1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 protected:
  43 #ifdef ASSERT
  44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  45 #endif
  46   virtual uint size_of() const; // Size is bigger (ASSERT only)
  47 public:
  48   enum { Control,               // When is it safe to do this load?
  49          Memory,                // Chunk of memory is being loaded from
  50          Address,               // Actually address, derived from base
  51          ValueIn,               // Value to store
  52          OopStore               // Preceeding oop store, only in StoreCM
  53   };
  54 protected:
  55   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  56     : Node(c0,c1,c2   ) {
  57     init_class_id(Class_Mem);
  58     debug_only(_adr_type=at; adr_type();)
  59   }
  60   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  61     : Node(c0,c1,c2,c3) {
  62     init_class_id(Class_Mem);
  63     debug_only(_adr_type=at; adr_type();)
  64   }
  65   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  66     : Node(c0,c1,c2,c3,c4) {
  67     init_class_id(Class_Mem);
  68     debug_only(_adr_type=at; adr_type();)
  69   }
  70 
  71 public:
  72   // Helpers for the optimizer.  Documented in memnode.cpp.
  73   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  74                                       Node* p2, AllocateNode* a2,
  75                                       PhaseTransform* phase);
  76   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  77 
  78   static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
  79   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
  80   // This one should probably be a phase-specific function:
  81   static bool all_controls_dominate(Node* dom, Node* sub);
  82 
  83   // Find any cast-away of null-ness and keep its control.
  84   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
  85   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
  86 
  87   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  88 
  89   // Shared code for Ideal methods:
  90   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  91 
  92   // Helper function for adr_type() implementations.
  93   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  94 
  95   // Raw access function, to allow copying of adr_type efficiently in
  96   // product builds and retain the debug info for debug builds.
  97   const TypePtr *raw_adr_type() const {
  98 #ifdef ASSERT
  99     return _adr_type;
 100 #else
 101     return 0;
 102 #endif
 103   }
 104 
 105   // Map a load or store opcode to its corresponding store opcode.
 106   // (Return -1 if unknown.)
 107   virtual int store_Opcode() const { return -1; }
 108 
 109   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 110   virtual BasicType memory_type() const = 0;
 111   virtual int memory_size() const {
 112 #ifdef ASSERT
 113     return type2aelembytes(memory_type(), true);
 114 #else
 115     return type2aelembytes(memory_type());
 116 #endif
 117   }
 118 
 119   // Search through memory states which precede this node (load or store).
 120   // Look for an exact match for the address, with no intervening
 121   // aliased stores.
 122   Node* find_previous_store(PhaseTransform* phase);
 123 
 124   // Can this node (load or store) accurately see a stored value in
 125   // the given memory state?  (The state may or may not be in(Memory).)
 126   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 127 
 128 #ifndef PRODUCT
 129   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 130   virtual void dump_spec(outputStream *st) const;
 131 #endif
 132 };
 133 
 134 //------------------------------LoadNode---------------------------------------
 135 // Load value; requires Memory and Address
 136 class LoadNode : public MemNode {
 137 protected:
 138   virtual uint cmp( const Node &n ) const;
 139   virtual uint size_of() const; // Size is bigger
 140   const Type* const _type;      // What kind of value is loaded?
 141 public:
 142 
 143   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
 144     : MemNode(c,mem,adr,at), _type(rt) {
 145     init_class_id(Class_Load);
 146   }
 147 
 148   // Polymorphic factory method:
 149   static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 150                      const TypePtr* at, const Type *rt, BasicType bt );
 151 
 152   virtual uint hash()   const;  // Check the type
 153 
 154   // Handle algebraic identities here.  If we have an identity, return the Node
 155   // we are equivalent to.  We look for Load of a Store.
 156   virtual Node *Identity( PhaseTransform *phase );
 157 
 158   // If the load is from Field memory and the pointer is non-null, we can
 159   // zero out the control input.
 160   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 161 
 162   // Split instance field load through Phi.
 163   Node* split_through_phi(PhaseGVN *phase);
 164 
 165   // Recover original value from boxed values
 166   Node *eliminate_autobox(PhaseGVN *phase);
 167 
 168   // Compute a new Type for this node.  Basically we just do the pre-check,
 169   // then call the virtual add() to set the type.
 170   virtual const Type *Value( PhaseTransform *phase ) const;
 171 
 172   // Common methods for LoadKlass and LoadNKlass nodes.
 173   const Type *klass_value_common( PhaseTransform *phase ) const;
 174   Node *klass_identity_common( PhaseTransform *phase );
 175 
 176   virtual uint ideal_reg() const;
 177   virtual const Type *bottom_type() const;
 178   // Following method is copied from TypeNode:
 179   void set_type(const Type* t) {
 180     assert(t != NULL, "sanity");
 181     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 182     *(const Type**)&_type = t;   // cast away const-ness
 183     // If this node is in the hash table, make sure it doesn't need a rehash.
 184     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 185   }
 186   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 187 
 188   // Do not match memory edge
 189   virtual uint match_edge(uint idx) const;
 190 
 191   // Map a load opcode to its corresponding store opcode.
 192   virtual int store_Opcode() const = 0;
 193 
 194   // Check if the load's memory input is a Phi node with the same control.
 195   bool is_instance_field_load_with_local_phi(Node* ctrl);
 196 
 197 #ifndef PRODUCT
 198   virtual void dump_spec(outputStream *st) const;
 199 #endif
 200 #ifdef ASSERT
 201   // Helper function to allow a raw load without control edge for some cases
 202   static bool is_immutable_value(Node* adr);
 203 #endif
 204 protected:
 205   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 206                                      ciKlass* klass) const;
 207 };
 208 
 209 //------------------------------LoadBNode--------------------------------------
 210 // Load a byte (8bits signed) from memory
 211 class LoadBNode : public LoadNode {
 212 public:
 213   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
 214     : LoadNode(c,mem,adr,at,ti) {}
 215   virtual int Opcode() const;
 216   virtual uint ideal_reg() const { return Op_RegI; }
 217   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 218   virtual int store_Opcode() const { return Op_StoreB; }
 219   virtual BasicType memory_type() const { return T_BYTE; }
 220 };
 221 
 222 //------------------------------LoadUBNode-------------------------------------
 223 // Load a unsigned byte (8bits unsigned) from memory
 224 class LoadUBNode : public LoadNode {
 225 public:
 226   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
 227     : LoadNode(c, mem, adr, at, ti) {}
 228   virtual int Opcode() const;
 229   virtual uint ideal_reg() const { return Op_RegI; }
 230   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 231   virtual int store_Opcode() const { return Op_StoreB; }
 232   virtual BasicType memory_type() const { return T_BYTE; }
 233 };
 234 
 235 //------------------------------LoadUSNode-------------------------------------
 236 // Load an unsigned short/char (16bits unsigned) from memory
 237 class LoadUSNode : public LoadNode {
 238 public:
 239   LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
 240     : LoadNode(c,mem,adr,at,ti) {}
 241   virtual int Opcode() const;
 242   virtual uint ideal_reg() const { return Op_RegI; }
 243   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 244   virtual int store_Opcode() const { return Op_StoreC; }
 245   virtual BasicType memory_type() const { return T_CHAR; }
 246 };
 247 
 248 //------------------------------LoadINode--------------------------------------
 249 // Load an integer from memory
 250 class LoadINode : public LoadNode {
 251 public:
 252   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
 253     : LoadNode(c,mem,adr,at,ti) {}
 254   virtual int Opcode() const;
 255   virtual uint ideal_reg() const { return Op_RegI; }
 256   virtual int store_Opcode() const { return Op_StoreI; }
 257   virtual BasicType memory_type() const { return T_INT; }
 258 };
 259 
 260 //------------------------------LoadUI2LNode-----------------------------------
 261 // Load an unsigned integer into long from memory
 262 class LoadUI2LNode : public LoadNode {
 263 public:
 264   LoadUI2LNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeLong* t = TypeLong::UINT)
 265     : LoadNode(c, mem, adr, at, t) {}
 266   virtual int Opcode() const;
 267   virtual uint ideal_reg() const { return Op_RegL; }
 268   virtual int store_Opcode() const { return Op_StoreL; }
 269   virtual BasicType memory_type() const { return T_LONG; }
 270 };
 271 
 272 //------------------------------LoadRangeNode----------------------------------
 273 // Load an array length from the array
 274 class LoadRangeNode : public LoadINode {
 275 public:
 276   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
 277     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
 278   virtual int Opcode() const;
 279   virtual const Type *Value( PhaseTransform *phase ) const;
 280   virtual Node *Identity( PhaseTransform *phase );
 281   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 282 };
 283 
 284 //------------------------------LoadLNode--------------------------------------
 285 // Load a long from memory
 286 class LoadLNode : public LoadNode {
 287   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 288   virtual uint cmp( const Node &n ) const {
 289     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 290       && LoadNode::cmp(n);
 291   }
 292   virtual uint size_of() const { return sizeof(*this); }
 293   const bool _require_atomic_access;  // is piecewise load forbidden?
 294 
 295 public:
 296   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
 297              const TypeLong *tl = TypeLong::LONG,
 298              bool require_atomic_access = false )
 299     : LoadNode(c,mem,adr,at,tl)
 300     , _require_atomic_access(require_atomic_access)
 301   {}
 302   virtual int Opcode() const;
 303   virtual uint ideal_reg() const { return Op_RegL; }
 304   virtual int store_Opcode() const { return Op_StoreL; }
 305   virtual BasicType memory_type() const { return T_LONG; }
 306   bool require_atomic_access() { return _require_atomic_access; }
 307   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
 308 #ifndef PRODUCT
 309   virtual void dump_spec(outputStream *st) const {
 310     LoadNode::dump_spec(st);
 311     if (_require_atomic_access)  st->print(" Atomic!");
 312   }
 313 #endif
 314 };
 315 
 316 //------------------------------LoadL_unalignedNode----------------------------
 317 // Load a long from unaligned memory
 318 class LoadL_unalignedNode : public LoadLNode {
 319 public:
 320   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
 321     : LoadLNode(c,mem,adr,at) {}
 322   virtual int Opcode() const;
 323 };
 324 
 325 //------------------------------LoadFNode--------------------------------------
 326 // Load a float (64 bits) from memory
 327 class LoadFNode : public LoadNode {
 328 public:
 329   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
 330     : LoadNode(c,mem,adr,at,t) {}
 331   virtual int Opcode() const;
 332   virtual uint ideal_reg() const { return Op_RegF; }
 333   virtual int store_Opcode() const { return Op_StoreF; }
 334   virtual BasicType memory_type() const { return T_FLOAT; }
 335 };
 336 
 337 //------------------------------LoadDNode--------------------------------------
 338 // Load a double (64 bits) from memory
 339 class LoadDNode : public LoadNode {
 340 public:
 341   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
 342     : LoadNode(c,mem,adr,at,t) {}
 343   virtual int Opcode() const;
 344   virtual uint ideal_reg() const { return Op_RegD; }
 345   virtual int store_Opcode() const { return Op_StoreD; }
 346   virtual BasicType memory_type() const { return T_DOUBLE; }
 347 };
 348 
 349 //------------------------------LoadD_unalignedNode----------------------------
 350 // Load a double from unaligned memory
 351 class LoadD_unalignedNode : public LoadDNode {
 352 public:
 353   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
 354     : LoadDNode(c,mem,adr,at) {}
 355   virtual int Opcode() const;
 356 };
 357 
 358 //------------------------------LoadPNode--------------------------------------
 359 // Load a pointer from memory (either object or array)
 360 class LoadPNode : public LoadNode {
 361 public:
 362   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
 363     : LoadNode(c,mem,adr,at,t) {}
 364   virtual int Opcode() const;
 365   virtual uint ideal_reg() const { return Op_RegP; }
 366   virtual int store_Opcode() const { return Op_StoreP; }
 367   virtual BasicType memory_type() const { return T_ADDRESS; }
 368   // depends_only_on_test is almost always true, and needs to be almost always
 369   // true to enable key hoisting & commoning optimizations.  However, for the
 370   // special case of RawPtr loads from TLS top & end, the control edge carries
 371   // the dependence preventing hoisting past a Safepoint instead of the memory
 372   // edge.  (An unfortunate consequence of having Safepoints not set Raw
 373   // Memory; itself an unfortunate consequence of having Nodes which produce
 374   // results (new raw memory state) inside of loops preventing all manner of
 375   // other optimizations).  Basically, it's ugly but so is the alternative.
 376   // See comment in macro.cpp, around line 125 expand_allocate_common().
 377   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
 378 };
 379 
 380 
 381 //------------------------------LoadNNode--------------------------------------
 382 // Load a narrow oop from memory (either object or array)
 383 class LoadNNode : public LoadNode {
 384 public:
 385   LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
 386     : LoadNode(c,mem,adr,at,t) {}
 387   virtual int Opcode() const;
 388   virtual uint ideal_reg() const { return Op_RegN; }
 389   virtual int store_Opcode() const { return Op_StoreN; }
 390   virtual BasicType memory_type() const { return T_NARROWOOP; }
 391   // depends_only_on_test is almost always true, and needs to be almost always
 392   // true to enable key hoisting & commoning optimizations.  However, for the
 393   // special case of RawPtr loads from TLS top & end, the control edge carries
 394   // the dependence preventing hoisting past a Safepoint instead of the memory
 395   // edge.  (An unfortunate consequence of having Safepoints not set Raw
 396   // Memory; itself an unfortunate consequence of having Nodes which produce
 397   // results (new raw memory state) inside of loops preventing all manner of
 398   // other optimizations).  Basically, it's ugly but so is the alternative.
 399   // See comment in macro.cpp, around line 125 expand_allocate_common().
 400   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
 401 };
 402 
 403 //------------------------------LoadKlassNode----------------------------------
 404 // Load a Klass from an object
 405 class LoadKlassNode : public LoadPNode {
 406 public:
 407   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
 408     : LoadPNode(c,mem,adr,at,tk) {}
 409   virtual int Opcode() const;
 410   virtual const Type *Value( PhaseTransform *phase ) const;
 411   virtual Node *Identity( PhaseTransform *phase );
 412   virtual bool depends_only_on_test() const { return true; }
 413 
 414   // Polymorphic factory method:
 415   static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
 416                      const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
 417 };
 418 
 419 //------------------------------LoadNKlassNode---------------------------------
 420 // Load a narrow Klass from an object.
 421 class LoadNKlassNode : public LoadNNode {
 422 public:
 423   LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
 424     : LoadNNode(c,mem,adr,at,tk) {}
 425   virtual int Opcode() const;
 426   virtual uint ideal_reg() const { return Op_RegN; }
 427   virtual int store_Opcode() const { return Op_StoreN; }
 428   virtual BasicType memory_type() const { return T_NARROWOOP; }
 429 
 430   virtual const Type *Value( PhaseTransform *phase ) const;
 431   virtual Node *Identity( PhaseTransform *phase );
 432   virtual bool depends_only_on_test() const { return true; }
 433 };
 434 
 435 
 436 //------------------------------LoadSNode--------------------------------------
 437 // Load a short (16bits signed) from memory
 438 class LoadSNode : public LoadNode {
 439 public:
 440   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
 441     : LoadNode(c,mem,adr,at,ti) {}
 442   virtual int Opcode() const;
 443   virtual uint ideal_reg() const { return Op_RegI; }
 444   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 445   virtual int store_Opcode() const { return Op_StoreC; }
 446   virtual BasicType memory_type() const { return T_SHORT; }
 447 };
 448 
 449 //------------------------------StoreNode--------------------------------------
 450 // Store value; requires Store, Address and Value
 451 class StoreNode : public MemNode {
 452 protected:
 453   virtual uint cmp( const Node &n ) const;
 454   virtual bool depends_only_on_test() const { return false; }
 455 
 456   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 457   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 458 
 459 public:
 460   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
 461     : MemNode(c,mem,adr,at,val) {
 462     init_class_id(Class_Store);
 463   }
 464   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
 465     : MemNode(c,mem,adr,at,val,oop_store) {
 466     init_class_id(Class_Store);
 467   }
 468 
 469   // Polymorphic factory method:
 470   static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 471                           const TypePtr* at, Node *val, BasicType bt );
 472 
 473   virtual uint hash() const;    // Check the type
 474 
 475   // If the store is to Field memory and the pointer is non-null, we can
 476   // zero out the control input.
 477   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 478 
 479   // Compute a new Type for this node.  Basically we just do the pre-check,
 480   // then call the virtual add() to set the type.
 481   virtual const Type *Value( PhaseTransform *phase ) const;
 482 
 483   // Check for identity function on memory (Load then Store at same address)
 484   virtual Node *Identity( PhaseTransform *phase );
 485 
 486   // Do not match memory edge
 487   virtual uint match_edge(uint idx) const;
 488 
 489   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 490 
 491   // Map a store opcode to its corresponding own opcode, trivially.
 492   virtual int store_Opcode() const { return Opcode(); }
 493 
 494   // have all possible loads of the value stored been optimized away?
 495   bool value_never_loaded(PhaseTransform *phase) const;
 496 };
 497 
 498 //------------------------------StoreBNode-------------------------------------
 499 // Store byte to memory
 500 class StoreBNode : public StoreNode {
 501 public:
 502   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 503   virtual int Opcode() const;
 504   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 505   virtual BasicType memory_type() const { return T_BYTE; }
 506 };
 507 
 508 //------------------------------StoreCNode-------------------------------------
 509 // Store char/short to memory
 510 class StoreCNode : public StoreNode {
 511 public:
 512   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 513   virtual int Opcode() const;
 514   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 515   virtual BasicType memory_type() const { return T_CHAR; }
 516 };
 517 
 518 //------------------------------StoreINode-------------------------------------
 519 // Store int to memory
 520 class StoreINode : public StoreNode {
 521 public:
 522   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 523   virtual int Opcode() const;
 524   virtual BasicType memory_type() const { return T_INT; }
 525 };
 526 
 527 //------------------------------StoreLNode-------------------------------------
 528 // Store long to memory
 529 class StoreLNode : public StoreNode {
 530   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 531   virtual uint cmp( const Node &n ) const {
 532     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 533       && StoreNode::cmp(n);
 534   }
 535   virtual uint size_of() const { return sizeof(*this); }
 536   const bool _require_atomic_access;  // is piecewise store forbidden?
 537 
 538 public:
 539   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 540               bool require_atomic_access = false )
 541     : StoreNode(c,mem,adr,at,val)
 542     , _require_atomic_access(require_atomic_access)
 543   {}
 544   virtual int Opcode() const;
 545   virtual BasicType memory_type() const { return T_LONG; }
 546   bool require_atomic_access() { return _require_atomic_access; }
 547   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
 548 #ifndef PRODUCT
 549   virtual void dump_spec(outputStream *st) const {
 550     StoreNode::dump_spec(st);
 551     if (_require_atomic_access)  st->print(" Atomic!");
 552   }
 553 #endif
 554 };
 555 
 556 //------------------------------StoreFNode-------------------------------------
 557 // Store float to memory
 558 class StoreFNode : public StoreNode {
 559 public:
 560   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 561   virtual int Opcode() const;
 562   virtual BasicType memory_type() const { return T_FLOAT; }
 563 };
 564 
 565 //------------------------------StoreDNode-------------------------------------
 566 // Store double to memory
 567 class StoreDNode : public StoreNode {
 568 public:
 569   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 570   virtual int Opcode() const;
 571   virtual BasicType memory_type() const { return T_DOUBLE; }
 572 };
 573 
 574 //------------------------------StorePNode-------------------------------------
 575 // Store pointer to memory
 576 class StorePNode : public StoreNode {
 577 public:
 578   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 579   virtual int Opcode() const;
 580   virtual BasicType memory_type() const { return T_ADDRESS; }
 581 };
 582 
 583 //------------------------------StoreNNode-------------------------------------
 584 // Store narrow oop to memory
 585 class StoreNNode : public StoreNode {
 586 public:
 587   StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 588   virtual int Opcode() const;
 589   virtual BasicType memory_type() const { return T_NARROWOOP; }
 590 };
 591 
 592 //------------------------------StoreCMNode-----------------------------------
 593 // Store card-mark byte to memory for CM
 594 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 595 // Preceeding equivalent StoreCMs may be eliminated.
 596 class StoreCMNode : public StoreNode {
 597  private:
 598   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 599   virtual uint cmp( const Node &n ) const {
 600     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 601       && StoreNode::cmp(n);
 602   }
 603   virtual uint size_of() const { return sizeof(*this); }
 604   int _oop_alias_idx;   // The alias_idx of OopStore
 605 
 606 public:
 607   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 608     StoreNode(c,mem,adr,at,val,oop_store),
 609     _oop_alias_idx(oop_alias_idx) {
 610     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 611            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 612            "bad oop alias idx");
 613   }
 614   virtual int Opcode() const;
 615   virtual Node *Identity( PhaseTransform *phase );
 616   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 617   virtual const Type *Value( PhaseTransform *phase ) const;
 618   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 619   int oop_alias_idx() const { return _oop_alias_idx; }
 620 };
 621 
 622 //------------------------------LoadPLockedNode---------------------------------
 623 // Load-locked a pointer from memory (either object or array).
 624 // On Sparc & Intel this is implemented as a normal pointer load.
 625 // On PowerPC and friends it's a real load-locked.
 626 class LoadPLockedNode : public LoadPNode {
 627 public:
 628   LoadPLockedNode( Node *c, Node *mem, Node *adr )
 629     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
 630   virtual int Opcode() const;
 631   virtual int store_Opcode() const { return Op_StorePConditional; }
 632   virtual bool depends_only_on_test() const { return true; }
 633 };
 634 
 635 //------------------------------LoadLLockedNode---------------------------------
 636 // Load-locked a pointer from memory (either object or array).
 637 // On Sparc & Intel this is implemented as a normal long load.
 638 class LoadLLockedNode : public LoadLNode {
 639 public:
 640   LoadLLockedNode( Node *c, Node *mem, Node *adr )
 641     : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
 642   virtual int Opcode() const;
 643   virtual int store_Opcode() const { return Op_StoreLConditional; }
 644 };
 645 
 646 //------------------------------SCMemProjNode---------------------------------------
 647 // This class defines a projection of the memory  state of a store conditional node.
 648 // These nodes return a value, but also update memory.
 649 class SCMemProjNode : public ProjNode {
 650 public:
 651   enum {SCMEMPROJCON = (uint)-2};
 652   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 653   virtual int Opcode() const;
 654   virtual bool      is_CFG() const  { return false; }
 655   virtual const Type *bottom_type() const {return Type::MEMORY;}
 656   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
 657   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 658   virtual const Type *Value( PhaseTransform *phase ) const;
 659 #ifndef PRODUCT
 660   virtual void dump_spec(outputStream *st) const {};
 661 #endif
 662 };
 663 
 664 //------------------------------LoadStoreNode---------------------------
 665 // Note: is_Mem() method returns 'true' for this class.
 666 class LoadStoreNode : public Node {
 667 public:
 668   enum {
 669     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 670   };
 671   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 672   virtual bool depends_only_on_test() const { return false; }
 673   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
 674   virtual uint ideal_reg() const { return Op_RegI; }
 675   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 676 };
 677 
 678 //------------------------------StorePConditionalNode---------------------------
 679 // Conditionally store pointer to memory, if no change since prior
 680 // load-locked.  Sets flags for success or failure of the store.
 681 class StorePConditionalNode : public LoadStoreNode {
 682 public:
 683   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
 684   virtual int Opcode() const;
 685   // Produces flags
 686   virtual uint ideal_reg() const { return Op_RegFlags; }
 687 };
 688 
 689 //------------------------------StoreIConditionalNode---------------------------
 690 // Conditionally store int to memory, if no change since prior
 691 // load-locked.  Sets flags for success or failure of the store.
 692 class StoreIConditionalNode : public LoadStoreNode {
 693 public:
 694   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreNode(c, mem, adr, val, ii) { }
 695   virtual int Opcode() const;
 696   // Produces flags
 697   virtual uint ideal_reg() const { return Op_RegFlags; }
 698 };
 699 
 700 //------------------------------StoreLConditionalNode---------------------------
 701 // Conditionally store long to memory, if no change since prior
 702 // load-locked.  Sets flags for success or failure of the store.
 703 class StoreLConditionalNode : public LoadStoreNode {
 704 public:
 705   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
 706   virtual int Opcode() const;
 707   // Produces flags
 708   virtual uint ideal_reg() const { return Op_RegFlags; }
 709 };
 710 
 711 
 712 //------------------------------CompareAndSwapLNode---------------------------
 713 class CompareAndSwapLNode : public LoadStoreNode {
 714 public:
 715   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
 716   virtual int Opcode() const;
 717 };
 718 
 719 
 720 //------------------------------CompareAndSwapINode---------------------------
 721 class CompareAndSwapINode : public LoadStoreNode {
 722 public:
 723   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
 724   virtual int Opcode() const;
 725 };
 726 
 727 
 728 //------------------------------CompareAndSwapPNode---------------------------
 729 class CompareAndSwapPNode : public LoadStoreNode {
 730 public:
 731   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
 732   virtual int Opcode() const;
 733 };
 734 
 735 //------------------------------CompareAndSwapNNode---------------------------
 736 class CompareAndSwapNNode : public LoadStoreNode {
 737 public:
 738   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
 739   virtual int Opcode() const;
 740 };
 741 
 742 //------------------------------ClearArray-------------------------------------
 743 class ClearArrayNode: public Node {
 744 public:
 745   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 746     : Node(ctrl,arymem,word_cnt,base) {
 747     init_class_id(Class_ClearArray);
 748   }
 749   virtual int         Opcode() const;
 750   virtual const Type *bottom_type() const { return Type::MEMORY; }
 751   // ClearArray modifies array elements, and so affects only the
 752   // array memory addressed by the bottom_type of its base address.
 753   virtual const class TypePtr *adr_type() const;
 754   virtual Node *Identity( PhaseTransform *phase );
 755   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 756   virtual uint match_edge(uint idx) const;
 757 
 758   // Clear the given area of an object or array.
 759   // The start offset must always be aligned mod BytesPerInt.
 760   // The end offset must always be aligned mod BytesPerLong.
 761   // Return the new memory.
 762   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 763                             intptr_t start_offset,
 764                             intptr_t end_offset,
 765                             PhaseGVN* phase);
 766   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 767                             intptr_t start_offset,
 768                             Node* end_offset,
 769                             PhaseGVN* phase);
 770   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 771                             Node* start_offset,
 772                             Node* end_offset,
 773                             PhaseGVN* phase);
 774   // Return allocation input memory edge if it is different instance
 775   // or itself if it is the one we are looking for.
 776   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 777 };
 778 
 779 //------------------------------StrIntrinsic-------------------------------
 780 // Base class for Ideal nodes used in String instrinsic code.
 781 class StrIntrinsicNode: public Node {
 782 public:
 783   StrIntrinsicNode(Node* control, Node* char_array_mem,
 784                    Node* s1, Node* c1, Node* s2, Node* c2):
 785     Node(control, char_array_mem, s1, c1, s2, c2) {
 786   }
 787 
 788   StrIntrinsicNode(Node* control, Node* char_array_mem,
 789                    Node* s1, Node* s2, Node* c):
 790     Node(control, char_array_mem, s1, s2, c) {
 791   }
 792 
 793   StrIntrinsicNode(Node* control, Node* char_array_mem,
 794                    Node* s1, Node* s2):
 795     Node(control, char_array_mem, s1, s2) {
 796   }
 797 
 798   virtual bool depends_only_on_test() const { return false; }
 799   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
 800   virtual uint match_edge(uint idx) const;
 801   virtual uint ideal_reg() const { return Op_RegI; }
 802   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 803   virtual const Type *Value(PhaseTransform *phase) const;
 804 };
 805 
 806 //------------------------------StrComp-------------------------------------
 807 class StrCompNode: public StrIntrinsicNode {
 808 public:
 809   StrCompNode(Node* control, Node* char_array_mem,
 810               Node* s1, Node* c1, Node* s2, Node* c2):
 811     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 812   virtual int Opcode() const;
 813   virtual const Type* bottom_type() const { return TypeInt::INT; }
 814 };
 815 
 816 //------------------------------StrEquals-------------------------------------
 817 class StrEqualsNode: public StrIntrinsicNode {
 818 public:
 819   StrEqualsNode(Node* control, Node* char_array_mem,
 820                 Node* s1, Node* s2, Node* c):
 821     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
 822   virtual int Opcode() const;
 823   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 824 };
 825 
 826 //------------------------------StrIndexOf-------------------------------------
 827 class StrIndexOfNode: public StrIntrinsicNode {
 828 public:
 829   StrIndexOfNode(Node* control, Node* char_array_mem,
 830               Node* s1, Node* c1, Node* s2, Node* c2):
 831     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 832   virtual int Opcode() const;
 833   virtual const Type* bottom_type() const { return TypeInt::INT; }
 834 };
 835 
 836 //------------------------------AryEq---------------------------------------
 837 class AryEqNode: public StrIntrinsicNode {
 838 public:
 839   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
 840     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
 841   virtual int Opcode() const;
 842   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 843 };
 844 
 845 //------------------------------MemBar-----------------------------------------
 846 // There are different flavors of Memory Barriers to match the Java Memory
 847 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
 848 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
 849 // volatile-load.  Monitor-exit and volatile-store act as Release: no
 850 // preceding ref can be moved to after them.  We insert a MemBar-Release
 851 // before a FastUnlock or volatile-store.  All volatiles need to be
 852 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
 853 // separate it from any following volatile-load.
 854 class MemBarNode: public MultiNode {
 855   virtual uint hash() const ;                  // { return NO_HASH; }
 856   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
 857 
 858   virtual uint size_of() const { return sizeof(*this); }
 859   // Memory type this node is serializing.  Usually either rawptr or bottom.
 860   const TypePtr* _adr_type;
 861 
 862 public:
 863   enum {
 864     Precedent = TypeFunc::Parms  // optional edge to force precedence
 865   };
 866   MemBarNode(Compile* C, int alias_idx, Node* precedent);
 867   virtual int Opcode() const = 0;
 868   virtual const class TypePtr *adr_type() const { return _adr_type; }
 869   virtual const Type *Value( PhaseTransform *phase ) const;
 870   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 871   virtual uint match_edge(uint idx) const { return 0; }
 872   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
 873   virtual Node *match( const ProjNode *proj, const Matcher *m );
 874   // Factory method.  Builds a wide or narrow membar.
 875   // Optional 'precedent' becomes an extra edge if not null.
 876   static MemBarNode* make(Compile* C, int opcode,
 877                           int alias_idx = Compile::AliasIdxBot,
 878                           Node* precedent = NULL);
 879 };
 880 
 881 // "Acquire" - no following ref can move before (but earlier refs can
 882 // follow, like an early Load stalled in cache).  Requires multi-cpu
 883 // visibility.  Inserted after a volatile load.
 884 class MemBarAcquireNode: public MemBarNode {
 885 public:
 886   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
 887     : MemBarNode(C, alias_idx, precedent) {}
 888   virtual int Opcode() const;
 889 };
 890 
 891 // "Release" - no earlier ref can move after (but later refs can move
 892 // up, like a speculative pipelined cache-hitting Load).  Requires
 893 // multi-cpu visibility.  Inserted before a volatile store.
 894 class MemBarReleaseNode: public MemBarNode {
 895 public:
 896   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
 897     : MemBarNode(C, alias_idx, precedent) {}
 898   virtual int Opcode() const;
 899 };
 900 
 901 // "Acquire" - no following ref can move before (but earlier refs can
 902 // follow, like an early Load stalled in cache).  Requires multi-cpu
 903 // visibility.  Inserted after a FastLock.
 904 class MemBarAcquireLockNode: public MemBarNode {
 905 public:
 906   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
 907     : MemBarNode(C, alias_idx, precedent) {}
 908   virtual int Opcode() const;
 909 };
 910 
 911 // "Release" - no earlier ref can move after (but later refs can move
 912 // up, like a speculative pipelined cache-hitting Load).  Requires
 913 // multi-cpu visibility.  Inserted before a FastUnLock.
 914 class MemBarReleaseLockNode: public MemBarNode {
 915 public:
 916   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
 917     : MemBarNode(C, alias_idx, precedent) {}
 918   virtual int Opcode() const;
 919 };
 920 
 921 // Ordering between a volatile store and a following volatile load.
 922 // Requires multi-CPU visibility?
 923 class MemBarVolatileNode: public MemBarNode {
 924 public:
 925   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
 926     : MemBarNode(C, alias_idx, precedent) {}
 927   virtual int Opcode() const;
 928 };
 929 
 930 // Ordering within the same CPU.  Used to order unsafe memory references
 931 // inside the compiler when we lack alias info.  Not needed "outside" the
 932 // compiler because the CPU does all the ordering for us.
 933 class MemBarCPUOrderNode: public MemBarNode {
 934 public:
 935   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
 936     : MemBarNode(C, alias_idx, precedent) {}
 937   virtual int Opcode() const;
 938   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
 939 };
 940 
 941 // Isolation of object setup after an AllocateNode and before next safepoint.
 942 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
 943 class InitializeNode: public MemBarNode {
 944   friend class AllocateNode;
 945 
 946   enum {
 947     Incomplete    = 0,
 948     Complete      = 1,
 949     WithArraycopy = 2
 950   };
 951   int _is_complete;
 952 
 953 public:
 954   enum {
 955     Control    = TypeFunc::Control,
 956     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
 957     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
 958     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
 959   };
 960 
 961   InitializeNode(Compile* C, int adr_type, Node* rawoop);
 962   virtual int Opcode() const;
 963   virtual uint size_of() const { return sizeof(*this); }
 964   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
 965   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
 966 
 967   // Manage incoming memory edges via a MergeMem on in(Memory):
 968   Node* memory(uint alias_idx);
 969 
 970   // The raw memory edge coming directly from the Allocation.
 971   // The contents of this memory are *always* all-zero-bits.
 972   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
 973 
 974   // Return the corresponding allocation for this initialization (or null if none).
 975   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 976   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 977   AllocateNode* allocation();
 978 
 979   // Anything other than zeroing in this init?
 980   bool is_non_zero();
 981 
 982   // An InitializeNode must completed before macro expansion is done.
 983   // Completion requires that the AllocateNode must be followed by
 984   // initialization of the new memory to zero, then to any initializers.
 985   bool is_complete() { return _is_complete != Incomplete; }
 986   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
 987 
 988   // Mark complete.  (Must not yet be complete.)
 989   void set_complete(PhaseGVN* phase);
 990   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
 991 
 992 #ifdef ASSERT
 993   // ensure all non-degenerate stores are ordered and non-overlapping
 994   bool stores_are_sane(PhaseTransform* phase);
 995 #endif //ASSERT
 996 
 997   // See if this store can be captured; return offset where it initializes.
 998   // Return 0 if the store cannot be moved (any sort of problem).
 999   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
1000 
1001   // Capture another store; reformat it to write my internal raw memory.
1002   // Return the captured copy, else NULL if there is some sort of problem.
1003   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
1004 
1005   // Find captured store which corresponds to the range [start..start+size).
1006   // Return my own memory projection (meaning the initial zero bits)
1007   // if there is no such store.  Return NULL if there is a problem.
1008   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1009 
1010   // Called when the associated AllocateNode is expanded into CFG.
1011   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1012                         intptr_t header_size, Node* size_in_bytes,
1013                         PhaseGVN* phase);
1014 
1015  private:
1016   void remove_extra_zeroes();
1017 
1018   // Find out where a captured store should be placed (or already is placed).
1019   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1020                                      PhaseTransform* phase);
1021 
1022   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1023 
1024   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1025 
1026   bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
1027 
1028   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1029                                PhaseGVN* phase);
1030 
1031   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1032 };
1033 
1034 //------------------------------MergeMem---------------------------------------
1035 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1036 class MergeMemNode: public Node {
1037   virtual uint hash() const ;                  // { return NO_HASH; }
1038   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1039   friend class MergeMemStream;
1040   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1041 
1042 public:
1043   // If the input is a whole memory state, clone it with all its slices intact.
1044   // Otherwise, make a new memory state with just that base memory input.
1045   // In either case, the result is a newly created MergeMem.
1046   static MergeMemNode* make(Compile* C, Node* base_memory);
1047 
1048   virtual int Opcode() const;
1049   virtual Node *Identity( PhaseTransform *phase );
1050   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1051   virtual uint ideal_reg() const { return NotAMachineReg; }
1052   virtual uint match_edge(uint idx) const { return 0; }
1053   virtual const RegMask &out_RegMask() const;
1054   virtual const Type *bottom_type() const { return Type::MEMORY; }
1055   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1056   // sparse accessors
1057   // Fetch the previously stored "set_memory_at", or else the base memory.
1058   // (Caller should clone it if it is a phi-nest.)
1059   Node* memory_at(uint alias_idx) const;
1060   // set the memory, regardless of its previous value
1061   void set_memory_at(uint alias_idx, Node* n);
1062   // the "base" is the memory that provides the non-finite support
1063   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1064   // warning: setting the base can implicitly set any of the other slices too
1065   void set_base_memory(Node* def);
1066   // sentinel value which denotes a copy of the base memory:
1067   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1068   static Node* make_empty_memory(); // where the sentinel comes from
1069   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1070   // hook for the iterator, to perform any necessary setup
1071   void iteration_setup(const MergeMemNode* other = NULL);
1072   // push sentinels until I am at least as long as the other (semantic no-op)
1073   void grow_to_match(const MergeMemNode* other);
1074   bool verify_sparse() const PRODUCT_RETURN0;
1075 #ifndef PRODUCT
1076   virtual void dump_spec(outputStream *st) const;
1077 #endif
1078 };
1079 
1080 class MergeMemStream : public StackObj {
1081  private:
1082   MergeMemNode*       _mm;
1083   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1084   Node*               _mm_base;  // loop-invariant base memory of _mm
1085   int                 _idx;
1086   int                 _cnt;
1087   Node*               _mem;
1088   Node*               _mem2;
1089   int                 _cnt2;
1090 
1091   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1092     // subsume_node will break sparseness at times, whenever a memory slice
1093     // folds down to a copy of the base ("fat") memory.  In such a case,
1094     // the raw edge will update to base, although it should be top.
1095     // This iterator will recognize either top or base_memory as an
1096     // "empty" slice.  See is_empty, is_empty2, and next below.
1097     //
1098     // The sparseness property is repaired in MergeMemNode::Ideal.
1099     // As long as access to a MergeMem goes through this iterator
1100     // or the memory_at accessor, flaws in the sparseness will
1101     // never be observed.
1102     //
1103     // Also, iteration_setup repairs sparseness.
1104     assert(mm->verify_sparse(), "please, no dups of base");
1105     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1106 
1107     _mm  = mm;
1108     _mm_base = mm->base_memory();
1109     _mm2 = mm2;
1110     _cnt = mm->req();
1111     _idx = Compile::AliasIdxBot-1; // start at the base memory
1112     _mem = NULL;
1113     _mem2 = NULL;
1114   }
1115 
1116 #ifdef ASSERT
1117   Node* check_memory() const {
1118     if (at_base_memory())
1119       return _mm->base_memory();
1120     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1121       return _mm->memory_at(_idx);
1122     else
1123       return _mm_base;
1124   }
1125   Node* check_memory2() const {
1126     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1127   }
1128 #endif
1129 
1130   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1131   void assert_synch() const {
1132     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1133            "no side-effects except through the stream");
1134   }
1135 
1136  public:
1137 
1138   // expected usages:
1139   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1140   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1141 
1142   // iterate over one merge
1143   MergeMemStream(MergeMemNode* mm) {
1144     mm->iteration_setup();
1145     init(mm);
1146     debug_only(_cnt2 = 999);
1147   }
1148   // iterate in parallel over two merges
1149   // only iterates through non-empty elements of mm2
1150   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1151     assert(mm2, "second argument must be a MergeMem also");
1152     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1153     mm->iteration_setup(mm2);
1154     init(mm, mm2);
1155     _cnt2 = mm2->req();
1156   }
1157 #ifdef ASSERT
1158   ~MergeMemStream() {
1159     assert_synch();
1160   }
1161 #endif
1162 
1163   MergeMemNode* all_memory() const {
1164     return _mm;
1165   }
1166   Node* base_memory() const {
1167     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1168     return _mm_base;
1169   }
1170   const MergeMemNode* all_memory2() const {
1171     assert(_mm2 != NULL, "");
1172     return _mm2;
1173   }
1174   bool at_base_memory() const {
1175     return _idx == Compile::AliasIdxBot;
1176   }
1177   int alias_idx() const {
1178     assert(_mem, "must call next 1st");
1179     return _idx;
1180   }
1181 
1182   const TypePtr* adr_type() const {
1183     return Compile::current()->get_adr_type(alias_idx());
1184   }
1185 
1186   const TypePtr* adr_type(Compile* C) const {
1187     return C->get_adr_type(alias_idx());
1188   }
1189   bool is_empty() const {
1190     assert(_mem, "must call next 1st");
1191     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1192     return _mem->is_top();
1193   }
1194   bool is_empty2() const {
1195     assert(_mem2, "must call next 1st");
1196     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1197     return _mem2->is_top();
1198   }
1199   Node* memory() const {
1200     assert(!is_empty(), "must not be empty");
1201     assert_synch();
1202     return _mem;
1203   }
1204   // get the current memory, regardless of empty or non-empty status
1205   Node* force_memory() const {
1206     assert(!is_empty() || !at_base_memory(), "");
1207     // Use _mm_base to defend against updates to _mem->base_memory().
1208     Node *mem = _mem->is_top() ? _mm_base : _mem;
1209     assert(mem == check_memory(), "");
1210     return mem;
1211   }
1212   Node* memory2() const {
1213     assert(_mem2 == check_memory2(), "");
1214     return _mem2;
1215   }
1216   void set_memory(Node* mem) {
1217     if (at_base_memory()) {
1218       // Note that this does not change the invariant _mm_base.
1219       _mm->set_base_memory(mem);
1220     } else {
1221       _mm->set_memory_at(_idx, mem);
1222     }
1223     _mem = mem;
1224     assert_synch();
1225   }
1226 
1227   // Recover from a side effect to the MergeMemNode.
1228   void set_memory() {
1229     _mem = _mm->in(_idx);
1230   }
1231 
1232   bool next()  { return next(false); }
1233   bool next2() { return next(true); }
1234 
1235   bool next_non_empty()  { return next_non_empty(false); }
1236   bool next_non_empty2() { return next_non_empty(true); }
1237   // next_non_empty2 can yield states where is_empty() is true
1238 
1239  private:
1240   // find the next item, which might be empty
1241   bool next(bool have_mm2) {
1242     assert((_mm2 != NULL) == have_mm2, "use other next");
1243     assert_synch();
1244     if (++_idx < _cnt) {
1245       // Note:  This iterator allows _mm to be non-sparse.
1246       // It behaves the same whether _mem is top or base_memory.
1247       _mem = _mm->in(_idx);
1248       if (have_mm2)
1249         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1250       return true;
1251     }
1252     return false;
1253   }
1254 
1255   // find the next non-empty item
1256   bool next_non_empty(bool have_mm2) {
1257     while (next(have_mm2)) {
1258       if (!is_empty()) {
1259         // make sure _mem2 is filled in sensibly
1260         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1261         return true;
1262       } else if (have_mm2 && !is_empty2()) {
1263         return true;   // is_empty() == true
1264       }
1265     }
1266     return false;
1267   }
1268 };
1269 
1270 //------------------------------Prefetch---------------------------------------
1271 
1272 // Non-faulting prefetch load.  Prefetch for many reads.
1273 class PrefetchReadNode : public Node {
1274 public:
1275   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1276   virtual int Opcode() const;
1277   virtual uint ideal_reg() const { return NotAMachineReg; }
1278   virtual uint match_edge(uint idx) const { return idx==2; }
1279   virtual const Type *bottom_type() const { return Type::ABIO; }
1280 };
1281 
1282 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
1283 class PrefetchWriteNode : public Node {
1284 public:
1285   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1286   virtual int Opcode() const;
1287   virtual uint ideal_reg() const { return NotAMachineReg; }
1288   virtual uint match_edge(uint idx) const { return idx==2; }
1289   virtual const Type *bottom_type() const { return Type::ABIO; }
1290 };
1291 
1292 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1293 class PrefetchAllocationNode : public Node {
1294 public:
1295   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1296   virtual int Opcode() const;
1297   virtual uint ideal_reg() const { return NotAMachineReg; }
1298   virtual uint match_edge(uint idx) const { return idx==2; }
1299   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1300 };
1301 
1302 #endif // SHARE_VM_OPTO_MEMNODE_HPP