1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #ifdef ARM
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case objectTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::oopConst(NULL);
  92     } else {
  93       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
  94     }
  95   }
  96   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
  97   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
  98   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
  99   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 100   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 101   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 102   }
 103 }
 104 
 105 
 106 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 107   switch (type->tag()) {
 108     case objectTag: return LIR_OprFact::oopConst(NULL);
 109     case addressTag:return LIR_OprFact::addressConst(0);
 110     case intTag:    return LIR_OprFact::intConst(0);
 111     case floatTag:  return LIR_OprFact::floatConst(0.0);
 112     case longTag:   return LIR_OprFact::longConst(0);
 113     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 114     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 115   }
 116   return illegalOpr;
 117 }
 118 
 119 
 120 
 121 //---------------------------------------------------
 122 
 123 
 124 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 125   int elem_size = type2aelembytes(type);
 126   switch (elem_size) {
 127   case 1: return LIR_Address::times_1;
 128   case 2: return LIR_Address::times_2;
 129   case 4: return LIR_Address::times_4;
 130   case 8: return LIR_Address::times_8;
 131   }
 132   ShouldNotReachHere();
 133   return LIR_Address::times_1;
 134 }
 135 
 136 
 137 #ifndef PRODUCT
 138 void LIR_Address::verify() const {
 139 #if defined(SPARC) || defined(PPC)
 140   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 141   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 142 #endif
 143 #ifdef ARM
 144   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 145   // Note: offsets higher than 4096 must not be rejected here. They can
 146   // be handled by the back-end or will be rejected if not.
 147 #endif
 148 #ifdef _LP64
 149   assert(base()->is_cpu_register(), "wrong base operand");
 150   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 151   assert(base()->type() == T_OBJECT || base()->type() == T_LONG,
 152          "wrong type for addresses");
 153 #else
 154   assert(base()->is_single_cpu(), "wrong base operand");
 155   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 156   assert(base()->type() == T_OBJECT || base()->type() == T_INT,
 157          "wrong type for addresses");
 158 #endif
 159 }
 160 #endif
 161 
 162 
 163 //---------------------------------------------------
 164 
 165 char LIR_OprDesc::type_char(BasicType t) {
 166   switch (t) {
 167     case T_ARRAY:
 168       t = T_OBJECT;
 169     case T_BOOLEAN:
 170     case T_CHAR:
 171     case T_FLOAT:
 172     case T_DOUBLE:
 173     case T_BYTE:
 174     case T_SHORT:
 175     case T_INT:
 176     case T_LONG:
 177     case T_OBJECT:
 178     case T_ADDRESS:
 179     case T_VOID:
 180       return ::type2char(t);
 181 
 182     case T_ILLEGAL:
 183       return '?';
 184 
 185     default:
 186       ShouldNotReachHere();
 187       return '?';
 188   }
 189 }
 190 
 191 #ifndef PRODUCT
 192 void LIR_OprDesc::validate_type() const {
 193 
 194 #ifdef ASSERT
 195   if (!is_pointer() && !is_illegal()) {
 196     switch (as_BasicType(type_field())) {
 197     case T_LONG:
 198       assert((kind_field() == cpu_register || kind_field() == stack_value) &&
 199              size_field() == double_size, "must match");
 200       break;
 201     case T_FLOAT:
 202       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 203       assert((kind_field() == fpu_register || kind_field() == stack_value
 204              ARM_ONLY(|| kind_field() == cpu_register)
 205              PPC_ONLY(|| kind_field() == cpu_register) ) &&
 206              size_field() == single_size, "must match");
 207       break;
 208     case T_DOUBLE:
 209       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 210       assert((kind_field() == fpu_register || kind_field() == stack_value
 211              ARM_ONLY(|| kind_field() == cpu_register)
 212              PPC_ONLY(|| kind_field() == cpu_register) ) &&
 213              size_field() == double_size, "must match");
 214       break;
 215     case T_BOOLEAN:
 216     case T_CHAR:
 217     case T_BYTE:
 218     case T_SHORT:
 219     case T_INT:
 220     case T_ADDRESS:
 221     case T_OBJECT:
 222     case T_ARRAY:
 223       assert((kind_field() == cpu_register || kind_field() == stack_value) &&
 224              size_field() == single_size, "must match");
 225       break;
 226 
 227     case T_ILLEGAL:
 228       // XXX TKR also means unknown right now
 229       // assert(is_illegal(), "must match");
 230       break;
 231 
 232     default:
 233       ShouldNotReachHere();
 234     }
 235   }
 236 #endif
 237 
 238 }
 239 #endif // PRODUCT
 240 
 241 
 242 bool LIR_OprDesc::is_oop() const {
 243   if (is_pointer()) {
 244     return pointer()->is_oop_pointer();
 245   } else {
 246     OprType t= type_field();
 247     assert(t != unknown_type, "not set");
 248     return t == object_type;
 249   }
 250 }
 251 
 252 
 253 
 254 void LIR_Op2::verify() const {
 255 #ifdef ASSERT
 256   switch (code()) {
 257     case lir_cmove:
 258       break;
 259 
 260     default:
 261       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 262              "can't produce oops from arith");
 263   }
 264 
 265   if (TwoOperandLIRForm) {
 266     switch (code()) {
 267     case lir_add:
 268     case lir_sub:
 269     case lir_mul:
 270     case lir_mul_strictfp:
 271     case lir_div:
 272     case lir_div_strictfp:
 273     case lir_rem:
 274     case lir_logic_and:
 275     case lir_logic_or:
 276     case lir_logic_xor:
 277     case lir_shl:
 278     case lir_shr:
 279       assert(in_opr1() == result_opr(), "opr1 and result must match");
 280       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 281       break;
 282 
 283     // special handling for lir_ushr because of write barriers
 284     case lir_ushr:
 285       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 286       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 287       break;
 288 
 289     }
 290   }
 291 #endif
 292 }
 293 
 294 
 295 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 296   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 297   , _cond(cond)
 298   , _type(type)
 299   , _label(block->label())
 300   , _block(block)
 301   , _ublock(NULL)
 302   , _stub(NULL) {
 303 }
 304 
 305 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 306   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 307   , _cond(cond)
 308   , _type(type)
 309   , _label(stub->entry())
 310   , _block(NULL)
 311   , _ublock(NULL)
 312   , _stub(stub) {
 313 }
 314 
 315 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 316   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 317   , _cond(cond)
 318   , _type(type)
 319   , _label(block->label())
 320   , _block(block)
 321   , _ublock(ublock)
 322   , _stub(NULL)
 323 {
 324 }
 325 
 326 void LIR_OpBranch::change_block(BlockBegin* b) {
 327   assert(_block != NULL, "must have old block");
 328   assert(_block->label() == label(), "must be equal");
 329 
 330   _block = b;
 331   _label = b->label();
 332 }
 333 
 334 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 335   assert(_ublock != NULL, "must have old block");
 336   _ublock = b;
 337 }
 338 
 339 void LIR_OpBranch::negate_cond() {
 340   switch (_cond) {
 341     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 342     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 343     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 344     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 345     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 346     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 347     default: ShouldNotReachHere();
 348   }
 349 }
 350 
 351 
 352 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 353                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 354                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 355                                  CodeStub* stub)
 356 
 357   : LIR_Op(code, result, NULL)
 358   , _object(object)
 359   , _array(LIR_OprFact::illegalOpr)
 360   , _klass(klass)
 361   , _tmp1(tmp1)
 362   , _tmp2(tmp2)
 363   , _tmp3(tmp3)
 364   , _fast_check(fast_check)
 365   , _stub(stub)
 366   , _info_for_patch(info_for_patch)
 367   , _info_for_exception(info_for_exception)
 368   , _profiled_method(NULL)
 369   , _profiled_bci(-1)
 370   , _should_profile(false)
 371 {
 372   if (code == lir_checkcast) {
 373     assert(info_for_exception != NULL, "checkcast throws exceptions");
 374   } else if (code == lir_instanceof) {
 375     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 376   } else {
 377     ShouldNotReachHere();
 378   }
 379 }
 380 
 381 
 382 
 383 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 384   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 385   , _object(object)
 386   , _array(array)
 387   , _klass(NULL)
 388   , _tmp1(tmp1)
 389   , _tmp2(tmp2)
 390   , _tmp3(tmp3)
 391   , _fast_check(false)
 392   , _stub(NULL)
 393   , _info_for_patch(NULL)
 394   , _info_for_exception(info_for_exception)
 395   , _profiled_method(NULL)
 396   , _profiled_bci(-1)
 397   , _should_profile(false)
 398 {
 399   if (code == lir_store_check) {
 400     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 401     assert(info_for_exception != NULL, "store_check throws exceptions");
 402   } else {
 403     ShouldNotReachHere();
 404   }
 405 }
 406 
 407 
 408 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 409                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 410   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 411   , _tmp(tmp)
 412   , _src(src)
 413   , _src_pos(src_pos)
 414   , _dst(dst)
 415   , _dst_pos(dst_pos)
 416   , _flags(flags)
 417   , _expected_type(expected_type)
 418   , _length(length) {
 419   _stub = new ArrayCopyStub(this);
 420 }
 421 
 422 
 423 //-------------------verify--------------------------
 424 
 425 void LIR_Op1::verify() const {
 426   switch(code()) {
 427   case lir_move:
 428     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 429     break;
 430   case lir_null_check:
 431     assert(in_opr()->is_register(), "must be");
 432     break;
 433   case lir_return:
 434     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 435     break;
 436   }
 437 }
 438 
 439 void LIR_OpRTCall::verify() const {
 440   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 441 }
 442 
 443 //-------------------visits--------------------------
 444 
 445 // complete rework of LIR instruction visitor.
 446 // The virtual calls for each instruction type is replaced by a big
 447 // switch that adds the operands for each instruction
 448 
 449 void LIR_OpVisitState::visit(LIR_Op* op) {
 450   // copy information from the LIR_Op
 451   reset();
 452   set_op(op);
 453 
 454   switch (op->code()) {
 455 
 456 // LIR_Op0
 457     case lir_word_align:               // result and info always invalid
 458     case lir_backwardbranch_target:    // result and info always invalid
 459     case lir_build_frame:              // result and info always invalid
 460     case lir_fpop_raw:                 // result and info always invalid
 461     case lir_24bit_FPU:                // result and info always invalid
 462     case lir_reset_FPU:                // result and info always invalid
 463     case lir_breakpoint:               // result and info always invalid
 464     case lir_membar:                   // result and info always invalid
 465     case lir_membar_acquire:           // result and info always invalid
 466     case lir_membar_release:           // result and info always invalid
 467     {
 468       assert(op->as_Op0() != NULL, "must be");
 469       assert(op->_info == NULL, "info not used by this instruction");
 470       assert(op->_result->is_illegal(), "not used");
 471       break;
 472     }
 473 
 474     case lir_nop:                      // may have info, result always invalid
 475     case lir_std_entry:                // may have result, info always invalid
 476     case lir_osr_entry:                // may have result, info always invalid
 477     case lir_get_thread:               // may have result, info always invalid
 478     {
 479       assert(op->as_Op0() != NULL, "must be");
 480       if (op->_info != NULL)           do_info(op->_info);
 481       if (op->_result->is_valid())     do_output(op->_result);
 482       break;
 483     }
 484 
 485 
 486 // LIR_OpLabel
 487     case lir_label:                    // result and info always invalid
 488     {
 489       assert(op->as_OpLabel() != NULL, "must be");
 490       assert(op->_info == NULL, "info not used by this instruction");
 491       assert(op->_result->is_illegal(), "not used");
 492       break;
 493     }
 494 
 495 
 496 // LIR_Op1
 497     case lir_fxch:           // input always valid, result and info always invalid
 498     case lir_fld:            // input always valid, result and info always invalid
 499     case lir_ffree:          // input always valid, result and info always invalid
 500     case lir_push:           // input always valid, result and info always invalid
 501     case lir_pop:            // input always valid, result and info always invalid
 502     case lir_return:         // input always valid, result and info always invalid
 503     case lir_leal:           // input and result always valid, info always invalid
 504     case lir_neg:            // input and result always valid, info always invalid
 505     case lir_monaddr:        // input and result always valid, info always invalid
 506     case lir_null_check:     // input and info always valid, result always invalid
 507     case lir_move:           // input and result always valid, may have info
 508     case lir_pack64:         // input and result always valid
 509     case lir_unpack64:       // input and result always valid
 510     case lir_prefetchr:      // input always valid, result and info always invalid
 511     case lir_prefetchw:      // input always valid, result and info always invalid
 512     {
 513       assert(op->as_Op1() != NULL, "must be");
 514       LIR_Op1* op1 = (LIR_Op1*)op;
 515 
 516       if (op1->_info)                  do_info(op1->_info);
 517       if (op1->_opr->is_valid())       do_input(op1->_opr);
 518       if (op1->_result->is_valid())    do_output(op1->_result);
 519 
 520       break;
 521     }
 522 
 523     case lir_safepoint:
 524     {
 525       assert(op->as_Op1() != NULL, "must be");
 526       LIR_Op1* op1 = (LIR_Op1*)op;
 527 
 528       assert(op1->_info != NULL, "");  do_info(op1->_info);
 529       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 530       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 531 
 532       break;
 533     }
 534 
 535 // LIR_OpConvert;
 536     case lir_convert:        // input and result always valid, info always invalid
 537     {
 538       assert(op->as_OpConvert() != NULL, "must be");
 539       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 540 
 541       assert(opConvert->_info == NULL, "must be");
 542       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 543       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 544 #ifdef PPC
 545       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 546       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 547 #endif
 548       do_stub(opConvert->_stub);
 549 
 550       break;
 551     }
 552 
 553 // LIR_OpBranch;
 554     case lir_branch:                   // may have info, input and result register always invalid
 555     case lir_cond_float_branch:        // may have info, input and result register always invalid
 556     {
 557       assert(op->as_OpBranch() != NULL, "must be");
 558       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 559 
 560       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 561       assert(opBranch->_result->is_illegal(), "not used");
 562       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 563 
 564       break;
 565     }
 566 
 567 
 568 // LIR_OpAllocObj
 569     case lir_alloc_object:
 570     {
 571       assert(op->as_OpAllocObj() != NULL, "must be");
 572       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 573 
 574       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 575       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 576                                                  do_temp(opAllocObj->_opr);
 577                                         }
 578       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 579       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 580       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 581       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 582       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 583                                                  do_stub(opAllocObj->_stub);
 584       break;
 585     }
 586 
 587 
 588 // LIR_OpRoundFP;
 589     case lir_roundfp: {
 590       assert(op->as_OpRoundFP() != NULL, "must be");
 591       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 592 
 593       assert(op->_info == NULL, "info not used by this instruction");
 594       assert(opRoundFP->_tmp->is_illegal(), "not used");
 595       do_input(opRoundFP->_opr);
 596       do_output(opRoundFP->_result);
 597 
 598       break;
 599     }
 600 
 601 
 602 // LIR_Op2
 603     case lir_cmp:
 604     case lir_cmp_l2i:
 605     case lir_ucmp_fd2i:
 606     case lir_cmp_fd2i:
 607     case lir_add:
 608     case lir_sub:
 609     case lir_mul:
 610     case lir_div:
 611     case lir_rem:
 612     case lir_sqrt:
 613     case lir_abs:
 614     case lir_logic_and:
 615     case lir_logic_or:
 616     case lir_logic_xor:
 617     case lir_shl:
 618     case lir_shr:
 619     case lir_ushr:
 620     {
 621       assert(op->as_Op2() != NULL, "must be");
 622       LIR_Op2* op2 = (LIR_Op2*)op;
 623 
 624       if (op2->_info)                     do_info(op2->_info);
 625       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 626       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 627       if (op2->_tmp->is_valid())          do_temp(op2->_tmp);
 628       if (op2->_result->is_valid())       do_output(op2->_result);
 629 
 630       break;
 631     }
 632 
 633     // special handling for cmove: right input operand must not be equal
 634     // to the result operand, otherwise the backend fails
 635     case lir_cmove:
 636     {
 637       assert(op->as_Op2() != NULL, "must be");
 638       LIR_Op2* op2 = (LIR_Op2*)op;
 639 
 640       assert(op2->_info == NULL && op2->_tmp->is_illegal(), "not used");
 641       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 642 
 643       do_input(op2->_opr1);
 644       do_input(op2->_opr2);
 645       do_temp(op2->_opr2);
 646       do_output(op2->_result);
 647 
 648       break;
 649     }
 650 
 651     // vspecial handling for strict operations: register input operands
 652     // as temp to guarantee that they do not overlap with other
 653     // registers
 654     case lir_mul_strictfp:
 655     case lir_div_strictfp:
 656     {
 657       assert(op->as_Op2() != NULL, "must be");
 658       LIR_Op2* op2 = (LIR_Op2*)op;
 659 
 660       assert(op2->_info == NULL, "not used");
 661       assert(op2->_opr1->is_valid(), "used");
 662       assert(op2->_opr2->is_valid(), "used");
 663       assert(op2->_result->is_valid(), "used");
 664 
 665       do_input(op2->_opr1); do_temp(op2->_opr1);
 666       do_input(op2->_opr2); do_temp(op2->_opr2);
 667       if (op2->_tmp->is_valid()) do_temp(op2->_tmp);
 668       do_output(op2->_result);
 669 
 670       break;
 671     }
 672 
 673     case lir_throw: {
 674       assert(op->as_Op2() != NULL, "must be");
 675       LIR_Op2* op2 = (LIR_Op2*)op;
 676 
 677       if (op2->_info)                     do_info(op2->_info);
 678       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 679       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 680       assert(op2->_result->is_illegal(), "no result");
 681 
 682       break;
 683     }
 684 
 685     case lir_unwind: {
 686       assert(op->as_Op1() != NULL, "must be");
 687       LIR_Op1* op1 = (LIR_Op1*)op;
 688 
 689       assert(op1->_info == NULL, "no info");
 690       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 691       assert(op1->_result->is_illegal(), "no result");
 692 
 693       break;
 694     }
 695 
 696 
 697     case lir_tan:
 698     case lir_sin:
 699     case lir_cos:
 700     case lir_log:
 701     case lir_log10: {
 702       assert(op->as_Op2() != NULL, "must be");
 703       LIR_Op2* op2 = (LIR_Op2*)op;
 704 
 705       // On x86 tan/sin/cos need two temporary fpu stack slots and
 706       // log/log10 need one so handle opr2 and tmp as temp inputs.
 707       // Register input operand as temp to guarantee that it doesn't
 708       // overlap with the input.
 709       assert(op2->_info == NULL, "not used");
 710       assert(op2->_opr1->is_valid(), "used");
 711       do_input(op2->_opr1); do_temp(op2->_opr1);
 712 
 713       if (op2->_opr2->is_valid())         do_temp(op2->_opr2);
 714       if (op2->_tmp->is_valid())          do_temp(op2->_tmp);
 715       if (op2->_result->is_valid())       do_output(op2->_result);
 716 
 717       break;
 718     }
 719 
 720 
 721 // LIR_Op3
 722     case lir_idiv:
 723     case lir_irem: {
 724       assert(op->as_Op3() != NULL, "must be");
 725       LIR_Op3* op3= (LIR_Op3*)op;
 726 
 727       if (op3->_info)                     do_info(op3->_info);
 728       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 729 
 730       // second operand is input and temp, so ensure that second operand
 731       // and third operand get not the same register
 732       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 733       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 734       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 735 
 736       if (op3->_result->is_valid())       do_output(op3->_result);
 737 
 738       break;
 739     }
 740 
 741 
 742 // LIR_OpJavaCall
 743     case lir_static_call:
 744     case lir_optvirtual_call:
 745     case lir_icvirtual_call:
 746     case lir_virtual_call:
 747     case lir_dynamic_call: {
 748       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 749       assert(opJavaCall != NULL, "must be");
 750 
 751       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 752 
 753       // only visit register parameters
 754       int n = opJavaCall->_arguments->length();
 755       for (int i = 0; i < n; i++) {
 756         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 757           do_input(*opJavaCall->_arguments->adr_at(i));
 758         }
 759       }
 760 
 761       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 762       if (opJavaCall->is_method_handle_invoke()) {
 763         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 764         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 765       }
 766       do_call();
 767       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 768 
 769       break;
 770     }
 771 
 772 
 773 // LIR_OpRTCall
 774     case lir_rtcall: {
 775       assert(op->as_OpRTCall() != NULL, "must be");
 776       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 777 
 778       // only visit register parameters
 779       int n = opRTCall->_arguments->length();
 780       for (int i = 0; i < n; i++) {
 781         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 782           do_input(*opRTCall->_arguments->adr_at(i));
 783         }
 784       }
 785       if (opRTCall->_info)                     do_info(opRTCall->_info);
 786       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 787       do_call();
 788       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 789 
 790       break;
 791     }
 792 
 793 
 794 // LIR_OpArrayCopy
 795     case lir_arraycopy: {
 796       assert(op->as_OpArrayCopy() != NULL, "must be");
 797       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 798 
 799       assert(opArrayCopy->_result->is_illegal(), "unused");
 800       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 801       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 802       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 803       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 804       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 805       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 806       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 807 
 808       // the implementation of arraycopy always has a call into the runtime
 809       do_call();
 810 
 811       break;
 812     }
 813 
 814 
 815 // LIR_OpLock
 816     case lir_lock:
 817     case lir_unlock: {
 818       assert(op->as_OpLock() != NULL, "must be");
 819       LIR_OpLock* opLock = (LIR_OpLock*)op;
 820 
 821       if (opLock->_info)                          do_info(opLock->_info);
 822 
 823       // TODO: check if these operands really have to be temp
 824       // (or if input is sufficient). This may have influence on the oop map!
 825       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 826       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 827       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 828 
 829       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 830       assert(opLock->_result->is_illegal(), "unused");
 831 
 832       do_stub(opLock->_stub);
 833 
 834       break;
 835     }
 836 
 837 
 838 // LIR_OpDelay
 839     case lir_delay_slot: {
 840       assert(op->as_OpDelay() != NULL, "must be");
 841       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 842 
 843       visit(opDelay->delay_op());
 844       break;
 845     }
 846 
 847 // LIR_OpTypeCheck
 848     case lir_instanceof:
 849     case lir_checkcast:
 850     case lir_store_check: {
 851       assert(op->as_OpTypeCheck() != NULL, "must be");
 852       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 853 
 854       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 855       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 856       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 857       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 858       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 859       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 860       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 861       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 862                                                   do_stub(opTypeCheck->_stub);
 863       break;
 864     }
 865 
 866 // LIR_OpCompareAndSwap
 867     case lir_cas_long:
 868     case lir_cas_obj:
 869     case lir_cas_int: {
 870       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 871       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 872 
 873       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 874       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 875       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 876       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 877                                                       do_input(opCompareAndSwap->_addr);
 878                                                       do_temp(opCompareAndSwap->_addr);
 879                                                       do_input(opCompareAndSwap->_cmp_value);
 880                                                       do_temp(opCompareAndSwap->_cmp_value);
 881                                                       do_input(opCompareAndSwap->_new_value);
 882                                                       do_temp(opCompareAndSwap->_new_value);
 883       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 884       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 885       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 886 
 887       break;
 888     }
 889 
 890 
 891 // LIR_OpAllocArray;
 892     case lir_alloc_array: {
 893       assert(op->as_OpAllocArray() != NULL, "must be");
 894       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 895 
 896       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 897       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 898       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 899       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 900       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 901       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 902       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 903       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 904                                                       do_stub(opAllocArray->_stub);
 905       break;
 906     }
 907 
 908 // LIR_OpProfileCall:
 909     case lir_profile_call: {
 910       assert(op->as_OpProfileCall() != NULL, "must be");
 911       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 912 
 913       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 914       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 915       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 916       break;
 917     }
 918   default:
 919     ShouldNotReachHere();
 920   }
 921 }
 922 
 923 
 924 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 925   if (stub != NULL) {
 926     stub->visit(this);
 927   }
 928 }
 929 
 930 XHandlers* LIR_OpVisitState::all_xhandler() {
 931   XHandlers* result = NULL;
 932 
 933   int i;
 934   for (i = 0; i < info_count(); i++) {
 935     if (info_at(i)->exception_handlers() != NULL) {
 936       result = info_at(i)->exception_handlers();
 937       break;
 938     }
 939   }
 940 
 941 #ifdef ASSERT
 942   for (i = 0; i < info_count(); i++) {
 943     assert(info_at(i)->exception_handlers() == NULL ||
 944            info_at(i)->exception_handlers() == result,
 945            "only one xhandler list allowed per LIR-operation");
 946   }
 947 #endif
 948 
 949   if (result != NULL) {
 950     return result;
 951   } else {
 952     return new XHandlers();
 953   }
 954 
 955   return result;
 956 }
 957 
 958 
 959 #ifdef ASSERT
 960 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
 961   visit(op);
 962 
 963   return opr_count(inputMode) == 0 &&
 964          opr_count(outputMode) == 0 &&
 965          opr_count(tempMode) == 0 &&
 966          info_count() == 0 &&
 967          !has_call() &&
 968          !has_slow_case();
 969 }
 970 #endif
 971 
 972 //---------------------------------------------------
 973 
 974 
 975 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
 976   masm->emit_call(this);
 977 }
 978 
 979 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
 980   masm->emit_rtcall(this);
 981 }
 982 
 983 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
 984   masm->emit_opLabel(this);
 985 }
 986 
 987 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
 988   masm->emit_arraycopy(this);
 989   masm->emit_code_stub(stub());
 990 }
 991 
 992 void LIR_Op0::emit_code(LIR_Assembler* masm) {
 993   masm->emit_op0(this);
 994 }
 995 
 996 void LIR_Op1::emit_code(LIR_Assembler* masm) {
 997   masm->emit_op1(this);
 998 }
 999 
1000 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1001   masm->emit_alloc_obj(this);
1002   masm->emit_code_stub(stub());
1003 }
1004 
1005 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1006   masm->emit_opBranch(this);
1007   if (stub()) {
1008     masm->emit_code_stub(stub());
1009   }
1010 }
1011 
1012 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1013   masm->emit_opConvert(this);
1014   if (stub() != NULL) {
1015     masm->emit_code_stub(stub());
1016   }
1017 }
1018 
1019 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1020   masm->emit_op2(this);
1021 }
1022 
1023 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1024   masm->emit_alloc_array(this);
1025   masm->emit_code_stub(stub());
1026 }
1027 
1028 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1029   masm->emit_opTypeCheck(this);
1030   if (stub()) {
1031     masm->emit_code_stub(stub());
1032   }
1033 }
1034 
1035 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1036   masm->emit_compare_and_swap(this);
1037 }
1038 
1039 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1040   masm->emit_op3(this);
1041 }
1042 
1043 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1044   masm->emit_lock(this);
1045   if (stub()) {
1046     masm->emit_code_stub(stub());
1047   }
1048 }
1049 
1050 
1051 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1052   masm->emit_delay(this);
1053 }
1054 
1055 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1056   masm->emit_profile_call(this);
1057 }
1058 
1059 // LIR_List
1060 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1061   : _operations(8)
1062   , _compilation(compilation)
1063 #ifndef PRODUCT
1064   , _block(block)
1065 #endif
1066 #ifdef ASSERT
1067   , _file(NULL)
1068   , _line(0)
1069 #endif
1070 { }
1071 
1072 
1073 #ifdef ASSERT
1074 void LIR_List::set_file_and_line(const char * file, int line) {
1075   const char * f = strrchr(file, '/');
1076   if (f == NULL) f = strrchr(file, '\\');
1077   if (f == NULL) {
1078     f = file;
1079   } else {
1080     f++;
1081   }
1082   _file = f;
1083   _line = line;
1084 }
1085 #endif
1086 
1087 
1088 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1089   assert(this == buffer->lir_list(), "wrong lir list");
1090   const int n = _operations.length();
1091 
1092   if (buffer->number_of_ops() > 0) {
1093     // increase size of instructions list
1094     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1095     // insert ops from buffer into instructions list
1096     int op_index = buffer->number_of_ops() - 1;
1097     int ip_index = buffer->number_of_insertion_points() - 1;
1098     int from_index = n - 1;
1099     int to_index = _operations.length() - 1;
1100     for (; ip_index >= 0; ip_index --) {
1101       int index = buffer->index_at(ip_index);
1102       // make room after insertion point
1103       while (index < from_index) {
1104         _operations.at_put(to_index --, _operations.at(from_index --));
1105       }
1106       // insert ops from buffer
1107       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1108         _operations.at_put(to_index --, buffer->op_at(op_index --));
1109       }
1110     }
1111   }
1112 
1113   buffer->finish();
1114 }
1115 
1116 
1117 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1118   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1119 }
1120 
1121 
1122 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1123   append(new LIR_Op1(
1124             lir_move,
1125             LIR_OprFact::address(addr),
1126             src,
1127             addr->type(),
1128             patch_code,
1129             info));
1130 }
1131 
1132 
1133 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1134   append(new LIR_Op1(
1135             lir_move,
1136             LIR_OprFact::address(address),
1137             dst,
1138             address->type(),
1139             patch_code,
1140             info, lir_move_volatile));
1141 }
1142 
1143 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1144   append(new LIR_Op1(
1145             lir_move,
1146             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1147             dst,
1148             type,
1149             patch_code,
1150             info, lir_move_volatile));
1151 }
1152 
1153 
1154 void LIR_List::prefetch(LIR_Address* addr, bool is_store) {
1155   append(new LIR_Op1(
1156             is_store ? lir_prefetchw : lir_prefetchr,
1157             LIR_OprFact::address(addr)));
1158 }
1159 
1160 
1161 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1162   append(new LIR_Op1(
1163             lir_move,
1164             LIR_OprFact::intConst(v),
1165             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1166             type,
1167             patch_code,
1168             info));
1169 }
1170 
1171 
1172 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1173   append(new LIR_Op1(
1174             lir_move,
1175             LIR_OprFact::oopConst(o),
1176             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1177             type,
1178             patch_code,
1179             info));
1180 }
1181 
1182 
1183 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1184   append(new LIR_Op1(
1185             lir_move,
1186             src,
1187             LIR_OprFact::address(addr),
1188             addr->type(),
1189             patch_code,
1190             info));
1191 }
1192 
1193 
1194 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1195   append(new LIR_Op1(
1196             lir_move,
1197             src,
1198             LIR_OprFact::address(addr),
1199             addr->type(),
1200             patch_code,
1201             info,
1202             lir_move_volatile));
1203 }
1204 
1205 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1206   append(new LIR_Op1(
1207             lir_move,
1208             src,
1209             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1210             type,
1211             patch_code,
1212             info, lir_move_volatile));
1213 }
1214 
1215 
1216 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1217   append(new LIR_Op3(
1218                     lir_idiv,
1219                     left,
1220                     right,
1221                     tmp,
1222                     res,
1223                     info));
1224 }
1225 
1226 
1227 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1228   append(new LIR_Op3(
1229                     lir_idiv,
1230                     left,
1231                     LIR_OprFact::intConst(right),
1232                     tmp,
1233                     res,
1234                     info));
1235 }
1236 
1237 
1238 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1239   append(new LIR_Op3(
1240                     lir_irem,
1241                     left,
1242                     right,
1243                     tmp,
1244                     res,
1245                     info));
1246 }
1247 
1248 
1249 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1250   append(new LIR_Op3(
1251                     lir_irem,
1252                     left,
1253                     LIR_OprFact::intConst(right),
1254                     tmp,
1255                     res,
1256                     info));
1257 }
1258 
1259 
1260 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1261   append(new LIR_Op2(
1262                     lir_cmp,
1263                     condition,
1264                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1265                     LIR_OprFact::intConst(c),
1266                     info));
1267 }
1268 
1269 
1270 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1271   append(new LIR_Op2(
1272                     lir_cmp,
1273                     condition,
1274                     reg,
1275                     LIR_OprFact::address(addr),
1276                     info));
1277 }
1278 
1279 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1280                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1281   append(new LIR_OpAllocObj(
1282                            klass,
1283                            dst,
1284                            t1,
1285                            t2,
1286                            t3,
1287                            t4,
1288                            header_size,
1289                            object_size,
1290                            init_check,
1291                            stub));
1292 }
1293 
1294 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1295   append(new LIR_OpAllocArray(
1296                            klass,
1297                            len,
1298                            dst,
1299                            t1,
1300                            t2,
1301                            t3,
1302                            t4,
1303                            type,
1304                            stub));
1305 }
1306 
1307 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1308  append(new LIR_Op2(
1309                     lir_shl,
1310                     value,
1311                     count,
1312                     dst,
1313                     tmp));
1314 }
1315 
1316 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1317  append(new LIR_Op2(
1318                     lir_shr,
1319                     value,
1320                     count,
1321                     dst,
1322                     tmp));
1323 }
1324 
1325 
1326 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1327  append(new LIR_Op2(
1328                     lir_ushr,
1329                     value,
1330                     count,
1331                     dst,
1332                     tmp));
1333 }
1334 
1335 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1336   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1337                      left,
1338                      right,
1339                      dst));
1340 }
1341 
1342 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1343   append(new LIR_OpLock(
1344                     lir_lock,
1345                     hdr,
1346                     obj,
1347                     lock,
1348                     scratch,
1349                     stub,
1350                     info));
1351 }
1352 
1353 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1354   append(new LIR_OpLock(
1355                     lir_unlock,
1356                     hdr,
1357                     obj,
1358                     lock,
1359                     scratch,
1360                     stub,
1361                     NULL));
1362 }
1363 
1364 
1365 void check_LIR() {
1366   // cannot do the proper checking as PRODUCT and other modes return different results
1367   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1368 }
1369 
1370 
1371 
1372 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1373                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1374                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1375                           ciMethod* profiled_method, int profiled_bci) {
1376   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1377                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1378   if (profiled_method != NULL) {
1379     c->set_profiled_method(profiled_method);
1380     c->set_profiled_bci(profiled_bci);
1381     c->set_should_profile(true);
1382   }
1383   append(c);
1384 }
1385 
1386 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1387   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1388   if (profiled_method != NULL) {
1389     c->set_profiled_method(profiled_method);
1390     c->set_profiled_bci(profiled_bci);
1391     c->set_should_profile(true);
1392   }
1393   append(c);
1394 }
1395 
1396 
1397 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1398                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1399   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1400   if (profiled_method != NULL) {
1401     c->set_profiled_method(profiled_method);
1402     c->set_profiled_bci(profiled_bci);
1403     c->set_should_profile(true);
1404   }
1405   append(c);
1406 }
1407 
1408 
1409 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1410                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1411   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1412 }
1413 
1414 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1415                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1416   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1417 }
1418 
1419 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1420                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1421   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1422 }
1423 
1424 
1425 #ifdef PRODUCT
1426 
1427 void print_LIR(BlockList* blocks) {
1428 }
1429 
1430 #else
1431 // LIR_OprDesc
1432 void LIR_OprDesc::print() const {
1433   print(tty);
1434 }
1435 
1436 void LIR_OprDesc::print(outputStream* out) const {
1437   if (is_illegal()) {
1438     return;
1439   }
1440 
1441   out->print("[");
1442   if (is_pointer()) {
1443     pointer()->print_value_on(out);
1444   } else if (is_single_stack()) {
1445     out->print("stack:%d", single_stack_ix());
1446   } else if (is_double_stack()) {
1447     out->print("dbl_stack:%d",double_stack_ix());
1448   } else if (is_virtual()) {
1449     out->print("R%d", vreg_number());
1450   } else if (is_single_cpu()) {
1451     out->print(as_register()->name());
1452   } else if (is_double_cpu()) {
1453     out->print(as_register_hi()->name());
1454     out->print(as_register_lo()->name());
1455 #if defined(X86)
1456   } else if (is_single_xmm()) {
1457     out->print(as_xmm_float_reg()->name());
1458   } else if (is_double_xmm()) {
1459     out->print(as_xmm_double_reg()->name());
1460   } else if (is_single_fpu()) {
1461     out->print("fpu%d", fpu_regnr());
1462   } else if (is_double_fpu()) {
1463     out->print("fpu%d", fpu_regnrLo());
1464 #elif defined(ARM)
1465   } else if (is_single_fpu()) {
1466     out->print("s%d", fpu_regnr());
1467   } else if (is_double_fpu()) {
1468     out->print("d%d", fpu_regnrLo() >> 1);
1469 #else
1470   } else if (is_single_fpu()) {
1471     out->print(as_float_reg()->name());
1472   } else if (is_double_fpu()) {
1473     out->print(as_double_reg()->name());
1474 #endif
1475 
1476   } else if (is_illegal()) {
1477     out->print("-");
1478   } else {
1479     out->print("Unknown Operand");
1480   }
1481   if (!is_illegal()) {
1482     out->print("|%c", type_char());
1483   }
1484   if (is_register() && is_last_use()) {
1485     out->print("(last_use)");
1486   }
1487   out->print("]");
1488 }
1489 
1490 
1491 // LIR_Address
1492 void LIR_Const::print_value_on(outputStream* out) const {
1493   switch (type()) {
1494     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1495     case T_INT:    out->print("int:%d",   as_jint());           break;
1496     case T_LONG:   out->print("lng:%lld", as_jlong());          break;
1497     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1498     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1499     case T_OBJECT: out->print("obj:0x%x", as_jobject());        break;
1500     default:       out->print("%3d:0x%x",type(), as_jdouble()); break;
1501   }
1502 }
1503 
1504 // LIR_Address
1505 void LIR_Address::print_value_on(outputStream* out) const {
1506   out->print("Base:"); _base->print(out);
1507   if (!_index->is_illegal()) {
1508     out->print(" Index:"); _index->print(out);
1509     switch (scale()) {
1510     case times_1: break;
1511     case times_2: out->print(" * 2"); break;
1512     case times_4: out->print(" * 4"); break;
1513     case times_8: out->print(" * 8"); break;
1514     }
1515   }
1516   out->print(" Disp: %d", _disp);
1517 }
1518 
1519 // debug output of block header without InstructionPrinter
1520 //       (because phi functions are not necessary for LIR)
1521 static void print_block(BlockBegin* x) {
1522   // print block id
1523   BlockEnd* end = x->end();
1524   tty->print("B%d ", x->block_id());
1525 
1526   // print flags
1527   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1528   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1529   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1530   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1531   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1532   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1533   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1534 
1535   // print block bci range
1536   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1537 
1538   // print predecessors and successors
1539   if (x->number_of_preds() > 0) {
1540     tty->print("preds: ");
1541     for (int i = 0; i < x->number_of_preds(); i ++) {
1542       tty->print("B%d ", x->pred_at(i)->block_id());
1543     }
1544   }
1545 
1546   if (x->number_of_sux() > 0) {
1547     tty->print("sux: ");
1548     for (int i = 0; i < x->number_of_sux(); i ++) {
1549       tty->print("B%d ", x->sux_at(i)->block_id());
1550     }
1551   }
1552 
1553   // print exception handlers
1554   if (x->number_of_exception_handlers() > 0) {
1555     tty->print("xhandler: ");
1556     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1557       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1558     }
1559   }
1560 
1561   tty->cr();
1562 }
1563 
1564 void print_LIR(BlockList* blocks) {
1565   tty->print_cr("LIR:");
1566   int i;
1567   for (i = 0; i < blocks->length(); i++) {
1568     BlockBegin* bb = blocks->at(i);
1569     print_block(bb);
1570     tty->print("__id_Instruction___________________________________________"); tty->cr();
1571     bb->lir()->print_instructions();
1572   }
1573 }
1574 
1575 void LIR_List::print_instructions() {
1576   for (int i = 0; i < _operations.length(); i++) {
1577     _operations.at(i)->print(); tty->cr();
1578   }
1579   tty->cr();
1580 }
1581 
1582 // LIR_Ops printing routines
1583 // LIR_Op
1584 void LIR_Op::print_on(outputStream* out) const {
1585   if (id() != -1 || PrintCFGToFile) {
1586     out->print("%4d ", id());
1587   } else {
1588     out->print("     ");
1589   }
1590   out->print(name()); out->print(" ");
1591   print_instr(out);
1592   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1593 #ifdef ASSERT
1594   if (Verbose && _file != NULL) {
1595     out->print(" (%s:%d)", _file, _line);
1596   }
1597 #endif
1598 }
1599 
1600 const char * LIR_Op::name() const {
1601   const char* s = NULL;
1602   switch(code()) {
1603      // LIR_Op0
1604      case lir_membar:                s = "membar";        break;
1605      case lir_membar_acquire:        s = "membar_acquire"; break;
1606      case lir_membar_release:        s = "membar_release"; break;
1607      case lir_word_align:            s = "word_align";    break;
1608      case lir_label:                 s = "label";         break;
1609      case lir_nop:                   s = "nop";           break;
1610      case lir_backwardbranch_target: s = "backbranch";    break;
1611      case lir_std_entry:             s = "std_entry";     break;
1612      case lir_osr_entry:             s = "osr_entry";     break;
1613      case lir_build_frame:           s = "build_frm";     break;
1614      case lir_fpop_raw:              s = "fpop_raw";      break;
1615      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1616      case lir_reset_FPU:             s = "reset_FPU";     break;
1617      case lir_breakpoint:            s = "breakpoint";    break;
1618      case lir_get_thread:            s = "get_thread";    break;
1619      // LIR_Op1
1620      case lir_fxch:                  s = "fxch";          break;
1621      case lir_fld:                   s = "fld";           break;
1622      case lir_ffree:                 s = "ffree";         break;
1623      case lir_push:                  s = "push";          break;
1624      case lir_pop:                   s = "pop";           break;
1625      case lir_null_check:            s = "null_check";    break;
1626      case lir_return:                s = "return";        break;
1627      case lir_safepoint:             s = "safepoint";     break;
1628      case lir_neg:                   s = "neg";           break;
1629      case lir_leal:                  s = "leal";          break;
1630      case lir_branch:                s = "branch";        break;
1631      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1632      case lir_move:                  s = "move";          break;
1633      case lir_roundfp:               s = "roundfp";       break;
1634      case lir_rtcall:                s = "rtcall";        break;
1635      case lir_throw:                 s = "throw";         break;
1636      case lir_unwind:                s = "unwind";        break;
1637      case lir_convert:               s = "convert";       break;
1638      case lir_alloc_object:          s = "alloc_obj";     break;
1639      case lir_monaddr:               s = "mon_addr";      break;
1640      case lir_pack64:                s = "pack64";        break;
1641      case lir_unpack64:              s = "unpack64";      break;
1642      // LIR_Op2
1643      case lir_cmp:                   s = "cmp";           break;
1644      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1645      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1646      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1647      case lir_cmove:                 s = "cmove";         break;
1648      case lir_add:                   s = "add";           break;
1649      case lir_sub:                   s = "sub";           break;
1650      case lir_mul:                   s = "mul";           break;
1651      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1652      case lir_div:                   s = "div";           break;
1653      case lir_div_strictfp:          s = "div_strictfp";  break;
1654      case lir_rem:                   s = "rem";           break;
1655      case lir_abs:                   s = "abs";           break;
1656      case lir_sqrt:                  s = "sqrt";          break;
1657      case lir_sin:                   s = "sin";           break;
1658      case lir_cos:                   s = "cos";           break;
1659      case lir_tan:                   s = "tan";           break;
1660      case lir_log:                   s = "log";           break;
1661      case lir_log10:                 s = "log10";         break;
1662      case lir_logic_and:             s = "logic_and";     break;
1663      case lir_logic_or:              s = "logic_or";      break;
1664      case lir_logic_xor:             s = "logic_xor";     break;
1665      case lir_shl:                   s = "shift_left";    break;
1666      case lir_shr:                   s = "shift_right";   break;
1667      case lir_ushr:                  s = "ushift_right";  break;
1668      case lir_alloc_array:           s = "alloc_array";   break;
1669      // LIR_Op3
1670      case lir_idiv:                  s = "idiv";          break;
1671      case lir_irem:                  s = "irem";          break;
1672      // LIR_OpJavaCall
1673      case lir_static_call:           s = "static";        break;
1674      case lir_optvirtual_call:       s = "optvirtual";    break;
1675      case lir_icvirtual_call:        s = "icvirtual";     break;
1676      case lir_virtual_call:          s = "virtual";       break;
1677      case lir_dynamic_call:          s = "dynamic";       break;
1678      // LIR_OpArrayCopy
1679      case lir_arraycopy:             s = "arraycopy";     break;
1680      // LIR_OpLock
1681      case lir_lock:                  s = "lock";          break;
1682      case lir_unlock:                s = "unlock";        break;
1683      // LIR_OpDelay
1684      case lir_delay_slot:            s = "delay";         break;
1685      // LIR_OpTypeCheck
1686      case lir_instanceof:            s = "instanceof";    break;
1687      case lir_checkcast:             s = "checkcast";     break;
1688      case lir_store_check:           s = "store_check";   break;
1689      // LIR_OpCompareAndSwap
1690      case lir_cas_long:              s = "cas_long";      break;
1691      case lir_cas_obj:               s = "cas_obj";      break;
1692      case lir_cas_int:               s = "cas_int";      break;
1693      // LIR_OpProfileCall
1694      case lir_profile_call:          s = "profile_call";  break;
1695      case lir_none:                  ShouldNotReachHere();break;
1696     default:                         s = "illegal_op";    break;
1697   }
1698   return s;
1699 }
1700 
1701 // LIR_OpJavaCall
1702 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1703   out->print("call: ");
1704   out->print("[addr: 0x%x]", address());
1705   if (receiver()->is_valid()) {
1706     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1707   }
1708   if (result_opr()->is_valid()) {
1709     out->print(" [result: "); result_opr()->print(out); out->print("]");
1710   }
1711 }
1712 
1713 // LIR_OpLabel
1714 void LIR_OpLabel::print_instr(outputStream* out) const {
1715   out->print("[label:0x%x]", _label);
1716 }
1717 
1718 // LIR_OpArrayCopy
1719 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1720   src()->print(out);     out->print(" ");
1721   src_pos()->print(out); out->print(" ");
1722   dst()->print(out);     out->print(" ");
1723   dst_pos()->print(out); out->print(" ");
1724   length()->print(out);  out->print(" ");
1725   tmp()->print(out);     out->print(" ");
1726 }
1727 
1728 // LIR_OpCompareAndSwap
1729 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1730   addr()->print(out);      out->print(" ");
1731   cmp_value()->print(out); out->print(" ");
1732   new_value()->print(out); out->print(" ");
1733   tmp1()->print(out);      out->print(" ");
1734   tmp2()->print(out);      out->print(" ");
1735 
1736 }
1737 
1738 // LIR_Op0
1739 void LIR_Op0::print_instr(outputStream* out) const {
1740   result_opr()->print(out);
1741 }
1742 
1743 // LIR_Op1
1744 const char * LIR_Op1::name() const {
1745   if (code() == lir_move) {
1746     switch (move_kind()) {
1747     case lir_move_normal:
1748       return "move";
1749     case lir_move_unaligned:
1750       return "unaligned move";
1751     case lir_move_volatile:
1752       return "volatile_move";
1753     case lir_move_wide:
1754       return "wide_move";
1755     default:
1756       ShouldNotReachHere();
1757     return "illegal_op";
1758     }
1759   } else {
1760     return LIR_Op::name();
1761   }
1762 }
1763 
1764 
1765 void LIR_Op1::print_instr(outputStream* out) const {
1766   _opr->print(out);         out->print(" ");
1767   result_opr()->print(out); out->print(" ");
1768   print_patch_code(out, patch_code());
1769 }
1770 
1771 
1772 // LIR_Op1
1773 void LIR_OpRTCall::print_instr(outputStream* out) const {
1774   intx a = (intx)addr();
1775   out->print(Runtime1::name_for_address(addr()));
1776   out->print(" ");
1777   tmp()->print(out);
1778 }
1779 
1780 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1781   switch(code) {
1782     case lir_patch_none:                                 break;
1783     case lir_patch_low:    out->print("[patch_low]");    break;
1784     case lir_patch_high:   out->print("[patch_high]");   break;
1785     case lir_patch_normal: out->print("[patch_normal]"); break;
1786     default: ShouldNotReachHere();
1787   }
1788 }
1789 
1790 // LIR_OpBranch
1791 void LIR_OpBranch::print_instr(outputStream* out) const {
1792   print_condition(out, cond());             out->print(" ");
1793   if (block() != NULL) {
1794     out->print("[B%d] ", block()->block_id());
1795   } else if (stub() != NULL) {
1796     out->print("[");
1797     stub()->print_name(out);
1798     out->print(": 0x%x]", stub());
1799     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1800   } else {
1801     out->print("[label:0x%x] ", label());
1802   }
1803   if (ublock() != NULL) {
1804     out->print("unordered: [B%d] ", ublock()->block_id());
1805   }
1806 }
1807 
1808 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1809   switch(cond) {
1810     case lir_cond_equal:           out->print("[EQ]");      break;
1811     case lir_cond_notEqual:        out->print("[NE]");      break;
1812     case lir_cond_less:            out->print("[LT]");      break;
1813     case lir_cond_lessEqual:       out->print("[LE]");      break;
1814     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1815     case lir_cond_greater:         out->print("[GT]");      break;
1816     case lir_cond_belowEqual:      out->print("[BE]");      break;
1817     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1818     case lir_cond_always:          out->print("[AL]");      break;
1819     default:                       out->print("[%d]",cond); break;
1820   }
1821 }
1822 
1823 // LIR_OpConvert
1824 void LIR_OpConvert::print_instr(outputStream* out) const {
1825   print_bytecode(out, bytecode());
1826   in_opr()->print(out);                  out->print(" ");
1827   result_opr()->print(out);              out->print(" ");
1828 #ifdef PPC
1829   if(tmp1()->is_valid()) {
1830     tmp1()->print(out); out->print(" ");
1831     tmp2()->print(out); out->print(" ");
1832   }
1833 #endif
1834 }
1835 
1836 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1837   switch(code) {
1838     case Bytecodes::_d2f: out->print("[d2f] "); break;
1839     case Bytecodes::_d2i: out->print("[d2i] "); break;
1840     case Bytecodes::_d2l: out->print("[d2l] "); break;
1841     case Bytecodes::_f2d: out->print("[f2d] "); break;
1842     case Bytecodes::_f2i: out->print("[f2i] "); break;
1843     case Bytecodes::_f2l: out->print("[f2l] "); break;
1844     case Bytecodes::_i2b: out->print("[i2b] "); break;
1845     case Bytecodes::_i2c: out->print("[i2c] "); break;
1846     case Bytecodes::_i2d: out->print("[i2d] "); break;
1847     case Bytecodes::_i2f: out->print("[i2f] "); break;
1848     case Bytecodes::_i2l: out->print("[i2l] "); break;
1849     case Bytecodes::_i2s: out->print("[i2s] "); break;
1850     case Bytecodes::_l2i: out->print("[l2i] "); break;
1851     case Bytecodes::_l2f: out->print("[l2f] "); break;
1852     case Bytecodes::_l2d: out->print("[l2d] "); break;
1853     default:
1854       out->print("[?%d]",code);
1855     break;
1856   }
1857 }
1858 
1859 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1860   klass()->print(out);                      out->print(" ");
1861   obj()->print(out);                        out->print(" ");
1862   tmp1()->print(out);                       out->print(" ");
1863   tmp2()->print(out);                       out->print(" ");
1864   tmp3()->print(out);                       out->print(" ");
1865   tmp4()->print(out);                       out->print(" ");
1866   out->print("[hdr:%d]", header_size()); out->print(" ");
1867   out->print("[obj:%d]", object_size()); out->print(" ");
1868   out->print("[lbl:0x%x]", stub()->entry());
1869 }
1870 
1871 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1872   _opr->print(out);         out->print(" ");
1873   tmp()->print(out);        out->print(" ");
1874   result_opr()->print(out); out->print(" ");
1875 }
1876 
1877 // LIR_Op2
1878 void LIR_Op2::print_instr(outputStream* out) const {
1879   if (code() == lir_cmove) {
1880     print_condition(out, condition());         out->print(" ");
1881   }
1882   in_opr1()->print(out);    out->print(" ");
1883   in_opr2()->print(out);    out->print(" ");
1884   if (tmp_opr()->is_valid()) { tmp_opr()->print(out);    out->print(" "); }
1885   result_opr()->print(out);
1886 }
1887 
1888 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1889   klass()->print(out);                   out->print(" ");
1890   len()->print(out);                     out->print(" ");
1891   obj()->print(out);                     out->print(" ");
1892   tmp1()->print(out);                    out->print(" ");
1893   tmp2()->print(out);                    out->print(" ");
1894   tmp3()->print(out);                    out->print(" ");
1895   tmp4()->print(out);                    out->print(" ");
1896   out->print("[type:0x%x]", type());     out->print(" ");
1897   out->print("[label:0x%x]", stub()->entry());
1898 }
1899 
1900 
1901 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
1902   object()->print(out);                  out->print(" ");
1903   if (code() == lir_store_check) {
1904     array()->print(out);                 out->print(" ");
1905   }
1906   if (code() != lir_store_check) {
1907     klass()->print_name_on(out);         out->print(" ");
1908     if (fast_check())                 out->print("fast_check ");
1909   }
1910   tmp1()->print(out);                    out->print(" ");
1911   tmp2()->print(out);                    out->print(" ");
1912   tmp3()->print(out);                    out->print(" ");
1913   result_opr()->print(out);              out->print(" ");
1914   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
1915 }
1916 
1917 
1918 // LIR_Op3
1919 void LIR_Op3::print_instr(outputStream* out) const {
1920   in_opr1()->print(out);    out->print(" ");
1921   in_opr2()->print(out);    out->print(" ");
1922   in_opr3()->print(out);    out->print(" ");
1923   result_opr()->print(out);
1924 }
1925 
1926 
1927 void LIR_OpLock::print_instr(outputStream* out) const {
1928   hdr_opr()->print(out);   out->print(" ");
1929   obj_opr()->print(out);   out->print(" ");
1930   lock_opr()->print(out);  out->print(" ");
1931   if (_scratch->is_valid()) {
1932     _scratch->print(out);  out->print(" ");
1933   }
1934   out->print("[lbl:0x%x]", stub()->entry());
1935 }
1936 
1937 
1938 void LIR_OpDelay::print_instr(outputStream* out) const {
1939   _op->print_on(out);
1940 }
1941 
1942 
1943 // LIR_OpProfileCall
1944 void LIR_OpProfileCall::print_instr(outputStream* out) const {
1945   profiled_method()->name()->print_symbol_on(out);
1946   out->print(".");
1947   profiled_method()->holder()->name()->print_symbol_on(out);
1948   out->print(" @ %d ", profiled_bci());
1949   mdo()->print(out);           out->print(" ");
1950   recv()->print(out);          out->print(" ");
1951   tmp1()->print(out);          out->print(" ");
1952 }
1953 
1954 #endif // PRODUCT
1955 
1956 // Implementation of LIR_InsertionBuffer
1957 
1958 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
1959   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
1960 
1961   int i = number_of_insertion_points() - 1;
1962   if (i < 0 || index_at(i) < index) {
1963     append_new(index, 1);
1964   } else {
1965     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
1966     assert(count_at(i) > 0, "check");
1967     set_count_at(i, count_at(i) + 1);
1968   }
1969   _ops.push(op);
1970 
1971   DEBUG_ONLY(verify());
1972 }
1973 
1974 #ifdef ASSERT
1975 void LIR_InsertionBuffer::verify() {
1976   int sum = 0;
1977   int prev_idx = -1;
1978 
1979   for (int i = 0; i < number_of_insertion_points(); i++) {
1980     assert(prev_idx < index_at(i), "index must be ordered ascending");
1981     sum += count_at(i);
1982   }
1983   assert(sum == number_of_ops(), "wrong total sum");
1984 }
1985 #endif