1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciCPCache.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #ifndef SERIALGC
  39 #include "gc_implementation/g1/heapRegion.hpp"
  40 #endif
  41 
  42 #ifdef ASSERT
  43 #define __ gen()->lir(__FILE__, __LINE__)->
  44 #else
  45 #define __ gen()->lir()->
  46 #endif
  47 
  48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  49 #ifdef ARM
  50 #define PATCHED_ADDR  (204)
  51 #else
  52 #define PATCHED_ADDR  (max_jint)
  53 #endif
  54 
  55 void PhiResolverState::reset(int max_vregs) {
  56   // Initialize array sizes
  57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  58   _virtual_operands.trunc_to(0);
  59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _other_operands.trunc_to(0);
  61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _vreg_table.trunc_to(0);
  63 }
  64 
  65 
  66 
  67 //--------------------------------------------------------------
  68 // PhiResolver
  69 
  70 // Resolves cycles:
  71 //
  72 //  r1 := r2  becomes  temp := r1
  73 //  r2 := r1           r1 := r2
  74 //                     r2 := temp
  75 // and orders moves:
  76 //
  77 //  r2 := r3  becomes  r1 := r2
  78 //  r1 := r2           r2 := r3
  79 
  80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  81  : _gen(gen)
  82  , _state(gen->resolver_state())
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset(max_vregs);
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == NULL, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != NULL) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands()[i];
 149     if (!node->visited()) {
 150       _loop = NULL;
 151       move(NULL, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands()[i];
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, NULL);
 172     assert(node == NULL || node->operand() == opr, "");
 173     if (node == NULL) {
 174       node = new ResolveNode(opr);
 175       vreg_table()[vreg_num] = node;
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208   if (opr->is_virtual()) {
 209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 210   }
 211 
 212   _result = opr;
 213 }
 214 
 215 void LIRItem::load_item() {
 216   if (result()->is_illegal()) {
 217     // update the items result
 218     _result = value()->operand();
 219   }
 220   if (!result()->is_register()) {
 221     LIR_Opr reg = _gen->new_register(value()->type());
 222     __ move(result(), reg);
 223     if (result()->is_constant()) {
 224       _result = reg;
 225     } else {
 226       set_result(reg);
 227     }
 228   }
 229 }
 230 
 231 
 232 void LIRItem::load_for_store(BasicType type) {
 233   if (_gen->can_store_as_constant(value(), type)) {
 234     _result = value()->operand();
 235     if (!_result->is_constant()) {
 236       _result = LIR_OprFact::value_type(value()->type());
 237     }
 238   } else if (type == T_BYTE || type == T_BOOLEAN) {
 239     load_byte_item();
 240   } else {
 241     load_item();
 242   }
 243 }
 244 
 245 void LIRItem::load_item_force(LIR_Opr reg) {
 246   LIR_Opr r = result();
 247   if (r != reg) {
 248 #if !defined(ARM) && !defined(E500V2)
 249     if (r->type() != reg->type()) {
 250       // moves between different types need an intervening spill slot
 251       r = _gen->force_to_spill(r, reg->type());
 252     }
 253 #endif
 254     __ move(r, reg);
 255     _result = reg;
 256   }
 257 }
 258 
 259 ciObject* LIRItem::get_jobject_constant() const {
 260   ObjectType* oc = type()->as_ObjectType();
 261   if (oc) {
 262     return oc->constant_value();
 263   }
 264   return NULL;
 265 }
 266 
 267 
 268 jint LIRItem::get_jint_constant() const {
 269   assert(is_constant() && value() != NULL, "");
 270   assert(type()->as_IntConstant() != NULL, "type check");
 271   return type()->as_IntConstant()->value();
 272 }
 273 
 274 
 275 jint LIRItem::get_address_constant() const {
 276   assert(is_constant() && value() != NULL, "");
 277   assert(type()->as_AddressConstant() != NULL, "type check");
 278   return type()->as_AddressConstant()->value();
 279 }
 280 
 281 
 282 jfloat LIRItem::get_jfloat_constant() const {
 283   assert(is_constant() && value() != NULL, "");
 284   assert(type()->as_FloatConstant() != NULL, "type check");
 285   return type()->as_FloatConstant()->value();
 286 }
 287 
 288 
 289 jdouble LIRItem::get_jdouble_constant() const {
 290   assert(is_constant() && value() != NULL, "");
 291   assert(type()->as_DoubleConstant() != NULL, "type check");
 292   return type()->as_DoubleConstant()->value();
 293 }
 294 
 295 
 296 jlong LIRItem::get_jlong_constant() const {
 297   assert(is_constant() && value() != NULL, "");
 298   assert(type()->as_LongConstant() != NULL, "type check");
 299   return type()->as_LongConstant()->value();
 300 }
 301 
 302 
 303 
 304 //--------------------------------------------------------------
 305 
 306 
 307 void LIRGenerator::init() {
 308   _bs = Universe::heap()->barrier_set();
 309 }
 310 
 311 
 312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 313 #ifndef PRODUCT
 314   if (PrintIRWithLIR) {
 315     block->print();
 316   }
 317 #endif
 318 
 319   // set up the list of LIR instructions
 320   assert(block->lir() == NULL, "LIR list already computed for this block");
 321   _lir = new LIR_List(compilation(), block);
 322   block->set_lir(_lir);
 323 
 324   __ branch_destination(block->label());
 325 
 326   if (LIRTraceExecution &&
 327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 328       !block->is_set(BlockBegin::exception_entry_flag)) {
 329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 330     trace_block_entry(block);
 331   }
 332 }
 333 
 334 
 335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 336 #ifndef PRODUCT
 337   if (PrintIRWithLIR) {
 338     tty->cr();
 339   }
 340 #endif
 341 
 342   // LIR_Opr for unpinned constants shouldn't be referenced by other
 343   // blocks so clear them out after processing the block.
 344   for (int i = 0; i < _unpinned_constants.length(); i++) {
 345     _unpinned_constants.at(i)->clear_operand();
 346   }
 347   _unpinned_constants.trunc_to(0);
 348 
 349   // clear our any registers for other local constants
 350   _constants.trunc_to(0);
 351   _reg_for_constants.trunc_to(0);
 352 }
 353 
 354 
 355 void LIRGenerator::block_do(BlockBegin* block) {
 356   CHECK_BAILOUT();
 357 
 358   block_do_prolog(block);
 359   set_block(block);
 360 
 361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 362     if (instr->is_pinned()) do_root(instr);
 363   }
 364 
 365   set_block(NULL);
 366   block_do_epilog(block);
 367 }
 368 
 369 
 370 //-------------------------LIRGenerator-----------------------------
 371 
 372 // This is where the tree-walk starts; instr must be root;
 373 void LIRGenerator::do_root(Value instr) {
 374   CHECK_BAILOUT();
 375 
 376   InstructionMark im(compilation(), instr);
 377 
 378   assert(instr->is_pinned(), "use only with roots");
 379   assert(instr->subst() == instr, "shouldn't have missed substitution");
 380 
 381   instr->visit(this);
 382 
 383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 385 }
 386 
 387 
 388 // This is called for each node in tree; the walk stops if a root is reached
 389 void LIRGenerator::walk(Value instr) {
 390   InstructionMark im(compilation(), instr);
 391   //stop walk when encounter a root
 392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 394   } else {
 395     assert(instr->subst() == instr, "shouldn't have missed substitution");
 396     instr->visit(this);
 397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 398   }
 399 }
 400 
 401 
 402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 403   assert(state != NULL, "state must be defined");
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
 465   if (!obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ oop2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ oop2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index, true);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool    did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           int c = right->as_jint();
 540           if (is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597   if (TwoOperandLIRForm && value != result_op) {
 598     assert(count != result_op, "malformed");
 599     __ move(value, result_op);
 600     value = result_op;
 601   }
 602 
 603   assert(count->is_constant() || count->is_register(), "must be");
 604   switch(code) {
 605   case Bytecodes::_ishl:
 606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 607   case Bytecodes::_ishr:
 608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 609   case Bytecodes::_iushr:
 610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 611   default: ShouldNotReachHere();
 612   }
 613 }
 614 
 615 
 616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 617   if (TwoOperandLIRForm && left_op != result_op) {
 618     assert(right_op != result_op, "malformed");
 619     __ move(left_op, result_op);
 620     left_op = result_op;
 621   }
 622 
 623   switch(code) {
 624     case Bytecodes::_iand:
 625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 626 
 627     case Bytecodes::_ior:
 628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 629 
 630     case Bytecodes::_ixor:
 631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 632 
 633     default: ShouldNotReachHere();
 634   }
 635 }
 636 
 637 
 638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 639   if (!GenerateSynchronizationCode) return;
 640   // for slow path, use debug info for state after successful locking
 641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 642   __ load_stack_address_monitor(monitor_no, lock);
 643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 645 }
 646 
 647 
 648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 649   if (!GenerateSynchronizationCode) return;
 650   // setup registers
 651   LIR_Opr hdr = lock;
 652   lock = new_hdr;
 653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 654   __ load_stack_address_monitor(monitor_no, lock);
 655   __ unlock_object(hdr, object, lock, scratch, slow_path);
 656 }
 657 
 658 
 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 660   jobject2reg_with_patching(klass_reg, klass, info);
 661   // If klass is not loaded we do not know if the klass has finalizers:
 662   if (UseFastNewInstance && klass->is_loaded()
 663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 664 
 665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 666 
 667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 668 
 669     assert(klass->is_loaded(), "must be loaded");
 670     // allocate space for instance
 671     assert(klass->size_helper() >= 0, "illegal instance size");
 672     const int instance_size = align_object_size(klass->size_helper());
 673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 675   } else {
 676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 678     __ branch_destination(slow_path->continuation());
 679   }
 680 }
 681 
 682 
 683 static bool is_constant_zero(Instruction* inst) {
 684   IntConstant* c = inst->type()->as_IntConstant();
 685   if (c) {
 686     return (c->value() == 0);
 687   }
 688   return false;
 689 }
 690 
 691 
 692 static bool positive_constant(Instruction* inst) {
 693   IntConstant* c = inst->type()->as_IntConstant();
 694   if (c) {
 695     return (c->value() >= 0);
 696   }
 697   return false;
 698 }
 699 
 700 
 701 static ciArrayKlass* as_array_klass(ciType* type) {
 702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 703     return (ciArrayKlass*)type;
 704   } else {
 705     return NULL;
 706   }
 707 }
 708 
 709 static Value maxvalue(IfOp* ifop) {
 710   switch (ifop->cond()) {
 711     case If::eql: return NULL;
 712     case If::neq: return NULL;
 713     case If::lss: // x <  y ? x : y
 714     case If::leq: // x <= y ? x : y
 715       if (ifop->x() == ifop->tval() &&
 716           ifop->y() == ifop->fval()) return ifop->y();
 717       return NULL;
 718 
 719     case If::gtr: // x >  y ? y : x
 720     case If::geq: // x >= y ? y : x
 721       if (ifop->x() == ifop->tval() &&
 722           ifop->y() == ifop->fval()) return ifop->y();
 723       return NULL;
 724 
 725   }
 726 }
 727 
 728 static ciType* phi_declared_type(Phi* phi) {
 729   ciType* t = phi->operand_at(0)->declared_type();
 730   if (t == NULL) {
 731     return NULL;
 732   }
 733   for(int i = 1; i < phi->operand_count(); i++) {
 734     if (t != phi->operand_at(i)->declared_type()) {
 735       return NULL;
 736     }
 737   }
 738   return t;
 739 }
 740 
 741 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 742   Instruction* src     = x->argument_at(0);
 743   Instruction* src_pos = x->argument_at(1);
 744   Instruction* dst     = x->argument_at(2);
 745   Instruction* dst_pos = x->argument_at(3);
 746   Instruction* length  = x->argument_at(4);
 747 
 748   // first try to identify the likely type of the arrays involved
 749   ciArrayKlass* expected_type = NULL;
 750   bool is_exact = false, src_objarray = false, dst_objarray = false;
 751   {
 752     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 753     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 754     Phi* phi;
 755     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 756       src_declared_type = as_array_klass(phi_declared_type(phi));
 757     }
 758     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 759     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 760     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 761       dst_declared_type = as_array_klass(phi_declared_type(phi));
 762     }
 763 
 764     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 765       // the types exactly match so the type is fully known
 766       is_exact = true;
 767       expected_type = src_exact_type;
 768     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 769       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 770       ciArrayKlass* src_type = NULL;
 771       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 772         src_type = (ciArrayKlass*) src_exact_type;
 773       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 774         src_type = (ciArrayKlass*) src_declared_type;
 775       }
 776       if (src_type != NULL) {
 777         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 778           is_exact = true;
 779           expected_type = dst_type;
 780         }
 781       }
 782     }
 783     // at least pass along a good guess
 784     if (expected_type == NULL) expected_type = dst_exact_type;
 785     if (expected_type == NULL) expected_type = src_declared_type;
 786     if (expected_type == NULL) expected_type = dst_declared_type;
 787 
 788     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 789     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 790   }
 791 
 792   // if a probable array type has been identified, figure out if any
 793   // of the required checks for a fast case can be elided.
 794   int flags = LIR_OpArrayCopy::all_flags;
 795 
 796   if (!src_objarray)
 797     flags &= ~LIR_OpArrayCopy::src_objarray;
 798   if (!dst_objarray)
 799     flags &= ~LIR_OpArrayCopy::dst_objarray;
 800 
 801   if (!x->arg_needs_null_check(0))
 802     flags &= ~LIR_OpArrayCopy::src_null_check;
 803   if (!x->arg_needs_null_check(2))
 804     flags &= ~LIR_OpArrayCopy::dst_null_check;
 805 
 806 
 807   if (expected_type != NULL) {
 808     Value length_limit = NULL;
 809 
 810     IfOp* ifop = length->as_IfOp();
 811     if (ifop != NULL) {
 812       // look for expressions like min(v, a.length) which ends up as
 813       //   x > y ? y : x  or  x >= y ? y : x
 814       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 815           ifop->x() == ifop->fval() &&
 816           ifop->y() == ifop->tval()) {
 817         length_limit = ifop->y();
 818       }
 819     }
 820 
 821     // try to skip null checks and range checks
 822     NewArray* src_array = src->as_NewArray();
 823     if (src_array != NULL) {
 824       flags &= ~LIR_OpArrayCopy::src_null_check;
 825       if (length_limit != NULL &&
 826           src_array->length() == length_limit &&
 827           is_constant_zero(src_pos)) {
 828         flags &= ~LIR_OpArrayCopy::src_range_check;
 829       }
 830     }
 831 
 832     NewArray* dst_array = dst->as_NewArray();
 833     if (dst_array != NULL) {
 834       flags &= ~LIR_OpArrayCopy::dst_null_check;
 835       if (length_limit != NULL &&
 836           dst_array->length() == length_limit &&
 837           is_constant_zero(dst_pos)) {
 838         flags &= ~LIR_OpArrayCopy::dst_range_check;
 839       }
 840     }
 841 
 842     // check from incoming constant values
 843     if (positive_constant(src_pos))
 844       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 845     if (positive_constant(dst_pos))
 846       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 847     if (positive_constant(length))
 848       flags &= ~LIR_OpArrayCopy::length_positive_check;
 849 
 850     // see if the range check can be elided, which might also imply
 851     // that src or dst is non-null.
 852     ArrayLength* al = length->as_ArrayLength();
 853     if (al != NULL) {
 854       if (al->array() == src) {
 855         // it's the length of the source array
 856         flags &= ~LIR_OpArrayCopy::length_positive_check;
 857         flags &= ~LIR_OpArrayCopy::src_null_check;
 858         if (is_constant_zero(src_pos))
 859           flags &= ~LIR_OpArrayCopy::src_range_check;
 860       }
 861       if (al->array() == dst) {
 862         // it's the length of the destination array
 863         flags &= ~LIR_OpArrayCopy::length_positive_check;
 864         flags &= ~LIR_OpArrayCopy::dst_null_check;
 865         if (is_constant_zero(dst_pos))
 866           flags &= ~LIR_OpArrayCopy::dst_range_check;
 867       }
 868     }
 869     if (is_exact) {
 870       flags &= ~LIR_OpArrayCopy::type_check;
 871     }
 872   }
 873 
 874   IntConstant* src_int = src_pos->type()->as_IntConstant();
 875   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 876   if (src_int && dst_int) {
 877     int s_offs = src_int->value();
 878     int d_offs = dst_int->value();
 879     if (src_int->value() >= dst_int->value()) {
 880       flags &= ~LIR_OpArrayCopy::overlapping;
 881     }
 882     if (expected_type != NULL) {
 883       BasicType t = expected_type->element_type()->basic_type();
 884       int element_size = type2aelembytes(t);
 885       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 886           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 887         flags &= ~LIR_OpArrayCopy::unaligned;
 888       }
 889     }
 890   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 891     // src and dest positions are the same, or dst is zero so assume
 892     // nonoverlapping copy.
 893     flags &= ~LIR_OpArrayCopy::overlapping;
 894   }
 895 
 896   if (src == dst) {
 897     // moving within a single array so no type checks are needed
 898     if (flags & LIR_OpArrayCopy::type_check) {
 899       flags &= ~LIR_OpArrayCopy::type_check;
 900     }
 901   }
 902   *flagsp = flags;
 903   *expected_typep = (ciArrayKlass*)expected_type;
 904 }
 905 
 906 
 907 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 908   assert(opr->is_register(), "why spill if item is not register?");
 909 
 910   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 911     LIR_Opr result = new_register(T_FLOAT);
 912     set_vreg_flag(result, must_start_in_memory);
 913     assert(opr->is_register(), "only a register can be spilled");
 914     assert(opr->value_type()->is_float(), "rounding only for floats available");
 915     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 916     return result;
 917   }
 918   return opr;
 919 }
 920 
 921 
 922 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 923   assert(type2size[t] == type2size[value->type()], "size mismatch");
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_OBJECT);
 958     __ oop2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     LIR_Opr operand = cur_val->operand();
1000     if (cur_val->operand()->is_illegal()) {
1001       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1002              "these can be produced lazily");
1003       operand = operand_for_instruction(cur_val);
1004     }
1005     resolver->move(operand, operand_for_instruction(phi));
1006   }
1007 }
1008 
1009 
1010 // Moves all stack values into their PHI position
1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1012   BlockBegin* bb = block();
1013   if (bb->number_of_sux() == 1) {
1014     BlockBegin* sux = bb->sux_at(0);
1015     assert(sux->number_of_preds() > 0, "invalid CFG");
1016 
1017     // a block with only one predecessor never has phi functions
1018     if (sux->number_of_preds() > 1) {
1019       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1020       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1021 
1022       ValueStack* sux_state = sux->state();
1023       Value sux_value;
1024       int index;
1025 
1026       assert(cur_state->scope() == sux_state->scope(), "not matching");
1027       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1028       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1029 
1030       for_each_stack_value(sux_state, index, sux_value) {
1031         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1032       }
1033 
1034       for_each_local_value(sux_state, index, sux_value) {
1035         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1036       }
1037 
1038       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1039     }
1040   }
1041 }
1042 
1043 
1044 LIR_Opr LIRGenerator::new_register(BasicType type) {
1045   int vreg = _virtual_register_number;
1046   // add a little fudge factor for the bailout, since the bailout is
1047   // only checked periodically.  This gives a few extra registers to
1048   // hand out before we really run out, which helps us keep from
1049   // tripping over assertions.
1050   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1051     bailout("out of virtual registers");
1052     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1053       // wrap it around
1054       _virtual_register_number = LIR_OprDesc::vreg_base;
1055     }
1056   }
1057   _virtual_register_number += 1;
1058   return LIR_OprFact::virtual_register(vreg, type);
1059 }
1060 
1061 
1062 // Try to lock using register in hint
1063 LIR_Opr LIRGenerator::rlock(Value instr) {
1064   return new_register(instr->type());
1065 }
1066 
1067 
1068 // does an rlock and sets result
1069 LIR_Opr LIRGenerator::rlock_result(Value x) {
1070   LIR_Opr reg = rlock(x);
1071   set_result(x, reg);
1072   return reg;
1073 }
1074 
1075 
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1078   LIR_Opr reg;
1079   switch (type) {
1080   case T_BYTE:
1081   case T_BOOLEAN:
1082     reg = rlock_byte(type);
1083     break;
1084   default:
1085     reg = rlock(x);
1086     break;
1087   }
1088 
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 //---------------------------------------------------------------------
1095 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1096   ObjectType* oc = value->type()->as_ObjectType();
1097   if (oc) {
1098     return oc->constant_value();
1099   }
1100   return NULL;
1101 }
1102 
1103 
1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1105   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1106   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1107 
1108   // no moves are created for phi functions at the begin of exception
1109   // handlers, so assign operands manually here
1110   for_each_phi_fun(block(), phi,
1111                    operand_for_instruction(phi));
1112 
1113   LIR_Opr thread_reg = getThreadPointer();
1114   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1115                exceptionOopOpr());
1116   __ move_wide(LIR_OprFact::oopConst(NULL),
1117                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1118   __ move_wide(LIR_OprFact::oopConst(NULL),
1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1120 
1121   LIR_Opr result = new_register(T_OBJECT);
1122   __ move(exceptionOopOpr(), result);
1123   set_result(x, result);
1124 }
1125 
1126 
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //                        visitor functions
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 
1137 void LIRGenerator::do_Phi(Phi* x) {
1138   // phi functions are never visited directly
1139   ShouldNotReachHere();
1140 }
1141 
1142 
1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1144 void LIRGenerator::do_Constant(Constant* x) {
1145   if (x->state_before() != NULL) {
1146     // Any constant with a ValueStack requires patching so emit the patch here
1147     LIR_Opr reg = rlock_result(x);
1148     CodeEmitInfo* info = state_for(x, x->state_before());
1149     __ oop2reg_patch(NULL, reg, info);
1150   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1151     if (!x->is_pinned()) {
1152       // unpinned constants are handled specially so that they can be
1153       // put into registers when they are used multiple times within a
1154       // block.  After the block completes their operand will be
1155       // cleared so that other blocks can't refer to that register.
1156       set_result(x, load_constant(x));
1157     } else {
1158       LIR_Opr res = x->operand();
1159       if (!res->is_valid()) {
1160         res = LIR_OprFact::value_type(x->type());
1161       }
1162       if (res->is_constant()) {
1163         LIR_Opr reg = rlock_result(x);
1164         __ move(res, reg);
1165       } else {
1166         set_result(x, res);
1167       }
1168     }
1169   } else {
1170     set_result(x, LIR_OprFact::value_type(x->type()));
1171   }
1172 }
1173 
1174 
1175 void LIRGenerator::do_Local(Local* x) {
1176   // operand_for_instruction has the side effect of setting the result
1177   // so there's no need to do it here.
1178   operand_for_instruction(x);
1179 }
1180 
1181 
1182 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1183   Unimplemented();
1184 }
1185 
1186 
1187 void LIRGenerator::do_Return(Return* x) {
1188   if (compilation()->env()->dtrace_method_probes()) {
1189     BasicTypeList signature;
1190     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1191     signature.append(T_OBJECT); // methodOop
1192     LIR_OprList* args = new LIR_OprList();
1193     args->append(getThreadPointer());
1194     LIR_Opr meth = new_register(T_OBJECT);
1195     __ oop2reg(method()->constant_encoding(), meth);
1196     args->append(meth);
1197     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1198   }
1199 
1200   if (x->type()->is_void()) {
1201     __ return_op(LIR_OprFact::illegalOpr);
1202   } else {
1203     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1204     LIRItem result(x->result(), this);
1205 
1206     result.load_item_force(reg);
1207     __ return_op(result.result());
1208   }
1209   set_no_result(x);
1210 }
1211 
1212 // Examble: ref.get()
1213 // Combination of LoadField and g1 pre-write barrier
1214 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1215 
1216   const int referent_offset = java_lang_ref_Reference::referent_offset;
1217   guarantee(referent_offset > 0, "referent offset not initialized");
1218 
1219   assert(x->number_of_arguments() == 1, "wrong type");
1220 
1221   LIRItem reference(x->argument_at(0), this);
1222   reference.load_item();
1223 
1224   // need to perform the null check on the reference objecy
1225   CodeEmitInfo* info = NULL;
1226   if (x->needs_null_check()) {
1227     info = state_for(x);
1228   }
1229 
1230   LIR_Address* referent_field_adr =
1231     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1232 
1233   LIR_Opr result = rlock_result(x);
1234 
1235   __ load(referent_field_adr, result, info);
1236 
1237   // Register the value in the referent field with the pre-barrier
1238   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1239               result /* pre_val */,
1240               false  /* do_load */,
1241               false  /* patch */,
1242               NULL   /* info */);
1243 }
1244 
1245 // Example: object.getClass ()
1246 void LIRGenerator::do_getClass(Intrinsic* x) {
1247   assert(x->number_of_arguments() == 1, "wrong type");
1248 
1249   LIRItem rcvr(x->argument_at(0), this);
1250   rcvr.load_item();
1251   LIR_Opr result = rlock_result(x);
1252 
1253   // need to perform the null check on the rcvr
1254   CodeEmitInfo* info = NULL;
1255   if (x->needs_null_check()) {
1256     info = state_for(x);
1257   }
1258   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1259   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1260 }
1261 
1262 
1263 // Example: Thread.currentThread()
1264 void LIRGenerator::do_currentThread(Intrinsic* x) {
1265   assert(x->number_of_arguments() == 0, "wrong type");
1266   LIR_Opr reg = rlock_result(x);
1267   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1268 }
1269 
1270 
1271 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1272   assert(x->number_of_arguments() == 1, "wrong type");
1273   LIRItem receiver(x->argument_at(0), this);
1274 
1275   receiver.load_item();
1276   BasicTypeList signature;
1277   signature.append(T_OBJECT); // receiver
1278   LIR_OprList* args = new LIR_OprList();
1279   args->append(receiver.result());
1280   CodeEmitInfo* info = state_for(x, x->state());
1281   call_runtime(&signature, args,
1282                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1283                voidType, info);
1284 
1285   set_no_result(x);
1286 }
1287 
1288 
1289 //------------------------local access--------------------------------------
1290 
1291 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1292   if (x->operand()->is_illegal()) {
1293     Constant* c = x->as_Constant();
1294     if (c != NULL) {
1295       x->set_operand(LIR_OprFact::value_type(c->type()));
1296     } else {
1297       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1298       // allocate a virtual register for this local or phi
1299       x->set_operand(rlock(x));
1300       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1301     }
1302   }
1303   return x->operand();
1304 }
1305 
1306 
1307 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1308   if (opr->is_virtual()) {
1309     return instruction_for_vreg(opr->vreg_number());
1310   }
1311   return NULL;
1312 }
1313 
1314 
1315 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1316   if (reg_num < _instruction_for_operand.length()) {
1317     return _instruction_for_operand.at(reg_num);
1318   }
1319   return NULL;
1320 }
1321 
1322 
1323 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1324   if (_vreg_flags.size_in_bits() == 0) {
1325     BitMap2D temp(100, num_vreg_flags);
1326     temp.clear();
1327     _vreg_flags = temp;
1328   }
1329   _vreg_flags.at_put_grow(vreg_num, f, true);
1330 }
1331 
1332 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1333   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1334     return false;
1335   }
1336   return _vreg_flags.at(vreg_num, f);
1337 }
1338 
1339 
1340 // Block local constant handling.  This code is useful for keeping
1341 // unpinned constants and constants which aren't exposed in the IR in
1342 // registers.  Unpinned Constant instructions have their operands
1343 // cleared when the block is finished so that other blocks can't end
1344 // up referring to their registers.
1345 
1346 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1347   assert(!x->is_pinned(), "only for unpinned constants");
1348   _unpinned_constants.append(x);
1349   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1350 }
1351 
1352 
1353 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1354   BasicType t = c->type();
1355   for (int i = 0; i < _constants.length(); i++) {
1356     LIR_Const* other = _constants.at(i);
1357     if (t == other->type()) {
1358       switch (t) {
1359       case T_INT:
1360       case T_FLOAT:
1361         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1362         break;
1363       case T_LONG:
1364       case T_DOUBLE:
1365         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1366         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1367         break;
1368       case T_OBJECT:
1369         if (c->as_jobject() != other->as_jobject()) continue;
1370         break;
1371       }
1372       return _reg_for_constants.at(i);
1373     }
1374   }
1375 
1376   LIR_Opr result = new_register(t);
1377   __ move((LIR_Opr)c, result);
1378   _constants.append(c);
1379   _reg_for_constants.append(result);
1380   return result;
1381 }
1382 
1383 // Various barriers
1384 
1385 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1386                                bool do_load, bool patch, CodeEmitInfo* info) {
1387   // Do the pre-write barrier, if any.
1388   switch (_bs->kind()) {
1389 #ifndef SERIALGC
1390     case BarrierSet::G1SATBCT:
1391     case BarrierSet::G1SATBCTLogging:
1392       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1393       break;
1394 #endif // SERIALGC
1395     case BarrierSet::CardTableModRef:
1396     case BarrierSet::CardTableExtension:
1397       // No pre barriers
1398       break;
1399     case BarrierSet::ModRef:
1400     case BarrierSet::Other:
1401       // No pre barriers
1402       break;
1403     default      :
1404       ShouldNotReachHere();
1405 
1406   }
1407 }
1408 
1409 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1410   switch (_bs->kind()) {
1411 #ifndef SERIALGC
1412     case BarrierSet::G1SATBCT:
1413     case BarrierSet::G1SATBCTLogging:
1414       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1415       break;
1416 #endif // SERIALGC
1417     case BarrierSet::CardTableModRef:
1418     case BarrierSet::CardTableExtension:
1419       CardTableModRef_post_barrier(addr,  new_val);
1420       break;
1421     case BarrierSet::ModRef:
1422     case BarrierSet::Other:
1423       // No post barriers
1424       break;
1425     default      :
1426       ShouldNotReachHere();
1427     }
1428 }
1429 
1430 ////////////////////////////////////////////////////////////////////////
1431 #ifndef SERIALGC
1432 
1433 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1434                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1435   // First we test whether marking is in progress.
1436   BasicType flag_type;
1437   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1438     flag_type = T_INT;
1439   } else {
1440     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1441               "Assumption");
1442     flag_type = T_BYTE;
1443   }
1444   LIR_Opr thrd = getThreadPointer();
1445   LIR_Address* mark_active_flag_addr =
1446     new LIR_Address(thrd,
1447                     in_bytes(JavaThread::satb_mark_queue_offset() +
1448                              PtrQueue::byte_offset_of_active()),
1449                     flag_type);
1450   // Read the marking-in-progress flag.
1451   LIR_Opr flag_val = new_register(T_INT);
1452   __ load(mark_active_flag_addr, flag_val);
1453   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1454 
1455   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1456 
1457   CodeStub* slow;
1458 
1459   if (do_load) {
1460     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1461     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1462 
1463     if (patch)
1464       pre_val_patch_code = lir_patch_normal;
1465 
1466     pre_val = new_register(T_OBJECT);
1467 
1468     if (!addr_opr->is_address()) {
1469       assert(addr_opr->is_register(), "must be");
1470       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1471     }
1472     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1473   } else {
1474     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1475     assert(pre_val->is_register(), "must be");
1476     assert(pre_val->type() == T_OBJECT, "must be an object");
1477     assert(info == NULL, "sanity");
1478 
1479     slow = new G1PreBarrierStub(pre_val);
1480   }
1481 
1482   __ branch(lir_cond_notEqual, T_INT, slow);
1483   __ branch_destination(slow->continuation());
1484 }
1485 
1486 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1487   // If the "new_val" is a constant NULL, no barrier is necessary.
1488   if (new_val->is_constant() &&
1489       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1490 
1491   if (!new_val->is_register()) {
1492     LIR_Opr new_val_reg = new_register(T_OBJECT);
1493     if (new_val->is_constant()) {
1494       __ move(new_val, new_val_reg);
1495     } else {
1496       __ leal(new_val, new_val_reg);
1497     }
1498     new_val = new_val_reg;
1499   }
1500   assert(new_val->is_register(), "must be a register at this point");
1501 
1502   if (addr->is_address()) {
1503     LIR_Address* address = addr->as_address_ptr();
1504     LIR_Opr ptr = new_pointer_register();
1505     if (!address->index()->is_valid() && address->disp() == 0) {
1506       __ move(address->base(), ptr);
1507     } else {
1508       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1509       __ leal(addr, ptr);
1510     }
1511     addr = ptr;
1512   }
1513   assert(addr->is_register(), "must be a register at this point");
1514 
1515   LIR_Opr xor_res = new_pointer_register();
1516   LIR_Opr xor_shift_res = new_pointer_register();
1517   if (TwoOperandLIRForm ) {
1518     __ move(addr, xor_res);
1519     __ logical_xor(xor_res, new_val, xor_res);
1520     __ move(xor_res, xor_shift_res);
1521     __ unsigned_shift_right(xor_shift_res,
1522                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1523                             xor_shift_res,
1524                             LIR_OprDesc::illegalOpr());
1525   } else {
1526     __ logical_xor(addr, new_val, xor_res);
1527     __ unsigned_shift_right(xor_res,
1528                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1529                             xor_shift_res,
1530                             LIR_OprDesc::illegalOpr());
1531   }
1532 
1533   if (!new_val->is_register()) {
1534     LIR_Opr new_val_reg = new_register(T_OBJECT);
1535     __ leal(new_val, new_val_reg);
1536     new_val = new_val_reg;
1537   }
1538   assert(new_val->is_register(), "must be a register at this point");
1539 
1540   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1541 
1542   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1543   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1544   __ branch_destination(slow->continuation());
1545 }
1546 
1547 #endif // SERIALGC
1548 ////////////////////////////////////////////////////////////////////////
1549 
1550 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1551 
1552   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1553   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1554   if (addr->is_address()) {
1555     LIR_Address* address = addr->as_address_ptr();
1556     // ptr cannot be an object because we use this barrier for array card marks
1557     // and addr can point in the middle of an array.
1558     LIR_Opr ptr = new_pointer_register();
1559     if (!address->index()->is_valid() && address->disp() == 0) {
1560       __ move(address->base(), ptr);
1561     } else {
1562       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1563       __ leal(addr, ptr);
1564     }
1565     addr = ptr;
1566   }
1567   assert(addr->is_register(), "must be a register at this point");
1568 
1569 #ifdef ARM
1570   // TODO: ARM - move to platform-dependent code
1571   LIR_Opr tmp = FrameMap::R14_opr;
1572   if (VM_Version::supports_movw()) {
1573     __ move((LIR_Opr)card_table_base, tmp);
1574   } else {
1575     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1576   }
1577 
1578   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1579   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1580   if(((int)ct->byte_map_base & 0xff) == 0) {
1581     __ move(tmp, card_addr);
1582   } else {
1583     LIR_Opr tmp_zero = new_register(T_INT);
1584     __ move(LIR_OprFact::intConst(0), tmp_zero);
1585     __ move(tmp_zero, card_addr);
1586   }
1587 #else // ARM
1588   LIR_Opr tmp = new_pointer_register();
1589   if (TwoOperandLIRForm) {
1590     __ move(addr, tmp);
1591     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1592   } else {
1593     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1594   }
1595   if (can_inline_as_constant(card_table_base)) {
1596     __ move(LIR_OprFact::intConst(0),
1597               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1598   } else {
1599     __ move(LIR_OprFact::intConst(0),
1600               new LIR_Address(tmp, load_constant(card_table_base),
1601                               T_BYTE));
1602   }
1603 #endif // ARM
1604 }
1605 
1606 
1607 //------------------------field access--------------------------------------
1608 
1609 // Comment copied form templateTable_i486.cpp
1610 // ----------------------------------------------------------------------------
1611 // Volatile variables demand their effects be made known to all CPU's in
1612 // order.  Store buffers on most chips allow reads & writes to reorder; the
1613 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1614 // memory barrier (i.e., it's not sufficient that the interpreter does not
1615 // reorder volatile references, the hardware also must not reorder them).
1616 //
1617 // According to the new Java Memory Model (JMM):
1618 // (1) All volatiles are serialized wrt to each other.
1619 // ALSO reads & writes act as aquire & release, so:
1620 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1621 // the read float up to before the read.  It's OK for non-volatile memory refs
1622 // that happen before the volatile read to float down below it.
1623 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1624 // that happen BEFORE the write float down to after the write.  It's OK for
1625 // non-volatile memory refs that happen after the volatile write to float up
1626 // before it.
1627 //
1628 // We only put in barriers around volatile refs (they are expensive), not
1629 // _between_ memory refs (that would require us to track the flavor of the
1630 // previous memory refs).  Requirements (2) and (3) require some barriers
1631 // before volatile stores and after volatile loads.  These nearly cover
1632 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1633 // case is placed after volatile-stores although it could just as well go
1634 // before volatile-loads.
1635 
1636 
1637 void LIRGenerator::do_StoreField(StoreField* x) {
1638   bool needs_patching = x->needs_patching();
1639   bool is_volatile = x->field()->is_volatile();
1640   BasicType field_type = x->field_type();
1641   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1642 
1643   CodeEmitInfo* info = NULL;
1644   if (needs_patching) {
1645     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1646     info = state_for(x, x->state_before());
1647   } else if (x->needs_null_check()) {
1648     NullCheck* nc = x->explicit_null_check();
1649     if (nc == NULL) {
1650       info = state_for(x);
1651     } else {
1652       info = state_for(nc);
1653     }
1654   }
1655 
1656 
1657   LIRItem object(x->obj(), this);
1658   LIRItem value(x->value(),  this);
1659 
1660   object.load_item();
1661 
1662   if (is_volatile || needs_patching) {
1663     // load item if field is volatile (fewer special cases for volatiles)
1664     // load item if field not initialized
1665     // load item if field not constant
1666     // because of code patching we cannot inline constants
1667     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1668       value.load_byte_item();
1669     } else  {
1670       value.load_item();
1671     }
1672   } else {
1673     value.load_for_store(field_type);
1674   }
1675 
1676   set_no_result(x);
1677 
1678 #ifndef PRODUCT
1679   if (PrintNotLoaded && needs_patching) {
1680     tty->print_cr("   ###class not loaded at store_%s bci %d",
1681                   x->is_static() ?  "static" : "field", x->printable_bci());
1682   }
1683 #endif
1684 
1685   if (x->needs_null_check() &&
1686       (needs_patching ||
1687        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1688     // emit an explicit null check because the offset is too large
1689     __ null_check(object.result(), new CodeEmitInfo(info));
1690   }
1691 
1692   LIR_Address* address;
1693   if (needs_patching) {
1694     // we need to patch the offset in the instruction so don't allow
1695     // generate_address to try to be smart about emitting the -1.
1696     // Otherwise the patching code won't know how to find the
1697     // instruction to patch.
1698     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1699   } else {
1700     address = generate_address(object.result(), x->offset(), field_type);
1701   }
1702 
1703   if (is_volatile && os::is_MP()) {
1704     __ membar_release();
1705   }
1706 
1707   if (is_oop) {
1708     // Do the pre-write barrier, if any.
1709     pre_barrier(LIR_OprFact::address(address),
1710                 LIR_OprFact::illegalOpr /* pre_val */,
1711                 true /* do_load*/,
1712                 needs_patching,
1713                 (info ? new CodeEmitInfo(info) : NULL));
1714   }
1715 
1716   if (is_volatile && !needs_patching) {
1717     volatile_field_store(value.result(), address, info);
1718   } else {
1719     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1720     __ store(value.result(), address, info, patch_code);
1721   }
1722 
1723   if (is_oop) {
1724     // Store to object so mark the card of the header
1725     post_barrier(object.result(), value.result());
1726   }
1727 
1728   if (is_volatile && os::is_MP()) {
1729     __ membar();
1730   }
1731 }
1732 
1733 
1734 void LIRGenerator::do_LoadField(LoadField* x) {
1735   bool needs_patching = x->needs_patching();
1736   bool is_volatile = x->field()->is_volatile();
1737   BasicType field_type = x->field_type();
1738 
1739   CodeEmitInfo* info = NULL;
1740   if (needs_patching) {
1741     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1742     info = state_for(x, x->state_before());
1743   } else if (x->needs_null_check()) {
1744     NullCheck* nc = x->explicit_null_check();
1745     if (nc == NULL) {
1746       info = state_for(x);
1747     } else {
1748       info = state_for(nc);
1749     }
1750   }
1751 
1752   LIRItem object(x->obj(), this);
1753 
1754   object.load_item();
1755 
1756 #ifndef PRODUCT
1757   if (PrintNotLoaded && needs_patching) {
1758     tty->print_cr("   ###class not loaded at load_%s bci %d",
1759                   x->is_static() ?  "static" : "field", x->printable_bci());
1760   }
1761 #endif
1762 
1763   if (x->needs_null_check() &&
1764       (needs_patching ||
1765        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1766     // emit an explicit null check because the offset is too large
1767     __ null_check(object.result(), new CodeEmitInfo(info));
1768   }
1769 
1770   LIR_Opr reg = rlock_result(x, field_type);
1771   LIR_Address* address;
1772   if (needs_patching) {
1773     // we need to patch the offset in the instruction so don't allow
1774     // generate_address to try to be smart about emitting the -1.
1775     // Otherwise the patching code won't know how to find the
1776     // instruction to patch.
1777     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1778   } else {
1779     address = generate_address(object.result(), x->offset(), field_type);
1780   }
1781 
1782   if (is_volatile && !needs_patching) {
1783     volatile_field_load(address, reg, info);
1784   } else {
1785     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1786     __ load(address, reg, info, patch_code);
1787   }
1788 
1789   if (is_volatile && os::is_MP()) {
1790     __ membar_acquire();
1791   }
1792 }
1793 
1794 
1795 //------------------------java.nio.Buffer.checkIndex------------------------
1796 
1797 // int java.nio.Buffer.checkIndex(int)
1798 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1799   // NOTE: by the time we are in checkIndex() we are guaranteed that
1800   // the buffer is non-null (because checkIndex is package-private and
1801   // only called from within other methods in the buffer).
1802   assert(x->number_of_arguments() == 2, "wrong type");
1803   LIRItem buf  (x->argument_at(0), this);
1804   LIRItem index(x->argument_at(1), this);
1805   buf.load_item();
1806   index.load_item();
1807 
1808   LIR_Opr result = rlock_result(x);
1809   if (GenerateRangeChecks) {
1810     CodeEmitInfo* info = state_for(x);
1811     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1812     if (index.result()->is_constant()) {
1813       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1814       __ branch(lir_cond_belowEqual, T_INT, stub);
1815     } else {
1816       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1817                   java_nio_Buffer::limit_offset(), T_INT, info);
1818       __ branch(lir_cond_aboveEqual, T_INT, stub);
1819     }
1820     __ move(index.result(), result);
1821   } else {
1822     // Just load the index into the result register
1823     __ move(index.result(), result);
1824   }
1825 }
1826 
1827 
1828 //------------------------array access--------------------------------------
1829 
1830 
1831 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1832   LIRItem array(x->array(), this);
1833   array.load_item();
1834   LIR_Opr reg = rlock_result(x);
1835 
1836   CodeEmitInfo* info = NULL;
1837   if (x->needs_null_check()) {
1838     NullCheck* nc = x->explicit_null_check();
1839     if (nc == NULL) {
1840       info = state_for(x);
1841     } else {
1842       info = state_for(nc);
1843     }
1844   }
1845   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1846 }
1847 
1848 
1849 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1850   bool use_length = x->length() != NULL;
1851   LIRItem array(x->array(), this);
1852   LIRItem index(x->index(), this);
1853   LIRItem length(this);
1854   bool needs_range_check = true;
1855 
1856   if (use_length) {
1857     needs_range_check = x->compute_needs_range_check();
1858     if (needs_range_check) {
1859       length.set_instruction(x->length());
1860       length.load_item();
1861     }
1862   }
1863 
1864   array.load_item();
1865   if (index.is_constant() && can_inline_as_constant(x->index())) {
1866     // let it be a constant
1867     index.dont_load_item();
1868   } else {
1869     index.load_item();
1870   }
1871 
1872   CodeEmitInfo* range_check_info = state_for(x);
1873   CodeEmitInfo* null_check_info = NULL;
1874   if (x->needs_null_check()) {
1875     NullCheck* nc = x->explicit_null_check();
1876     if (nc != NULL) {
1877       null_check_info = state_for(nc);
1878     } else {
1879       null_check_info = range_check_info;
1880     }
1881   }
1882 
1883   // emit array address setup early so it schedules better
1884   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1885 
1886   if (GenerateRangeChecks && needs_range_check) {
1887     if (use_length) {
1888       // TODO: use a (modified) version of array_range_check that does not require a
1889       //       constant length to be loaded to a register
1890       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1891       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1892     } else {
1893       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1894       // The range check performs the null check, so clear it out for the load
1895       null_check_info = NULL;
1896     }
1897   }
1898 
1899   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1900 }
1901 
1902 
1903 void LIRGenerator::do_NullCheck(NullCheck* x) {
1904   if (x->can_trap()) {
1905     LIRItem value(x->obj(), this);
1906     value.load_item();
1907     CodeEmitInfo* info = state_for(x);
1908     __ null_check(value.result(), info);
1909   }
1910 }
1911 
1912 
1913 void LIRGenerator::do_Throw(Throw* x) {
1914   LIRItem exception(x->exception(), this);
1915   exception.load_item();
1916   set_no_result(x);
1917   LIR_Opr exception_opr = exception.result();
1918   CodeEmitInfo* info = state_for(x, x->state());
1919 
1920 #ifndef PRODUCT
1921   if (PrintC1Statistics) {
1922     increment_counter(Runtime1::throw_count_address(), T_INT);
1923   }
1924 #endif
1925 
1926   // check if the instruction has an xhandler in any of the nested scopes
1927   bool unwind = false;
1928   if (info->exception_handlers()->length() == 0) {
1929     // this throw is not inside an xhandler
1930     unwind = true;
1931   } else {
1932     // get some idea of the throw type
1933     bool type_is_exact = true;
1934     ciType* throw_type = x->exception()->exact_type();
1935     if (throw_type == NULL) {
1936       type_is_exact = false;
1937       throw_type = x->exception()->declared_type();
1938     }
1939     if (throw_type != NULL && throw_type->is_instance_klass()) {
1940       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1941       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1942     }
1943   }
1944 
1945   // do null check before moving exception oop into fixed register
1946   // to avoid a fixed interval with an oop during the null check.
1947   // Use a copy of the CodeEmitInfo because debug information is
1948   // different for null_check and throw.
1949   if (GenerateCompilerNullChecks &&
1950       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1951     // if the exception object wasn't created using new then it might be null.
1952     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1953   }
1954 
1955   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1956     // we need to go through the exception lookup path to get JVMTI
1957     // notification done
1958     unwind = false;
1959   }
1960 
1961   // move exception oop into fixed register
1962   __ move(exception_opr, exceptionOopOpr());
1963 
1964   if (unwind) {
1965     __ unwind_exception(exceptionOopOpr());
1966   } else {
1967     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1968   }
1969 }
1970 
1971 
1972 void LIRGenerator::do_RoundFP(RoundFP* x) {
1973   LIRItem input(x->input(), this);
1974   input.load_item();
1975   LIR_Opr input_opr = input.result();
1976   assert(input_opr->is_register(), "why round if value is not in a register?");
1977   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1978   if (input_opr->is_single_fpu()) {
1979     set_result(x, round_item(input_opr)); // This code path not currently taken
1980   } else {
1981     LIR_Opr result = new_register(T_DOUBLE);
1982     set_vreg_flag(result, must_start_in_memory);
1983     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1984     set_result(x, result);
1985   }
1986 }
1987 
1988 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1989   LIRItem base(x->base(), this);
1990   LIRItem idx(this);
1991 
1992   base.load_item();
1993   if (x->has_index()) {
1994     idx.set_instruction(x->index());
1995     idx.load_nonconstant();
1996   }
1997 
1998   LIR_Opr reg = rlock_result(x, x->basic_type());
1999 
2000   int   log2_scale = 0;
2001   if (x->has_index()) {
2002     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2003     log2_scale = x->log2_scale();
2004   }
2005 
2006   assert(!x->has_index() || idx.value() == x->index(), "should match");
2007 
2008   LIR_Opr base_op = base.result();
2009 #ifndef _LP64
2010   if (x->base()->type()->tag() == longTag) {
2011     base_op = new_register(T_INT);
2012     __ convert(Bytecodes::_l2i, base.result(), base_op);
2013   } else {
2014     assert(x->base()->type()->tag() == intTag, "must be");
2015   }
2016 #endif
2017 
2018   BasicType dst_type = x->basic_type();
2019   LIR_Opr index_op = idx.result();
2020 
2021   LIR_Address* addr;
2022   if (index_op->is_constant()) {
2023     assert(log2_scale == 0, "must not have a scale");
2024     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2025   } else {
2026 #ifdef X86
2027 #ifdef _LP64
2028     if (!index_op->is_illegal() && index_op->type() == T_INT) {
2029       LIR_Opr tmp = new_pointer_register();
2030       __ convert(Bytecodes::_i2l, index_op, tmp);
2031       index_op = tmp;
2032     }
2033 #endif
2034     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2035 #elif defined(ARM)
2036     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2037 #else
2038     if (index_op->is_illegal() || log2_scale == 0) {
2039 #ifdef _LP64
2040       if (!index_op->is_illegal() && index_op->type() == T_INT) {
2041         LIR_Opr tmp = new_pointer_register();
2042         __ convert(Bytecodes::_i2l, index_op, tmp);
2043         index_op = tmp;
2044       }
2045 #endif
2046       addr = new LIR_Address(base_op, index_op, dst_type);
2047     } else {
2048       LIR_Opr tmp = new_pointer_register();
2049       __ shift_left(index_op, log2_scale, tmp);
2050       addr = new LIR_Address(base_op, tmp, dst_type);
2051     }
2052 #endif
2053   }
2054 
2055   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2056     __ unaligned_move(addr, reg);
2057   } else {
2058     if (dst_type == T_OBJECT && x->is_wide()) {
2059       __ move_wide(addr, reg);
2060     } else {
2061       __ move(addr, reg);
2062     }
2063   }
2064 }
2065 
2066 
2067 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2068   int  log2_scale = 0;
2069   BasicType type = x->basic_type();
2070 
2071   if (x->has_index()) {
2072     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2073     log2_scale = x->log2_scale();
2074   }
2075 
2076   LIRItem base(x->base(), this);
2077   LIRItem value(x->value(), this);
2078   LIRItem idx(this);
2079 
2080   base.load_item();
2081   if (x->has_index()) {
2082     idx.set_instruction(x->index());
2083     idx.load_item();
2084   }
2085 
2086   if (type == T_BYTE || type == T_BOOLEAN) {
2087     value.load_byte_item();
2088   } else {
2089     value.load_item();
2090   }
2091 
2092   set_no_result(x);
2093 
2094   LIR_Opr base_op = base.result();
2095 #ifndef _LP64
2096   if (x->base()->type()->tag() == longTag) {
2097     base_op = new_register(T_INT);
2098     __ convert(Bytecodes::_l2i, base.result(), base_op);
2099   } else {
2100     assert(x->base()->type()->tag() == intTag, "must be");
2101   }
2102 #endif
2103 
2104   LIR_Opr index_op = idx.result();
2105   if (log2_scale != 0) {
2106     // temporary fix (platform dependent code without shift on Intel would be better)
2107     index_op = new_pointer_register();
2108 #ifdef _LP64
2109     if(idx.result()->type() == T_INT) {
2110       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2111     } else {
2112 #endif
2113       // TODO: ARM also allows embedded shift in the address
2114       __ move(idx.result(), index_op);
2115 #ifdef _LP64
2116     }
2117 #endif
2118     __ shift_left(index_op, log2_scale, index_op);
2119   }
2120 #ifdef _LP64
2121   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2122     LIR_Opr tmp = new_pointer_register();
2123     __ convert(Bytecodes::_i2l, index_op, tmp);
2124     index_op = tmp;
2125   }
2126 #endif
2127 
2128   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2129   __ move(value.result(), addr);
2130 }
2131 
2132 
2133 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2134   BasicType type = x->basic_type();
2135   LIRItem src(x->object(), this);
2136   LIRItem off(x->offset(), this);
2137 
2138   off.load_item();
2139   src.load_item();
2140 
2141   LIR_Opr reg = rlock_result(x, x->basic_type());
2142 
2143   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
2144 
2145 #ifndef SERIALGC
2146   // We might be reading the value of the referent field of a
2147   // Reference object in order to attach it back to the live
2148   // object graph. If G1 is enabled then we need to record
2149   // the value that is being returned in an SATB log buffer.
2150   //
2151   // We need to generate code similar to the following...
2152   //
2153   // if (offset == java_lang_ref_Reference::referent_offset) {
2154   //   if (src != NULL) {
2155   //     if (klass(src)->reference_type() != REF_NONE) {
2156   //       pre_barrier(..., reg, ...);
2157   //     }
2158   //   }
2159   // }
2160   //
2161   // The first non-constant check of either the offset or
2162   // the src operand will be done here; the remainder
2163   // will take place in the generated code stub.
2164 
2165   if (UseG1GC && type == T_OBJECT) {
2166     bool gen_code_stub = true;       // Assume we need to generate the slow code stub.
2167     bool gen_offset_check = true;       // Assume the code stub has to generate the offset guard.
2168     bool gen_source_check = true;       // Assume the code stub has to check the src object for null.
2169 
2170     if (off.is_constant()) {
2171       jlong off_con = (off.type()->is_int() ?
2172                         (jlong) off.get_jint_constant() :
2173                         off.get_jlong_constant());
2174 
2175 
2176       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2177         // The constant offset is something other than referent_offset.
2178         // We can skip generating/checking the remaining guards and
2179         // skip generation of the code stub.
2180         gen_code_stub = false;
2181       } else {
2182         // The constant offset is the same as referent_offset -
2183         // we do not need to generate a runtime offset check.
2184         gen_offset_check = false;
2185       }
2186     }
2187 
2188     // We don't need to generate stub if the source object is an array
2189     if (gen_code_stub && src.type()->is_array()) {
2190       gen_code_stub = false;
2191     }
2192 
2193     if (gen_code_stub) {
2194       // We still need to continue with the checks.
2195       if (src.is_constant()) {
2196         ciObject* src_con = src.get_jobject_constant();
2197 
2198         if (src_con->is_null_object()) {
2199           // The constant src object is null - We can skip
2200           // generating the code stub.
2201           gen_code_stub = false;
2202         } else {
2203           // Non-null constant source object. We still have to generate
2204           // the slow stub - but we don't need to generate the runtime
2205           // null object check.
2206           gen_source_check = false;
2207         }
2208       }
2209     }
2210 
2211     if (gen_code_stub) {
2212       // Temoraries.
2213       LIR_Opr src_klass = new_register(T_OBJECT);
2214 
2215       // Get the thread pointer for the pre-barrier
2216       LIR_Opr thread = getThreadPointer();
2217 
2218       CodeStub* stub;
2219 
2220       // We can have generate one runtime check here. Let's start with
2221       // the offset check.
2222       if (gen_offset_check) {
2223         // if (offset == referent_offset) -> slow code stub
2224         // If offset is an int then we can do the comparison with the
2225         // referent_offset constant; otherwise we need to move
2226         // referent_offset into a temporary register and generate
2227         // a reg-reg compare.
2228 
2229         LIR_Opr referent_off;
2230 
2231         if (off.type()->is_int()) {
2232           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2233         } else {
2234           assert(off.type()->is_long(), "what else?");
2235           referent_off = new_register(T_LONG);
2236           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2237         }
2238 
2239         __ cmp(lir_cond_equal, off.result(), referent_off);
2240 
2241         // Optionally generate "src == null" check.
2242         stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
2243                                                     src_klass, thread,
2244                                                     gen_source_check);
2245 
2246         __ branch(lir_cond_equal, as_BasicType(off.type()), stub);
2247       } else {
2248         if (gen_source_check) {
2249           // offset is a const and equals referent offset
2250           // if (source != null) -> slow code stub
2251           __ cmp(lir_cond_notEqual, src.result(), LIR_OprFact::oopConst(NULL));
2252 
2253           // Since we are generating the "if src == null" guard here,
2254           // there is no need to generate the "src == null" check again.
2255           stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
2256                                                     src_klass, thread,
2257                                                     false);
2258 
2259           __ branch(lir_cond_notEqual, T_OBJECT, stub);
2260         } else {
2261           // We have statically determined that offset == referent_offset
2262           // && src != null so we unconditionally branch to code stub
2263           // to perform the guards and record reg in the SATB log buffer.
2264 
2265           stub = new G1UnsafeGetObjSATBBarrierStub(reg, src.result(),
2266                                                     src_klass, thread,
2267                                                     false);
2268 
2269           __ branch(lir_cond_always, T_ILLEGAL, stub);
2270         }
2271       }
2272 
2273       // Continuation point
2274       __ branch_destination(stub->continuation());
2275     }
2276   }
2277 #endif // SERIALGC
2278 
2279   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2280 }
2281 
2282 
2283 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2284   BasicType type = x->basic_type();
2285   LIRItem src(x->object(), this);
2286   LIRItem off(x->offset(), this);
2287   LIRItem data(x->value(), this);
2288 
2289   src.load_item();
2290   if (type == T_BOOLEAN || type == T_BYTE) {
2291     data.load_byte_item();
2292   } else {
2293     data.load_item();
2294   }
2295   off.load_item();
2296 
2297   set_no_result(x);
2298 
2299   if (x->is_volatile() && os::is_MP()) __ membar_release();
2300   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2301   if (x->is_volatile() && os::is_MP()) __ membar();
2302 }
2303 
2304 
2305 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2306   LIRItem src(x->object(), this);
2307   LIRItem off(x->offset(), this);
2308 
2309   src.load_item();
2310   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2311     // let it be a constant
2312     off.dont_load_item();
2313   } else {
2314     off.load_item();
2315   }
2316 
2317   set_no_result(x);
2318 
2319   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2320   __ prefetch(addr, is_store);
2321 }
2322 
2323 
2324 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2325   do_UnsafePrefetch(x, false);
2326 }
2327 
2328 
2329 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2330   do_UnsafePrefetch(x, true);
2331 }
2332 
2333 
2334 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2335   int lng = x->length();
2336 
2337   for (int i = 0; i < lng; i++) {
2338     SwitchRange* one_range = x->at(i);
2339     int low_key = one_range->low_key();
2340     int high_key = one_range->high_key();
2341     BlockBegin* dest = one_range->sux();
2342     if (low_key == high_key) {
2343       __ cmp(lir_cond_equal, value, low_key);
2344       __ branch(lir_cond_equal, T_INT, dest);
2345     } else if (high_key - low_key == 1) {
2346       __ cmp(lir_cond_equal, value, low_key);
2347       __ branch(lir_cond_equal, T_INT, dest);
2348       __ cmp(lir_cond_equal, value, high_key);
2349       __ branch(lir_cond_equal, T_INT, dest);
2350     } else {
2351       LabelObj* L = new LabelObj();
2352       __ cmp(lir_cond_less, value, low_key);
2353       __ branch(lir_cond_less, T_INT, L->label());
2354       __ cmp(lir_cond_lessEqual, value, high_key);
2355       __ branch(lir_cond_lessEqual, T_INT, dest);
2356       __ branch_destination(L->label());
2357     }
2358   }
2359   __ jump(default_sux);
2360 }
2361 
2362 
2363 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2364   SwitchRangeList* res = new SwitchRangeList();
2365   int len = x->length();
2366   if (len > 0) {
2367     BlockBegin* sux = x->sux_at(0);
2368     int key = x->lo_key();
2369     BlockBegin* default_sux = x->default_sux();
2370     SwitchRange* range = new SwitchRange(key, sux);
2371     for (int i = 0; i < len; i++, key++) {
2372       BlockBegin* new_sux = x->sux_at(i);
2373       if (sux == new_sux) {
2374         // still in same range
2375         range->set_high_key(key);
2376       } else {
2377         // skip tests which explicitly dispatch to the default
2378         if (sux != default_sux) {
2379           res->append(range);
2380         }
2381         range = new SwitchRange(key, new_sux);
2382       }
2383       sux = new_sux;
2384     }
2385     if (res->length() == 0 || res->last() != range)  res->append(range);
2386   }
2387   return res;
2388 }
2389 
2390 
2391 // we expect the keys to be sorted by increasing value
2392 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2393   SwitchRangeList* res = new SwitchRangeList();
2394   int len = x->length();
2395   if (len > 0) {
2396     BlockBegin* default_sux = x->default_sux();
2397     int key = x->key_at(0);
2398     BlockBegin* sux = x->sux_at(0);
2399     SwitchRange* range = new SwitchRange(key, sux);
2400     for (int i = 1; i < len; i++) {
2401       int new_key = x->key_at(i);
2402       BlockBegin* new_sux = x->sux_at(i);
2403       if (key+1 == new_key && sux == new_sux) {
2404         // still in same range
2405         range->set_high_key(new_key);
2406       } else {
2407         // skip tests which explicitly dispatch to the default
2408         if (range->sux() != default_sux) {
2409           res->append(range);
2410         }
2411         range = new SwitchRange(new_key, new_sux);
2412       }
2413       key = new_key;
2414       sux = new_sux;
2415     }
2416     if (res->length() == 0 || res->last() != range)  res->append(range);
2417   }
2418   return res;
2419 }
2420 
2421 
2422 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2423   LIRItem tag(x->tag(), this);
2424   tag.load_item();
2425   set_no_result(x);
2426 
2427   if (x->is_safepoint()) {
2428     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2429   }
2430 
2431   // move values into phi locations
2432   move_to_phi(x->state());
2433 
2434   int lo_key = x->lo_key();
2435   int hi_key = x->hi_key();
2436   int len = x->length();
2437   LIR_Opr value = tag.result();
2438   if (UseTableRanges) {
2439     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2440   } else {
2441     for (int i = 0; i < len; i++) {
2442       __ cmp(lir_cond_equal, value, i + lo_key);
2443       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2444     }
2445     __ jump(x->default_sux());
2446   }
2447 }
2448 
2449 
2450 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2451   LIRItem tag(x->tag(), this);
2452   tag.load_item();
2453   set_no_result(x);
2454 
2455   if (x->is_safepoint()) {
2456     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2457   }
2458 
2459   // move values into phi locations
2460   move_to_phi(x->state());
2461 
2462   LIR_Opr value = tag.result();
2463   if (UseTableRanges) {
2464     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2465   } else {
2466     int len = x->length();
2467     for (int i = 0; i < len; i++) {
2468       __ cmp(lir_cond_equal, value, x->key_at(i));
2469       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2470     }
2471     __ jump(x->default_sux());
2472   }
2473 }
2474 
2475 
2476 void LIRGenerator::do_Goto(Goto* x) {
2477   set_no_result(x);
2478 
2479   if (block()->next()->as_OsrEntry()) {
2480     // need to free up storage used for OSR entry point
2481     LIR_Opr osrBuffer = block()->next()->operand();
2482     BasicTypeList signature;
2483     signature.append(T_INT);
2484     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2485     __ move(osrBuffer, cc->args()->at(0));
2486     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2487                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2488   }
2489 
2490   if (x->is_safepoint()) {
2491     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2492 
2493     // increment backedge counter if needed
2494     CodeEmitInfo* info = state_for(x, state);
2495     increment_backedge_counter(info, x->profiled_bci());
2496     CodeEmitInfo* safepoint_info = state_for(x, state);
2497     __ safepoint(safepoint_poll_register(), safepoint_info);
2498   }
2499 
2500   // Gotos can be folded Ifs, handle this case.
2501   if (x->should_profile()) {
2502     ciMethod* method = x->profiled_method();
2503     assert(method != NULL, "method should be set if branch is profiled");
2504     ciMethodData* md = method->method_data_or_null();
2505     assert(md != NULL, "Sanity");
2506     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2507     assert(data != NULL, "must have profiling data");
2508     int offset;
2509     if (x->direction() == Goto::taken) {
2510       assert(data->is_BranchData(), "need BranchData for two-way branches");
2511       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2512     } else if (x->direction() == Goto::not_taken) {
2513       assert(data->is_BranchData(), "need BranchData for two-way branches");
2514       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2515     } else {
2516       assert(data->is_JumpData(), "need JumpData for branches");
2517       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2518     }
2519     LIR_Opr md_reg = new_register(T_OBJECT);
2520     __ oop2reg(md->constant_encoding(), md_reg);
2521 
2522     increment_counter(new LIR_Address(md_reg, offset,
2523                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2524   }
2525 
2526   // emit phi-instruction move after safepoint since this simplifies
2527   // describing the state as the safepoint.
2528   move_to_phi(x->state());
2529 
2530   __ jump(x->default_sux());
2531 }
2532 
2533 
2534 void LIRGenerator::do_Base(Base* x) {
2535   __ std_entry(LIR_OprFact::illegalOpr);
2536   // Emit moves from physical registers / stack slots to virtual registers
2537   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2538   IRScope* irScope = compilation()->hir()->top_scope();
2539   int java_index = 0;
2540   for (int i = 0; i < args->length(); i++) {
2541     LIR_Opr src = args->at(i);
2542     assert(!src->is_illegal(), "check");
2543     BasicType t = src->type();
2544 
2545     // Types which are smaller than int are passed as int, so
2546     // correct the type which passed.
2547     switch (t) {
2548     case T_BYTE:
2549     case T_BOOLEAN:
2550     case T_SHORT:
2551     case T_CHAR:
2552       t = T_INT;
2553       break;
2554     }
2555 
2556     LIR_Opr dest = new_register(t);
2557     __ move(src, dest);
2558 
2559     // Assign new location to Local instruction for this local
2560     Local* local = x->state()->local_at(java_index)->as_Local();
2561     assert(local != NULL, "Locals for incoming arguments must have been created");
2562 #ifndef __SOFTFP__
2563     // The java calling convention passes double as long and float as int.
2564     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2565 #endif // __SOFTFP__
2566     local->set_operand(dest);
2567     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2568     java_index += type2size[t];
2569   }
2570 
2571   if (compilation()->env()->dtrace_method_probes()) {
2572     BasicTypeList signature;
2573     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2574     signature.append(T_OBJECT); // methodOop
2575     LIR_OprList* args = new LIR_OprList();
2576     args->append(getThreadPointer());
2577     LIR_Opr meth = new_register(T_OBJECT);
2578     __ oop2reg(method()->constant_encoding(), meth);
2579     args->append(meth);
2580     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2581   }
2582 
2583   if (method()->is_synchronized()) {
2584     LIR_Opr obj;
2585     if (method()->is_static()) {
2586       obj = new_register(T_OBJECT);
2587       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2588     } else {
2589       Local* receiver = x->state()->local_at(0)->as_Local();
2590       assert(receiver != NULL, "must already exist");
2591       obj = receiver->operand();
2592     }
2593     assert(obj->is_valid(), "must be valid");
2594 
2595     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2596       LIR_Opr lock = new_register(T_INT);
2597       __ load_stack_address_monitor(0, lock);
2598 
2599       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2600       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2601 
2602       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2603       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2604     }
2605   }
2606 
2607   // increment invocation counters if needed
2608   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2609     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2610     increment_invocation_counter(info);
2611   }
2612 
2613   // all blocks with a successor must end with an unconditional jump
2614   // to the successor even if they are consecutive
2615   __ jump(x->default_sux());
2616 }
2617 
2618 
2619 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2620   // construct our frame and model the production of incoming pointer
2621   // to the OSR buffer.
2622   __ osr_entry(LIR_Assembler::osrBufferPointer());
2623   LIR_Opr result = rlock_result(x);
2624   __ move(LIR_Assembler::osrBufferPointer(), result);
2625 }
2626 
2627 
2628 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2629   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2630   for (; i < args->length(); i++) {
2631     LIRItem* param = args->at(i);
2632     LIR_Opr loc = arg_list->at(i);
2633     if (loc->is_register()) {
2634       param->load_item_force(loc);
2635     } else {
2636       LIR_Address* addr = loc->as_address_ptr();
2637       param->load_for_store(addr->type());
2638       if (addr->type() == T_OBJECT) {
2639         __ move_wide(param->result(), addr);
2640       } else
2641         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2642           __ unaligned_move(param->result(), addr);
2643         } else {
2644           __ move(param->result(), addr);
2645         }
2646     }
2647   }
2648 
2649   if (x->has_receiver()) {
2650     LIRItem* receiver = args->at(0);
2651     LIR_Opr loc = arg_list->at(0);
2652     if (loc->is_register()) {
2653       receiver->load_item_force(loc);
2654     } else {
2655       assert(loc->is_address(), "just checking");
2656       receiver->load_for_store(T_OBJECT);
2657       __ move_wide(receiver->result(), loc->as_address_ptr());
2658     }
2659   }
2660 }
2661 
2662 
2663 // Visits all arguments, returns appropriate items without loading them
2664 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2665   LIRItemList* argument_items = new LIRItemList();
2666   if (x->has_receiver()) {
2667     LIRItem* receiver = new LIRItem(x->receiver(), this);
2668     argument_items->append(receiver);
2669   }
2670   if (x->is_invokedynamic()) {
2671     // Insert a dummy for the synthetic MethodHandle argument.
2672     argument_items->append(NULL);
2673   }
2674   int idx = x->has_receiver() ? 1 : 0;
2675   for (int i = 0; i < x->number_of_arguments(); i++) {
2676     LIRItem* param = new LIRItem(x->argument_at(i), this);
2677     argument_items->append(param);
2678     idx += (param->type()->is_double_word() ? 2 : 1);
2679   }
2680   return argument_items;
2681 }
2682 
2683 
2684 // The invoke with receiver has following phases:
2685 //   a) traverse and load/lock receiver;
2686 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2687 //   c) push receiver on stack
2688 //   d) load each of the items and push on stack
2689 //   e) unlock receiver
2690 //   f) move receiver into receiver-register %o0
2691 //   g) lock result registers and emit call operation
2692 //
2693 // Before issuing a call, we must spill-save all values on stack
2694 // that are in caller-save register. "spill-save" moves thos registers
2695 // either in a free callee-save register or spills them if no free
2696 // callee save register is available.
2697 //
2698 // The problem is where to invoke spill-save.
2699 // - if invoked between e) and f), we may lock callee save
2700 //   register in "spill-save" that destroys the receiver register
2701 //   before f) is executed
2702 // - if we rearange the f) to be earlier, by loading %o0, it
2703 //   may destroy a value on the stack that is currently in %o0
2704 //   and is waiting to be spilled
2705 // - if we keep the receiver locked while doing spill-save,
2706 //   we cannot spill it as it is spill-locked
2707 //
2708 void LIRGenerator::do_Invoke(Invoke* x) {
2709   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2710 
2711   LIR_OprList* arg_list = cc->args();
2712   LIRItemList* args = invoke_visit_arguments(x);
2713   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2714 
2715   // setup result register
2716   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2717   if (x->type() != voidType) {
2718     result_register = result_register_for(x->type());
2719   }
2720 
2721   CodeEmitInfo* info = state_for(x, x->state());
2722 
2723   // invokedynamics can deoptimize.
2724   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2725 
2726   invoke_load_arguments(x, args, arg_list);
2727 
2728   if (x->has_receiver()) {
2729     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2730     receiver = args->at(0)->result();
2731   }
2732 
2733   // emit invoke code
2734   bool optimized = x->target_is_loaded() && x->target_is_final();
2735   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2736 
2737   // JSR 292
2738   // Preserve the SP over MethodHandle call sites.
2739   ciMethod* target = x->target();
2740   if (target->is_method_handle_invoke()) {
2741     info->set_is_method_handle_invoke(true);
2742     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2743   }
2744 
2745   switch (x->code()) {
2746     case Bytecodes::_invokestatic:
2747       __ call_static(target, result_register,
2748                      SharedRuntime::get_resolve_static_call_stub(),
2749                      arg_list, info);
2750       break;
2751     case Bytecodes::_invokespecial:
2752     case Bytecodes::_invokevirtual:
2753     case Bytecodes::_invokeinterface:
2754       // for final target we still produce an inline cache, in order
2755       // to be able to call mixed mode
2756       if (x->code() == Bytecodes::_invokespecial || optimized) {
2757         __ call_opt_virtual(target, receiver, result_register,
2758                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2759                             arg_list, info);
2760       } else if (x->vtable_index() < 0) {
2761         __ call_icvirtual(target, receiver, result_register,
2762                           SharedRuntime::get_resolve_virtual_call_stub(),
2763                           arg_list, info);
2764       } else {
2765         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2766         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2767         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2768       }
2769       break;
2770     case Bytecodes::_invokedynamic: {
2771       ciBytecodeStream bcs(x->scope()->method());
2772       bcs.force_bci(x->state()->bci());
2773       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2774       ciCPCache* cpcache = bcs.get_cpcache();
2775 
2776       // Get CallSite offset from constant pool cache pointer.
2777       int index = bcs.get_method_index();
2778       size_t call_site_offset = cpcache->get_f1_offset(index);
2779 
2780       // If this invokedynamic call site hasn't been executed yet in
2781       // the interpreter, the CallSite object in the constant pool
2782       // cache is still null and we need to deoptimize.
2783       if (cpcache->is_f1_null_at(index)) {
2784         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2785         // clone all handlers.  This is handled transparently in other
2786         // places by the CodeEmitInfo cloning logic but is handled
2787         // specially here because a stub isn't being used.
2788         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2789 
2790         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2791         __ jump(deopt_stub);
2792       }
2793 
2794       // Use the receiver register for the synthetic MethodHandle
2795       // argument.
2796       receiver = LIR_Assembler::receiverOpr();
2797       LIR_Opr tmp = new_register(objectType);
2798 
2799       // Load CallSite object from constant pool cache.
2800       __ oop2reg(cpcache->constant_encoding(), tmp);
2801       __ move_wide(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2802 
2803       // Load target MethodHandle from CallSite object.
2804       __ load(new LIR_Address(tmp, java_lang_invoke_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2805 
2806       __ call_dynamic(target, receiver, result_register,
2807                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
2808                       arg_list, info);
2809       break;
2810     }
2811     default:
2812       ShouldNotReachHere();
2813       break;
2814   }
2815 
2816   // JSR 292
2817   // Restore the SP after MethodHandle call sites.
2818   if (target->is_method_handle_invoke()) {
2819     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2820   }
2821 
2822   if (x->type()->is_float() || x->type()->is_double()) {
2823     // Force rounding of results from non-strictfp when in strictfp
2824     // scope (or when we don't know the strictness of the callee, to
2825     // be safe.)
2826     if (method()->is_strict()) {
2827       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2828         result_register = round_item(result_register);
2829       }
2830     }
2831   }
2832 
2833   if (result_register->is_valid()) {
2834     LIR_Opr result = rlock_result(x);
2835     __ move(result_register, result);
2836   }
2837 }
2838 
2839 
2840 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2841   assert(x->number_of_arguments() == 1, "wrong type");
2842   LIRItem value       (x->argument_at(0), this);
2843   LIR_Opr reg = rlock_result(x);
2844   value.load_item();
2845   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2846   __ move(tmp, reg);
2847 }
2848 
2849 
2850 
2851 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2852 void LIRGenerator::do_IfOp(IfOp* x) {
2853 #ifdef ASSERT
2854   {
2855     ValueTag xtag = x->x()->type()->tag();
2856     ValueTag ttag = x->tval()->type()->tag();
2857     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2858     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2859     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2860   }
2861 #endif
2862 
2863   LIRItem left(x->x(), this);
2864   LIRItem right(x->y(), this);
2865   left.load_item();
2866   if (can_inline_as_constant(right.value())) {
2867     right.dont_load_item();
2868   } else {
2869     right.load_item();
2870   }
2871 
2872   LIRItem t_val(x->tval(), this);
2873   LIRItem f_val(x->fval(), this);
2874   t_val.dont_load_item();
2875   f_val.dont_load_item();
2876   LIR_Opr reg = rlock_result(x);
2877 
2878   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2879   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2880 }
2881 
2882 
2883 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2884   switch (x->id()) {
2885   case vmIntrinsics::_intBitsToFloat      :
2886   case vmIntrinsics::_doubleToRawLongBits :
2887   case vmIntrinsics::_longBitsToDouble    :
2888   case vmIntrinsics::_floatToRawIntBits   : {
2889     do_FPIntrinsics(x);
2890     break;
2891   }
2892 
2893   case vmIntrinsics::_currentTimeMillis: {
2894     assert(x->number_of_arguments() == 0, "wrong type");
2895     LIR_Opr reg = result_register_for(x->type());
2896     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2897                          reg, new LIR_OprList());
2898     LIR_Opr result = rlock_result(x);
2899     __ move(reg, result);
2900     break;
2901   }
2902 
2903   case vmIntrinsics::_nanoTime: {
2904     assert(x->number_of_arguments() == 0, "wrong type");
2905     LIR_Opr reg = result_register_for(x->type());
2906     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2907                          reg, new LIR_OprList());
2908     LIR_Opr result = rlock_result(x);
2909     __ move(reg, result);
2910     break;
2911   }
2912 
2913   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2914   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2915   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2916 
2917   case vmIntrinsics::_dlog:           // fall through
2918   case vmIntrinsics::_dlog10:         // fall through
2919   case vmIntrinsics::_dabs:           // fall through
2920   case vmIntrinsics::_dsqrt:          // fall through
2921   case vmIntrinsics::_dtan:           // fall through
2922   case vmIntrinsics::_dsin :          // fall through
2923   case vmIntrinsics::_dcos :          // fall through
2924   case vmIntrinsics::_dexp :          // fall through
2925   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2926   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2927 
2928   // java.nio.Buffer.checkIndex
2929   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2930 
2931   case vmIntrinsics::_compareAndSwapObject:
2932     do_CompareAndSwap(x, objectType);
2933     break;
2934   case vmIntrinsics::_compareAndSwapInt:
2935     do_CompareAndSwap(x, intType);
2936     break;
2937   case vmIntrinsics::_compareAndSwapLong:
2938     do_CompareAndSwap(x, longType);
2939     break;
2940 
2941     // sun.misc.AtomicLongCSImpl.attemptUpdate
2942   case vmIntrinsics::_attemptUpdate:
2943     do_AttemptUpdate(x);
2944     break;
2945 
2946   case vmIntrinsics::_Reference_get:
2947     do_Reference_get(x);
2948     break;
2949 
2950   default: ShouldNotReachHere(); break;
2951   }
2952 }
2953 
2954 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2955   // Need recv in a temporary register so it interferes with the other temporaries
2956   LIR_Opr recv = LIR_OprFact::illegalOpr;
2957   LIR_Opr mdo = new_register(T_OBJECT);
2958   // tmp is used to hold the counters on SPARC
2959   LIR_Opr tmp = new_pointer_register();
2960   if (x->recv() != NULL) {
2961     LIRItem value(x->recv(), this);
2962     value.load_item();
2963     recv = new_register(T_OBJECT);
2964     __ move(value.result(), recv);
2965   }
2966   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2967 }
2968 
2969 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
2970   // We can safely ignore accessors here, since c2 will inline them anyway,
2971   // accessors are also always mature.
2972   if (!x->inlinee()->is_accessor()) {
2973     CodeEmitInfo* info = state_for(x, x->state(), true);
2974     // Notify the runtime very infrequently only to take care of counter overflows
2975     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
2976   }
2977 }
2978 
2979 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
2980   int freq_log;
2981   int level = compilation()->env()->comp_level();
2982   if (level == CompLevel_limited_profile) {
2983     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
2984   } else if (level == CompLevel_full_profile) {
2985     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
2986   } else {
2987     ShouldNotReachHere();
2988   }
2989   // Increment the appropriate invocation/backedge counter and notify the runtime.
2990   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
2991 }
2992 
2993 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
2994                                                 ciMethod *method, int frequency,
2995                                                 int bci, bool backedge, bool notify) {
2996   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
2997   int level = _compilation->env()->comp_level();
2998   assert(level > CompLevel_simple, "Shouldn't be here");
2999 
3000   int offset = -1;
3001   LIR_Opr counter_holder = new_register(T_OBJECT);
3002   LIR_Opr meth;
3003   if (level == CompLevel_limited_profile) {
3004     offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
3005                                  methodOopDesc::invocation_counter_offset());
3006     __ oop2reg(method->constant_encoding(), counter_holder);
3007     meth = counter_holder;
3008   } else if (level == CompLevel_full_profile) {
3009     offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
3010                                  methodDataOopDesc::invocation_counter_offset());
3011     ciMethodData* md = method->method_data_or_null();
3012     assert(md != NULL, "Sanity");
3013     __ oop2reg(md->constant_encoding(), counter_holder);
3014     meth = new_register(T_OBJECT);
3015     __ oop2reg(method->constant_encoding(), meth);
3016   } else {
3017     ShouldNotReachHere();
3018   }
3019   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3020   LIR_Opr result = new_register(T_INT);
3021   __ load(counter, result);
3022   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3023   __ store(result, counter);
3024   if (notify) {
3025     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3026     __ logical_and(result, mask, result);
3027     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3028     // The bci for info can point to cmp for if's we want the if bci
3029     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3030     __ branch(lir_cond_equal, T_INT, overflow);
3031     __ branch_destination(overflow->continuation());
3032   }
3033 }
3034 
3035 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3036   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3037   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3038 
3039   if (x->pass_thread()) {
3040     signature->append(T_ADDRESS);
3041     args->append(getThreadPointer());
3042   }
3043 
3044   for (int i = 0; i < x->number_of_arguments(); i++) {
3045     Value a = x->argument_at(i);
3046     LIRItem* item = new LIRItem(a, this);
3047     item->load_item();
3048     args->append(item->result());
3049     signature->append(as_BasicType(a->type()));
3050   }
3051 
3052   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3053   if (x->type() == voidType) {
3054     set_no_result(x);
3055   } else {
3056     __ move(result, rlock_result(x));
3057   }
3058 }
3059 
3060 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3061   LIRItemList args(1);
3062   LIRItem value(arg1, this);
3063   args.append(&value);
3064   BasicTypeList signature;
3065   signature.append(as_BasicType(arg1->type()));
3066 
3067   return call_runtime(&signature, &args, entry, result_type, info);
3068 }
3069 
3070 
3071 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3072   LIRItemList args(2);
3073   LIRItem value1(arg1, this);
3074   LIRItem value2(arg2, this);
3075   args.append(&value1);
3076   args.append(&value2);
3077   BasicTypeList signature;
3078   signature.append(as_BasicType(arg1->type()));
3079   signature.append(as_BasicType(arg2->type()));
3080 
3081   return call_runtime(&signature, &args, entry, result_type, info);
3082 }
3083 
3084 
3085 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3086                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3087   // get a result register
3088   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3089   LIR_Opr result = LIR_OprFact::illegalOpr;
3090   if (result_type->tag() != voidTag) {
3091     result = new_register(result_type);
3092     phys_reg = result_register_for(result_type);
3093   }
3094 
3095   // move the arguments into the correct location
3096   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3097   assert(cc->length() == args->length(), "argument mismatch");
3098   for (int i = 0; i < args->length(); i++) {
3099     LIR_Opr arg = args->at(i);
3100     LIR_Opr loc = cc->at(i);
3101     if (loc->is_register()) {
3102       __ move(arg, loc);
3103     } else {
3104       LIR_Address* addr = loc->as_address_ptr();
3105 //           if (!can_store_as_constant(arg)) {
3106 //             LIR_Opr tmp = new_register(arg->type());
3107 //             __ move(arg, tmp);
3108 //             arg = tmp;
3109 //           }
3110       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3111         __ unaligned_move(arg, addr);
3112       } else {
3113         __ move(arg, addr);
3114       }
3115     }
3116   }
3117 
3118   if (info) {
3119     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3120   } else {
3121     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3122   }
3123   if (result->is_valid()) {
3124     __ move(phys_reg, result);
3125   }
3126   return result;
3127 }
3128 
3129 
3130 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3131                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3132   // get a result register
3133   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3134   LIR_Opr result = LIR_OprFact::illegalOpr;
3135   if (result_type->tag() != voidTag) {
3136     result = new_register(result_type);
3137     phys_reg = result_register_for(result_type);
3138   }
3139 
3140   // move the arguments into the correct location
3141   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3142 
3143   assert(cc->length() == args->length(), "argument mismatch");
3144   for (int i = 0; i < args->length(); i++) {
3145     LIRItem* arg = args->at(i);
3146     LIR_Opr loc = cc->at(i);
3147     if (loc->is_register()) {
3148       arg->load_item_force(loc);
3149     } else {
3150       LIR_Address* addr = loc->as_address_ptr();
3151       arg->load_for_store(addr->type());
3152       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3153         __ unaligned_move(arg->result(), addr);
3154       } else {
3155         __ move(arg->result(), addr);
3156       }
3157     }
3158   }
3159 
3160   if (info) {
3161     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3162   } else {
3163     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3164   }
3165   if (result->is_valid()) {
3166     __ move(phys_reg, result);
3167   }
3168   return result;
3169 }
3170 
3171 void LIRGenerator::do_MemBar(MemBar* x) {
3172   if (os::is_MP()) {
3173     LIR_Code code = x->code();
3174     switch(code) {
3175       case lir_membar_acquire   : __ membar_acquire(); break;
3176       case lir_membar_release   : __ membar_release(); break;
3177       case lir_membar           : __ membar(); break;
3178       case lir_membar_loadload  : __ membar_loadload(); break;
3179       case lir_membar_storestore: __ membar_storestore(); break;
3180       case lir_membar_loadstore : __ membar_loadstore(); break;
3181       case lir_membar_storeload : __ membar_storeload(); break;
3182       default                   : ShouldNotReachHere(); break;
3183     }
3184   }
3185 }
3186