     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1386       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1387     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1388   }
1389   // Check for int->float copy on T4
1390   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1391     // Further check for aligned-adjacent pair, so we can use a double move
1392     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1393       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1394     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1395   }
1396 
1397   // --------------------------------------
1398   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1399   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1400   // hardware does the flop for me.  Doubles are always aligned, so no problem
1401   // there.  Misaligned sources only come from native-long-returns (handled
1402   // special below).
1403 #ifndef _LP64
1404   if( src_first_rc == rc_int &&     // source is already big-endian
1405       src_second_rc != rc_bad &&    // 64-bit move
1406       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1407     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1408     // Do the big-endian flop.
1409     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1410     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1411   }
1412 #endif
1413 
1414   // --------------------------------------
1415   // Check for integer reg-reg copy
1416   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1417 #ifndef _LP64
1418     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1419       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1420       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1421       //       operand contains the least significant word of the 64-bit value and vice versa.
1422       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1423       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1424       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1425       if( cbuf ) {
1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1427         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1428         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1429 #ifndef PRODUCT
1430       } else if( !do_size ) {
1431         if( size != 0 ) st->print("\n\t");
1432         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1433         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1434         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1435 #endif
1436       }
1437       return size+12;
1438     }
1439     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1440       // returning a long value in I0/I1
1441       // a SpillCopy must be able to target a return instruction's reg_class
1442       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1443       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1444       //       operand contains the least significant word of the 64-bit value and vice versa.
1445       OptoReg::Name tdest = dst_first;
1446 
1447       if (src_first == dst_first) {
1448         tdest = OptoReg::Name(R_O7_num);
1449         size += 4;
1450       }
1451 
1452       if( cbuf ) {
1453         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1454         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1455         // ShrL_reg_imm6
1456         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1457         // ShrR_reg_imm6  src, 0, dst
1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1459         if (tdest != dst_first) {
1460           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1461         }
1462       }
1463 #ifndef PRODUCT
1464       else if( !do_size ) {
1465         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1466         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1467         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1468         if (tdest != dst_first) {
1469           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1470         }
1471       }
1472 #endif // PRODUCT
1473       return size+8;
1474     }
1475 #endif // !_LP64
1476     // Else normal reg-reg copy
1477     assert( src_second != dst_first, "smashed second before evacuating it" );
1478     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1479     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1480     // This moves an aligned adjacent pair.
1481     // See if we are done.
1482     if( src_first+1 == src_second && dst_first+1 == dst_second )
1483       return size;
1484   }
1485 
1486   // Check for integer store
1487   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1488     int offset = ra_->reg2offset(dst_first);
1489     // Further check for aligned-adjacent pair, so we can use a double store
1490     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1491       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1492     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1493   }
1494 
1495   // Check for integer load
1496   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1497     int offset = ra_->reg2offset(src_first);
1498     // Further check for aligned-adjacent pair, so we can use a double load
1499     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1500       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1501     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1502   }
1503 
1504   // Check for float reg-reg copy
1505   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1506     // Further check for aligned-adjacent pair, so we can use a double move
1507     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1508       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1509     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1510   }
1511 
1512   // Check for float store
1513   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1514     int offset = ra_->reg2offset(dst_first);
1515     // Further check for aligned-adjacent pair, so we can use a double store
1516     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1517       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1518     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1519   }
1520 
1521   // Check for float load
1522   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1523     int offset = ra_->reg2offset(src_first);
1524     // Further check for aligned-adjacent pair, so we can use a double load
1525     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1526       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1527     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1528   }
1529 
1530   // --------------------------------------------------------------------
1531   // Check for hi bits still needing moving.  Only happens for misaligned
1532   // arguments to native calls.
1533   if( src_second == dst_second )
1534     return size;               // Self copy; no move
1535   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1536 
1537 #ifndef _LP64
1538   // In the LP64 build, all registers can be moved as aligned/adjacent
1539   // pairs, so there's never any need to move the high bits separately.
1540   // The 32-bit builds have to deal with the 32-bit ABI which can force
1541   // all sorts of silly alignment problems.
1542 
1543   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1544   // 32-bits of a 64-bit register, but are needed in low bits of another
1545   // register (else it's a hi-bits-to-hi-bits copy which should have
1546   // happened already as part of a 64-bit move)
1547   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1548     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1549     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1550     // Shift src_second down to dst_second's low bits.
1551     if( cbuf ) {
1552       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1553 #ifndef PRODUCT
1554     } else if( !do_size ) {
1555       if( size != 0 ) st->print("\n\t");
1556       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1557 #endif
1558     }
1559     return size+4;
1560   }
1561 
1562   // Check for high word integer store.  Must down-shift the hi bits
1563   // into a temp register, then fall into the case of storing int bits.
1564   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1565     // Shift src_second down to dst_second's low bits.
1566     if( cbuf ) {
1567       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1568 #ifndef PRODUCT
1569     } else if( !do_size ) {
1570       if( size != 0 ) st->print("\n\t");
1571       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1572 #endif
1573     }
1574     size+=4;
1575     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1576   }
1577 
1578   // Check for high word integer load
1579   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1580     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1581 
1582   // Check for high word integer store
1583   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1584     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1585 
1586   // Check for high word float store
1587   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1588     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1589 
1590 #endif // !_LP64
1591 
1592   Unimplemented();
1593 }
1594 
1595 #ifndef PRODUCT
1596 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1597   implementation( NULL, ra_, false, st );
1598 }
1599 #endif
1600 
1601 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1602   implementation( &cbuf, ra_, false, NULL );
1603 }
1604 
1605 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1606   return implementation( NULL, ra_, true, NULL );
1607 }
1608 
1609 //=============================================================================
1610 #ifndef PRODUCT
1611 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1612   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1613 }
1614 #endif
1615 
1616 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1617   MacroAssembler _masm(&cbuf);
1618   for(int i = 0; i < _count; i += 1) {
1619     __ nop();
1620   }
1621 }
1622 
1623 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1624   return 4 * _count;
1625 }
1626 
1627 
1628 //=============================================================================
1629 #ifndef PRODUCT
1630 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1631   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1632   int reg = ra_->get_reg_first(this);
1633   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1634 }
1635 #endif
1636 
1637 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1638   MacroAssembler _masm(&cbuf);
1639   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1640   int reg = ra_->get_encode(this);
1641 
1642   if (Assembler::is_simm13(offset)) {
1643      __ add(SP, offset, reg_to_register_object(reg));
1644   } else {
1645      __ set(offset, O7);
1646      __ add(SP, O7, reg_to_register_object(reg));
1647   }
1648 }
1649 
1650 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1651   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1652   assert(ra_ == ra_->C->regalloc(), "sanity");
1653   return ra_->C->scratch_emit_size(this);
1654 }
1655 
1656 //=============================================================================
1657 
1658 // emit call stub, compiled java to interpretor
1659 void emit_java_to_interp(CodeBuffer &cbuf ) {
1660 
1661   // Stub is fixed up when the corresponding call is converted from calling
1662   // compiled code to calling interpreted code.
1663   // set (empty), G5
1664   // jmp -1
1665 
1666   address mark = cbuf.insts_mark();  // get mark within main instrs section
1667 
1668   MacroAssembler _masm(&cbuf);
1669 
1670   address base =
1671   __ start_a_stub(Compile::MAX_stubs_size);
1672   if (base == NULL)  return;  // CodeBuffer::expand failed
1673 
1674   // static stub relocation stores the instruction address of the call
1675   __ relocate(static_stub_Relocation::spec(mark));
1676 
1677   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1678 
1679   __ set_inst_mark();
1680   AddressLiteral addrlit(-1);
1681   __ JUMP(addrlit, G3, 0);
1682 
1683   __ delayed()->nop();
1684 
1685   // Update current stubs pointer and restore code_end.
1686   __ end_a_stub();
1687 }
1688 
1689 // size of call stub, compiled java to interpretor
1690 uint size_java_to_interp() {
1691   // This doesn't need to be accurate but it must be larger or equal to
1692   // the real size of the stub.
1693   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1694           NativeJump::instruction_size + // sethi; jmp; nop
1695           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1696 }
1697 // relocation entries for call stub, compiled java to interpretor
1698 uint reloc_java_to_interp() {
1699   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1700 }
1701 
1702 
1703 //=============================================================================
1704 #ifndef PRODUCT
1705 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1706   st->print_cr("\nUEP:");
1707 #ifdef    _LP64
1708   if (UseCompressedOops) {
1709     assert(Universe::heap() != NULL, "java heap should be initialized");
1710     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1711     st->print_cr("\tSLL    R_G5,3,R_G5");
1712     if (Universe::narrow_oop_base() != NULL)
1713       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1714   } else {
1715     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1716   }
1717   st->print_cr("\tCMP    R_G5,R_G3" );
1718   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1719 #else  // _LP64
1720   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1721   st->print_cr("\tCMP    R_G5,R_G3" );
1722   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1723 #endif // _LP64
1724 }
1725 #endif
1726 
1727 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1728   MacroAssembler _masm(&cbuf);
1729   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1730   Register temp_reg   = G3;
1731   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1732 
1733   // Load klass from receiver
1734   __ load_klass(O0, temp_reg);
1735   // Compare against expected klass
1736   __ cmp(temp_reg, G5_ic_reg);
1737   // Branch to miss code, checks xcc or icc depending
1738   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1739 }
1740 
1741 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1742   return MachNode::size(ra_);
1743 }
1744 
1745 
1746 //=============================================================================
1747 
1748 uint size_exception_handler() {
1749   if (TraceJumps) {
1750     return (400); // just a guess
1751   }
1752   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1753 }
1754 
1755 uint size_deopt_handler() {
1756   if (TraceJumps) {
1757     return (400); // just a guess
1758   }
1759   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1760 }
1761 
1762 // Emit exception handler code.
1763 int emit_exception_handler(CodeBuffer& cbuf) {
1764   Register temp_reg = G3;
1765   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1766   MacroAssembler _masm(&cbuf);
1767 
1768   address base =
1769   __ start_a_stub(size_exception_handler());
1770   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1771 
1772   int offset = __ offset();
1773 
1774   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1775   __ delayed()->nop();
1776 
1777   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1778 
1779   __ end_a_stub();
1780 
1781   return offset;
1782 }
1783 
1784 int emit_deopt_handler(CodeBuffer& cbuf) {
1785   // Can't use any of the current frame's registers as we may have deopted
1786   // at a poll and everything (including G3) can be live.
1787   Register temp_reg = L0;
1788   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1789   MacroAssembler _masm(&cbuf);
1790 
1791   address base =
1792   __ start_a_stub(size_deopt_handler());
1793   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1794 
1795   int offset = __ offset();
1796   __ save_frame(0);
1797   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1798   __ delayed()->restore();
1799 
1800   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1801 
1802   __ end_a_stub();
1803   return offset;
1804 
1805 }
1806 
1807 // Given a register encoding, produce a Integer Register object
1808 static Register reg_to_register_object(int register_encoding) {
1809   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1810   return as_Register(register_encoding);
1811 }
1812 
1813 // Given a register encoding, produce a single-precision Float Register object
1814 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1815   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1816   return as_SingleFloatRegister(register_encoding);
1817 }
1818 
1819 // Given a register encoding, produce a double-precision Float Register object
1820 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1821   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1822   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1823   return as_DoubleFloatRegister(register_encoding);
1824 }
1825 
1826 const bool Matcher::match_rule_supported(int opcode) {
1827   if (!has_match_rule(opcode))
1828     return false;
1829 
1830   switch (opcode) {
1831   case Op_CountLeadingZerosI:
1832   case Op_CountLeadingZerosL:
1833   case Op_CountTrailingZerosI:
1834   case Op_CountTrailingZerosL:
1835     if (!UsePopCountInstruction)
1836       return false;
1837     break;
1838   }
1839 
1840   return true;  // Per default match rules are supported.
1841 }
1842 
1843 int Matcher::regnum_to_fpu_offset(int regnum) {
1844   return regnum - 32; // The FP registers are in the second chunk
1845 }
1846 
1847 #ifdef ASSERT
1848 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1849 #endif
1850 
1851 // Vector width in bytes
1852 const uint Matcher::vector_width_in_bytes(void) {
1853   return 8;
1854 }
1855 
1856 // Vector ideal reg
1857 const uint Matcher::vector_ideal_reg(void) {
1858   return Op_RegD;
1859 }
1860 
1861 // USII supports fxtof through the whole range of number, USIII doesn't
1862 const bool Matcher::convL2FSupported(void) {
1863   return VM_Version::has_fast_fxtof();
1864 }
1865 
1866 // Is this branch offset short enough that a short branch can be used?
1867 //
1868 // NOTE: If the platform does not provide any short branch variants, then
1869 //       this method should return false for offset 0.
1870 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1871   // The passed offset is relative to address of the branch.
1872   // Don't need to adjust the offset.
1873   return UseCBCond && Assembler::is_simm12(offset);
1874 }
1875 
1876 const bool Matcher::isSimpleConstant64(jlong value) {
1877   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1878   // Depends on optimizations in MacroAssembler::setx.
1879   int hi = (int)(value >> 32);
1880   int lo = (int)(value & ~0);
1881   return (hi == 0) || (hi == -1) || (lo == 0);
1882 }
1883 
1884 // No scaling for the parameter the ClearArray node.
1885 const bool Matcher::init_array_count_is_in_bytes = true;
1886 
1887 // Threshold size for cleararray.
1888 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1889 
1890 // No additional cost for CMOVL.
1891 const int Matcher::long_cmove_cost() { return 0; }
1892 
1893 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1894 const int Matcher::float_cmove_cost() {
1895   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1896 }
1897 
1898 // Should the Matcher clone shifts on addressing modes, expecting them to
1899 // be subsumed into complex addressing expressions or compute them into
1900 // registers?  True for Intel but false for most RISCs
1901 const bool Matcher::clone_shift_expressions = false;
1902 
1903 // Do we need to mask the count passed to shift instructions or does
1904 // the cpu only look at the lower 5/6 bits anyway?
1905 const bool Matcher::need_masked_shift_count = false;
1906 
1907 bool Matcher::narrow_oop_use_complex_address() {
1908   NOT_LP64(ShouldNotCallThis());
1909   assert(UseCompressedOops, "only for compressed oops code");
1910   return false;
1911 }
1912 
1913 // Is it better to copy float constants, or load them directly from memory?
1914 // Intel can load a float constant from a direct address, requiring no
1915 // extra registers.  Most RISCs will have to materialize an address into a
1916 // register first, so they would do better to copy the constant from stack.
1917 const bool Matcher::rematerialize_float_constants = false;
1918 
1919 // If CPU can load and store mis-aligned doubles directly then no fixup is
1920 // needed.  Else we split the double into 2 integer pieces and move it
1921 // piece-by-piece.  Only happens when passing doubles into C code as the
1922 // Java calling convention forces doubles to be aligned.
1923 #ifdef _LP64
1924 const bool Matcher::misaligned_doubles_ok = true;
1925 #else
1926 const bool Matcher::misaligned_doubles_ok = false;
1927 #endif
1928 
1929 // No-op on SPARC.
1930 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1931 }
1932 
1933 // Advertise here if the CPU requires explicit rounding operations
1934 // to implement the UseStrictFP mode.
1935 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1936 
1937 // Are floats conerted to double when stored to stack during deoptimization?
1938 // Sparc does not handle callee-save floats.
1939 bool Matcher::float_in_double() { return false; }
1940 
1941 // Do ints take an entire long register or just half?
1942 // Note that we if-def off of _LP64.
1943 // The relevant question is how the int is callee-saved.  In _LP64
1944 // the whole long is written but de-opt'ing will have to extract
1945 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1946 #ifdef _LP64
1947 const bool Matcher::int_in_long = true;
1948 #else
1949 const bool Matcher::int_in_long = false;
1950 #endif
1951 
1952 // Return whether or not this register is ever used as an argument.  This
1953 // function is used on startup to build the trampoline stubs in generateOptoStub.
1954 // Registers not mentioned will be killed by the VM call in the trampoline, and
1955 // arguments in those registers not be available to the callee.
1956 bool Matcher::can_be_java_arg( int reg ) {
1957   // Standard sparc 6 args in registers
1958   if( reg == R_I0_num ||
1959       reg == R_I1_num ||
1960       reg == R_I2_num ||
1961       reg == R_I3_num ||
1962       reg == R_I4_num ||
1963       reg == R_I5_num ) return true;
1964 #ifdef _LP64
1965   // 64-bit builds can pass 64-bit pointers and longs in
1966   // the high I registers
1967   if( reg == R_I0H_num ||
1968       reg == R_I1H_num ||
1969       reg == R_I2H_num ||
1970       reg == R_I3H_num ||
1971       reg == R_I4H_num ||
1972       reg == R_I5H_num ) return true;
1973 
1974   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1975     return true;
1976   }
1977 
1978 #else
1979   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1980   // Longs cannot be passed in O regs, because O regs become I regs
1981   // after a 'save' and I regs get their high bits chopped off on
1982   // interrupt.
1983   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1984   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1985 #endif
1986   // A few float args in registers
1987   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1988 
1989   return false;
1990 }
1991 
1992 bool Matcher::is_spillable_arg( int reg ) {
1993   return can_be_java_arg(reg);
1994 }
1995 
1996 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1997   // Use hardware SDIVX instruction when it is
1998   // faster than a code which use multiply.
1999   return VM_Version::has_fast_idiv();
2000 }
2001 
2002 // Register for DIVI projection of divmodI
2003 RegMask Matcher::divI_proj_mask() {
2004   ShouldNotReachHere();
2005   return RegMask();
2006 }
2007 
2008 // Register for MODI projection of divmodI
2009 RegMask Matcher::modI_proj_mask() {
2010   ShouldNotReachHere();
2011   return RegMask();
2012 }
2013 
2014 // Register for DIVL projection of divmodL
2015 RegMask Matcher::divL_proj_mask() {
2016   ShouldNotReachHere();
2017   return RegMask();
2018 }
2019 
2020 // Register for MODL projection of divmodL
2021 RegMask Matcher::modL_proj_mask() {
2022   ShouldNotReachHere();
2023   return RegMask();
2024 }
2025 
2026 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2027   return L7_REGP_mask();
2028 }
2029 
2030 %}
2031 
2032 
2033 // The intptr_t operand types, defined by textual substitution.
2034 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2035 #ifdef _LP64
2036 #define immX      immL
2037 #define immX13    immL13
2038 #define immX13m7  immL13m7
2039 #define iRegX     iRegL
2040 #define g1RegX    g1RegL
2041 #else
2042 #define immX      immI
2043 #define immX13    immI13
2044 #define immX13m7  immI13m7
2045 #define iRegX     iRegI
2046 #define g1RegX    g1RegI
2047 #endif
2048 
2049 //----------ENCODING BLOCK-----------------------------------------------------
2050 // This block specifies the encoding classes used by the compiler to output
2051 // byte streams.  Encoding classes are parameterized macros used by
2052 // Machine Instruction Nodes in order to generate the bit encoding of the
2053 // instruction.  Operands specify their base encoding interface with the
2054 // interface keyword.  There are currently supported four interfaces,
2055 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2056 // operand to generate a function which returns its register number when
2057 // queried.   CONST_INTER causes an operand to generate a function which
2058 // returns the value of the constant when queried.  MEMORY_INTER causes an
2059 // operand to generate four functions which return the Base Register, the
2060 // Index Register, the Scale Value, and the Offset Value of the operand when
2061 // queried.  COND_INTER causes an operand to generate six functions which
2062 // return the encoding code (ie - encoding bits for the instruction)
2063 // associated with each basic boolean condition for a conditional instruction.
2064 //
2065 // Instructions specify two basic values for encoding.  Again, a function
2066 // is available to check if the constant displacement is an oop. They use the
2067 // ins_encode keyword to specify their encoding classes (which must be
2068 // a sequence of enc_class names, and their parameters, specified in
2069 // the encoding block), and they use the
2070 // opcode keyword to specify, in order, their primary, secondary, and
2071 // tertiary opcode.  Only the opcode sections which a particular instruction
2072 // needs for encoding need to be specified.
2073 encode %{
2074   enc_class enc_untested %{
2075 #ifdef ASSERT
2076     MacroAssembler _masm(&cbuf);
2077     __ untested("encoding");
2078 #endif
2079   %}
2080 
2081   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2082     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2083                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2084   %}
2085 
2086   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2087     emit_form3_mem_reg(cbuf, this, $primary, -1,
2088                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2089   %}
2090 
2091   enc_class form3_mem_prefetch_read( memory mem ) %{
2092     emit_form3_mem_reg(cbuf, this, $primary, -1,
2093                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2094   %}
2095 
2096   enc_class form3_mem_prefetch_write( memory mem ) %{
2097     emit_form3_mem_reg(cbuf, this, $primary, -1,
2098                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2099   %}
2100 
2101   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2102     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2103     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2104     guarantee($mem$$index == R_G0_enc, "double index?");
2105     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2106     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2107     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2108     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2109   %}
2110 
2111   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2112     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2113     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2114     guarantee($mem$$index == R_G0_enc, "double index?");
2115     // Load long with 2 instructions
2116     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2117     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2118   %}
2119 
2120   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2121   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2122     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2123     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2124   %}
2125 
2126   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2127     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2128     if( $rs2$$reg != $rd$$reg )
2129       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2130   %}
2131 
2132   // Target lo half of long
2133   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2134     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2135     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2136       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2137   %}
2138 
2139   // Source lo half of long
2140   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2141     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2142     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2143       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2144   %}
2145 
2146   // Target hi half of long
2147   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2148     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2149   %}
2150 
2151   // Source lo half of long, and leave it sign extended.
2152   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2153     // Sign extend low half
2154     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2155   %}
2156 
2157   // Source hi half of long, and leave it sign extended.
2158   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2159     // Shift high half to low half
2160     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2161   %}
2162 
2163   // Source hi half of long
2164   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2165     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2166     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2167       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2168   %}
2169 
2170   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2171     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2172   %}
2173 
2174   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2175     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2176     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2177   %}
2178 
2179   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2180     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2181     // clear if nothing else is happening
2182     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2183     // blt,a,pn done
2184     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2185     // mov dst,-1 in delay slot
2186     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2187   %}
2188 
2189   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2190     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2191   %}
2192 
2193   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2194     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2195   %}
2196 
2197   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2198     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2199   %}
2200 
2201   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2202     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2203   %}
2204 
2205   enc_class move_return_pc_to_o1() %{
2206     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2207   %}
2208 
2209 #ifdef _LP64
2210   /* %%% merge with enc_to_bool */
2211   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2212     MacroAssembler _masm(&cbuf);
2213 
2214     Register   src_reg = reg_to_register_object($src$$reg);
2215     Register   dst_reg = reg_to_register_object($dst$$reg);
2216     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2217   %}
2218 #endif
2219 
2220   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2221     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2222     MacroAssembler _masm(&cbuf);
2223 
2224     Register   p_reg = reg_to_register_object($p$$reg);
2225     Register   q_reg = reg_to_register_object($q$$reg);
2226     Register   y_reg = reg_to_register_object($y$$reg);
2227     Register tmp_reg = reg_to_register_object($tmp$$reg);
2228 
2229     __ subcc( p_reg, q_reg,   p_reg );
2230     __ add  ( p_reg, y_reg, tmp_reg );
2231     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2232   %}
2233 
2234   enc_class form_d2i_helper(regD src, regF dst) %{
2235     // fcmp %fcc0,$src,$src
2236     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2237     // branch %fcc0 not-nan, predict taken
2238     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2239     // fdtoi $src,$dst
2240     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2241     // fitos $dst,$dst (if nan)
2242     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2243     // clear $dst (if nan)
2244     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2245     // carry on here...
2246   %}
2247 
2248   enc_class form_d2l_helper(regD src, regD dst) %{
2249     // fcmp %fcc0,$src,$src  check for NAN
2250     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2251     // branch %fcc0 not-nan, predict taken
2252     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2253     // fdtox $src,$dst   convert in delay slot
2254     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2255     // fxtod $dst,$dst  (if nan)
2256     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2257     // clear $dst (if nan)
2258     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2259     // carry on here...
2260   %}
2261 
2262   enc_class form_f2i_helper(regF src, regF dst) %{
2263     // fcmps %fcc0,$src,$src
2264     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2265     // branch %fcc0 not-nan, predict taken
2266     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2267     // fstoi $src,$dst
2268     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2269     // fitos $dst,$dst (if nan)
2270     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2271     // clear $dst (if nan)
2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2273     // carry on here...
2274   %}
2275 
2276   enc_class form_f2l_helper(regF src, regD dst) %{
2277     // fcmps %fcc0,$src,$src
2278     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2279     // branch %fcc0 not-nan, predict taken
2280     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2281     // fstox $src,$dst
2282     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2283     // fxtod $dst,$dst (if nan)
2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2285     // clear $dst (if nan)
2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2287     // carry on here...
2288   %}
2289 
2290   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2291   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2292   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2293   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2294 
2295   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2296 
2297   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2298   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2299 
2300   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2301     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2302   %}
2303 
2304   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2305     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2306   %}
2307 
2308   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2309     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2310   %}
2311 
2312   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2313     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2314   %}
2315 
2316   enc_class form3_convI2F(regF rs2, regF rd) %{
2317     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2318   %}
2319 
2320   // Encloding class for traceable jumps
2321   enc_class form_jmpl(g3RegP dest) %{
2322     emit_jmpl(cbuf, $dest$$reg);
2323   %}
2324 
2325   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2326     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2327   %}
2328 
2329   enc_class form2_nop() %{
2330     emit_nop(cbuf);
2331   %}
2332 
2333   enc_class form2_illtrap() %{
2334     emit_illtrap(cbuf);
2335   %}
2336 
2337 
2338   // Compare longs and convert into -1, 0, 1.
2339   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2340     // CMP $src1,$src2
2341     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2342     // blt,a,pn done
2343     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2344     // mov dst,-1 in delay slot
2345     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2346     // bgt,a,pn done
2347     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2348     // mov dst,1 in delay slot
2349     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2350     // CLR    $dst
2351     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2352   %}
2353 
2354   enc_class enc_PartialSubtypeCheck() %{
2355     MacroAssembler _masm(&cbuf);
2356     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2357     __ delayed()->nop();
2358   %}
2359 
2360   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2361     MacroAssembler _masm(&cbuf);
2362     Label* L = $labl$$label;
2363     Assembler::Predict predict_taken =
2364       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2365 
2366     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2367     __ delayed()->nop();
2368   %}
2369 
2370   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2371     MacroAssembler _masm(&cbuf);
2372     Label* L = $labl$$label;
2373     Assembler::Predict predict_taken =
2374       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2375 
2376     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2377     __ delayed()->nop();
2378   %}
2379 
2380   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2381     int op = (Assembler::arith_op << 30) |
2382              ($dst$$reg << 25) |
2383              (Assembler::movcc_op3 << 19) |
2384              (1 << 18) |                    // cc2 bit for 'icc'
2385              ($cmp$$cmpcode << 14) |
2386              (0 << 13) |                    // select register move
2387              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2388              ($src$$reg << 0);
2389     cbuf.insts()->emit_int32(op);
2390   %}
2391 
2392   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2393     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2394     int op = (Assembler::arith_op << 30) |
2395              ($dst$$reg << 25) |
2396              (Assembler::movcc_op3 << 19) |
2397              (1 << 18) |                    // cc2 bit for 'icc'
2398              ($cmp$$cmpcode << 14) |
2399              (1 << 13) |                    // select immediate move
2400              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2401              (simm11 << 0);
2402     cbuf.insts()->emit_int32(op);
2403   %}
2404 
2405   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2406     int op = (Assembler::arith_op << 30) |
2407              ($dst$$reg << 25) |
2408              (Assembler::movcc_op3 << 19) |
2409              (0 << 18) |                    // cc2 bit for 'fccX'
2410              ($cmp$$cmpcode << 14) |
2411              (0 << 13) |                    // select register move
2412              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2413              ($src$$reg << 0);
2414     cbuf.insts()->emit_int32(op);
2415   %}
2416 
2417   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2418     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2419     int op = (Assembler::arith_op << 30) |
2420              ($dst$$reg << 25) |
2421              (Assembler::movcc_op3 << 19) |
2422              (0 << 18) |                    // cc2 bit for 'fccX'
2423              ($cmp$$cmpcode << 14) |
2424              (1 << 13) |                    // select immediate move
2425              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2426              (simm11 << 0);
2427     cbuf.insts()->emit_int32(op);
2428   %}
2429 
2430   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2431     int op = (Assembler::arith_op << 30) |
2432              ($dst$$reg << 25) |
2433              (Assembler::fpop2_op3 << 19) |
2434              (0 << 18) |
2435              ($cmp$$cmpcode << 14) |
2436              (1 << 13) |                    // select register move
2437              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2438              ($primary << 5) |              // select single, double or quad
2439              ($src$$reg << 0);
2440     cbuf.insts()->emit_int32(op);
2441   %}
2442 
2443   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2444     int op = (Assembler::arith_op << 30) |
2445              ($dst$$reg << 25) |
2446              (Assembler::fpop2_op3 << 19) |
2447              (0 << 18) |
2448              ($cmp$$cmpcode << 14) |
2449              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2450              ($primary << 5) |              // select single, double or quad
2451              ($src$$reg << 0);
2452     cbuf.insts()->emit_int32(op);
2453   %}
2454 
2455   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2456   // the condition comes from opcode-field instead of an argument.
2457   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2458     int op = (Assembler::arith_op << 30) |
2459              ($dst$$reg << 25) |
2460              (Assembler::movcc_op3 << 19) |
2461              (1 << 18) |                    // cc2 bit for 'icc'
2462              ($primary << 14) |
2463              (0 << 13) |                    // select register move
2464              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2465              ($src$$reg << 0);
2466     cbuf.insts()->emit_int32(op);
2467   %}
2468 
2469   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2470     int op = (Assembler::arith_op << 30) |
2471              ($dst$$reg << 25) |
2472              (Assembler::movcc_op3 << 19) |
2473              (6 << 16) |                    // cc2 bit for 'xcc'
2474              ($primary << 14) |
2475              (0 << 13) |                    // select register move
2476              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2477              ($src$$reg << 0);
2478     cbuf.insts()->emit_int32(op);
2479   %}
2480 
2481   enc_class Set13( immI13 src, iRegI rd ) %{
2482     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2483   %}
2484 
2485   enc_class SetHi22( immI src, iRegI rd ) %{
2486     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2487   %}
2488 
2489   enc_class Set32( immI src, iRegI rd ) %{
2490     MacroAssembler _masm(&cbuf);
2491     __ set($src$$constant, reg_to_register_object($rd$$reg));
2492   %}
2493 
2494   enc_class call_epilog %{
2495     if( VerifyStackAtCalls ) {
2496       MacroAssembler _masm(&cbuf);
2497       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2498       Register temp_reg = G3;
2499       __ add(SP, framesize, temp_reg);
2500       __ cmp(temp_reg, FP);
2501       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2502     }
2503   %}
2504 
2505   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2506   // to G1 so the register allocator will not have to deal with the misaligned register
2507   // pair.
2508   enc_class adjust_long_from_native_call %{
2509 #ifndef _LP64
2510     if (returns_long()) {
2511       //    sllx  O0,32,O0
2512       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2513       //    srl   O1,0,O1
2514       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2515       //    or    O0,O1,G1
2516       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2517     }
2518 #endif
2519   %}
2520 
2521   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2522     // CALL directly to the runtime
2523     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2524     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2525                     /*preserve_g2=*/true);
2526   %}
2527 
2528   enc_class preserve_SP %{
2529     MacroAssembler _masm(&cbuf);
2530     __ mov(SP, L7_mh_SP_save);
2531   %}
2532 
2533   enc_class restore_SP %{
2534     MacroAssembler _masm(&cbuf);
2535     __ mov(L7_mh_SP_save, SP);
2536   %}
2537 
2538   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2539     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2540     // who we intended to call.
2541     if ( !_method ) {
2542       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2543     } else if (_optimized_virtual) {
2544       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2545     } else {
2546       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2547     }
2548     if( _method ) {  // Emit stub for static call
2549       emit_java_to_interp(cbuf);
2550     }
2551   %}
2552 
2553   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2554     MacroAssembler _masm(&cbuf);
2555     __ set_inst_mark();
2556     int vtable_index = this->_vtable_index;
2557     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2558     if (vtable_index < 0) {
2559       // must be invalid_vtable_index, not nonvirtual_vtable_index
2560       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2561       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2562       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2563       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2564       // !!!!!
2565       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2566       // emit_call_dynamic_prologue( cbuf );
2567       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2568 
2569       address  virtual_call_oop_addr = __ inst_mark();
2570       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2571       // who we intended to call.
2572       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2573       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2574     } else {
2575       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2576       // Just go thru the vtable
2577       // get receiver klass (receiver already checked for non-null)
2578       // If we end up going thru a c2i adapter interpreter expects method in G5
2579       int off = __ offset();
2580       __ load_klass(O0, G3_scratch);
2581       int klass_load_size;
2582       if (UseCompressedOops) {
2583         assert(Universe::heap() != NULL, "java heap should be initialized");
2584         if (Universe::narrow_oop_base() == NULL)
2585           klass_load_size = 2*BytesPerInstWord;
2586         else
2587           klass_load_size = 3*BytesPerInstWord;
2588       } else {
2589         klass_load_size = 1*BytesPerInstWord;
2590       }
2591       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2592       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2593       if (Assembler::is_simm13(v_off)) {
2594         __ ld_ptr(G3, v_off, G5_method);
2595       } else {
2596         // Generate 2 instructions
2597         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2598         __ or3(G5_method, v_off & 0x3ff, G5_method);
2599         // ld_ptr, set_hi, set
2600         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2601                "Unexpected instruction size(s)");
2602         __ ld_ptr(G3, G5_method, G5_method);
2603       }
2604       // NOTE: for vtable dispatches, the vtable entry will never be null.
2605       // However it may very well end up in handle_wrong_method if the
2606       // method is abstract for the particular class.
2607       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2608       // jump to target (either compiled code or c2iadapter)
2609       __ jmpl(G3_scratch, G0, O7);
2610       __ delayed()->nop();
2611     }
2612   %}
2613 
2614   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2615     MacroAssembler _masm(&cbuf);
2616 
2617     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2618     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2619                               // we might be calling a C2I adapter which needs it.
2620 
2621     assert(temp_reg != G5_ic_reg, "conflicting registers");
2622     // Load nmethod
2623     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2624 
2625     // CALL to compiled java, indirect the contents of G3
2626     __ set_inst_mark();
2627     __ callr(temp_reg, G0);
2628     __ delayed()->nop();
2629   %}
2630 
2631 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2632     MacroAssembler _masm(&cbuf);
2633     Register Rdividend = reg_to_register_object($src1$$reg);
2634     Register Rdivisor = reg_to_register_object($src2$$reg);
2635     Register Rresult = reg_to_register_object($dst$$reg);
2636 
2637     __ sra(Rdivisor, 0, Rdivisor);
2638     __ sra(Rdividend, 0, Rdividend);
2639     __ sdivx(Rdividend, Rdivisor, Rresult);
2640 %}
2641 
2642 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2643     MacroAssembler _masm(&cbuf);
2644 
2645     Register Rdividend = reg_to_register_object($src1$$reg);
2646     int divisor = $imm$$constant;
2647     Register Rresult = reg_to_register_object($dst$$reg);
2648 
2649     __ sra(Rdividend, 0, Rdividend);
2650     __ sdivx(Rdividend, divisor, Rresult);
2651 %}
2652 
2653 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2654     MacroAssembler _masm(&cbuf);
2655     Register Rsrc1 = reg_to_register_object($src1$$reg);
2656     Register Rsrc2 = reg_to_register_object($src2$$reg);
2657     Register Rdst  = reg_to_register_object($dst$$reg);
2658 
2659     __ sra( Rsrc1, 0, Rsrc1 );
2660     __ sra( Rsrc2, 0, Rsrc2 );
2661     __ mulx( Rsrc1, Rsrc2, Rdst );
2662     __ srlx( Rdst, 32, Rdst );
2663 %}
2664 
2665 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2666     MacroAssembler _masm(&cbuf);
2667     Register Rdividend = reg_to_register_object($src1$$reg);
2668     Register Rdivisor = reg_to_register_object($src2$$reg);
2669     Register Rresult = reg_to_register_object($dst$$reg);
2670     Register Rscratch = reg_to_register_object($scratch$$reg);
2671 
2672     assert(Rdividend != Rscratch, "");
2673     assert(Rdivisor  != Rscratch, "");
2674 
2675     __ sra(Rdividend, 0, Rdividend);
2676     __ sra(Rdivisor, 0, Rdivisor);
2677     __ sdivx(Rdividend, Rdivisor, Rscratch);
2678     __ mulx(Rscratch, Rdivisor, Rscratch);
2679     __ sub(Rdividend, Rscratch, Rresult);
2680 %}
2681 
2682 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2683     MacroAssembler _masm(&cbuf);
2684 
2685     Register Rdividend = reg_to_register_object($src1$$reg);
2686     int divisor = $imm$$constant;
2687     Register Rresult = reg_to_register_object($dst$$reg);
2688     Register Rscratch = reg_to_register_object($scratch$$reg);
2689 
2690     assert(Rdividend != Rscratch, "");
2691 
2692     __ sra(Rdividend, 0, Rdividend);
2693     __ sdivx(Rdividend, divisor, Rscratch);
2694     __ mulx(Rscratch, divisor, Rscratch);
2695     __ sub(Rdividend, Rscratch, Rresult);
2696 %}
2697 
2698 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2699     MacroAssembler _masm(&cbuf);
2700 
2701     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2702     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2703 
2704     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2705 %}
2706 
2707 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2708     MacroAssembler _masm(&cbuf);
2709 
2710     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2711     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2712 
2713     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2714 %}
2715 
2716 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2717     MacroAssembler _masm(&cbuf);
2718 
2719     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2720     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2721 
2722     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2723 %}
2724 
2725 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2726     MacroAssembler _masm(&cbuf);
2727 
2728     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2729     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2730 
2731     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2732 %}
2733 
2734 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2735     MacroAssembler _masm(&cbuf);
2736 
2737     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2738     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2739 
2740     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2741 %}
2742 
2743 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2744     MacroAssembler _masm(&cbuf);
2745 
2746     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2747     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2748 
2749     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2750 %}
2751 
2752 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2753     MacroAssembler _masm(&cbuf);
2754 
2755     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2756     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2757 
2758     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2759 %}
2760 
2761 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2762     MacroAssembler _masm(&cbuf);
2763 
2764     Register Roop  = reg_to_register_object($oop$$reg);
2765     Register Rbox  = reg_to_register_object($box$$reg);
2766     Register Rscratch = reg_to_register_object($scratch$$reg);
2767     Register Rmark =    reg_to_register_object($scratch2$$reg);
2768 
2769     assert(Roop  != Rscratch, "");
2770     assert(Roop  != Rmark, "");
2771     assert(Rbox  != Rscratch, "");
2772     assert(Rbox  != Rmark, "");
2773 
2774     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2775 %}
2776 
2777 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2778     MacroAssembler _masm(&cbuf);
2779 
2780     Register Roop  = reg_to_register_object($oop$$reg);
2781     Register Rbox  = reg_to_register_object($box$$reg);
2782     Register Rscratch = reg_to_register_object($scratch$$reg);
2783     Register Rmark =    reg_to_register_object($scratch2$$reg);
2784 
2785     assert(Roop  != Rscratch, "");
2786     assert(Roop  != Rmark, "");
2787     assert(Rbox  != Rscratch, "");
2788     assert(Rbox  != Rmark, "");
2789 
2790     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2791   %}
2792 
2793   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2794     MacroAssembler _masm(&cbuf);
2795     Register Rmem = reg_to_register_object($mem$$reg);
2796     Register Rold = reg_to_register_object($old$$reg);
2797     Register Rnew = reg_to_register_object($new$$reg);
2798 
2799     // casx_under_lock picks 1 of 3 encodings:
2800     // For 32-bit pointers you get a 32-bit CAS
2801     // For 64-bit pointers you get a 64-bit CASX
2802     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2803     __ cmp( Rold, Rnew );
2804   %}
2805 
2806   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2807     Register Rmem = reg_to_register_object($mem$$reg);
2808     Register Rold = reg_to_register_object($old$$reg);
2809     Register Rnew = reg_to_register_object($new$$reg);
2810 
2811     MacroAssembler _masm(&cbuf);
2812     __ mov(Rnew, O7);
2813     __ casx(Rmem, Rold, O7);
2814     __ cmp( Rold, O7 );
2815   %}
2816 
2817   // raw int cas, used for compareAndSwap
2818   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2819     Register Rmem = reg_to_register_object($mem$$reg);
2820     Register Rold = reg_to_register_object($old$$reg);
2821     Register Rnew = reg_to_register_object($new$$reg);
2822 
2823     MacroAssembler _masm(&cbuf);
2824     __ mov(Rnew, O7);
2825     __ cas(Rmem, Rold, O7);
2826     __ cmp( Rold, O7 );
2827   %}
2828 
2829   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2830     Register Rres = reg_to_register_object($res$$reg);
2831 
2832     MacroAssembler _masm(&cbuf);
2833     __ mov(1, Rres);
2834     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2835   %}
2836 
2837   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2838     Register Rres = reg_to_register_object($res$$reg);
2839 
2840     MacroAssembler _masm(&cbuf);
2841     __ mov(1, Rres);
2842     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2843   %}
2844 
2845   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2846     MacroAssembler _masm(&cbuf);
2847     Register Rdst = reg_to_register_object($dst$$reg);
2848     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2849                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2850     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2851                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2852 
2853     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2854     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2855   %}
2856 
2857 
2858   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2859     Label Ldone, Lloop;
2860     MacroAssembler _masm(&cbuf);
2861 
2862     Register   str1_reg = reg_to_register_object($str1$$reg);
2863     Register   str2_reg = reg_to_register_object($str2$$reg);
2864     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2865     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2866     Register result_reg = reg_to_register_object($result$$reg);
2867 
2868     assert(result_reg != str1_reg &&
2869            result_reg != str2_reg &&
2870            result_reg != cnt1_reg &&
2871            result_reg != cnt2_reg ,
2872            "need different registers");
2873 
2874     // Compute the minimum of the string lengths(str1_reg) and the
2875     // difference of the string lengths (stack)
2876 
2877     // See if the lengths are different, and calculate min in str1_reg.
2878     // Stash diff in O7 in case we need it for a tie-breaker.
2879     Label Lskip;
2880     __ subcc(cnt1_reg, cnt2_reg, O7);
2881     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2882     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2883     // cnt2 is shorter, so use its count:
2884     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2885     __ bind(Lskip);
2886 
2887     // reallocate cnt1_reg, cnt2_reg, result_reg
2888     // Note:  limit_reg holds the string length pre-scaled by 2
2889     Register limit_reg =   cnt1_reg;
2890     Register  chr2_reg =   cnt2_reg;
2891     Register  chr1_reg = result_reg;
2892     // str{12} are the base pointers
2893 
2894     // Is the minimum length zero?
2895     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2896     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2897     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2898 
2899     // Load first characters
2900     __ lduh(str1_reg, 0, chr1_reg);
2901     __ lduh(str2_reg, 0, chr2_reg);
2902 
2903     // Compare first characters
2904     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2905     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2906     assert(chr1_reg == result_reg, "result must be pre-placed");
2907     __ delayed()->nop();
2908 
2909     {
2910       // Check after comparing first character to see if strings are equivalent
2911       Label LSkip2;
2912       // Check if the strings start at same location
2913       __ cmp(str1_reg, str2_reg);
2914       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2915       __ delayed()->nop();
2916 
2917       // Check if the length difference is zero (in O7)
2918       __ cmp(G0, O7);
2919       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2920       __ delayed()->mov(G0, result_reg);  // result is zero
2921 
2922       // Strings might not be equal
2923       __ bind(LSkip2);
2924     }
2925 
2926     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2927     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2928     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2929 
2930     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2931     __ add(str1_reg, limit_reg, str1_reg);
2932     __ add(str2_reg, limit_reg, str2_reg);
2933     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2934 
2935     // Compare the rest of the characters
2936     __ lduh(str1_reg, limit_reg, chr1_reg);
2937     __ bind(Lloop);
2938     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2939     __ lduh(str2_reg, limit_reg, chr2_reg);
2940     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2941     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2942     assert(chr1_reg == result_reg, "result must be pre-placed");
2943     __ delayed()->inccc(limit_reg, sizeof(jchar));
2944     // annul LDUH if branch is not taken to prevent access past end of string
2945     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2946     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2947 
2948     // If strings are equal up to min length, return the length difference.
2949     __ mov(O7, result_reg);
2950 
2951     // Otherwise, return the difference between the first mismatched chars.
2952     __ bind(Ldone);
2953   %}
2954 
2955 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2956     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2957     MacroAssembler _masm(&cbuf);
2958 
2959     Register   str1_reg = reg_to_register_object($str1$$reg);
2960     Register   str2_reg = reg_to_register_object($str2$$reg);
2961     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2962     Register   tmp1_reg = O7;
2963     Register result_reg = reg_to_register_object($result$$reg);
2964 
2965     assert(result_reg != str1_reg &&
2966            result_reg != str2_reg &&
2967            result_reg !=  cnt_reg &&
2968            result_reg != tmp1_reg ,
2969            "need different registers");
2970 
2971     __ cmp(str1_reg, str2_reg); //same char[] ?
2972     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2973     __ delayed()->add(G0, 1, result_reg);
2974 
2975     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2976     __ delayed()->add(G0, 1, result_reg); // count == 0
2977 
2978     //rename registers
2979     Register limit_reg =    cnt_reg;
2980     Register  chr1_reg = result_reg;
2981     Register  chr2_reg =   tmp1_reg;
2982 
2983     //check for alignment and position the pointers to the ends
2984     __ or3(str1_reg, str2_reg, chr1_reg);
2985     __ andcc(chr1_reg, 0x3, chr1_reg);
2986     // notZero means at least one not 4-byte aligned.
2987     // We could optimize the case when both arrays are not aligned
2988     // but it is not frequent case and it requires additional checks.
2989     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2990     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2991 
2992     // Compare char[] arrays aligned to 4 bytes.
2993     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2994                           chr1_reg, chr2_reg, Ldone);
2995     __ ba(Ldone);
2996     __ delayed()->add(G0, 1, result_reg);
2997 
2998     // char by char compare
2999     __ bind(Lchar);
3000     __ add(str1_reg, limit_reg, str1_reg);
3001     __ add(str2_reg, limit_reg, str2_reg);
3002     __ neg(limit_reg); //negate count
3003 
3004     __ lduh(str1_reg, limit_reg, chr1_reg);
3005     // Lchar_loop
3006     __ bind(Lchar_loop);
3007     __ lduh(str2_reg, limit_reg, chr2_reg);
3008     __ cmp(chr1_reg, chr2_reg);
3009     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3010     __ delayed()->mov(G0, result_reg); //not equal
3011     __ inccc(limit_reg, sizeof(jchar));
3012     // annul LDUH if branch is not taken to prevent access past end of string
3013     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3014     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3015 
3016     __ add(G0, 1, result_reg);  //equal
3017 
3018     __ bind(Ldone);
3019   %}
3020 
3021 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3022     Label Lvector, Ldone, Lloop;
3023     MacroAssembler _masm(&cbuf);
3024 
3025     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3026     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3027     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3028     Register   tmp2_reg = O7;
3029     Register result_reg = reg_to_register_object($result$$reg);
3030 
3031     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3032     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3033 
3034     // return true if the same array
3035     __ cmp(ary1_reg, ary2_reg);
3036     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3037     __ delayed()->add(G0, 1, result_reg); // equal
3038 
3039     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3040     __ delayed()->mov(G0, result_reg);    // not equal
3041 
3042     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3043     __ delayed()->mov(G0, result_reg);    // not equal
3044 
3045     //load the lengths of arrays
3046     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3047     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3048 
3049     // return false if the two arrays are not equal length
3050     __ cmp(tmp1_reg, tmp2_reg);
3051     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3052     __ delayed()->mov(G0, result_reg);     // not equal
3053 
3054     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3055     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3056 
3057     // load array addresses
3058     __ add(ary1_reg, base_offset, ary1_reg);
3059     __ add(ary2_reg, base_offset, ary2_reg);
3060 
3061     // renaming registers
3062     Register chr1_reg  =  result_reg; // for characters in ary1
3063     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3064     Register limit_reg =  tmp1_reg;   // length
3065 
3066     // set byte count
3067     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3068 
3069     // Compare char[] arrays aligned to 4 bytes.
3070     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3071                           chr1_reg, chr2_reg, Ldone);
3072     __ add(G0, 1, result_reg); // equals
3073 
3074     __ bind(Ldone);
3075   %}
3076 
3077   enc_class enc_rethrow() %{
3078     cbuf.set_insts_mark();
3079     Register temp_reg = G3;
3080     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3081     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3082     MacroAssembler _masm(&cbuf);
3083 #ifdef ASSERT
3084     __ save_frame(0);
3085     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3086     __ sethi(last_rethrow_addrlit, L1);
3087     Address addr(L1, last_rethrow_addrlit.low10());
3088     __ get_pc(L2);
3089     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3090     __ st_ptr(L2, addr);
3091     __ restore();
3092 #endif
3093     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3094     __ delayed()->nop();
3095   %}
3096 
3097   enc_class emit_mem_nop() %{
3098     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3099     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3100   %}
3101 
3102   enc_class emit_fadd_nop() %{
3103     // Generates the instruction FMOVS f31,f31
3104     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3105   %}
3106 
3107   enc_class emit_br_nop() %{
3108     // Generates the instruction BPN,PN .
3109     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3110   %}
3111 
3112   enc_class enc_membar_acquire %{
3113     MacroAssembler _masm(&cbuf);
3114     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3115   %}
3116 
3117   enc_class enc_membar_release %{
3118     MacroAssembler _masm(&cbuf);
3119     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3120   %}
3121 
3122   enc_class enc_membar_volatile %{
3123     MacroAssembler _masm(&cbuf);
3124     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3125   %}
3126 
3127   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3128     MacroAssembler _masm(&cbuf);
3129     Register src_reg = reg_to_register_object($src$$reg);
3130     Register dst_reg = reg_to_register_object($dst$$reg);
3131     __ sllx(src_reg, 56, dst_reg);
3132     __ srlx(dst_reg,  8, O7);
3133     __ or3 (dst_reg, O7, dst_reg);
3134     __ srlx(dst_reg, 16, O7);
3135     __ or3 (dst_reg, O7, dst_reg);
3136     __ srlx(dst_reg, 32, O7);
3137     __ or3 (dst_reg, O7, dst_reg);
3138   %}
3139 
3140   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3141     MacroAssembler _masm(&cbuf);
3142     Register src_reg = reg_to_register_object($src$$reg);
3143     Register dst_reg = reg_to_register_object($dst$$reg);
3144     __ sll(src_reg, 24, dst_reg);
3145     __ srl(dst_reg,  8, O7);
3146     __ or3(dst_reg, O7, dst_reg);
3147     __ srl(dst_reg, 16, O7);
3148     __ or3(dst_reg, O7, dst_reg);
3149   %}
3150 
3151   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3152     MacroAssembler _masm(&cbuf);
3153     Register src_reg = reg_to_register_object($src$$reg);
3154     Register dst_reg = reg_to_register_object($dst$$reg);
3155     __ sllx(src_reg, 48, dst_reg);
3156     __ srlx(dst_reg, 16, O7);
3157     __ or3 (dst_reg, O7, dst_reg);
3158     __ srlx(dst_reg, 32, O7);
3159     __ or3 (dst_reg, O7, dst_reg);
3160   %}
3161 
3162   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3163     MacroAssembler _masm(&cbuf);
3164     Register src_reg = reg_to_register_object($src$$reg);
3165     Register dst_reg = reg_to_register_object($dst$$reg);
3166     __ sllx(src_reg, 32, dst_reg);
3167     __ srlx(dst_reg, 32, O7);
3168     __ or3 (dst_reg, O7, dst_reg);
3169   %}
3170 
3171 %}
3172 
3173 //----------FRAME--------------------------------------------------------------
3174 // Definition of frame structure and management information.
3175 //
3176 //  S T A C K   L A Y O U T    Allocators stack-slot number
3177 //                             |   (to get allocators register number
3178 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3179 //  r   CALLER     |        |
3180 //  o     |        +--------+      pad to even-align allocators stack-slot
3181 //  w     V        |  pad0  |        numbers; owned by CALLER
3182 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3183 //  h     ^        |   in   |  5
3184 //        |        |  args  |  4   Holes in incoming args owned by SELF
3185 //  |     |        |        |  3
3186 //  |     |        +--------+
3187 //  V     |        | old out|      Empty on Intel, window on Sparc
3188 //        |    old |preserve|      Must be even aligned.
3189 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3190 //        |        |   in   |  3   area for Intel ret address
3191 //     Owned by    |preserve|      Empty on Sparc.
3192 //       SELF      +--------+
3193 //        |        |  pad2  |  2   pad to align old SP
3194 //        |        +--------+  1
3195 //        |        | locks  |  0
3196 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3197 //        |        |  pad1  | 11   pad to align new SP
3198 //        |        +--------+
3199 //        |        |        | 10
3200 //        |        | spills |  9   spills
3201 //        V        |        |  8   (pad0 slot for callee)
3202 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3203 //        ^        |  out   |  7
3204 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3205 //     Owned by    +--------+
3206 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3207 //        |    new |preserve|      Must be even-aligned.
3208 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3209 //        |        |        |
3210 //
3211 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3212 //         known from SELF's arguments and the Java calling convention.
3213 //         Region 6-7 is determined per call site.
3214 // Note 2: If the calling convention leaves holes in the incoming argument
3215 //         area, those holes are owned by SELF.  Holes in the outgoing area
3216 //         are owned by the CALLEE.  Holes should not be nessecary in the
3217 //         incoming area, as the Java calling convention is completely under
3218 //         the control of the AD file.  Doubles can be sorted and packed to
3219 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3220 //         varargs C calling conventions.
3221 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3222 //         even aligned with pad0 as needed.
3223 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3224 //         region 6-11 is even aligned; it may be padded out more so that
3225 //         the region from SP to FP meets the minimum stack alignment.
3226 
3227 frame %{
3228   // What direction does stack grow in (assumed to be same for native & Java)
3229   stack_direction(TOWARDS_LOW);
3230 
3231   // These two registers define part of the calling convention
3232   // between compiled code and the interpreter.
3233   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3234   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3235 
3236   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3237   cisc_spilling_operand_name(indOffset);
3238 
3239   // Number of stack slots consumed by a Monitor enter
3240 #ifdef _LP64
3241   sync_stack_slots(2);
3242 #else
3243   sync_stack_slots(1);
3244 #endif
3245 
3246   // Compiled code's Frame Pointer
3247   frame_pointer(R_SP);
3248 
3249   // Stack alignment requirement
3250   stack_alignment(StackAlignmentInBytes);
3251   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3252   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3253 
3254   // Number of stack slots between incoming argument block and the start of
3255   // a new frame.  The PROLOG must add this many slots to the stack.  The
3256   // EPILOG must remove this many slots.
3257   in_preserve_stack_slots(0);
3258 
3259   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3260   // for calls to C.  Supports the var-args backing area for register parms.
3261   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3262 #ifdef _LP64
3263   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3264   varargs_C_out_slots_killed(12);
3265 #else
3266   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3267   varargs_C_out_slots_killed( 7);
3268 #endif
3269 
3270   // The after-PROLOG location of the return address.  Location of
3271   // return address specifies a type (REG or STACK) and a number
3272   // representing the register number (i.e. - use a register name) or
3273   // stack slot.
3274   return_addr(REG R_I7);          // Ret Addr is in register I7
3275 
3276   // Body of function which returns an OptoRegs array locating
3277   // arguments either in registers or in stack slots for calling
3278   // java
3279   calling_convention %{
3280     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3281 
3282   %}
3283 
3284   // Body of function which returns an OptoRegs array locating
3285   // arguments either in registers or in stack slots for callin
3286   // C.
3287   c_calling_convention %{
3288     // This is obviously always outgoing
3289     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3290   %}
3291 
3292   // Location of native (C/C++) and interpreter return values.  This is specified to
3293   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3294   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3295   // to and from the register pairs is done by the appropriate call and epilog
3296   // opcodes.  This simplifies the register allocator.
3297   c_return_value %{
3298     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3299 #ifdef     _LP64
3300     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3301     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3302     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3303     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3304 #else  // !_LP64
3305     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3306     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3307     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3308     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3309 #endif
3310     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3311                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3312   %}
3313 
3314   // Location of compiled Java return values.  Same as C
3315   return_value %{
3316     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3317 #ifdef     _LP64
3318     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3319     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3320     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3321     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3322 #else  // !_LP64
3323     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3324     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3325     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3326     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3327 #endif
3328     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3329                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3330   %}
3331 
3332 %}
3333 
3334 
3335 //----------ATTRIBUTES---------------------------------------------------------
3336 //----------Operand Attributes-------------------------------------------------
3337 op_attrib op_cost(1);          // Required cost attribute
3338 
3339 //----------Instruction Attributes---------------------------------------------
3340 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3341 ins_attrib ins_size(32);           // Required size attribute (in bits)
3342 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3343 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3344                                    // non-matching short branch variant of some
3345                                                             // long branch?
3346 
3347 //----------OPERANDS-----------------------------------------------------------
3348 // Operand definitions must precede instruction definitions for correct parsing
3349 // in the ADLC because operands constitute user defined types which are used in
3350 // instruction definitions.
3351 
3352 //----------Simple Operands----------------------------------------------------
3353 // Immediate Operands
3354 // Integer Immediate: 32-bit
3355 operand immI() %{
3356   match(ConI);
3357 
3358   op_cost(0);
3359   // formats are generated automatically for constants and base registers
3360   format %{ %}
3361   interface(CONST_INTER);
3362 %}
3363 
3364 // Integer Immediate: 8-bit
3365 operand immI8() %{
3366   predicate(Assembler::is_simm8(n->get_int()));
3367   match(ConI);
3368   op_cost(0);
3369   format %{ %}
3370   interface(CONST_INTER);
3371 %}
3372 
3373 // Integer Immediate: 13-bit
3374 operand immI13() %{
3375   predicate(Assembler::is_simm13(n->get_int()));
3376   match(ConI);
3377   op_cost(0);
3378 
3379   format %{ %}
3380   interface(CONST_INTER);
3381 %}
3382 
3383 // Integer Immediate: 13-bit minus 7
3384 operand immI13m7() %{
3385   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3386   match(ConI);
3387   op_cost(0);
3388 
3389   format %{ %}
3390   interface(CONST_INTER);
3391 %}
3392 
3393 // Integer Immediate: 16-bit
3394 operand immI16() %{
3395   predicate(Assembler::is_simm16(n->get_int()));
3396   match(ConI);
3397   op_cost(0);
3398   format %{ %}
3399   interface(CONST_INTER);
3400 %}
3401 
3402 // Unsigned (positive) Integer Immediate: 13-bit
3403 operand immU13() %{
3404   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3405   match(ConI);
3406   op_cost(0);
3407 
3408   format %{ %}
3409   interface(CONST_INTER);
3410 %}
3411 
3412 // Integer Immediate: 6-bit
3413 operand immU6() %{
3414   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3415   match(ConI);
3416   op_cost(0);
3417   format %{ %}
3418   interface(CONST_INTER);
3419 %}
3420 
3421 // Integer Immediate: 11-bit
3422 operand immI11() %{
3423   predicate(Assembler::is_simm11(n->get_int()));
3424   match(ConI);
3425   op_cost(0);
3426   format %{ %}
3427   interface(CONST_INTER);
3428 %}
3429 
3430 // Integer Immediate: 5-bit
3431 operand immI5() %{
3432   predicate(Assembler::is_simm5(n->get_int()));
3433   match(ConI);
3434   op_cost(0);
3435   format %{ %}
3436   interface(CONST_INTER);
3437 %}
3438 
3439 // Integer Immediate: 0-bit
3440 operand immI0() %{
3441   predicate(n->get_int() == 0);
3442   match(ConI);
3443   op_cost(0);
3444 
3445   format %{ %}
3446   interface(CONST_INTER);
3447 %}
3448 
3449 // Integer Immediate: the value 10
3450 operand immI10() %{
3451   predicate(n->get_int() == 10);
3452   match(ConI);
3453   op_cost(0);
3454 
3455   format %{ %}
3456   interface(CONST_INTER);
3457 %}
3458 
3459 // Integer Immediate: the values 0-31
3460 operand immU5() %{
3461   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3462   match(ConI);
3463   op_cost(0);
3464 
3465   format %{ %}
3466   interface(CONST_INTER);
3467 %}
3468 
3469 // Integer Immediate: the values 1-31
3470 operand immI_1_31() %{
3471   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3472   match(ConI);
3473   op_cost(0);
3474 
3475   format %{ %}
3476   interface(CONST_INTER);
3477 %}
3478 
3479 // Integer Immediate: the values 32-63
3480 operand immI_32_63() %{
3481   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3482   match(ConI);
3483   op_cost(0);
3484 
3485   format %{ %}
3486   interface(CONST_INTER);
3487 %}
3488 
3489 // Immediates for special shifts (sign extend)
3490 
3491 // Integer Immediate: the value 16
3492 operand immI_16() %{
3493   predicate(n->get_int() == 16);
3494   match(ConI);
3495   op_cost(0);
3496 
3497   format %{ %}
3498   interface(CONST_INTER);
3499 %}
3500 
3501 // Integer Immediate: the value 24
3502 operand immI_24() %{
3503   predicate(n->get_int() == 24);
3504   match(ConI);
3505   op_cost(0);
3506 
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 // Integer Immediate: the value 255
3512 operand immI_255() %{
3513   predicate( n->get_int() == 255 );
3514   match(ConI);
3515   op_cost(0);
3516 
3517   format %{ %}
3518   interface(CONST_INTER);
3519 %}
3520 
3521 // Integer Immediate: the value 65535
3522 operand immI_65535() %{
3523   predicate(n->get_int() == 65535);
3524   match(ConI);
3525   op_cost(0);
3526 
3527   format %{ %}
3528   interface(CONST_INTER);
3529 %}
3530 
3531 // Long Immediate: the value FF
3532 operand immL_FF() %{
3533   predicate( n->get_long() == 0xFFL );
3534   match(ConL);
3535   op_cost(0);
3536 
3537   format %{ %}
3538   interface(CONST_INTER);
3539 %}
3540 
3541 // Long Immediate: the value FFFF
3542 operand immL_FFFF() %{
3543   predicate( n->get_long() == 0xFFFFL );
3544   match(ConL);
3545   op_cost(0);
3546 
3547   format %{ %}
3548   interface(CONST_INTER);
3549 %}
3550 
3551 // Pointer Immediate: 32 or 64-bit
3552 operand immP() %{
3553   match(ConP);
3554 
3555   op_cost(5);
3556   // formats are generated automatically for constants and base registers
3557   format %{ %}
3558   interface(CONST_INTER);
3559 %}
3560 
3561 #ifdef _LP64
3562 // Pointer Immediate: 64-bit
3563 operand immP_set() %{
3564   predicate(!VM_Version::is_niagara_plus());
3565   match(ConP);
3566 
3567   op_cost(5);
3568   // formats are generated automatically for constants and base registers
3569   format %{ %}
3570   interface(CONST_INTER);
3571 %}
3572 
3573 // Pointer Immediate: 64-bit
3574 // From Niagara2 processors on a load should be better than materializing.
3575 operand immP_load() %{
3576   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3577   match(ConP);
3578 
3579   op_cost(5);
3580   // formats are generated automatically for constants and base registers
3581   format %{ %}
3582   interface(CONST_INTER);
3583 %}
3584 
3585 // Pointer Immediate: 64-bit
3586 operand immP_no_oop_cheap() %{
3587   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3588   match(ConP);
3589 
3590   op_cost(5);
3591   // formats are generated automatically for constants and base registers
3592   format %{ %}
3593   interface(CONST_INTER);
3594 %}
3595 #endif
3596 
3597 operand immP13() %{
3598   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3599   match(ConP);
3600   op_cost(0);
3601 
3602   format %{ %}
3603   interface(CONST_INTER);
3604 %}
3605 
3606 operand immP0() %{
3607   predicate(n->get_ptr() == 0);
3608   match(ConP);
3609   op_cost(0);
3610 
3611   format %{ %}
3612   interface(CONST_INTER);
3613 %}
3614 
3615 operand immP_poll() %{
3616   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3617   match(ConP);
3618 
3619   // formats are generated automatically for constants and base registers
3620   format %{ %}
3621   interface(CONST_INTER);
3622 %}
3623 
3624 // Pointer Immediate
3625 operand immN()
3626 %{
3627   match(ConN);
3628 
3629   op_cost(10);
3630   format %{ %}
3631   interface(CONST_INTER);
3632 %}
3633 
3634 // NULL Pointer Immediate
3635 operand immN0()
3636 %{
3637   predicate(n->get_narrowcon() == 0);
3638   match(ConN);
3639 
3640   op_cost(0);
3641   format %{ %}
3642   interface(CONST_INTER);
3643 %}
3644 
3645 operand immL() %{
3646   match(ConL);
3647   op_cost(40);
3648   // formats are generated automatically for constants and base registers
3649   format %{ %}
3650   interface(CONST_INTER);
3651 %}
3652 
3653 operand immL0() %{
3654   predicate(n->get_long() == 0L);
3655   match(ConL);
3656   op_cost(0);
3657   // formats are generated automatically for constants and base registers
3658   format %{ %}
3659   interface(CONST_INTER);
3660 %}
3661 
3662 // Integer Immediate: 5-bit
3663 operand immL5() %{
3664   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3665   match(ConL);
3666   op_cost(0);
3667   format %{ %}
3668   interface(CONST_INTER);
3669 %}
3670 
3671 // Long Immediate: 13-bit
3672 operand immL13() %{
3673   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3674   match(ConL);
3675   op_cost(0);
3676 
3677   format %{ %}
3678   interface(CONST_INTER);
3679 %}
3680 
3681 // Long Immediate: 13-bit minus 7
3682 operand immL13m7() %{
3683   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3684   match(ConL);
3685   op_cost(0);
3686 
3687   format %{ %}
3688   interface(CONST_INTER);
3689 %}
3690 
3691 // Long Immediate: low 32-bit mask
3692 operand immL_32bits() %{
3693   predicate(n->get_long() == 0xFFFFFFFFL);
3694   match(ConL);
3695   op_cost(0);
3696 
3697   format %{ %}
3698   interface(CONST_INTER);
3699 %}
3700 
3701 // Long Immediate: cheap (materialize in <= 3 instructions)
3702 operand immL_cheap() %{
3703   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3704   match(ConL);
3705   op_cost(0);
3706 
3707   format %{ %}
3708   interface(CONST_INTER);
3709 %}
3710 
3711 // Long Immediate: expensive (materialize in > 3 instructions)
3712 operand immL_expensive() %{
3713   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3714   match(ConL);
3715   op_cost(0);
3716 
3717   format %{ %}
3718   interface(CONST_INTER);
3719 %}
3720 
3721 // Double Immediate
3722 operand immD() %{
3723   match(ConD);
3724 
3725   op_cost(40);
3726   format %{ %}
3727   interface(CONST_INTER);
3728 %}
3729 
3730 operand immD0() %{
3731 #ifdef _LP64
3732   // on 64-bit architectures this comparision is faster
3733   predicate(jlong_cast(n->getd()) == 0);
3734 #else
3735   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3736 #endif
3737   match(ConD);
3738 
3739   op_cost(0);
3740   format %{ %}
3741   interface(CONST_INTER);
3742 %}
3743 
3744 // Float Immediate
3745 operand immF() %{
3746   match(ConF);
3747 
3748   op_cost(20);
3749   format %{ %}
3750   interface(CONST_INTER);
3751 %}
3752 
3753 // Float Immediate: 0
3754 operand immF0() %{
3755   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3756   match(ConF);
3757 
3758   op_cost(0);
3759   format %{ %}
3760   interface(CONST_INTER);
3761 %}
3762 
3763 // Integer Register Operands
3764 // Integer Register
3765 operand iRegI() %{
3766   constraint(ALLOC_IN_RC(int_reg));
3767   match(RegI);
3768 
3769   match(notemp_iRegI);
3770   match(g1RegI);
3771   match(o0RegI);
3772   match(iRegIsafe);
3773 
3774   format %{ %}
3775   interface(REG_INTER);
3776 %}
3777 
3778 operand notemp_iRegI() %{
3779   constraint(ALLOC_IN_RC(notemp_int_reg));
3780   match(RegI);
3781 
3782   match(o0RegI);
3783 
3784   format %{ %}
3785   interface(REG_INTER);
3786 %}
3787 
3788 operand o0RegI() %{
3789   constraint(ALLOC_IN_RC(o0_regI));
3790   match(iRegI);
3791 
3792   format %{ %}
3793   interface(REG_INTER);
3794 %}
3795 
3796 // Pointer Register
3797 operand iRegP() %{
3798   constraint(ALLOC_IN_RC(ptr_reg));
3799   match(RegP);
3800 
3801   match(lock_ptr_RegP);
3802   match(g1RegP);
3803   match(g2RegP);
3804   match(g3RegP);
3805   match(g4RegP);
3806   match(i0RegP);
3807   match(o0RegP);
3808   match(o1RegP);
3809   match(l7RegP);
3810 
3811   format %{ %}
3812   interface(REG_INTER);
3813 %}
3814 
3815 operand sp_ptr_RegP() %{
3816   constraint(ALLOC_IN_RC(sp_ptr_reg));
3817   match(RegP);
3818   match(iRegP);
3819 
3820   format %{ %}
3821   interface(REG_INTER);
3822 %}
3823 
3824 operand lock_ptr_RegP() %{
3825   constraint(ALLOC_IN_RC(lock_ptr_reg));
3826   match(RegP);
3827   match(i0RegP);
3828   match(o0RegP);
3829   match(o1RegP);
3830   match(l7RegP);
3831 
3832   format %{ %}
3833   interface(REG_INTER);
3834 %}
3835 
3836 operand g1RegP() %{
3837   constraint(ALLOC_IN_RC(g1_regP));
3838   match(iRegP);
3839 
3840   format %{ %}
3841   interface(REG_INTER);
3842 %}
3843 
3844 operand g2RegP() %{
3845   constraint(ALLOC_IN_RC(g2_regP));
3846   match(iRegP);
3847 
3848   format %{ %}
3849   interface(REG_INTER);
3850 %}
3851 
3852 operand g3RegP() %{
3853   constraint(ALLOC_IN_RC(g3_regP));
3854   match(iRegP);
3855 
3856   format %{ %}
3857   interface(REG_INTER);
3858 %}
3859 
3860 operand g1RegI() %{
3861   constraint(ALLOC_IN_RC(g1_regI));
3862   match(iRegI);
3863 
3864   format %{ %}
3865   interface(REG_INTER);
3866 %}
3867 
3868 operand g3RegI() %{
3869   constraint(ALLOC_IN_RC(g3_regI));
3870   match(iRegI);
3871 
3872   format %{ %}
3873   interface(REG_INTER);
3874 %}
3875 
3876 operand g4RegI() %{
3877   constraint(ALLOC_IN_RC(g4_regI));
3878   match(iRegI);
3879 
3880   format %{ %}
3881   interface(REG_INTER);
3882 %}
3883 
3884 operand g4RegP() %{
3885   constraint(ALLOC_IN_RC(g4_regP));
3886   match(iRegP);
3887 
3888   format %{ %}
3889   interface(REG_INTER);
3890 %}
3891 
3892 operand i0RegP() %{
3893   constraint(ALLOC_IN_RC(i0_regP));
3894   match(iRegP);
3895 
3896   format %{ %}
3897   interface(REG_INTER);
3898 %}
3899 
3900 operand o0RegP() %{
3901   constraint(ALLOC_IN_RC(o0_regP));
3902   match(iRegP);
3903 
3904   format %{ %}
3905   interface(REG_INTER);
3906 %}
3907 
3908 operand o1RegP() %{
3909   constraint(ALLOC_IN_RC(o1_regP));
3910   match(iRegP);
3911 
3912   format %{ %}
3913   interface(REG_INTER);
3914 %}
3915 
3916 operand o2RegP() %{
3917   constraint(ALLOC_IN_RC(o2_regP));
3918   match(iRegP);
3919 
3920   format %{ %}
3921   interface(REG_INTER);
3922 %}
3923 
3924 operand o7RegP() %{
3925   constraint(ALLOC_IN_RC(o7_regP));
3926   match(iRegP);
3927 
3928   format %{ %}
3929   interface(REG_INTER);
3930 %}
3931 
3932 operand l7RegP() %{
3933   constraint(ALLOC_IN_RC(l7_regP));
3934   match(iRegP);
3935 
3936   format %{ %}
3937   interface(REG_INTER);
3938 %}
3939 
3940 operand o7RegI() %{
3941   constraint(ALLOC_IN_RC(o7_regI));
3942   match(iRegI);
3943 
3944   format %{ %}
3945   interface(REG_INTER);
3946 %}
3947 
3948 operand iRegN() %{
3949   constraint(ALLOC_IN_RC(int_reg));
3950   match(RegN);
3951 
3952   format %{ %}
3953   interface(REG_INTER);
3954 %}
3955 
3956 // Long Register
3957 operand iRegL() %{
3958   constraint(ALLOC_IN_RC(long_reg));
3959   match(RegL);
3960 
3961   format %{ %}
3962   interface(REG_INTER);
3963 %}
3964 
3965 operand o2RegL() %{
3966   constraint(ALLOC_IN_RC(o2_regL));
3967   match(iRegL);
3968 
3969   format %{ %}
3970   interface(REG_INTER);
3971 %}
3972 
3973 operand o7RegL() %{
3974   constraint(ALLOC_IN_RC(o7_regL));
3975   match(iRegL);
3976 
3977   format %{ %}
3978   interface(REG_INTER);
3979 %}
3980 
3981 operand g1RegL() %{
3982   constraint(ALLOC_IN_RC(g1_regL));
3983   match(iRegL);
3984 
3985   format %{ %}
3986   interface(REG_INTER);
3987 %}
3988 
3989 operand g3RegL() %{
3990   constraint(ALLOC_IN_RC(g3_regL));
3991   match(iRegL);
3992 
3993   format %{ %}
3994   interface(REG_INTER);
3995 %}
3996 
3997 // Int Register safe
3998 // This is 64bit safe
3999 operand iRegIsafe() %{
4000   constraint(ALLOC_IN_RC(long_reg));
4001 
4002   match(iRegI);
4003 
4004   format %{ %}
4005   interface(REG_INTER);
4006 %}
4007 
4008 // Condition Code Flag Register
4009 operand flagsReg() %{
4010   constraint(ALLOC_IN_RC(int_flags));
4011   match(RegFlags);
4012 
4013   format %{ "ccr" %} // both ICC and XCC
4014   interface(REG_INTER);
4015 %}
4016 
4017 // Condition Code Register, unsigned comparisons.
4018 operand flagsRegU() %{
4019   constraint(ALLOC_IN_RC(int_flags));
4020   match(RegFlags);
4021 
4022   format %{ "icc_U" %}
4023   interface(REG_INTER);
4024 %}
4025 
4026 // Condition Code Register, pointer comparisons.
4027 operand flagsRegP() %{
4028   constraint(ALLOC_IN_RC(int_flags));
4029   match(RegFlags);
4030 
4031 #ifdef _LP64
4032   format %{ "xcc_P" %}
4033 #else
4034   format %{ "icc_P" %}
4035 #endif
4036   interface(REG_INTER);
4037 %}
4038 
4039 // Condition Code Register, long comparisons.
4040 operand flagsRegL() %{
4041   constraint(ALLOC_IN_RC(int_flags));
4042   match(RegFlags);
4043 
4044   format %{ "xcc_L" %}
4045   interface(REG_INTER);
4046 %}
4047 
4048 // Condition Code Register, floating comparisons, unordered same as "less".
4049 operand flagsRegF() %{
4050   constraint(ALLOC_IN_RC(float_flags));
4051   match(RegFlags);
4052   match(flagsRegF0);
4053 
4054   format %{ %}
4055   interface(REG_INTER);
4056 %}
4057 
4058 operand flagsRegF0() %{
4059   constraint(ALLOC_IN_RC(float_flag0));
4060   match(RegFlags);
4061 
4062   format %{ %}
4063   interface(REG_INTER);
4064 %}
4065 
4066 
4067 // Condition Code Flag Register used by long compare
4068 operand flagsReg_long_LTGE() %{
4069   constraint(ALLOC_IN_RC(int_flags));
4070   match(RegFlags);
4071   format %{ "icc_LTGE" %}
4072   interface(REG_INTER);
4073 %}
4074 operand flagsReg_long_EQNE() %{
4075   constraint(ALLOC_IN_RC(int_flags));
4076   match(RegFlags);
4077   format %{ "icc_EQNE" %}
4078   interface(REG_INTER);
4079 %}
4080 operand flagsReg_long_LEGT() %{
4081   constraint(ALLOC_IN_RC(int_flags));
4082   match(RegFlags);
4083   format %{ "icc_LEGT" %}
4084   interface(REG_INTER);
4085 %}
4086 
4087 
4088 operand regD() %{
4089   constraint(ALLOC_IN_RC(dflt_reg));
4090   match(RegD);
4091 
4092   match(regD_low);
4093 
4094   format %{ %}
4095   interface(REG_INTER);
4096 %}
4097 
4098 operand regF() %{
4099   constraint(ALLOC_IN_RC(sflt_reg));
4100   match(RegF);
4101 
4102   format %{ %}
4103   interface(REG_INTER);
4104 %}
4105 
4106 operand regD_low() %{
4107   constraint(ALLOC_IN_RC(dflt_low_reg));
4108   match(regD);
4109 
4110   format %{ %}
4111   interface(REG_INTER);
4112 %}
4113 
4114 // Special Registers
4115 
4116 // Method Register
4117 operand inline_cache_regP(iRegP reg) %{
4118   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4119   match(reg);
4120   format %{ %}
4121   interface(REG_INTER);
4122 %}
4123 
4124 operand interpreter_method_oop_regP(iRegP reg) %{
4125   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4126   match(reg);
4127   format %{ %}
4128   interface(REG_INTER);
4129 %}
4130 
4131 
4132 //----------Complex Operands---------------------------------------------------
4133 // Indirect Memory Reference
4134 operand indirect(sp_ptr_RegP reg) %{
4135   constraint(ALLOC_IN_RC(sp_ptr_reg));
4136   match(reg);
4137 
4138   op_cost(100);
4139   format %{ "[$reg]" %}
4140   interface(MEMORY_INTER) %{
4141     base($reg);
4142     index(0x0);
4143     scale(0x0);
4144     disp(0x0);
4145   %}
4146 %}
4147 
4148 // Indirect with simm13 Offset
4149 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4150   constraint(ALLOC_IN_RC(sp_ptr_reg));
4151   match(AddP reg offset);
4152 
4153   op_cost(100);
4154   format %{ "[$reg + $offset]" %}
4155   interface(MEMORY_INTER) %{
4156     base($reg);
4157     index(0x0);
4158     scale(0x0);
4159     disp($offset);
4160   %}
4161 %}
4162 
4163 // Indirect with simm13 Offset minus 7
4164 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4165   constraint(ALLOC_IN_RC(sp_ptr_reg));
4166   match(AddP reg offset);
4167 
4168   op_cost(100);
4169   format %{ "[$reg + $offset]" %}
4170   interface(MEMORY_INTER) %{
4171     base($reg);
4172     index(0x0);
4173     scale(0x0);
4174     disp($offset);
4175   %}
4176 %}
4177 
4178 // Note:  Intel has a swapped version also, like this:
4179 //operand indOffsetX(iRegI reg, immP offset) %{
4180 //  constraint(ALLOC_IN_RC(int_reg));
4181 //  match(AddP offset reg);
4182 //
4183 //  op_cost(100);
4184 //  format %{ "[$reg + $offset]" %}
4185 //  interface(MEMORY_INTER) %{
4186 //    base($reg);
4187 //    index(0x0);
4188 //    scale(0x0);
4189 //    disp($offset);
4190 //  %}
4191 //%}
4192 //// However, it doesn't make sense for SPARC, since
4193 // we have no particularly good way to embed oops in
4194 // single instructions.
4195 
4196 // Indirect with Register Index
4197 operand indIndex(iRegP addr, iRegX index) %{
4198   constraint(ALLOC_IN_RC(ptr_reg));
4199   match(AddP addr index);
4200 
4201   op_cost(100);
4202   format %{ "[$addr + $index]" %}
4203   interface(MEMORY_INTER) %{
4204     base($addr);
4205     index($index);
4206     scale(0x0);
4207     disp(0x0);
4208   %}
4209 %}
4210 
4211 //----------Special Memory Operands--------------------------------------------
4212 // Stack Slot Operand - This operand is used for loading and storing temporary
4213 //                      values on the stack where a match requires a value to
4214 //                      flow through memory.
4215 operand stackSlotI(sRegI reg) %{
4216   constraint(ALLOC_IN_RC(stack_slots));
4217   op_cost(100);
4218   //match(RegI);
4219   format %{ "[$reg]" %}
4220   interface(MEMORY_INTER) %{
4221     base(0xE);   // R_SP
4222     index(0x0);
4223     scale(0x0);
4224     disp($reg);  // Stack Offset
4225   %}
4226 %}
4227 
4228 operand stackSlotP(sRegP reg) %{
4229   constraint(ALLOC_IN_RC(stack_slots));
4230   op_cost(100);
4231   //match(RegP);
4232   format %{ "[$reg]" %}
4233   interface(MEMORY_INTER) %{
4234     base(0xE);   // R_SP
4235     index(0x0);
4236     scale(0x0);
4237     disp($reg);  // Stack Offset
4238   %}
4239 %}
4240 
4241 operand stackSlotF(sRegF reg) %{
4242   constraint(ALLOC_IN_RC(stack_slots));
4243   op_cost(100);
4244   //match(RegF);
4245   format %{ "[$reg]" %}
4246   interface(MEMORY_INTER) %{
4247     base(0xE);   // R_SP
4248     index(0x0);
4249     scale(0x0);
4250     disp($reg);  // Stack Offset
4251   %}
4252 %}
4253 operand stackSlotD(sRegD reg) %{
4254   constraint(ALLOC_IN_RC(stack_slots));
4255   op_cost(100);
4256   //match(RegD);
4257   format %{ "[$reg]" %}
4258   interface(MEMORY_INTER) %{
4259     base(0xE);   // R_SP
4260     index(0x0);
4261     scale(0x0);
4262     disp($reg);  // Stack Offset
4263   %}
4264 %}
4265 operand stackSlotL(sRegL reg) %{
4266   constraint(ALLOC_IN_RC(stack_slots));
4267   op_cost(100);
4268   //match(RegL);
4269   format %{ "[$reg]" %}
4270   interface(MEMORY_INTER) %{
4271     base(0xE);   // R_SP
4272     index(0x0);
4273     scale(0x0);
4274     disp($reg);  // Stack Offset
4275   %}
4276 %}
4277 
4278 // Operands for expressing Control Flow
4279 // NOTE:  Label is a predefined operand which should not be redefined in
4280 //        the AD file.  It is generically handled within the ADLC.
4281 
4282 //----------Conditional Branch Operands----------------------------------------
4283 // Comparison Op  - This is the operation of the comparison, and is limited to
4284 //                  the following set of codes:
4285 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4286 //
4287 // Other attributes of the comparison, such as unsignedness, are specified
4288 // by the comparison instruction that sets a condition code flags register.
4289 // That result is represented by a flags operand whose subtype is appropriate
4290 // to the unsignedness (etc.) of the comparison.
4291 //
4292 // Later, the instruction which matches both the Comparison Op (a Bool) and
4293 // the flags (produced by the Cmp) specifies the coding of the comparison op
4294 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4295 
4296 operand cmpOp() %{
4297   match(Bool);
4298 
4299   format %{ "" %}
4300   interface(COND_INTER) %{
4301     equal(0x1);
4302     not_equal(0x9);
4303     less(0x3);
4304     greater_equal(0xB);
4305     less_equal(0x2);
4306     greater(0xA);
4307   %}
4308 %}
4309 
4310 // Comparison Op, unsigned
4311 operand cmpOpU() %{
4312   match(Bool);
4313 
4314   format %{ "u" %}
4315   interface(COND_INTER) %{
4316     equal(0x1);
4317     not_equal(0x9);
4318     less(0x5);
4319     greater_equal(0xD);
4320     less_equal(0x4);
4321     greater(0xC);
4322   %}
4323 %}
4324 
4325 // Comparison Op, pointer (same as unsigned)
4326 operand cmpOpP() %{
4327   match(Bool);
4328 
4329   format %{ "p" %}
4330   interface(COND_INTER) %{
4331     equal(0x1);
4332     not_equal(0x9);
4333     less(0x5);
4334     greater_equal(0xD);
4335     less_equal(0x4);
4336     greater(0xC);
4337   %}
4338 %}
4339 
4340 // Comparison Op, branch-register encoding
4341 operand cmpOp_reg() %{
4342   match(Bool);
4343 
4344   format %{ "" %}
4345   interface(COND_INTER) %{
4346     equal        (0x1);
4347     not_equal    (0x5);
4348     less         (0x3);
4349     greater_equal(0x7);
4350     less_equal   (0x2);
4351     greater      (0x6);
4352   %}
4353 %}
4354 
4355 // Comparison Code, floating, unordered same as less
4356 operand cmpOpF() %{
4357   match(Bool);
4358 
4359   format %{ "fl" %}
4360   interface(COND_INTER) %{
4361     equal(0x9);
4362     not_equal(0x1);
4363     less(0x3);
4364     greater_equal(0xB);
4365     less_equal(0xE);
4366     greater(0x6);
4367   %}
4368 %}
4369 
4370 // Used by long compare
4371 operand cmpOp_commute() %{
4372   match(Bool);
4373 
4374   format %{ "" %}
4375   interface(COND_INTER) %{
4376     equal(0x1);
4377     not_equal(0x9);
4378     less(0xA);
4379     greater_equal(0x2);
4380     less_equal(0xB);
4381     greater(0x3);
4382   %}
4383 %}
4384 
4385 //----------OPERAND CLASSES----------------------------------------------------
4386 // Operand Classes are groups of operands that are used to simplify
4387 // instruction definitions by not requiring the AD writer to specify separate
4388 // instructions for every form of operand when the instruction accepts
4389 // multiple operand types with the same basic encoding and format.  The classic
4390 // case of this is memory operands.
4391 opclass memory( indirect, indOffset13, indIndex );
4392 opclass indIndexMemory( indIndex );
4393 
4394 //----------PIPELINE-----------------------------------------------------------
4395 pipeline %{
4396 
4397 //----------ATTRIBUTES---------------------------------------------------------
4398 attributes %{
4399   fixed_size_instructions;           // Fixed size instructions
4400   branch_has_delay_slot;             // Branch has delay slot following
4401   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4402   instruction_unit_size = 4;         // An instruction is 4 bytes long
4403   instruction_fetch_unit_size = 16;  // The processor fetches one line
4404   instruction_fetch_units = 1;       // of 16 bytes
4405 
4406   // List of nop instructions
4407   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4408 %}
4409 
4410 //----------RESOURCES----------------------------------------------------------
4411 // Resources are the functional units available to the machine
4412 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4413 
4414 //----------PIPELINE DESCRIPTION-----------------------------------------------
4415 // Pipeline Description specifies the stages in the machine's pipeline
4416 
4417 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4418 
4419 //----------PIPELINE CLASSES---------------------------------------------------
4420 // Pipeline Classes describe the stages in which input and output are
4421 // referenced by the hardware pipeline.
4422 
4423 // Integer ALU reg-reg operation
4424 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4425     single_instruction;
4426     dst   : E(write);
4427     src1  : R(read);
4428     src2  : R(read);
4429     IALU  : R;
4430 %}
4431 
4432 // Integer ALU reg-reg long operation
4433 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4434     instruction_count(2);
4435     dst   : E(write);
4436     src1  : R(read);
4437     src2  : R(read);
4438     IALU  : R;
4439     IALU  : R;
4440 %}
4441 
4442 // Integer ALU reg-reg long dependent operation
4443 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4444     instruction_count(1); multiple_bundles;
4445     dst   : E(write);
4446     src1  : R(read);
4447     src2  : R(read);
4448     cr    : E(write);
4449     IALU  : R(2);
4450 %}
4451 
4452 // Integer ALU reg-imm operaion
4453 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4454     single_instruction;
4455     dst   : E(write);
4456     src1  : R(read);
4457     IALU  : R;
4458 %}
4459 
4460 // Integer ALU reg-reg operation with condition code
4461 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4462     single_instruction;
4463     dst   : E(write);
4464     cr    : E(write);
4465     src1  : R(read);
4466     src2  : R(read);
4467     IALU  : R;
4468 %}
4469 
4470 // Integer ALU reg-imm operation with condition code
4471 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4472     single_instruction;
4473     dst   : E(write);
4474     cr    : E(write);
4475     src1  : R(read);
4476     IALU  : R;
4477 %}
4478 
4479 // Integer ALU zero-reg operation
4480 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4481     single_instruction;
4482     dst   : E(write);
4483     src2  : R(read);
4484     IALU  : R;
4485 %}
4486 
4487 // Integer ALU zero-reg operation with condition code only
4488 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4489     single_instruction;
4490     cr    : E(write);
4491     src   : R(read);
4492     IALU  : R;
4493 %}
4494 
4495 // Integer ALU reg-reg operation with condition code only
4496 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4497     single_instruction;
4498     cr    : E(write);
4499     src1  : R(read);
4500     src2  : R(read);
4501     IALU  : R;
4502 %}
4503 
4504 // Integer ALU reg-imm operation with condition code only
4505 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4506     single_instruction;
4507     cr    : E(write);
4508     src1  : R(read);
4509     IALU  : R;
4510 %}
4511 
4512 // Integer ALU reg-reg-zero operation with condition code only
4513 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4514     single_instruction;
4515     cr    : E(write);
4516     src1  : R(read);
4517     src2  : R(read);
4518     IALU  : R;
4519 %}
4520 
4521 // Integer ALU reg-imm-zero operation with condition code only
4522 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4523     single_instruction;
4524     cr    : E(write);
4525     src1  : R(read);
4526     IALU  : R;
4527 %}
4528 
4529 // Integer ALU reg-reg operation with condition code, src1 modified
4530 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4531     single_instruction;
4532     cr    : E(write);
4533     src1  : E(write);
4534     src1  : R(read);
4535     src2  : R(read);
4536     IALU  : R;
4537 %}
4538 
4539 // Integer ALU reg-imm operation with condition code, src1 modified
4540 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4541     single_instruction;
4542     cr    : E(write);
4543     src1  : E(write);
4544     src1  : R(read);
4545     IALU  : R;
4546 %}
4547 
4548 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4549     multiple_bundles;
4550     dst   : E(write)+4;
4551     cr    : E(write);
4552     src1  : R(read);
4553     src2  : R(read);
4554     IALU  : R(3);
4555     BR    : R(2);
4556 %}
4557 
4558 // Integer ALU operation
4559 pipe_class ialu_none(iRegI dst) %{
4560     single_instruction;
4561     dst   : E(write);
4562     IALU  : R;
4563 %}
4564 
4565 // Integer ALU reg operation
4566 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4567     single_instruction; may_have_no_code;
4568     dst   : E(write);
4569     src   : R(read);
4570     IALU  : R;
4571 %}
4572 
4573 // Integer ALU reg conditional operation
4574 // This instruction has a 1 cycle stall, and cannot execute
4575 // in the same cycle as the instruction setting the condition
4576 // code. We kludge this by pretending to read the condition code
4577 // 1 cycle earlier, and by marking the functional units as busy
4578 // for 2 cycles with the result available 1 cycle later than
4579 // is really the case.
4580 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4581     single_instruction;
4582     op2_out : C(write);
4583     op1     : R(read);
4584     cr      : R(read);       // This is really E, with a 1 cycle stall
4585     BR      : R(2);
4586     MS      : R(2);
4587 %}
4588 
4589 #ifdef _LP64
4590 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4591     instruction_count(1); multiple_bundles;
4592     dst     : C(write)+1;
4593     src     : R(read)+1;
4594     IALU    : R(1);
4595     BR      : E(2);
4596     MS      : E(2);
4597 %}
4598 #endif
4599 
4600 // Integer ALU reg operation
4601 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4602     single_instruction; may_have_no_code;
4603     dst   : E(write);
4604     src   : R(read);
4605     IALU  : R;
4606 %}
4607 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4608     single_instruction; may_have_no_code;
4609     dst   : E(write);
4610     src   : R(read);
4611     IALU  : R;
4612 %}
4613 
4614 // Two integer ALU reg operations
4615 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4616     instruction_count(2);
4617     dst   : E(write);
4618     src   : R(read);
4619     A0    : R;
4620     A1    : R;
4621 %}
4622 
4623 // Two integer ALU reg operations
4624 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4625     instruction_count(2); may_have_no_code;
4626     dst   : E(write);
4627     src   : R(read);
4628     A0    : R;
4629     A1    : R;
4630 %}
4631 
4632 // Integer ALU imm operation
4633 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4634     single_instruction;
4635     dst   : E(write);
4636     IALU  : R;
4637 %}
4638 
4639 // Integer ALU reg-reg with carry operation
4640 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4641     single_instruction;
4642     dst   : E(write);
4643     src1  : R(read);
4644     src2  : R(read);
4645     IALU  : R;
4646 %}
4647 
4648 // Integer ALU cc operation
4649 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4650     single_instruction;
4651     dst   : E(write);
4652     cc    : R(read);
4653     IALU  : R;
4654 %}
4655 
4656 // Integer ALU cc / second IALU operation
4657 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4658     instruction_count(1); multiple_bundles;
4659     dst   : E(write)+1;
4660     src   : R(read);
4661     IALU  : R;
4662 %}
4663 
4664 // Integer ALU cc / second IALU operation
4665 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4666     instruction_count(1); multiple_bundles;
4667     dst   : E(write)+1;
4668     p     : R(read);
4669     q     : R(read);
4670     IALU  : R;
4671 %}
4672 
4673 // Integer ALU hi-lo-reg operation
4674 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4675     instruction_count(1); multiple_bundles;
4676     dst   : E(write)+1;
4677     IALU  : R(2);
4678 %}
4679 
4680 // Float ALU hi-lo-reg operation (with temp)
4681 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4682     instruction_count(1); multiple_bundles;
4683     dst   : E(write)+1;
4684     IALU  : R(2);
4685 %}
4686 
4687 // Long Constant
4688 pipe_class loadConL( iRegL dst, immL src ) %{
4689     instruction_count(2); multiple_bundles;
4690     dst   : E(write)+1;
4691     IALU  : R(2);
4692     IALU  : R(2);
4693 %}
4694 
4695 // Pointer Constant
4696 pipe_class loadConP( iRegP dst, immP src ) %{
4697     instruction_count(0); multiple_bundles;
4698     fixed_latency(6);
4699 %}
4700 
4701 // Polling Address
4702 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4703 #ifdef _LP64
4704     instruction_count(0); multiple_bundles;
4705     fixed_latency(6);
4706 #else
4707     dst   : E(write);
4708     IALU  : R;
4709 #endif
4710 %}
4711 
4712 // Long Constant small
4713 pipe_class loadConLlo( iRegL dst, immL src ) %{
4714     instruction_count(2);
4715     dst   : E(write);
4716     IALU  : R;
4717     IALU  : R;
4718 %}
4719 
4720 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4721 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4722     instruction_count(1); multiple_bundles;
4723     src   : R(read);
4724     dst   : M(write)+1;
4725     IALU  : R;
4726     MS    : E;
4727 %}
4728 
4729 // Integer ALU nop operation
4730 pipe_class ialu_nop() %{
4731     single_instruction;
4732     IALU  : R;
4733 %}
4734 
4735 // Integer ALU nop operation
4736 pipe_class ialu_nop_A0() %{
4737     single_instruction;
4738     A0    : R;
4739 %}
4740 
4741 // Integer ALU nop operation
4742 pipe_class ialu_nop_A1() %{
4743     single_instruction;
4744     A1    : R;
4745 %}
4746 
4747 // Integer Multiply reg-reg operation
4748 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4749     single_instruction;
4750     dst   : E(write);
4751     src1  : R(read);
4752     src2  : R(read);
4753     MS    : R(5);
4754 %}
4755 
4756 // Integer Multiply reg-imm operation
4757 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4758     single_instruction;
4759     dst   : E(write);
4760     src1  : R(read);
4761     MS    : R(5);
4762 %}
4763 
4764 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4765     single_instruction;
4766     dst   : E(write)+4;
4767     src1  : R(read);
4768     src2  : R(read);
4769     MS    : R(6);
4770 %}
4771 
4772 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4773     single_instruction;
4774     dst   : E(write)+4;
4775     src1  : R(read);
4776     MS    : R(6);
4777 %}
4778 
4779 // Integer Divide reg-reg
4780 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4781     instruction_count(1); multiple_bundles;
4782     dst   : E(write);
4783     temp  : E(write);
4784     src1  : R(read);
4785     src2  : R(read);
4786     temp  : R(read);
4787     MS    : R(38);
4788 %}
4789 
4790 // Integer Divide reg-imm
4791 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4792     instruction_count(1); multiple_bundles;
4793     dst   : E(write);
4794     temp  : E(write);
4795     src1  : R(read);
4796     temp  : R(read);
4797     MS    : R(38);
4798 %}
4799 
4800 // Long Divide
4801 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4802     dst  : E(write)+71;
4803     src1 : R(read);
4804     src2 : R(read)+1;
4805     MS   : R(70);
4806 %}
4807 
4808 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4809     dst  : E(write)+71;
4810     src1 : R(read);
4811     MS   : R(70);
4812 %}
4813 
4814 // Floating Point Add Float
4815 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4816     single_instruction;
4817     dst   : X(write);
4818     src1  : E(read);
4819     src2  : E(read);
4820     FA    : R;
4821 %}
4822 
4823 // Floating Point Add Double
4824 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4825     single_instruction;
4826     dst   : X(write);
4827     src1  : E(read);
4828     src2  : E(read);
4829     FA    : R;
4830 %}
4831 
4832 // Floating Point Conditional Move based on integer flags
4833 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4834     single_instruction;
4835     dst   : X(write);
4836     src   : E(read);
4837     cr    : R(read);
4838     FA    : R(2);
4839     BR    : R(2);
4840 %}
4841 
4842 // Floating Point Conditional Move based on integer flags
4843 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4844     single_instruction;
4845     dst   : X(write);
4846     src   : E(read);
4847     cr    : R(read);
4848     FA    : R(2);
4849     BR    : R(2);
4850 %}
4851 
4852 // Floating Point Multiply Float
4853 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4854     single_instruction;
4855     dst   : X(write);
4856     src1  : E(read);
4857     src2  : E(read);
4858     FM    : R;
4859 %}
4860 
4861 // Floating Point Multiply Double
4862 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4863     single_instruction;
4864     dst   : X(write);
4865     src1  : E(read);
4866     src2  : E(read);
4867     FM    : R;
4868 %}
4869 
4870 // Floating Point Divide Float
4871 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4872     single_instruction;
4873     dst   : X(write);
4874     src1  : E(read);
4875     src2  : E(read);
4876     FM    : R;
4877     FDIV  : C(14);
4878 %}
4879 
4880 // Floating Point Divide Double
4881 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4882     single_instruction;
4883     dst   : X(write);
4884     src1  : E(read);
4885     src2  : E(read);
4886     FM    : R;
4887     FDIV  : C(17);
4888 %}
4889 
4890 // Floating Point Move/Negate/Abs Float
4891 pipe_class faddF_reg(regF dst, regF src) %{
4892     single_instruction;
4893     dst   : W(write);
4894     src   : E(read);
4895     FA    : R(1);
4896 %}
4897 
4898 // Floating Point Move/Negate/Abs Double
4899 pipe_class faddD_reg(regD dst, regD src) %{
4900     single_instruction;
4901     dst   : W(write);
4902     src   : E(read);
4903     FA    : R;
4904 %}
4905 
4906 // Floating Point Convert F->D
4907 pipe_class fcvtF2D(regD dst, regF src) %{
4908     single_instruction;
4909     dst   : X(write);
4910     src   : E(read);
4911     FA    : R;
4912 %}
4913 
4914 // Floating Point Convert I->D
4915 pipe_class fcvtI2D(regD dst, regF src) %{
4916     single_instruction;
4917     dst   : X(write);
4918     src   : E(read);
4919     FA    : R;
4920 %}
4921 
4922 // Floating Point Convert LHi->D
4923 pipe_class fcvtLHi2D(regD dst, regD src) %{
4924     single_instruction;
4925     dst   : X(write);
4926     src   : E(read);
4927     FA    : R;
4928 %}
4929 
4930 // Floating Point Convert L->D
4931 pipe_class fcvtL2D(regD dst, regF src) %{
4932     single_instruction;
4933     dst   : X(write);
4934     src   : E(read);
4935     FA    : R;
4936 %}
4937 
4938 // Floating Point Convert L->F
4939 pipe_class fcvtL2F(regD dst, regF src) %{
4940     single_instruction;
4941     dst   : X(write);
4942     src   : E(read);
4943     FA    : R;
4944 %}
4945 
4946 // Floating Point Convert D->F
4947 pipe_class fcvtD2F(regD dst, regF src) %{
4948     single_instruction;
4949     dst   : X(write);
4950     src   : E(read);
4951     FA    : R;
4952 %}
4953 
4954 // Floating Point Convert I->L
4955 pipe_class fcvtI2L(regD dst, regF src) %{
4956     single_instruction;
4957     dst   : X(write);
4958     src   : E(read);
4959     FA    : R;
4960 %}
4961 
4962 // Floating Point Convert D->F
4963 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4964     instruction_count(1); multiple_bundles;
4965     dst   : X(write)+6;
4966     src   : E(read);
4967     FA    : R;
4968 %}
4969 
4970 // Floating Point Convert D->L
4971 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4972     instruction_count(1); multiple_bundles;
4973     dst   : X(write)+6;
4974     src   : E(read);
4975     FA    : R;
4976 %}
4977 
4978 // Floating Point Convert F->I
4979 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4980     instruction_count(1); multiple_bundles;
4981     dst   : X(write)+6;
4982     src   : E(read);
4983     FA    : R;
4984 %}
4985 
4986 // Floating Point Convert F->L
4987 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4988     instruction_count(1); multiple_bundles;
4989     dst   : X(write)+6;
4990     src   : E(read);
4991     FA    : R;
4992 %}
4993 
4994 // Floating Point Convert I->F
4995 pipe_class fcvtI2F(regF dst, regF src) %{
4996     single_instruction;
4997     dst   : X(write);
4998     src   : E(read);
4999     FA    : R;
5000 %}
5001 
5002 // Floating Point Compare
5003 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5004     single_instruction;
5005     cr    : X(write);
5006     src1  : E(read);
5007     src2  : E(read);
5008     FA    : R;
5009 %}
5010 
5011 // Floating Point Compare
5012 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5013     single_instruction;
5014     cr    : X(write);
5015     src1  : E(read);
5016     src2  : E(read);
5017     FA    : R;
5018 %}
5019 
5020 // Floating Add Nop
5021 pipe_class fadd_nop() %{
5022     single_instruction;
5023     FA  : R;
5024 %}
5025 
5026 // Integer Store to Memory
5027 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5028     single_instruction;
5029     mem   : R(read);
5030     src   : C(read);
5031     MS    : R;
5032 %}
5033 
5034 // Integer Store to Memory
5035 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5036     single_instruction;
5037     mem   : R(read);
5038     src   : C(read);
5039     MS    : R;
5040 %}
5041 
5042 // Integer Store Zero to Memory
5043 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5044     single_instruction;
5045     mem   : R(read);
5046     MS    : R;
5047 %}
5048 
5049 // Special Stack Slot Store
5050 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5051     single_instruction;
5052     stkSlot : R(read);
5053     src     : C(read);
5054     MS      : R;
5055 %}
5056 
5057 // Special Stack Slot Store
5058 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5059     instruction_count(2); multiple_bundles;
5060     stkSlot : R(read);
5061     src     : C(read);
5062     MS      : R(2);
5063 %}
5064 
5065 // Float Store
5066 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5067     single_instruction;
5068     mem : R(read);
5069     src : C(read);
5070     MS  : R;
5071 %}
5072 
5073 // Float Store
5074 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5075     single_instruction;
5076     mem : R(read);
5077     MS  : R;
5078 %}
5079 
5080 // Double Store
5081 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5082     instruction_count(1);
5083     mem : R(read);
5084     src : C(read);
5085     MS  : R;
5086 %}
5087 
5088 // Double Store
5089 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5090     single_instruction;
5091     mem : R(read);
5092     MS  : R;
5093 %}
5094 
5095 // Special Stack Slot Float Store
5096 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5097     single_instruction;
5098     stkSlot : R(read);
5099     src     : C(read);
5100     MS      : R;
5101 %}
5102 
5103 // Special Stack Slot Double Store
5104 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5105     single_instruction;
5106     stkSlot : R(read);
5107     src     : C(read);
5108     MS      : R;
5109 %}
5110 
5111 // Integer Load (when sign bit propagation not needed)
5112 pipe_class iload_mem(iRegI dst, memory mem) %{
5113     single_instruction;
5114     mem : R(read);
5115     dst : C(write);
5116     MS  : R;
5117 %}
5118 
5119 // Integer Load from stack operand
5120 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5121     single_instruction;
5122     mem : R(read);
5123     dst : C(write);
5124     MS  : R;
5125 %}
5126 
5127 // Integer Load (when sign bit propagation or masking is needed)
5128 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5129     single_instruction;
5130     mem : R(read);
5131     dst : M(write);
5132     MS  : R;
5133 %}
5134 
5135 // Float Load
5136 pipe_class floadF_mem(regF dst, memory mem) %{
5137     single_instruction;
5138     mem : R(read);
5139     dst : M(write);
5140     MS  : R;
5141 %}
5142 
5143 // Float Load
5144 pipe_class floadD_mem(regD dst, memory mem) %{
5145     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5146     mem : R(read);
5147     dst : M(write);
5148     MS  : R;
5149 %}
5150 
5151 // Float Load
5152 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5153     single_instruction;
5154     stkSlot : R(read);
5155     dst : M(write);
5156     MS  : R;
5157 %}
5158 
5159 // Float Load
5160 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5161     single_instruction;
5162     stkSlot : R(read);
5163     dst : M(write);
5164     MS  : R;
5165 %}
5166 
5167 // Memory Nop
5168 pipe_class mem_nop() %{
5169     single_instruction;
5170     MS  : R;
5171 %}
5172 
5173 pipe_class sethi(iRegP dst, immI src) %{
5174     single_instruction;
5175     dst  : E(write);
5176     IALU : R;
5177 %}
5178 
5179 pipe_class loadPollP(iRegP poll) %{
5180     single_instruction;
5181     poll : R(read);
5182     MS   : R;
5183 %}
5184 
5185 pipe_class br(Universe br, label labl) %{
5186     single_instruction_with_delay_slot;
5187     BR  : R;
5188 %}
5189 
5190 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5191     single_instruction_with_delay_slot;
5192     cr    : E(read);
5193     BR    : R;
5194 %}
5195 
5196 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5197     single_instruction_with_delay_slot;
5198     op1 : E(read);
5199     BR  : R;
5200     MS  : R;
5201 %}
5202 
5203 // Compare and branch
5204 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5205     instruction_count(2); has_delay_slot;
5206     cr    : E(write);
5207     src1  : R(read);
5208     src2  : R(read);
5209     IALU  : R;
5210     BR    : R;
5211 %}
5212 
5213 // Compare and branch
5214 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5215     instruction_count(2); has_delay_slot;
5216     cr    : E(write);
5217     src1  : R(read);
5218     IALU  : R;
5219     BR    : R;
5220 %}
5221 
5222 // Compare and branch using cbcond
5223 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5224     single_instruction;
5225     src1  : E(read);
5226     src2  : E(read);
5227     IALU  : R;
5228     BR    : R;
5229 %}
5230 
5231 // Compare and branch using cbcond
5232 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5233     single_instruction;
5234     src1  : E(read);
5235     IALU  : R;
5236     BR    : R;
5237 %}
5238 
5239 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5240     single_instruction_with_delay_slot;
5241     cr    : E(read);
5242     BR    : R;
5243 %}
5244 
5245 pipe_class br_nop() %{
5246     single_instruction;
5247     BR  : R;
5248 %}
5249 
5250 pipe_class simple_call(method meth) %{
5251     instruction_count(2); multiple_bundles; force_serialization;
5252     fixed_latency(100);
5253     BR  : R(1);
5254     MS  : R(1);
5255     A0  : R(1);
5256 %}
5257 
5258 pipe_class compiled_call(method meth) %{
5259     instruction_count(1); multiple_bundles; force_serialization;
5260     fixed_latency(100);
5261     MS  : R(1);
5262 %}
5263 
5264 pipe_class call(method meth) %{
5265     instruction_count(0); multiple_bundles; force_serialization;
5266     fixed_latency(100);
5267 %}
5268 
5269 pipe_class tail_call(Universe ignore, label labl) %{
5270     single_instruction; has_delay_slot;
5271     fixed_latency(100);
5272     BR  : R(1);
5273     MS  : R(1);
5274 %}
5275 
5276 pipe_class ret(Universe ignore) %{
5277     single_instruction; has_delay_slot;
5278     BR  : R(1);
5279     MS  : R(1);
5280 %}
5281 
5282 pipe_class ret_poll(g3RegP poll) %{
5283     instruction_count(3); has_delay_slot;
5284     poll : E(read);
5285     MS   : R;
5286 %}
5287 
5288 // The real do-nothing guy
5289 pipe_class empty( ) %{
5290     instruction_count(0);
5291 %}
5292 
5293 pipe_class long_memory_op() %{
5294     instruction_count(0); multiple_bundles; force_serialization;
5295     fixed_latency(25);
5296     MS  : R(1);
5297 %}
5298 
5299 // Check-cast
5300 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5301     array : R(read);
5302     match  : R(read);
5303     IALU   : R(2);
5304     BR     : R(2);
5305     MS     : R;
5306 %}
5307 
5308 // Convert FPU flags into +1,0,-1
5309 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5310     src1  : E(read);
5311     src2  : E(read);
5312     dst   : E(write);
5313     FA    : R;
5314     MS    : R(2);
5315     BR    : R(2);
5316 %}
5317 
5318 // Compare for p < q, and conditionally add y
5319 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5320     p     : E(read);
5321     q     : E(read);
5322     y     : E(read);
5323     IALU  : R(3)
5324 %}
5325 
5326 // Perform a compare, then move conditionally in a branch delay slot.
5327 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5328     src2   : E(read);
5329     srcdst : E(read);
5330     IALU   : R;
5331     BR     : R;
5332 %}
5333 
5334 // Define the class for the Nop node
5335 define %{
5336    MachNop = ialu_nop;
5337 %}
5338 
5339 %}
5340 
5341 //----------INSTRUCTIONS-------------------------------------------------------
5342 
5343 //------------Special Stack Slot instructions - no match rules-----------------
5344 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5345   // No match rule to avoid chain rule match.
5346   effect(DEF dst, USE src);
5347   ins_cost(MEMORY_REF_COST);
5348   size(4);
5349   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5350   opcode(Assembler::ldf_op3);
5351   ins_encode(simple_form3_mem_reg(src, dst));
5352   ins_pipe(floadF_stk);
5353 %}
5354 
5355 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5356   // No match rule to avoid chain rule match.
5357   effect(DEF dst, USE src);
5358   ins_cost(MEMORY_REF_COST);
5359   size(4);
5360   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5361   opcode(Assembler::lddf_op3);
5362   ins_encode(simple_form3_mem_reg(src, dst));
5363   ins_pipe(floadD_stk);
5364 %}
5365 
5366 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5367   // No match rule to avoid chain rule match.
5368   effect(DEF dst, USE src);
5369   ins_cost(MEMORY_REF_COST);
5370   size(4);
5371   format %{ "STF    $src,$dst\t! regF to stkI" %}
5372   opcode(Assembler::stf_op3);
5373   ins_encode(simple_form3_mem_reg(dst, src));
5374   ins_pipe(fstoreF_stk_reg);
5375 %}
5376 
5377 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5378   // No match rule to avoid chain rule match.
5379   effect(DEF dst, USE src);
5380   ins_cost(MEMORY_REF_COST);
5381   size(4);
5382   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5383   opcode(Assembler::stdf_op3);
5384   ins_encode(simple_form3_mem_reg(dst, src));
5385   ins_pipe(fstoreD_stk_reg);
5386 %}
5387 
5388 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5389   effect(DEF dst, USE src);
5390   ins_cost(MEMORY_REF_COST*2);
5391   size(8);
5392   format %{ "STW    $src,$dst.hi\t! long\n\t"
5393             "STW    R_G0,$dst.lo" %}
5394   opcode(Assembler::stw_op3);
5395   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5396   ins_pipe(lstoreI_stk_reg);
5397 %}
5398 
5399 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5400   // No match rule to avoid chain rule match.
5401   effect(DEF dst, USE src);
5402   ins_cost(MEMORY_REF_COST);
5403   size(4);
5404   format %{ "STX    $src,$dst\t! regL to stkD" %}
5405   opcode(Assembler::stx_op3);
5406   ins_encode(simple_form3_mem_reg( dst, src ) );
5407   ins_pipe(istore_stk_reg);
5408 %}
5409 
5410 //---------- Chain stack slots between similar types --------
5411 
5412 // Load integer from stack slot
5413 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5414   match(Set dst src);
5415   ins_cost(MEMORY_REF_COST);
5416 
5417   size(4);
5418   format %{ "LDUW   $src,$dst\t!stk" %}
5419   opcode(Assembler::lduw_op3);
5420   ins_encode(simple_form3_mem_reg( src, dst ) );
5421   ins_pipe(iload_mem);
5422 %}
5423 
5424 // Store integer to stack slot
5425 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5426   match(Set dst src);
5427   ins_cost(MEMORY_REF_COST);
5428 
5429   size(4);
5430   format %{ "STW    $src,$dst\t!stk" %}
5431   opcode(Assembler::stw_op3);
5432   ins_encode(simple_form3_mem_reg( dst, src ) );
5433   ins_pipe(istore_mem_reg);
5434 %}
5435 
5436 // Load long from stack slot
5437 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5438   match(Set dst src);
5439 
5440   ins_cost(MEMORY_REF_COST);
5441   size(4);
5442   format %{ "LDX    $src,$dst\t! long" %}
5443   opcode(Assembler::ldx_op3);
5444   ins_encode(simple_form3_mem_reg( src, dst ) );
5445   ins_pipe(iload_mem);
5446 %}
5447 
5448 // Store long to stack slot
5449 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5450   match(Set dst src);
5451 
5452   ins_cost(MEMORY_REF_COST);
5453   size(4);
5454   format %{ "STX    $src,$dst\t! long" %}
5455   opcode(Assembler::stx_op3);
5456   ins_encode(simple_form3_mem_reg( dst, src ) );
5457   ins_pipe(istore_mem_reg);
5458 %}
5459 
5460 #ifdef _LP64
5461 // Load pointer from stack slot, 64-bit encoding
5462 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5463   match(Set dst src);
5464   ins_cost(MEMORY_REF_COST);
5465   size(4);
5466   format %{ "LDX    $src,$dst\t!ptr" %}
5467   opcode(Assembler::ldx_op3);
5468   ins_encode(simple_form3_mem_reg( src, dst ) );
5469   ins_pipe(iload_mem);
5470 %}
5471 
5472 // Store pointer to stack slot
5473 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5474   match(Set dst src);
5475   ins_cost(MEMORY_REF_COST);
5476   size(4);
5477   format %{ "STX    $src,$dst\t!ptr" %}
5478   opcode(Assembler::stx_op3);
5479   ins_encode(simple_form3_mem_reg( dst, src ) );
5480   ins_pipe(istore_mem_reg);
5481 %}
5482 #else // _LP64
5483 // Load pointer from stack slot, 32-bit encoding
5484 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5485   match(Set dst src);
5486   ins_cost(MEMORY_REF_COST);
5487   format %{ "LDUW   $src,$dst\t!ptr" %}
5488   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5489   ins_encode(simple_form3_mem_reg( src, dst ) );
5490   ins_pipe(iload_mem);
5491 %}
5492 
5493 // Store pointer to stack slot
5494 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5495   match(Set dst src);
5496   ins_cost(MEMORY_REF_COST);
5497   format %{ "STW    $src,$dst\t!ptr" %}
5498   opcode(Assembler::stw_op3, Assembler::ldst_op);
5499   ins_encode(simple_form3_mem_reg( dst, src ) );
5500   ins_pipe(istore_mem_reg);
5501 %}
5502 #endif // _LP64
5503 
5504 //------------Special Nop instructions for bundling - no match rules-----------
5505 // Nop using the A0 functional unit
5506 instruct Nop_A0() %{
5507   ins_cost(0);
5508 
5509   format %{ "NOP    ! Alu Pipeline" %}
5510   opcode(Assembler::or_op3, Assembler::arith_op);
5511   ins_encode( form2_nop() );
5512   ins_pipe(ialu_nop_A0);
5513 %}
5514 
5515 // Nop using the A1 functional unit
5516 instruct Nop_A1( ) %{
5517   ins_cost(0);
5518 
5519   format %{ "NOP    ! Alu Pipeline" %}
5520   opcode(Assembler::or_op3, Assembler::arith_op);
5521   ins_encode( form2_nop() );
5522   ins_pipe(ialu_nop_A1);
5523 %}
5524 
5525 // Nop using the memory functional unit
5526 instruct Nop_MS( ) %{
5527   ins_cost(0);
5528 
5529   format %{ "NOP    ! Memory Pipeline" %}
5530   ins_encode( emit_mem_nop );
5531   ins_pipe(mem_nop);
5532 %}
5533 
5534 // Nop using the floating add functional unit
5535 instruct Nop_FA( ) %{
5536   ins_cost(0);
5537 
5538   format %{ "NOP    ! Floating Add Pipeline" %}
5539   ins_encode( emit_fadd_nop );
5540   ins_pipe(fadd_nop);
5541 %}
5542 
5543 // Nop using the branch functional unit
5544 instruct Nop_BR( ) %{
5545   ins_cost(0);
5546 
5547   format %{ "NOP    ! Branch Pipeline" %}
5548   ins_encode( emit_br_nop );
5549   ins_pipe(br_nop);
5550 %}
5551 
5552 //----------Load/Store/Move Instructions---------------------------------------
5553 //----------Load Instructions--------------------------------------------------
5554 // Load Byte (8bit signed)
5555 instruct loadB(iRegI dst, memory mem) %{
5556   match(Set dst (LoadB mem));
5557   ins_cost(MEMORY_REF_COST);
5558 
5559   size(4);
5560   format %{ "LDSB   $mem,$dst\t! byte" %}
5561   ins_encode %{
5562     __ ldsb($mem$$Address, $dst$$Register);
5563   %}
5564   ins_pipe(iload_mask_mem);
5565 %}
5566 
5567 // Load Byte (8bit signed) into a Long Register
5568 instruct loadB2L(iRegL dst, memory mem) %{
5569   match(Set dst (ConvI2L (LoadB mem)));
5570   ins_cost(MEMORY_REF_COST);
5571 
5572   size(4);
5573   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5574   ins_encode %{
5575     __ ldsb($mem$$Address, $dst$$Register);
5576   %}
5577   ins_pipe(iload_mask_mem);
5578 %}
5579 
5580 // Load Unsigned Byte (8bit UNsigned) into an int reg
5581 instruct loadUB(iRegI dst, memory mem) %{
5582   match(Set dst (LoadUB mem));
5583   ins_cost(MEMORY_REF_COST);
5584 
5585   size(4);
5586   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5587   ins_encode %{
5588     __ ldub($mem$$Address, $dst$$Register);
5589   %}
5590   ins_pipe(iload_mem);
5591 %}
5592 
5593 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5594 instruct loadUB2L(iRegL dst, memory mem) %{
5595   match(Set dst (ConvI2L (LoadUB mem)));
5596   ins_cost(MEMORY_REF_COST);
5597 
5598   size(4);
5599   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5600   ins_encode %{
5601     __ ldub($mem$$Address, $dst$$Register);
5602   %}
5603   ins_pipe(iload_mem);
5604 %}
5605 
5606 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5607 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5608   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5609   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5610 
5611   size(2*4);
5612   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5613             "AND    $dst,$mask,$dst" %}
5614   ins_encode %{
5615     __ ldub($mem$$Address, $dst$$Register);
5616     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5617   %}
5618   ins_pipe(iload_mem);
5619 %}
5620 
5621 // Load Short (16bit signed)
5622 instruct loadS(iRegI dst, memory mem) %{
5623   match(Set dst (LoadS mem));
5624   ins_cost(MEMORY_REF_COST);
5625 
5626   size(4);
5627   format %{ "LDSH   $mem,$dst\t! short" %}
5628   ins_encode %{
5629     __ ldsh($mem$$Address, $dst$$Register);
5630   %}
5631   ins_pipe(iload_mask_mem);
5632 %}
5633 
5634 // Load Short (16 bit signed) to Byte (8 bit signed)
5635 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5636   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5637   ins_cost(MEMORY_REF_COST);
5638 
5639   size(4);
5640 
5641   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5642   ins_encode %{
5643     __ ldsb($mem$$Address, $dst$$Register, 1);
5644   %}
5645   ins_pipe(iload_mask_mem);
5646 %}
5647 
5648 // Load Short (16bit signed) into a Long Register
5649 instruct loadS2L(iRegL dst, memory mem) %{
5650   match(Set dst (ConvI2L (LoadS mem)));
5651   ins_cost(MEMORY_REF_COST);
5652 
5653   size(4);
5654   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5655   ins_encode %{
5656     __ ldsh($mem$$Address, $dst$$Register);
5657   %}
5658   ins_pipe(iload_mask_mem);
5659 %}
5660 
5661 // Load Unsigned Short/Char (16bit UNsigned)
5662 instruct loadUS(iRegI dst, memory mem) %{
5663   match(Set dst (LoadUS mem));
5664   ins_cost(MEMORY_REF_COST);
5665 
5666   size(4);
5667   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5668   ins_encode %{
5669     __ lduh($mem$$Address, $dst$$Register);
5670   %}
5671   ins_pipe(iload_mem);
5672 %}
5673 
5674 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5675 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5676   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5677   ins_cost(MEMORY_REF_COST);
5678 
5679   size(4);
5680   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5681   ins_encode %{
5682     __ ldsb($mem$$Address, $dst$$Register, 1);
5683   %}
5684   ins_pipe(iload_mask_mem);
5685 %}
5686 
5687 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5688 instruct loadUS2L(iRegL dst, memory mem) %{
5689   match(Set dst (ConvI2L (LoadUS mem)));
5690   ins_cost(MEMORY_REF_COST);
5691 
5692   size(4);
5693   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5694   ins_encode %{
5695     __ lduh($mem$$Address, $dst$$Register);
5696   %}
5697   ins_pipe(iload_mem);
5698 %}
5699 
5700 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5701 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5702   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5703   ins_cost(MEMORY_REF_COST);
5704 
5705   size(4);
5706   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5707   ins_encode %{
5708     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5709   %}
5710   ins_pipe(iload_mem);
5711 %}
5712 
5713 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5714 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5715   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5716   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5717 
5718   size(2*4);
5719   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5720             "AND    $dst,$mask,$dst" %}
5721   ins_encode %{
5722     Register Rdst = $dst$$Register;
5723     __ lduh($mem$$Address, Rdst);
5724     __ and3(Rdst, $mask$$constant, Rdst);
5725   %}
5726   ins_pipe(iload_mem);
5727 %}
5728 
5729 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5730 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5731   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5732   effect(TEMP dst, TEMP tmp);
5733   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5734 
5735   size((3+1)*4);  // set may use two instructions.
5736   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5737             "SET    $mask,$tmp\n\t"
5738             "AND    $dst,$tmp,$dst" %}
5739   ins_encode %{
5740     Register Rdst = $dst$$Register;
5741     Register Rtmp = $tmp$$Register;
5742     __ lduh($mem$$Address, Rdst);
5743     __ set($mask$$constant, Rtmp);
5744     __ and3(Rdst, Rtmp, Rdst);
5745   %}
5746   ins_pipe(iload_mem);
5747 %}
5748 
5749 // Load Integer
5750 instruct loadI(iRegI dst, memory mem) %{
5751   match(Set dst (LoadI mem));
5752   ins_cost(MEMORY_REF_COST);
5753 
5754   size(4);
5755   format %{ "LDUW   $mem,$dst\t! int" %}
5756   ins_encode %{
5757     __ lduw($mem$$Address, $dst$$Register);
5758   %}
5759   ins_pipe(iload_mem);
5760 %}
5761 
5762 // Load Integer to Byte (8 bit signed)
5763 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5764   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5765   ins_cost(MEMORY_REF_COST);
5766 
5767   size(4);
5768 
5769   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5770   ins_encode %{
5771     __ ldsb($mem$$Address, $dst$$Register, 3);
5772   %}
5773   ins_pipe(iload_mask_mem);
5774 %}
5775 
5776 // Load Integer to Unsigned Byte (8 bit UNsigned)
5777 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5778   match(Set dst (AndI (LoadI mem) mask));
5779   ins_cost(MEMORY_REF_COST);
5780 
5781   size(4);
5782 
5783   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5784   ins_encode %{
5785     __ ldub($mem$$Address, $dst$$Register, 3);
5786   %}
5787   ins_pipe(iload_mask_mem);
5788 %}
5789 
5790 // Load Integer to Short (16 bit signed)
5791 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5792   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5793   ins_cost(MEMORY_REF_COST);
5794 
5795   size(4);
5796 
5797   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5798   ins_encode %{
5799     __ ldsh($mem$$Address, $dst$$Register, 2);
5800   %}
5801   ins_pipe(iload_mask_mem);
5802 %}
5803 
5804 // Load Integer to Unsigned Short (16 bit UNsigned)
5805 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5806   match(Set dst (AndI (LoadI mem) mask));
5807   ins_cost(MEMORY_REF_COST);
5808 
5809   size(4);
5810 
5811   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5812   ins_encode %{
5813     __ lduh($mem$$Address, $dst$$Register, 2);
5814   %}
5815   ins_pipe(iload_mask_mem);
5816 %}
5817 
5818 // Load Integer into a Long Register
5819 instruct loadI2L(iRegL dst, memory mem) %{
5820   match(Set dst (ConvI2L (LoadI mem)));
5821   ins_cost(MEMORY_REF_COST);
5822 
5823   size(4);
5824   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5825   ins_encode %{
5826     __ ldsw($mem$$Address, $dst$$Register);
5827   %}
5828   ins_pipe(iload_mask_mem);
5829 %}
5830 
5831 // Load Integer with mask 0xFF into a Long Register
5832 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5833   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5834   ins_cost(MEMORY_REF_COST);
5835 
5836   size(4);
5837   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5838   ins_encode %{
5839     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5840   %}
5841   ins_pipe(iload_mem);
5842 %}
5843 
5844 // Load Integer with mask 0xFFFF into a Long Register
5845 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5846   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5847   ins_cost(MEMORY_REF_COST);
5848 
5849   size(4);
5850   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5851   ins_encode %{
5852     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5853   %}
5854   ins_pipe(iload_mem);
5855 %}
5856 
5857 // Load Integer with a 13-bit mask into a Long Register
5858 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5859   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5860   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5861 
5862   size(2*4);
5863   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5864             "AND    $dst,$mask,$dst" %}
5865   ins_encode %{
5866     Register Rdst = $dst$$Register;
5867     __ lduw($mem$$Address, Rdst);
5868     __ and3(Rdst, $mask$$constant, Rdst);
5869   %}
5870   ins_pipe(iload_mem);
5871 %}
5872 
5873 // Load Integer with a 32-bit mask into a Long Register
5874 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5875   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5876   effect(TEMP dst, TEMP tmp);
5877   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5878 
5879   size((3+1)*4);  // set may use two instructions.
5880   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5881             "SET    $mask,$tmp\n\t"
5882             "AND    $dst,$tmp,$dst" %}
5883   ins_encode %{
5884     Register Rdst = $dst$$Register;
5885     Register Rtmp = $tmp$$Register;
5886     __ lduw($mem$$Address, Rdst);
5887     __ set($mask$$constant, Rtmp);
5888     __ and3(Rdst, Rtmp, Rdst);
5889   %}
5890   ins_pipe(iload_mem);
5891 %}
5892 
5893 // Load Unsigned Integer into a Long Register
5894 instruct loadUI2L(iRegL dst, memory mem) %{
5895   match(Set dst (LoadUI2L mem));
5896   ins_cost(MEMORY_REF_COST);
5897 
5898   size(4);
5899   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5900   ins_encode %{
5901     __ lduw($mem$$Address, $dst$$Register);
5902   %}
5903   ins_pipe(iload_mem);
5904 %}
5905 
5906 // Load Long - aligned
5907 instruct loadL(iRegL dst, memory mem ) %{
5908   match(Set dst (LoadL mem));
5909   ins_cost(MEMORY_REF_COST);
5910 
5911   size(4);
5912   format %{ "LDX    $mem,$dst\t! long" %}
5913   ins_encode %{
5914     __ ldx($mem$$Address, $dst$$Register);
5915   %}
5916   ins_pipe(iload_mem);
5917 %}
5918 
5919 // Load Long - UNaligned
5920 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5921   match(Set dst (LoadL_unaligned mem));
5922   effect(KILL tmp);
5923   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5924   size(16);
5925   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5926           "\tLDUW   $mem  ,$dst\n"
5927           "\tSLLX   #32, $dst, $dst\n"
5928           "\tOR     $dst, R_O7, $dst" %}
5929   opcode(Assembler::lduw_op3);
5930   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5931   ins_pipe(iload_mem);
5932 %}
5933 
5934 // Load Aligned Packed Byte into a Double Register
5935 instruct loadA8B(regD dst, memory mem) %{
5936   match(Set dst (Load8B mem));
5937   ins_cost(MEMORY_REF_COST);
5938   size(4);
5939   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5940   opcode(Assembler::lddf_op3);
5941   ins_encode(simple_form3_mem_reg( mem, dst ) );
5942   ins_pipe(floadD_mem);
5943 %}
5944 
5945 // Load Aligned Packed Char into a Double Register
5946 instruct loadA4C(regD dst, memory mem) %{
5947   match(Set dst (Load4C mem));
5948   ins_cost(MEMORY_REF_COST);
5949   size(4);
5950   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5951   opcode(Assembler::lddf_op3);
5952   ins_encode(simple_form3_mem_reg( mem, dst ) );
5953   ins_pipe(floadD_mem);
5954 %}
5955 
5956 // Load Aligned Packed Short into a Double Register
5957 instruct loadA4S(regD dst, memory mem) %{
5958   match(Set dst (Load4S mem));
5959   ins_cost(MEMORY_REF_COST);
5960   size(4);
5961   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5962   opcode(Assembler::lddf_op3);
5963   ins_encode(simple_form3_mem_reg( mem, dst ) );
5964   ins_pipe(floadD_mem);
5965 %}
5966 
5967 // Load Aligned Packed Int into a Double Register
5968 instruct loadA2I(regD dst, memory mem) %{
5969   match(Set dst (Load2I mem));
5970   ins_cost(MEMORY_REF_COST);
5971   size(4);
5972   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5973   opcode(Assembler::lddf_op3);
5974   ins_encode(simple_form3_mem_reg( mem, dst ) );
5975   ins_pipe(floadD_mem);
5976 %}
5977 
5978 // Load Range
5979 instruct loadRange(iRegI dst, memory mem) %{
5980   match(Set dst (LoadRange mem));
5981   ins_cost(MEMORY_REF_COST);
5982 
5983   size(4);
5984   format %{ "LDUW   $mem,$dst\t! range" %}
5985   opcode(Assembler::lduw_op3);
5986   ins_encode(simple_form3_mem_reg( mem, dst ) );
5987   ins_pipe(iload_mem);
5988 %}
5989 
5990 // Load Integer into %f register (for fitos/fitod)
5991 instruct loadI_freg(regF dst, memory mem) %{
5992   match(Set dst (LoadI mem));
5993   ins_cost(MEMORY_REF_COST);
5994   size(4);
5995 
5996   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5997   opcode(Assembler::ldf_op3);
5998   ins_encode(simple_form3_mem_reg( mem, dst ) );
5999   ins_pipe(floadF_mem);
6000 %}
6001 
6002 // Load Pointer
6003 instruct loadP(iRegP dst, memory mem) %{
6004   match(Set dst (LoadP mem));
6005   ins_cost(MEMORY_REF_COST);
6006   size(4);
6007 
6008 #ifndef _LP64
6009   format %{ "LDUW   $mem,$dst\t! ptr" %}
6010   ins_encode %{
6011     __ lduw($mem$$Address, $dst$$Register);
6012   %}
6013 #else
6014   format %{ "LDX    $mem,$dst\t! ptr" %}
6015   ins_encode %{
6016     __ ldx($mem$$Address, $dst$$Register);
6017   %}
6018 #endif
6019   ins_pipe(iload_mem);
6020 %}
6021 
6022 // Load Compressed Pointer
6023 instruct loadN(iRegN dst, memory mem) %{
6024   match(Set dst (LoadN mem));
6025   ins_cost(MEMORY_REF_COST);
6026   size(4);
6027 
6028   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
6029   ins_encode %{
6030     __ lduw($mem$$Address, $dst$$Register);
6031   %}
6032   ins_pipe(iload_mem);
6033 %}
6034 
6035 // Load Klass Pointer
6036 instruct loadKlass(iRegP dst, memory mem) %{
6037   match(Set dst (LoadKlass mem));
6038   ins_cost(MEMORY_REF_COST);
6039   size(4);
6040 
6041 #ifndef _LP64
6042   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6043   ins_encode %{
6044     __ lduw($mem$$Address, $dst$$Register);
6045   %}
6046 #else
6047   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6048   ins_encode %{
6049     __ ldx($mem$$Address, $dst$$Register);
6050   %}
6051 #endif
6052   ins_pipe(iload_mem);
6053 %}
6054 
6055 // Load narrow Klass Pointer
6056 instruct loadNKlass(iRegN dst, memory mem) %{
6057   match(Set dst (LoadNKlass mem));
6058   ins_cost(MEMORY_REF_COST);
6059   size(4);
6060 
6061   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6062   ins_encode %{
6063     __ lduw($mem$$Address, $dst$$Register);
6064   %}
6065   ins_pipe(iload_mem);
6066 %}
6067 
6068 // Load Double
6069 instruct loadD(regD dst, memory mem) %{
6070   match(Set dst (LoadD mem));
6071   ins_cost(MEMORY_REF_COST);
6072 
6073   size(4);
6074   format %{ "LDDF   $mem,$dst" %}
6075   opcode(Assembler::lddf_op3);
6076   ins_encode(simple_form3_mem_reg( mem, dst ) );
6077   ins_pipe(floadD_mem);
6078 %}
6079 
6080 // Load Double - UNaligned
6081 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6082   match(Set dst (LoadD_unaligned mem));
6083   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6084   size(8);
6085   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6086           "\tLDF    $mem+4,$dst.lo\t!" %}
6087   opcode(Assembler::ldf_op3);
6088   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6089   ins_pipe(iload_mem);
6090 %}
6091 
6092 // Load Float
6093 instruct loadF(regF dst, memory mem) %{
6094   match(Set dst (LoadF mem));
6095   ins_cost(MEMORY_REF_COST);
6096 
6097   size(4);
6098   format %{ "LDF    $mem,$dst" %}
6099   opcode(Assembler::ldf_op3);
6100   ins_encode(simple_form3_mem_reg( mem, dst ) );
6101   ins_pipe(floadF_mem);
6102 %}
6103 
6104 // Load Constant
6105 instruct loadConI( iRegI dst, immI src ) %{
6106   match(Set dst src);
6107   ins_cost(DEFAULT_COST * 3/2);
6108   format %{ "SET    $src,$dst" %}
6109   ins_encode( Set32(src, dst) );
6110   ins_pipe(ialu_hi_lo_reg);
6111 %}
6112 
6113 instruct loadConI13( iRegI dst, immI13 src ) %{
6114   match(Set dst src);
6115 
6116   size(4);
6117   format %{ "MOV    $src,$dst" %}
6118   ins_encode( Set13( src, dst ) );
6119   ins_pipe(ialu_imm);
6120 %}
6121 
6122 #ifndef _LP64
6123 instruct loadConP(iRegP dst, immP con) %{
6124   match(Set dst con);
6125   ins_cost(DEFAULT_COST * 3/2);
6126   format %{ "SET    $con,$dst\t!ptr" %}
6127   ins_encode %{
6128     // [RGV] This next line should be generated from ADLC
6129     if (_opnds[1]->constant_is_oop()) {
6130       intptr_t val = $con$$constant;
6131       __ set_oop_constant((jobject) val, $dst$$Register);
6132     } else {          // non-oop pointers, e.g. card mark base, heap top
6133       __ set($con$$constant, $dst$$Register);
6134     }
6135   %}
6136   ins_pipe(loadConP);
6137 %}
6138 #else
6139 instruct loadConP_set(iRegP dst, immP_set con) %{
6140   match(Set dst con);
6141   ins_cost(DEFAULT_COST * 3/2);
6142   format %{ "SET    $con,$dst\t! ptr" %}
6143   ins_encode %{
6144     // [RGV] This next line should be generated from ADLC
6145     if (_opnds[1]->constant_is_oop()) {
6146       intptr_t val = $con$$constant;
6147       __ set_oop_constant((jobject) val, $dst$$Register);
6148     } else {          // non-oop pointers, e.g. card mark base, heap top
6149       __ set($con$$constant, $dst$$Register);
6150     }
6151   %}
6152   ins_pipe(loadConP);
6153 %}
6154 
6155 instruct loadConP_load(iRegP dst, immP_load con) %{
6156   match(Set dst con);
6157   ins_cost(MEMORY_REF_COST);
6158   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6159   ins_encode %{
6160     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6161     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6162   %}
6163   ins_pipe(loadConP);
6164 %}
6165 
6166 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6167   match(Set dst con);
6168   ins_cost(DEFAULT_COST * 3/2);
6169   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6170   ins_encode %{
6171     __ set($con$$constant, $dst$$Register);
6172   %}
6173   ins_pipe(loadConP);
6174 %}
6175 #endif // _LP64
6176 
6177 instruct loadConP0(iRegP dst, immP0 src) %{
6178   match(Set dst src);
6179 
6180   size(4);
6181   format %{ "CLR    $dst\t!ptr" %}
6182   ins_encode %{
6183     __ clr($dst$$Register);
6184   %}
6185   ins_pipe(ialu_imm);
6186 %}
6187 
6188 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6189   match(Set dst src);
6190   ins_cost(DEFAULT_COST);
6191   format %{ "SET    $src,$dst\t!ptr" %}
6192   ins_encode %{
6193     AddressLiteral polling_page(os::get_polling_page());
6194     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6195   %}
6196   ins_pipe(loadConP_poll);
6197 %}
6198 
6199 instruct loadConN0(iRegN dst, immN0 src) %{
6200   match(Set dst src);
6201 
6202   size(4);
6203   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6204   ins_encode %{
6205     __ clr($dst$$Register);
6206   %}
6207   ins_pipe(ialu_imm);
6208 %}
6209 
6210 instruct loadConN(iRegN dst, immN src) %{
6211   match(Set dst src);
6212   ins_cost(DEFAULT_COST * 3/2);
6213   format %{ "SET    $src,$dst\t! compressed ptr" %}
6214   ins_encode %{
6215     Register dst = $dst$$Register;
6216     __ set_narrow_oop((jobject)$src$$constant, dst);
6217   %}
6218   ins_pipe(ialu_hi_lo_reg);
6219 %}
6220 
6221 // Materialize long value (predicated by immL_cheap).
6222 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6223   match(Set dst con);
6224   effect(KILL tmp);
6225   ins_cost(DEFAULT_COST * 3);
6226   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6227   ins_encode %{
6228     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6229   %}
6230   ins_pipe(loadConL);
6231 %}
6232 
6233 // Load long value from constant table (predicated by immL_expensive).
6234 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6235   match(Set dst con);
6236   ins_cost(MEMORY_REF_COST);
6237   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6238   ins_encode %{
6239       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6240     __ ldx($constanttablebase, con_offset, $dst$$Register);
6241   %}
6242   ins_pipe(loadConL);
6243 %}
6244 
6245 instruct loadConL0( iRegL dst, immL0 src ) %{
6246   match(Set dst src);
6247   ins_cost(DEFAULT_COST);
6248   size(4);
6249   format %{ "CLR    $dst\t! long" %}
6250   ins_encode( Set13( src, dst ) );
6251   ins_pipe(ialu_imm);
6252 %}
6253 
6254 instruct loadConL13( iRegL dst, immL13 src ) %{
6255   match(Set dst src);
6256   ins_cost(DEFAULT_COST * 2);
6257 
6258   size(4);
6259   format %{ "MOV    $src,$dst\t! long" %}
6260   ins_encode( Set13( src, dst ) );
6261   ins_pipe(ialu_imm);
6262 %}
6263 
6264 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6265   match(Set dst con);
6266   effect(KILL tmp);
6267   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6268   ins_encode %{
6269       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6270     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6271   %}
6272   ins_pipe(loadConFD);
6273 %}
6274 
6275 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6276   match(Set dst con);
6277   effect(KILL tmp);
6278   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6279   ins_encode %{
6280     // XXX This is a quick fix for 6833573.
6281     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6282     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6283     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6284   %}
6285   ins_pipe(loadConFD);
6286 %}
6287 
6288 // Prefetch instructions.
6289 // Must be safe to execute with invalid address (cannot fault).
6290 
6291 instruct prefetchr( memory mem ) %{
6292   match( PrefetchRead mem );
6293   ins_cost(MEMORY_REF_COST);
6294   size(4);
6295 
6296   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6297   opcode(Assembler::prefetch_op3);
6298   ins_encode( form3_mem_prefetch_read( mem ) );
6299   ins_pipe(iload_mem);
6300 %}
6301 
6302 instruct prefetchw( memory mem ) %{
6303   match( PrefetchWrite mem );
6304   ins_cost(MEMORY_REF_COST);
6305   size(4);
6306 
6307   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6308   opcode(Assembler::prefetch_op3);
6309   ins_encode( form3_mem_prefetch_write( mem ) );
6310   ins_pipe(iload_mem);
6311 %}
6312 
6313 // Prefetch instructions for allocation.
6314 
6315 instruct prefetchAlloc( memory mem ) %{
6316   predicate(AllocatePrefetchInstr == 0);
6317   match( PrefetchAllocation mem );
6318   ins_cost(MEMORY_REF_COST);
6319   size(4);
6320 
6321   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6322   opcode(Assembler::prefetch_op3);
6323   ins_encode( form3_mem_prefetch_write( mem ) );
6324   ins_pipe(iload_mem);
6325 %}
6326 
6327 // Use BIS instruction to prefetch for allocation.
6328 // Could fault, need space at the end of TLAB.
6329 instruct prefetchAlloc_bis( iRegP dst ) %{
6330   predicate(AllocatePrefetchInstr == 1);
6331   match( PrefetchAllocation dst );
6332   ins_cost(MEMORY_REF_COST);
6333   size(4);
6334 
6335   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6336   ins_encode %{
6337     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6338   %}
6339   ins_pipe(istore_mem_reg);
6340 %}
6341 
6342 // Next code is used for finding next cache line address to prefetch.
6343 #ifndef _LP64
6344 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6345   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6346   ins_cost(DEFAULT_COST);
6347   size(4);
6348 
6349   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6350   ins_encode %{
6351     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6352   %}
6353   ins_pipe(ialu_reg_imm);
6354 %}
6355 #else
6356 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6357   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6358   ins_cost(DEFAULT_COST);
6359   size(4);
6360 
6361   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6362   ins_encode %{
6363     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6364   %}
6365   ins_pipe(ialu_reg_imm);
6366 %}
6367 #endif
6368 
6369 //----------Store Instructions-------------------------------------------------
6370 // Store Byte
6371 instruct storeB(memory mem, iRegI src) %{
6372   match(Set mem (StoreB mem src));
6373   ins_cost(MEMORY_REF_COST);
6374 
6375   size(4);
6376   format %{ "STB    $src,$mem\t! byte" %}
6377   opcode(Assembler::stb_op3);
6378   ins_encode(simple_form3_mem_reg( mem, src ) );
6379   ins_pipe(istore_mem_reg);
6380 %}
6381 
6382 instruct storeB0(memory mem, immI0 src) %{
6383   match(Set mem (StoreB mem src));
6384   ins_cost(MEMORY_REF_COST);
6385 
6386   size(4);
6387   format %{ "STB    $src,$mem\t! byte" %}
6388   opcode(Assembler::stb_op3);
6389   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6390   ins_pipe(istore_mem_zero);
6391 %}
6392 
6393 instruct storeCM0(memory mem, immI0 src) %{
6394   match(Set mem (StoreCM mem src));
6395   ins_cost(MEMORY_REF_COST);
6396 
6397   size(4);
6398   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6399   opcode(Assembler::stb_op3);
6400   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6401   ins_pipe(istore_mem_zero);
6402 %}
6403 
6404 // Store Char/Short
6405 instruct storeC(memory mem, iRegI src) %{
6406   match(Set mem (StoreC mem src));
6407   ins_cost(MEMORY_REF_COST);
6408 
6409   size(4);
6410   format %{ "STH    $src,$mem\t! short" %}
6411   opcode(Assembler::sth_op3);
6412   ins_encode(simple_form3_mem_reg( mem, src ) );
6413   ins_pipe(istore_mem_reg);
6414 %}
6415 
6416 instruct storeC0(memory mem, immI0 src) %{
6417   match(Set mem (StoreC mem src));
6418   ins_cost(MEMORY_REF_COST);
6419 
6420   size(4);
6421   format %{ "STH    $src,$mem\t! short" %}
6422   opcode(Assembler::sth_op3);
6423   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6424   ins_pipe(istore_mem_zero);
6425 %}
6426 
6427 // Store Integer
6428 instruct storeI(memory mem, iRegI src) %{
6429   match(Set mem (StoreI mem src));
6430   ins_cost(MEMORY_REF_COST);
6431 
6432   size(4);
6433   format %{ "STW    $src,$mem" %}
6434   opcode(Assembler::stw_op3);
6435   ins_encode(simple_form3_mem_reg( mem, src ) );
6436   ins_pipe(istore_mem_reg);
6437 %}
6438 
6439 // Store Long
6440 instruct storeL(memory mem, iRegL src) %{
6441   match(Set mem (StoreL mem src));
6442   ins_cost(MEMORY_REF_COST);
6443   size(4);
6444   format %{ "STX    $src,$mem\t! long" %}
6445   opcode(Assembler::stx_op3);
6446   ins_encode(simple_form3_mem_reg( mem, src ) );
6447   ins_pipe(istore_mem_reg);
6448 %}
6449 
6450 instruct storeI0(memory mem, immI0 src) %{
6451   match(Set mem (StoreI mem src));
6452   ins_cost(MEMORY_REF_COST);
6453 
6454   size(4);
6455   format %{ "STW    $src,$mem" %}
6456   opcode(Assembler::stw_op3);
6457   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6458   ins_pipe(istore_mem_zero);
6459 %}
6460 
6461 instruct storeL0(memory mem, immL0 src) %{
6462   match(Set mem (StoreL mem src));
6463   ins_cost(MEMORY_REF_COST);
6464 
6465   size(4);
6466   format %{ "STX    $src,$mem" %}
6467   opcode(Assembler::stx_op3);
6468   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6469   ins_pipe(istore_mem_zero);
6470 %}
6471 
6472 // Store Integer from float register (used after fstoi)
6473 instruct storeI_Freg(memory mem, regF src) %{
6474   match(Set mem (StoreI mem src));
6475   ins_cost(MEMORY_REF_COST);
6476 
6477   size(4);
6478   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6479   opcode(Assembler::stf_op3);
6480   ins_encode(simple_form3_mem_reg( mem, src ) );
6481   ins_pipe(fstoreF_mem_reg);
6482 %}
6483 
6484 // Store Pointer
6485 instruct storeP(memory dst, sp_ptr_RegP src) %{
6486   match(Set dst (StoreP dst src));
6487   ins_cost(MEMORY_REF_COST);
6488   size(4);
6489 
6490 #ifndef _LP64
6491   format %{ "STW    $src,$dst\t! ptr" %}
6492   opcode(Assembler::stw_op3, 0, REGP_OP);
6493 #else
6494   format %{ "STX    $src,$dst\t! ptr" %}
6495   opcode(Assembler::stx_op3, 0, REGP_OP);
6496 #endif
6497   ins_encode( form3_mem_reg( dst, src ) );
6498   ins_pipe(istore_mem_spORreg);
6499 %}
6500 
6501 instruct storeP0(memory dst, immP0 src) %{
6502   match(Set dst (StoreP dst src));
6503   ins_cost(MEMORY_REF_COST);
6504   size(4);
6505 
6506 #ifndef _LP64
6507   format %{ "STW    $src,$dst\t! ptr" %}
6508   opcode(Assembler::stw_op3, 0, REGP_OP);
6509 #else
6510   format %{ "STX    $src,$dst\t! ptr" %}
6511   opcode(Assembler::stx_op3, 0, REGP_OP);
6512 #endif
6513   ins_encode( form3_mem_reg( dst, R_G0 ) );
6514   ins_pipe(istore_mem_zero);
6515 %}
6516 
6517 // Store Compressed Pointer
6518 instruct storeN(memory dst, iRegN src) %{
6519    match(Set dst (StoreN dst src));
6520    ins_cost(MEMORY_REF_COST);
6521    size(4);
6522 
6523    format %{ "STW    $src,$dst\t! compressed ptr" %}
6524    ins_encode %{
6525      Register base = as_Register($dst$$base);
6526      Register index = as_Register($dst$$index);
6527      Register src = $src$$Register;
6528      if (index != G0) {
6529        __ stw(src, base, index);
6530      } else {
6531        __ stw(src, base, $dst$$disp);
6532      }
6533    %}
6534    ins_pipe(istore_mem_spORreg);
6535 %}
6536 
6537 instruct storeN0(memory dst, immN0 src) %{
6538    match(Set dst (StoreN dst src));
6539    ins_cost(MEMORY_REF_COST);
6540    size(4);
6541 
6542    format %{ "STW    $src,$dst\t! compressed ptr" %}
6543    ins_encode %{
6544      Register base = as_Register($dst$$base);
6545      Register index = as_Register($dst$$index);
6546      if (index != G0) {
6547        __ stw(0, base, index);
6548      } else {
6549        __ stw(0, base, $dst$$disp);
6550      }
6551    %}
6552    ins_pipe(istore_mem_zero);
6553 %}
6554 
6555 // Store Double
6556 instruct storeD( memory mem, regD src) %{
6557   match(Set mem (StoreD mem src));
6558   ins_cost(MEMORY_REF_COST);
6559 
6560   size(4);
6561   format %{ "STDF   $src,$mem" %}
6562   opcode(Assembler::stdf_op3);
6563   ins_encode(simple_form3_mem_reg( mem, src ) );
6564   ins_pipe(fstoreD_mem_reg);
6565 %}
6566 
6567 instruct storeD0( memory mem, immD0 src) %{
6568   match(Set mem (StoreD mem src));
6569   ins_cost(MEMORY_REF_COST);
6570 
6571   size(4);
6572   format %{ "STX    $src,$mem" %}
6573   opcode(Assembler::stx_op3);
6574   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6575   ins_pipe(fstoreD_mem_zero);
6576 %}
6577 
6578 // Store Float
6579 instruct storeF( memory mem, regF src) %{
6580   match(Set mem (StoreF mem src));
6581   ins_cost(MEMORY_REF_COST);
6582 
6583   size(4);
6584   format %{ "STF    $src,$mem" %}
6585   opcode(Assembler::stf_op3);
6586   ins_encode(simple_form3_mem_reg( mem, src ) );
6587   ins_pipe(fstoreF_mem_reg);
6588 %}
6589 
6590 instruct storeF0( memory mem, immF0 src) %{
6591   match(Set mem (StoreF mem src));
6592   ins_cost(MEMORY_REF_COST);
6593 
6594   size(4);
6595   format %{ "STW    $src,$mem\t! storeF0" %}
6596   opcode(Assembler::stw_op3);
6597   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6598   ins_pipe(fstoreF_mem_zero);
6599 %}
6600 
6601 // Store Aligned Packed Bytes in Double register to memory
6602 instruct storeA8B(memory mem, regD src) %{
6603   match(Set mem (Store8B mem src));
6604   ins_cost(MEMORY_REF_COST);
6605   size(4);
6606   format %{ "STDF   $src,$mem\t! packed8B" %}
6607   opcode(Assembler::stdf_op3);
6608   ins_encode(simple_form3_mem_reg( mem, src ) );
6609   ins_pipe(fstoreD_mem_reg);
6610 %}
6611 
6612 // Convert oop pointer into compressed form
6613 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6614   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6615   match(Set dst (EncodeP src));
6616   format %{ "encode_heap_oop $src, $dst" %}
6617   ins_encode %{
6618     __ encode_heap_oop($src$$Register, $dst$$Register);
6619   %}
6620   ins_pipe(ialu_reg);
6621 %}
6622 
6623 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6624   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6625   match(Set dst (EncodeP src));
6626   format %{ "encode_heap_oop_not_null $src, $dst" %}
6627   ins_encode %{
6628     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6629   %}
6630   ins_pipe(ialu_reg);
6631 %}
6632 
6633 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6634   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6635             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6636   match(Set dst (DecodeN src));
6637   format %{ "decode_heap_oop $src, $dst" %}
6638   ins_encode %{
6639     __ decode_heap_oop($src$$Register, $dst$$Register);
6640   %}
6641   ins_pipe(ialu_reg);
6642 %}
6643 
6644 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6645   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6646             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6647   match(Set dst (DecodeN src));
6648   format %{ "decode_heap_oop_not_null $src, $dst" %}
6649   ins_encode %{
6650     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6651   %}
6652   ins_pipe(ialu_reg);
6653 %}
6654 
6655 
6656 // Store Zero into Aligned Packed Bytes
6657 instruct storeA8B0(memory mem, immI0 zero) %{
6658   match(Set mem (Store8B mem zero));
6659   ins_cost(MEMORY_REF_COST);
6660   size(4);
6661   format %{ "STX    $zero,$mem\t! packed8B" %}
6662   opcode(Assembler::stx_op3);
6663   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6664   ins_pipe(fstoreD_mem_zero);
6665 %}
6666 
6667 // Store Aligned Packed Chars/Shorts in Double register to memory
6668 instruct storeA4C(memory mem, regD src) %{
6669   match(Set mem (Store4C mem src));
6670   ins_cost(MEMORY_REF_COST);
6671   size(4);
6672   format %{ "STDF   $src,$mem\t! packed4C" %}
6673   opcode(Assembler::stdf_op3);
6674   ins_encode(simple_form3_mem_reg( mem, src ) );
6675   ins_pipe(fstoreD_mem_reg);
6676 %}
6677 
6678 // Store Zero into Aligned Packed Chars/Shorts
6679 instruct storeA4C0(memory mem, immI0 zero) %{
6680   match(Set mem (Store4C mem (Replicate4C zero)));
6681   ins_cost(MEMORY_REF_COST);
6682   size(4);
6683   format %{ "STX    $zero,$mem\t! packed4C" %}
6684   opcode(Assembler::stx_op3);
6685   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6686   ins_pipe(fstoreD_mem_zero);
6687 %}
6688 
6689 // Store Aligned Packed Ints in Double register to memory
6690 instruct storeA2I(memory mem, regD src) %{
6691   match(Set mem (Store2I mem src));
6692   ins_cost(MEMORY_REF_COST);
6693   size(4);
6694   format %{ "STDF   $src,$mem\t! packed2I" %}
6695   opcode(Assembler::stdf_op3);
6696   ins_encode(simple_form3_mem_reg( mem, src ) );
6697   ins_pipe(fstoreD_mem_reg);
6698 %}
6699 
6700 // Store Zero into Aligned Packed Ints
6701 instruct storeA2I0(memory mem, immI0 zero) %{
6702   match(Set mem (Store2I mem zero));
6703   ins_cost(MEMORY_REF_COST);
6704   size(4);
6705   format %{ "STX    $zero,$mem\t! packed2I" %}
6706   opcode(Assembler::stx_op3);
6707   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6708   ins_pipe(fstoreD_mem_zero);
6709 %}
6710 
6711 
6712 //----------MemBar Instructions-----------------------------------------------
6713 // Memory barrier flavors
6714 
6715 instruct membar_acquire() %{
6716   match(MemBarAcquire);
6717   ins_cost(4*MEMORY_REF_COST);
6718 
6719   size(0);
6720   format %{ "MEMBAR-acquire" %}
6721   ins_encode( enc_membar_acquire );
6722   ins_pipe(long_memory_op);
6723 %}
6724 
6725 instruct membar_acquire_lock() %{
6726   match(MemBarAcquireLock);
6727   ins_cost(0);
6728 
6729   size(0);
6730   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6731   ins_encode( );
6732   ins_pipe(empty);
6733 %}
6734 
6735 instruct membar_release() %{
6736   match(MemBarRelease);
6737   ins_cost(4*MEMORY_REF_COST);
6738 
6739   size(0);
6740   format %{ "MEMBAR-release" %}
6741   ins_encode( enc_membar_release );
6742   ins_pipe(long_memory_op);
6743 %}
6744 
6745 instruct membar_release_lock() %{
6746   match(MemBarReleaseLock);
6747   ins_cost(0);
6748 
6749   size(0);
6750   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6751   ins_encode( );
6752   ins_pipe(empty);
6753 %}
6754 
6755 instruct membar_volatile() %{
6756   match(MemBarVolatile);
6757   ins_cost(4*MEMORY_REF_COST);
6758 
6759   size(4);
6760   format %{ "MEMBAR-volatile" %}
6761   ins_encode( enc_membar_volatile );
6762   ins_pipe(long_memory_op);
6763 %}
6764 
6765 instruct unnecessary_membar_volatile() %{
6766   match(MemBarVolatile);
6767   predicate(Matcher::post_store_load_barrier(n));
6768   ins_cost(0);
6769 
6770   size(0);
6771   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6772   ins_encode( );
6773   ins_pipe(empty);
6774 %}
6775 
6776 instruct unnecessary_membar_storestore() %{
6777   match(MemBarStoreStore);
6778   ins_cost(0);
6779 
6780   size(0);
6781   format %{ "!MEMBAR-storestore (unnecessary so empty encoding)" %}
6782   ins_encode( );
6783   ins_pipe(empty);
6784 %}
6785 
6786 //----------Register Move Instructions-----------------------------------------
6787 instruct roundDouble_nop(regD dst) %{
6788   match(Set dst (RoundDouble dst));
6789   ins_cost(0);
6790   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6791   ins_encode( );
6792   ins_pipe(empty);
6793 %}
6794 
6795 
6796 instruct roundFloat_nop(regF dst) %{
6797   match(Set dst (RoundFloat dst));
6798   ins_cost(0);
6799   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6800   ins_encode( );
6801   ins_pipe(empty);
6802 %}
6803 
6804 
6805 // Cast Index to Pointer for unsafe natives
6806 instruct castX2P(iRegX src, iRegP dst) %{
6807   match(Set dst (CastX2P src));
6808 
6809   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6810   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6811   ins_pipe(ialu_reg);
6812 %}
6813 
6814 // Cast Pointer to Index for unsafe natives
6815 instruct castP2X(iRegP src, iRegX dst) %{
6816   match(Set dst (CastP2X src));
6817 
6818   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6819   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6820   ins_pipe(ialu_reg);
6821 %}
6822 
6823 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6824   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6825   match(Set stkSlot src);   // chain rule
6826   ins_cost(MEMORY_REF_COST);
6827   format %{ "STDF   $src,$stkSlot\t!stk" %}
6828   opcode(Assembler::stdf_op3);
6829   ins_encode(simple_form3_mem_reg(stkSlot, src));
6830   ins_pipe(fstoreD_stk_reg);
6831 %}
6832 
6833 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6834   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6835   match(Set dst stkSlot);   // chain rule
6836   ins_cost(MEMORY_REF_COST);
6837   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6838   opcode(Assembler::lddf_op3);
6839   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6840   ins_pipe(floadD_stk);
6841 %}
6842 
6843 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6844   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6845   match(Set stkSlot src);   // chain rule
6846   ins_cost(MEMORY_REF_COST);
6847   format %{ "STF   $src,$stkSlot\t!stk" %}
6848   opcode(Assembler::stf_op3);
6849   ins_encode(simple_form3_mem_reg(stkSlot, src));
6850   ins_pipe(fstoreF_stk_reg);
6851 %}
6852 
6853 //----------Conditional Move---------------------------------------------------
6854 // Conditional move
6855 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6856   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6857   ins_cost(150);
6858   format %{ "MOV$cmp $pcc,$src,$dst" %}
6859   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6860   ins_pipe(ialu_reg);
6861 %}
6862 
6863 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6864   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6865   ins_cost(140);
6866   format %{ "MOV$cmp $pcc,$src,$dst" %}
6867   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6868   ins_pipe(ialu_imm);
6869 %}
6870 
6871 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6872   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6873   ins_cost(150);
6874   size(4);
6875   format %{ "MOV$cmp  $icc,$src,$dst" %}
6876   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6877   ins_pipe(ialu_reg);
6878 %}
6879 
6880 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6881   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6882   ins_cost(140);
6883   size(4);
6884   format %{ "MOV$cmp  $icc,$src,$dst" %}
6885   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6886   ins_pipe(ialu_imm);
6887 %}
6888 
6889 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6890   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6891   ins_cost(150);
6892   size(4);
6893   format %{ "MOV$cmp  $icc,$src,$dst" %}
6894   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6895   ins_pipe(ialu_reg);
6896 %}
6897 
6898 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6899   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6900   ins_cost(140);
6901   size(4);
6902   format %{ "MOV$cmp  $icc,$src,$dst" %}
6903   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6904   ins_pipe(ialu_imm);
6905 %}
6906 
6907 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6908   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6909   ins_cost(150);
6910   size(4);
6911   format %{ "MOV$cmp $fcc,$src,$dst" %}
6912   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6913   ins_pipe(ialu_reg);
6914 %}
6915 
6916 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6917   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6918   ins_cost(140);
6919   size(4);
6920   format %{ "MOV$cmp $fcc,$src,$dst" %}
6921   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6922   ins_pipe(ialu_imm);
6923 %}
6924 
6925 // Conditional move for RegN. Only cmov(reg,reg).
6926 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6927   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6928   ins_cost(150);
6929   format %{ "MOV$cmp $pcc,$src,$dst" %}
6930   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6931   ins_pipe(ialu_reg);
6932 %}
6933 
6934 // This instruction also works with CmpN so we don't need cmovNN_reg.
6935 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6936   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6937   ins_cost(150);
6938   size(4);
6939   format %{ "MOV$cmp  $icc,$src,$dst" %}
6940   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6941   ins_pipe(ialu_reg);
6942 %}
6943 
6944 // This instruction also works with CmpN so we don't need cmovNN_reg.
6945 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6946   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6947   ins_cost(150);
6948   size(4);
6949   format %{ "MOV$cmp  $icc,$src,$dst" %}
6950   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6951   ins_pipe(ialu_reg);
6952 %}
6953 
6954 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6955   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6956   ins_cost(150);
6957   size(4);
6958   format %{ "MOV$cmp $fcc,$src,$dst" %}
6959   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6960   ins_pipe(ialu_reg);
6961 %}
6962 
6963 // Conditional move
6964 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6965   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6966   ins_cost(150);
6967   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6968   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6969   ins_pipe(ialu_reg);
6970 %}
6971 
6972 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6973   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6974   ins_cost(140);
6975   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6976   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6977   ins_pipe(ialu_imm);
6978 %}
6979 
6980 // This instruction also works with CmpN so we don't need cmovPN_reg.
6981 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6982   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6983   ins_cost(150);
6984 
6985   size(4);
6986   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6987   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6988   ins_pipe(ialu_reg);
6989 %}
6990 
6991 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6992   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6993   ins_cost(150);
6994 
6995   size(4);
6996   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6997   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6998   ins_pipe(ialu_reg);
6999 %}
7000 
7001 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
7002   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
7003   ins_cost(140);
7004 
7005   size(4);
7006   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
7007   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
7008   ins_pipe(ialu_imm);
7009 %}
7010 
7011 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
7012   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
7013   ins_cost(140);
7014 
7015   size(4);
7016   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
7017   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
7018   ins_pipe(ialu_imm);
7019 %}
7020 
7021 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
7022   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7023   ins_cost(150);
7024   size(4);
7025   format %{ "MOV$cmp $fcc,$src,$dst" %}
7026   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7027   ins_pipe(ialu_imm);
7028 %}
7029 
7030 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
7031   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7032   ins_cost(140);
7033   size(4);
7034   format %{ "MOV$cmp $fcc,$src,$dst" %}
7035   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
7036   ins_pipe(ialu_imm);
7037 %}
7038 
7039 // Conditional move
7040 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
7041   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
7042   ins_cost(150);
7043   opcode(0x101);
7044   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7045   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7046   ins_pipe(int_conditional_float_move);
7047 %}
7048 
7049 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
7050   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7051   ins_cost(150);
7052 
7053   size(4);
7054   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7055   opcode(0x101);
7056   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7057   ins_pipe(int_conditional_float_move);
7058 %}
7059 
7060 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7061   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7062   ins_cost(150);
7063 
7064   size(4);
7065   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7066   opcode(0x101);
7067   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7068   ins_pipe(int_conditional_float_move);
7069 %}
7070 
7071 // Conditional move,
7072 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7073   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7074   ins_cost(150);
7075   size(4);
7076   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7077   opcode(0x1);
7078   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7079   ins_pipe(int_conditional_double_move);
7080 %}
7081 
7082 // Conditional move
7083 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7084   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7085   ins_cost(150);
7086   size(4);
7087   opcode(0x102);
7088   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7089   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7090   ins_pipe(int_conditional_double_move);
7091 %}
7092 
7093 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7094   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7095   ins_cost(150);
7096 
7097   size(4);
7098   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7099   opcode(0x102);
7100   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7101   ins_pipe(int_conditional_double_move);
7102 %}
7103 
7104 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7105   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7106   ins_cost(150);
7107 
7108   size(4);
7109   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7110   opcode(0x102);
7111   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7112   ins_pipe(int_conditional_double_move);
7113 %}
7114 
7115 // Conditional move,
7116 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7117   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7118   ins_cost(150);
7119   size(4);
7120   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7121   opcode(0x2);
7122   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7123   ins_pipe(int_conditional_double_move);
7124 %}
7125 
7126 // Conditional move
7127 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7128   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7129   ins_cost(150);
7130   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7131   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7132   ins_pipe(ialu_reg);
7133 %}
7134 
7135 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7136   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7137   ins_cost(140);
7138   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7139   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7140   ins_pipe(ialu_imm);
7141 %}
7142 
7143 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7144   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7145   ins_cost(150);
7146 
7147   size(4);
7148   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7149   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7150   ins_pipe(ialu_reg);
7151 %}
7152 
7153 
7154 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7155   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7156   ins_cost(150);
7157 
7158   size(4);
7159   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7160   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7161   ins_pipe(ialu_reg);
7162 %}
7163 
7164 
7165 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7166   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7167   ins_cost(150);
7168 
7169   size(4);
7170   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7171   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7172   ins_pipe(ialu_reg);
7173 %}
7174 
7175 
7176 
7177 //----------OS and Locking Instructions----------------------------------------
7178 
7179 // This name is KNOWN by the ADLC and cannot be changed.
7180 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7181 // for this guy.
7182 instruct tlsLoadP(g2RegP dst) %{
7183   match(Set dst (ThreadLocal));
7184 
7185   size(0);
7186   ins_cost(0);
7187   format %{ "# TLS is in G2" %}
7188   ins_encode( /*empty encoding*/ );
7189   ins_pipe(ialu_none);
7190 %}
7191 
7192 instruct checkCastPP( iRegP dst ) %{
7193   match(Set dst (CheckCastPP dst));
7194 
7195   size(0);
7196   format %{ "# checkcastPP of $dst" %}
7197   ins_encode( /*empty encoding*/ );
7198   ins_pipe(empty);
7199 %}
7200 
7201 
7202 instruct castPP( iRegP dst ) %{
7203   match(Set dst (CastPP dst));
7204   format %{ "# castPP of $dst" %}
7205   ins_encode( /*empty encoding*/ );
7206   ins_pipe(empty);
7207 %}
7208 
7209 instruct castII( iRegI dst ) %{
7210   match(Set dst (CastII dst));
7211   format %{ "# castII of $dst" %}
7212   ins_encode( /*empty encoding*/ );
7213   ins_cost(0);
7214   ins_pipe(empty);
7215 %}
7216 
7217 //----------Arithmetic Instructions--------------------------------------------
7218 // Addition Instructions
7219 // Register Addition
7220 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7221   match(Set dst (AddI src1 src2));
7222 
7223   size(4);
7224   format %{ "ADD    $src1,$src2,$dst" %}
7225   ins_encode %{
7226     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7227   %}
7228   ins_pipe(ialu_reg_reg);
7229 %}
7230 
7231 // Immediate Addition
7232 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7233   match(Set dst (AddI src1 src2));
7234 
7235   size(4);
7236   format %{ "ADD    $src1,$src2,$dst" %}
7237   opcode(Assembler::add_op3, Assembler::arith_op);
7238   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7239   ins_pipe(ialu_reg_imm);
7240 %}
7241 
7242 // Pointer Register Addition
7243 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7244   match(Set dst (AddP src1 src2));
7245 
7246   size(4);
7247   format %{ "ADD    $src1,$src2,$dst" %}
7248   opcode(Assembler::add_op3, Assembler::arith_op);
7249   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7250   ins_pipe(ialu_reg_reg);
7251 %}
7252 
7253 // Pointer Immediate Addition
7254 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7255   match(Set dst (AddP src1 src2));
7256 
7257   size(4);
7258   format %{ "ADD    $src1,$src2,$dst" %}
7259   opcode(Assembler::add_op3, Assembler::arith_op);
7260   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7261   ins_pipe(ialu_reg_imm);
7262 %}
7263 
7264 // Long Addition
7265 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7266   match(Set dst (AddL src1 src2));
7267 
7268   size(4);
7269   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7270   opcode(Assembler::add_op3, Assembler::arith_op);
7271   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7272   ins_pipe(ialu_reg_reg);
7273 %}
7274 
7275 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7276   match(Set dst (AddL src1 con));
7277 
7278   size(4);
7279   format %{ "ADD    $src1,$con,$dst" %}
7280   opcode(Assembler::add_op3, Assembler::arith_op);
7281   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7282   ins_pipe(ialu_reg_imm);
7283 %}
7284 
7285 //----------Conditional_store--------------------------------------------------
7286 // Conditional-store of the updated heap-top.
7287 // Used during allocation of the shared heap.
7288 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7289 
7290 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7291 instruct loadPLocked(iRegP dst, memory mem) %{
7292   match(Set dst (LoadPLocked mem));
7293   ins_cost(MEMORY_REF_COST);
7294 
7295 #ifndef _LP64
7296   size(4);
7297   format %{ "LDUW   $mem,$dst\t! ptr" %}
7298   opcode(Assembler::lduw_op3, 0, REGP_OP);
7299 #else
7300   format %{ "LDX    $mem,$dst\t! ptr" %}
7301   opcode(Assembler::ldx_op3, 0, REGP_OP);
7302 #endif
7303   ins_encode( form3_mem_reg( mem, dst ) );
7304   ins_pipe(iload_mem);
7305 %}
7306 
7307 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7308 instruct loadLLocked(iRegL dst, memory mem) %{
7309   match(Set dst (LoadLLocked mem));
7310   ins_cost(MEMORY_REF_COST);
7311   size(4);
7312   format %{ "LDX    $mem,$dst\t! long" %}
7313   opcode(Assembler::ldx_op3);
7314   ins_encode(simple_form3_mem_reg( mem, dst ) );
7315   ins_pipe(iload_mem);
7316 %}
7317 
7318 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7319   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7320   effect( KILL newval );
7321   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7322             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7323   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7324   ins_pipe( long_memory_op );
7325 %}
7326 
7327 // Conditional-store of an int value.
7328 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7329   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7330   effect( KILL newval );
7331   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7332             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7333   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7334   ins_pipe( long_memory_op );
7335 %}
7336 
7337 // Conditional-store of a long value.
7338 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7339   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7340   effect( KILL newval );
7341   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7342             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7343   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7344   ins_pipe( long_memory_op );
7345 %}
7346 
7347 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7348 
7349 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7350   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7351   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7352   format %{
7353             "MOV    $newval,O7\n\t"
7354             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7355             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7356             "MOV    1,$res\n\t"
7357             "MOVne  xcc,R_G0,$res"
7358   %}
7359   ins_encode( enc_casx(mem_ptr, oldval, newval),
7360               enc_lflags_ne_to_boolean(res) );
7361   ins_pipe( long_memory_op );
7362 %}
7363 
7364 
7365 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7366   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7367   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7368   format %{
7369             "MOV    $newval,O7\n\t"
7370             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7371             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7372             "MOV    1,$res\n\t"
7373             "MOVne  icc,R_G0,$res"
7374   %}
7375   ins_encode( enc_casi(mem_ptr, oldval, newval),
7376               enc_iflags_ne_to_boolean(res) );
7377   ins_pipe( long_memory_op );
7378 %}
7379 
7380 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7381   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7382   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7383   format %{
7384             "MOV    $newval,O7\n\t"
7385             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7386             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7387             "MOV    1,$res\n\t"
7388             "MOVne  xcc,R_G0,$res"
7389   %}
7390 #ifdef _LP64
7391   ins_encode( enc_casx(mem_ptr, oldval, newval),
7392               enc_lflags_ne_to_boolean(res) );
7393 #else
7394   ins_encode( enc_casi(mem_ptr, oldval, newval),
7395               enc_iflags_ne_to_boolean(res) );
7396 #endif
7397   ins_pipe( long_memory_op );
7398 %}
7399 
7400 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7401   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7402   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7403   format %{
7404             "MOV    $newval,O7\n\t"
7405             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7406             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7407             "MOV    1,$res\n\t"
7408             "MOVne  icc,R_G0,$res"
7409   %}
7410   ins_encode( enc_casi(mem_ptr, oldval, newval),
7411               enc_iflags_ne_to_boolean(res) );
7412   ins_pipe( long_memory_op );
7413 %}
7414 
7415 //---------------------
7416 // Subtraction Instructions
7417 // Register Subtraction
7418 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7419   match(Set dst (SubI src1 src2));
7420 
7421   size(4);
7422   format %{ "SUB    $src1,$src2,$dst" %}
7423   opcode(Assembler::sub_op3, Assembler::arith_op);
7424   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7425   ins_pipe(ialu_reg_reg);
7426 %}
7427 
7428 // Immediate Subtraction
7429 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7430   match(Set dst (SubI src1 src2));
7431 
7432   size(4);
7433   format %{ "SUB    $src1,$src2,$dst" %}
7434   opcode(Assembler::sub_op3, Assembler::arith_op);
7435   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7436   ins_pipe(ialu_reg_imm);
7437 %}
7438 
7439 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7440   match(Set dst (SubI zero src2));
7441 
7442   size(4);
7443   format %{ "NEG    $src2,$dst" %}
7444   opcode(Assembler::sub_op3, Assembler::arith_op);
7445   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7446   ins_pipe(ialu_zero_reg);
7447 %}
7448 
7449 // Long subtraction
7450 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7451   match(Set dst (SubL src1 src2));
7452 
7453   size(4);
7454   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7455   opcode(Assembler::sub_op3, Assembler::arith_op);
7456   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7457   ins_pipe(ialu_reg_reg);
7458 %}
7459 
7460 // Immediate Subtraction
7461 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7462   match(Set dst (SubL src1 con));
7463 
7464   size(4);
7465   format %{ "SUB    $src1,$con,$dst\t! long" %}
7466   opcode(Assembler::sub_op3, Assembler::arith_op);
7467   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7468   ins_pipe(ialu_reg_imm);
7469 %}
7470 
7471 // Long negation
7472 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7473   match(Set dst (SubL zero src2));
7474 
7475   size(4);
7476   format %{ "NEG    $src2,$dst\t! long" %}
7477   opcode(Assembler::sub_op3, Assembler::arith_op);
7478   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7479   ins_pipe(ialu_zero_reg);
7480 %}
7481 
7482 // Multiplication Instructions
7483 // Integer Multiplication
7484 // Register Multiplication
7485 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7486   match(Set dst (MulI src1 src2));
7487 
7488   size(4);
7489   format %{ "MULX   $src1,$src2,$dst" %}
7490   opcode(Assembler::mulx_op3, Assembler::arith_op);
7491   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7492   ins_pipe(imul_reg_reg);
7493 %}
7494 
7495 // Immediate Multiplication
7496 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7497   match(Set dst (MulI src1 src2));
7498 
7499   size(4);
7500   format %{ "MULX   $src1,$src2,$dst" %}
7501   opcode(Assembler::mulx_op3, Assembler::arith_op);
7502   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7503   ins_pipe(imul_reg_imm);
7504 %}
7505 
7506 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7507   match(Set dst (MulL src1 src2));
7508   ins_cost(DEFAULT_COST * 5);
7509   size(4);
7510   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7511   opcode(Assembler::mulx_op3, Assembler::arith_op);
7512   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7513   ins_pipe(mulL_reg_reg);
7514 %}
7515 
7516 // Immediate Multiplication
7517 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7518   match(Set dst (MulL src1 src2));
7519   ins_cost(DEFAULT_COST * 5);
7520   size(4);
7521   format %{ "MULX   $src1,$src2,$dst" %}
7522   opcode(Assembler::mulx_op3, Assembler::arith_op);
7523   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7524   ins_pipe(mulL_reg_imm);
7525 %}
7526 
7527 // Integer Division
7528 // Register Division
7529 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7530   match(Set dst (DivI src1 src2));
7531   ins_cost((2+71)*DEFAULT_COST);
7532 
7533   format %{ "SRA     $src2,0,$src2\n\t"
7534             "SRA     $src1,0,$src1\n\t"
7535             "SDIVX   $src1,$src2,$dst" %}
7536   ins_encode( idiv_reg( src1, src2, dst ) );
7537   ins_pipe(sdiv_reg_reg);
7538 %}
7539 
7540 // Immediate Division
7541 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7542   match(Set dst (DivI src1 src2));
7543   ins_cost((2+71)*DEFAULT_COST);
7544 
7545   format %{ "SRA     $src1,0,$src1\n\t"
7546             "SDIVX   $src1,$src2,$dst" %}
7547   ins_encode( idiv_imm( src1, src2, dst ) );
7548   ins_pipe(sdiv_reg_imm);
7549 %}
7550 
7551 //----------Div-By-10-Expansion------------------------------------------------
7552 // Extract hi bits of a 32x32->64 bit multiply.
7553 // Expand rule only, not matched
7554 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7555   effect( DEF dst, USE src1, USE src2 );
7556   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7557             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7558   ins_encode( enc_mul_hi(dst,src1,src2));
7559   ins_pipe(sdiv_reg_reg);
7560 %}
7561 
7562 // Magic constant, reciprocal of 10
7563 instruct loadConI_x66666667(iRegIsafe dst) %{
7564   effect( DEF dst );
7565 
7566   size(8);
7567   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7568   ins_encode( Set32(0x66666667, dst) );
7569   ins_pipe(ialu_hi_lo_reg);
7570 %}
7571 
7572 // Register Shift Right Arithmetic Long by 32-63
7573 instruct sra_31( iRegI dst, iRegI src ) %{
7574   effect( DEF dst, USE src );
7575   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7576   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7577   ins_pipe(ialu_reg_reg);
7578 %}
7579 
7580 // Arithmetic Shift Right by 8-bit immediate
7581 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7582   effect( DEF dst, USE src );
7583   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7584   opcode(Assembler::sra_op3, Assembler::arith_op);
7585   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7586   ins_pipe(ialu_reg_imm);
7587 %}
7588 
7589 // Integer DIV with 10
7590 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7591   match(Set dst (DivI src div));
7592   ins_cost((6+6)*DEFAULT_COST);
7593   expand %{
7594     iRegIsafe tmp1;               // Killed temps;
7595     iRegIsafe tmp2;               // Killed temps;
7596     iRegI tmp3;                   // Killed temps;
7597     iRegI tmp4;                   // Killed temps;
7598     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7599     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7600     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7601     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7602     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7603   %}
7604 %}
7605 
7606 // Register Long Division
7607 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7608   match(Set dst (DivL src1 src2));
7609   ins_cost(DEFAULT_COST*71);
7610   size(4);
7611   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7612   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7613   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7614   ins_pipe(divL_reg_reg);
7615 %}
7616 
7617 // Register Long Division
7618 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7619   match(Set dst (DivL src1 src2));
7620   ins_cost(DEFAULT_COST*71);
7621   size(4);
7622   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7623   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7624   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7625   ins_pipe(divL_reg_imm);
7626 %}
7627 
7628 // Integer Remainder
7629 // Register Remainder
7630 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7631   match(Set dst (ModI src1 src2));
7632   effect( KILL ccr, KILL temp);
7633 
7634   format %{ "SREM   $src1,$src2,$dst" %}
7635   ins_encode( irem_reg(src1, src2, dst, temp) );
7636   ins_pipe(sdiv_reg_reg);
7637 %}
7638 
7639 // Immediate Remainder
7640 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7641   match(Set dst (ModI src1 src2));
7642   effect( KILL ccr, KILL temp);
7643 
7644   format %{ "SREM   $src1,$src2,$dst" %}
7645   ins_encode( irem_imm(src1, src2, dst, temp) );
7646   ins_pipe(sdiv_reg_imm);
7647 %}
7648 
7649 // Register Long Remainder
7650 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7651   effect(DEF dst, USE src1, USE src2);
7652   size(4);
7653   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7654   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7655   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7656   ins_pipe(divL_reg_reg);
7657 %}
7658 
7659 // Register Long Division
7660 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7661   effect(DEF dst, USE src1, USE src2);
7662   size(4);
7663   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7664   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7665   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7666   ins_pipe(divL_reg_imm);
7667 %}
7668 
7669 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7670   effect(DEF dst, USE src1, USE src2);
7671   size(4);
7672   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7673   opcode(Assembler::mulx_op3, Assembler::arith_op);
7674   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7675   ins_pipe(mulL_reg_reg);
7676 %}
7677 
7678 // Immediate Multiplication
7679 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7680   effect(DEF dst, USE src1, USE src2);
7681   size(4);
7682   format %{ "MULX   $src1,$src2,$dst" %}
7683   opcode(Assembler::mulx_op3, Assembler::arith_op);
7684   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7685   ins_pipe(mulL_reg_imm);
7686 %}
7687 
7688 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7689   effect(DEF dst, USE src1, USE src2);
7690   size(4);
7691   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7692   opcode(Assembler::sub_op3, Assembler::arith_op);
7693   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7694   ins_pipe(ialu_reg_reg);
7695 %}
7696 
7697 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7698   effect(DEF dst, USE src1, USE src2);
7699   size(4);
7700   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7701   opcode(Assembler::sub_op3, Assembler::arith_op);
7702   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7703   ins_pipe(ialu_reg_reg);
7704 %}
7705 
7706 // Register Long Remainder
7707 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7708   match(Set dst (ModL src1 src2));
7709   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7710   expand %{
7711     iRegL tmp1;
7712     iRegL tmp2;
7713     divL_reg_reg_1(tmp1, src1, src2);
7714     mulL_reg_reg_1(tmp2, tmp1, src2);
7715     subL_reg_reg_1(dst,  src1, tmp2);
7716   %}
7717 %}
7718 
7719 // Register Long Remainder
7720 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7721   match(Set dst (ModL src1 src2));
7722   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7723   expand %{
7724     iRegL tmp1;
7725     iRegL tmp2;
7726     divL_reg_imm13_1(tmp1, src1, src2);
7727     mulL_reg_imm13_1(tmp2, tmp1, src2);
7728     subL_reg_reg_2  (dst,  src1, tmp2);
7729   %}
7730 %}
7731 
7732 // Integer Shift Instructions
7733 // Register Shift Left
7734 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7735   match(Set dst (LShiftI src1 src2));
7736 
7737   size(4);
7738   format %{ "SLL    $src1,$src2,$dst" %}
7739   opcode(Assembler::sll_op3, Assembler::arith_op);
7740   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7741   ins_pipe(ialu_reg_reg);
7742 %}
7743 
7744 // Register Shift Left Immediate
7745 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7746   match(Set dst (LShiftI src1 src2));
7747 
7748   size(4);
7749   format %{ "SLL    $src1,$src2,$dst" %}
7750   opcode(Assembler::sll_op3, Assembler::arith_op);
7751   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7752   ins_pipe(ialu_reg_imm);
7753 %}
7754 
7755 // Register Shift Left
7756 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7757   match(Set dst (LShiftL src1 src2));
7758 
7759   size(4);
7760   format %{ "SLLX   $src1,$src2,$dst" %}
7761   opcode(Assembler::sllx_op3, Assembler::arith_op);
7762   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7763   ins_pipe(ialu_reg_reg);
7764 %}
7765 
7766 // Register Shift Left Immediate
7767 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7768   match(Set dst (LShiftL src1 src2));
7769 
7770   size(4);
7771   format %{ "SLLX   $src1,$src2,$dst" %}
7772   opcode(Assembler::sllx_op3, Assembler::arith_op);
7773   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7774   ins_pipe(ialu_reg_imm);
7775 %}
7776 
7777 // Register Arithmetic Shift Right
7778 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7779   match(Set dst (RShiftI src1 src2));
7780   size(4);
7781   format %{ "SRA    $src1,$src2,$dst" %}
7782   opcode(Assembler::sra_op3, Assembler::arith_op);
7783   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7784   ins_pipe(ialu_reg_reg);
7785 %}
7786 
7787 // Register Arithmetic Shift Right Immediate
7788 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7789   match(Set dst (RShiftI src1 src2));
7790 
7791   size(4);
7792   format %{ "SRA    $src1,$src2,$dst" %}
7793   opcode(Assembler::sra_op3, Assembler::arith_op);
7794   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7795   ins_pipe(ialu_reg_imm);
7796 %}
7797 
7798 // Register Shift Right Arithmatic Long
7799 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7800   match(Set dst (RShiftL src1 src2));
7801 
7802   size(4);
7803   format %{ "SRAX   $src1,$src2,$dst" %}
7804   opcode(Assembler::srax_op3, Assembler::arith_op);
7805   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7806   ins_pipe(ialu_reg_reg);
7807 %}
7808 
7809 // Register Shift Left Immediate
7810 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7811   match(Set dst (RShiftL src1 src2));
7812 
7813   size(4);
7814   format %{ "SRAX   $src1,$src2,$dst" %}
7815   opcode(Assembler::srax_op3, Assembler::arith_op);
7816   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7817   ins_pipe(ialu_reg_imm);
7818 %}
7819 
7820 // Register Shift Right
7821 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7822   match(Set dst (URShiftI src1 src2));
7823 
7824   size(4);
7825   format %{ "SRL    $src1,$src2,$dst" %}
7826   opcode(Assembler::srl_op3, Assembler::arith_op);
7827   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7828   ins_pipe(ialu_reg_reg);
7829 %}
7830 
7831 // Register Shift Right Immediate
7832 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7833   match(Set dst (URShiftI src1 src2));
7834 
7835   size(4);
7836   format %{ "SRL    $src1,$src2,$dst" %}
7837   opcode(Assembler::srl_op3, Assembler::arith_op);
7838   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7839   ins_pipe(ialu_reg_imm);
7840 %}
7841 
7842 // Register Shift Right
7843 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7844   match(Set dst (URShiftL src1 src2));
7845 
7846   size(4);
7847   format %{ "SRLX   $src1,$src2,$dst" %}
7848   opcode(Assembler::srlx_op3, Assembler::arith_op);
7849   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7850   ins_pipe(ialu_reg_reg);
7851 %}
7852 
7853 // Register Shift Right Immediate
7854 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7855   match(Set dst (URShiftL src1 src2));
7856 
7857   size(4);
7858   format %{ "SRLX   $src1,$src2,$dst" %}
7859   opcode(Assembler::srlx_op3, Assembler::arith_op);
7860   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7861   ins_pipe(ialu_reg_imm);
7862 %}
7863 
7864 // Register Shift Right Immediate with a CastP2X
7865 #ifdef _LP64
7866 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7867   match(Set dst (URShiftL (CastP2X src1) src2));
7868   size(4);
7869   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7870   opcode(Assembler::srlx_op3, Assembler::arith_op);
7871   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7872   ins_pipe(ialu_reg_imm);
7873 %}
7874 #else
7875 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7876   match(Set dst (URShiftI (CastP2X src1) src2));
7877   size(4);
7878   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7879   opcode(Assembler::srl_op3, Assembler::arith_op);
7880   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7881   ins_pipe(ialu_reg_imm);
7882 %}
7883 #endif
7884 
7885 
7886 //----------Floating Point Arithmetic Instructions-----------------------------
7887 
7888 //  Add float single precision
7889 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7890   match(Set dst (AddF src1 src2));
7891 
7892   size(4);
7893   format %{ "FADDS  $src1,$src2,$dst" %}
7894   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7895   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7896   ins_pipe(faddF_reg_reg);
7897 %}
7898 
7899 //  Add float double precision
7900 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7901   match(Set dst (AddD src1 src2));
7902 
7903   size(4);
7904   format %{ "FADDD  $src1,$src2,$dst" %}
7905   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7906   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7907   ins_pipe(faddD_reg_reg);
7908 %}
7909 
7910 //  Sub float single precision
7911 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7912   match(Set dst (SubF src1 src2));
7913 
7914   size(4);
7915   format %{ "FSUBS  $src1,$src2,$dst" %}
7916   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7917   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7918   ins_pipe(faddF_reg_reg);
7919 %}
7920 
7921 //  Sub float double precision
7922 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7923   match(Set dst (SubD src1 src2));
7924 
7925   size(4);
7926   format %{ "FSUBD  $src1,$src2,$dst" %}
7927   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7928   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7929   ins_pipe(faddD_reg_reg);
7930 %}
7931 
7932 //  Mul float single precision
7933 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7934   match(Set dst (MulF src1 src2));
7935 
7936   size(4);
7937   format %{ "FMULS  $src1,$src2,$dst" %}
7938   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7939   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7940   ins_pipe(fmulF_reg_reg);
7941 %}
7942 
7943 //  Mul float double precision
7944 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7945   match(Set dst (MulD src1 src2));
7946 
7947   size(4);
7948   format %{ "FMULD  $src1,$src2,$dst" %}
7949   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7950   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7951   ins_pipe(fmulD_reg_reg);
7952 %}
7953 
7954 //  Div float single precision
7955 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7956   match(Set dst (DivF src1 src2));
7957 
7958   size(4);
7959   format %{ "FDIVS  $src1,$src2,$dst" %}
7960   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7961   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7962   ins_pipe(fdivF_reg_reg);
7963 %}
7964 
7965 //  Div float double precision
7966 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7967   match(Set dst (DivD src1 src2));
7968 
7969   size(4);
7970   format %{ "FDIVD  $src1,$src2,$dst" %}
7971   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7972   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7973   ins_pipe(fdivD_reg_reg);
7974 %}
7975 
7976 //  Absolute float double precision
7977 instruct absD_reg(regD dst, regD src) %{
7978   match(Set dst (AbsD src));
7979 
7980   format %{ "FABSd  $src,$dst" %}
7981   ins_encode(fabsd(dst, src));
7982   ins_pipe(faddD_reg);
7983 %}
7984 
7985 //  Absolute float single precision
7986 instruct absF_reg(regF dst, regF src) %{
7987   match(Set dst (AbsF src));
7988 
7989   format %{ "FABSs  $src,$dst" %}
7990   ins_encode(fabss(dst, src));
7991   ins_pipe(faddF_reg);
7992 %}
7993 
7994 instruct negF_reg(regF dst, regF src) %{
7995   match(Set dst (NegF src));
7996 
7997   size(4);
7998   format %{ "FNEGs  $src,$dst" %}
7999   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
8000   ins_encode(form3_opf_rs2F_rdF(src, dst));
8001   ins_pipe(faddF_reg);
8002 %}
8003 
8004 instruct negD_reg(regD dst, regD src) %{
8005   match(Set dst (NegD src));
8006 
8007   format %{ "FNEGd  $src,$dst" %}
8008   ins_encode(fnegd(dst, src));
8009   ins_pipe(faddD_reg);
8010 %}
8011 
8012 //  Sqrt float double precision
8013 instruct sqrtF_reg_reg(regF dst, regF src) %{
8014   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8015 
8016   size(4);
8017   format %{ "FSQRTS $src,$dst" %}
8018   ins_encode(fsqrts(dst, src));
8019   ins_pipe(fdivF_reg_reg);
8020 %}
8021 
8022 //  Sqrt float double precision
8023 instruct sqrtD_reg_reg(regD dst, regD src) %{
8024   match(Set dst (SqrtD src));
8025 
8026   size(4);
8027   format %{ "FSQRTD $src,$dst" %}
8028   ins_encode(fsqrtd(dst, src));
8029   ins_pipe(fdivD_reg_reg);
8030 %}
8031 
8032 //----------Logical Instructions-----------------------------------------------
8033 // And Instructions
8034 // Register And
8035 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8036   match(Set dst (AndI src1 src2));
8037 
8038   size(4);
8039   format %{ "AND    $src1,$src2,$dst" %}
8040   opcode(Assembler::and_op3, Assembler::arith_op);
8041   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8042   ins_pipe(ialu_reg_reg);
8043 %}
8044 
8045 // Immediate And
8046 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8047   match(Set dst (AndI src1 src2));
8048 
8049   size(4);
8050   format %{ "AND    $src1,$src2,$dst" %}
8051   opcode(Assembler::and_op3, Assembler::arith_op);
8052   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8053   ins_pipe(ialu_reg_imm);
8054 %}
8055 
8056 // Register And Long
8057 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8058   match(Set dst (AndL src1 src2));
8059 
8060   ins_cost(DEFAULT_COST);
8061   size(4);
8062   format %{ "AND    $src1,$src2,$dst\t! long" %}
8063   opcode(Assembler::and_op3, Assembler::arith_op);
8064   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8065   ins_pipe(ialu_reg_reg);
8066 %}
8067 
8068 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8069   match(Set dst (AndL src1 con));
8070 
8071   ins_cost(DEFAULT_COST);
8072   size(4);
8073   format %{ "AND    $src1,$con,$dst\t! long" %}
8074   opcode(Assembler::and_op3, Assembler::arith_op);
8075   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8076   ins_pipe(ialu_reg_imm);
8077 %}
8078 
8079 // Or Instructions
8080 // Register Or
8081 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8082   match(Set dst (OrI src1 src2));
8083 
8084   size(4);
8085   format %{ "OR     $src1,$src2,$dst" %}
8086   opcode(Assembler::or_op3, Assembler::arith_op);
8087   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8088   ins_pipe(ialu_reg_reg);
8089 %}
8090 
8091 // Immediate Or
8092 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8093   match(Set dst (OrI src1 src2));
8094 
8095   size(4);
8096   format %{ "OR     $src1,$src2,$dst" %}
8097   opcode(Assembler::or_op3, Assembler::arith_op);
8098   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8099   ins_pipe(ialu_reg_imm);
8100 %}
8101 
8102 // Register Or Long
8103 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8104   match(Set dst (OrL src1 src2));
8105 
8106   ins_cost(DEFAULT_COST);
8107   size(4);
8108   format %{ "OR     $src1,$src2,$dst\t! long" %}
8109   opcode(Assembler::or_op3, Assembler::arith_op);
8110   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8111   ins_pipe(ialu_reg_reg);
8112 %}
8113 
8114 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8115   match(Set dst (OrL src1 con));
8116   ins_cost(DEFAULT_COST*2);
8117 
8118   ins_cost(DEFAULT_COST);
8119   size(4);
8120   format %{ "OR     $src1,$con,$dst\t! long" %}
8121   opcode(Assembler::or_op3, Assembler::arith_op);
8122   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8123   ins_pipe(ialu_reg_imm);
8124 %}
8125 
8126 #ifndef _LP64
8127 
8128 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8129 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8130   match(Set dst (OrI src1 (CastP2X src2)));
8131 
8132   size(4);
8133   format %{ "OR     $src1,$src2,$dst" %}
8134   opcode(Assembler::or_op3, Assembler::arith_op);
8135   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8136   ins_pipe(ialu_reg_reg);
8137 %}
8138 
8139 #else
8140 
8141 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8142   match(Set dst (OrL src1 (CastP2X src2)));
8143 
8144   ins_cost(DEFAULT_COST);
8145   size(4);
8146   format %{ "OR     $src1,$src2,$dst\t! long" %}
8147   opcode(Assembler::or_op3, Assembler::arith_op);
8148   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8149   ins_pipe(ialu_reg_reg);
8150 %}
8151 
8152 #endif
8153 
8154 // Xor Instructions
8155 // Register Xor
8156 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8157   match(Set dst (XorI src1 src2));
8158 
8159   size(4);
8160   format %{ "XOR    $src1,$src2,$dst" %}
8161   opcode(Assembler::xor_op3, Assembler::arith_op);
8162   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8163   ins_pipe(ialu_reg_reg);
8164 %}
8165 
8166 // Immediate Xor
8167 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8168   match(Set dst (XorI src1 src2));
8169 
8170   size(4);
8171   format %{ "XOR    $src1,$src2,$dst" %}
8172   opcode(Assembler::xor_op3, Assembler::arith_op);
8173   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8174   ins_pipe(ialu_reg_imm);
8175 %}
8176 
8177 // Register Xor Long
8178 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8179   match(Set dst (XorL src1 src2));
8180 
8181   ins_cost(DEFAULT_COST);
8182   size(4);
8183   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8184   opcode(Assembler::xor_op3, Assembler::arith_op);
8185   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8186   ins_pipe(ialu_reg_reg);
8187 %}
8188 
8189 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8190   match(Set dst (XorL src1 con));
8191 
8192   ins_cost(DEFAULT_COST);
8193   size(4);
8194   format %{ "XOR    $src1,$con,$dst\t! long" %}
8195   opcode(Assembler::xor_op3, Assembler::arith_op);
8196   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8197   ins_pipe(ialu_reg_imm);
8198 %}
8199 
8200 //----------Convert to Boolean-------------------------------------------------
8201 // Nice hack for 32-bit tests but doesn't work for
8202 // 64-bit pointers.
8203 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8204   match(Set dst (Conv2B src));
8205   effect( KILL ccr );
8206   ins_cost(DEFAULT_COST*2);
8207   format %{ "CMP    R_G0,$src\n\t"
8208             "ADDX   R_G0,0,$dst" %}
8209   ins_encode( enc_to_bool( src, dst ) );
8210   ins_pipe(ialu_reg_ialu);
8211 %}
8212 
8213 #ifndef _LP64
8214 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8215   match(Set dst (Conv2B src));
8216   effect( KILL ccr );
8217   ins_cost(DEFAULT_COST*2);
8218   format %{ "CMP    R_G0,$src\n\t"
8219             "ADDX   R_G0,0,$dst" %}
8220   ins_encode( enc_to_bool( src, dst ) );
8221   ins_pipe(ialu_reg_ialu);
8222 %}
8223 #else
8224 instruct convP2B( iRegI dst, iRegP src ) %{
8225   match(Set dst (Conv2B src));
8226   ins_cost(DEFAULT_COST*2);
8227   format %{ "MOV    $src,$dst\n\t"
8228             "MOVRNZ $src,1,$dst" %}
8229   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8230   ins_pipe(ialu_clr_and_mover);
8231 %}
8232 #endif
8233 
8234 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8235   match(Set dst (CmpLTMask src zero));
8236   effect(KILL ccr);
8237   size(4);
8238   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8239   ins_encode %{
8240     __ sra($src$$Register, 31, $dst$$Register);
8241   %}
8242   ins_pipe(ialu_reg_imm);
8243 %}
8244 
8245 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8246   match(Set dst (CmpLTMask p q));
8247   effect( KILL ccr );
8248   ins_cost(DEFAULT_COST*4);
8249   format %{ "CMP    $p,$q\n\t"
8250             "MOV    #0,$dst\n\t"
8251             "BLT,a  .+8\n\t"
8252             "MOV    #-1,$dst" %}
8253   ins_encode( enc_ltmask(p,q,dst) );
8254   ins_pipe(ialu_reg_reg_ialu);
8255 %}
8256 
8257 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8258   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8259   effect(KILL ccr, TEMP tmp);
8260   ins_cost(DEFAULT_COST*3);
8261 
8262   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8263             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8264             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8265   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8266   ins_pipe( cadd_cmpltmask );
8267 %}
8268 
8269 
8270 //-----------------------------------------------------------------
8271 // Direct raw moves between float and general registers using VIS3.
8272 
8273 //  ins_pipe(faddF_reg);
8274 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8275   predicate(UseVIS >= 3);
8276   match(Set dst (MoveF2I src));
8277 
8278   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8279   ins_encode %{
8280     __ movstouw($src$$FloatRegister, $dst$$Register);
8281   %}
8282   ins_pipe(ialu_reg_reg);
8283 %}
8284 
8285 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8286   predicate(UseVIS >= 3);
8287   match(Set dst (MoveI2F src));
8288 
8289   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8290   ins_encode %{
8291     __ movwtos($src$$Register, $dst$$FloatRegister);
8292   %}
8293   ins_pipe(ialu_reg_reg);
8294 %}
8295 
8296 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8297   predicate(UseVIS >= 3);
8298   match(Set dst (MoveD2L src));
8299 
8300   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8301   ins_encode %{
8302     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8303   %}
8304   ins_pipe(ialu_reg_reg);
8305 %}
8306 
8307 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8308   predicate(UseVIS >= 3);
8309   match(Set dst (MoveL2D src));
8310 
8311   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8312   ins_encode %{
8313     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8314   %}
8315   ins_pipe(ialu_reg_reg);
8316 %}
8317 
8318 
8319 // Raw moves between float and general registers using stack.
8320 
8321 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8322   match(Set dst (MoveF2I src));
8323   effect(DEF dst, USE src);
8324   ins_cost(MEMORY_REF_COST);
8325 
8326   size(4);
8327   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8328   opcode(Assembler::lduw_op3);
8329   ins_encode(simple_form3_mem_reg( src, dst ) );
8330   ins_pipe(iload_mem);
8331 %}
8332 
8333 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8334   match(Set dst (MoveI2F src));
8335   effect(DEF dst, USE src);
8336   ins_cost(MEMORY_REF_COST);
8337 
8338   size(4);
8339   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8340   opcode(Assembler::ldf_op3);
8341   ins_encode(simple_form3_mem_reg(src, dst));
8342   ins_pipe(floadF_stk);
8343 %}
8344 
8345 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8346   match(Set dst (MoveD2L src));
8347   effect(DEF dst, USE src);
8348   ins_cost(MEMORY_REF_COST);
8349 
8350   size(4);
8351   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8352   opcode(Assembler::ldx_op3);
8353   ins_encode(simple_form3_mem_reg( src, dst ) );
8354   ins_pipe(iload_mem);
8355 %}
8356 
8357 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8358   match(Set dst (MoveL2D src));
8359   effect(DEF dst, USE src);
8360   ins_cost(MEMORY_REF_COST);
8361 
8362   size(4);
8363   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8364   opcode(Assembler::lddf_op3);
8365   ins_encode(simple_form3_mem_reg(src, dst));
8366   ins_pipe(floadD_stk);
8367 %}
8368 
8369 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8370   match(Set dst (MoveF2I src));
8371   effect(DEF dst, USE src);
8372   ins_cost(MEMORY_REF_COST);
8373 
8374   size(4);
8375   format %{ "STF   $src,$dst\t! MoveF2I" %}
8376   opcode(Assembler::stf_op3);
8377   ins_encode(simple_form3_mem_reg(dst, src));
8378   ins_pipe(fstoreF_stk_reg);
8379 %}
8380 
8381 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8382   match(Set dst (MoveI2F src));
8383   effect(DEF dst, USE src);
8384   ins_cost(MEMORY_REF_COST);
8385 
8386   size(4);
8387   format %{ "STW    $src,$dst\t! MoveI2F" %}
8388   opcode(Assembler::stw_op3);
8389   ins_encode(simple_form3_mem_reg( dst, src ) );
8390   ins_pipe(istore_mem_reg);
8391 %}
8392 
8393 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8394   match(Set dst (MoveD2L src));
8395   effect(DEF dst, USE src);
8396   ins_cost(MEMORY_REF_COST);
8397 
8398   size(4);
8399   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8400   opcode(Assembler::stdf_op3);
8401   ins_encode(simple_form3_mem_reg(dst, src));
8402   ins_pipe(fstoreD_stk_reg);
8403 %}
8404 
8405 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8406   match(Set dst (MoveL2D src));
8407   effect(DEF dst, USE src);
8408   ins_cost(MEMORY_REF_COST);
8409 
8410   size(4);
8411   format %{ "STX    $src,$dst\t! MoveL2D" %}
8412   opcode(Assembler::stx_op3);
8413   ins_encode(simple_form3_mem_reg( dst, src ) );
8414   ins_pipe(istore_mem_reg);
8415 %}
8416 
8417 
8418 //----------Arithmetic Conversion Instructions---------------------------------
8419 // The conversions operations are all Alpha sorted.  Please keep it that way!
8420 
8421 instruct convD2F_reg(regF dst, regD src) %{
8422   match(Set dst (ConvD2F src));
8423   size(4);
8424   format %{ "FDTOS  $src,$dst" %}
8425   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8426   ins_encode(form3_opf_rs2D_rdF(src, dst));
8427   ins_pipe(fcvtD2F);
8428 %}
8429 
8430 
8431 // Convert a double to an int in a float register.
8432 // If the double is a NAN, stuff a zero in instead.
8433 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8434   effect(DEF dst, USE src, KILL fcc0);
8435   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8436             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8437             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8438             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8439             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8440       "skip:" %}
8441   ins_encode(form_d2i_helper(src,dst));
8442   ins_pipe(fcvtD2I);
8443 %}
8444 
8445 instruct convD2I_stk(stackSlotI dst, regD src) %{
8446   match(Set dst (ConvD2I src));
8447   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8448   expand %{
8449     regF tmp;
8450     convD2I_helper(tmp, src);
8451     regF_to_stkI(dst, tmp);
8452   %}
8453 %}
8454 
8455 instruct convD2I_reg(iRegI dst, regD src) %{
8456   predicate(UseVIS >= 3);
8457   match(Set dst (ConvD2I src));
8458   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8459   expand %{
8460     regF tmp;
8461     convD2I_helper(tmp, src);
8462     MoveF2I_reg_reg(dst, tmp);
8463   %}
8464 %}
8465 
8466 
8467 // Convert a double to a long in a double register.
8468 // If the double is a NAN, stuff a zero in instead.
8469 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8470   effect(DEF dst, USE src, KILL fcc0);
8471   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8472             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8473             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8474             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8475             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8476       "skip:" %}
8477   ins_encode(form_d2l_helper(src,dst));
8478   ins_pipe(fcvtD2L);
8479 %}
8480 
8481 instruct convD2L_stk(stackSlotL dst, regD src) %{
8482   match(Set dst (ConvD2L src));
8483   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8484   expand %{
8485     regD tmp;
8486     convD2L_helper(tmp, src);
8487     regD_to_stkL(dst, tmp);
8488   %}
8489 %}
8490 
8491 instruct convD2L_reg(iRegL dst, regD src) %{
8492   predicate(UseVIS >= 3);
8493   match(Set dst (ConvD2L src));
8494   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8495   expand %{
8496     regD tmp;
8497     convD2L_helper(tmp, src);
8498     MoveD2L_reg_reg(dst, tmp);
8499   %}
8500 %}
8501 
8502 
8503 instruct convF2D_reg(regD dst, regF src) %{
8504   match(Set dst (ConvF2D src));
8505   format %{ "FSTOD  $src,$dst" %}
8506   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8507   ins_encode(form3_opf_rs2F_rdD(src, dst));
8508   ins_pipe(fcvtF2D);
8509 %}
8510 
8511 
8512 // Convert a float to an int in a float register.
8513 // If the float is a NAN, stuff a zero in instead.
8514 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8515   effect(DEF dst, USE src, KILL fcc0);
8516   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8517             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8518             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8519             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8520             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8521       "skip:" %}
8522   ins_encode(form_f2i_helper(src,dst));
8523   ins_pipe(fcvtF2I);
8524 %}
8525 
8526 instruct convF2I_stk(stackSlotI dst, regF src) %{
8527   match(Set dst (ConvF2I src));
8528   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8529   expand %{
8530     regF tmp;
8531     convF2I_helper(tmp, src);
8532     regF_to_stkI(dst, tmp);
8533   %}
8534 %}
8535 
8536 instruct convF2I_reg(iRegI dst, regF src) %{
8537   predicate(UseVIS >= 3);
8538   match(Set dst (ConvF2I src));
8539   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8540   expand %{
8541     regF tmp;
8542     convF2I_helper(tmp, src);
8543     MoveF2I_reg_reg(dst, tmp);
8544   %}
8545 %}
8546 
8547 
8548 // Convert a float to a long in a float register.
8549 // If the float is a NAN, stuff a zero in instead.
8550 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8551   effect(DEF dst, USE src, KILL fcc0);
8552   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8553             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8554             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8555             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8556             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8557       "skip:" %}
8558   ins_encode(form_f2l_helper(src,dst));
8559   ins_pipe(fcvtF2L);
8560 %}
8561 
8562 instruct convF2L_stk(stackSlotL dst, regF src) %{
8563   match(Set dst (ConvF2L src));
8564   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8565   expand %{
8566     regD tmp;
8567     convF2L_helper(tmp, src);
8568     regD_to_stkL(dst, tmp);
8569   %}
8570 %}
8571 
8572 instruct convF2L_reg(iRegL dst, regF src) %{
8573   predicate(UseVIS >= 3);
8574   match(Set dst (ConvF2L src));
8575   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8576   expand %{
8577     regD tmp;
8578     convF2L_helper(tmp, src);
8579     MoveD2L_reg_reg(dst, tmp);
8580   %}
8581 %}
8582 
8583 
8584 instruct convI2D_helper(regD dst, regF tmp) %{
8585   effect(USE tmp, DEF dst);
8586   format %{ "FITOD  $tmp,$dst" %}
8587   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8588   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8589   ins_pipe(fcvtI2D);
8590 %}
8591 
8592 instruct convI2D_stk(stackSlotI src, regD dst) %{
8593   match(Set dst (ConvI2D src));
8594   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8595   expand %{
8596     regF tmp;
8597     stkI_to_regF(tmp, src);
8598     convI2D_helper(dst, tmp);
8599   %}
8600 %}
8601 
8602 instruct convI2D_reg(regD_low dst, iRegI src) %{
8603   predicate(UseVIS >= 3);
8604   match(Set dst (ConvI2D src));
8605   expand %{
8606     regF tmp;
8607     MoveI2F_reg_reg(tmp, src);
8608     convI2D_helper(dst, tmp);
8609   %}
8610 %}
8611 
8612 instruct convI2D_mem(regD_low dst, memory mem) %{
8613   match(Set dst (ConvI2D (LoadI mem)));
8614   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8615   size(8);
8616   format %{ "LDF    $mem,$dst\n\t"
8617             "FITOD  $dst,$dst" %}
8618   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8619   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8620   ins_pipe(floadF_mem);
8621 %}
8622 
8623 
8624 instruct convI2F_helper(regF dst, regF tmp) %{
8625   effect(DEF dst, USE tmp);
8626   format %{ "FITOS  $tmp,$dst" %}
8627   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8628   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8629   ins_pipe(fcvtI2F);
8630 %}
8631 
8632 instruct convI2F_stk(regF dst, stackSlotI src) %{
8633   match(Set dst (ConvI2F src));
8634   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8635   expand %{
8636     regF tmp;
8637     stkI_to_regF(tmp,src);
8638     convI2F_helper(dst, tmp);
8639   %}
8640 %}
8641 
8642 instruct convI2F_reg(regF dst, iRegI src) %{
8643   predicate(UseVIS >= 3);
8644   match(Set dst (ConvI2F src));
8645   ins_cost(DEFAULT_COST);
8646   expand %{
8647     regF tmp;
8648     MoveI2F_reg_reg(tmp, src);
8649     convI2F_helper(dst, tmp);
8650   %}
8651 %}
8652 
8653 instruct convI2F_mem( regF dst, memory mem ) %{
8654   match(Set dst (ConvI2F (LoadI mem)));
8655   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8656   size(8);
8657   format %{ "LDF    $mem,$dst\n\t"
8658             "FITOS  $dst,$dst" %}
8659   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8660   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8661   ins_pipe(floadF_mem);
8662 %}
8663 
8664 
8665 instruct convI2L_reg(iRegL dst, iRegI src) %{
8666   match(Set dst (ConvI2L src));
8667   size(4);
8668   format %{ "SRA    $src,0,$dst\t! int->long" %}
8669   opcode(Assembler::sra_op3, Assembler::arith_op);
8670   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8671   ins_pipe(ialu_reg_reg);
8672 %}
8673 
8674 // Zero-extend convert int to long
8675 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8676   match(Set dst (AndL (ConvI2L src) mask) );
8677   size(4);
8678   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8679   opcode(Assembler::srl_op3, Assembler::arith_op);
8680   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8681   ins_pipe(ialu_reg_reg);
8682 %}
8683 
8684 // Zero-extend long
8685 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8686   match(Set dst (AndL src mask) );
8687   size(4);
8688   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8689   opcode(Assembler::srl_op3, Assembler::arith_op);
8690   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8691   ins_pipe(ialu_reg_reg);
8692 %}
8693 
8694 
8695 //-----------
8696 // Long to Double conversion using V8 opcodes.
8697 // Still useful because cheetah traps and becomes
8698 // amazingly slow for some common numbers.
8699 
8700 // Magic constant, 0x43300000
8701 instruct loadConI_x43300000(iRegI dst) %{
8702   effect(DEF dst);
8703   size(4);
8704   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8705   ins_encode(SetHi22(0x43300000, dst));
8706   ins_pipe(ialu_none);
8707 %}
8708 
8709 // Magic constant, 0x41f00000
8710 instruct loadConI_x41f00000(iRegI dst) %{
8711   effect(DEF dst);
8712   size(4);
8713   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8714   ins_encode(SetHi22(0x41f00000, dst));
8715   ins_pipe(ialu_none);
8716 %}
8717 
8718 // Construct a double from two float halves
8719 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8720   effect(DEF dst, USE src1, USE src2);
8721   size(8);
8722   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8723             "FMOVS  $src2.lo,$dst.lo" %}
8724   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8725   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8726   ins_pipe(faddD_reg_reg);
8727 %}
8728 
8729 // Convert integer in high half of a double register (in the lower half of
8730 // the double register file) to double
8731 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8732   effect(DEF dst, USE src);
8733   size(4);
8734   format %{ "FITOD  $src,$dst" %}
8735   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8736   ins_encode(form3_opf_rs2D_rdD(src, dst));
8737   ins_pipe(fcvtLHi2D);
8738 %}
8739 
8740 // Add float double precision
8741 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8742   effect(DEF dst, USE src1, USE src2);
8743   size(4);
8744   format %{ "FADDD  $src1,$src2,$dst" %}
8745   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8746   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8747   ins_pipe(faddD_reg_reg);
8748 %}
8749 
8750 // Sub float double precision
8751 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8752   effect(DEF dst, USE src1, USE src2);
8753   size(4);
8754   format %{ "FSUBD  $src1,$src2,$dst" %}
8755   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8756   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8757   ins_pipe(faddD_reg_reg);
8758 %}
8759 
8760 // Mul float double precision
8761 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8762   effect(DEF dst, USE src1, USE src2);
8763   size(4);
8764   format %{ "FMULD  $src1,$src2,$dst" %}
8765   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8766   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8767   ins_pipe(fmulD_reg_reg);
8768 %}
8769 
8770 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8771   match(Set dst (ConvL2D src));
8772   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8773 
8774   expand %{
8775     regD_low   tmpsrc;
8776     iRegI      ix43300000;
8777     iRegI      ix41f00000;
8778     stackSlotL lx43300000;
8779     stackSlotL lx41f00000;
8780     regD_low   dx43300000;
8781     regD       dx41f00000;
8782     regD       tmp1;
8783     regD_low   tmp2;
8784     regD       tmp3;
8785     regD       tmp4;
8786 
8787     stkL_to_regD(tmpsrc, src);
8788 
8789     loadConI_x43300000(ix43300000);
8790     loadConI_x41f00000(ix41f00000);
8791     regI_to_stkLHi(lx43300000, ix43300000);
8792     regI_to_stkLHi(lx41f00000, ix41f00000);
8793     stkL_to_regD(dx43300000, lx43300000);
8794     stkL_to_regD(dx41f00000, lx41f00000);
8795 
8796     convI2D_regDHi_regD(tmp1, tmpsrc);
8797     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8798     subD_regD_regD(tmp3, tmp2, dx43300000);
8799     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8800     addD_regD_regD(dst, tmp3, tmp4);
8801   %}
8802 %}
8803 
8804 // Long to Double conversion using fast fxtof
8805 instruct convL2D_helper(regD dst, regD tmp) %{
8806   effect(DEF dst, USE tmp);
8807   size(4);
8808   format %{ "FXTOD  $tmp,$dst" %}
8809   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8810   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8811   ins_pipe(fcvtL2D);
8812 %}
8813 
8814 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8815   predicate(VM_Version::has_fast_fxtof());
8816   match(Set dst (ConvL2D src));
8817   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8818   expand %{
8819     regD tmp;
8820     stkL_to_regD(tmp, src);
8821     convL2D_helper(dst, tmp);
8822   %}
8823 %}
8824 
8825 instruct convL2D_reg(regD dst, iRegL src) %{
8826   predicate(UseVIS >= 3);
8827   match(Set dst (ConvL2D src));
8828   expand %{
8829     regD tmp;
8830     MoveL2D_reg_reg(tmp, src);
8831     convL2D_helper(dst, tmp);
8832   %}
8833 %}
8834 
8835 // Long to Float conversion using fast fxtof
8836 instruct convL2F_helper(regF dst, regD tmp) %{
8837   effect(DEF dst, USE tmp);
8838   size(4);
8839   format %{ "FXTOS  $tmp,$dst" %}
8840   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8841   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8842   ins_pipe(fcvtL2F);
8843 %}
8844 
8845 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8846   match(Set dst (ConvL2F src));
8847   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8848   expand %{
8849     regD tmp;
8850     stkL_to_regD(tmp, src);
8851     convL2F_helper(dst, tmp);
8852   %}
8853 %}
8854 
8855 instruct convL2F_reg(regF dst, iRegL src) %{
8856   predicate(UseVIS >= 3);
8857   match(Set dst (ConvL2F src));
8858   ins_cost(DEFAULT_COST);
8859   expand %{
8860     regD tmp;
8861     MoveL2D_reg_reg(tmp, src);
8862     convL2F_helper(dst, tmp);
8863   %}
8864 %}
8865 
8866 //-----------
8867 
8868 instruct convL2I_reg(iRegI dst, iRegL src) %{
8869   match(Set dst (ConvL2I src));
8870 #ifndef _LP64
8871   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8872   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8873   ins_pipe(ialu_move_reg_I_to_L);
8874 #else
8875   size(4);
8876   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8877   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8878   ins_pipe(ialu_reg);
8879 #endif
8880 %}
8881 
8882 // Register Shift Right Immediate
8883 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8884   match(Set dst (ConvL2I (RShiftL src cnt)));
8885 
8886   size(4);
8887   format %{ "SRAX   $src,$cnt,$dst" %}
8888   opcode(Assembler::srax_op3, Assembler::arith_op);
8889   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8890   ins_pipe(ialu_reg_imm);
8891 %}
8892 
8893 // Replicate scalar to packed byte values in Double register
8894 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8895   effect(DEF dst, USE src);
8896   format %{ "SLLX  $src,56,$dst\n\t"
8897             "SRLX  $dst, 8,O7\n\t"
8898             "OR    $dst,O7,$dst\n\t"
8899             "SRLX  $dst,16,O7\n\t"
8900             "OR    $dst,O7,$dst\n\t"
8901             "SRLX  $dst,32,O7\n\t"
8902             "OR    $dst,O7,$dst\t! replicate8B" %}
8903   ins_encode( enc_repl8b(src, dst));
8904   ins_pipe(ialu_reg);
8905 %}
8906 
8907 // Replicate scalar to packed byte values in Double register
8908 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8909   match(Set dst (Replicate8B src));
8910   expand %{
8911     iRegL tmp;
8912     Repl8B_reg_helper(tmp, src);
8913     regL_to_stkD(dst, tmp);
8914   %}
8915 %}
8916 
8917 // Replicate scalar constant to packed byte values in Double register
8918 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
8919   match(Set dst (Replicate8B con));
8920   effect(KILL tmp);
8921   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
8922   ins_encode %{
8923     // XXX This is a quick fix for 6833573.
8924     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
8925     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
8926     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8927   %}
8928   ins_pipe(loadConFD);
8929 %}
8930 
8931 // Replicate scalar to packed char values into stack slot
8932 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8933   effect(DEF dst, USE src);
8934   format %{ "SLLX  $src,48,$dst\n\t"
8935             "SRLX  $dst,16,O7\n\t"
8936             "OR    $dst,O7,$dst\n\t"
8937             "SRLX  $dst,32,O7\n\t"
8938             "OR    $dst,O7,$dst\t! replicate4C" %}
8939   ins_encode( enc_repl4s(src, dst) );
8940   ins_pipe(ialu_reg);
8941 %}
8942 
8943 // Replicate scalar to packed char values into stack slot
8944 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8945   match(Set dst (Replicate4C src));
8946   expand %{
8947     iRegL tmp;
8948     Repl4C_reg_helper(tmp, src);
8949     regL_to_stkD(dst, tmp);
8950   %}
8951 %}
8952 
8953 // Replicate scalar constant to packed char values in Double register
8954 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
8955   match(Set dst (Replicate4C con));
8956   effect(KILL tmp);
8957   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
8958   ins_encode %{
8959     // XXX This is a quick fix for 6833573.
8960     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8961     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8962     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8963   %}
8964   ins_pipe(loadConFD);
8965 %}
8966 
8967 // Replicate scalar to packed short values into stack slot
8968 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8969   effect(DEF dst, USE src);
8970   format %{ "SLLX  $src,48,$dst\n\t"
8971             "SRLX  $dst,16,O7\n\t"
8972             "OR    $dst,O7,$dst\n\t"
8973             "SRLX  $dst,32,O7\n\t"
8974             "OR    $dst,O7,$dst\t! replicate4S" %}
8975   ins_encode( enc_repl4s(src, dst) );
8976   ins_pipe(ialu_reg);
8977 %}
8978 
8979 // Replicate scalar to packed short values into stack slot
8980 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8981   match(Set dst (Replicate4S src));
8982   expand %{
8983     iRegL tmp;
8984     Repl4S_reg_helper(tmp, src);
8985     regL_to_stkD(dst, tmp);
8986   %}
8987 %}
8988 
8989 // Replicate scalar constant to packed short values in Double register
8990 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
8991   match(Set dst (Replicate4S con));
8992   effect(KILL tmp);
8993   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
8994   ins_encode %{
8995     // XXX This is a quick fix for 6833573.
8996     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
8997     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
8998     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
8999   %}
9000   ins_pipe(loadConFD);
9001 %}
9002 
9003 // Replicate scalar to packed int values in Double register
9004 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
9005   effect(DEF dst, USE src);
9006   format %{ "SLLX  $src,32,$dst\n\t"
9007             "SRLX  $dst,32,O7\n\t"
9008             "OR    $dst,O7,$dst\t! replicate2I" %}
9009   ins_encode( enc_repl2i(src, dst));
9010   ins_pipe(ialu_reg);
9011 %}
9012 
9013 // Replicate scalar to packed int values in Double register
9014 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
9015   match(Set dst (Replicate2I src));
9016   expand %{
9017     iRegL tmp;
9018     Repl2I_reg_helper(tmp, src);
9019     regL_to_stkD(dst, tmp);
9020   %}
9021 %}
9022 
9023 // Replicate scalar zero constant to packed int values in Double register
9024 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
9025   match(Set dst (Replicate2I con));
9026   effect(KILL tmp);
9027   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
9028   ins_encode %{
9029     // XXX This is a quick fix for 6833573.
9030     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
9031     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
9032     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
9033   %}
9034   ins_pipe(loadConFD);
9035 %}
9036 
9037 //----------Control Flow Instructions------------------------------------------
9038 // Compare Instructions
9039 // Compare Integers
9040 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
9041   match(Set icc (CmpI op1 op2));
9042   effect( DEF icc, USE op1, USE op2 );
9043 
9044   size(4);
9045   format %{ "CMP    $op1,$op2" %}
9046   opcode(Assembler::subcc_op3, Assembler::arith_op);
9047   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9048   ins_pipe(ialu_cconly_reg_reg);
9049 %}
9050 
9051 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
9052   match(Set icc (CmpU op1 op2));
9053 
9054   size(4);
9055   format %{ "CMP    $op1,$op2\t! unsigned" %}
9056   opcode(Assembler::subcc_op3, Assembler::arith_op);
9057   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9058   ins_pipe(ialu_cconly_reg_reg);
9059 %}
9060 
9061 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
9062   match(Set icc (CmpI op1 op2));
9063   effect( DEF icc, USE op1 );
9064 
9065   size(4);
9066   format %{ "CMP    $op1,$op2" %}
9067   opcode(Assembler::subcc_op3, Assembler::arith_op);
9068   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9069   ins_pipe(ialu_cconly_reg_imm);
9070 %}
9071 
9072 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
9073   match(Set icc (CmpI (AndI op1 op2) zero));
9074 
9075   size(4);
9076   format %{ "BTST   $op2,$op1" %}
9077   opcode(Assembler::andcc_op3, Assembler::arith_op);
9078   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9079   ins_pipe(ialu_cconly_reg_reg_zero);
9080 %}
9081 
9082 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
9083   match(Set icc (CmpI (AndI op1 op2) zero));
9084 
9085   size(4);
9086   format %{ "BTST   $op2,$op1" %}
9087   opcode(Assembler::andcc_op3, Assembler::arith_op);
9088   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9089   ins_pipe(ialu_cconly_reg_imm_zero);
9090 %}
9091 
9092 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
9093   match(Set xcc (CmpL op1 op2));
9094   effect( DEF xcc, USE op1, USE op2 );
9095 
9096   size(4);
9097   format %{ "CMP    $op1,$op2\t\t! long" %}
9098   opcode(Assembler::subcc_op3, Assembler::arith_op);
9099   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9100   ins_pipe(ialu_cconly_reg_reg);
9101 %}
9102 
9103 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
9104   match(Set xcc (CmpL op1 con));
9105   effect( DEF xcc, USE op1, USE con );
9106 
9107   size(4);
9108   format %{ "CMP    $op1,$con\t\t! long" %}
9109   opcode(Assembler::subcc_op3, Assembler::arith_op);
9110   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9111   ins_pipe(ialu_cconly_reg_reg);
9112 %}
9113 
9114 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
9115   match(Set xcc (CmpL (AndL op1 op2) zero));
9116   effect( DEF xcc, USE op1, USE op2 );
9117 
9118   size(4);
9119   format %{ "BTST   $op1,$op2\t\t! long" %}
9120   opcode(Assembler::andcc_op3, Assembler::arith_op);
9121   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9122   ins_pipe(ialu_cconly_reg_reg);
9123 %}
9124 
9125 // useful for checking the alignment of a pointer:
9126 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9127   match(Set xcc (CmpL (AndL op1 con) zero));
9128   effect( DEF xcc, USE op1, USE con );
9129 
9130   size(4);
9131   format %{ "BTST   $op1,$con\t\t! long" %}
9132   opcode(Assembler::andcc_op3, Assembler::arith_op);
9133   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9134   ins_pipe(ialu_cconly_reg_reg);
9135 %}
9136 
9137 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
9138   match(Set icc (CmpU op1 op2));
9139 
9140   size(4);
9141   format %{ "CMP    $op1,$op2\t! unsigned" %}
9142   opcode(Assembler::subcc_op3, Assembler::arith_op);
9143   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9144   ins_pipe(ialu_cconly_reg_imm);
9145 %}
9146 
9147 // Compare Pointers
9148 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9149   match(Set pcc (CmpP op1 op2));
9150 
9151   size(4);
9152   format %{ "CMP    $op1,$op2\t! ptr" %}
9153   opcode(Assembler::subcc_op3, Assembler::arith_op);
9154   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9155   ins_pipe(ialu_cconly_reg_reg);
9156 %}
9157 
9158 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9159   match(Set pcc (CmpP op1 op2));
9160 
9161   size(4);
9162   format %{ "CMP    $op1,$op2\t! ptr" %}
9163   opcode(Assembler::subcc_op3, Assembler::arith_op);
9164   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9165   ins_pipe(ialu_cconly_reg_imm);
9166 %}
9167 
9168 // Compare Narrow oops
9169 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9170   match(Set icc (CmpN op1 op2));
9171 
9172   size(4);
9173   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9174   opcode(Assembler::subcc_op3, Assembler::arith_op);
9175   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9176   ins_pipe(ialu_cconly_reg_reg);
9177 %}
9178 
9179 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9180   match(Set icc (CmpN op1 op2));
9181 
9182   size(4);
9183   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9184   opcode(Assembler::subcc_op3, Assembler::arith_op);
9185   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9186   ins_pipe(ialu_cconly_reg_imm);
9187 %}
9188 
9189 //----------Max and Min--------------------------------------------------------
9190 // Min Instructions
9191 // Conditional move for min
9192 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9193   effect( USE_DEF op2, USE op1, USE icc );
9194 
9195   size(4);
9196   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9197   opcode(Assembler::less);
9198   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9199   ins_pipe(ialu_reg_flags);
9200 %}
9201 
9202 // Min Register with Register.
9203 instruct minI_eReg(iRegI op1, iRegI op2) %{
9204   match(Set op2 (MinI op1 op2));
9205   ins_cost(DEFAULT_COST*2);
9206   expand %{
9207     flagsReg icc;
9208     compI_iReg(icc,op1,op2);
9209     cmovI_reg_lt(op2,op1,icc);
9210   %}
9211 %}
9212 
9213 // Max Instructions
9214 // Conditional move for max
9215 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9216   effect( USE_DEF op2, USE op1, USE icc );
9217   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9218   opcode(Assembler::greater);
9219   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9220   ins_pipe(ialu_reg_flags);
9221 %}
9222 
9223 // Max Register with Register
9224 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9225   match(Set op2 (MaxI op1 op2));
9226   ins_cost(DEFAULT_COST*2);
9227   expand %{
9228     flagsReg icc;
9229     compI_iReg(icc,op1,op2);
9230     cmovI_reg_gt(op2,op1,icc);
9231   %}
9232 %}
9233 
9234 
9235 //----------Float Compares----------------------------------------------------
9236 // Compare floating, generate condition code
9237 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9238   match(Set fcc (CmpF src1 src2));
9239 
9240   size(4);
9241   format %{ "FCMPs  $fcc,$src1,$src2" %}
9242   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9243   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9244   ins_pipe(faddF_fcc_reg_reg_zero);
9245 %}
9246 
9247 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9248   match(Set fcc (CmpD src1 src2));
9249 
9250   size(4);
9251   format %{ "FCMPd  $fcc,$src1,$src2" %}
9252   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9253   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9254   ins_pipe(faddD_fcc_reg_reg_zero);
9255 %}
9256 
9257 
9258 // Compare floating, generate -1,0,1
9259 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9260   match(Set dst (CmpF3 src1 src2));
9261   effect(KILL fcc0);
9262   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9263   format %{ "fcmpl  $dst,$src1,$src2" %}
9264   // Primary = float
9265   opcode( true );
9266   ins_encode( floating_cmp( dst, src1, src2 ) );
9267   ins_pipe( floating_cmp );
9268 %}
9269 
9270 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9271   match(Set dst (CmpD3 src1 src2));
9272   effect(KILL fcc0);
9273   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9274   format %{ "dcmpl  $dst,$src1,$src2" %}
9275   // Primary = double (not float)
9276   opcode( false );
9277   ins_encode( floating_cmp( dst, src1, src2 ) );
9278   ins_pipe( floating_cmp );
9279 %}
9280 
9281 //----------Branches---------------------------------------------------------
9282 // Jump
9283 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9284 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9285   match(Jump switch_val);
9286 
9287   ins_cost(350);
9288 
9289   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9290              "LD     [O7 + $switch_val], O7\n\t"
9291              "JUMP   O7" %}
9292   ins_encode %{
9293     // Calculate table address into a register.
9294     Register table_reg;
9295     Register label_reg = O7;
9296     // If we are calculating the size of this instruction don't trust
9297     // zero offsets because they might change when
9298     // MachConstantBaseNode decides to optimize the constant table
9299     // base.
9300     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9301       table_reg = $constanttablebase;
9302     } else {
9303       table_reg = O7;
9304       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9305       __ add($constanttablebase, con_offset, table_reg);
9306     }
9307 
9308     // Jump to base address + switch value
9309     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9310     __ jmp(label_reg, G0);
9311     __ delayed()->nop();
9312   %}
9313   ins_pipe(ialu_reg_reg);
9314 %}
9315 
9316 // Direct Branch.  Use V8 version with longer range.
9317 instruct branch(label labl) %{
9318   match(Goto);
9319   effect(USE labl);
9320 
9321   size(8);
9322   ins_cost(BRANCH_COST);
9323   format %{ "BA     $labl" %}
9324   ins_encode %{
9325     Label* L = $labl$$label;
9326     __ ba(*L);
9327     __ delayed()->nop();
9328   %}
9329   ins_pipe(br);
9330 %}
9331 
9332 // Direct Branch, short with no delay slot
9333 instruct branch_short(label labl) %{
9334   match(Goto);
9335   predicate(UseCBCond);
9336   effect(USE labl);
9337 
9338   size(4);
9339   ins_cost(BRANCH_COST);
9340   format %{ "BA     $labl\t! short branch" %}
9341   ins_encode %{ 
9342     Label* L = $labl$$label;
9343     assert(__ use_cbcond(*L), "back to back cbcond");
9344     __ ba_short(*L);
9345   %}
9346   ins_short_branch(1);
9347   ins_avoid_back_to_back(1);
9348   ins_pipe(cbcond_reg_imm);
9349 %}
9350 
9351 // Conditional Direct Branch
9352 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9353   match(If cmp icc);
9354   effect(USE labl);
9355 
9356   size(8);
9357   ins_cost(BRANCH_COST);
9358   format %{ "BP$cmp   $icc,$labl" %}
9359   // Prim = bits 24-22, Secnd = bits 31-30
9360   ins_encode( enc_bp( labl, cmp, icc ) );
9361   ins_pipe(br_cc);
9362 %}
9363 
9364 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9365   match(If cmp icc);
9366   effect(USE labl);
9367 
9368   ins_cost(BRANCH_COST);
9369   format %{ "BP$cmp  $icc,$labl" %}
9370   // Prim = bits 24-22, Secnd = bits 31-30
9371   ins_encode( enc_bp( labl, cmp, icc ) );
9372   ins_pipe(br_cc);
9373 %}
9374 
9375 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9376   match(If cmp pcc);
9377   effect(USE labl);
9378 
9379   size(8);
9380   ins_cost(BRANCH_COST);
9381   format %{ "BP$cmp  $pcc,$labl" %}
9382   ins_encode %{
9383     Label* L = $labl$$label;
9384     Assembler::Predict predict_taken =
9385       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9386 
9387     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9388     __ delayed()->nop();
9389   %}
9390   ins_pipe(br_cc);
9391 %}
9392 
9393 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9394   match(If cmp fcc);
9395   effect(USE labl);
9396 
9397   size(8);
9398   ins_cost(BRANCH_COST);
9399   format %{ "FBP$cmp $fcc,$labl" %}
9400   ins_encode %{
9401     Label* L = $labl$$label;
9402     Assembler::Predict predict_taken =
9403       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9404 
9405     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9406     __ delayed()->nop();
9407   %}
9408   ins_pipe(br_fcc);
9409 %}
9410 
9411 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9412   match(CountedLoopEnd cmp icc);
9413   effect(USE labl);
9414 
9415   size(8);
9416   ins_cost(BRANCH_COST);
9417   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9418   // Prim = bits 24-22, Secnd = bits 31-30
9419   ins_encode( enc_bp( labl, cmp, icc ) );
9420   ins_pipe(br_cc);
9421 %}
9422 
9423 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9424   match(CountedLoopEnd cmp icc);
9425   effect(USE labl);
9426 
9427   size(8);
9428   ins_cost(BRANCH_COST);
9429   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9430   // Prim = bits 24-22, Secnd = bits 31-30
9431   ins_encode( enc_bp( labl, cmp, icc ) );
9432   ins_pipe(br_cc);
9433 %}
9434 
9435 // Compare and branch instructions
9436 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9437   match(If cmp (CmpI op1 op2));
9438   effect(USE labl, KILL icc);
9439 
9440   size(12);
9441   ins_cost(BRANCH_COST);
9442   format %{ "CMP    $op1,$op2\t! int\n\t"
9443             "BP$cmp   $labl" %}
9444   ins_encode %{
9445     Label* L = $labl$$label;
9446     Assembler::Predict predict_taken =
9447       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9448     __ cmp($op1$$Register, $op2$$Register);
9449     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9450     __ delayed()->nop();
9451   %}
9452   ins_pipe(cmp_br_reg_reg);
9453 %}
9454 
9455 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9456   match(If cmp (CmpI op1 op2));
9457   effect(USE labl, KILL icc);
9458 
9459   size(12);
9460   ins_cost(BRANCH_COST);
9461   format %{ "CMP    $op1,$op2\t! int\n\t"
9462             "BP$cmp   $labl" %}
9463   ins_encode %{
9464     Label* L = $labl$$label;
9465     Assembler::Predict predict_taken =
9466       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9467     __ cmp($op1$$Register, $op2$$constant);
9468     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9469     __ delayed()->nop();
9470   %}
9471   ins_pipe(cmp_br_reg_imm);
9472 %}
9473 
9474 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9475   match(If cmp (CmpU op1 op2));
9476   effect(USE labl, KILL icc);
9477 
9478   size(12);
9479   ins_cost(BRANCH_COST);
9480   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9481             "BP$cmp  $labl" %}
9482   ins_encode %{
9483     Label* L = $labl$$label;
9484     Assembler::Predict predict_taken =
9485       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9486     __ cmp($op1$$Register, $op2$$Register);
9487     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9488     __ delayed()->nop();
9489   %}
9490   ins_pipe(cmp_br_reg_reg);
9491 %}
9492 
9493 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9494   match(If cmp (CmpU op1 op2));
9495   effect(USE labl, KILL icc);
9496 
9497   size(12);
9498   ins_cost(BRANCH_COST);
9499   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9500             "BP$cmp  $labl" %}
9501   ins_encode %{
9502     Label* L = $labl$$label;
9503     Assembler::Predict predict_taken =
9504       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9505     __ cmp($op1$$Register, $op2$$constant);
9506     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9507     __ delayed()->nop();
9508   %}
9509   ins_pipe(cmp_br_reg_imm);
9510 %}
9511 
9512 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9513   match(If cmp (CmpL op1 op2));
9514   effect(USE labl, KILL xcc);
9515 
9516   size(12);
9517   ins_cost(BRANCH_COST);
9518   format %{ "CMP    $op1,$op2\t! long\n\t"
9519             "BP$cmp   $labl" %}
9520   ins_encode %{
9521     Label* L = $labl$$label;
9522     Assembler::Predict predict_taken =
9523       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9524     __ cmp($op1$$Register, $op2$$Register);
9525     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9526     __ delayed()->nop();
9527   %}
9528   ins_pipe(cmp_br_reg_reg);
9529 %}
9530 
9531 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9532   match(If cmp (CmpL op1 op2));
9533   effect(USE labl, KILL xcc);
9534 
9535   size(12);
9536   ins_cost(BRANCH_COST);
9537   format %{ "CMP    $op1,$op2\t! long\n\t"
9538             "BP$cmp   $labl" %}
9539   ins_encode %{
9540     Label* L = $labl$$label;
9541     Assembler::Predict predict_taken =
9542       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9543     __ cmp($op1$$Register, $op2$$constant);
9544     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9545     __ delayed()->nop();
9546   %}
9547   ins_pipe(cmp_br_reg_imm);
9548 %}
9549 
9550 // Compare Pointers and branch
9551 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9552   match(If cmp (CmpP op1 op2));
9553   effect(USE labl, KILL pcc);
9554 
9555   size(12);
9556   ins_cost(BRANCH_COST);
9557   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9558             "B$cmp   $labl" %}
9559   ins_encode %{
9560     Label* L = $labl$$label;
9561     Assembler::Predict predict_taken =
9562       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9563     __ cmp($op1$$Register, $op2$$Register);
9564     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9565     __ delayed()->nop();
9566   %}
9567   ins_pipe(cmp_br_reg_reg);
9568 %}
9569 
9570 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9571   match(If cmp (CmpP op1 null));
9572   effect(USE labl, KILL pcc);
9573 
9574   size(12);
9575   ins_cost(BRANCH_COST);
9576   format %{ "CMP    $op1,0\t! ptr\n\t"
9577             "B$cmp   $labl" %}
9578   ins_encode %{
9579     Label* L = $labl$$label;
9580     Assembler::Predict predict_taken =
9581       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9582     __ cmp($op1$$Register, G0);
9583     // bpr() is not used here since it has shorter distance.
9584     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9585     __ delayed()->nop();
9586   %}
9587   ins_pipe(cmp_br_reg_reg);
9588 %}
9589 
9590 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9591   match(If cmp (CmpN op1 op2));
9592   effect(USE labl, KILL icc);
9593 
9594   size(12);
9595   ins_cost(BRANCH_COST);
9596   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9597             "BP$cmp   $labl" %}
9598   ins_encode %{
9599     Label* L = $labl$$label;
9600     Assembler::Predict predict_taken =
9601       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9602     __ cmp($op1$$Register, $op2$$Register);
9603     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9604     __ delayed()->nop();
9605   %}
9606   ins_pipe(cmp_br_reg_reg);
9607 %}
9608 
9609 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9610   match(If cmp (CmpN op1 null));
9611   effect(USE labl, KILL icc);
9612 
9613   size(12);
9614   ins_cost(BRANCH_COST);
9615   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9616             "BP$cmp   $labl" %}
9617   ins_encode %{
9618     Label* L = $labl$$label;
9619     Assembler::Predict predict_taken =
9620       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9621     __ cmp($op1$$Register, G0);
9622     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9623     __ delayed()->nop();
9624   %}
9625   ins_pipe(cmp_br_reg_reg);
9626 %}
9627 
9628 // Loop back branch
9629 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9630   match(CountedLoopEnd cmp (CmpI op1 op2));
9631   effect(USE labl, KILL icc);
9632 
9633   size(12);
9634   ins_cost(BRANCH_COST);
9635   format %{ "CMP    $op1,$op2\t! int\n\t"
9636             "BP$cmp   $labl\t! Loop end" %}
9637   ins_encode %{
9638     Label* L = $labl$$label;
9639     Assembler::Predict predict_taken =
9640       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9641     __ cmp($op1$$Register, $op2$$Register);
9642     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9643     __ delayed()->nop();
9644   %}
9645   ins_pipe(cmp_br_reg_reg);
9646 %}
9647 
9648 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9649   match(CountedLoopEnd cmp (CmpI op1 op2));
9650   effect(USE labl, KILL icc);
9651 
9652   size(12);
9653   ins_cost(BRANCH_COST);
9654   format %{ "CMP    $op1,$op2\t! int\n\t"
9655             "BP$cmp   $labl\t! Loop end" %}
9656   ins_encode %{
9657     Label* L = $labl$$label;
9658     Assembler::Predict predict_taken =
9659       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9660     __ cmp($op1$$Register, $op2$$constant);
9661     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9662     __ delayed()->nop();
9663   %}
9664   ins_pipe(cmp_br_reg_imm);
9665 %}
9666 
9667 // Short compare and branch instructions
9668 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9669   match(If cmp (CmpI op1 op2));
9670   predicate(UseCBCond);
9671   effect(USE labl, KILL icc);
9672 
9673   size(4);
9674   ins_cost(BRANCH_COST);
9675   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9676   ins_encode %{
9677     Label* L = $labl$$label;
9678     assert(__ use_cbcond(*L), "back to back cbcond");
9679     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9680   %}
9681   ins_short_branch(1);
9682   ins_avoid_back_to_back(1);
9683   ins_pipe(cbcond_reg_reg);
9684 %}
9685 
9686 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9687   match(If cmp (CmpI op1 op2));
9688   predicate(UseCBCond);
9689   effect(USE labl, KILL icc);
9690 
9691   size(4);
9692   ins_cost(BRANCH_COST);
9693   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9694   ins_encode %{
9695     Label* L = $labl$$label;
9696     assert(__ use_cbcond(*L), "back to back cbcond");
9697     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9698   %}
9699   ins_short_branch(1);
9700   ins_avoid_back_to_back(1);
9701   ins_pipe(cbcond_reg_imm);
9702 %}
9703 
9704 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9705   match(If cmp (CmpU op1 op2));
9706   predicate(UseCBCond);
9707   effect(USE labl, KILL icc);
9708 
9709   size(4);
9710   ins_cost(BRANCH_COST);
9711   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9712   ins_encode %{
9713     Label* L = $labl$$label;
9714     assert(__ use_cbcond(*L), "back to back cbcond");
9715     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9716   %}
9717   ins_short_branch(1);
9718   ins_avoid_back_to_back(1);
9719   ins_pipe(cbcond_reg_reg);
9720 %}
9721 
9722 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9723   match(If cmp (CmpU op1 op2));
9724   predicate(UseCBCond);
9725   effect(USE labl, KILL icc);
9726 
9727   size(4);
9728   ins_cost(BRANCH_COST);
9729   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9730   ins_encode %{
9731     Label* L = $labl$$label;
9732     assert(__ use_cbcond(*L), "back to back cbcond");
9733     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9734   %}
9735   ins_short_branch(1);
9736   ins_avoid_back_to_back(1);
9737   ins_pipe(cbcond_reg_imm);
9738 %}
9739 
9740 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9741   match(If cmp (CmpL op1 op2));
9742   predicate(UseCBCond);
9743   effect(USE labl, KILL xcc);
9744 
9745   size(4);
9746   ins_cost(BRANCH_COST);
9747   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9748   ins_encode %{
9749     Label* L = $labl$$label;
9750     assert(__ use_cbcond(*L), "back to back cbcond");
9751     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9752   %}
9753   ins_short_branch(1);
9754   ins_avoid_back_to_back(1);
9755   ins_pipe(cbcond_reg_reg);
9756 %}
9757 
9758 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9759   match(If cmp (CmpL op1 op2));
9760   predicate(UseCBCond);
9761   effect(USE labl, KILL xcc);
9762 
9763   size(4);
9764   ins_cost(BRANCH_COST);
9765   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9766   ins_encode %{
9767     Label* L = $labl$$label;
9768     assert(__ use_cbcond(*L), "back to back cbcond");
9769     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9770   %}
9771   ins_short_branch(1);
9772   ins_avoid_back_to_back(1);
9773   ins_pipe(cbcond_reg_imm);
9774 %}
9775 
9776 // Compare Pointers and branch
9777 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9778   match(If cmp (CmpP op1 op2));
9779   predicate(UseCBCond);
9780   effect(USE labl, KILL pcc);
9781 
9782   size(4);
9783   ins_cost(BRANCH_COST);
9784 #ifdef _LP64
9785   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9786 #else
9787   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9788 #endif
9789   ins_encode %{
9790     Label* L = $labl$$label;
9791     assert(__ use_cbcond(*L), "back to back cbcond");
9792     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9793   %}
9794   ins_short_branch(1);
9795   ins_avoid_back_to_back(1);
9796   ins_pipe(cbcond_reg_reg);
9797 %}
9798 
9799 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9800   match(If cmp (CmpP op1 null));
9801   predicate(UseCBCond);
9802   effect(USE labl, KILL pcc);
9803 
9804   size(4);
9805   ins_cost(BRANCH_COST);
9806 #ifdef _LP64
9807   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9808 #else
9809   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9810 #endif
9811   ins_encode %{
9812     Label* L = $labl$$label;
9813     assert(__ use_cbcond(*L), "back to back cbcond");
9814     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9815   %}
9816   ins_short_branch(1);
9817   ins_avoid_back_to_back(1);
9818   ins_pipe(cbcond_reg_reg);
9819 %}
9820 
9821 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9822   match(If cmp (CmpN op1 op2));
9823   predicate(UseCBCond);
9824   effect(USE labl, KILL icc);
9825 
9826   size(4);
9827   ins_cost(BRANCH_COST);
9828   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9829   ins_encode %{
9830     Label* L = $labl$$label;
9831     assert(__ use_cbcond(*L), "back to back cbcond");
9832     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9833   %}
9834   ins_short_branch(1);
9835   ins_avoid_back_to_back(1);
9836   ins_pipe(cbcond_reg_reg);
9837 %}
9838 
9839 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9840   match(If cmp (CmpN op1 null));
9841   predicate(UseCBCond);
9842   effect(USE labl, KILL icc);
9843 
9844   size(4);
9845   ins_cost(BRANCH_COST);
9846   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9847   ins_encode %{
9848     Label* L = $labl$$label;
9849     assert(__ use_cbcond(*L), "back to back cbcond");
9850     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9851   %}
9852   ins_short_branch(1);
9853   ins_avoid_back_to_back(1);
9854   ins_pipe(cbcond_reg_reg);
9855 %}
9856 
9857 // Loop back branch
9858 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9859   match(CountedLoopEnd cmp (CmpI op1 op2));
9860   predicate(UseCBCond);
9861   effect(USE labl, KILL icc);
9862 
9863   size(4);
9864   ins_cost(BRANCH_COST);
9865   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9866   ins_encode %{
9867     Label* L = $labl$$label;
9868     assert(__ use_cbcond(*L), "back to back cbcond");
9869     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9870   %}
9871   ins_short_branch(1);
9872   ins_avoid_back_to_back(1);
9873   ins_pipe(cbcond_reg_reg);
9874 %}
9875 
9876 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9877   match(CountedLoopEnd cmp (CmpI op1 op2));
9878   predicate(UseCBCond);
9879   effect(USE labl, KILL icc);
9880 
9881   size(4);
9882   ins_cost(BRANCH_COST);
9883   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9884   ins_encode %{
9885     Label* L = $labl$$label;
9886     assert(__ use_cbcond(*L), "back to back cbcond");
9887     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9888   %}
9889   ins_short_branch(1);
9890   ins_avoid_back_to_back(1);
9891   ins_pipe(cbcond_reg_imm);
9892 %}
9893 
9894 // Branch-on-register tests all 64 bits.  We assume that values
9895 // in 64-bit registers always remains zero or sign extended
9896 // unless our code munges the high bits.  Interrupts can chop
9897 // the high order bits to zero or sign at any time.
9898 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9899   match(If cmp (CmpI op1 zero));
9900   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9901   effect(USE labl);
9902 
9903   size(8);
9904   ins_cost(BRANCH_COST);
9905   format %{ "BR$cmp   $op1,$labl" %}
9906   ins_encode( enc_bpr( labl, cmp, op1 ) );
9907   ins_pipe(br_reg);
9908 %}
9909 
9910 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9911   match(If cmp (CmpP op1 null));
9912   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9913   effect(USE labl);
9914 
9915   size(8);
9916   ins_cost(BRANCH_COST);
9917   format %{ "BR$cmp   $op1,$labl" %}
9918   ins_encode( enc_bpr( labl, cmp, op1 ) );
9919   ins_pipe(br_reg);
9920 %}
9921 
9922 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9923   match(If cmp (CmpL op1 zero));
9924   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9925   effect(USE labl);
9926 
9927   size(8);
9928   ins_cost(BRANCH_COST);
9929   format %{ "BR$cmp   $op1,$labl" %}
9930   ins_encode( enc_bpr( labl, cmp, op1 ) );
9931   ins_pipe(br_reg);
9932 %}
9933 
9934 
9935 // ============================================================================
9936 // Long Compare
9937 //
9938 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9939 // is tricky.  The flavor of compare used depends on whether we are testing
9940 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9941 // The GE test is the negated LT test.  The LE test can be had by commuting
9942 // the operands (yielding a GE test) and then negating; negate again for the
9943 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9944 // NE test is negated from that.
9945 
9946 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9947 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9948 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9949 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9950 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9951 // foo match ends up with the wrong leaf.  One fix is to not match both
9952 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9953 // both forms beat the trinary form of long-compare and both are very useful
9954 // on Intel which has so few registers.
9955 
9956 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9957   match(If cmp xcc);
9958   effect(USE labl);
9959 
9960   size(8);
9961   ins_cost(BRANCH_COST);
9962   format %{ "BP$cmp   $xcc,$labl" %}
9963   ins_encode %{
9964     Label* L = $labl$$label;
9965     Assembler::Predict predict_taken =
9966       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9967 
9968     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9969     __ delayed()->nop();
9970   %}
9971   ins_pipe(br_cc);
9972 %}
9973 
9974 // Manifest a CmpL3 result in an integer register.  Very painful.
9975 // This is the test to avoid.
9976 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9977   match(Set dst (CmpL3 src1 src2) );
9978   effect( KILL ccr );
9979   ins_cost(6*DEFAULT_COST);
9980   size(24);
9981   format %{ "CMP    $src1,$src2\t\t! long\n"
9982           "\tBLT,a,pn done\n"
9983           "\tMOV    -1,$dst\t! delay slot\n"
9984           "\tBGT,a,pn done\n"
9985           "\tMOV    1,$dst\t! delay slot\n"
9986           "\tCLR    $dst\n"
9987     "done:"     %}
9988   ins_encode( cmpl_flag(src1,src2,dst) );
9989   ins_pipe(cmpL_reg);
9990 %}
9991 
9992 // Conditional move
9993 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9994   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9995   ins_cost(150);
9996   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9997   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9998   ins_pipe(ialu_reg);
9999 %}
10000 
10001 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
10002   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
10003   ins_cost(140);
10004   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
10005   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
10006   ins_pipe(ialu_imm);
10007 %}
10008 
10009 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
10010   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
10011   ins_cost(150);
10012   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10013   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
10014   ins_pipe(ialu_reg);
10015 %}
10016 
10017 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
10018   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
10019   ins_cost(140);
10020   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10021   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
10022   ins_pipe(ialu_imm);
10023 %}
10024 
10025 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
10026   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
10027   ins_cost(150);
10028   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10029   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
10030   ins_pipe(ialu_reg);
10031 %}
10032 
10033 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
10034   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
10035   ins_cost(150);
10036   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10037   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
10038   ins_pipe(ialu_reg);
10039 %}
10040 
10041 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
10042   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
10043   ins_cost(140);
10044   format %{ "MOV$cmp  $xcc,$src,$dst" %}
10045   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
10046   ins_pipe(ialu_imm);
10047 %}
10048 
10049 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
10050   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
10051   ins_cost(150);
10052   opcode(0x101);
10053   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
10054   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
10055   ins_pipe(int_conditional_float_move);
10056 %}
10057 
10058 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
10059   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
10060   ins_cost(150);
10061   opcode(0x102);
10062   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
10063   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
10064   ins_pipe(int_conditional_float_move);
10065 %}
10066 
10067 // ============================================================================
10068 // Safepoint Instruction
10069 instruct safePoint_poll(iRegP poll) %{
10070   match(SafePoint poll);
10071   effect(USE poll);
10072 
10073   size(4);
10074 #ifdef _LP64
10075   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
10076 #else
10077   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
10078 #endif
10079   ins_encode %{
10080     __ relocate(relocInfo::poll_type);
10081     __ ld_ptr($poll$$Register, 0, G0);
10082   %}
10083   ins_pipe(loadPollP);
10084 %}
10085 
10086 // ============================================================================
10087 // Call Instructions
10088 // Call Java Static Instruction
10089 instruct CallStaticJavaDirect( method meth ) %{
10090   match(CallStaticJava);
10091   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
10092   effect(USE meth);
10093 
10094   size(8);
10095   ins_cost(CALL_COST);
10096   format %{ "CALL,static  ; NOP ==> " %}
10097   ins_encode( Java_Static_Call( meth ), call_epilog );
10098   ins_pipe(simple_call);
10099 %}
10100 
10101 // Call Java Static Instruction (method handle version)
10102 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
10103   match(CallStaticJava);
10104   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
10105   effect(USE meth, KILL l7_mh_SP_save);
10106 
10107   size(16);
10108   ins_cost(CALL_COST);
10109   format %{ "CALL,static/MethodHandle" %}
10110   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
10111   ins_pipe(simple_call);
10112 %}
10113 
10114 // Call Java Dynamic Instruction
10115 instruct CallDynamicJavaDirect( method meth ) %{
10116   match(CallDynamicJava);
10117   effect(USE meth);
10118 
10119   ins_cost(CALL_COST);
10120   format %{ "SET    (empty),R_G5\n\t"
10121             "CALL,dynamic  ; NOP ==> " %}
10122   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
10123   ins_pipe(call);
10124 %}
10125 
10126 // Call Runtime Instruction
10127 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
10128   match(CallRuntime);
10129   effect(USE meth, KILL l7);
10130   ins_cost(CALL_COST);
10131   format %{ "CALL,runtime" %}
10132   ins_encode( Java_To_Runtime( meth ),
10133               call_epilog, adjust_long_from_native_call );
10134   ins_pipe(simple_call);
10135 %}
10136 
10137 // Call runtime without safepoint - same as CallRuntime
10138 instruct CallLeafDirect(method meth, l7RegP l7) %{
10139   match(CallLeaf);
10140   effect(USE meth, KILL l7);
10141   ins_cost(CALL_COST);
10142   format %{ "CALL,runtime leaf" %}
10143   ins_encode( Java_To_Runtime( meth ),
10144               call_epilog,
10145               adjust_long_from_native_call );
10146   ins_pipe(simple_call);
10147 %}
10148 
10149 // Call runtime without safepoint - same as CallLeaf
10150 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
10151   match(CallLeafNoFP);
10152   effect(USE meth, KILL l7);
10153   ins_cost(CALL_COST);
10154   format %{ "CALL,runtime leaf nofp" %}
10155   ins_encode( Java_To_Runtime( meth ),
10156               call_epilog,
10157               adjust_long_from_native_call );
10158   ins_pipe(simple_call);
10159 %}
10160 
10161 // Tail Call; Jump from runtime stub to Java code.
10162 // Also known as an 'interprocedural jump'.
10163 // Target of jump will eventually return to caller.
10164 // TailJump below removes the return address.
10165 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10166   match(TailCall jump_target method_oop );
10167 
10168   ins_cost(CALL_COST);
10169   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10170   ins_encode(form_jmpl(jump_target));
10171   ins_pipe(tail_call);
10172 %}
10173 
10174 
10175 // Return Instruction
10176 instruct Ret() %{
10177   match(Return);
10178 
10179   // The epilogue node did the ret already.
10180   size(0);
10181   format %{ "! return" %}
10182   ins_encode();
10183   ins_pipe(empty);
10184 %}
10185 
10186 
10187 // Tail Jump; remove the return address; jump to target.
10188 // TailCall above leaves the return address around.
10189 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10190 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10191 // "restore" before this instruction (in Epilogue), we need to materialize it
10192 // in %i0.
10193 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10194   match( TailJump jump_target ex_oop );
10195   ins_cost(CALL_COST);
10196   format %{ "! discard R_O7\n\t"
10197             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10198   ins_encode(form_jmpl_set_exception_pc(jump_target));
10199   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10200   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10201   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10202   ins_pipe(tail_call);
10203 %}
10204 
10205 // Create exception oop: created by stack-crawling runtime code.
10206 // Created exception is now available to this handler, and is setup
10207 // just prior to jumping to this handler.  No code emitted.
10208 instruct CreateException( o0RegP ex_oop )
10209 %{
10210   match(Set ex_oop (CreateEx));
10211   ins_cost(0);
10212 
10213   size(0);
10214   // use the following format syntax
10215   format %{ "! exception oop is in R_O0; no code emitted" %}
10216   ins_encode();
10217   ins_pipe(empty);
10218 %}
10219 
10220 
10221 // Rethrow exception:
10222 // The exception oop will come in the first argument position.
10223 // Then JUMP (not call) to the rethrow stub code.
10224 instruct RethrowException()
10225 %{
10226   match(Rethrow);
10227   ins_cost(CALL_COST);
10228 
10229   // use the following format syntax
10230   format %{ "Jmp    rethrow_stub" %}
10231   ins_encode(enc_rethrow);
10232   ins_pipe(tail_call);
10233 %}
10234 
10235 
10236 // Die now
10237 instruct ShouldNotReachHere( )
10238 %{
10239   match(Halt);
10240   ins_cost(CALL_COST);
10241 
10242   size(4);
10243   // Use the following format syntax
10244   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10245   ins_encode( form2_illtrap() );
10246   ins_pipe(tail_call);
10247 %}
10248 
10249 // ============================================================================
10250 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10251 // array for an instance of the superklass.  Set a hidden internal cache on a
10252 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10253 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10254 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10255   match(Set index (PartialSubtypeCheck sub super));
10256   effect( KILL pcc, KILL o7 );
10257   ins_cost(DEFAULT_COST*10);
10258   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10259   ins_encode( enc_PartialSubtypeCheck() );
10260   ins_pipe(partial_subtype_check_pipe);
10261 %}
10262 
10263 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10264   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10265   effect( KILL idx, KILL o7 );
10266   ins_cost(DEFAULT_COST*10);
10267   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10268   ins_encode( enc_PartialSubtypeCheck() );
10269   ins_pipe(partial_subtype_check_pipe);
10270 %}
10271 
10272 
10273 // ============================================================================
10274 // inlined locking and unlocking
10275 
10276 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
10277   match(Set pcc (FastLock object box));
10278 
10279   effect(KILL scratch, TEMP scratch2);
10280   ins_cost(100);
10281 
10282   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
10283   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10284   ins_pipe(long_memory_op);
10285 %}
10286 
10287 
10288 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
10289   match(Set pcc (FastUnlock object box));
10290   effect(KILL scratch, TEMP scratch2);
10291   ins_cost(100);
10292 
10293   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
10294   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10295   ins_pipe(long_memory_op);
10296 %}
10297 
10298 // The encodings are generic.
10299 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10300   predicate(!use_block_zeroing(n->in(2)) );
10301   match(Set dummy (ClearArray cnt base));
10302   effect(TEMP temp, KILL ccr);
10303   ins_cost(300);
10304   format %{ "MOV    $cnt,$temp\n"
10305     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10306     "        BRge   loop\t\t! Clearing loop\n"
10307     "        STX    G0,[$base+$temp]\t! delay slot" %}
10308 
10309   ins_encode %{
10310     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10311     Register nof_bytes_arg    = $cnt$$Register;
10312     Register nof_bytes_tmp    = $temp$$Register;
10313     Register base_pointer_arg = $base$$Register;
10314 
10315     Label loop;
10316     __ mov(nof_bytes_arg, nof_bytes_tmp);
10317 
10318     // Loop and clear, walking backwards through the array.
10319     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10320     __ bind(loop);
10321     __ deccc(nof_bytes_tmp, 8);
10322     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10323     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10324     // %%%% this mini-loop must not cross a cache boundary!
10325   %}
10326   ins_pipe(long_memory_op);
10327 %}
10328 
10329 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10330   predicate(use_block_zeroing(n->in(2)));
10331   match(Set dummy (ClearArray cnt base));
10332   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10333   ins_cost(300);
10334   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10335 
10336   ins_encode %{
10337 
10338     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10339     Register to    = $base$$Register;
10340     Register count = $cnt$$Register;
10341 
10342     Label Ldone;
10343     __ nop(); // Separate short branches
10344     // Use BIS for zeroing (temp is not used).
10345     __ bis_zeroing(to, count, G0, Ldone);
10346     __ bind(Ldone);
10347 
10348   %}
10349   ins_pipe(long_memory_op);
10350 %}
10351 
10352 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10353   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10354   match(Set dummy (ClearArray cnt base));
10355   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10356   ins_cost(300);
10357   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10358 
10359   ins_encode %{
10360 
10361     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10362     Register to    = $base$$Register;
10363     Register count = $cnt$$Register;
10364     Register temp  = $tmp$$Register;
10365 
10366     Label Ldone;
10367     __ nop(); // Separate short branches
10368     // Use BIS for zeroing
10369     __ bis_zeroing(to, count, temp, Ldone);
10370     __ bind(Ldone);
10371 
10372   %}
10373   ins_pipe(long_memory_op);
10374 %}
10375 
10376 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10377                         o7RegI tmp, flagsReg ccr) %{
10378   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10379   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10380   ins_cost(300);
10381   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10382   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10383   ins_pipe(long_memory_op);
10384 %}
10385 
10386 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10387                        o7RegI tmp, flagsReg ccr) %{
10388   match(Set result (StrEquals (Binary str1 str2) cnt));
10389   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10390   ins_cost(300);
10391   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10392   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10393   ins_pipe(long_memory_op);
10394 %}
10395 
10396 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10397                       o7RegI tmp2, flagsReg ccr) %{
10398   match(Set result (AryEq ary1 ary2));
10399   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10400   ins_cost(300);
10401   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10402   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10403   ins_pipe(long_memory_op);
10404 %}
10405 
10406 
10407 //---------- Zeros Count Instructions ------------------------------------------
10408 
10409 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
10410   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10411   match(Set dst (CountLeadingZerosI src));
10412   effect(TEMP dst, TEMP tmp, KILL cr);
10413 
10414   // x |= (x >> 1);
10415   // x |= (x >> 2);
10416   // x |= (x >> 4);
10417   // x |= (x >> 8);
10418   // x |= (x >> 16);
10419   // return (WORDBITS - popc(x));
10420   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10421             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10422             "OR      $dst,$tmp,$dst\n\t"
10423             "SRL     $dst,2,$tmp\n\t"
10424             "OR      $dst,$tmp,$dst\n\t"
10425             "SRL     $dst,4,$tmp\n\t"
10426             "OR      $dst,$tmp,$dst\n\t"
10427             "SRL     $dst,8,$tmp\n\t"
10428             "OR      $dst,$tmp,$dst\n\t"
10429             "SRL     $dst,16,$tmp\n\t"
10430             "OR      $dst,$tmp,$dst\n\t"
10431             "POPC    $dst,$dst\n\t"
10432             "MOV     32,$tmp\n\t"
10433             "SUB     $tmp,$dst,$dst" %}
10434   ins_encode %{
10435     Register Rdst = $dst$$Register;
10436     Register Rsrc = $src$$Register;
10437     Register Rtmp = $tmp$$Register;
10438     __ srl(Rsrc, 1,    Rtmp);
10439     __ srl(Rsrc, 0,    Rdst);
10440     __ or3(Rdst, Rtmp, Rdst);
10441     __ srl(Rdst, 2,    Rtmp);
10442     __ or3(Rdst, Rtmp, Rdst);
10443     __ srl(Rdst, 4,    Rtmp);
10444     __ or3(Rdst, Rtmp, Rdst);
10445     __ srl(Rdst, 8,    Rtmp);
10446     __ or3(Rdst, Rtmp, Rdst);
10447     __ srl(Rdst, 16,   Rtmp);
10448     __ or3(Rdst, Rtmp, Rdst);
10449     __ popc(Rdst, Rdst);
10450     __ mov(BitsPerInt, Rtmp);
10451     __ sub(Rtmp, Rdst, Rdst);
10452   %}
10453   ins_pipe(ialu_reg);
10454 %}
10455 
10456 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10457   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10458   match(Set dst (CountLeadingZerosL src));
10459   effect(TEMP dst, TEMP tmp, KILL cr);
10460 
10461   // x |= (x >> 1);
10462   // x |= (x >> 2);
10463   // x |= (x >> 4);
10464   // x |= (x >> 8);
10465   // x |= (x >> 16);
10466   // x |= (x >> 32);
10467   // return (WORDBITS - popc(x));
10468   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10469             "OR      $src,$tmp,$dst\n\t"
10470             "SRLX    $dst,2,$tmp\n\t"
10471             "OR      $dst,$tmp,$dst\n\t"
10472             "SRLX    $dst,4,$tmp\n\t"
10473             "OR      $dst,$tmp,$dst\n\t"
10474             "SRLX    $dst,8,$tmp\n\t"
10475             "OR      $dst,$tmp,$dst\n\t"
10476             "SRLX    $dst,16,$tmp\n\t"
10477             "OR      $dst,$tmp,$dst\n\t"
10478             "SRLX    $dst,32,$tmp\n\t"
10479             "OR      $dst,$tmp,$dst\n\t"
10480             "POPC    $dst,$dst\n\t"
10481             "MOV     64,$tmp\n\t"
10482             "SUB     $tmp,$dst,$dst" %}
10483   ins_encode %{
10484     Register Rdst = $dst$$Register;
10485     Register Rsrc = $src$$Register;
10486     Register Rtmp = $tmp$$Register;
10487     __ srlx(Rsrc, 1,    Rtmp);
10488     __ or3( Rsrc, Rtmp, Rdst);
10489     __ srlx(Rdst, 2,    Rtmp);
10490     __ or3( Rdst, Rtmp, Rdst);
10491     __ srlx(Rdst, 4,    Rtmp);
10492     __ or3( Rdst, Rtmp, Rdst);
10493     __ srlx(Rdst, 8,    Rtmp);
10494     __ or3( Rdst, Rtmp, Rdst);
10495     __ srlx(Rdst, 16,   Rtmp);
10496     __ or3( Rdst, Rtmp, Rdst);
10497     __ srlx(Rdst, 32,   Rtmp);
10498     __ or3( Rdst, Rtmp, Rdst);
10499     __ popc(Rdst, Rdst);
10500     __ mov(BitsPerLong, Rtmp);
10501     __ sub(Rtmp, Rdst, Rdst);
10502   %}
10503   ins_pipe(ialu_reg);
10504 %}
10505 
10506 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
10507   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10508   match(Set dst (CountTrailingZerosI src));
10509   effect(TEMP dst, KILL cr);
10510 
10511   // return popc(~x & (x - 1));
10512   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10513             "ANDN    $dst,$src,$dst\n\t"
10514             "SRL     $dst,R_G0,$dst\n\t"
10515             "POPC    $dst,$dst" %}
10516   ins_encode %{
10517     Register Rdst = $dst$$Register;
10518     Register Rsrc = $src$$Register;
10519     __ sub(Rsrc, 1, Rdst);
10520     __ andn(Rdst, Rsrc, Rdst);
10521     __ srl(Rdst, G0, Rdst);
10522     __ popc(Rdst, Rdst);
10523   %}
10524   ins_pipe(ialu_reg);
10525 %}
10526 
10527 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10528   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10529   match(Set dst (CountTrailingZerosL src));
10530   effect(TEMP dst, KILL cr);
10531 
10532   // return popc(~x & (x - 1));
10533   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10534             "ANDN    $dst,$src,$dst\n\t"
10535             "POPC    $dst,$dst" %}
10536   ins_encode %{
10537     Register Rdst = $dst$$Register;
10538     Register Rsrc = $src$$Register;
10539     __ sub(Rsrc, 1, Rdst);
10540     __ andn(Rdst, Rsrc, Rdst);
10541     __ popc(Rdst, Rdst);
10542   %}
10543   ins_pipe(ialu_reg);
10544 %}
10545 
10546 
10547 //---------- Population Count Instructions -------------------------------------
10548 
10549 instruct popCountI(iRegI dst, iRegI src) %{
10550   predicate(UsePopCountInstruction);
10551   match(Set dst (PopCountI src));
10552 
10553   format %{ "POPC   $src, $dst" %}
10554   ins_encode %{
10555     __ popc($src$$Register, $dst$$Register);
10556   %}
10557   ins_pipe(ialu_reg);
10558 %}
10559 
10560 // Note: Long.bitCount(long) returns an int.
10561 instruct popCountL(iRegI dst, iRegL src) %{
10562   predicate(UsePopCountInstruction);
10563   match(Set dst (PopCountL src));
10564 
10565   format %{ "POPC   $src, $dst" %}
10566   ins_encode %{
10567     __ popc($src$$Register, $dst$$Register);
10568   %}
10569   ins_pipe(ialu_reg);
10570 %}
10571 
10572 
10573 // ============================================================================
10574 //------------Bytes reverse--------------------------------------------------
10575 
10576 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10577   match(Set dst (ReverseBytesI src));
10578 
10579   // Op cost is artificially doubled to make sure that load or store
10580   // instructions are preferred over this one which requires a spill
10581   // onto a stack slot.
10582   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10583   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10584 
10585   ins_encode %{
10586     __ set($src$$disp + STACK_BIAS, O7);
10587     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10588   %}
10589   ins_pipe( iload_mem );
10590 %}
10591 
10592 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10593   match(Set dst (ReverseBytesL src));
10594 
10595   // Op cost is artificially doubled to make sure that load or store
10596   // instructions are preferred over this one which requires a spill
10597   // onto a stack slot.
10598   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10599   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10600 
10601   ins_encode %{
10602     __ set($src$$disp + STACK_BIAS, O7);
10603     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10604   %}
10605   ins_pipe( iload_mem );
10606 %}
10607 
10608 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10609   match(Set dst (ReverseBytesUS src));
10610 
10611   // Op cost is artificially doubled to make sure that load or store
10612   // instructions are preferred over this one which requires a spill
10613   // onto a stack slot.
10614   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10615   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10616 
10617   ins_encode %{
10618     // the value was spilled as an int so bias the load
10619     __ set($src$$disp + STACK_BIAS + 2, O7);
10620     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10621   %}
10622   ins_pipe( iload_mem );
10623 %}
10624 
10625 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10626   match(Set dst (ReverseBytesS src));
10627 
10628   // Op cost is artificially doubled to make sure that load or store
10629   // instructions are preferred over this one which requires a spill
10630   // onto a stack slot.
10631   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10632   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10633 
10634   ins_encode %{
10635     // the value was spilled as an int so bias the load
10636     __ set($src$$disp + STACK_BIAS + 2, O7);
10637     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10638   %}
10639   ins_pipe( iload_mem );
10640 %}
10641 
10642 // Load Integer reversed byte order
10643 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10644   match(Set dst (ReverseBytesI (LoadI src)));
10645 
10646   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10647   size(4);
10648   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10649 
10650   ins_encode %{
10651     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10652   %}
10653   ins_pipe(iload_mem);
10654 %}
10655 
10656 // Load Long - aligned and reversed
10657 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10658   match(Set dst (ReverseBytesL (LoadL src)));
10659 
10660   ins_cost(MEMORY_REF_COST);
10661   size(4);
10662   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10663 
10664   ins_encode %{
10665     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10666   %}
10667   ins_pipe(iload_mem);
10668 %}
10669 
10670 // Load unsigned short / char reversed byte order
10671 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10672   match(Set dst (ReverseBytesUS (LoadUS src)));
10673 
10674   ins_cost(MEMORY_REF_COST);
10675   size(4);
10676   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10677 
10678   ins_encode %{
10679     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10680   %}
10681   ins_pipe(iload_mem);
10682 %}
10683 
10684 // Load short reversed byte order
10685 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10686   match(Set dst (ReverseBytesS (LoadS src)));
10687 
10688   ins_cost(MEMORY_REF_COST);
10689   size(4);
10690   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10691 
10692   ins_encode %{
10693     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10694   %}
10695   ins_pipe(iload_mem);
10696 %}
10697 
10698 // Store Integer reversed byte order
10699 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10700   match(Set dst (StoreI dst (ReverseBytesI src)));
10701 
10702   ins_cost(MEMORY_REF_COST);
10703   size(4);
10704   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10705 
10706   ins_encode %{
10707     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10708   %}
10709   ins_pipe(istore_mem_reg);
10710 %}
10711 
10712 // Store Long reversed byte order
10713 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10714   match(Set dst (StoreL dst (ReverseBytesL src)));
10715 
10716   ins_cost(MEMORY_REF_COST);
10717   size(4);
10718   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10719 
10720   ins_encode %{
10721     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10722   %}
10723   ins_pipe(istore_mem_reg);
10724 %}
10725 
10726 // Store unsighed short/char reversed byte order
10727 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10728   match(Set dst (StoreC dst (ReverseBytesUS src)));
10729 
10730   ins_cost(MEMORY_REF_COST);
10731   size(4);
10732   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10733 
10734   ins_encode %{
10735     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10736   %}
10737   ins_pipe(istore_mem_reg);
10738 %}
10739 
10740 // Store short reversed byte order
10741 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10742   match(Set dst (StoreC dst (ReverseBytesS src)));
10743 
10744   ins_cost(MEMORY_REF_COST);
10745   size(4);
10746   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10747 
10748   ins_encode %{
10749     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10750   %}
10751   ins_pipe(istore_mem_reg);
10752 %}
10753 
10754 //----------PEEPHOLE RULES-----------------------------------------------------
10755 // These must follow all instruction definitions as they use the names
10756 // defined in the instructions definitions.
10757 //
10758 // peepmatch ( root_instr_name [preceding_instruction]* );
10759 //
10760 // peepconstraint %{
10761 // (instruction_number.operand_name relational_op instruction_number.operand_name
10762 //  [, ...] );
10763 // // instruction numbers are zero-based using left to right order in peepmatch
10764 //
10765 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10766 // // provide an instruction_number.operand_name for each operand that appears
10767 // // in the replacement instruction's match rule
10768 //
10769 // ---------VM FLAGS---------------------------------------------------------
10770 //
10771 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10772 //
10773 // Each peephole rule is given an identifying number starting with zero and
10774 // increasing by one in the order seen by the parser.  An individual peephole
10775 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10776 // on the command-line.
10777 //
10778 // ---------CURRENT LIMITATIONS----------------------------------------------
10779 //
10780 // Only match adjacent instructions in same basic block
10781 // Only equality constraints
10782 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10783 // Only one replacement instruction
10784 //
10785 // ---------EXAMPLE----------------------------------------------------------
10786 //
10787 // // pertinent parts of existing instructions in architecture description
10788 // instruct movI(eRegI dst, eRegI src) %{
10789 //   match(Set dst (CopyI src));
10790 // %}
10791 //
10792 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10793 //   match(Set dst (AddI dst src));
10794 //   effect(KILL cr);
10795 // %}
10796 //
10797 // // Change (inc mov) to lea
10798 // peephole %{
10799 //   // increment preceeded by register-register move
10800 //   peepmatch ( incI_eReg movI );
10801 //   // require that the destination register of the increment
10802 //   // match the destination register of the move
10803 //   peepconstraint ( 0.dst == 1.dst );
10804 //   // construct a replacement instruction that sets
10805 //   // the destination to ( move's source register + one )
10806 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10807 // %}
10808 //
10809 
10810 // // Change load of spilled value to only a spill
10811 // instruct storeI(memory mem, eRegI src) %{
10812 //   match(Set mem (StoreI mem src));
10813 // %}
10814 //
10815 // instruct loadI(eRegI dst, memory mem) %{
10816 //   match(Set dst (LoadI mem));
10817 // %}
10818 //
10819 // peephole %{
10820 //   peepmatch ( loadI storeI );
10821 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10822 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10823 // %}
10824 
10825 //----------SMARTSPILL RULES---------------------------------------------------
10826 // These must follow all instruction definitions as they use the names
10827 // defined in the instructions definitions.
10828 //
10829 // SPARC will probably not have any of these rules due to RISC instruction set.
10830 
10831 //----------PIPELINE-----------------------------------------------------------
10832 // Rules which define the behavior of the target architectures pipeline.